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DISSERTATION ABSTRACT

David Platt

Doctor of Philosophy

Department of Mathematics

June 2013

Title: Chern Character for Global Matrix Factorizations

We give a formula for the Chern character on the DG category of global matrix

factorizations on a smooth scheme X with superpotential w ∈ Γ(OX). Our formula

takes values in a Cech model for Hochschild homology. Our methods may also be

adapted to get an explicit formula for the Chern character for perfect complexes of

sheaves on X taking values in right derived global sections of the De-Rham algebra.

Along the way we prove that the DG version of the Chern Character coincides with

the classical one for perfect complexes.
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CHAPTER I

INTRODUCTION

Shklyarov in [Shk] gives a beautiful interpretation of the Chern Character and

Riemann-Roch theorem in the context of DG-categories over a field k. In his

treatment, he uses functoriality of Hochschild homology and the canonical functor

kE : k → C, which simply sends the DG-algebra k to the object E ∈ C, to get the

Chern character of E,

ch(E) = HH(kE) : k = HH(k)→ HH(C).

In the case when C is a proper DG-category, i.e. the diagonal bimodule, ∆, takes

values in perfect k-modules (Perf k) , we use the Kunneth isomorphism and the

isomorphism HH(Cop) ∼= HH(C) to obtain a pairing on homology:

< −,− >C: HH(C)⊗ HH(C) ∼= HH(C⊗ Cop)
HH(∆)→ HH(Perfk) = k

With this pairing and definition of the Chern character, the Riemann-Roch theorem,

< ch(E), ch(F ) >C= str HomC(E,F ),

then becomes almost tautological, following easily from functoriality.

As with all beautiful things, the hard part is in the application. That is, for a

particular DG-category, C, the difficulty is to get a meaningful handle on the Chern

character and the pairing on Hochschild homology. The DG-categories of interest to

us presently are certain categories of (global) matrix factorizations. We also only focus
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on the first half of the problem, i.e. to compute the Chern Character, taking values in

some reasonable model for Hochschild homology. We, in fact, concern ourselves with

a mildly more general problem: to compute the so called boundary bulk map. This

is a map from the endomorphism DG-algebra of an object to Hochschild homology.

Our formula for this map is rather involved, too much so to reproduce here (the

impatient reader may thumb to theorem 5.13), however in the case when our matrix

factorization, E , admits a global connection, ∇, i.e. global connections on graded

components ∇i : Ei → Ω⊗Ei, i = 0, 1, we obtain the following formula for the Chern

Character:

ch(E) = str

(
dim X∑
i=0

[∇, e]i

i!

)

where str denotes the super-trace, e is the curved differential on E , and

[∇, e] = ∇i+1ei − 1⊗ ei∇i i = 0, 1.

We save understanding the pairing for a later work.

This thesis is organized as follows. Chapter II contains the general background

information for this work. Specifically we highlight the pertinant information on

DG categories, Hochschild homology, the Chern character and boundary bulk map,

and our particular version of matrix factorizations (taken from [PV1]). Section III

contains contains results on the homotopy theory of matrix factorizations. Much of

the work therein is adapted from [Pos2], some of results therein have not appeared in

the generality in which we state them, but for the most part are not new. The

promotion of an equivalence between modules over matrix factorizations on one

hand and quasi-coherent curved modules (more or less proven in [Dyc]) to a Quillen

equivalence appears to be new, however. In chapter IV, we carry out the computation
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of Hochschild Homology for our categories of matrix factorizations. The method for

this computation is suggested in [PL] and the analogous computation is carried out

for Hochschild Cohomology therein. We give the details for homology. This result is

also know by other methods from [Pre].

Chapter V forms the heart of the thesis, culminating in the a formula for the

boundary-bulk map which takes values in a Cech model for Hochschild homology of

matrix factorizations. This formula makes use of a choice of local connections on a

Cech cover of the scheme X. In our opinion, more interesting than the formula, is the

observation that the boundary-bulk map, which is a map in the derived category of

complexes of vector spaces, may be promoted to the derived category of sheaves on

our space X. Section 5.1. is concerned with understanding this promotion. Section

5.2. is concerned with what then happens upon applying right-derived global sections.
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CHAPTER II

BACKGROUND

2.1. DG Categories

Recall that the category, C(k), of chain complexes over the commutative ring k

forms a symmetric monoidal category under tensor product. A Differential Graded

(DG) category is a category enriched in C(k). Specifically, this means that a DG

category, A, consists of the following data:

– A class of objects, ob(A).

– For each pair of objects A,B ∈ ob(A), there is a chain complex HomA(A,B).

– For each triple of objects A,B,C ∈ ob(A), there is a composition morphism of

chain complexes

◦A,B,C : HomA(A,B)⊗ HomA(B,C)→ HomA(A,C)

– For each A ∈ ob(A) we have a morphism

µA : k → HomA(A,A)

such that both

HomA(A,B) ∼= k⊗HomA(A,B)
µA⊗id→ HomA(A,A)⊗HomA(A,B)

◦A,A,B→ HomA(A,B)
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and

HomA(B,A) ∼= HomA(B,A)⊗k id⊗µA→ HomA(B,A)⊗HomA(A,A)
◦B,A,A→ HomA(B,A)

are the identity

– Composition is associative, i.e the following diagram commutes:

HomA(A,B)⊗ (HomA(B,C)⊗HomA(C,D)) HomA(A,B)⊗HomA(B,D)

HomA(A,D)

(HomA(A,B)⊗HomA(B,C))⊗HomA(C,D) HomA(A,C)⊗HomA(C,D)

id⊗ ◦B,C,D

◦A,B,C ⊗ id

α

◦A,B,D

◦A,C,D

where α is the associativity isomorphism associated to the monoidal category

C(k).

A DG category with one object is simply a differential graded algebra over k. In this

way, we think of DG categories as “differential graded algebras with many objects.”

For a DG category, A, we may form a new DG category Aop with

HomAop(A,B) := HomA(B,A)

and the composition f ◦ g replaced by (−1)|f ||g|g ◦ f . We will use the notation A∨ to

mean the object A ∈ A viewed as an object of Aop.

For a pair of DG categories, A and B, we may form the tensor product A ⊗B

whose objects are formal tensors A⊗B with A ∈ A and B ∈ B with morphisms

HomA⊗B(A⊗B,C ⊗D) := HomA(A,C)⊗
k

HomB(B,D).
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A covariant (resp. contravariant) functor of DG categories is a covariant (resp.

contravariant) C(k) enriched functor of C(k) enriched categories. Specifically, a

covariant functor F : A→ B consists of the data:

– For each object A ∈ ob(A), we have an object F (A) ∈ ob(B).

– For each pair A,B ∈ ob(A), we have a morphism of chain complexes

FA,B : HomA(A,B)→ HomB(F (A), F (B))

which make the following diagram commute:

HomA(A,B)⊗HomA(B,C) HomA(A,C)

HomB(F (A), F (B))⊗HomB(F (B), F (C)) HomB(F (A), F (C))

◦A,B,C

FA,B ⊗ FB,C

◦F (A),F (B),F (C)

FA,C

A contravariant DG functor is similar only we have morphisms

FA,B : HomA(A,B)→ HomB(F (B), F (A))

satisfying an analogous commutativity condition. We will often shorten covariant DG

functor to DG functor or even to functor.

Morphisms between DG functors are enriched natural transformations.

Specifically a natural transformation τ : F → G between functors F : A → B

and G : A→ B consists of the data of a closed degree zero morphism of complexes

τA : k → HomB(F (A), G(A))
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for each A ∈ A satisfying the commutative diagram:

HomA(A,B) k ⊗ HomB(G(A), G(B)) HomB(F (A), G(A))⊗ HomB(G(A), G(B))

HomB(F (A), F (B))⊗ k HomB(F (A), F (B))⊗ HomB(F (B), G(B)) HomB(F (A), G(B))

G

F

id⊗ τB

τA ⊗ id

◦

◦

The category of DG-categories, DG−Cat, comes equipped with two functors to

the category of k-linear categories, Z0 : DG−Cat→ k−Cat and H0 : DG−Cat→

k − Cat, the “Zero cycles” functor and the “Zero Homology functor.” For a DG

category A, Z0A is the category with the same objects as A but whose morphisms

are given by

HomZ0A(A,B) := Z0HomA(A,B)

where Z0HomA(A,B) is the usual zero cycles of the complex HomA(A,B). For a DG

category A, H0A is the category with the same objects as A but whose morphisms

are given by

HomZ0A(A,B) = H0HomA(A,B)

where H0HomA(A,B) is the usual zero homology of the complex HomA(A,B).

A DG functor F : A→ B is a quasi-equivalence if the map

FA,B : HomA(A,B)→ HomB(F (A), F (B))

is a quasi-isomorphism of complexes for all A,B ∈ A and for each B ∈ B there is

A ∈ A along with closed degree zero morphisms

f ∈ Z0HomB(F (A), B)

7



and

g ∈ Z0HomB(B,F (A))

such that fg is homologous to idB and gf is homologous to idF (A).

A left A module is a covariant DG functor M : A→ C(k). A right A module is a

contravariant DG functor M : A→ C(k). A A-B bimodule is a left A⊗Bop module

or equivalently a right Aop⊗B module. When dealing with specific bimodules we will

always make the first veriable the contravarient one and the second variable covariant.

We will denote the category of right A modules A−Mod and by “module”, we will

always mean right module.

Given a B-A bimodule, F , and a C-A bimodule, G, we may form an C-B

bimodule,

HomA−Mod(F,G)

via the end:

HomA−Mod(F,G)(B,C) =

∫
A∈A

HomC(k)(F (A,B), G(A,C))

= ker

 ∏
A,A′∈A

HomC(k)(F (A,B), G(A′, C))⊗HomA(A,A′)
ν→

∏
A∈A

HomC(k)(F (A,B), G(A,C))



where ν(f ⊗ g) = f ◦ F (g) − G(g) ◦ f . In particular taking B = k and C = k, we

obtain a k-k bimodule (i.e. a complex) of homs between F and G making A−Mod

into a DG category. Alternatively, one may describe the complex

HomA−Mod(F,G)
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as the collection of graded natural transformations from F to G viewed as graded

objects with the differential given by

∂(τ) = dGτ − (−1)|τ |dF .

Observe for this definition, that dF (resp. dG) is a degree 1 natural transformation of

F (resp. G) viewed as a graded functor.

Given a A-B bimodule F and a B-C bimodule G we may form the A-C bimodule

as the tensor product over B. The tensor product is is defined by the coend

F ⊗
B
G(A,C) =

B∈B∫
F (A,B)⊗G(B,C)

= coker

 ⊕
B,B′∈B

F (A,B)⊗HomB(B,B′)⊗G(B′, C)
ν→
⊕
B∈B

F (A,B)⊗G(B,C)



where, in this case ν(x ⊗ f ⊗ y) = F (f)(x) ⊗ y − x ⊗ G(f)(y). In the case when

A = k (resp. C = k) we obtain a k−C (resp. A− k) bimodule, i.e. we obtain a right

C module (resp. left A module). In particular when A = C = k we obtain a k − k

bimodule, i.e. a complex.
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Given a A-B bimodule, F , a B-C bimodule G and a D−C bimodule H we have

the following isomorphism of D-A bimodules:

HomC−mod(F ⊗
B
G,H) =

∫
C∈C

HomC(k)(F ⊗
B
G(C,−), H(C,−))

=

∫
C∈C

HomC(k)

 B∈B∫
F (B,−)⊗G(C,B), H(C,−)


=

∫
C∈C

∫
B∈B

HomC(k)(F (B,−)⊗G(C,B), H(C,−))

=

∫
C∈C

∫
B∈B

HomC(k)(F (B,−),HomC(k)(G(C,B), H(C,−)))

=

∫
B∈B

∫
C∈C

HomC(k)(F (B,−),HomC(k)(G(C,B), H(C,−)))

=

∫
B∈B

HomC(k)

F (B,−),

∫
C∈C

HomC(k)(G(C,B), H(C,−))


=

∫
B∈B

HomC(k)(F (B,−),HomC−Mod(G(−, B), H))

= HomB−Mod(F,HomC−Mod(G,H)).

In particular when A = D = k and taking zero cycles we get the standard

adjunction between tensor and hom.

The category Z0A−Mod admits arbitrary limits and colimits computed object-

wise, i.e for a diagram, F , in A−Mod and A ∈ A we have

( lim
F∈F

F )(A) := lim
F∈F

F (A)
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and

(colim
F∈F

F )(A) := colim
F∈F

F (A).

For F ∈ A−Mod, we may also form the shift F [1] defined object-wise:

F [1](A) := F (A)[1].

For a morphism of modules τ : F → G we may form the DG cone, Cone(τ) which

is given object-wise by taking the usual cone of the morphism τA : F (A) → G(A)

in C(k) for each A ∈ A. Similarly we may form the DG cylinder of a morphism,

Cyl(τ), object-wise by taking the usual cylinder of τA : F (A) → G(A) in C(k) for

each A ∈ A.

The category Z0A−Mod and admits a closed, C(k) enriched model structure1

where the weak equivalences are object-wise quasi-isomorphisms, i.e. a weak

equivalence between two modules F and G is a DG natural transformation τ : F → G,

such that the induced map

τA : F (A)→ G(A)

is a quasi-isomorphism for all A ∈ A, fibrations are object-wise surjections, i.e.

τ : F → G

is a fibration provided

τA : F (A)→ G(A)

1We recommend [Hov] for background on model categories.
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is surjective for all A (see [Kel2] Theorem 3.2). We remark that under this model

structure every module is fibrant. The derived category of the DG category A, D(A),

is the localization of Z0A−Mod with respect to these weak equivalences. One may

check that Cyl(idF ) for a cylinder object (in the model category sense) for the module

F , as such one may check that the left homotopy relation (in the model category sense)

is simply given by τ ∼ σ for τ, σ : F → G, if there is ε : F [1]→ G such that

∂εA = τA − σA

for all A ∈ A. We may then deduce from [Hov] Theorem 1.2.10 that

HomD(A)(F,G) = H0HomA−Mod(Q(F ), G) = HomH0A−Mod(Q(F ), G)

(Equation 2.1.)

where Q(F ) is a cofibrant replacement for F .

From the universal property of localizations, the projection Z0A−Mod→ D(A)

factors as

A−Mod

H0(A−Mod) D(A)

If we apply the cofibrant replacement functor followed by the projection

Z0A−Mod→ H0A−Mod,

we get a functor

12



Z0A−Mod
Q→ Z0A−Mod→ H0A−Mod

which sends weak equivalences to isomorphisms. Hence we obtain a map

D(A)→ H0A−Mod.

which sends F to Q(F ). We will by abuse call this functor Q. From (Equation 2.1.) we

deduce that Q is a fully faithful left adjoint to the projection H0A−Mod → D(A).

The category H0(A − Mod) admits the structure of a triangulated category using

the shift functor and cone from A − Mod. The (essential image) of D(A) forms

a full subcategory of H0(A −Mod), stable under shifts and cones and therefore is

a triangulated category in its own right. One sees immediately that D(A) admits

arbitrary direct sums.

We may form the derived tensor product of a A-B bimodule with a B-C bimodule

G by

F
L
⊗
B
G := Q(F )

L
⊗
B
G ∼= F

L
⊗
B
Q(G)

where Q(F ) (resp. Q(G)) is a cofibrant replacement for F (resp. G) in Aop⊗B−Mod

(resp. Bop ⊗ C−Mod).

We define PerfD(A) to be the smallest idempotent complete triangulated

containing the (images of) the representable modules in D(A). By [Kel2] Corollary

3.7, the elements of PerfD(A) are precisely the compact objects of D(A), i.e. those

objects, F , for which the natural map

⊕
i

HomD(A)(F,Gi)→ HomD(A)(F,
⊕
i

Gi)
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is an isomorphism. We define the category PerfA to be the full DG subcatgory of

A − Mod generated by objects which are isomorphic to an object of PerfD(A) in

D(A).

Definition 2.1. A DG functor F : A → B is a Morita equivalence if the induced

map

A−Mod→ B−Mod

is a quasi-equivalence of DG categories. A and B are Morita equivalent if there exists

a zig-zag of Morita equivalences connected A to B.

Definition 2.2. There is a distinguished object ∆A in the category of Aop⊗A modules

given by

A∨ ⊗B 7→ HomA(B,A).

We call A smooth if ∆A has finite projective dimension in the abelian category

Z0(Aop ⊗ A−Mod)

Definition 2.3. A DG category A is called proper if the by module ∆A (see 2.2)

factors though Perfk, i.e. the complex

HomA(A,B)

has finitely generated homology.

Definition 2.4. A DG category, A, is saturated if it is Morita equivalent to a smooth

proper DG algebra (i.e. DG category with one object).
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If A and B are saturated DG categories, then every functor PerfA → PerfB is

weakly equivalent to a kernel in Perf(Aop ⊗B), the correspondence given by

F 7→ HomB(−, F (−)),

see [TV].

2.2. Hochschild Homology and Categorical Hirzebruch-Riemann-Roch

As in 2.2, we have a distinguished object ∆A in the category of Aop⊗A modules

given by

A∨ ⊗B 7→ HomA(B,A).

Left derived tensor product with ∆A then gives a functor

Tr : A⊗ Aop −Mod→ C(k)

given by

Tr(M) = M
L
⊗

A⊗Aop
∆A.

Definition 2.5. We define the Hochschild homolgy of the DG category A, denoted

HH(A) by

HH(A) := Tr(∆Aop)

Remark 2.6. In the case when A has one object, we may set A = HomA(∗, ∗). Then

the category of A − A bimodules, is naturally equivalent to the category of A − A

bimodules and this equivalence realizes the bimodule A as the diagonal bimodule.
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Then one sees that

HH(A) = A
L
⊗

A⊗Aop
A

which is the usual Hochschild homology of the DGA A.

There is a canonical complex for computing HH(A) obtained as follows. We

have the Bar Resolution of ∆A in the abelian category of A − A bimodules with

closed degree 0 morphisms:

...

⊕
A0,A1,A2

HomA(−, A0)⊗ HomA(A0, A1)⊗ HomA(A1, A2)⊗ HomA(A2,−)

⊕
A0,A1

HomA(−, A0)⊗ HomA(A0, A1)⊗ HomA(A1,−)

⊕
A0

HomA(−, A0)⊗ HomA(A0,−)

HomA(−,−)

(Equation 2.2.)

Where the morphism

b :
⊕

A0,...,An

HomA(−, A0)⊗· · ·⊗Hom(An,−)→
⊕

A0,...,An−1

HomA(−, A0)⊗· · ·⊗Hom(An−1,−)
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is given by the formula

b(f0 ⊗ f1 ⊗ · · · ⊗ fn) =
n−1∑
i=0

(−1)if0 ⊗ f1 ⊗ · · · ⊗ fi ◦ fi+1 ⊗ · · · ⊗ fn.

We will denote the complex Equation 2.2. by Bar∆A
. By passing to the direct

sum total complex Tot⊕(Bar∆A
) we obtain a by module along with a morphism

Tot⊕(Bar∆A
)→ ∆

Lemma 2.7. Tot⊕(Bar∆A
) → ∆ is a cofibrant replacement for ∆A in the model

category of A− A bimodules.

Proof. First one can verify that Tot⊕(Bar∆A
) → ∆ is an object-wise quasi-

isomorphism by explicitly constructing a homotopy analogous to that of the standard

bar complex. Then we have a natural isomorphism

HomA(−, A0)⊗ HomA(A0, A1)⊗ · · · ⊗ HomA(An,−)

∼= HomA(−, A0)⊗ HomA(An,−)⊗ HomA(A0, A1)⊗ · · · ⊗ HomA(An−1, An)

= HomA⊗Aop(−, A0 ⊗ A∨n)⊗ HomA(A0, A1)⊗ · · · ⊗ HomA(An−1, An)

If C is any fixed complex of k vector spaces then one easily checks that

HomA⊗Aop(−, A0 ⊗ A∨n)⊗ C
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is cofibrant using the adjuction between tensor and Hom and the enriched Yoneda

lemma. This implies

HomA(−, A0)⊗ HomA(A0, A1)⊗ · · · ⊗ HomA(An,−)

is cofibrant and therefore

⊕
A0,...,An

HomA(−, A0)⊗ HomA(A0, A1)⊗ · · · ⊗ HomA(An,−)

is cofibrant as well since cofibrant objects are closed under direct sum. The proof will

be finished once we prove the claim that if

· · · → T−n → T−n+1 → . . . T 0

is a complex of cofibrant bimodules then Tot⊕(T •) is cofibrant as well. To prove the

claim, observe that

Tot⊕(T •) = colim
n

Tot⊕(σ−nT •)

where σ−nT • is the stupid truncation

σ−nT • = (T−n → T−n+1 → · · · → T 0).

Since cofibrant objects are closed under directed colimits, it will suffice to show that

Tot(σ−nT •) is cofibrant for each n. This follows from the observation that

Tot(σ−n−1T •) = Cone(T−n−1[n]→ Tot(σ−nT •))
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and that the subcategory of cofibrant bimodules is pretriangulated, and therefore

closed under taking (DG) cones.

The bar resolution of ∆A gives us an explicit complex for computing HH(A).

One may check that upon tensoring Bar∆A
with ∆A we obtain the bi-complex

...

⊕
A0,A1,A2,A3

HomA(A0, A1)⊗ HomA(A1, A2)⊗ HomA(A2, A3)⊗ HomA(A3, A0)

⊕
A0,A1,A2

HomA(A0, A1)⊗ HomA(A1, A2)⊗ HomA(A2, A0)

⊕
A0,A1

HomA(A0, A1)⊗ HomA(A1, A0)

⊕
A0

HomA(A0, A0)

(Equation 2.3.)

Where the vertical maps are given by the equation

b(f0⊗f1⊗· · ·⊗fn) =
n−1∑
i=0

(−1)if0⊗f1⊗· · ·⊗fi◦fi+1⊗· · ·⊗fn+(−1)nfn◦f0⊗f1⊗· · ·⊗fn−1.
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The cohomology if the direct sum total complex of the bicomplex (Equation 2.3.)

computes the Hochschild homology of the category A.

Remark 2.8. Observe again, that when A has only one object, and setting A =

HomA(∗, ∗) we see the bicomplex (Equation 2.3.), becomes the bicomplex

· · · → A⊗3 → A⊗2 → A

where the horizontal maps are given by

b(a0⊗a1⊗· · ·⊗an) =
n−1∑
i=0

(−1)ia0⊗a1⊗· · ·⊗aiai+1⊗· · ·⊗an+(−1)nana0⊗a1⊗· · ·⊗an−1.

The reader will recognize that the total complex of this bicomplex is the standard

one for computing the Hochschild homology of the DG algebra, A.

From (Equation 2.3.), functoriality of Hochschild homology is clear. Applying

the isomorphism

A⊗ Aop ∼= Aop ⊗ A

obtained by switching factors we get a natural isomorphism

HH(A) ∼= HH(Aop). (Equation 2.4.)

Observing that ∆A⊗B = ∆A ⊗k ∆B we get the following Künneth isomorphism

∆A⊗B
L
⊗

A⊗B⊗Aop⊗Bop
∆A⊗B = ∆A ⊗k ∆B

L
⊗

A⊗B⊗Aop⊗Bop
∆A ⊗k ∆B

= ∆A

L
⊗

A⊗Aop
∆A ⊗k ∆B

L
⊗

B⊗Bop
∆B (Equation 2.5.)
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We will also require the following fact proved in [Kel1]

Theorem 2.9. For any DG algebra, A, the inclusion A → PerfA induces an

isomorphism HH(A) ∼= HH(PerfA).

we will also require the following result (see [Toë])

Theorem 2.10. Hochschild homology is a Morita invariant. In particular Hochschild

homology respects quasi-equivalences.

Now let us recall Shklyerov’s categorical Hirzebruch-Riemann-Roch theorem

from [Shk].

Definition 2.11. Fix a commutative ring K. A homology theory for DG-cat is a

covarient tensor functor

H : DG− cat→ K −mod

satisfying the axioms

HT1.) H respects quasi-equivalences.

HT2.) For any DG algebra A the canonical embedding A → PerfA induces an

isomorphism

H(A) ∼= H(PerfA).

HT3.) H(k) = K.

HT4.) There is a functorial isomorphism

∨ : H(A) ∼= H(Aop)

which equals the identity when A = k.
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Remark 2.12. As pointed out in [Shk] we may replace the target category, K−mod,

with other flavors of K-modules. In particular we will be interested in the case when

K = k and we take our modules to be differential graded modules over k.

Remark 2.13. (Equation 2.4.), (Equation 2.5.), and Theorem 2.9, Theorem 2.10,

along with the well-known fact that HH(k) = k, imply that Hochschild homology is

one such homology theory when we take K = k.

After fixing a homology theory H we may define the Chern character with values

in H. For each DG category A we obtain a function

ChAH : ob(A)→ H(A)

defined by

ChAH(N) = H(TN)(1K),

where TN : k → A is the functor sending the unique object of k to N ∈ A. It is easy

to see that for two DG categories A and B and a DG functor F : A→ B we have

ChBH ◦ F = H(F ) ◦ ChAH,

i.e. the chern character is natural.

Now we restrict our attention the proper DG categories, i.e. categories A that

HomA(M,N) is a perfect DG k-module for all M,N ∈ A. In this case the DG functor

∆Aop : A⊗ Aop → C(k), N ⊗M∨ 7→ HomA(M,N)
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factors through the inclusion Perfk ↪→ C(k). Then by HT2 and HT3 we obtain a K

linear morphism

H(∆A) : H(A⊗ Aop)→ K (Equation 2.6.)

By assumption H is a tensor functor so there is a natural the Küneth isomorphism

H(A⊗B) ∼= H(A)⊗H(B).

Using the inverse to this isomorphism along with HT 4 and the morphism

(Equation 2.6.), we obtain a K-bilinear pairing

〈 , 〉A : H(A)⊗K H(A) ∼= H(A)⊗K H(Aop) ∼= H(A⊗ Aop)→ K.

Theorem 2.14 (Categorical HRR). For any proper DG category A and two objects

N,M ∈ A we have

ChPerfk
H (HomA(N,M)) =

〈
ChAH(M), ChAH(N)∨

〉
A
.

Proof. We begin by noting that the functoriality of ∨ and the requirement that

H(k) ∼= H(kop)

is the identity imply that

H(TN)(1K)∨ = H(TN∨)(1K),
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where M∨ denotes the object M viewed as an element of Aop. Then we have

〈
ChAH(M), ChAH(N)∨

〉
A

= H(∆Aop) (H(TM)(1K)⊗H(TN)(1K)∨)

= H(∆Aop) (H(TM)(1K)⊗H(TN∨)(1K))

= H(∆Aop)(H(TM⊗N∨)(1K))

= H(∆Aop ◦ TM⊗N∨)(1K)

= H(THomA(N,M))(1K)

= ChPerfk
H (HomA(N,M))

Applying this when H = HH (see remark 2.13) and abbreviating ChAHH simply

to Ch we have the following Hirzebruch-Riemann-Roch formula:

〈Ch(M), Ch(N)∨〉 = ChPerfk(HomA(N,M)) (Equation 2.7.)

Theorems 3.1 and 3.2 from [Shk] combine to give for any DG algebra, A, the

Chern character ChA descends to a group homomorphism from the Grothendiek group

of H0(PerfA) to HH(A). This implies that ChPerfk is in fact none other than the euler

characteristic on the category Perfk. So we may rewrite the Hirzebruch-Riemann-

Roch formula as

〈Ch(M), Ch(N)∨〉 = χ(HomA(N,M)) (Equation 2.8.)
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2.3. Boundary-Bulk

If we restrict our attention to saturated (recall definition 2.4) DG categories we

have a second, “coordinate free”, description of the the functoriality of Hochschild

homology. This description allows us to define the so called Boundary-Bulk map and

prove a generalized Hirzebruch-Riemann-Roch theorem. Throughout this section we

assume that all DG categories are saturated and proper (recall 2.3)

Given a functor F : A→ B we obtain a A−B bimodule

F̂ : A∨ ⊗B 7→ HomB(B,F (A))

One may check that for a pair of functors F : A → B and G : B → C we have

the following equality of A− C bimodules

HomC(−, G ◦ F (−)) = HomB(−, F (−))⊗
B

HomC(−, G(−)).

Lemma 2.15. Let F be an A−B bimodule and G be an B−A bimodule, then we

have a canonical isomorphism

TrA(F ⊗
B
G) ∼= TrB(G⊗

A
F )

Proof. We consider the object F ⊗
k
G in A ⊗ Bop ⊗ B ⊗ Aop −Mod. Commuting

tensor factors, we have a canonical isomorphism

TrA(TrB(F ⊗
k
G)) ∼= TrB(TrA(F ⊗

k
G)).
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Then one verifies that

TrB(F ⊗
k
G) ∼= F ⊗

B
G

and

TrA(F ⊗
k
G) ∼= G⊗

A
F.

Let F : PerfA→ PerfB be a DG functor. For each B ∈ B we obtain a functor

Aop → Perfk : A 7→ HomB(F (A), B).

By the saturated assumption on A this functor is represented by G(B) ∈ PerfA. This

gives a functor G : PerfB → PerfA which is right adjoint to F . Then using the

canonical adjuction maps

ε : id→ G ◦ F and η : F ◦G→ id

we obtain morphisms

ε̂ : ∆A → F̂ ⊗
B
Ĝ and η̂ : Ĝ⊗

A
F̂ → ∆B.

Applying traces and using Lemma 2.15 we get a morphism

F∗ : TrA(∆A)→ TrA(F̂ ⊗
B
Ĝ) ∼= TrB(Ĝ⊗

A
F̂ )→ TrB(∆B).

The association F 7→ F∗ realizes the functoriality of Hochschild homology without

appeal to explicit complexes.
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Definition 2.16. For each E ∈ PerfA we have a canonical morphism in PerfAop⊗A

cE : E∨ ⊗ E → ∆A

corresponding the morphism of functors

HomPerfA(E,−)⊗ E → idPerfA.

Remark 2.17. In the case when E = Hom(−, A) for A ∈ A, we have

E∨ = Hom(A,−),

and cE corresponds to the natural map

Hom(A,−)⊗ Hom(−, A)→ Hom(−,−).

Definition 2.18. Let E ∈ A we have a map

τE : HomA(E,E) = TrA(HomA(E,−)⊗ HomA(−, E))
Tr(cE)→ TrA(∆A) = HH(A)

Lemma 2.19. For E ∈ A we have Ch(E) = τE(idE).

Proof. Recall that Ch(E) is computed by applying Hochschild homology to the

functor

TE : k → A : ∗ 7→ E.
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We may extend TE, to a functor TE : Perfk → PerfA. Then TE admits a right adjoint,

namely

HomPerfA(HomA(−, E),−).

Then one computes (TE)∗ as

k → HomA(E,E) = TrA(HomPerfA(HomA(−, E),−)⊗HomA(−, E))(−, E))
Tr(cE)→ TrA(∆A)

where the first map is k 7→ idE, which gives the result.

2.4. Matrix Factorizations

We work with categories of matrix factorizations as in [PV1] and [Pos1].

Specifically we let X be a noetherian k-scheme, L a line bundle on X and w ∈ L(X)

a global section. A matrix factorization, denoted

E = E0 E1

e0

e1

on X with potential w ∈ L(X) consists of the data of two vector-bundles E0 and E1

on X and maps

e1 : E1 → E0 and e0 : E0 → E1 ⊗ L

such that e0e1 = idE1 ⊗w and (e1⊗ idL)e0 = idE0 ⊗w. Twisting by L and expanding

2-periodically we may view a matrix factorization as a “complex” of sheaves except

the differential, e, has e2 is multiplication by w:

· · · → E1 ⊗L−1 → E0 ⊗L−1 → E1 → E0 → E1 ⊗L → E0 ⊗L → . . . . (Equation 2.9.)
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Here the term Ei ⊗ Lk lives in degree 2k − i. Given two matrix factorizations on X

with potential w,

E = E0 E1,
e0

e1

D = D0 D1

d0

d1

we may define a complex of morphisms Hom(E ,D) whose underlying graded

components are

Hom2k(E ,F) := HomOX (E0,F0 ⊗ Lk)⊕ HomOX (E1,F1 ⊗ Lk)

and

Hom2k+1(E ,F) := HomOX (E1,F0 ⊗ Lk)⊕ HomOX (E0,F1 ⊗ Lk+1).

The differential on Hom(E ,D) is given by ∂(f) = df − (−1)|f |fe. One easily verifies

that ∂2 = 0 so Hom(E ,D) is indeed an honest complex, even though E and D are

not.

The DG-category of matrix factorizations defined above is not “correct” in the

global setting. It contains objects which “should be” 0 in the DG-derived category

but are not, i.e. there are locally contractible matrix factorizations which are not

globally contractible. There are several ways of dealing with this. In [Orl] Orlov

defines the derived category of matrix factorizations to be the Verdier quotient of

the derived category of matrix factorizations in standard DG sense by the thick

subcategory of locally contractible objects. Alternatively one can form a new DG-

category MFloc(X,L, w), in which we localize with respect to the spacial variable.

The objects of MFloc(X,L, w) are the same as in MF(X,L, w) and morphisms are

given by a suitably functorial models (so that composition is well-defined) for the

complexes RHom(Ei,Fj ⊗ Ln) for i, j = 0, 1 and all n, then defining the morphism
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complex in the “corrected” category to be

HomMFloc(X,L,w)(E ,F) := Tot(RHom(E ,F))

This can be done using a Cech model as in [PL] and [Shi] or by choosing functorial

injective resolutions which we explain below.

In what follows we will want to consider a slightly larger class of objects obtained

by dropping the restriction that E0 and E1 be vector bundles and allowing the

graded components of E to arbitrary quasi-coherent sheaves on X. We will refer

to such an object as a curved quasi-coherent OX module. The DG-category of curved

modules with Hom complexes defined above will be denoted by Qcoh(X,L, w), the

full subcategory of matrix factorizations will be denoted by MF(X,L, w) and the full

subcategory formed by considering curved sheaves with coherent graded components

will be Coh(X,L, w). We will often drop X and or L from the notation, when they

are clear from context. We will keep w, to distinguish Coh(w) (resp. Qcoh(w)) from

the categories Coh(X) (resp. Qcoh(X)) of ordinary (quasi-)coherent sheaves on X.

In [Pos2] Positselski defines the the notion of a curved differential graded ring

(CDG-ring) as a graded ring B =
⊕

Bi along with a degree 1 endomorphism d and

an element w ∈ B2 such that δ2 = [w,−]. A B-module is a graded (left) B#-module

M endowed with its own differential dM satisfying the compatibility identity

dM(am) = d(a)m− (−1)|a|adM(m).

Morphisms between curved modules are B# module morphisms and are endowed

with a differential in the standard way. As with matrix factorizations this differential

produces a complex.
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As in [Pos1] we may use a sheafified version of curved modules to describe the

category Qcoh(w). We define a sheaf of CDG-rings S(L) =
⊕

i∈Z Li as the “free

algebra” on L, graded such that L lives in degree 2 and we endow S(L) with the

trivial differential. Then a curved OX module with potential w ∈ L(X) is a Quasi-

coherent CDG S(L)-module, i.e. a curved quasi-coherent module as defined above

gives rise to a Z-graded S(L)-module

· · · e1→ E0 ⊗ L−1 e0→ E1 → E0
e1→ E1 ⊗ L1 e0→ E0 ⊗ L2 e1→ . . .

with differential e such that e2 is multiplication by w. One can check that the

morphisms in Qcoh(w) are precisely the morphisms of CDG S(L)-modules, i.e.

graded-morphisms on the underlying OX modules which commute with the S(L)

action.

Conversely given a curved S(L)-module (M, dM), the natural isomorphisms

L−1 ⊗ L ∼= OX ∼= L ⊗ L−1

and the associativity of multiplication imply that any S(L)-module, M, must have

isomorpishms

Mi ⊗ L ∼=Mi+2

for all i. This gives an equivalence of categories between the Qcoh(w) and the category

of CDG curved S(L) modules with curvature w. We will use both interpretations of

Qcoh(X,L, w) interchangeably. We will continue to use the notation Qcoh(X,L, w)

for both.

31



For curved modules M ∈ Coh(X,L, w) and N ∈ Qcoh(X,L, w′) we may form

the curved module HomS(L)(M,N ) ∈ Qcoh(X,L, w′ − w) defined by

HomS(L)(M,N )# = HomS(L)#(M#,N#)

and whose differential is given by ∂(f) = dM ′f − (−1)|f |fdN . In particular for

M∈ Coh(X,L, w)

we have the dual module

M∨ = HomS(L)(M, S(L)) ∈ Coh(X,L,−w).

For M ∈ Qcoh(X,L, w) and N ∈ Qcoh(X,L, w′) we may form the tensor product

M ⊗
S(L)
N ∈ Qcoh(X,L, w + w′) defined by

(M ⊗
S(L)
N )# =M# ⊗

S(L)#
N#

and whose differential is given by dM⊗N = dM ⊗ 1 + 1⊗ dN . More explicitly for

M =M0 M1,

m0

m1

N = N0 N1

n0

n1

we have
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HomS(L)(M,N ) =

Hom(M0,N0)⊕Hom(M1,N1) Hom(M0,N1)⊕Hom(M1,N0)

(
−n0∗ m0

∗

m1
∗ −n1∗

)

(
n1∗ m1

∗

m0
∗ n0∗

)

and

M ⊗
S(L)
N =

M0 ⊗N0 ⊕M1 ⊗N1 M0 ⊗N1 ⊕M1 ⊗N0

(
n0⊗1 1⊗m0
1⊗m1 n1⊗1

)
(
n1⊗1 1⊗m1
1⊗m0 n0⊗1

)
The following facts about the HomS(L) and ⊗

S(L)
functors are easily verified by

sheafifying the natural isomorphisms that arise when X is affine.

Proposition 2.20. Let M ∈ Coh(X,L, w) N ∈ Coh(X,L, v), P ∈ Qcoh(X,L, u)

and E ∈MF(X,L, t) and D ∈MF(X,L, s) then

1. HomS(L)(M ⊗
S(L)
N ,P) ∼= HomS(L)(M,HomS(L)(N ,P)) naturally as objects of

Z0Qcoh(X,L, u− v − w).

2. HomS(L)(M ⊗
S(L)
E ,N ) ∼= HomS(L)(M, E∨ ⊗

S(L)
N ) ∼= Hom§(L)(M,N ) ⊗

S(L)
E∨

naturally as objects of Z0Qcoh(X,L, v − w − t).

3. E∨ ⊗
S(L)
D ∼= HomS(L)(E ,D) as objects of Z0Qcoh(X,L, s− t).
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4. (E∨)∨ ∼= E naturally in Z0MF(X,L, t) and the functor

∨ : MF(X,L, t)op →MF(X,L,−t)

is an equivalence of DG-categories.

If

· · · → M−1 →M0 →M1 → . . .

is a complex of curved modules (where the curved modules are viewed in the abelian

category Z0Qcoh(w) we may form the direct sum total curved module Tot(M•) whose

graded components are Tot(M•)n =
⊕

p+q=nMp
q and whose curved differential is

given by the formula analogous to forming the total complex for complexes of sheaves.

The functor # : Z0Qcoh(w)→ S(L)#−Mod0, where S(L)#−Mod0 denotes the

category of S(L)# modules with degree 0 morphisms, admits left and right adjoints

+ and − defined by

M+ =M0 ⊕M1 M1 ⊗ L−1 ⊕M0

( 0 1
w 0 )

( 0 w
1 0 )

and

M− =M0 ⊕M1 ⊗ L M1 ⊕M0

( 0 w
1 0 )

( 0 1
w 0 )

Evidently the functors + and − are exact.
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Remark 2.21. One easily sees that the functors + and − always produces

contractible modules.

We may use these adjoints to construct right and left resolutions in the abelian

Z0Qcoh(w), by first resolving as graded sheaves of S(L)#-modules and then applying

either + or − appropriately. Specifically when

(F•)# → E#

is a resolution of E as a graded S(L) module then

((F•)#)+ → E

resolves E as a w-curved S(L) modules and similarly when

E# → (I•)#

resolves E then

E → ((I•)#)−

is a resolution as w-curved modules. We will be particularly interested in the cases

when (F•)# consists of flat sheaves, vector bundles, or locally free sheaves and when

(I•)# consists of injective sheaves.

The category Qcoh(w) is tensored over C(k) by defining A · M for A ∈ C(k)

and M ∈ Qcoh(w) to have underlying graded sheaf (A · M)(U) = A ⊗M(U) with

restriction functions 1A ⊗ ρVU : A⊗M(U)→ A⊗M(V ), where ρVU is the restriction
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function on M. The differential on A · M is given by the formula

dA·M = 1A ⊗ dM + dA ⊗ j,

where j is the grading operator. One easily checks that

HomQcoh(w)(A · M,N ) = HomC(k)(A,HomQcoh(w)(M,N )).

Qcoh(w) is also cotensored over C(k) by defining for a finitely generated complex, A,

MA(U) = Hom(A,M(U))

where here Hom is graded k-module Homs. We give MA the differential

dMA(f) = fdA − (−1)|f |dMf.

One easily checks that

HomQcoh(w)(A · M,N ) = HomQcoh(w)(M,NA).

For a general complex B we set

MB = lim
A⊂B
MA,
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where the limit is taken over all finitely generated subcomplexes A of B. Again we

have the following relation

HomQcoh(w)(B · M,N ) = HomQcoh(w)(colim
A⊂B

A · M,N ) = HomQcoh(w)(M,NB),

where the first equality follows from the observation that · commutes with colimits.
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CHAPTER III

HOMOTOPY THEORY OF MATRIX FACTORIZATIONS

3.1. The Triangulated Structure of Curved Modules

The ideas, definitions and results in this section come entirely from [Pos2].

Positselski works in the affine situation with CDG modules over a CDG algbra, but

the arguments carry over without any modification. Basically the point is that what

is necessary in loc. cit. is that we are working with graded objects whose underlying

graded pieces lie in an abelian category with enough injectives.

The category Z0Qcoh(X,L, w) is an abelian category with arbitrary direct sums.

One easily checks the standard constructions for chain complexes carry through

without modification to this category. Specifically, if M f→ N is a closed degree

0 morphism of w-curved quasi-coherent S(L) modules then Cone(f) defined in the

obvious way is still a w-curved module and if

· · · d→M−1 d→M0 d→M1 → ...

is a complex (d2 = 0) of w-curved modules then Tot⊕(M•) is in Qcoh(w). Then

we may imbue H0Qcoh(X,L, w) with the structure of a triangulated category in the

standard way by declaring M f→ N → Cone(f) → M[1] to be a distinguished

triangle.

Definition 3.1. Let H0Qcoh(w)abs ⊂ H0Qcoh(w) be smallest thick triangulated

subcategory containing the total complexes of short exact sequences. We call objects

of H0Qcoh(w)abs absolutely acyclic. Let H0Qcoh(w)co ⊂ H0Qcoh(w) be the smallest

thick subcategory containing H0Qcoh(w)abs and which is closed under arbitrary direct
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sums. Objects of H0Qcoh(w)co are called coacyclic. An object of Z0Qcoh(w) will be

called absolutely acyclic (resp. coacyclic) if its image in H0Qcoh(w) is absolutely

acylic (resp. coacyclic). We may define H0Coh(w)abs analogously.

Theorem 3.2. For eachM∈ Qcoh(X,w) there is a (closed) morphismM→ K(M)

such that K(M) is graded-injective and whose cone is coacyclic. The assignment

M 7→ K(M) is functorial.

Proof. The category of quasi-coherent sheaves on X has an injective generator and

therefore has functorial injective resolutions. We may extend these resolutions to

the entire category of Z-graded S(L) modules to obtain functorial resolutions I•(−)]

of the graded module M]. Lastly we apply the functor − to get a resolution of

M, I•(M), whose underlying graded components are injective OX modules. For

each curved module M we define K(M) = Tot⊕(I•(M)). Then we have a closed

inclusion M i→ K(M) and we claim that the cone of this inclusion is coacyclic.

Indeed, let T (n) denote the total curved module of the complex of curved modules

0→M→ I1(M)→ · · · → In(M)→ Kn → 0

obtained by applying the n-th cannonical trunction to M→ I•(M). Then we have

then T (n) is coacyclic for each n and we may compute Cone(i) = Tot⊕(M→ I•(M))

as the cokernel

0→ ⊕nT (n)→ ⊕nT (n)→ Cone(i)→ 0.

This shows Cone(i) is coacyclic.

Lastly it only remains to note that on a noetherian scheme, X, the direct sum

of injective quasi-coherent sheaves is injective, hence K(M) is graded-injective.
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Corollary 3.3. The composition

H0Qcoh(X,w)inj → H0Qcoh(X,w)→ DcoQcoh(X,w)

is a triangulated equivalence of categories and Hom(M, I) is acyclic for all graded-

injective I if and only if M is coacyclic.

Proof. This will follow immediately from Lemma 1.3 [Pos2] once we show that that

Hom(M, I) is acyclic whenever M is coacyclic and I is graded injective. This

argument comes directly from loc. cit.. We note that since Hom(−, I) turns direct

sums, shifts and cones into direct products shifts and cones, it will suffice to consider

the total complex of the and exact sequence

0→ A→ B → C → 0.

But since I is graded injective the sequence

0→ Hom(C, I)→ Hom(B, I)→ Hom(A, I)→ 0

is also exact. Then the observation

Hom
(
Tot(A → B → C), I

)
= Tot

(
Hom(C, I)→ Hom(B, I)→ Hom(A, I)

)
.

proves the result.
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Corollary 3.3 tells us how to compute the homs in the coderived category: we

pick some graded-injective replacements I of M and J of N then

HomDcoQcoh(X,L,w)(M,N ) = H0HomQcoh(X,L,w)(I,J ).

Definition 3.4. The category MFloc(X,L, w) has the same objects as MF(X,L, w)

and has

HomMFloc(w)(E ,D) = HomMF(w)(K(E), K(D))

where K is the functor constructed in Theorem 3.2. Equivalently MFloc(X,L, w)

is the full subcategory of Qcoh(X,L, w)inj generated by the images of matrix

factorizations under the functor K.

Lemma 3.5. Let I be a graded-injective curved module. If Hom(M, I) is accyclic

for every graded coherent curved module M then I is contractible.

Proof. Let Λ be the set of pairs (J , h) where J is a curved submodule in I and h is

a contracting homotopy for the inclusion j : J ↪→ I. Order Λ by (J , h) ≤ (J ′, h′) if

J ⊂ J ′ and h′|J = h. Apply Zorn’s lemma to get a maximal (J , h). Then the result

will follow if we can show J = I.

Suppose instead that J 6= I. In this case we may find J $ J ′ ⊂ I such

that J ′/J is graded-coherent. Since I is graded-injective the degree -1 map h may

be extended to a degree -1 map g′ : J ′ → I. The map j′ − ∂(g′) : J ′ → I is a

closed morphism of curved modules, where j′ : J ′ → I is the inclusion and ∂ is the

differential on the complex Hom(J ′, I). Restricted to J the map j′ − ∂(g′) vanishes

and therefore descends to a closed map

g : J ′/J → I
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which has a contracting homotopy c since Hom(J ′/J , I) is accyclic. Then h′ = g′+c

has

∂(h′) = ∂(g′) + ∂(c) = j′

and therefore is a contracting homotopy for j′. But then (J ′, h′) is strictly larger

than our maximal element (J , h), which is the resquisite contradiction, so we must

have J = I.

Corollary 3.6. The category DabsCoh(w) forms a set of compact generators in

DcoQcoh(w).

Proof. Suppose HomDcoQcoh(w)(M,N ) = 0 for allM∈ DabsCoh(w). By corollary 3.3,

the proof of 3.5 and Lemma 1.3 of [Pos2] we have

H0HomQcoh(w)(M, K(N )) = H0HomQcoh(w)(K(M), K(N )) = HomDcoQcoh(w)(M,N ).

By taking shifts of M this implies HomQcoh(w)(M, K(N )) is acyclic. So K(N ) is

contractible by 3.5 and then N is coacyclic.

Compactness of objects follows from similar considerations. By 3.3 we have an

triangulated equivalence

H0Qcoh(w)inj = DcoQcoh(w). (Equation 3.1.)

By Lemma 1.3 of [BN], the localization functor

H0Qcoh(w)→ DcoQcoh(w)
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commutes with direct sums so the equivalence of Equation 3.1. commutes with

arbitrary direct sums. Iλ is a collection of graded injective curved modules and

J is a graded injective sheaf which is weakly equivalent to a graded coherent sheaf C

then we have quasi-isomorphisms of complexes

Hom(J ,
⊕
λ

Iλ) ∼= Hom(C,
⊕
λ

Iλ) ∼=
⊕
λ

Hom(C, Iλ) ∼=
⊕
λ

Hom(J , Iλ).

Note that the middle isomorphism comes from the the fact that graded coherent S(L)

modules are compact in Qcoh(w).

Corollary 3.7. Suppose X is smooth. The image of MF(X,L, w) forms a set of

compact generators in DcoQcoh(X,L, w).

Proof. We need only to show that matrix factorizations generate since corollary 3.6

already implies that they are compact. Since X is smooth, for a coherent curved

module M we may form a finite resolution of M# by a complex of sheaves whose

graded components are vector bundles. Applying the + functor yields a resolution of

M by matrix factorizations. ThenM is weakly equivalent to the matrix factorization

obtained by taking the total curved module of this resolution.

The following theorem is announced in [PL], in the case when L = OX . We

include a few details to the proof.

Theorem 3.8. Assume that w is not a zero divisor, i.e. the map OX
w→ L is injective

and that X is smooth, then the category MFloc(X,L, w) has a compact generator.

Proof. We use the global version of Orlov’s theorem given as the Main Theorem (2.7)

from [Pos1] to get an equivalence

Coh(X,L, w)/Coac(X,L, w) ∩ Coh(X,L, w) ∼= Db
Sing(X0/X)
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where X0 is closed subscheme defined by w = 0 and Db
sing(X0/X) is the relative

singularity category defined in loc. cit. As a piece of notation we will set

DabsCoh(X,L, w) := Coh(X,L, w)/Coac(X,L, w) ∩ Coh(X,L, w).

By Rouquier Theorem 7.39 [Rou] the bounded derived category of coherent sheaves

on X0 has a classical generator, G. This classical generator then descends to a classical

generator for the quotient DbSing(X0/X) and therefore gives a classical generator

(which we will also call G) for the category Dabs(Coh(X,L, w)). By corollary 3.7, since

G is coherent, there is a weak equivalence between G and some matrix factorization

EG. By corollary 3.6, DabsCoh(X,L, w) generates DcoQcoh(X,L, w), and therefore

EG also generates DcoQcoh(X,L, w). Applying the injective replacement functor

K : Qcoh(X,L, w) → Qcoh(X,L, w)inj, and using Corollary 3.3 we get K(EG) is a

compact generator for Qcoh(X,L, w)inj. By definition K(EG) lies in MFloc(X,L, w)

therefore is a compact generator for MFloc(X,L, w) as well.

Lemma 3.9. Assume X is a smooth k-scheme, with k a perfect field. Let w ∈ OX

and let w̃ denote the doubled potential w̃ = p∗1(w) − p∗2(w) on X × X. Suppose in

addition that the singular locus of w is contained in the zero locus of w. Then, the

exterior product induces an equivalence of derived categories

D(MFloc(X,OX , w)⊗MFloc(X,OX , w)op) ∼= D(MFloc(X ×X,OX×X , w̃))

and under this isomorphism the diagonal bimodule corresponds the the diagonal

curved module ∆∗S(OX).
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Proof. The first claim follows from the proof of Corollary 4.8.A in [PP]. The second

is the calculation

RHom(E � F∨,∆∗S(OX)) = RHom(E ⊗ F∨, S(OX)) = RHom(E ,F).

3.2. Model Stucture for Curved Modules

Theorem 3.10. The category Z0Qcoh(X,L, w) has the structure of a model category

where the weak equivalences are the the morphisms whose cone is coacyclic, the

cofibrations are injections and the fibrations are surjections whose kernel is injective

as a Z graded module of Quasi-coherent OX modules.

Proof. The proof follows from the following series of lemmas.

Lemma 3.11. The collection of morphisms with coacyclic cone is closed under

composition and has the 2 out three property and is closed under retracts.

Proof. Let E f→ F g→ G be morphisms in Z0Qcoh(w). Then we have induced

morphisms

Cone(f) Cone(gf) Cone(g) Cone(f)[1]

1 0

0 g


f 0

0 1


0 1

0 0



The homotopy
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Cone(f) Cone(gf) Cone(g) Cone(f)[1]

Cone(f) Cone(gf) Cone(g) Cone(f)[1]

1 0

0 g

 f 0

0 1

 0 1

0 0



1 0

0 0

 0 0

0 1

 0 0

1 0



1 0

0 g

 f 0

0 1

 0 1

0 0



(Equation 3.2.)

provides a contraction of the diagram Equation 3.2., hence this candidate triangle is

distinguished. Then since H0Qcoh(w)co is a triangulated subcategory of H0Qcoh(w)

each of Cone(f), Cone(g) and Cone(gf) are in H0Qcoh(w)co whenever the other two

are.

If f is a retract of g then there are induced maps

Cone(f)→ Cone(g)→ Cone(f)

whose composition is the identity. Then if Cone(g) is in H0Qcoh(X,w)co so is

Cone(f) by thickness.

Lemma 3.12. The classes of cofibrations and fibrations are closed under retracts.

Proof. For cofibrations one simply checks that a retract of an injection is a injection.

Similarly a retract of a surjection is a surjection. A retraction induces a retract in

kernels, so the result follows from the fact that injective objects are closed under

direct summands.

Lemma 3.13. Given a solid arrow diagram of the form
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A E

X B

f

i

g

p

with p a surjection with graded injective kernel and i a injection, then the dotted

arrow exist making the diagram commute whenever either the cone of i or the cone

of p is coaccyclic.

Proof. We let C be the cokernel of i and J be the kernel of p. We claim first that

it suffices to show that Ext1(C,J ) = 0, where Ext1 is computed in the abelian

category Z0Qcoh(w). Indeed the obstruction to extending f : A → E to a morphism

f ′ : X → E is o(f) ∈ Ext1(C, E). Since pf = gi ∈ Hom(A,B), we find

p∗(o(f)) = o(p∗(g)) = 0 ∈ Ext1(C,B)

and therefore o(f) comes from Ext1(C,J ) = 0 and therefore vanishes. Now we have

(pf ′ − g)i = 0, thus there exists h : C → B such that pf ′ − g = hπ, where π : X → C

is the projection. The obstruction to extending h to a morphism h′ : C → E lies in

Ext1(C,J ). Now f ′ − h′π : X → E is the requisite morphism.

Now we need only show that Ext1(C,J ) = 0 . Suppose that

0→ J → X → C → 0

is such an extension. Since J is graded injective, this extension is split as graded

modules and therefore it is given by a closed morphism C → J [1]. Then the result

will follow if we can show that Hom(C, J [1]) is acyclic whenever either C or J is
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coacyclic, since this will clearly imply that C → J [1] is homotopic to 0. This is the

content of corollary 3.3.

Lemma 3.14. The category Z0Qcoh(w) with the above proposed model structure

has functorial factorizations.

Proof. Let f : M → N be a morphism. We may factor f as a cofibration followed

by a trivial fibration as follows. We choose a functorial inclusion graded modules

M# → i(M#), where i(M#) is graded injective. Then by adjunction we have an

inclusionM→ i(M#)−. i(M#)− is contractible by the construction of the − functor

(see remark 2.21). Then

M→ i(M#)− ⊕N → N

is the requisite factorization.

For the other factorization take let M i→ E p→ N be a functorial factorization

with i a cofibration and p a fibration (for example take the one just constructed).

Then set M1 = coker(i) and E1 = Cone(E → K(M1)). We have an inclusion

M→ E1[−1] and may factor the map M→ N as M→ E1[−1]→ E → N the map

E1[−1] → E is surjective and has kernel K(M1)[−1] hence is a fibration, so it only

remains to show that the inclusion M → E1[−1] is a weak equivalence. To see this

we need only look at the following commutative diagram

M E N M[1]

E1[−1] E K(M1) E1

the rows form distinguished triangles and the middle two maps have coacyclic cones

so the map M→ E1[−1] also has a coacyclic cone.
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3.3. Homotopy Theory of Matrix Factorizations

Our goal in this section is to compare the category of modules over matrix

factorizations to the category Qcoh(w). Given a curved quasi-coherent S(L) module,

M we may obtain a (right) module over matrix factorizations by simply considering

the functor HomQcoh(w)(−,M) restricted to MFloc(w). We will see that the assignment

M→ HomQcoh(w)(−,M) is the right adjoint in a Quillen pair between Qcoh(w) and

MFloc(w) −Mod. We will develop conditions for which this Quillen adjunction is a

Quillen equivalence. In particular we will see, using corollary 3.7 that it suffices for

X to be smooth.

The proof of the following proposition is identical to the affine version proven in

[Pos2].

Lemma 3.15. The model structure on Z0Qcoh(w) gives rise to a C(k)-model

structure on Qcoh(w).

Proof. We need to check that the map

Z0Qcoh(w)× Z0C(k)→ Z0Qcoh(w) : (M, A) 7→ A · M.1

is an quillen bifunctor (see [Hov]). By loc. cit. it is sufficient to check that for

cofibration M i→ N and a fibration P p→ Q, the map of complexes

n : Hom(N ,P)→ Hom(M,P)×Hom(M,Q) Hom(N ,Q)

1Recall that A · M denotes the action of A ∈ C(k) on M∈ Qcoh(w) from section 2.4.
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is a fibration (i.e. surjection) in Z0C(k) which is a quasi-isomorphism if either

M i→ N or P p→ Q is a weak equivalence. We let I be the graded-injective kernel of

P → Q, then we have the following commutative diagram:

0 Hom(N , I) Hom(N ,P) Hom(N ,Q) 0

0 Hom(M, I) Hom(M,P)×Hom(M,Q) Hom(N ,Q) Hom(N ,Q) 0

0 Hom(M, I) Hom(M,P) Hom(M,Q) 0

n

=

=

Note that the rows are exact because

0→ I# → P# → Q# → 0

is split exact in the category of graded OX modules. The map

Hom(N , I)→ Hom(M, I)

is surjective since M→ N is an injection and I is graded-injective. Then by the 5

lemma n is surjective.

If p : P → Q is a weak equivalence then I is coacyclic and hence contractible

by corollary 3.3. Therefore Hom(M, I) and Hom(N , I) are both accyclic. So in this

case, or in the case when M→N is a weak equivalence we have that the map

Hom(M, I)→ Hom(N , I)

is a quasi-isomorphism, which then implies n, too, is a quasi-isomorphism.
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There is an obvious functor η : Qcoh(w)→MFloc(w)−Mod

η(M) = HomQcoh(w)(−,M),

which admits a left adjoint | − | defined by

|M | =
E∈MFloc(w)∫

M(E) · E .

It is an easy calculation to see that | − | is indeed left adjoint to η, keeping in mind

that

HomQcoh(w)(M(E) · E ,D) = HomC(k)(M(E), HomQcoh(w)(E ,D)).

Lemma 3.16. | − | : MFloc(w)−Mod
→← Qcoh(w) : η is a Quillen adjunction.

Proof. It will suffice to show that η sends (trivial) fibrations in Qcoh(w) to (trivial)

fibrations in MFloc(w)−Mod.

Suppose M f→ N is a fibration in Qcoh(w), i.e. f is surjective and its kernel I

is graded-injective. Then the sequence

0→ I# →M# f→ N# → 0

is split exact and therefore

0→ Hom(E , I)→ Hom(E ,M)→ Hom(E ,N )→ 0

is exact for any matrix factorization E , which shows η(f) is an objectwise surjection.
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If in addition Cone(f) is coacyclic, then I is also coacyclic and hence contractible

by 3.3. Then Hom(E , I) is acyclic for all E which shows

Hom(E ,M)→ Hom(E ,N )

is a surjective quasi-isomorphism.

Lemma 3.17. The natural map M → HomQcoh(w)(−, K(|M |)) is a weak equivalence

for all cofibrant M .

Proof. We let Ω denote the class of objects in MFloc(w) for which the lemma holds.

We compute

HomQcoh(w)(|Hom(−, E)|,M) = HomMFloc(w)−Mod(Hom(−, E),Hom(−,M))

= HomQcoh(w)(E ,M)

for any M∈MF(w)−Mod, so |Hom(−, E)| = E . The map

Hom(−, E)→ Hom(−, K(E))

is an objectwise quasi isomorphism since E and K(E) are both graded injective and

are weakly equivalent. Then Ω contains all representable modules.

Now we show Ω is closed under direct sums. Indeed take a collection Mi of

objects in Ω. Since the functor | − | is a left adjoint, we have

|
⊕

M i| =
⊕
|M i|.
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The maps |M i| →
⊕
|M i| induce a map c :

⊕
K(|M i|) → K(

⊕
|M i|). We then

have a commutative triangle⊕
|M i|

⊕
K(|M i|) K(

⊕
|M i|)

K⊕K

c

The map K is a weak equivalence by construction, the map ⊕K is the direct

sum of weak equivalences, hence is a weak equivalence itself. This implies c is a weak

equivalence as well. Moreover since both
⊕

K(|M i|) and K(
⊕
|M i|) are graded-

injective, the induced map

c∗ : Hom(−,
⊕

K(|M i|))→ Hom(−, K(
⊕
|M i|))

is a weak equivalence of modules. Now since every object of MFloc(w) is of the form

K(E) for E ∈MF(w), and E is compact in Qcoh(w) we have that the map

⊕
Hom(K(E), K(|M i|))→ Hom(K(E),

⊕
K(|M i|))

is a quasi-isomorphism since it fits into a commutative where all three other maps

are quasi-isomorphisms:⊕
Hom(E , K(|M i|)) Hom(E ,

⊕
K(|M i|))

⊕
Hom(K(E), K(|M i|)) Hom(K(E),

⊕
K(|M i|))

The map ⊕
M i → Hom(−, K(|

⊕
M i|))
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factors as the composition of three weak equivalences

⊕
M i →

⊕
Hom(−, K(|M i|))→ Hom(−,

⊕
K(|M i|))→ Hom(−, K(

⊕
|M i|))

and hence is a weak equivalence.

We observe that Ω is closed under taking cones. This follows from the fact that

K commutes with taking cones by construction and that | − | commutes with cones.

This second fact follows from the computation

Hom(|Cone(f)|,M) = Hom(Cone(f),Hom(−,M))

= Cone(Hom(f,Hom(−,M))[−1]

= Cone(Hom(|f |,M))[−1]

= Hom(Cone(|f |),M).

Now we show that Ω is closed under taking directed colimits. We let

M0 →M1 →M2 → . . .

be a directed system of objects in Ω. colimiM
i is computed via the exact sequence

0→
⊕

M i j→
⊕

M i → colim
i

M i → 0.

The map Cone(j) → colimiM
i is a weak equivalence in Z0MFloc(w) −Mod. The

functor | − |, being a left adjoint, commutes with colimits, so we may compute
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| colimiM
i| = colimi |M i| via the exact sequence

0→
⊕
|M i| |j|→

⊕
|M i| → | colim

i
M i| → 0.

Once again we have a weak equivalence Cone(|j|) → colimi |M i| in Z0Qcoh(w),

applying K to this weak equivalence gives a weak equivalence

K(Cone(|j|))→ K(| colim
i

M i|)

with contractible cone. And therefore the map

Hom(−, K(Cone(|j|)))→ Hom(−, K(| colim
i

M i|))

is an object-wise quasi-isomorphism. We observe that Cone(j) ∈ Ω since
⊕

M i ∈ Ω

and Ω is closed under cones. Then we have a commutative square

Cone(j) Hom(−, K(|Cone(j)|))

colimiM
i Hom(−, K(| colimiM

i|))

The top map and the vertical map are weak equivalences so then the map

colim
i

M i → Hom(−, K(| colim
i

M i|)).

is a weak equivalence.
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Now we show Ω closed under push-out by direct sums of generating cofibrations.

First recall ([Hov]) that MFloc(w)−Mod has generating cofibrations given by the set

I = {Sn ⊗ Hom(−, E)→ Dn ⊗ Hom(−, E) | E ∈MFloc(w)},

where Sn is the complex with k in degree n and Dn is the cone on the identity map

of Sn. Since

Sn ⊗ Hom(−, E) = Hom(−, Sn · E)

and

Dn ⊗ Hom(−, E) = Hom(−, Dn · E),

and Sn · E = E [n] and Dn · E = D0 · E [n] we have that

I = {Hom(−, E)→ Hom(−, D0 · E) | E ∈MFloc(w)}.

Now suppose M is formed via the pushout⊕
Hom(−, E) M ′

⊕
Hom(−, D0 · E) M

y

with M ′ ∈ Ω.

Since each map Hom(−, E) → Hom(−, D0 · E) is an inclusion, the pushout is

computed via the exact sequence

0→
⊕

Hom(−, E)→
⊕

Hom(−, D0 · E)⊕M ′ →M → 0.
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Moreover, by the argument at the beginning of this proof we have that |− | takes the

morphism

Hom(−, E)→ Hom(−, D0 · E)

to the injective map E → D0 ·E , therefore we may compute |M | via the exact sequence

0→
⊕
E →

⊕
D0 · E ⊕ |M ′| → |M | → 0.

Then a similar argument as the one used to show that Ω is closed under directed

colimits gives that M ∈ Ω.

Now to finish the proof, we observe that the “small object argument” (see [Hov])

gives us a means of constructing a cofibrant replacement, Q(M) for the module M ,

by taking iterated pushouts along generating cofibrations and directed colimits, so

then Q(M) ∈ Ω. Then if M is cofibrant then since p : Q(M) → M is a trivial

fibration, the identity map of M admits a lift to Q(M), i.e. we have a retraction

M → Q(M)→M . This induces a retraction

M Q(M) M

Hom(−, K(|M |)) Hom(−, K(|Q(M)|)) Hom(−, K(|M |))

id

id

which shows that the map M → Hom(−, K(|M |) is a weak equivalence.

Theorem 3.18. The following are equivalent
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1. | − | : MFloc(w)−Mod
→← Qcoh(w) : η is a quillen equivalence.

2. The image of MF(w) forms a set of compact generators for DcoQcoh(w).

3. Every coherent curved module is weakly equivalent to a matrix factorization.

Proof. Suppose that

| − | : MFloc(w)−Mod
→← Qcoh(w) : η

is a Quillen equivalence. Then the induced map

Rη : DcoQcoh(w)→ D(MFloc(w))

is an equivalence of categories which sends (the image of) matrix factorizations to the

(image of) representable modules. Since representable modules compactly generate

D(MFloc(w)), we obtain that MF(w) compactly generates DcoQcoh(w).

Now suppose that MF(w) forms a set of generators for Qcoh(w). Since,by

corollary 3.6, DabsCoh(w) forms a set of compact generators for DcoQcoh(w) , we may

apply [BvdB] Theorem 2.1.2 to get that MF(w) classically generates DabsCoh(w), i.e.

every object of DabsCoh(w) can be obtained from MF(w) by a finite number of shifts,

finite sums and cones (in DcoQcoh(w)). Since MF(w) is closed under shifts, finite

sums and cones in Z0Qcoh(w), we obtain that every coherent curved module is weakly

equivalent a matrix factorization.

By [Hov] Corollary 1.3.16 and Lemma 3.17, to show that

| − | : MFloc(w)−Mod
→← Qcoh(w) : η
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is a Quillen equivalence, it suffices to show that η reflects weak equivalences between

fibrant objects. Unpacking the definitions, one sees that it is then sufficient to

show that if Hom(−, I) is accylic for all matrix factorizations then I is contractible.

Assuming that every coherent module is weakly equivalent to a matrix factorization

gives us that, for any coherent C,

Hom(C, I) ∼= Hom(E , I)

for some matrix factorization E . Thus if I is right orthogonal to every matrix

factorization, I is also right orthogonal to every coherent curved module and therefore

contractible by Corollary 3.6.

Using Corollary 3.7 we see immediately

Corollary 3.19. When X is smooth

| − | : MFloc(w)−Mod
→← Qcoh(w) : η

is a Quillen equivalence.

This corollary has an immediate consequence:

Corollary 3.20. If X is smooth, there is a triangulated equivalence of categories

D(MFloc(w)) ∼= Dco(Qcoh(w))

induced by M 7→ Hom(−,M).
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Remark 3.21. Corollary 3.20 is more or less well known to the experts. It follows

easily from Theorem 5.1 of [Dyc] and the existence of a compact generator for the

category of matrix factorizations (Theorem 3.8).
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CHAPTER IV

HOCHSCHILD HOMOLOGY

In this section we compute the Hochschild homology of the category of matrix

factorizations in the case when L = OX . In fact, from now on all of our results will

apply only to the case L = OX , we save the more general case for later work. We

will also assume now on that X is smooth. We follow very closely the computation of

Hochschild cohomology which appears in [PL]. An alternative computation appears

in [Pre] and at this point this result is well-known to the experts. We include our

computation for completeness and since we will later have use to examine more closely

the particular isomorphisms needed to compare the Hochschild homology to a certain

complex involving forms on X.

Following [PL], we define the complete bar complex, B̂ar. This complex has

graded components B̂ar−q = OXq+2 for q ≥ 0, where Xk is the completion of

Xk = X × · · · ×X

along the diagonal and p1,q+2 : X × · · · ×X → X ×X projects to the first and last

factor in the obvious way. To reduce clutter with our notation, we will hence forth

simply write OXk , rather than the push forward onto the first and last factor. The

reader hopefully will keep in mind that OXk is actually viewed as a sheaf on X ×X.

The differential,

b : B̂ar−q → B̂ar−q+1
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is given locally by the standard formula for the bar differential:

b(a0 � · · ·� aq+1) =

q∑
i=0

(−1)ia0 � · · ·� aiai+1 � · · ·� aq+1.

Here (and elsewhere) we use � to emphasize that this is an external tensor (i.e)

only scalars commute with it as opposed to a tensor over OX . We introduce a new

“differential” of degree -1, Bw, defined locally by the equation

Bw(a0 � · · ·� aq+1) =

q∑
i=0

(−1)ia0 � · · ·� ai � w � ai+1 � . . . aq+1.

We now define the curved complete bar complex, B̂arw̃, as follows. This will

be an object of Qcoh(X × X,OX×X , w̃), where once again w̃ = p∗1(w) − p∗2(w) and

pi : X ×X → X are the standard projections. Again this follows [PL].

We put

(B̂arw̃)q =
⊕

p≡q mod 2

B̂ar−p.

The map Bw may be viewed as a map of degree 1 in B̂arw̃ by mapping the factor

(B̂arw̃)p in (B̂arw̃)q to (B̂arw̃)−(p+1) in (B̂arw̃)q+1. We imbue B̂arw̃ with the curved

differential ∂ = b+Bw, then one checks that B2
w = 0 and then that

∂2 = bBw +Bwb = w̃

so B̂arw̃ is indeed a w̃-curved module.

It is helpful to view B̂arw̃ as the total complex (perhaps modulo some signs) of

the following “bi-complex”:
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...
...

...

. . . 0 0 0

. . . OX4 OX3 OX2

. . . 0 0 0

. . . OX4 OX3 OX2

. . . 0 0 0

...
...

...

b b b

b b b

B
w

B
w

B
w

B
w

B
w

B
w

B
w

B
w

B
w

There is a map B̂arw̃(X)
ε→ ∆∗S(OX) given by projecting the even components

onto OX2 then using the multiplication map

OX2 → O∆

and sending the odd components to 0. It is easy to check that this defines a closed

degree 0 morphism of curved modules.

Lemma 4.1. B̂arw̃ ⊗
S(OX×X)

M is isomorphic to ∆
L
⊗

S(OX×X)
M in D(X) for any −w̃

curved module M.

Proof. We let W be the cone of the morphism ε : B̂arw̃(X)→ ∆∗S(OX). Then

Wn =
⊕

k≡n mod 2

OXk

where we consider X1 = ∆.
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Consider first the case when M is graded-flat. The n-th graded component of

the complex W ⊗
S(OX×X)

M is

(W ⊗
S(OX×X)

M)n =
⊕

k≡n mod 2

OXk ⊗M0 ⊕
⊕

k≡n+1 mod 2

OXk ⊗M1

=
⊕
k

OXk ⊗Mn−k

Taking the differential into account, may view W ⊗
S(OX×X)

M as the total complex of

the “bi-complex”

...
...

...
...

. . . OX4 ⊗M1 OX3 ⊗M1 OX2 ⊗M1 O∆ ⊗M1

. . . OX4 ⊗M0 OX3 ⊗M0 OX2 ⊗M0 O∆ ⊗M0

. . . OX4 ⊗M1 OX3 ⊗M1 OX2 ⊗M1 O∆ ⊗M1

. . . OX4 ⊗M0 OX3 ⊗M0 OX2 ⊗M0 O∆ ⊗M0

. . . OX4 ⊗M1 OX3 ⊗M1 OX2 ⊗M1 O∆ ⊗M1

...
...

...
...

ε

ε

ε

ε

ε

where the horizontal maps are induced by b, diagonal maps induced by Bw and

the vertical maps by the differential on M. This “bi-complex” is of course just a
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mnemonic, but it gives us insight into how to deal with the complex

W ⊗
S(OX×X)

M.

In particular, we may “filter the bi-complex by rows” to get a filtration on

W ⊗
S(OX×X)

M. One should convince oneself that this indeed a filtration by

subcomplexes. This filtration is bounded below and exhaustive, therefore the

associated spectral sequence converges. Already on the E1 page all of the groups

are 0 since the rows of the “bi-complex” associated to W ⊗
S(OX×X)

M are exact. This

gives us that the map

B̂arw̃(X) ⊗
S(OX×X)

M→ ∆∗S(OX)⊗S(OX×X)M

is a quasi-isomorphism.

Now for generalM, letM = Tot(F•) be a flat replacement ofM, where F• is a

(finite) resolution ofM by flat −w̃-curved modules. This can be done as in corollary

3.6; finiteness is possible since X is smooth. It is well known (see for example [Yek])

that (p1,k)∗OXk is flat as an OX2-module and therefore the graded components of

B̂arw̃ are flat. This implies the morphism

B̂arw̃ ⊗M→ B̂arw̃ ⊗M

is a quasi-isomorphism.

We have

B̂arw̃ ⊗
S(OX×X)

M = B̂arw̃ ⊗
S(OX×X)

Tot(F•) = Tot(B̂arw̃ ⊗
S(OX×X)

F•)
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The cone of the morphism

Tot(B̂arw̃ ⊗F•)→ Tot(∆∗S(OX)⊗F•)

is given by Tot(W⊗F•), which is the total complex of a bicomplex with exact columns

(by the above argument) and uniformly bounded rows and therefore is acyclic.

Therefore we obtain a zig-zag of quasi-isomorphisms

B̂arw̃ ⊗
S(OX×X)

M← B̂arw̃ ⊗
S(OX×X)

M→ ∆∗(S(OX)) ⊗
S(OX×X)

M

Since ∆∗(S(OX)) ⊗
S(OX×X)

M computes ∆∗S(OX)
L
⊗

S(OX×X)
M, we are done.

Lemma 4.2. The map B̂arw̃ → ∆∗S(OX) is a weak equivalence in Z0Qcoh(X,OX×X , w̃)

Proof. Again we use W for the cone of the map B̂arw̃ → ∆∗S(OX). Let G be a

compact generator for Qcoh(X × X,OX×X , w̃) and by 3.6 we can take G to be a

matrix factorization. By the previous lemma

G∨ ⊗
S(OX×X)

W = HomS(OX×X)(G,W)

is acyclic, and since G is locally free we have a quasi-isomorphism

HomS(OX×X)(G,W) ∼= HomS(OX×X)(G, K(W)),

where K : Qcoh(X × X,OX×X , w̃) → Qcoh(X × X,OX×X , w̃)inj is our chosen

functorial injective replacement (see Theorem 3.2). By adjunction, the complex of

sheaves HomS(OX)(G, K(W)) has injective graded components. We are want to say

66



that that having injective graded components is sufficient for Hom(G, K(W)) to be

adapted to the global sections functor. If we could the proof would be done. However,

this complex is unbounded in both directions, so care must be taken.

Since X is smooth, and thus has finite homological dimension, each of the

cokernels of the differentials are injective. Then by exactness, the kernels of the

differentials are also injective. Using these facts one can easily verify directly that

the global sections functor is exact by checking at any particular spot and truncating

appropriately, so that the truncated sequence is a bounded exact sequence of injective

sheaves. Finally we can conclude that the complex of vector spaces

Hom(G, K(W)) = Γ(Hom(G, K(W)))

is exact. Since G is a generator this implies that K(W) is coacyclic and therefore W

is as well.

Lemma 4.3. The isomorphism

D(MFloc(X ×X, w̃)) ∼= D(MFloc(x,w)⊗MFloc(X,w)op)

from Lemma 3.9 followed by the trace functor is quasi-isomorphic to the functor

RΓ(L∆∗−).

Proof. Both Tr and RΓ(L∆∗−) are triangulated functors from

D(MFloc(X ×X, w̃))
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to C(k) that commute with arbitrary direct sums, so it will suffice to check that they

give the same result at the compact generator of D(MFloc(X ×X, w̃)). For this we

compute

RΓ(L∆∗E � F∨) = RΓ(E ⊗ F∨) = RHom(F , E).

Theorem 4.4. The Hochschild homology of MF(X,OX , w) is RΓ(Ωdw), where Ωdw

is the two periodic complex of sheaves

. . .
⊕
i odd

Ωi
⊕
i even

Ωi
⊕
i odd

Ωi
⊕
i even

Ωi . . .dw∧ dw∧ dw∧ dw∧ dw∧

with
⊕
i even

Ωi in even degrees.

Proof. By Lemmas 4.3 and 3.9 we compute the hochschild homology of MF(X,OX , w)

as RΓ(L∆∗∆∗S(OX)). By Lemma 4.1, we may compute L∆∗∆∗S(OX) as ∆∗B̂arw̃.
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Now, ∆∗B̂arw̃ is given as the total complex of the “bi-complex”

...
...

...

. . . 0 0 0

. . . ∆∗OX4 ∆∗OX3 ∆∗OX2

. . . 0 0 0

. . . ∆∗OX4 ∆∗OX3 ∆∗OX2

. . . 0 0 0

. . . ∆∗OX4 ∆∗OX3 ∆∗OX2

...
...

...

b b b

b b b

B
w

B
w

B
w

B
w

B
w

B
w

B
w

B
w

B
w

(Equation 4.1.)

Applying the Hochshild-Kostant-Rosenburg (HKR) quasi-isomorphism, which is

given locally by

a0 � · · ·� aq 7→
1

q!
a0aqda1 ∧ · · · ∧ daq−1
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(see [Yek] Theorem 4.8) along the rows we obtain a quasi-isomorphism between

(Equation 4.1.) and the bicomplex

...
...

...

. . . 0 0 0

. . . Ω2 Ω OX

. . . 0 0 0

. . . Ω2 Ω OX

. . . 0 0 0

. . . Ω2 Ω OX

...
...

...

0 0 0

0 0 0

0 0 0

∧
dw

∧
dw

∧
dw

∧
dw

∧
dw

∧
dw

∧
dw

∧
dw

∧
dw

(Equation 4.2.)

Under the HKR quasi-isomorphism the map Bw does indeed become ∧dw: locally we

have

dw ∧HKR((1� a1 � a2 · · ·� aq � 1)� 1) =
1

q!
dw ∧ da1 ∧ · · · ∧ daq

and

HKR(Bw(1� a1 � · · ·� aq � 1)) =
1

q + 1!

k+1∑
i=0

(−1)ida1 ∧ · · · ∧ dai ∧ dw ∧ dai+1 ∧ · · · ∧ daq

=
1

q!
dw ∧ da1 ∧ · · · ∧ daq.
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This gives that the Hochschild homology of MFloc(X,OX , w) is given as the

hypercohomology of the complex

· · · ∧dw→
⊕

i even
Ωi dw∧→

⊕
i odd

Ωi dw∧→
⊕

i even
Ωi dw∧→

⊕
i odd

Ωi dw∧→ . . .

where
⊕

i even
Ωi is in even degrees and dw∧ wedges dw in the first slot.
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CHAPTER V

BOUNDARY-BULK AND CHERN CHARACTER

5.1. Sheafified Boundary-Bulk

From corollary 3.20 we have an equivalence of categories

H0Qcoh(X ×X,OX×X , w)inj ∼= D(MFloc(X ×X,OX×X , w))

which sends M → Hom(−,M). In for a matrix factorization E ∈ Z0Qcoh(w), there

is a map

eval : E � E∨ → ∆∗S(OX).

Since

HomMFloc(w)(E ,−)⊗ HomMFloc(w)(−, E) = HomMFloc(−w)(−, E∨)⊗ HomMFloc(w)(−, E)

= HomMFloc(w̃)(−, E � E∨)

and using remark 2.17, we see that the map eval : E � E∨ → ∆∗S(OX) corresponds

to the map cE of perfect bimodules from 2.16. We have a quasi-isomorphism

HomMFloc(w)(E , E) ∼= Tr(E � E∨)

Then we apply the trace functor the evaluation map E � E∨ → ∆∗S(OX) to get a

map

τE : HomMFloc(X,L,w)(E , E) ∼= Tr(E � E∨)→ Tr(∆∗S(OX)) = HH(MFloc(X,L, w)).
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By the discussion above and lemma 4.3 the map τE just defined corresponds to the

categorical boundary bulk map from Definition 2.18.

Having computed the Hochschild homology for the category MFloc(X,OX , w) as

RΓ(Ωdw) and now making the trivial observation that since E ∈ MF(w) is graded

locally free we have

RHom(E ,F) = RΓHom(E ,F),

we may promote the boundary bulk-map to a map in the derived category of sheaves

on X:

TE : Hom(E , E)→ Ωdw,

and thereby understand the particular invariants we wish to compute in two steps,

first to get an explicit representative for TE and then to understand the more classical

problem of deducing the induced map on cohomology.

Lemma 5.1. Define a map TE : Hom(E , E)→ Ωdw in D(X) by

Hom(E , E) = E ⊗ E∨ ∼= L∆∗(E � E∨) eval→ L∆∗(∆∗S(OX)) ∼= Ωdw

Then τE = RΓ(TE).

Proof. This is clear.

We wish now to get a better handle on this map TE . We may resolve a matrix

factorization E by ε ⊗ 1 : B̂arw̃ ⊗
S(OX)

E → ∆∗S(OX) ⊗
S(OX)

E = E . Here we use the

short hand ⊗
S(OX)

between an w̃ curved module on X ×X and a w-curved module on

X to mean

B̂arw̃ ⊗
S(OX)

E := (p1)∗(B̂arw̃ ⊗
S(OX2 )

p∗2E)
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where p1 and p2 are the natural projections from X × X to X. Since matrix

factorizations are flat, lemma 4.1 implies that this map is a weak equivalence in

Z0Qcoh(w). Then the map

E∨ ⊗ (B̂arw̃ ⊗
S(OX)

E)→ E∨ ⊗ E = Hom(E , E)

is a quasi-isomorphism of complexes of sheaves.

This gives us an explicit representative for TE given by the roof

E∨ ⊗ (B̂w̃ ⊗
S(OX)

E) E∨ ⊗ E ⊗
S(OX)

B̂arw̃

E∨ ⊗ E ∆∗B̂arw̃

Ωdw

∼

1⊗ ε⊗ 1

1⊗ σ

ev⊗1⊗ 1

HKR

where ev is the evaluation map of E∨ on E , σ is switching the factors in the

tensor product and ⊗ is contraction of tensor.

The goal now is to construct a natural morphism

Exp(at(E)) : E → Ωdw ⊗
S(OX)

E

in the coderived category of w-curved modules, such that

TE = str(−◦Exp(at(E)) : Hom(E , E)→ Hom(E ,Ωdw ⊗
S(OX)

E) = Hom(E , E) ⊗
S(OX)

Ωdw → Ωdw

This morphism will then be a sort of internal Chern character for the category of

matrix factorization. In what follows we will want to fix n = dim(X).
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Before we proceed we wish take take a motivational digression and consider the

category of complexes of coherent sheaves on X. We will follow very closely the

treatment from [Mar]. The idea is that in loc. cit, Markarian constructs an internal

Chern character by exponentiating the Atiyah class map and which takes values

in Hochschild homology sheaves. We wish to mimic this construction. The main

technical problem, as we will see, is that there is no obvious analog to the Atiyah

class for matrix factorizations. But, oddly enough, even though the class at(E) does

not seem to exist, its exponential does.

We have the exact sequence of OX2 modules

0→ I/I2 → OX2/I2 → O∆ → 0

where I is the kernel of the multiplication map OX2 → O∆. We will write Ω∆ for

I/I2 and J 1
∆ for OX2/I2. Given an honest complex (d2 = 0) of sheaves, E , we may

“tensor on the right” by E to get an exact sequence of OX-complexes

0→ Ω1 ⊗
OX
E → J 1 ⊗OX E → E → 0. (Equation 5.1.)

where for an OX2 module M and an OX-module F

M ⊗
OX
F := (p1)∗(M ⊗

OX2

p∗2(F))

where pi : X×X → X are the standard projections. The extension in (Equation 5.1.)

gives an element of

Ext1(E ,Ω1 ⊗
OX
E) = HomD(X)(E ,Ω1 ⊗

OX
E [1]).
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This element, at(E) : E → Ω ⊗
OX
E [1], is called the Atiyah class of E .

Composing the morphism at(E) with itself i times and then wedging forms we

obtain a map

∧at(E)i : E → Ωi ⊗
OX
E [i].

Using the isomorphism O∆ ⊗
OX

Ω1 ∼= Ω∆, get a long exact sequence

0→ Ω⊗i−1 ⊗
OX

Ω∆ → Ω⊗i−1 ⊗
OX
J 1

∆ → · · · → Ω1 ⊗
OX
J 1

∆ → J 1
∆ → O∆

Tensoring this sequence on the right with E we get a long exact sequence

0→ Ω⊗i ⊗
OX
E → Ω⊗i−1 ⊗

OX
J 1(E)→ · · · → Ω1 ⊗

OX
J 1(E)→ J 1(E)→ E .

(Equation 5.2.)

Here we denote by J 1(E) the tensor product J 1
∆ ⊗OX

E . One sees easily that this exact

sequence represents ∧at(E)i as a Yoneda extension and so the map ∧at(E)i is given

as the zig-zag

E ← (Ω⊗i ⊗
OX
E → Ω⊗i−1 ⊗

OX
J 1(E)→ · · · → Ω1 ⊗

OX
J 1(E)→ J 1(E))→ Ωi ⊗ E [i]

where the last map is simply projection onto the last factor followed by wedging

forms.

When we try to mimic this construction for curved (w 6= 0) modules, the

projection onto the last factor is no longer a map in the category we care about.

Or more accurately the inclusion of graded OX modules Ωi⊗E [i]→ Ωdw⊗E [i] is not

a map of curved modules, unless i = n or dw = 0. Our first observation is that we

can view the exponential of the Atiyah class as a map from the total complex of the
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resolution,

Ω⊗n ⊗
OX
E → Ω⊗n−1 ⊗

OX
J 1(E)→ · · · → Ω1 ⊗

OX
J 1(E)→ J 1(E)

of E , to Ω•⊗E , by using the various projections onto Ω⊗i⊗E , for i ≤ n, where again

n = dim(X). The second observation is that we still can in MFloc(X,L, w) construct

appropriate analogs of this resolution of E . We do this now.

As with the curved bar complex we may use the resolution

0→ Ω⊗n−1 ⊗
OX

Ω∆ → Ω⊗n−1 ⊗
OX
J 1

∆ → · · · → Ω1 ⊗
OX
J 1

∆ → J 1
∆ → O∆ (Equation 5.3.)

to build a w̃ curved complex At which resolves ∆∗S(OX). Set

Ai =



Ω⊗i ⊗
OX
J 1

∆ if 0 ≤ i < n

Ω⊗(n−1) ⊗
OX

Ω∆ if i = n

0 else

Then define the graded components of At by folding 2-periodically:

Ati =
⊕

j≡i mod 2

Aj.

We have the differential, m : Ati → Ati+1 coming from the resolution (Equation 5.3.)

which (locally) is given by the equation

m(da1 ⊗ da2 ⊗ · · · ⊗ dan ⊗ a0 � an+1) = a0an+1da1 ⊗ . . . dan−1 ⊗ an � 1

− a0an+1da1 ⊗ . . . dan−1 ⊗ 1� an−1.
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Here we have chosen indices in preparation for certain morphisms involving the curved

bar complex. Again we use � to emphasize external tensor. Depending on our

purposes, i.e. whether we want to emphasize or deemphasize the role of J1
∆ in the

tensor Ω⊗q ⊗ J1
∆, we will alternatively simply write

a0da1 ⊗ · · · ⊗ daq � aq+1 = a1 ⊗ · · · ⊗ aq ⊗ a0 � aq+1

Coordinate free, this map m is simply induced by the multiplication map J 1
∆ → O∆

followed by the isomorphism Ω⊗i ⊗
OX
O∆
∼= Ω⊗(i−1) ⊗

OX
Ω∆ and then the inclusion

Ω⊗(i−1) ⊗ Ω∆ → Ω⊗(i−1) ⊗ J 1.

And, of course, on the summand An = Ω⊗(n−1) ⊗
OX

Ω∆, m is simply the inclusion of

Ω⊗(n−1) ⊗
OX

Ω∆ into Ω⊗(n−1) ⊗
OX
J 1

∆. To curve At by w̃ we add a second differential

Bdw given by the formula

Bdw(ω1⊗· · ·⊗ωn⊗a0�aq+1) =

q∑
i=0

(−1)iω1⊗· · ·⊗ωi⊗dw⊗ωi+1⊗· · ·⊗ωq⊗a0�aq+1.

As with B̂arw̃, we may picture At as the total complex of the bicomplex:
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...
...

...

0 . . . 0 0 0

Ω⊗n ⊗ J 1
∆ . . . Ω⊗2 ⊗ J 1

∆ Ω⊗ J 1
∆ J 1

∆

0 . . . 0 0 0

Ω⊗n ⊗ J 1
∆ . . . Ω⊗2 ⊗ J 1

∆ Ω⊗ J 1
∆ J 1

∆

0 . . . 0 0 0

...
...

...

b b b b

b b b b

B
dw

B
dw

B
dw

B
dw

B
dwB

dw

B
dw

B
dw

B
dw

B
dw

B
dw

B
dw

Now we claim that At imbued with the differential Bdw − mγ is a w̃ curved

module, where γ is the grading operator with respect to forms, i.e. γ|Ωq⊗J1
∆

= (−1)q.

Indeed the computations

mγBdw(a0da1 ⊗ . . .⊗ daq � aq+1)

= (−1)q+1

[
q∑

i=0

(−1)im(a0da1 ⊗ · · · ⊗ dw ⊗ · · · ⊗ daq � aq+1)

]

= (−1)q+1

[
(−1)q(a0aq+1da1 ⊗ · · · ⊗ daq ⊗ w � 1− a0aq+1da1 ⊗ . . . daq ⊗ 1� w)

+

q−1∑
i=0

(−1)ia0aq+1da1 ⊗ · · · ⊗ dai ⊗ dw ⊗ dai+1 ⊗ · · · ⊗ daq−1 ⊗ aq � 1

−
q−1∑
i=0

(−1)ia0aq+1da1 ⊗ · · · ⊗ dai ⊗ dw ⊗ dai+1 ⊗ · · · ⊗ daq−1 ⊗ 1� aq

]
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and

Bdwmγ(da1 ⊗ · · · ⊗ daq ⊗ a0 � aq+1)

= (−1)q

[
q−1∑
i=0

(−1)ia0aq+1da1 ⊗ · · · ⊗ dai ⊗ dw ⊗ dai+1 ⊗ · · · ⊗ daq−1 ⊗ aq � 1

−
q−1∑
i=0

(−1)ia0aq+1da1 ⊗ · · · ⊗ dai ⊗ dw ⊗ dai+1 ⊗ · · · ⊗ daq−1 ⊗ 1� aq

]

show that

(Bdw −mγ)2 = −Bdwmγ −mγBdw(da1 ⊗ · · · ⊗ daq ⊗ a0 � aq+1)

= a0aq+1da1 ⊗ · · · ⊗ daq ⊗ (w � 1− 1� w)

= da1 ⊗ · · · ⊗ daq ⊗ (a0aq+1w � 1− a0aq+1 � w)

The final observations are that w̃ acts on Ω⊗q ⊗
OX
J 1

∆ by

w̃ · ω1 ⊗ . . . ωq ⊗ a0 � aq+1 = wω1 ⊗ . . . ωq ⊗ a0 � aq+1w = ω1 ⊗ . . . ωq ⊗ wa0 � aq+1w

and the difference between this action and the above computation for (Bdx−mγ)2 is

a0aq+1w�1−a0aq+1�w−wa0�aq+a0�wq = (a0�1)(w�1−1�w)(aq+1�1−1�aq+1)

which is 0 in J 1
∆. Therefore the map (Bdw − mγ)2 = −Bdwmγ − mγBdw is indeed

multiplication by w̃.

Now there are maps π : OXq+2 → Ω⊗q ⊗
OX
J 1

∆ given by

π(a0 � a1 � · · ·� aq � aq+1) = a0da1 ⊗ · · · ⊗ daq � aq+1
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It is easy to see πBw = Bdwπ. We observe that for an elements of OXq+1 of the form

a0 � · · ·� aiai+1 � · · ·� aq+1, with 0 < i < q + 1 we have

π(a0 � · · ·� aiai+1 � · · ·� aq+1) = da1 ⊗ · · · ⊗ d(aiai+1)⊗ daq ⊗ a0 � aq+1

= a0ai+1da1 ⊗ · · · ⊗ dai ⊗ dai+2 ⊗ · · · ⊗ daq � aq+1

+ a0aida1 ⊗ · · · ⊗ dai−1 ⊗ dai+1 ⊗ · · · ⊗ daq � aq+1

= a0aida1 ⊗ · · · ⊗ d̂ai ⊗ · · · ⊗ daq � aq+1

+ a0aida1 ⊗ · · · ⊗ d̂ai+1 ⊗ · · · ⊗ daq � aq+1

where d̂ai indicates to omit this tensor. We also have

π(a0a1 � a2 � · · ·� aq+1) = a0a1 ⊗ a2 ⊗ · · · ⊗ daq � aq+1

= a0a1 ⊗ d̂a1 ⊗ da2 ⊗ · · · ⊗ daq � aq+1
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So, again using b for the Hochschild differential, we have

πb(a0 � · · ·� aq+1) =

q∑
i=0

(−1)iπ(a0 � · · ·� aiai+1 � · · ·� aq+1)

= (−1)qa0da1 ⊗ · · · ⊗ daq−1 � aqaq+1 + a0a1da2 ⊗ · · · ⊗ dan � an+1

+

q−1∑
i=1

(−1)ia0ai ⊗ da1 ⊗ · · · ⊗ d̂ai ⊗ · · · ⊗ daq � daq+1

+

q−1∑
i=1

(−1)ia0ai+1 ⊗ da1 ⊗ · · · ⊗ d̂ai+1 ⊗ · · · ⊗ daq � daq+1

= (−1)qa0da1 ⊗ · · · ⊗ daq−1 � aqaq+1 + a0a1da2 ⊗ · · · ⊗ dan � an+1

+

q−1∑
i=1

(−1)ia0ai ⊗ da1 ⊗ · · · ⊗ d̂ai ⊗ · · · ⊗ daq � daq+1

+

q∑
i=2

(−1)i−1a0ai ⊗ da1 ⊗ · · · ⊗ d̂ai ⊗ · · · ⊗ daq � daq+1

= (−1)qa0da1 ⊗ · · · ⊗ daq−1 � aqaq+1 + a0a1da2 ⊗ · · · ⊗ daq � aq+1

− a0a1da2 ⊗ · · · ⊗ d̂ai ⊗ · · · ⊗ daq � daq+1

+ (−1)q−1a0daqda1 ⊗ · · · ⊗ daq−1 � aq+1

= (−1)q+1mπ(a0 � · · ·� aq+1)

The above discussion proves the following lemma:

Lemma 5.2. The map π : B̂arw̃ → At is a closed morphism of w̃-curved modules.

Incidentally this discussion also explains the appearance of the grading operator

in the horizontal direction.

Remark 5.3. It is clear that π : B̂arw̃ → At is a weak equivalence of w̃ curved

modules on X ×X, since both B̂arw̃ and At are weakly equivalent to ∆∗S(OX) via

projection.
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As a piece of notation, for E ∈ Qcoh(X,OX , w), we define

At(E) := At ⊗
S(OX)

E := (p1)∗(At ⊗
S(OX2 )

p∗2E).

Lemma 5.4. Let ∧ : Ω⊗q ⊗ J 1(E)→ Ωq ⊗ E denote the anti-symmetrization map:

∧(a0da1 ⊗ · · · ⊗ daq � e) = a0da1 ∧ · · · ∧ daq ⊗ e

Then the map
n∑
i=0

∧
i!

: At(E)→ Ωdw ⊗
S(OX)

E

gives a closed degree 0 morphism of w-curved modules.

Proof. This follows from the calculations

∧
(q + 1)!

Bdw(a0da1 ⊗ . . .⊗ daq � e)

=
1

(q + 1)!

q∑
i=0

(−1)ia0da1 ∧ · · · ∧ dai ∧ dw ∧ dai+1 ∧ · · · ∧ daq ⊗ e

=
1

(q + 1)!

q∑
i=0

a0dw ∧ da1 ∧ · · · ∧ daq ⊗ e

=
1

q!
dw ∧ a0da1 ∧ · · · ∧ daq ⊗ e

= dw ∧
(
∧
q!

(a0a1 ⊗ · · · ⊗ dan � e)
)
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and

∧
(q − 1)!

m(a0da1 ⊗ · · · ⊗ daq � e) =
1

(q − 1)!
(a0aqda1 ∧ · · · ∧ daq−1 ⊗ e)

− 1

(q − 1)!
(a0da1 ∧ · · · ∧ daq−1 ⊗ aqe)

= 0

and the observation that the differential on E obviously commutes with the map∑
i ∧i.

Definition 5.5. Define the map Exp(at(E)) : E → Ωdw ⊗ E in the category

DcoQcoh(X,OX , w) by the roof

At(E)

E Ωdw ⊗ E
∼

π Σ∧
i!

Lemma 5.6. The sheafified boundary bulk map TE : HomS(OX)(E , E)→ Ωdw is given

by str(−◦Exp(at(E))), where str : HomS(OX)(E , E)→ S(OX) is the super-trace map.

Proof. Recall from the discussion at the beginning of this section that we have the

following representative for TE

E∨ ⊗ (B̂w̃ ⊗
S(OX)

E) E∨ ⊗ E ⊗
S(OX)

B̂arw̃

E∨ ⊗ E ∆∗B̂arw̃

Ωdw

∼

1⊗ ρ⊗ 1

1⊗ σ

ev⊗1⊗ 1

HKR
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From lemmas 5.2 and 5.4 we may complete this diagram to the following picture

E∨ ⊗ (B̂w̃ ⊗
S(OX)

E) E∨ ⊗ E ⊗
S(OX)

B̂arw̃

E∨ ⊗ E E∨ ⊗At(E) ∆∗B̂arw

E∨ ⊗ (Ωdw ⊗ E) Ωdw

Hom(E , E) Hom(E ,Ωdw ⊗ E) Ωdw

∼

1 � ρ⊗ 1

1 � σ ⊗ 1

∼

1 � π ⊗ 1

str

ev⊗1⊗ 1

HKR

It is easy to check that everything commutes, at least perhaps with the added

observation that the bottom arrow, which we have by abuse simply called str, first

commutes the tensors under the isomorphism

Hom(E ,Ωdw ⊗ E) ∼= Hom(E , E)⊗ Ωdw

before applying the super-trace.

Remark 5.7. Taking w = 0, our results give us directly information about Z2

complexes of vector bundles on X.1 Moreover, one checks (essentially by taking

a standard tensor product on complexes, rather than the folded tensor we use for

matrix factorizations) that all of the above constructions and theorem go through.

This gives the following result, which follows formally from [Căl] and [Ram]. However,

there seems to be a problem in Ramadoss’s proof in [Ram]: in the proof of Proposition

1There is a mild issue here with respect to 3.8 which requires that w not be a zero divisor, however
the conclusion of this theorem is well-know to still hold when w = 0, so there is no problem.
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2 he uses without explaining the coincidence of the two versions of the Chern character

of O∆, one defined in [Căl] and the one one coming from DG theory.

Theorem 5.8. The DG Chern Character map for perfect complexes on smooth X

in the sense of [Shk] coincides with the classical Chern Character.

Proof. We apply our remark 5.7 to lemma 5.6 and 5.1 to find that the DG Chern

Character of a bounded complex of locally free sheaves E is given by

RΓ(str(Exp(at(E)))) ∈ RΓ(
⊕

Ωi) = HH(X).

This according to [Mar] is exactly the classical Chern Character.

5.2. A Formula for The Boundary-Bulk Map

In this section we wish to develop a global analog of the Chern character formula

for global matrix factorizations computed for a formal disk in [PV2]. There should be

some question about what such an analog could be since globality generally prohibits

formulas, at least formulas involving coordinates. Another option would be to relate

to Chern character to certain classes which exist globally, e.g. Chern classes or the

Atiyah class. At some level we have already done this and at another we have already

discussed the obstruction to doing so. We should probably also point out here that

we do not know what Chern classes are for matrix factorizations.

We have taken the task of finding a global Chern character formula and more

generally the boundary bulk map to mean the following: understand the image of

the boundary bulk map in some computable model for RΓ(Ωdw). This will be a Cech

model and we will give our formula in terms of local connections on a Cech cover.
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Lemma 5.9. Let E be a matrix factorization with curved differential e. Suppose ∇

is a connection on E , i.e. ∇ consists of standard connections on underlying graded

components ∇i : E0 → Ω⊗ Ei for i = 0, 1. Then the morphism

At(E)

E Ωdw ⊗ E
∼

which represents the map Exp(at(E)) in the coderived category from definition 5.5 is

given by the map of w-curved complexes

exp(at(E)) =
n∑
i=0

∧[∇, e]i

i!
.

Proof. Given a connection ∇ on E we obtain splittings J 1(Ei) = Ω1 ⊗ Ei ⊕ Ei under

these splittings the induced map by e on J 1(E) becomes

1⊗ e [∇, e]

0 e

 ,

The map

m : Ω⊗q+1 ⊗ Ei ⊕ Ωq ⊗ Ei → Ωq ⊗ Ei ⊕ Ωq−1Ei

is simply given by the projection 0 1

0 0

 ,

and the map Bdw splits as B′dw 0

0 B′′dw
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where B′dw : Ω⊗q+1 ⊗ Ei 7→ Ω⊗(q+2) ⊗ Ei is given by

B′dw(a0da1⊗· · ·⊗daq+1⊗e) =

q∑
j=0

(−1)ja0da1⊗· · ·⊗daj⊗dw⊗daj+1⊗· · ·⊗daq+1⊗e

and B′′dw : Ω⊗q ⊗ Ei 7→ Ω⊗(q+1) ⊗ Ei is given by

B′′dw(a0da1 ⊗ · · · ⊗ aq ⊗ e) =

q∑
j=0

(−1)ja0da1 ⊗ · · · ⊗ daj ⊗ dw ⊗ daj+1 ⊗ · · · ⊗ daq ⊗ e.

Using these splittings we may view
∑n

i=0[∇, e]i as a degree 0 map E → At(E)

then it will suffice to show that that map is a closed morphism of w-curved modules

since it obviously splits the weak-equivalence At(E) → E induced by projecting and

we also have (∑
i

∧
i!

)
◦

(∑
i

[∇, e]i
)

= exp(at(E)).

We first need to make the simple calculation:

e[∇, e] + [∇, e]e = ∇w − w∇ = dw.

Now

eγ[∇, e]q − [∇, e]qe = (−1)qe[∇, e]q − [∇, e]qe

= (−1)q
q−1∑
i=0

(−1)i[∇, e]i(e[∇, e] + [∇, e]e)[∇, e]q−i−1

= −
q−1∑
i=0

(−1)q−i−1[∇, e]i ⊗ dw ⊗ [∇, e]q−i−1

= −B′′dw[∇, e]q−1
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The equality going from line 3 to 4 above is a bit tricky: The map dw ⊗− sends

a0da1 ⊗ daq−i−1 ⊗ e 7→ a0da1 ⊗ daq−i−1 ⊗ dw ⊗ e

and then for the composition we have

Ej Ω⊗q−i−1 ⊗ Ej+q−i−1

Ω⊗q−i−1 ⊗ Ω1 ⊗ Ej+q−i−1 Ω⊗q−i−1 ⊗ Ω1 ⊗ Ωi ⊗ Ej+q−1

[d,∇]q−i−1

dw ⊗−
[d,∇]i

so computing [∇, e]i ⊗ dw ⊗ [e,∇]q−i−1 is the same as computing [∇, e]q−1 and then

inserting dw in the q − i− 1st slot. Now we may compute


B′dw 0

0 B′′dw

 −
0 γ

0 0

+

dEγ [∇, e]γ

0 eγ



 0∑n

i=0[∇, e]i


=

n∑
i=0

 0

B′′dw[∇, e]i

− n∑
i=1

(−1)i[∇, e]i

0


+

n∑
i=0

 0

(−1)ie[∇, e]i

+

n∑
i=0

(−1)i[∇, e]i+1

0


=

 0∑n
i=0[∇, e]ie


which finishes the proof. Note that the second sum on the second line starts at i = 1

because the component of the differential on At(E) coming from m is 0 on J 1(E).

Remark 5.10. In the case when X is a formal disk, we recover the formula for the

Chern Character from [PV2] by identifying the cohomology RΓ(ΩX) with the Tyurina

algebra .

Naturality of the Chern character (or more generally the boundary bulk map)

implies that it commutes with restriction to open subschemes. The above lemma tells
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us what happens to the Chern Character upon restriction to open affine subschemes.

Of course, upon restricting we loose information. The following lemmas describe how

we can go the other direction. That is, they give us a method to take this local data

(along with an appropriate collection of homotopies) to a global a global morphism

to Cech Cohomology.

Lemma 5.11. Let (F , dF) and (G, dG) be complexes of sheaves (or w-curved S(OX)

modules) on X and U1, . . . , Un be a Cech cover of X. Denote

Gi0...ip = (ji0...jp)∗G|Ui0∩···∩Uip ,

where jp0...pn is the inclusion of Ui0∩· · ·∩Uip intoX. Suppose we are given the following

data: for each 0 ≤ p ≤ n and each tuple i0i1 . . . ip with 1 ≤ i0 < i1 < · · · < ip ≤ n we

have a map

fi0...ip : F → Gi0...ip [p]

such that

dGfi0...ip − (−1)pfi0...ipdF =

p∑
j=0

(−1)kfi0...îk...ip |Ui0...ip ,

then the map f : F → Cech(G) defined on F q by

f =
∑
p

∑
i0...ip

(−1)
p(p−1)

2 fi0...ip

is a closed degree 0 map of complexes.

Proof. First observe that fi0...ip takes F q to Gq−pi0...ip
and Gq−pi0...ip

lives in degree q of

Cech(G), therefore the map f is indeed degree 0.
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If we consider the composition cf where c is the Cech differential, we get

cf =
n∑
p=0

∑
i0...ip

(−1)
p(p−1)

2 cfi0...ip

=
n∑
p=0

∑
i=i0...ip

j=j0...jp+1

(−1)
p(p−1)

2 σ(i, j)fi0...ip |Uj0...jp+1

where

σ(i, j) =



1 if i0 . . . ip = j0 . . . ĵk . . . jp+1, k even

−1 if i0 . . . ip = j0 . . . ĵk . . . jp+1, k odd

0 else

On the other hand,by our assumption on fi0...ip , we have

γdGf − fdF =
n∑
p=0

∑
i0...ip

(−1)
p(p−1)

2
+p(dGfi0...ip − (−1)pfi0...ipdF)

=
n∑
p=0

∑
i0...ip

(−1)
p(p−1)

2
+p

p∑
k=0

(−1)kfi0...îk...ip |Ui0...ip

=
n∑
p=0

∑
i=i0...ip

j=j0...jp+1

(−1)
(p+1)(p)

2
+p+1σ(i, j)fi0...ip|Uj0...jp+1

= −
n∑
p=0

∑
i=i0...ip

j=j0...jp+1

(−1)
p(p−1)

2 σ(i, j)fi0...ip |Uj0...jp+1

= −cf

where γ is the grading operator on the Cech complex: γ|Gi0...ip = (−1)p.
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Lemma 5.12. Let E be a matrix factorization with curved differential e. Let ∇j be a

choice of connection on Uj , where {Uj}|Nj=1 is a Cech cover of X. The collection of maps

fi0...ip : E → At(E)i0...ip [p],

fi0...ip = σi0
∑

k0,k1...,kp

τp(k0, . . . , kp)[e,∇i0 ]k0(∇i0 −∇i1)[e,∇1]k1(∇i1 −∇i2) . . . [e,∇ip ]kp

τp(k0, . . . kp) = (−1)
∑p
j=0 j(kj+1) and σi0 : Ω⊗q ⊗ E → Ω⊗q ⊗ J 1(E) is the splitting induced

by ∇i0 satisfies the hypothesis of lemma 5.11.

Proof. We know from the proof of lemma 5.9 that

(−1)ke[∇i0 , e]− [∇i0 , e]
ke = −Bdw[∇i0 , e]

k−1

so that

γefi0 − fi0e = −Bdwfi0 .

We claim that

efi0...ip − (−1)pfi0...ipe = −Bdw +

p∑
j=0

(−1)jfi0...îj ...ip .

We will prove this by induction, but before we do, let us see how this proves the

lemma.

Recall from the proof of lemma 5.9 that after splitting At(E) with respect to ∇i0

the differential is given as the sum of three components

γe = (−1)q

1⊗ e [∇i0 , e]

0 e

 : Ω⊗q+1 ⊗ Ei ⊕ Ωq ⊗ Ei → Ωq+1 ⊗ Ei+1 ⊕ Ωq ⊗ Ei+1
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−γm = (−1)q

0 −1

0 0

 : Ωq+1 ⊗ Ei ⊕ Ωq ⊗ Ei → Ωq ⊗ Ei ⊕ Ωq−1 ⊗ Ei

and

Bdw =

B′dw 0

0 B′′dw

 : Ωq+1 ⊗ Ei ⊕ Ωq ⊗ Ei → Ωq+2 ⊗ Ei ⊕ Ωq+1 ⊗ Ei.

We have the relation

[∇i0 ,e]fi0...ip − fi0...ip

= −
∑

k1...kp

(−1)
∑

j=1 j(kj+1)(∇i0 −∇i1)[∇i1 , e]
k1 . . . [∇ip , e]

kp

= (∇i1 −∇i0)
∑

k1...kp

(−1)k1+···+kp+p−1(−1)
∑

j=0 j(kj+1)(∇i0 −∇i1)[∇i1 , e]
k1 . . . [∇ip , e]

kp

So when we take into account the grading operator γ we get

(γ[∇i0 , e]− γ)fi0...ip = (∇i1 −∇i0)fi1...ip .

Now the observation is that (∇i1−∇i0)fi1...ip is exactly the difference between splitting

with respect to ∇i1 and splitting with respect to ∇i0 i.e.

σi0fi1...ip + (∇i1 −∇i0)fi1...ip = σi1fi1...ip

This combined with the claim gives us the lemma.

To prove the claim, notice first that we can write

fi0...ip =
n∑
k=0

(−1)kp+pfi0...ip−1(∇ip−1 −∇ip)[∇ip , d]k.
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Then we make the computation:

γefi0...ip − (−1)pfi0...ipe =
∑
k

(−1)kp+p+k+1(γefi0...ip−1 − (−1)p−1fi0...ip−1)(∇ip−1 −∇ip)[∇ip , e]
k

+
∑
k

(−1)kp+kfi0...ip−1
([∇ip , e]− [∇ip−1

, e])[∇ip , e]
k

+
∑
k

(−1)kpfi0...ip−1
(∇ip−1

−∇ip)((−1)ke[∇ip , e]
k − [∇ip , e]

ke]

=
∑
k

(−1)kp+k+p+1(−Bdwfi0...ip−1
)(∇ip−1

−∇ip)[∇ip , e]
k

(Equation 5.4.)

+
∑
k

(−1)(k+1)(p−1)(

p−1∑
j=0

(−1)jfi0...îj ...ip−1
)(∇ip−1 −∇ip)[∇ip , e]

k

(Equation 5.5.)

+
∑
k

(−1)kp+kfi0...ip−1
([∇ip , e]− [∇ip−1

, e])[∇ip , e]
k (Equation 5.6.)

+
∑
k

(−1)kpfi0...ip−1(∇ip−1 −∇ip)(−Bdw[∇ip , e]
k−1) (Equation 5.7.)

Note that the sign (−1)kp+k+p+1 on the first line appears because applying

(∇ip−1 − ∇ip)[∇ip , e]
k before fi0...ip−1 introduces an extra k + 1 tensor factors of

Ω1. So what we will need to show is that lines (Equation 5.4.), (Equation 5.5.),

(Equation 5.6.) and (Equation 5.7.) sum to give

−Bdwfi0...ip +

p∑
j=0

(−1)jfi0...îj ...ip .

Now we note that

(−1)k+1(−Bdwfi0...ip−1)(∇ip−1 −∇ip)[∇ip , e]k

+ fi0...ip−1(∇ip−1 −∇ip)(−Bdw[∇ip , e]k−1)

= Bdwfi0...ip−1(∇ip−1 −∇ip)[∇ip , e]k
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so the sums ∑
k

(−1)kpfi0...ip−1(∇ip−1 −∇ip)(−Bdw[∇ip , e]
k−1)

from (Equation 5.7.) and

∞∑
k=0

(−1)kp+k+p+1(−Bdwfi0...ip−1)(∇ip−1 −∇ip)[∇ip , e]
k

from (Equation 5.4.) add to give −Bdwfi0...ip as needed.

We have the following relation

fi0...ip−1 [∇ip−1 , e] = (−1)p−1fi0...ip−1 − fi0...ip−2(∇ip−2 −∇ip−1)

so then for the sum from (Equation 5.6.) we have

∑
k

(−1)kp+kfi0...ip−1
([∇ip , e]− [∇ip−1

, e])[∇ip , e]
k

=
∑
k

(−1)kp+kfi0...ip−1
[∇ip , e]

k+1

−
∑
k

(−1)kp+kfi0...ip−1
[∇ip−1

, e][∇ip , e]
k

=
∑
k

(−1)kp+kfi0...ip−1 [∇ip , e]
k+1

+
∑
k

(−1)kp+k+pfi0...ip−1 [∇ip , e]
k

+
∑
k

(−1)kp+k+1fi0...ip−2
(∇ip−2

−∇ip−1
)[∇ip , e]

k

= (−1)pfi0...ip−1
(Equation 5.8.)

+
∑
k

(−1)kp+k+1fi0...ip−2(∇ip−2 −∇ip−1)[∇ip , e]
k (Equation 5.9.)
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Now we turn our attention to the sum

n∑
k=0

(−1)(k+1)(p−1)(

p−1∑
j=0

(−1)jfi0...îj ...ip−1
)(∇ip−1 −∇ip)[∇ip , e]

k

from (Equation 5.5.) In the case when j 6= p− 1 we have

∞∑
k=0

(−1)(k+1)(p−1)fi0...îj ...ip−1
(∇ip−1 −∇ip)[∇ip , e]

k = fi0...îj ...ip (Equation 5.10.)

When j = p− 1 we may add

n∑
k=0

(−1)(k+1)(p−1)+p−1fi0...ip−2(∇ip−1−∇ip )[∇ip , e]
k

to
n∑
k=0

(−1)kp+k+1fi0...ip−2(∇ip−2 −∇ip−1)[∇ip , e]
k

from (Equation 5.9.) to get

(−1)p−1

∞∑
k=0

(−1)k(p−1)fi0...ip−2(∇ip−2 −∇ip)[∇ip , e]
k = (−1)p−1fi0...îp−1ip

.

(Equation 5.11.)

Adding the sums from (Equation 5.8.), (Equation 5.10.) and (Equation 5.11.) gives

p∑
j=0

(−1)jfi0...îj ...ip

which finishes the claim and thus the lemma.
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Theorem 5.13. Let f = {fi0...ip} ∈ Cech(Hom(E , E)). The boundary bulk map τE

is computed on f as

fi′0...i′q 7→ str

∑
p

∑
i0...ip

∑
k1...kp

(−1)p+
∑p

j=0 jkj
[∇i0 , e]

k0(∇i0 −∇i1) . . . (∇ip−1 −∇ip)[∇ip , e]
kp

(k0 + · · ·+ kp + p)!
◦ fi′0...i′q


Proof. This is mostly an amalgamation of lemmas 5.11, 5.12 and 5.6. The division

by (k0 + . . . kp + p)! comes from applying the map

∑ ∧
i!

: Cech(At(E))→ Cech(Ωdw ⊗ E)

(see lemma 5.4). The sign comes from the fact that

p(p− 1)

2
+

p∑
j=0

j(kj + 1) =
p(p− 1)

2
+
p(p+ 1)

2
+

p∑
j=0

jkj = p2 +

p∑
j=0

jkj

and p is congruent to p2 modulo 2. We need only check that this map we have

constructed actually computes the boundary bulk-map.

We have the following diagram

At(E) Cech(At(E))

E Cech(E)

π Cech(π)

where the diagonal map is given by

∑
p

∑
i0...ip

∑
k1...kp

(−1)p
2+

∑p
j=0 jkj [∇i0 , e]

k0(∇i0 −∇i1) . . . (∇ip−1 −∇ip)[∇ip , e]
kp .

(Equation 5.12.)

Now the outside square commutes as well as the bottom right triangle. And then,

since Cech(π) is a weak equivalence, the upper left triangle commutes in the coderived
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category. It follows then that composition of the diagonal map, (Equation 5.12.), with

the map
∑

i
∧
i!

: Cech(At(E))→ Cech(Ωdw) computes ιExp(At(E)), where ι : Ωdw →

Cech(Ωdw) is the inclusion.

Corollary 5.14. The Chern Character E is given by the cocycle

ch(E) = str

∑
p

∑
i0...ip

∑
k1...kp

(−1)p+
∑p
j=0 jkj

[∇i0 , e]k0(∇i0 −∇i1) . . . (∇ip−1 −∇ip)[∇ip , e]kp
(k0 + · · ·+ kp + p)!


in a Cech model for RΓ(Ωdw).

Remark 5.15. In light of Remark 5.7 and Theorem 5.8, Corollary 5.14 translates

directly to give a formula for the Chern character of complexes of vector bundles.
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