
THE RO(C2)-GRADED COHOMOLOGY OF C2-SURFACES AND

EQUIVARIANT FUNDAMENTAL CLASSES

by

CHRISTY HAZEL

A DISSERTATION

Presented to the Department of Mathematics
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2020



DISSERTATION APPROVAL PAGE

Student: Christy Hazel

Title: The RO(C2)-graded Cohomology of C2-surfaces and Equivariant Fundamental
Classes

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Mathematics
by:

Daniel Dugger Chair
Boris Botvinnik Core Member
Ben Elias Core Member
Robert Lipshitz Core Member
Brittany Erickson Institutional Representative

and

Kate Mondloch Interim Vice Provost and Dean of the
Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded June 2020

ii



c© 2020 Christy Hazel

iii



DISSERTATION ABSTRACT

Christy Hazel

Doctor of Philosophy

Department of Mathematics

June 2020

Title: The RO(C2)-graded Cohomology of C2-surfaces and Equivariant Fundamental
Classes

Let C2 denote the cyclic group of order two. Given a manifold with a C2-

action, we can consider its equivariant Bredon RO(C2)-graded cohomology. We

first use a classification due to Dugger to compute the Bredon cohomology of

all C2-surfaces in constant Z/2 coefficients as modules over the cohomology of

a point. We show the cohomology depends only on three numerical invariants

in the nonfree case, and only on two numerical invariants in the free case. We

next develop a theory of fundamental classes for equivariant submanifolds of any

dimension in RO(C2)-graded cohomology in constant Z/2 coefficients. We connect

these classes back to our initial computations by showing the cohomology of any

C2-surface is generated by fundamental classes, and these classes can be used to

easily compute the ring structure. To define fundamental classes we are led to

study the cohomology of Thom spaces of equivariant vector bundles. In general

the cohomology of the Thom space is not just a shift of the cohomology of the base

space, but we show there are still elements that act as Thom classes, and cupping

with these classes gives an isomorphism within a certain range.
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CHAPTER I

INTRODUCTION

There has been recent interest in better understanding RO(C2)-graded

Bredon cohomology. For example, explicit computations can be found in [2], [9],

[11], [5], and [16], and certain freeness and structure theorems can be found in [10]

and [13]. The goal of this thesis is twofold: first we compute the RO(C2)-graded

Bredon cohomology of a family of C2-spaces, and next we provide a geometric

framework in which to understand these answers.

To say more, our first goal is to compute the RO(C2)-graded cohomology

of all C2-surfaces in constant Z/2 coefficients and to state the answer in a concise

and coherent way based on a few properties of the space and its action. We show

the answers depend only on three invariants of the C2-surface in the nonfree

case, and two invariants in the free case. Even better, the cohomology can be

described formulaically in terms of these invariants. Next we consider C2-manifolds

of any dimension and develop a theory of fundamental classes for equivariant

submanifolds in constant Z/2 coefficients. These classes can be defined for both

free and nonfree submanifolds. When two submanifolds intersect transversally,

the cup product of their classes is given in terms of the fundamental class of their

intersection. In order to define these classes, we consider equivariant Thom spaces

for real C2-vector bundles and prove properties of the RO(C2)-graded cohomology

of these spaces in constant Z/2 coefficients. We end by showing the RO(C2)-

graded cohomology of any C2-surface can be understood in terms of equivariant

fundamental classes of submanifolds.
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1.1. Introduction to Bredon Cohomology

In order to state the main results, we first recall some facts about Bredon

cohomology; a more detailed exposition of this theory can be found in [8, Section

2], for example. For a finite group G the Bredon cohomology of a G-space is a

sequence of abelian groups graded on RO(G), the Grothendieck group of finite-

dimensional, real, orthogonal G-representations. When G is the cyclic group of

order two, recall any C2-representation is isomorphic to a direct sum of trivial

representations and sign representations. Thus RO(C2) is a free abelian group

of rank two, and the Bredon cohomology of any C2-space can be regarded as a

bigraded abelian group.

We will use the motivic notation H∗,∗(X;M) for the Bredon cohomology of a

C2-space X with coefficients in a Mackey functor M . The first grading indicates

the dimension of the representation, and we will often refer to this grading as

the “topological dimension”. The second grading indicates the number of sign

representations appearing and will be referred to as the “weight”. Given any

C2-space X, there is always an equivariant map X → pt where pt denotes a

single point with the trivial C2-action. This gives a map of bigraded abelian

groups H∗,∗(pt;M) → H∗,∗(X;M). If M has the additional structure of a Green

functor, then in fact this is a map of bigraded rings, and thus H∗,∗(X;M) forms a

bigraded algebra over the cohomology of a point. In this paper, we will be working

with the constant Green functor Z/2, and we will write M2 for the bigraded ring

H∗,∗(pt;Z/2). In addition to being a Green functor, Z/2 satisfies an additional

property (tr(1) = 2) that ensures H∗,∗(X;Z/2) is a bigraded commutative ring.

When working in Z/2-coefficients, it is shown in [13] that, as a module

over the cohomology of a point, the cohomology of any finite C2-CW complex
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decomposes into a direct sum of two types of summands. Specifically, the

cohomology is given by a direct sum of free modules and shifted copies of the

cohomology of antipodal spheres. We provide an introduction to these two types

of modules below.

The Basic Pieces

Since the cohomology of any C2-space is a bigraded module over a bigraded

ring, we can use a grid to record information about the cohomology groups and

module structures. For example, the cohomology ring of a point in Z/2-coefficients

is illustrated on the left-hand grid in the figure below. Each dot represents a

copy of Z/2, and the connecting lines indicate properties of the ring structure.

For example, the top portion is polynomial in two elements ρ and τ which are in

bidegrees (1, 1) and (0, 1), respectively. A precise description of this ring can be

found in Section II. In practice, it is cumbersome to draw the detailed picture, so

instead, we draw the abbreviated version shown on the right.

p

q

•
•
•
•
•

•
•
•
•

•
•
•
•
• •

•
•
•
•

•
•
•

•
••

p

q

FIGURE 1. The ring M2 = H∗,∗(pt) with Hp,q(pt) in spot (p, q).

Let Sna denote the C2-space whose underlying space is Sn and whose C2-

action is given by the antipodal map. Note S0
a is the free orbit C2. We denote the
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cohomology of the space Sna by An. This M2-module can be described algebraically

as An ∼= τ−1M2/(ρ
n+1). In the figure below, we illustrate the module structure of

A0, A1, and A2, respectively. As before, the detailed picture is shown on the left,

while the abbreviated picture is shown to the right. The dots again indicate a copy

of Z/2 while the lines indicate the module structure.

p

q

•
•
•
•
•
•
•
•
•
•

p

q

p

q

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

p

q

p

q

• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

p

q

FIGURE 2. The M2-modules A0, A1, and A2, respectively.

It is shown in [13] that as an M2-module, the cohomology any finite C2-CW

complex is isomorphic to a direct sum of shifted copies of M2 and shifted copies of

Aj for some values of j. Our first goal is to find the specific decompositions for the

cohomology of all C2-surfaces. We begin by showing a few examples.

1.2. Computational Examples

To give the reader a flavor of the sorts of decompositions that can appear, we

provide three examples of C2-surfaces and state the cohomology of each.

Example 1.2.1. Let X1 denote the C2-space whose underlying space is the genus

one torus, and whose action is given by the reflection action. The space X1 is

depicted below with the fixed set XC2
1 shown in blue. We will eventually show as

an M2-module
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H∗,∗(X1;Z/2) ∼= M2 ⊕ Σ1,0M2 ⊕ Σ1,1M2 ⊕ Σ2,1M2.

This module is illustrated below.

p

q

FIGURE 3. The space X1 and its cohomology.

Observe the cohomology is free over M2, and there is exactly one generator

in topological dimension zero, exactly two generators in topological dimension one,

and exactly one generator in topological dimension two (recall p is the topological

dimension). This should be unsurprising based on the singular cohomology of the

torus, though the weights of these generators are more mysterious.

Example 1.2.2. Let X2 denote the C2-surface whose underlying space is the genus

7 torus, and whose C2-action is given by the rotation action depicted below. The

fixed set consists of 8 isolated points that are shown in blue. The cohomology of X2

is given by

H∗,∗(X2;Z/2) ∼= M2 ⊕ (Σ1,1M2)
⊕6 ⊕ (Σ1,0A0)

⊕4 ⊕ Σ2,2M2.

The module is illustrated below.

Again there is exactly one free generator in topological dimensions zero and

two, but there is something more interesting going on in topological dimension one.

There are four nonfree summands, and six free summands in weight one.

5



p

q 6 4

FIGURE 4. The space X2 and its cohomology.

Example 1.2.3. Our last example X3 is the C2-space whose underlying space is

RP 2 and whose C2-action is depicted below. Note the fixed set contains both a

fixed circle and a fixed point; this did not happen in the previous examples. The

cohomology of this space is given by

H∗,∗(X3;Z/2) ∼= M2 ⊕ Σ1,1M2 ⊕ Σ2,1M2.

•
p

q

FIGURE 5. The space X3 and its cohomology.

With some care, one can compute the cohomology of the above spaces using

tools given in Section III, but it is not obvious how we could have predicted these

answers by just looking at the spaces. What properties are being detected by the

cohomology? In order to answer this question, we next define some invariants of

C2-surfaces.
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1.3. Invariants of C2-surfaces

There are a handful of invariants that can be associated to a given C2-surface.

For example, we can count the number of isolated fixed points, or the number of

fixed circles. Recall for a nonequivariant surface X the homeomorphism type is

entirely determined by two invariants, namely dimZ/2H
1
sing(X;Z/2) and whether or

not X is orientable. In what follows, we will denote dimZ/2H
1
sing(X;Z/2) by β(X)

and refer to this as the β-genus of X.

In [7] it is shown there is a list of invariants that uniquely determines

the isomorphism type of a C2-action on a given surface. We recall two of these

invariants below.

Definition 1.3.1. Let X be a C2-surface. We can associate the following invariants

to X:

(i) F (X) is the number of isolated fixed points;

(ii) C(X) is the number of fixed circles.

When there is no ambiguity about the space we are discussing, we will simply

write F instead of F (X) and C instead of C(X). There are four other invariants

needed in the classification given in [7] that we will not define here, but do note

the invariants defined above are not enough to uniquely determine the isomorphism

type in general.

In the examples above, we can compute

β(X1) = 2, F (X1) = 0, C(X1) = 2;

β(X2) = 14, F (X2) = 8, C(X2) = 0;

β(X3) = 1, F (X3) = 1, C(X3) = 1.

7



The first half of this thesis addresses the following questions: how does the

cohomology of a C2-surface relate to the invariants? Better yet, can we find a

formula that gives the cohomology of X based on some of these invariants? It may

not be apparent how to do this based on the three given examples, but the answer

to the latter is yes, as explained below.

1.4. The Answer for Nonfree C2-surfaces

We now state the decompositions for nontrivial, nonfree C2-surfaces in Z/2-

coefficients. Recall the fixed set of an involution on a surface is always given

by a disjoint union of isolated points and copies of S1. Recall M2 denotes the

cohomology of a point and A0 denotes the cohomology of the free orbit C2. We

will show the following:

Theorem 1.4.1. Let X be a nontrivial, nonfree C2-surface. There are two cases

for the RO(C2)-graded Bredon cohomology of X in Z/2-coefficients.

(i) Suppose C = 0. Then H∗,∗(X;Z/2) ∼= M2 ⊕ (Σ1,1M2)
⊕F−2 ⊕ (Σ1,0A0)

⊕β−F
2

+1 ⊕

Σ2,2M2.

(ii) Suppose C 6= 0. Then H∗,∗(X;Z/2) ∼= M2⊕ (Σ1,1M2)
⊕F+C−1⊕ (Σ1,0M2)

⊕C−1⊕

(Σ1,0A0)
⊕β−F

2
+1−C ⊕ Σ2,1M2.

We invite the reader to check that the above formulas match the answers

given in the three examples. Note not all of the invariants given in [7] are needed to

determine the cohomology. In particular, the module structure of the cohomology

in Z/2-coefficients does not determine the isomorphism type of a C2-surface.

Remark 1.4.2. As observed in our examples, there is exactly one summand

generated in topological dimension zero, exactly one summand generated in

8



topological dimension two, and some number of summands appearing in topological

dimension one. Based on what we know of the singular cohomology of surfaces, this

shouldn’t be surprising, though, the exact number and type of summands generated

in topological dimension one is nonobvious. Note we can recover dimension of the

singular cohomology of X by

β = 2 ·# (Σ1,0A0-summands) + # (Σ1,0M2-summands) + # (Σ1,1M2-summands) .

1.5. The Answer for Free C2-surfaces

We need to define one construction in order to state the decomposition for

free C2-surfaces. Given a nontrivial equivariant surface X and a nonequivariant

surface Y , we can form the equivariant connected sum X#2Y as follows. Let Y ′

denote the space obtained by removing a small disk from Y . Let D be a disk in X

that is disjoint from its conjugate disk σD, and let X ′ denote the space obtained by

removing both of these disks. Choose an isomorphism f : ∂Y ′ → ∂D. Then the

space X#2Y is given by

[(Y ′ × {0}) t (Y ′ × {1}) tX ′]/ ∼

where (y, 0) ∼ f(y) and (y, 1) ∼ σ(f(y)) for y ∈ ∂Y ′. Note nonequivariantly

X#2Y ∼= Y#X#Y . Below is an example where X = S2
a and Y = T1 is the genus

one torus.

FIGURE 6. S2
a#2T1

In [7], it is shown that there is exactly one free action on the sphere up

to equivariant isomorphism, namely the antipodal action, and there are exactly

9



two free actions on the torus, namely the antipodal action and the action given

by rotating 180◦ around an axis through the center of the hole of the torus.

Interestingly, it is also shown for every free C2-surface X there is a surface Y such

that X is isomorphic to Z#2Y where Z is either the free C2-sphere or one of the

two free C2-tori.

We can now state the theorem for free C2-surfaces. Recall An denotes the

cohomology of Sn with the antipodal action. We will prove the following:

Theorem 1.5.1. Let X be a free C2-surface. There are two cases for the RO(C2)-

graded Bredon cohomology of X in Z/2-coefficients.

(i) Suppose X is equivariantly isomorphic to S2
a#2Y . Then H∗,∗(X;Z/2) ∼=

(Σ1,0A0)
⊕β(X)/2 ⊕ A2.

(ii) Suppose X is equivariantly isomorphic to Z#2Y where Z is a free C2-torus.

Then H∗,∗(X;Z/2) ∼= (Σ1,0A0)
⊕β(X)−2

2 ⊕ A1 ⊕ Σ1,0A1.

For example, the cohomology of the space S2
a#2T1 shown above is given by

H∗,∗(S2
a#2T1) ∼= (Σ1,0A0)

⊕2 ⊕ A2.

Remark 1.5.2. It is not clear a priori why the number of summands of Σ1,0A0

given in Theorem 1.4.1 and Theorem 1.5.1 is necessarily an integer. This nontrivial

fact follows from restrictions on β, F , and C that arise in the classification of C2-

surfaces given in [7].

1.6. Summary of Main Geometric Points

After the initial computations, there are two main topics in this thesis,

fundamental classes and the cohomology of Thom spaces. These topics can be

further divided into five subtopics:
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1. Nonfree fundamental classes: Given a nonfree C2-manifold X and a nonfree

C2-submanifold Y , we prove there exists a fundamental class [Y ] ∈

Hn−k,q(X;Z/2) where k = dim(Y ) and q is found as follows. Consider the

restriction of the equivariant normal bundle of Y in X to the fixed set Y C2 .

Over each component of this fixed set, the fibers are C2-representations, and

the isomorphism type of the representation is constant over each component.

Thus each component corresponds to a representation of some weight, and the

integer q is chosen to be the maximum such weight.

2. Free fundamental classes: Given a C2-manifold X (free or nonfree) and a

free submanifold Y , we show there is an infinite family of classes [Y ]q ∈

Hn−k,q(X;Z/2) where k = dim(Y ) and q is any integer. These classes satisfy

the module relation τ · [Y ]q = [Y ]q+1.

3. Intersection product of fundamental classes: We show the cup product of

two fundamental classes for nonfree, submanifolds Y and Z that intersect

transversally is given by a predicted τ -multiple of the fundamental class of

the intersection. For free submanifolds, we show [Y ]r ^ [Z]s = [Y ∩ Z]r+s.

4. Restricted Thom isomorphism theorem for nonfree spaces: Let X be a finite,

nonfree C2-CW complex and E → X be an n-dimensional C2-vector bundle

whose maximum weight representation over XC2 is q. We show there is a

unique class uE ∈ Hn,q(E,E − 0;Z/2) that restricts to τ -multiples of the

generators of the cohomology of the fibers. We also show cupping with this

class gives an isomorphism Hf,g(X;Z/2)→ Hf+n,g+q(E,E − 0;Z/2) whenever

g ≥ f .

11



5. Thom isomorphism theorem for free spaces: Let X be a finite, free C2-CW

complex. For an n-dimensional C2-vector bundle E → X, we show for each

integer q there is a unique class uE,q ∈ Hn,q(E,E − 0;Z/2) that restricts to

the nonzero class in the cohomology of the fibers. In this case, cupping with

any one of these Thom classes provides an isomorphism from the cohomology

of the base space to the cohomology of a shift of the Thom space.

Remark 1.6.1. These equivariant fundamental classes act in many ways just like

their nonequivariant analogs, though there are still various subtleties that arise in

the equivariant context. For example, one might expect nonfree fundamental classes

to always generate free summands and free fundamental classes to string together

to form modules similar to A0. While this is often the case, there are exceptions.

As shown in Example 1.7.5 below, there can be free submanifolds whose classes

are nonzero for a while, but become zero in high enough weight. This and other

subtleties are best explained through a series of examples.

1.7. Examples of Equivariant Fundamental Classes

Before stating the general results, let’s consider some examples of C2-surfaces

to determine what properties we might expect of equivariant fundamental classes.

Example 1.7.1. We begin with a simple example. Let X denote the C2-torus from

Example 1.2.1. Recall the cohomology of this space is given by

H∗,∗(X;Z/2) ∼= M2 ⊕ Σ1,0M2 ⊕ Σ1,1M2 ⊕ Σ2,1M2.

Illustrations of the space and this module are given below.

Suppose we wanted to find equivariant submanifolds whose fundamental

classes generate these free summands. Take, for example, the fixed circle labeled

12



•a

•b

C

C ′

D
p

q

FIGURE 7. The space X and the M2-module H∗,∗(X).

C above. Topologically, this is a codimension one submanifold, so we would expect

to have a fundamental class in bidegree (1, q) for some q, but how do we determine

this value of q? Let’s consider a tubular neighborhood of C. Note the tubular

neighborhood is equivariantly homeomorphic to C × R1,1 where R1,1 denotes the

sign representation, so one might expect a fundamental class in bidegree (1, 1).

Indeed, we will show there is such a class [C] ∈ H1,1(X;Z/2), and furthermore,

this class generates a free summand in bidegree (1, 1). We also have a class

[C ′] ∈ H1,1(X;Z/2) corresponding to the other fixed circle, and we will show

[C] = [C ′] + ρ · 1.

Now consider the circle D that travels around the hole of the torus and

is isomorphic to a circle with a reflection action. In this case, the tubular

neighborhood of D is homeomorphic to D × R1,0 where R1,0 is the trivial

representation. We expect to get a class in bidegree (1, 0), and indeed such a class

[D] exists and generates a free summand.

These two circles intersect at a single fixed point a whose tubular

neighborhood is the unit disk in R2,1. The fundamental class [a] generates a free

summand in bidegree (2, 1), and furthermore we obtain the relation

[C] ^ [D] = [a].
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The submanifolds C and C ′ do not intersect, so we also obtain the relation

[C] ^ [C] = [C] ^ ([C ′] + ρ · 1) = ρ · [C].

We conclude

H∗,∗(X;Z/2) ∼= M2[x, y]/(x2 = ρx, y2 = 0), |x| = (1, 1), |y| = (1, 0)

as an M2-algebra.

Remark 1.7.2. In the example above, all of the submanifolds considered had

trivial normal bundles, and this led to an obvious choice of bidegree for each

fundamental class. Of course, we would like to have fundamental classes for

submanifolds whose normal bundles are nontrivial. The next example illustrates

this.

Example 1.7.3. Let Y denote the C2-space given by the projective plane with

action induced by the rotation action on the disk as shown in Figure 8 below. The

fixed set is again shown in blue. The cohomology of Y as an M2-module is given by

H∗,∗(Y ;Z/2) ∼= M2 ⊕ Σ1,1M2 ⊕ Σ2,1M2.

•p
C ′

•
p

•q C
p

q

FIGURE 8. The space Y and the M2-module H∗,∗(Y ).
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We again look for equivariant submanifolds. Consider the fixed circle labeled

C. The equivariant normal bundle N is given by the nontrivial Möbius bundle over

S1. This bundle is not trivial, but observe every point x ∈ C has an equivariant

neighborhood Ux such that N |Ux ∼= Ux × R1,1. In other words, this bundle is a

locally trivial R1,1-bundle, so we get a class [C] ∈ H1,1(X;Z/2).

Now consider the circle C ′. This circle is isomorphic to a circle with a

reflection action, and again the normal bundle N ′ is the nontrivial bundle over S1.

Around the fixed point p there is a neighborhood U such that N ′|U ∼= U × R1,0

while around the point q there is a neighborhood V such that N ′|V ∼= V × R1,1.

The bundle N ′ is not a locally trivial W -bundle for any C2-representation W , so if

it even exists, the bidegree of the fundamental class for C ′ is unclear.

We will show the fundamental class [C ′] does exist, and its grading is

determined by the fibers of the normal bundle over the fixed set. In this case,

N ′|p ∼= R1,0 while N ′|q ∼= R1,1. The class [C ′] will have grading (1, k) where k is

the maximum weight representation appearing over the fixed set, so in this case

k = 1.

The classes [C] and [C ′] are both in bidegree (1, 1), and we will see in

Example 7.2.7 that [C] = [C ′] + ρ · 1. Let’s consider their product. One might

hope

[C] ^ [C ′] = [C ∩ C ′] = [p],

but something has gone wrong. The product has bidegree (2, 2), while the

fundamental class [p] has bidegree (2, 1). We will show a slightly modified formula

holds. Namely

[C] ^ [C ′] = τ · [p]
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where recall τ ∈ H0,1(pt;Z/2). This give us the relation

[C]2 = [C]([C ′] + ρ · 1) = τ · [p] + ρ · [C].

In Example 7.2.7 we use these classes to conclude as an M2-algebra

H∗,∗(Y ;Z/2) ∼= M2[x, y]/(x2 = τy + ρx, xy = 0, y2 = 0), |x| = (1, 1), |y| = (2, 1).

Remark 1.7.4. The first two examples give a flavor of fundamental classes for

nonfree submanfiolds. It is natural to ask if such things can be defined for free

submanifolds. We see this in the next example.

Example 1.7.5. Let Z denote the C2-space whose underlying space is the genus

two torus and whose C2-action is given by a rotation action with two fixed points,

as illustrated below. The cohomology of this space is given by

H∗,∗(Z;Z/2) ∼= M2 ⊕ (Σ1,0A0)
⊕2 ⊕ Σ2,2M2.

b b

C

σC

C′

σC′

b

b

z

σz

a b p

q 2

FIGURE 9. The space Z and the M2-module H∗,∗(Z).

In this example the cohomology is an infinitely generated, nonfree M2-module.

The free submanifold C t σC is a codimension one submanifold, so we would expect

to have a class [C t σC] ∈ H1,?(Z;Z/2). The submanifold is free, so there is no

fixed set to determine the weight as in the previous examples. We will show there
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are actually infinitely many fundamental classes, one in each weight. That is, we

have classes [C t σC]q ∈ H1,q(Z;Z/2) for all integers q that are related via the

formula

τ · [C t σC]q = [C t σC]q+1.

The submodule generated by these classes corresponds to a Σ1,0A0-summand. One

can show the fundamental classes of the free submanifold C ′ t σC ′ generate the

other summand. Lastly, there are classes [a], [b] ∈ H2,2(Z;Z/2) corresponding to the

two fixed points. Either class will generate a free summand in bidegree (2, 2), and

the classes are related via [a] = [b] + ρ2 · 1.

We can also choose a point z ∈ Z \ ZC2 and consider the classes [z t σz]q ∈

H2,q(Z;Z/2). One might expect these classes to all be zero, but in fact, they are

nonzero whenever q ≤ 0. The intersection product then leads to some interesting

relations as shown in Example 7.3.6.

We mention two other nonfree classes one might consider. There are two

copies of a circle with a reflection action in the space Z. We can consider the

circle that travels around the equator through a and b, and the circle that travels

around the perimeter of the picture through a and b. Call these circles D and E,

respectively. Then [D] = ρ · 1 while [E] = [C t σC]1 + ρ · 1.

Nonequivariant Fundamental Classes

Before trying to define equivariant fundamental classes, let’s recall

nonequivariant fundamental classes. Let X be a closed manifold and Y ⊂ X be

a closed, connected submanifold of codimension k. We can define the fundamental

class [Y ] ∈ Hk
sing(X;Z/2) using the classical Thom isomorphism theorem from [17].
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Consider the normal bundle N of Y in X. Let U ⊂ X be a tubular

neighborhood of Y . By excision

Hk
sing(X,X − Y ;Z/2) ∼= Hk

sing(U,U − Y ;Z/2) ∼= Hk(N,N − 0;Z/2).

By the Thom isomorphism theorem, the righthand group is Z/2 and generated

by the Thom class uN . Thus there exists a unique nonzero class in Hk(X,X −

Y ;Z/2). We now define the fundamental class [Y ] ∈ Hk(X;Z/2) to be the image

of this unique class under the induced map from the inclusion of the pairs (X, ∅) ↪→

(X,X − Y ). Recall these classes have a nice intersection product. If Y and Z are

two submanifolds of X that intersect transversally, then [Y ] ^ [Z] = [Y ∩ Z].

One goal is to define an equivariant analog to these classes in Bredon

cohomology. Given an equivariant submanifold, the above hints that we should

consider the normal bundle, and use some fact about the cohomology of the

corresponding Thom space. Unfortunately, no direct analog of the Thom

isomorphism theorem exists for general C2-vector bundles in Z/2-coefficients; see

Example B.1.4 for an example of a vector bundle E such that the cohomology of

(E,E − 0) is not just a shift of the cohomology base space. Despite this failure,

we can still prove a weaker version of the Thom isomorphism theorem, and this is

enough to define fundamental classes.

1.8. The Main Geometric Theorems

We now state the main theorems from the second part of this thesis. We

begin with nonfree C2-vector bundles. Let X be a finite, nonfree C2-CW complex

and let π : E → X be a real n-dimensional C2-vector bundle (precise definitions can

be found in Appendix B). Let X1, . . . , Xr denote the connected components of the

fixed set XC2 . As explained in Section B, there exist weights q1,. . . , qr such that for
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all x ∈ Xi, the fiber Ex ∼= Rn,qi . Let q be the maximum such weight. We will prove

the following where all coefficients are understood to be Z/2.

Theorem 1.8.1. Let X, Xi, π : E → X, n, qi and q be defined as above and let

E ′ = E − 0. There exists a unique class uE ∈ Hn,q(E,E ′) such that the following

holds:

(i) ψ(uE) is the singular Thom class, where ψ : Hn,k(E,E ′)→ Hn
sing(E,E

′) is the

forgetful map;

(ii) M2 · uE ∼= Σn,qM2, where M2 · uE denotes the submodule generated by uE;

(iii) For every i and x ∈ Xi, the class uE restricts to τ q−qiαx where αx is the

generator of H∗,∗(Ex, Ex − 0) ∼= H̃∗,∗(Sn,qi).

(iv) For every x ∈ X \ XC2, the class uE restricts to the unique nonzero class in

H∗,∗(Ex,σx, Ex,σx − 0) ∼= H̃∗,∗(Sn,0 ∧ C2+) where Ex,σx = π−1({x, σx}).

(v) The map φE = π∗(−) ^ uE : Hf,g(X) → Hf+n,g+q(E,E ′) is an isomorphism

if g ≥ f ;

(vi) Suppose H∗,∗(X) ∼= (⊕ci=1Σki,`iM2) ⊕ (⊕dj=1Σsj ,0Arj). Then H∗,∗(E,E ′) ∼=

(⊕ci=1Σki+n,`
′
iM2)⊕(⊕dj=1Σsj+n,0Arj) where the weights `′i satisfy `i+q ≥ `′i ≥ 0;

(vii) If in fact Ex ∼= Ey for all x, y ∈ XC2, then φE is an isomorphism in all

bidegrees and H∗,∗(X) ∼= H∗+n,∗+q(E,E ′).

Let Y be a nonfree k-codimensional equivariant submanifold of X and let N

denote the equivariant normal bundle. We can construct an equivariant tubuluar

neighbrhood of Y , and then use the class uN to get a class [Y ] ∈ Hk,q(X;Z/2).

As with the nonequivariant classes, we have a nice formula for how these classes

multiply. For now, we state a summary. Recall τ ∈ H0,1(pt;Z/2).
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Theorem 1.8.2. Let X be a nonfree, n-dimensional C2-manifold, and let Y

and Z be two closed, nonfree equivariant submanifolds. Suppose Y intersects Z

transversally in the nonequivariant sense and that Y ∩ Z is a nonfree submanifold.

Then there is a unique integer j ≥ 0 such that [Y ] ^ [Z] = τ j[Y ∩ Z].

The exact value of j is dependent on Y , Z, and Y ∩ Z and is given explicitly

in Theorem 7.2.3.

For free C2-vector bundles, we will prove something similar. Again the

coefficients are understood to be Z/2.

Theorem 1.8.3. Let X be a free, finite C2-CW complex and let π : E → X be a

real C2-vector bundle and E ′ = E−0. For every integer q there exists a unique class

uE,q ∈ Hn,q(E,E ′) such that the following holds:

(i) ψ(uE,q) is the singular Thom class, where ψ : Hn,q(E,E ′) → Hn
sing(E,E

′) is

the forgetful map;

(ii) τ · uE,q = uE,q+1;

(iii) For every pair of conjugate points x, σx ∈ X, the class uE,q restricts to the

unique nonzero element in Hn,q(Ex,σx, Ex,σx − 0) ∼= H̃n,q(Sn ∧ C2+).

(iv) The map π∗(−) ^ uE,q : H∗,∗(X)→ H∗+n,∗+q(E,E ′) is an isomorphism for all

q. In particular, H∗,∗(X) ∼= H∗+n,∗(E,E ′).

Now given a free submanifold, we can use the classes corresponding to the

normal bundle to define fundamental classes [Y ]q ∈ Hk,q(X;Z/2) for all q. There is

also a nice intersection product for these free fundamental classes.

Theorem 1.8.4. Let X be an n-dimensional C2-manifold, and suppose Y and Z

are equivariant submanifolds that intersect transversally in the nonequivariant sense
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and whose intersection is free. We have the following cases for the product of their

fundamental classes.

• Suppose Y and Z are nonfree and their fundamental classes have weights q, r,

respectively. Then [Y ] ^ [Z] = [Y ∩ Z]q+r.

• Suppose Y is nonfree and Z is free. Then for every r, [Y ] ^ [Z]r = [Y ∩Z]q+r.

• Suppose Y and Z are both free. Then for every r, s, [Y ]r ^ [Z]s = [Y ∩ Z]r+s.

In the last section of this paper, we show these classes give a geometric

interpretation for the Bredon cohomology of C2-surfaces. Specifically, we prove

the following theorem.

Theorem 1.8.5. As an M2-module, the Bredon cohomology of any C2-surface is

generated by fundamental classes of submanifolds.

Remark 1.8.6. There are many examples of C2-surfaces whose Bredon cohomology

is infinitely generated as an M2-module; see Example 1.7.5. This is unsurprising

given that the modules An = τ−1M2/(ρ
n+1) are infinitely generated. Though,

there is always a finite list of submanifolds whose fundamental classes generate

the cohomology, and any free Ai-summand is generated by fundamental classes of

free submanifolds.

1.9. Organization

In Chapters II and III we review basics about RO(C2)-graded Bredon

cohomology and introduce computational tools that will be used throughout the

thesis. In Chapter IV we review the necessary information about C2-surfaces.

The surface computations are then given in Chapters V and VI. In Chapter
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VII we define equivariant fundamental classes using the theorems developed in

Appendix B. In the last chapter, Chapter VIII, we show the RO(C2)-graded

Bredon cohomology of any C2-surface is generated by equivariant fundamental

classes. Finally, Appendix A contains a useful theorem about the cohomology of

closed, nonfree C2-manifolds of any dimension.
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CHAPTER II

BACKGROUND ON BREDON COHOMOLOGY

In this section, we review some preliminary facts about RO(G)-graded Bredon

cohomology in the case of G = C2. Our coefficients are given by Mackey functors,

so we provide a definition of a Mackey functor in the case of G = C2 and review

the Mackey functor that will be used throughout the thesis. We next review how

the cohomology theory is a bigraded theory, and how this lends itself to pictorially

representing various module and ring structures.

2.1. Mackey functors

The coefficients of RO(G)-graded Bredon cohomology are what is known as a

Mackey functor. In general, the definition of a Mackey functor requires some work,

and a general exposition of Mackey functors can be found in [16] or in [14]. In the

case of G = C2, the definition can be distilled to the following.

Definition 2.1.1. A Mackey functor M for G = C2 is the data of

M : M(C2) M(∗)

t∗

p∗

p∗

where M(C2) and M(∗) are abelian groups, and p∗, p∗, t
∗ are homomorphisms that

satisfy

(i) (t∗)2 = id,

(ii) t∗ ◦ p∗ = p∗,

(iii) p∗ ◦ t∗ = p∗, and
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(iv) p∗ ◦ p∗ = 1 + t∗.

Given an abelian group B, we can form the constant Mackey functor B where

B(C2) = B(∗) = B, t∗ = id, p∗ = 2, and p∗ = id. We will be concerned with the

following constant Mackey functor.

Z/2 : Z/2 Z/2

1

0

1

2.2. Bigraded Theory

For a group G, Bredon cohomology is graded on RO(G), the Grothendieck

ring of finite-dimensional, real, orthogonal G-representations. When G is the

cyclic group of order two, observe any such C2-representation V is isomorphic

to a direct sum of copies of the trivial representation Rtriv and copies of the sign

representation Rsgn. Up to isomorphism, V is entirely determined by its dimension

and the number of sign representations appearing in this decomposition. It

follows that RO(C2) is a rank 2 free abelian group with generators given by [Rtriv]

and [Rsgn]. For brevity, we will write Rp,q for the p-dimensional representation

Rp−q
triv ⊕ Rq

sgn. We will also write Rp,q for the element of RO(C2) that is equal

to (p − q)[Rtriv] + q[Rsqn]. When computing cohomology groups, we will write

Hp,q(X;M) for the cohomology group HRp,q(X;M). Note some authors have

different grading conventions for RO(C2), and here we are using what is known

as the motivic grading.

Given any finite-dimensional, real, orthogonal, G-representation V we can

form the one-point compactification V̂ . Note this new space will be an equivariant

sphere which we will denote SV ; such spaces are referred to as representation
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spheres. Using these representation spheres, we can form equivariant suspensions.

Whenever we have a based G-space X, we can form the V -th suspension of X by

ΣVX = SV ∧X.

Note the basepoint must be a fixed point. Often when working with free spaces we

will add a disjoint basepoint in order to form suspensions and cofiber sequences.

We use the common notation of X+ for X t {∗} where the disjoint basepoint is

understood to be fixed by the action.

An important feature of Bredon cohomology is that we have suspension

isomorphisms: given any finite dimensional, real, orthogonal G-representation, there

are natural isomorphisms

ΣV : H̃α(−;M)→ H̃α+V (ΣV (−);M).

Given a cofiber sequence of based G-spaces

A
f→ X → C(f)

we can form the Puppe sequence

A→ X → C(f)→ Σ1A→ Σ1C(f)→ Σ1X → . . .

where 1 is the one-dimensional trivial representation. From the suspension

isomorphism this yields a long exact sequence

H̃V (A)← H̃V (X)← H̃V (C(f))← H̃V−1(A)← H̃V−1(X)← . . .

for each representation V ∈ RO(G). We will make use of such long exact sequences

throughout this thesis.

When G = C2, we have already discussed how the Bredon cohomology

theory is a bigraded theory, and we will carry this notation over when discussing
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representation spheres and equivariant suspensions. In particular, we will denote

SRp,q by Sp,q and for a based space X we will denote ΣRp,qX by Σp,qX. Translating

the above into this notation, we have natural isomorphisms

Σp,q : H̃a,b(−;M)→ H̃a+p,b+q(Σp,q(−);M)

for all p, q ≥ 0. Given a cofiber sequence we have long exact sequences

· · · → H̃p,q(C(f))→ Hp,q(X)→ Hp,q(A)→ H̃p+1,q(C(f))→ Hp+1,q(X)→ . . .

for each q ∈ Z.

During our computations, three particular representation spheres will appear

often, namely S1,1, S2,1, and S2,2. We include an illustration of these equivariant

spheres below in Figure 10. The fixed set is shown in blue while the arrow is used

to indicate the action of C2 on the space.

•

•

S1,1 S2,1 S2,2

••

FIGURE 10. Some representation spheres.

2.3. The Cohomology of Orbits

Given any C2-space X we have an equivariant map X → pt where pt denotes

a single point with the trivial action. On cohomology, this gives a map of rings

H∗,∗(pt;Z/2) → H∗,∗(X;Z/2). Thus the cohomology of X is a module over

the cohomology of a point, which recall we denote M2 = H∗,∗(pt;Z/2). In this

thesis, we will be computing the cohomology of various spaces as M2-modules.
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Below we describe the cohomology of pt = C2/C2 as well as the cohomology of

the free orbit C2. These computations have been done many times and are often

attributed to unpublished notes of Stong. The computation for coefficients in any

constant Mackey functor can be found in [12]. A computation for constant integer

coefficients can also be found in Appendix B of [6], and the same methods used

there can be used to compute the cohomology of orbits in constant Z/2 coefficients.

In Z/2-coefficients, the cohomology of a point is illustrated in the left-hand

grid shown in Figure 11. The (p, q) spot on the grid refers to the Rp,q-cohomology

group. Each dot represents a copy of Z/2, and we adopt the convention that

the (p, q) group is plotted up and to right of the (p, q) coordinate. For example,

H0,0(pt;Z/2) is isomorphic to Z/2, while H1,0(pt;Z/2) is zero.

p

q

•
•
•
•
•

•
•
•
•

•
•
•
•
• •

•
•
•
•

•
•
•

•
••

ρτ

θ
θ
τθ
τ2θ
τ3

θ
ρθ

ρ2θ
ρ3

p

q

FIGURE 11. The ring M2 = H∗,∗(pt).

We will often refer to the portion of the cohomology in the first quadrant

as the “top cone” and refer to the other portion as the “bottom cone”. The top

cone is polynomial in the elements ρ and τ , where ρ is in bidegree (1, 1) and

τ is in bidegree (0, 1). Multiplication by τ is indicated with vertical lines, and

multiplication by ρ is indicated with diagonal lines. For example, the nonzero

element in (1, 4) is equal to ρτ 3 which is equal to τ 3ρ. The bottom cone is slightly
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more complicated. The nonzero element θ in bidegree (0,−2) is divisible by all

nonzero elements in the top cone. Explicitly, this means for pairs i ≥ 0, j ≥ 0, there

exists an element denoted by θ
ρiτ j

that satisfies ρiτ j · θ
ρiτ j

= θ. Note ρ and τ are

not invertible elements in the ring; the notation θ
τ
, θ
ρ

is simply used to keep track of

how ρ and τ multiply with these elements.

While doing computations, it is often easier to work with an abbreviated

picture, which is given on the right-hand grid in the above figure. It is understood

that there is a Z/2 at each spot within the top cone and within the bottom cone

with the relations described above.

We also include the cohomology of the free orbit C2. As a ring, H∗,∗(C2;Z/2)

is isomorphic to Z/2[u, u−1] where u is in bidegree (0, 1). As an M2-module,

H∗,∗(C2) is isomorphic to τ−1M2/(ρ). See Figure 12 for the pictorial representation

of this module and its abbreviated version. In these module pictures, action by τ is

indicated by vertical lines, while action by ρ is indicated by diagonal lines.

p

q

•
•
•
•
•
•
•
•
•
•

p

q

FIGURE 12. The cohomology of C2 as an M2-module.

28



CHAPTER III

COMPUTATIONAL TOOLS

In this section we introduce various computational tools. The first two

lemmas relate the Bredon cohomology to the singular cohomology of the quotient

space and of the underlying space. We next show how these lemmas can be used to

compute the cohomology of the antipodal spheres. After this example, we introduce

a lemma that relates the Bredon cohomology to the cohomology of the fixed set via

localization. Finally, we end with a few general theorems about the cohomology

of finite C2-CW complexes and general C2-manifolds in the discussed coefficient

system.

The first lemma holds for any constant Mackey functor, and it will be

extremely useful in starting computations. We state it below for constant Z/2-

coefficients.

Lemma 3.0.1. (The quotient lemma). Let X be a finite C2-CW complex. We have

the following isomorphisms for all p:

Hp,0(X;Z/2) ∼= Hp,0(X/C2;Z/2) ∼= Hp
sing(X/C2;Z/2).

Proof. We have a quotient map X → X/C2 that induces a map on cohomology

Hp,0(X/C2;Z/2) → Hp,0(X;Z/2). Note both Hp,0(X;Z/2) and Hp,0(X/C2;Z/2)

are integer-graded cohomology theories. These two cohomology theories agree on

both orbits C2 and C2/C2 because the coefficients are given by a constant Mackey

functor, and thus the first isomorphism follows for any finite C2-CW complex. The

second isomorphism follows because X/C2 is a trivial C2-space.

Lemma 3.0.2. (ρ-localization). Let X be a finite C2-CW complex. Then
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ρ−1H∗,∗(X;Z/2) ∼= ρ−1H∗,∗(XC2 ;Z/2) ∼= ρ−1M2 ⊗Z/2 H
∗
sing(X

C2 ;Z/2).

The proof of this lemma is similar to the proof of the quotient lemma and can

be found in [13].

For the next lemma, consider the cofiber sequence

S0,0 ↪→ S1,1 → C2+ ∧ S1,0. (3.0.1)

Smashing with any pointed C2-space X, we obtain the cofiber sequence

S0,0 ∧X ↪→ S1,1 ∧X → C2+ ∧ S1,0 ∧X. (3.0.2)

The long exact sequence induced by this cofiber sequence relates multiplication by

the element ρ to the singular cohomology of the space. Specifically, the long exact

sequence is as stated in the following lemma. This statement can be found in [10]

and is originally due to [1].

Lemma 3.0.3. (The forgetful long exact sequence). Let X be a pointed C2-space.

For every integer q, we have a long exact sequence

H̃p−1,q(X) H̃p,q+1(X) H̃p
sing(X) H̃p,q(X)

ρ· ψ

where the coefficients are understood to be Z/2.

We will refer to the map ψ : H̃p,q(X) → H̃p
sing(X) as the “forgetful map”.

Note in M2, the element τ forgets to 1 ∈ H0
sing(pt), while ρ forgets to zero.

Indeed, by the exactness of the forgetful long exact sequence, for any X, a given

cohomology class forgets to zero if and only if it is the image of ρ.

Example 3.0.4. Let’s see how these tools can be used to compute the cohomology

of a C2-space. Note this computation is certainly not a new computation, but
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instead is done to review a standard fact, as well as to show the reader how we will

use the computational tools discussed in this section. Let Sna denote the equivariant

n-sphere whose C2-action is given by the antipodal map. We proceed by induction

to show

H∗,∗(Sna ;Z/2) ∼= τ−1M2/(ρ
n+1)

as an M2-module. The module τ−1M2/(ρ
n+1) can be represented pictorially as

shown in Figure 13.
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FIGURE 13. The M2-module τ−1M2/(ρ
n+1) when n = 5.

The base case in our inductive argument is given by n = 0, where S0
a is

understood to be the free orbit C2. This case is done by the comments made in

Section II. For the inductive hypothesis, let n ≥ 1 and suppose H∗,∗(Sn−1
a ) ∼=

τ−1M2/(ρ
n).

Our goal is to compute H∗,∗(Sna ) using the inductive hypothesis, so we need

a way to relate the cohomology of the (n − 1)-dimensional antipodal sphere to the

cohomology of the n-dimensional antipodal sphere. Consider the cofiber sequence

Sn−1
a+ ↪→ Sna+ → Sn,0 ∧ C2+

where Sn−1
a includes as the equator of Sna . (Note the disjoint basepoint on the

antipodal spheres is needed to run the Puppe sequence, as described in Section
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II.) The quotient space Sna /S
n−1
a is nonequivariantly homeomorphic to Sn ∨ Sn and

the inherited C2-action swaps the two copies; this is exactly the C2-space Sn,0∧C2+.

For every integer q, we have a long exact sequence given by

dp−1,q

→ H̃p,q(Sn,0 ∧ C2+)→ H̃p,q(Sna+)→ H̃p,q(Sn−1
a+ )

dp,q→ H̃p+1,q(Sn,0 ∧ C2+)→

Note H̃∗,∗(X+) = H∗,∗(X), so we can express this long exact sequence as

dp−1,q

→ H̃p,q(Sn,0 ∧ C2+)→ Hp,q(Sna )→ Hp,q(Sn−1
a )

dp,q→ H̃p+1,q(Sn,0 ∧ C2+)→ (3.0.3)

In order to find Hp,q(Sna ), we need to understand the differentials

dp,q : Hp,q(Sn−1
a )→ H̃p+1,q(C2+ ∧ Sn,0)

for all (p, q). It is helpful to consider all of these differentials at once. Let

d = ⊕
p,q
dp,q : H∗,∗(Sn−1

a )→ H∗+1,∗(Sn,0 ∧ C2+)

be the total differential. Note this differential is a module map, i.e. for every r ∈

H∗,∗(pt) and class α ∈ H∗,∗(Sn−1
a ), d(rα) = rd(α).

By the inductive hypothesis, we already understand the cohomology of

the domain. Namely H∗,∗(Sn−1
a ) ∼= τ−1M2/(ρ

n). Observe the codomain is the

cohomology of the space Sn,0∧C2+ = Σn,0C2+ which by the suspension isomorphism

is given by

H̃∗,∗(Σn,0C2+) ∼= H̃∗−n,∗(C2+) = Σn,0H∗,∗(C2).

Pictorially, the reduced cohomology of C2+ ∧ Sn,0 is just given by taking the

cohomology of C2 and shifting it to the right n units.

It is helpful to illustrate d via the following color-coded picture. The only
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FIGURE 14. The differential d : H∗,∗(Sn−1
a )→ H̃∗+1,∗(Sn,0 ∧ C2+).

possible nonzero differentials occur in topological dimension (n − 1). Since d is a

module map, it commutes with action of τ . The element τ acts on both modules as

an isomorphism, so it suffices to find dn−1,q for a single q. Let’s consider q = 0. By

the quotient lemma given in Lemma 3.0.1, we have the following isomorphisms

Hn,0(Sna ) ∼= Hn
sing(S

n
a /C2) ∼= Hn

sing(RP n) ∼= Z/2.

By the exactness of the sequence in 3.0.3, we have the short exact sequence

0→ coker(dn−1,0)→ Hn,0(Sna )→ ker(dn,0)→ 0.

Now Hn,0(Sn−1
a ) = 0 so ker(dn,0) = 0, and it must be that coker(dn−1,0) ∼= Z/2 and

dn−1,0 = 0. Thus the total differential d is zero.

We now need to solve the extension problem of M2-modules

0→ coker(d)→ H∗,∗(Sna )→ ker(d)→ 0.

The kernel and cokernel are illustrated below (they are just the domain and

codomain of d, respectively). Note the extension could be trivial, i.e. H∗,∗(Sna ) ∼=

coker(d)⊕ ker(d) as M2-modules, or there could be elements of ker(d) in topological

dimension (n − 1) that lift to elements of Hn−1,0(Sna ) with a nontrivial ρ-action, as

illustrated below.
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FIGURE 15. The extension problem.

We use a portion of the forgetful long exact sequence to see the extension is

indeed nontrivial. Consider

H̃n−1,q−1(Sna+) H̃n,q(Sna+) H̃n
sing(S

n
a+) H̃n,q−1(Sna+) H̃n+1,q(Sna+)

·ρ ·ρ

Observe H̃n+1,q(Sna+) = 0 while H̃n,q−1(Sna+) ∼= Z/2 ∼= H̃n
sing(S

n
a+). Exactness then

shows the multiplication by ρ in the left map must be an isomorphism for all q, and

we conclude the module structure is the one shown in Figure 13.

Remark 3.0.5. We will be making arguments such as the one in Example 3.0.4

throughout this thesis. We will be less verbose and will use abbreviated pictures

in future computations. For example, Figures 14 and 15 would be combined into

the single abbreviated figure shown below. If the reader gets confused about the

techniques in a future computation, we invite them to return to the above example

as a kind of computational tutorial.

During our computations, we will often encounter spaces of the form Y ×

C2 where Y is some finite CW-complex. The cohomology of such a space depends

entirely on the singular cohomology of Y , as shown in the lemma below.

Lemma 3.0.6. Let Y be a C2-space. The cohomology of the free C2-space C2×Y is

given by
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FIGURE 16. The abbreviated pictures for Example 3.0.4.

H∗,∗(Y × C2;Z/2) ∼= Z/2[τ, τ−1]⊗Z/2 H
∗
sing(Y ;Z/2)

as an M2-algebra. If Y is a based C2-space Y , we also have the isomorphism

H̃∗,∗(Y ∧ C2+;Z/2) ∼= Z/2[τ, τ−1]⊗Z/2 H̃
∗
sing(Y ;Z/2).

Proof. From the results in [4], a model representing Bredon cohomology in constant

Z/2-coefficients is given by K(Z/2; p, q) ' Z/2〈Sp,q〉 where Z/2〈Sp,q〉 has underlying

space given by the usual Dold-Thom space of configurations of points in Sp with

labels in Z/2, and has C2-action given by the action on Sp,q.

Any C2-equivariant map Y × C2 → Z/2〈Sp,q〉 is entirely determined by the

restriction to Y × {1} and thus

Hp,q(Y × C2;Z/2) ∼= [Y × C2,Z/2〈Sp,q〉]C2

∼= [Y,Z/2〈Sp〉]e
∼= Hp

sing(Y ;Z/2)

where [−,−]C2 denotes the collection of C2-equivariant maps up to C2-equivariant

homotopy, and [−,−]e denotes the collection of nonequivariant homotopy classes of

maps. This establishes the isomorphism stated in the lemma as bigraded abelian

groups.
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For the algebra structure, note the above shows the forgetful map ψ :

Hp,q(Y × C2)→ Hp
sing(Y × C2) is just the diagonal map, so in particular, nothing is

in the kernel of ψ and ρ must act trivially. On the other hand ψ(τ) = 1, so τ must

act as an isomorphism on H∗,∗(Y × C2). This shows

H∗,∗(Y × C2;Z/2) ∼= Z/2[τ, τ−1]⊗Z/2 H
∗
sing(Y ;Z/2)

as M2-modules, and the algebra statement follows because ψ is a multiplicative

map. The reduced statement is proven similarly.

If X is a trivial C2-space, then we can similarly state the Bredon cohomology

of X entirely in terms of the singular cohomology of X.

Lemma 3.0.7. Let X be a trivial finite C2-CW complex. Then as M2-algebras

H∗,∗(X;Z/2) ∼= M2 ⊗Z/2 H
∗
sing(X;Z/2).

Proof. We have a functor Ψ : Top → C2-Top that takes a space X and regards it

as a trivial C2-space. For each integer q we can define two cohomology theories on

Top by (M2⊗Z/2H
∗
sing(X;Z/2))q and H∗,q(Ψ(X);Z/2). As explained in the previous

proof,

Hp
sing(X;Z/2) = [X,Z/2〈Sp〉]e

while

Hp,0(Ψ(X);Z/2) = [Ψ(X),Z/2〈Sp,0〉]C2 .

Since both Ψ(X) and Z/2〈Sp,0〉 are trivial C2-spaces, the above is exactly equal to

[X,Z/2〈Sp〉]e. Thus we have a clear map

H∗sing(X;Z/2) = H∗,0(Ψ(X);Z/2) ↪→ H∗,∗(Ψ(X);Z/2)

which induces a map from the free module
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M2 ⊗Z/2 H
∗
sing(X;Z/2)→ H∗,∗(Ψ(X);Z/2).

Restricting to the q-th grading, we have a map between cohomology theories

(M2 ⊗Z/2 H
∗
sing(X;Z/2))q → H∗,q(Ψ(X);Z/2).

This map is an isomorphism when X = pt, and so these cohomology theories agree

for finite CW-complexes for all values of q. This establishes the stated isomorphism

as bigraded abelian groups, and the algebra structure follows from noting the map

M2 ⊗Z/2 H
∗
sing(X;Z/2)→ H∗,∗(Ψ(X);Z/2) is actually an algebra map.

We next state an important theorem about the cohomology of C2-manifolds.

Here by “C2-manifold” we mean a piecewise linear manifold with a locally linear

C2-action (we want to ensure the fixed set is a disjoint union of submanifolds). By

closed, we simply mean a closed manifold in the nonequivariant sense. The proof of

the following theorem is somewhat tedious, so it has been been moved to Appendix

A.

Theorem 3.0.8. Let X be an n-dimensional, closed C2-manifold with a nonfree

C2-action. Suppose n − k is the largest dimension of submanifold appearing as a

component of the fixed set. Then there is exactly one summand of H∗,∗(X;Z/2) of

the form Σi,jM2 where i ≥ n, and it occurs for (i, j) = (n, k).

A Structure Theorem

We conclude this section by recalling a fact about the coefficient ring M2 as

well as a structure theorem for the cohomology of finite C2-CW complexes. The

two theorems below can be found in [13].

Theorem 3.0.10 (C. May). As a module over itself, M2 is injective.
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The next theorem is a precise statement of the decomposition mentioned in

the introduction. Note it is necessary that X is a finite C2-CW complex in the

sense that it only contains finitely many cells. Any closed C2-manifold can be

given the structure of a C2-CW complex, so in particular, this theorem applies to

all closed C2-manifolds.

Theorem 3.0.11 (C. May). For any finite C2-CW complex X, we can decompose

the RO(C2)-graded cohomology of X with constant Z/2-coefficients as

H∗,∗(X;Z/2) = (⊕iΣpi,qiM2)⊕ (⊕jΣpj ,0Anj)

as a module over M2 = H∗,∗(pt;Z/2) where An denotes the cohomology of the n-

sphere with the free antipodal action.
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CHAPTER IV

BACKGROUND ON SURFACES WITH AN INVOLUTION

In [7], all C2-surfaces were classified up to equivariant isomorphism, and

furthermore, a language was developed for describing the C2-structure on a given

equivariant surface. These descriptions are essential for many of the computations

given in this paper. In this section, we review the needed terms and notations as

well as some of the classification theorems. Notice all proofs are omitted in this

section, and we direct the curious reader to [7].

4.1. Free Actions

In order to state the classification of free C2-surfaces, we need to review

one construction from equivariant surgery. This definition was first given in the

introduction, but we restate it here for reference.

Definition 4.1.1. Let X be a nontrivial C2-surface and Y be a nonequivariant

surface. We can form the equivariant connected sum of X and Y as follows.

Let Y ′ denote the space obtained by removing a small disk from Y . Let D be a

disk in X that is disjoint from its conjugate disk σD and let X ′ denote the space

obtained by removing both of these disks. Choose an isomorphism f : ∂Y ′ → ∂D.

Then the equivariant connected sum is given by

(Y ′ × {0}) t (Y ′ × {1}) tX ′]/ ∼

where (y, 0) ∼ f(y) and (y, 1) ∼ σ(f(y)) for y ∈ ∂Y ′. We denote this space by

X#2Y .
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Remark 4.1.2. In our classifications, there are three important examples of

equivariant connected sums that warrant their own notation. The first occurs when

Y is the projective plane. In this case, we refer to the surgery as “adding dual cross

caps” and write X + [DCC] for X#2RP 2. The phrase “dual cross caps” arrises

from the pictorial representation often used to denote such surgery; see Figure 17

below for an example. Note we can add more than one set of dual cross caps to

form X+[DCC]+[DCC] which we will denote X+2[DCC]. In general, X+n[DCC]

is the space obtained by adding n dual cross caps to the C2-surface X.

FIGURE 17. Dual cross caps added to a genus one torus with a reflection action.
The fixed set is shown in blue.

The other two examples occur when X is one of S2,2 or S2,1, the two nonfree,

nontrivial equivariant spheres. We refer to such spaces as doubling spaces, and

denote the space X#2Y by Doub(Y, 1 : S1,1) or Doub(Y, 1 : S1,0), respectively.

The phrase “doubling” is used to acknowledge that, nonequivariantly, X#2Y is

homeomorphic to Y#Y . Note these spaces can also be formed by removing a disk

from Y to form Y ′ and then attaching a copy of Y ′ to each end of a cylinder of the

form S1,1×D(R1,1) or S1,0×D(R1,1), respectively, where D(R1,1) is the unit interval

in the sign representation. This is why S1,1 and S1,0 appear in the notation.

Recall from Chapter 3, we write Sna for the n-dimensional antipodal sphere.

We are now ready to state the main classification theorem for free C2-surfaces.

All statements in the theorem should be followed with “up to equivariant

isomorphism”. Note by genus of a nonorientable space X we simply mean the
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β-genus of X which was defined in the introduction to be the dimension of

H1
sing(X;Z/2). We denote such a space by Ns where s is the genus.

Theorem 4.1.3. (Classification of free actions).

(i) There is exactly one free structure on the even genus torus T2k which is given

by S2
a#2Tk.

(ii) There are exactly two free structures on the odd genus torus T2k+1 which are

given by T anti1 #2Tk and T rot1 #2Tk.

(iii) There are no free structures on the odd genus non-orientable space N2k+1.

(iv) There is exactly one free structure on the genus two non-orientable space N2

which is given by S2
a + [DCC].

(v) There are exactly two free structures on the even genus non-orientable space

N2k when k ≥ 2, which are given by S2
a + k[DCC] and T anti1 + (k − 1)[DCC].

The above completely classifies free C2-surfaces. We now state various

classification theorems for the nonfree C2-surfaces.

4.2. Nonfree Actions

For the classification of nonfree C2-surfaces, we need to introduce three other

types of equivariant surgery. The first two involve removing conjugate disks in

order to attach an equivariant handle. There are two types of handles that can

be attached. The first handle is given by S1,1 × D(R1,1) where D(R1,1) is the unit

disk in R1,1; we will refer to such a handle as an “S1,1−antitube”. The second type

of handle is given by S1,0 × D(R1,1); we refer to this handle as an “S1,0−antitube”.

We give the precise definitions below.
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Definition 4.2.1. Let X be a nontrivial C2-surface. Form a new space denoted

X + [S1,0 − AT ] as follows. Let D be a disk contained in X that is disjoint from its

conjugate disk σD. Remove both disks from X and then attach an S1,0−antitube.

Whenever we construct such a space, we say we have done S1,0−surgery.

We can similarly define S1,1−surgery by instead attaching an S1,1−antitube.

The third type of surgery involves removing a disk isomorphic to the unit

disk in R2,2 and sewing in an equivariant Möbius band. This equivariant Möbius

band can be formed as follows. Begin with the nonequivariant Möbius bundle

over S1, and then define an action on the fibers by reflection. In other words, each

fiber should be isomorphic to R1,1 (in particular, the zero section is fixed). If we

now take the closed unit disk bundle, note the boundary is a copy of S1
a, as is the

boundary of the removed disk D(R2,2). An illustration of this Möbius bundle is

shown below. Conjugate points are indicated by matching symbols, while the fixed

set is shown in blue.

l l

*

*

ut

ut⊗

⊗

Definition 4.2.2. Let X be a nontrivial C2-surface that contains an isolated fixed

point p. Then there exists an open disk p ∈ D ⊂ X such that D ∼= D(R2,2).

Remove D and note ∂D ∼= S1
a. Now sew in a copy of the Möbius band described

above. We denote this new space by X + [FM ] and refer to this surgery as

FM−surgery. (Note “FM” is an abbreviation for “fixed point to Möbius band”.)
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The complete list of nonfree, nontrivial C2-surfaces is given in [7], but it turns

out we only need the following takeaway from this list in order to do computations

in Z/2-coefficients.

Theorem 4.2.3. Let X be a nonfree, nontrivial surface. If X is not isomorphic

to a doubling space or to an equivariant sphere, then X can be obtained by doing

S1,0−, S1,1−, or FM− surgery to an equivariant space of lower β-genus.
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CHAPTER V

COMPUTATION FOR FREE SURFACES

In this section, we compute the cohomology of all free C2-surfaces in Z/2-

coefficients. We first compute the cohomology of the two free tori T anti1 and T rot1 .

We then utilize the decompositions given in Theorem 4.1.3 together with these

initial computations to compute the cohomology of all free C2-surfaces.

Notation 5.0.1. In this section, all coefficients will be understood to be Z/2.

Proposition 5.0.2. We have the following isomorphisms of M2-modules

H∗,∗(T anti1 ) ∼= H∗,∗(S1
a)⊕ Σ1,0H∗,∗(S1

a)
∼= H∗,∗(T rot1 ).

Proof. Observe another way to define the antipodal torus is by the product T anti1 =

S1,1 × S1
a. This gives rise to the cofiber sequence for X = T anti1

S1
a+ ↪→ X+ → S1,1 ∧ S1

a+

which is illustrated below in Figure 18. This cofiber sequence gives rise to long

+ +

•

FIGURE 18. The cofiber sequence S1
a+ ↪→ T anti1+ → S1,1 ∧ S1

a+.

exact sequences on cohomology. Similar to Example 3.0.4, we can organize these

long exact sequences into the picture shown in Figure 19 below. By the quotient

lemma given in Lemma 3.0.1, H̃0,0(X+) ∼= H̃0
sing((X/C2)+) ∼= Z/2, and so d0,0 = 0.

From the module structure, we conclude dp,q = 0 for all p, q.

It remains to solve the extension problem
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FIGURE 19. The differential d : H̃∗,∗(S1
a)→ H̃∗+1,∗(S1,1 ∧ S1

a+).

0→ Σ1,1H∗,∗(S1
a)→ H∗,∗(X)→ H∗,∗(S1

a)→ 0,

which is shown on the right in Figure 19. The only possibility for a nontrivial

extension is for there to exist a class α ∈ H0,q(X) such that ρ2α ∈ H2,q+2(X) is

nonzero.

Let x ∈ S1,1 be one of the two fixed points. We have the following equivariant

maps

S1
a
∼= S1

a × {x} ↪→ S1
a × S1,1 = X

π1−→ S1
a

where the last map is just projection onto the first factor. Note this composition is

the identity, so in particular,

(π1)∗ : H∗,∗(S1
a)→ H∗,∗(X)

is injective. In fact, this is actually an isomorphism in bidegrees (0, q) because both

groups have been computed to be Z/2. Thus for every α ∈ H0,q(X), there exists a

class β ∈ H0,q(S1
a) such that α = (π1)∗(β) and

ρ2α = ρ2(π1)∗(β) = (π1)∗(ρ2β) = 0.

We conclude the extension in Figure 19 is trivial, and H∗,∗(T anti1 ) ∼= H∗,∗(S1
a) ⊕

Σ1,1H∗,∗(S1
a). Lastly, observe as M2-modules, Σ1,1H∗,∗(S1

a)
∼= Σ1,0H∗,∗(S1

a).
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For the other free torus, note T rot1 = S1,0 × S1
a, so we can make similar use of

the cofiber sequence

S1
a+ ↪→ T rot1 → S1,0 ∧ S1

a+

to see H∗,∗(T rot1 ) ∼= H∗,∗(S1
a)⊕ Σ1,0H∗,∗(S1

a). We leave the details to the reader.

We have now computed the cohomology of the two free tori and the free C2-

sphere (see Example 3.0.4). By Theorem 4.1.3, all other free C2-surfaces can be

obtained by forming equivariant connected sums with these three spaces. We have

the following lemmas on how such surgery affects the cohomology.

Lemma 5.0.3. Suppose X is a free C2-surface. If there is a surface Y such that

X ∼= S2
a#2Y , then

H∗,∗(X) ∼= H∗,∗(S2
a)⊕ (Σ1,0A0)

⊕β(Y )
.

Proof. Let Y ′ be the space obtained by removing a small disk from Y . Consider the

cofiber sequence

(Y ′ × C2)+ ↪→
(
S2
a#2Y

)
+
→ S̃2

a (5.0.1)

where S̃2
a is the “pinched” space appearing in the cofiber sequence

C2+ ↪→ S2
a+ → S̃2

a. (5.0.2)

An illustration of this cofiber sequence when Y = T1 is shown below in Figure 20.

Note the two red points on the right sphere are identified.

To make use of the cofiber sequence in 5.0.1, we first compute the cohomology

of S̃2
a. We can extend the cofiber sequence in 5.0.2 to

S2
a+ → S̃2

a → Σ1,0C2+
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••

FIGURE 20. An example of the cofiber sequence appearing in 5.0.1. The red points
in the right picture are identified.

and then analyze the connecting homomorphism d : Hp,q(S2
a) → H̃p+1,q(Σ1,0C2+).

This module map d is shown in Figure 21. By the quotient lemma,

H̃0,0(S̃2
a)
∼= H̃0

sing(S
2
a/C2) = H̃0

sing(RP 2) = 0.

Thus d0,0 must be an isomorphism, and by the module structure, d0,q must be an

isomorphism for all q. It follows that coker(d) = 0 and H̃∗,∗(S̃2
a) is the module given

on the right in Figure 21.

p

q

p

q

FIGURE 21. The differential d : H̃∗,∗(S2
a+)→ H̃∗+1,∗(Σ1,0C2+)

We now return to the cofiber sequence given in 5.0.1. The cohomology of

Y × C2 is computed by Lemma 3.0.6, namely

H∗,∗(Y × C2) ∼= Z/2[τ, τ−1]⊗Z/2 H
∗
sing(Y ) ∼= A0 ⊕ (Σ1,0A0)

⊕β(Y )
.

The cofiber sequence will thus give rise to the long exact sequences whose

differentials are shown in Figure 22.

Since X ∼= S2
a#2Y , X/C2

∼= RP 2#Y . We can again use Lemma 3.0.1 to see
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p

q β(Y )

p

q β(Y )

FIGURE 22. The differential d : H̃∗,∗((Y ′ × C2)+)→ H̃∗+1,∗(S̃2
a)

H0,0(X) ∼= H0
sing(X/C2) ∼= Z/2, and

H1,0(X) ∼= H1
sing(X/C2) ∼= (Z/2)β(X)/2+1 = (Z/2)β(Y )+1.

Thus d = 0 and we must solve the extension problem shown on the right in Figure

22. To do so, consider the following map of cofiber sequences where the left vertical

map is collapsing the two nonequivariant components of Y ′ × C2 to two points.

(Y ′ × C2)+ X+ S̃2
a

C2+ S2
a+ S̃2

a

q

As we’ve shown, both cofiber sequences induce long exact sequences on cohomology

where the differential is zero. Thus we have the following commutative diagram

where the rows are exact.

0 H̃∗,∗(S̃2
a) H∗,∗(X) H∗,∗(Y ′ × C2) 0

0 H̃∗,∗(S̃2
a) H∗,∗(S2

a) H∗,∗(C2) 0

id q∗

From exactness, the middle map must be injective. In particular, for all nonzero

α ∈ H0,q(S2
a), ρ

2α 6= 0 and so ρ2q∗(α) = q∗(ρ2α) 6= 0. We conclude the extension

in Figure 22 must be the nontrivial extension given by H∗,∗(S2
a) ⊕ (Σ1,0A0)

⊕β(Y )
,
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as desired. (While this can be seen by making an appropriate choice of basis, it

may be faster to apply the structure theorem given in 3.0.11. The above shows ρ2

induces an isomorphism on bidegrees (0, q), and the only possibility based on this

fact and the groups we’ve computed is for the decomposition to be the described

nontrivial extension.)

Lemma 5.0.4. Suppose X is a free C2-surface. If there is a surface Y such that

X ∼= T#2Y where T is a free C2-torus, then

H∗,∗(X) ∼= H∗,∗(T )⊕ (Σ1,0A0)
⊕β(Y )

.

Proof. We use the cofiber sequence

(Y ′ × C2)+ ↪→ (T#2Y )+ → T̃

where T̃ is the space appearing in the cofiber sequence

C2+ ↪→ T+ → T̃ .

The proof will follow similarly to the proof of Lemma 5.0.3. We leave the details to

the reader.

Let An denote the cohomology of antipodal n-sphere, i.e. An = τ−1M2/(ρ
n+1).

We can summarize the results of these lemmas in the following theorem.

Theorem 5.0.5. Let X be a free C2-surface. Then there are two cases for the

RO(C2)-graded Bredon cohomology of X in Z/2-coefficients.

(i) Suppose X is equivariantly isomorphic to S2
a#2Y . Then H∗,∗(X) ∼=

(Σ1,0A0)
⊕β(X)/2 ⊕ A2.

(ii) Suppose X is equivariantly isomorphic to T#2Y where T is a free C2-torus.

Then H∗,∗(X) ∼= (Σ1,0A0)
⊕β(X)−2

2 ⊕ A1 ⊕ Σ1,0A1.
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Proof. This follows almost immediately from Lemma 5.0.3 and Lemma 5.0.4. It

remains to check we have the appropriate number of summands of Σ1,0A0 in each

case. Since X is a free C2-surface, χ(X) = 2χ(X/C2) and so β(X) = 2β(X/C2)− 2.

Observe in (i), X/C2
∼= Y#RP 2 so

β(X) = 2β(X/C2)− 2 = 2(β(Y ) + 1)− 2 = 2β(Y ).

In (ii), X/C2
∼= Y#T1 or X/C2

∼= Y#(RP 2#RP 2) depending on the action on T .

In either case,

β(X) = 2β(X/C2)− 2 = 2(β(Y ) + 2)− 2 = 2β(Y ) + 2.

In both (i) and (ii), solving for β(Y ) yields the desired number of summands.

We have now completed the computation for free C2-surfaces in the given

coefficient system. The next section handles nonfree C2-surfaces.

50



CHAPTER VI

COMPUTATION FOR NONFREE SURFACES

In this section, we compute the cohomology of all nonfree C2-surfaces in

coefficients given by the constant Mackey functor Z/2. We first prove some lemmas

about how the various equivariant surgeries discussed in Section III affect the

cohomology of a C2-surface. Utilizing Theorem 4.2.3 which states that all C2-

surfaces can be realized by doing such surgery to a simpler space, we then prove

Theorem 1.4.1.

Notation 6.0.1. In this section, all coefficients are understood to be Z/2, unless

stated otherwise. Given a C2-surface X, we will often use F and C to denote

the number of isolated fixed points and the number of fixed circles, respectively.

Whenever there is some ambiguity, such as when we are working with multiple C2-

surfaces at once, we will write F (X) and C(X) for the corresponding values.

Lemma 6.0.2. Let X be a C2-surface. Suppose X is isomorphic to Y + [S1,1 − AT]

for some free C2-surface Y . Then

H̃∗,∗(X;Z/2) ∼= (Σ1,0A0)
β(Y )+2

2 ⊕ Σ2,2M2.

Proof. Suppose Y is a free C2-surface. In Section V we computed the cohomology

of all such surfaces. Since τ acts invertibly on the modules An, we can regard these

modules as τ−1M2
∼= F2[τ, τ−1, ρ]-modules. If we ignore the action of ρ (in other

words, regard as just F2[τ, τ−1]-modules), observe the cohomology of all free C2-

surfaces can be described as

H∗,∗(Y ) ∼= A0 ⊕ (Σ1,0A0)
⊕β(Y )+2

2 ⊕ Σ2,0A0
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where as before A0
∼= τ−1M2/(ρ). We now consider the following cofiber sequence

for X

S1,1 ↪→ X → Ỹ

where Ỹ is the pinched space appearing in the cofiber sequence

C2+ ↪→ Y+ → Ỹ .

We can compute the cohomology of Ỹ by extending to the cofiber sequence

Y+ → Ỹ → Σ1,0C2+. (6.0.1)

For this computation, it suffices to understand H̃∗,∗(Ỹ ) as a F2[τ, τ−1]-module. The

differential is shown in Figure 23.

p

q β(Y )+2
2

p

q β(Y )+2
2

FIGURE 23. The differential H̃∗,∗(Y+)→ H̃∗,∗(Σ1,0C2+).

Now H̃0,0(Ỹ ) ∼= H̃0
sing(Ỹ /C2) by Lemma 3.0.1, and H̃0

sing(Ỹ /C2) = 0.

Hence d0,0 must be an isomorphism, and by the module structure, d0,q must be

an isomorphism for all q. We conclude

H̃∗,∗(Ỹ ) ∼= (Σ1,0A0)
⊕β(Y )+2

2 ⊕ Σ2,0A0

as F2[τ, τ−1]-modules.
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We now return to the cofiber sequence S1,1 ↪→ X → Ỹ . The differential

is shown in Figure 24, where we have omitted possible ρ actions in the picture of

H̃∗,∗(Ỹ ). The differential must be nonzero for if it were zero, the answer for the

p

q β(Y )+2
2

p

q β(Y )+2
2

FIGURE 24. The differential H̃∗,∗(S1,1)→ H̃∗+1,∗(Ỹ ).

cohomology of X would not have a free summand generated in dimension (2, 2) as

is required by Theorem 3.0.8. Using the module structure, we thus know dp,q for all

(p, q), and it remains to solve the extension problem given to the right in Figure 24.

We can conclude by Theorem 3.0.8 (or by the forgetful long exact sequence) that

the extension must be nontrivial, and we arrive at the desired answer.

Lemma 6.0.3. Let X be a C2-surface that is isomorphic to Y + [S1,0 − AT] for

some free C2-surface Y . Then

H̃∗,∗(X;Z/2) ∼= (Σ1,0A0)
β(Y )+2

2 ⊕ Σ2,1M2.

Proof. The proof will follow as in the proof of Lemma 6.0.2 except now using the

cofiber sequence S1,0 ↪→ X → Ỹ . We leave the details to the reader.

The following two lemmas state the cohomology of doubling spaces. The

definition of these spaces can be found in Remark 4.1.2
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Lemma 6.0.4. Suppose X is homeomorphic to Doub(Y, 1 : S1,1) for some

nonequivariant surface Y . Then

H̃∗,∗(X;Z/2) ∼= (Σ1,0A0)
β(Y ) ⊕ Σ2,2M2.

Proof. Consider the cofiber sequence

S1,1 ↪→ X → C2+ ∧ Y.

By Lemma 3.0.6 the cohomology of C2+ ∧ Y is given by

H̃p,q(C2+ ∧ Y ) ∼= Z/2[τ, τ−1]⊗Z/2 H̃
∗
sing(Y ) ∼= (Σ1,0A0)

⊕β(Y ) ⊕ Σ2,0A0.

The picture of the differential in the cofiber sequence is shown on the left in Figure

25. The differential cannot be zero for if it were, the answer for the cohomology of

X would violate Theorem 3.0.8. Thus d1,1 must be an isomorphism, and we can use

the module structure to determine dp,q for all p, q.

p

q β(Y )

p

q β(Y )

FIGURE 25. The differential H̃∗,∗(S1,1)→ H̃∗+1,∗(C2+ ∧ Y ).

It remains to solve the extension problem

0→ coker(d)→ H̃∗,∗(X)→ ker(d)→ 0

which is shown on the right in Figure 25; note the kernel is shown in red, and the

cokernel is shown in blue. Using either Theorem 3.0.8 or the forgetful long exact

sequence, we can see the extension must be nontrivial, and in particular,
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H̃∗,∗(X;Z/2) ∼= (Σ1,0A0)
β(Y ) ⊕ Σ2,2M2.

Lemma 6.0.5. Suppose X is isomorphic to Doub(Y, 1: S1,0) for some

nonequivariant surface Y . Then

H̃∗,∗(X;Z/2) ∼= (Σ1,0A0)
β(Y ) ⊕ Σ2,1M2.

Proof. The proof follows similarly to the proof of Lemma 6.0.4 using the cofiber

sequence

S1,0 ↪→ X → C2+ ∧ Y.

We leave the details to the reader.

We are now ready to prove the main theorem about the cohomology of

nonfree, nontrivial C2-surfaces. The proof will make use of the classification given

in Theorem 4.2.3. We will induct on the β-genus of the surface and explore the

various cases for what type of surgery is needed to construct a given C2-surface

from a C2-surface of lower β-genus.

Theorem 6.0.6. Let X be a nontrivial, nonfree C2-surface. Let F denote the

number of isolated fixed points, C denote the number of fixed circles, and β denote

the β-dimension. There are two cases for the reduced RO(C2)-graded Bredon

cohomology of X in Z/2-coefficients:

(i) Suppose C = 0. Then

H̃∗,∗(X;Z/2) ∼= (Σ1,1M2)
⊕F−2 ⊕ (Σ1,0A0)

⊕β+2−F
2 ⊕ Σ2,2M2

55



(ii) Suppose C 6= 0. Then

H̃∗,∗(X;Z/2) ∼=
(
Σ1,0M2

)⊕C−1 ⊕
(
Σ1,1M2

)⊕F+C−1

⊕
(
Σ1,0A0

)⊕β+2−(F+2C)
2 ⊕ Σ2,1M2

Proof. We begin with case (i) and proceed by induction on the β-genus of X. If

β(X) = 0, then X must be an equivariant sphere. The only equivariant sphere with

isolated fixed points is S2,2. By the suspension theorem, the reduced cohomology of

S2,2 is Σ2,2M2, which matches the decomposition given in (i).

Now suppose β(X) > 0. By Theorem 4.2.3, we know X is either a doubling

space, or X can be obtained by doing S1,0−, S1,1−, or FM−surgery to a C2-surface

of lower β-genus. If X is a doubling space, then we are done by Lemma 6.0.4. If X

is obtained by doing equivariant surgery, then X must be isomorphic to Y + [S1,1 −

AT] for some Y by consideration of the fixed set. If Y is free, then by Lemma 6.0.2

the cohomology of X is given by

H̃∗,∗(X;Z/2) ∼= (Σ1,0A0)
β(Y )+2

2 ⊕ Σ2,2M2.

We just need to check there are the appropriate number of summands of each

module. Observe F (X) = 2 and β(X) = β(Y ) + 2, so indeed

F (X)− 2 = 0, and β(X)+2−F (X)
2

= β(Y )+2
2

as desired.

If Y is nonfree, then by consideration of the fixed set of X, F (Y ) 6= 0 while

C(Y ) = 0. Thus by induction, the cohomology of Y is given by

H̃∗,∗(Y ) ∼=
(
Σ1,1M2

)⊕F (Y )−2 ⊕
(
Σ1,0A0

)⊕β(Y )+2−F (Y )
2 ⊕ Σ2,2M2. (6.0.2)
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Consider the cofiber sequence

S1,1 ↪→ X → Ỹ , (6.0.3)

where as before Ỹ is the space appearing in the cofiber sequence

C2+ ↪→ Y+ → Ỹ .

Since Y has at least one fixed point, we claim Ỹ is homotopy equivalent to Y ∨

S1,1. To see why, let’s be more careful with how we construct Ỹ . Let y ∈ Y C2 be

a chosen fixed point. Since Y has only isolated fixed points, there is a disk D in Y

such that y ∈ D and D ∼= D(R2,2). Let x ∈ D be an interior point that is not

fixed, and include C2 into Y as {x, σx}. Let γ be a path from x to y contained in

the interior of D such that when we quotient to Ỹ

im(γ) ∪ im(σγ) ∼= S1,1.

See Figure 26 for an illustration of the image of γ in Ỹ .

There is a homotopy from D̃ = cof(C2 ↪→ D) to D ∨ S1,1 that keeps the

boundary of D fixed, and thus can be extended to all of Ỹ to see Ỹ ' Y ∨ S1,1. See

the illustration below of the homotopy equivalence for D̃. Note the fixed set is in

blue and the copy of S1,1 is shown in red.

b

≃

b

b

b

x ∼ σx

y

FIGURE 26. D̃ ' D ∨ S1,1

Using the homotopy discussed above, we see that

H̃∗,∗(Ỹ ) ∼= H̃∗,∗(Y )⊕ Σ1,1M2.
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The differential associated to the cofiber sequence in 6.0.3 is shown below in Figure

27. The number of summands of each of the blue submodules is omitted (note, in

particular, the number of summands of Σ1,0A0 could be 0).

p

q

FIGURE 27. The differential H̃∗,∗(S1,1)→ H̃∗,∗(Ỹ ).

The differential must be zero because the generator of Σ1,1M2 maps to the

trivial group. Hence we must solve the extension problem

0→ H̃∗,∗(Ỹ )→ H̃∗,∗(X)→ H̃∗,∗(S1,1)→ 0.

The above splits since H̃∗,∗(S1,1) is a free M2-module, and so

H̃∗,∗(X) ∼= H̃∗,∗(Ỹ )⊕ H̃∗,∗(S1,1)

∼= H̃∗,∗(Y )⊕
(
Σ1,1M2

)⊕2
.

Putting this together with the isomorphism in 6.0.2, the cohomology of X is given

by

H̃∗,∗(X) ∼=
(
Σ1,1M2

)⊕F (Y )−2+2 ⊕
(
Σ1,0A0

)⊕β(Y )+2−F (Y )
2 ⊕ Σ2,2M2. (6.0.4)

It remains to check there are the appropriate number of summands of each module.

Adding an S1,1−antitube increases both the number of isolated fixed points and the
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β-genus by 2, which can be written as

F (X) = F (Y ) + 2, and β(X) = β(Y ) + 2.

The number of (Σ1,1M2)-summands and the number of (Σ1,0A0)-summands in 6.0.4

can thus be written as

F (Y )− 2 + 2 = F (X)− 2, and

β(Y )+2−F (Y )
2

= β(X)−2+2−(F (X)−2)
2

= β(X)+2−F (X)
2

,

respectively. We have completed the proof for case (i).

We now consider the case when C(X) 6= 0. We again proceed by induction

on the β-genus of X. If β(X) = 0, then X must be an equivariant sphere, and the

only equivariant sphere with a fixed circle is S2,1. By the suspension theorem, the

reduced cohomology of S2,1 is Σ2,1M2, which matches the decomposition given in

(ii).

Now suppose β(X) > 0. If X is a doubling space, we are done by Lemma

6.0.5. We can thus assume X is obtained by doing equivariant surgery to a C2-

surface Y of lower β-genus. Since we know XC2 contains at least one fixed circle,

we can assume X is obtained by doing S1,0− or FM− surgery to an equivariant

surface.

Let’s first assume X ∼= Y + [S1,0 − AT ]. If Y is a free C2-surface, then we are

done after applying Lemma 6.0.3 and noting C(X) = 1 and β(X) = β(Y ) + 2. Thus

suppose Y is a nonfree C2-surface and consider the cofiber sequence

S1,0 ↪→ X → Ỹ .
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Since Y C2 is nonempty, we can make a similar argument as before to see Ỹ ' Y ∨

S1,1 and so

H̃∗,∗(Ỹ ) ∼= H̃∗,∗(Y )⊕ Σ1,1M2.

If Y C2 contains at least one fixed circle, then we know the cohomology of Y by

induction. If Y C2 contains only isolated fixed points, then we know the cohomology

of Y by case (i). Thus there are two possibilities for the differential appearing in

the long exact sequence associated to the cofiber sequence above; both are shown

below in Figure 28. The case illustrated on the left is when Y C2 contains at least

p

q

p

q

FIGURE 28. The two cases for the differential H̃∗,∗(S1,0)→ H̃∗,∗(Ỹ ).

one fixed circle. In this case, we immediately see the differential must be 0 and

conclude the extension is trivial because the kernel is a free M2-module. Thus

H̃∗,∗(X) ∼= H̃∗,∗(Y )⊕ Σ1,1M2 ⊕ Σ1,0M2,
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which by induction gives

H̃∗,∗(X) ∼=
( (

Σ1,0M2

)⊕C(Y )−1 ⊕
(
Σ1,1M2

)⊕F (Y )+C(Y )−1

⊕
(
Σ1,0A0

)⊕β(Y )+2−(F (Y )+2C(Y ))
2 ⊕ Σ2,1M2

)
⊕ Σ1,1M2 ⊕ Σ1,0M2

∼=
(
Σ1,0M2

)⊕C(Y ) ⊕
(
Σ1,1M2

)⊕F (Y )+C(Y )

⊕
(
Σ1,0A0

)⊕β(Y )+2−(F (Y )+2C(Y ))
2 ⊕ Σ2,1M2.

Recall X ∼= Y + [S1,0 − AT ], and so

F (Y ) = F (X), C(Y ) = C(X)− 1, and β(Y ) = β(X)− 2.

By making the above substitutions, we arrive at the desired answer for case (ii).

The case on the right in Figure 28 is slightly more complicated. The

differential cannot be zero in this case for if it were, the answer for the cohomology

of X would violate Theorem 3.0.8. Noting d1,0 must be nonzero and using the

module structure to determine dp,q for all (p, q), we solve the extension problem

0→ coker(d)→ H̃∗,∗(X)→ ker(d)→ 0

which is illustrated below in Figure 29. The kernel of d is shown in red while the

cokernel is shown in blue.

From Theorem 3.0.8, we have that Σ2,1M2 must be a summand of H̃∗,∗(X),

and so the extension is nontrivial. In particular, the extension must be given by

H̃∗,∗(X) ∼=
(
Σ1,1M2

)⊕F (Y )−2 ⊕
(
Σ1,0A0

)⊕β(Y )+2−F (Y )
2 ⊕ Σ1,1M2 ⊕ Σ2,1M2
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p

q

FIGURE 29. The extension problem.

where the last two summands arise from the nontrivial extension. It remains to

check there are the appropriate number of summands of each submodule. Recall

X ∼= Y + [S1,0 − AT ] where Y C2 consisted only of isolated fixed points. Thus

F (Y ) = F (X), C(X) = 1, and β(Y ) = β(X)− 2.

Making the substitution for F (Y ) and β(Y ) and noting C(X) − 1 = 0, we arrive at

the desired decomposition given in (ii).

The only remaining case is when X ∼= Y + [FM ] for some C2-surface Y

of lower β-genus. Let D be an equivariant closed neighborhood containing the

attached Möbius band so that D ' M ' S1,0. Consider the following cofiber

sequence

D ↪→ Y + [FM ]→ Y.

Notice Y C2 must be nonempty in order to do FM−surgery, so we know the

cohomology of Y either from induction or from part (i). There are two cases for the

cohomology of Y depending on whether or not Y C2 contains a fixed circle. Similar

to when X ∼= Y + [S1,0 − AT ], this yields two cases for the differentials appearing
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in the long exact sequences associated to the above cofiber sequence. Though, note

the cohomology of Y will now be appearing rather than the cohomology of Ỹ .

The two cases for the differential are shown in Figure 30 below. We only

include the relevant portion of the cohomology of Y in the picture, noting the other

summands cannot be in the image of the differential for degree reasons as in Figure

28. The picture on the left shows the case when the fixed set of Y contains at least

p

q

p

q

FIGURE 30. The two cases for the differential d : H̃∗,∗(S1,0)→ H̃∗,∗(Y ).

one fixed circle. In this case, we quickly see the differential must be zero and the

extension must be trivial. Thus

H̃∗,∗(X) ∼= H̃∗,∗(Y )⊕ Σ1,0M2.

By induction, we have

H̃∗,∗(X) ∼=
( (

Σ1,0M2

)⊕C(Y )−1 ⊕
(
Σ1,1M2

)⊕F (Y )+C(Y )−1

⊕
(
Σ1,0A0

)⊕β(Y )+2−(F (Y )+2C(Y ))
2 ⊕ Σ2,1M2

)
⊕ Σ1,0M2

∼=
(
Σ1,0M2

)⊕C(Y ) ⊕
(
Σ1,1M2

)⊕F (Y )+C(Y )−1

⊕
(
Σ1,0A0

)⊕β(Y )+2−(F (Y )+2C(Y ))
2 ⊕ Σ2,1M2.

Recall X ∼= Y + [FM ], and so
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F (Y ) = F (X) + 1, C(Y ) = C(X)− 1, and β(Y ) = β(X)− 1.

These substitutions will give the decomposition stated in (ii).

The final case is X ∼= Y + [FM ] where Y C2 consists only of isolated fixed

points. We return to the differential shown on the right in Figure 30. Observe on

the quotient level, doing FM−surgery removes a disk. Thus X/C2 is Y with a disk

removed, so H2
sing(X/C2) = 0. By Lemma 3.0.1, H2,0(X) ∼= H2

sing(X/C2), and so we

conclude d1,0 must be an isomorphism. We now must solve the extension problem

shown below. The extension problem is solved after applying Theorem 3.0.8, and

p

q

FIGURE 31. The extension problem.

we conclude

H̃∗,∗(X) ∼=
(
Σ1,1M2

)⊕F (Y )−2 ⊕
(
Σ1,0A0

)⊕β(Y )+2−F (Y )
2 ⊕ Σ1,1M2 ⊕ Σ2,1M2

∼=
(
Σ1,1M2

)⊕F (Y )−1 ⊕
(
Σ1,0A0

)⊕β(Y )+2−F (Y )
2 ⊕ Σ2,1M2.

Observe F (Y ) = F (X) + 1, C(X) = 1, and β(Y ) = β(X) − 1. Making these

substitutions will finish the proof.
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CHAPTER VII

EQUIVARIANT FUNDAMENTAL CLASSES

We now employ Theorems B.2.1 and B.3.1 to define fundamental classes for

C2-submanifolds. We prove these classes forget to the usual singular fundamental

classes, and the product of these fundamental classes is given in terms of the

intersection of the submanifolds in the transverse case. We also show a handful

of examples involving submanifolds of C2-surfaces.

7.1. Nonequivariant Fundamental Classes

Recall for singular cohomology, we can define fundamental classes using the

Thom isomorphism theorem. Let X be a closed manifold and Y ⊂ X be a closed

submanifold. If we are working with Z/2-coefficients, all vector bundles over Y are

orientable. In particular, if π : N → Y is the normal bundle of Y in X, then the

Thom isomorphism theorem guarantees a unique class u ∈ Hn−k(N,N − 0) known

as the Thom class such that

π∗(−) ^ u : Hj(Y )→ Hn−k+j(N,N − 0)

is an isomorphism. There exists a tubular neighborhood U of Y in X, and by

excision we have the following isomorphism

Hn−k(N,N − 0) ∼= Hn−k(U,U − Y ) ∼= Hn−k(X,X − Y ).

Thus there is a unique nonzero class in Hn−k(X,X − Y ) corresponding to the

Thom class. We can now define [Y ] ∈ Hn−k(X) to be the image of this unique

class under the induced map from the inclusion of pairs (X, ∅) ↪→ (X,X − Y ).
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We will often denote these singular classes by [Y ]sing to distinguish them from the

Bredon cohomology fundamental classes defined below.

7.2. Fundamental Classes for Nonfree Submanifolds

We prove facts about the cohomology of Thom spaces in Theorem B.2.1 and

B.3.1, and these theorems are enough to transfer the definitions given above from

the singular world into the equivariant world.

Let X be a closed C2-manifold and Y be a closed C2-submanifold. For now,

suppose both Y and X are nonfree, and suppose topologically Y is k-dimensional

and X is n-dimensional. Let N → Y be the normal bundle of Y in X, and let q be

the maximum weight of N over Y C2 as in Theorem B.2.1. By this theorem, we are

guaranteed a unique class uN ∈ Hn−k,q(N,N − 0). Let U be an equivariant tubular

neighborhood of Y . Using this neighborhood and excision

Hn−k,q(N,N − 0) ∼= Hn−k,q(U,U − Y ) ∼= Hn−k,q(X,X − Y ).

We are now ready for the following definition.

Definition 7.2.1. Let Y , X, n, k, and q be defined as above. The unique nonzero

class in Hn−k,q(X,X − Y ) corresponding to the Thom class uN in the above

isomorphism is denoted by [Y ]rel and referred to as the relative fundamental

class of Y in X. Furthermore, the image of this class in Hn−k,q(X) under the

induced map by the inclusion of the pair (X, ∅) ↪→ (X,X − Y ) will be denoted [Y ]

and referred to as the fundamental class of Y in X.

A simple corollary of property (i) of Theorem B.2.1 relates these equivariant

fundamental classes to the nonequivariant fundamental classes.
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Corollary 7.2.2. Suppose Y ⊂ X as above. Then ψ([Y ]) = [Y ]sing where ψ is the

forgetful map to singular cohomology.

This corollary allows us to prove the following statement about the product

of fundamental classes of submanifolds whose intersection is nonequivariantly

transverse. For notational simplicity, we say a submanifold X is codimension

(k, q) if it has topological codimension k and if the maximum weight of the normal

bundle over the fixed set is q, as in Theorem B.2.1.

Theorem 7.2.3. Let X be a nonfree, n-dimensional C2-manifold, and suppose Y

and Z are two closed, nonfree, equivariant submanifolds of codimensions (k, q) and

(`, r), respectively, that intersect transversally. Suppose further Y ∩ Z is a nonfree

submanifold. Let w be the maximum weight over the fixed set of the normal bundle

of Y ∩ Z in X. Then

[Y ] ^ [Z] = τ (q+r)−w[Y ∩ Z].

Proof. We first prove w ≤ q + r. Let NY ∩Z , NY , and NZ denote the normal

bundles of Y ∩ Z, Y , and Z in X, respectively. Let W1, . . . ,Wm be the connected

components of the fixed set (Y ∩ Z)C2 . For x ∈ Wj the fiber is given by

(NY ∩Z)x ∼= Rk+`,wj

for some integer wj. By Definition 7.2.1, the fundamental class [Y ∩ Z] has bidegree

(k + `, w) where w = max{w1, . . . , wm}.

Fix j and x ∈ Wj. Note (Y ∩ Z)C2 = Y C2 ∩ ZC2 so Wr ⊂ Ys ∩ Zt where Ys and

Zt are connected components of Y C2 and ZC2 . Suppose

(NY )x ∼= Rk,qs and (NZ)x ∼= R`,rt .

Since Y and Z intersect transversally,
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(NY ∩Z)x ∼= (NY )x ⊕ (NZ)x ∼= Rk,qs ⊕ R`,rt ∼= Rk+`,qs+rt .

Thus wj = qs + rt and

w = max
1≤j≤m

{wj} ≤ max
s,t
{qs + rt} = q + r,

as desired.

Now consider the relative fundamental classes

[Y ]rel ∈ Hk,q(X,X − Y ), [Z]rel ∈ H`,r(X,X − Z),

[Y ∩ Z]rel ∈ Hk+`,w(X,X − (Y ∩ Z)).

We have the following commutative diagram involving the forgetful map that allows

us to relate these equivariant relative classes to singular relative classes.

Hk,q(X,X − Y )⊗H`,r(X,X − Z) Hk+`,q+r(X,X − (Y ∩ Z))

Hk
sing(X,X − Y )⊗H`

sing(X,X − Z) Hk+`
sing(X,X − (Y ∩ Z))

^

ψ⊗ψ ∼= ψ ∼=

^

We have shown q + r ≥ w, so the left and right vertical maps are isomorphisms

by Corollary B.2.2. Let’s consider the of image of the various relative classes under

these maps. We have

[Y ]rel ⊗ [Z]rel τ (q+r)−w [Y ∩ Z]rel

[Y ]rel,sing ⊗ [Z]rel,sing [Y ∩ Z]rel,sing

Note the vertical images in the above follow from Theorem B.2.1, while the bottom

is a classical fact about singular cohomology. Now the dashed line follows from the

commutativity of the above the diagram and the fact that the right vertical map is

an isomorphism.

We get the statement for fundamental classes after considering the below

diagram and using the above fact that [Y ]rel ^ [Z]rel = τ q+r−w[Y ∩ Z]rel.
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Hn−k,qk(X)⊗Hn−`,q`(X) H2n−k−`,qk+q`(X)

Hn−k,qk(X,X − Y )⊗Hn−`,q`(X,X − Z) H2n−k−`,qk+q`(X,X − (Y ∩ Z))

^

^

Before defining fundamental classes for free submanifolds, we give a few

examples.

Example 7.2.4 (Fundamental class of a fixed point). Suppose X is a nonfree,

closed, connected C2-manifold and x ∈ XC2 is a fixed point. Let D be a tubular

neighborhood of this fixed point, so D ∼= Rn,k for some k. Then there is a class

[x] ∈ Hn,k(X), and since this class forgets to the singular class [x] ∈ Hn
sing(X), it is

necessarily nonzero.

The classes for fixed points provide some insight into Theorem 3.0.8. Choose

a point x ∈ XC2 that is in a component of XC2 of the smallest topological

codimension k. Let D ∼= Rn,k be a neighborhood of this point. It is shown in

Corollary A.0.2 that the map q : X → X/(X \ D) ∼= Sn,k induces a split injection

on Bredon cohomology. By choosing a smaller neighborhood x ∈ D′ ⊂ D such that

q(D′) ∼= D′, one can check q∗([q(x)]) = [x]. Now the class [q(x)] ∈ H∗,∗(Sn,k) ∼=

M2 ⊕ Σn,kM2 forgets to something nonzero, so it must generate the free summand

in bidegree (n, k). Thus the class [x] generates a free summand in bidegree (n, k) in

H∗,∗(X).

Example 7.2.5. Consider the one-dimensional C2-manifold S1,1 whose cohomology

is shown in the figure below.

There are two fixed points, so there are two fundamental classes [a], [b] ∈

H1,1(S1,1). By our above discussion, [a] and [b] are both nonzero. We thus have
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•
a

•
b

S1,1

p

q

H∗,∗(S1,1)

FIGURE 32. S1,1 and its cohomology

three nonzero elements appearing in H1,1(S1,1), namely [a], [b], and ρ · 1. We would

like to determine the dependence relation between these classes.

Since ψ([a]) 6= 0 and ψ([b]) 6= 0, [a] 6= ρ and [b] 6= ρ. To show [a] 6= [b], let

a ∈ U ⊂ S1,1 where U ∼= D(R1,1) and let ιU : U ↪→ S1,1 be the inclusion. Consider

the following commutative diagram where the rows are exact:

H1,1(S1,1, S1,1 − {a}) H1,1(S1,1) H1,1(S1,1 − {a})

H1,1(U,U − {a}) H1,1(U) H1,1(U − {a})
ι∗U ι∗U ι∗U

By excision, the left vertical map is an isomorphism. Now U − {a} ' C2,

so H1,1(U − {a}) = 0, and the bottom left map is a surjection. Hence, the

composition of the top left map and the middle vertical map must be nonzero, and

so ι∗U([a]) 6= 0.

On the other hand, we have another commutative diagram where again the

rows are each part of a long exact sequence for a pair:

H1,1(S1,1, S1,1 − {b}) H1,1(S1,1)

H1,1(U,U) H1,1(U)

ι∗U ι∗U
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The above shows ι∗U([b]) = 0. Thus [a] 6= [b], and it must be that the three nonzero

elements are pairwise distinct. Lastly, since we are working over Z/2, the only

possibility for a dependance relation is

[a] + [b] + ρ · 1 = 0.

By Theorem 7.2.3, [a] · [b] = [{a} ∩ {b}] = 0. Using the dependance relation

above we obtain [a]2 = [a]([b] + ρ) = ρ[a], and we have recovered the following

isomorphism of M2-algebras:

H∗,∗(S1,1) ∼= M2[x]/(x2 = ρx), |x| = (1, 1).

Example 7.2.6. Consider the C2-surface X ∼= S2,1 + [S1,0 − AT ] which can be

depicted as a torus with a reflection action as shown below. The fixed set is shown

in blue. By Theorem 6.0.6, the cohomology of X is

H∗,∗(X) ∼= M2 ⊕ Σ1,0M2 ⊕ Σ1,1M2 ⊕ Σ2,1M2

as shown on the grid below.

•a

• b

C

C ′

D p

q

FIGURE 33. A C2-torus and its cohomology

Notice [C], [C ′] ∈ H1,1(X), [D] ∈ H1,0(X), and [a], [b] ∈ H2,1(X). All of these

fundamental classes forget to nonzero singular classes, so they must be nonzero.
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Now in H1,1(X), we have four nonzero elements [C], [C ′], τ [D], and ρ · 1. Let’s

determine the dependence relations between these classes.

The classes [C], [C ′], and τ [D] forget to nonzero classes and thus cannot equal

ρ · 1. Using a neighborhood of C similar to Example 7.2.5, we can conclude [C] 6=

[C ′] and so [C]+[C ′] 6= 0. Based on the decomposition for H∗,∗(X) and the forgetful

long exact sequence, dim(ker(ψ)) = 1 in bidegree (1, 1). We have that ψ(ρ) =

ψ([C] + [C ′]) = 0, so it must be that [C] + [C ′] = ρ · 1, and {[C], ρ, τ [D]} forms a

basis for H1,1(X).

Using Theorem 7.2.3, we have the following multiplicative relations

[C][C ′] = 0, [C][D] = [a], [C ′][D] = [b], [C]2 = [C]([C ′] + ρ · 1) = ρ · [C].

We can now state the cohomology of X as an algebra over M2:

H∗,∗(X) ∼= M2[x, y]/(x2 = ρx, y2 = 0), |x| = (1, 1), |y| = (1, 0).

(Here x = [C] and y = [D].)

Example 7.2.7. Consider the C2-surface Y whose underlying space is the

projective plane. We can form RP 2 by identifying antipodal points on the

boundary of D2, and the space Y will inherit the action from the rotation action

on D2, as depicted below. Again, the fixed set is shown in blue. The cohomology of

this space is given by

H∗,∗(Y ) ∼= M2 ⊕ Σ1,1M2 ⊕ Σ2,1M2

as shown on the grid below. Let’s consider the submanifold C and its normal

bundle NC . The circle C is fixed, and for every x ∈ NC , the fiber is given by

(NC)x ∼= R1,1. Thus we have a class [C] ∈ H1,1(Y ). The submanifold C ′ has two

fixed points p, q, and (NC′)p ∼= R1,0 while (NC′)q ∼= R1,1. Thus we also have a class

72



•p
C ′

•
p

C ′′

• q C p

q

FIGURE 34. The space Y and its cohomology

[C ′] ∈ H1,1(Y ) and similarly a class [C ′′] ∈ H1,1(Y ). By considering neighborhoods,

we also see [p] ∈ H2,1(Y ) while [q] ∈ H2,2(Y ).

It is clear [C ′] = [C ′′]. We have the following multiplicative relations given by

Theorem 7.2.3

[C][C ′] = τ · [C ∩ C ′] = τ [p], [C ′]2 = [C ′][C ′′] = [C ′ ∩ C ′′] = [q], and

[p][C ′] = [p][C ′′] = [{p} ∩ C ′′] = 0.

Let D be a neighborhood of the isolated fixed point q such that D ∼= D(R2,2).

Similar to Example 7.2.5, we can show ι∗D([q]) 6= 0 while ι∗D([p]) = 0. Thus

ι∗D(τ [p]) = 0 and τ [p] 6= [q]. We show [q] = τ [p] + ρ[C ′].

Note [C] and [C ′] both forget to the same nonequivariant nonzero class, so in

particular, [C] 6= ρ and [C ′] 6= ρ. Also, since [C][C ′] = τ [p] 6= [q] while [C ′]2 = [q],

we see that [C] 6= [C ′]. Thus it must be that [C] = [C ′] + ρ, and this also shows

[q] = [C ′]2 = [C ′]([C] + ρ) = τ [p] + ρ[C ′].

Taking x = [C ′], y = [p], we can now state the cohomology of Y as an M2-

algebra:

H∗,∗(Y ) ∼= M2[x, y]/(x2 = τy + ρx, y2 = 0, xy = 0), |x| = (1, 1), |y| = (2, 1).
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7.3. Free Fundamental Classes

We now provide a definition for fundamental classes of free submanifolds

of a given C2-manifold. Note the manifold may or may not be free itself. Let

X be a C2-manifold of dimension n and let Y be a free, equivariantly connected

submanifold of dimension k. By equivariantly connected, we mean the space cannot

be covered by two nonempty, disjoint, equivariant open sets. Using excision and

Theorem B.3.1, we are guaranteed a unique nonzero element in Hn−k,q(X,X − Y )

for every integer q.

Definition 7.3.1. Let X, Y , n, and k be as in the above. For every integer q, the

unique nonzero element in Hn−k,q(X,X − Y ) is denoted [Y ]q,rel and referred to

as the relative fundamental class of Y in X of weight q. The image of this

relative class under the map induced by the inclusion of pairs (X, ∅) ↪→ (X,X − Y )

is denoted [Y ]q and referred to as the fundamental class of Y in X of weight

q.

There are a few immediate consequences of Theorem B.3.1 and the definition

above.

Lemma 7.3.2. Let Y ⊂ X be as above. The following hold for all integers q:

(a) ψ([Y ]q) = [Y ]sing;

(b) τ [Y ]q = [Y ]q+1;

(c) If Y ∼= Z × C2 for some connected nonequivariant submanifold Z, then ρ ·

[Y ]q = 0 for all q.

Proof. Parts (a) and (b) follow from properties (i) and (ii) of Theorem B.3.1. For

(c), let U be a tubular neighborhood of Y . By property (iv) of Theorem B.4.3,
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H∗,∗(U,U − 0) ∼= H∗−k,∗(Y ). By Lemma 3.0.6, every element in H∗,∗(Y ) has ρ-

torsion, and thus every element in H∗,∗(U,U − 0) has ρ-torsion. In particular, ρ ·

[Y ]q,rel = 0 which implies ρ · [Y ]q = 0.

We also have the following lemma about products involving free classes.

Lemma 7.3.3. Let X be an n-dimensional C2-manifold, and suppose Y and Z are

equivariant submanifolds that intersect transversally in the nonequivariant sense

and whose intersection is free. We have the following cases for the product of their

fundamental classes.

• Suppose Y and Z are nonfree and their fundamental classes have weights q, r,

respectively. Then [Y ] ^ [Z] = [Y ∩ Z]q+r.

• Suppose Y is nonfree and Z is free. Then for every r, [Y ] ^ [Z]r = [Y ∩Z]q+r.

• Suppose Y and Z are both free. Then for every r, s, [Y ]r ^ [Z]s = [Y ∩Z]r+s.

Proof. This follows by forgetting to singular cohomology and using property (i) of

Theorem B.3.1 and Corollary B.2.2 when one of the submanifolds is nonfree. We

leave the details to the reader.

We now discuss three examples involving these free fundamental classes.

Example 7.3.4 (Fundamental class of conjugate points). Let X be a closed,

connected, n-dimensional C2-manifold with a non-fixed point x ∈ X. Consider

the set of conjugate points {x, σx} and note this is isomorphic to the free orbit C2.

We show if X is free, then [x, σx]q 6= 0 for all q. If X is nonfree, let p ∈ XC2 be a

fixed point whose fundamental class generates a free summand in bidegree (n, k).

We show [x, σx]q 6= 0 only for q ≤ k − 2, and explicitly, [x, σx]q = θ
τq−k+2 [p].
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To see this, observe the space X − {x, σx} is a punctured n-manifold, so

Hj
sing(X − {x, σx}) = 0 for j ≥ n. Using the forgetful long exact sequence, we see

that

ρ : Hj,q(X − {x, σx})→ Hj+1,q+1(X − {x, σx})

must be an isomorphism whenever j ≥ n and surjective when j = n− 1.

Assume X is free. Then X − {x, σx} is also free and H∗,∗(X − {x, σx}) is a

direct sum of shifted copies of Ar by Corollary ??. By the above comments, it must

be that Hj,q(X − {x, σx}) = 0 for j ≥ n. On the other hand, Hn
sing(X) = Z/2 and

so by the forgetful long exact sequence, Hn,q(X) 6= 0 for some q, and since τ acts

invertibly on the cohomology of free spaces, Hn,q(X) 6= 0 for all q. Thus by the long

exact sequence for the pair, [x, σx]q 6= 0 for all q.

If X is nonfree, then X − {x, σx} is also nonfree. Considering the structure

theorem and the properties of the ρ action discussed above, it must be that no

summands in H∗,∗(X − {x, σx}) are generated in topological dimension j for j ≥ n

and all antipodal summands Σs,0Ar must be concentrated in topological dimension

less than n. Thus there is a sufficiently small ` such that Hn,q(X − {x, σx}) = 0

whenever q ≤ `.

Fix q such that q ≤ ` and q ≤ k − 2. Consider the long exact sequence below:

Hn,q(X,X − {x, σx}) Hn,q(X) Hn,q(X − {x, σx})

The left group is Z/2, and since the second map is surjective, there must be at

most one nonzero element in Hn,q(X). One such element is θ
τq−k+2 [p], and so the

only option is [x, σx]q = θ
τq−k+2 [p]. Now if this holds for some q, then it must hold

for all q ≤ k − 2 by the action of τ . Lastly for q > k − 2,

[x, σx]q = τ q−(k−2)[x, σx]k−2 = τ q−(k−2) · θ[p] = 0.
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Example 7.3.5. Let’s consider the free torus where the action is orientation

reversing; this space was denoted T anti1 earlier in the paper. For notational

simplicity, let X = T anti1 . An illustration of the space and its cohomology are shown

below.

b

b

Ca

p

C

σC

σp

p

q

FIGURE 35. A free C2-torus and its cohomology

There are four families of cohomology classes of interest: [Ca]q, [C t σC]q,

[p t σp]q, and [X]q. Observe the classes [Ca]q and [X]q forget to nonzero classes in

singular cohomology, so [Ca]q and [X]q are nonzero for all q. Using the long exact

sequence for the pair (X,X − (C tσC)), one can check [C tσC]q 6= 0 for all q. Now

ψ([C t σC]q) = 0 so it must be that [C t σC]q is in the image of ρ, and the only

possibility is that [C t σC]q = ρ · [X]q−1 = ρτ q−1 · 1. By part (c) of Lemma 7.3.2,

ρ · [C tσC]q = 0 and in particular this implies ρ · [C tσC]1 = ρ2 · 1 = 0. There is yet

another way to see ρ2 · 1 = 0. By perturbing C, we can find a submanifold C ′ t σC ′

such that [C ′tσC ′]q = [CtσC]q and the transverse intersection (C ′tσC ′)∩(CtσC)

is empty.

Applying Theorem 7.3.3, we have that [Ca]r · [CtσC]s = [ptσp]r+s for all r, s.

We could have seen this already using the module structure and the above fact that

[C t σC]1 = ρ · 1, but it is nice to be able to recover the relation using fundamental

classes.
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Since X is free, the action of τ on the cohomology of X is invertible, and it

is easier to describe the cohomology as a τ−1M2-algebra. Note this also encodes

the M2-algebra structure. As a τ−1M2-algebra we have recovered the following

isomorphism where x = [Ca]:

H∗,∗(T anti1 ) ∼= τ−1M2[x]/(ρ2 · 1 = 0, x2 = 0), |x| = (1, 1).

Example 7.3.6. We do one more example that has both nonfree and free

fundamental classes. Consider X = S2,2#2T1 which can be depicted as a genus

two torus with a rotation action, as shown below. The cohomology of this space is

given by

H∗,∗(X) ∼= M2 ⊕ (Σ1,0A0)
⊕2 ⊕ Σ2,2M2

which is shown in the grid below.

b b

C

σC

C′

σC′

D

b

b

z

σz

xy p

q 2

FIGURE 36. The space X and its cohomology.

Let’s consider the nonfree fundamental classes [D] ∈ H1,1(X), [x], [y] ∈

H2,2(X), and the free fundamental classes, [C t σC]q, [C
′ t σC ′]q ∈ H1,q(X) and

[ztσz]q ∈ H2,q(X). Note [CtσC]q and [C ′tσC ′]q forget to different nonzero classes,

so both are nonzero, and they are not equal. These two families of classes therefore

give rise to the two Σ1,0A0 summands appearing. One can also check [D] = ρ and

[x] + [y] = ρ2 = ρ · [D], using arguments as in the previous examples.
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From Example 7.3.4, [z t σz]q = θ
τq

[p] for q ≤ 0. This gives the multiplicative

relation

[C t σC]r ^ [C ′ t σC ′]s = [z t σz]r+s = θ
τr+s

[p]

for r + s ≤ 0.
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CHAPTER VIII

EQUIVARIANT FUNDAMENTAL CLASSES AND C2-SURFACES

It is easy to check the singular cohomology in Z/2-coefficients of any surface

is generated by fundamental classes. In the previous examples, we saw the

analogous statement held for the Bredon cohomology of a handful of C2-surfaces.

In this section, we show, in fact, the Bredon cohomology of any C2-surface is

generated by fundamental classes.

Notation 8.0.1. As before, the coefficients are understood to be Z/2 in this

section.

We begin by defining the precise property we will be proving:

Definition 8.0.2. Let X be a C2-manifold. Suppose there exist a (possibly empty)

collection of nonfree equivariant submanifolds Y1, . . . Yn and a (possibly empty)

collection of free equivariant submanifolds F1, . . . , Fm such that the corresponding

fundamental classes generate H∗,∗(X) as an M2-module, i.e.

M2{[Y1], . . . , [Yn], [F1]q, . . . , [Fm]q : q ∈ Z} = H∗,∗(X).

Then we say H∗,∗(X) is generated by fundamental classes.

Our goal is to show if X is any C2-surface, then H∗,∗(X) is generated by

fundamental classes. We begin with free surfaces, spheres, and doubling spaces,

and then we consider surfaces obtained by doing surgery to such spaces and apply

Theorem 4.2.3.

Lemma 8.0.3. Suppose X is a free C2-surface. Then H∗,∗(X) is generated by

fundamental classes.
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Proof. Let X be a free C2-surface. By Theorem 4.1.3, there are two cases for the

isomorphism type of X. Either X ∼= S2
a#2Y or X ∼= T#2Y for some surface Y

where T is one of the two free tori.

First suppose X ∼= S2
a#2Y . Ignoring the ρ-action (so viewing H∗,∗(X) as an

Z/2[τ, τ−1]-module), we have the following isomorphism from Theorem 5.0.5:

H∗,∗(X) ∼= A0 ⊕ (Σ1,0A0)
⊕β(X)/2+1 ⊕ Σ2,0A0

Observe {[X]q : q ∈ Z} will generate the classes corresponding to the summand A0,

while if x ∈ X is any point, [x t σx]q will generate the classes corresponding to

the summand Σ2,0A0 as shown in Example 7.3.4. Next we find (β(X)/2 + 1) free

one-dimensional submanifolds of X to generate the classes appearing in topological

dimension one.

Note β(X) = 2β(Y ), and since Y is a surface, there are β(Y ) circles in Y

whose fundamental classes give a basis for H1
sing(Y ). Let r = β(Y ) and call these

circles C1, . . . , Cr. We can assume the disk removed from Y to form S2
a#2Y does

not intersect any of these submanifolds. Then for each i = 1, . . . , r, Ci t σCi is an

equivariant submanifold of X.

Nonequivariantly, X ∼= Y#Y and so the singular classes [Ci t σCi]sing are

nonzero, and furthermore

{[C1 t σC1]sing, . . . , [Cr t σCr]sing}

is a linearly independent set in H1
sing(X). Using the forgetful map, the set

{[C1 t σC1]q, . . . , [Cr t σCr]q}

must be a linearly independent set in H1,q(X) for all q.

We have found a linearly independent set with β(Y ) elements, but we need

β(X)/2 + 1 = β(Y ) + 1 elements to give a basis for the (β(Y ) + 1)-dimensional
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vector space H1,q(X). Let E an equatorial copy of S1
a contained in S2

a such that E

is also a submanifold of X. Consider the following long exact sequence for the pair

(X,X − E):

H1,q(X,X − E) H1,q(X) H1,q(X − E)

H2,q(X,X − E) H2,q(X) H2,q(X − E)

Let U be a tubular neighborhood of E. Then by Theorem B.4.3

H∗,∗(X,X − E) ∼= H∗,∗(U,U − E) ∼= H∗−1,∗(E).

On the other hand, X − E is isomorphic to C2 × Y ′ where Y ′ is the space obtained

by removing a disk from Y . In particular X−E ' (∨β(Y )S
1)×C2 and H2,q(X−E) =

0. Thus the above portion of the long exact sequence becomes

H1,q(X,X − E) (Z/2)β(Y )+1 (Z/2)β(Y )

Z/2 Z/2 0

By considering dimensions, we see that the top left map must be nonzero, and

[E]q 6= 0 for all q.

Lastly, note ψ applied to any nontrivial linear combination of the classes [Ci t

σCi]q is nonzero, while ψ([E]q) = 0 because E bounds a nonequivariant submanifold

in X. Thus [E]q cannot be a linear combination of these classes, and

{[C1 t σC1]q, . . . , [Cr t σCr]q, [E]q}

is a basis of fundamental classes for H1,q(X). We conclude H∗,∗(X) is generated by

fundamental classes.

The case when X ∼= T#2Y is similar. Again applying Theorem 5.0.5 and

viewing H∗,∗(X) as an Z/2[τ, τ−1]-module, we have

H∗,∗(X) ∼= A0 ⊕ (Σ1,0A0)
⊕β(X)/2+1 ⊕ Σ2,0A0.
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In this case, β(X) = 2β(Y ) + 2, and so we need to find β(Y ) + 2 one-dimensional

equivariant fundamental classes. Take the β(Y ) classes [Ci t σCi]q coming from Y

as before, and then take the two equivariant classes in T as described in Example

7.3.5. These classes will forget to a linearly independent set of fundamental classes

in singular cohomology, and thus must be linearly independent in H1,q(X). We

again conclude H∗,∗(X) is generated by fundamental classes.

Lemma 8.0.4. Suppose X is a C2-sphere. Then H∗,∗(X) is generated by

fundamental classes.

Proof. There are exactly four C2-spheres up to equivariant isomorphism: S2
a, S

2,0,

S2,1, and S2,2. Note S2
a was handled in the above theorem. When X is S2,0, S2,1,

or S2,2, we need only take the classes [X] and [p] where p ∈ X is some fixed point.

These classes will generate H∗,∗(X).

Lemma 8.0.5. Suppose X is a doubling space. Then H∗,∗(X) is generated by

fundamental classes.

Proof. There are two cases, either X ∼= S2,2#2Y or X ∼= S2,1#2Y . The proof

for both cases is very similar, so we only provide details for the former. Also, the

techniques used are similar to those used in the proof of Lemma 8.0.3, so we only

provide an outline for the case when X ∼= S2,2#2Y , leaving the details to the

reader.

Using Theorem 6.0.6, the cohomology of S2,2#2Y is given by

H∗,∗(X) ∼= M2 ⊕ (Σ1,0A0)
⊕β(Y ) ⊕ Σ2,2M2.

The class [X] will generate the M2-summand appearing in bidegree (0, 0) while

[p] where p ∈ X is any fixed point is a generator for the M2-summand appearing
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in bidegree (2, 2). Thus we must find β(Y ) one-dimensional submanifolds whose

classes will generate the A0-summands appearing in topological degree one. Using

submanifolds of Y , we can create a basis of fundamental classes for the space

H1,q(X) as in the proof of Lemma 8.0.3.

Our next goal is to show this property holds for all nonfree surfaces. To do so,

we make use of Theorem 4.2.3, which states if X is a nontrivial C2-surface that is

not free, not isomorphic to a sphere, and not isomorphic to a doubling space, then

up to equivariant isomorphism, X can be constructed by doing S1,1−, S1,0−, or

FM−surgery to a C2-surface of lower β-genus. We first prove a lemma that will be

helpful in what follows.

Lemma 8.0.6. Let X be a nonfree C2-surface. Suppose C ⊂ X is a connected,

one-dimensional, nonfree submanifold whose normal bundle is given by C × R1,1.

Let q ∈ C ⊂ X be a fixed point. Then ι∗q([C]) = ρ where ιq : {q} ↪→ X is the

inclusion map.

Proof. We make use of the geometric interpretation of ρ ∈ H1,1(pt) in order to

prove this lemma. From the results in [4], a model representing Bredon cohomology

in constant Z/2-coefficients is given by K(Z/2; p, q) ' Z/2〈Sp,q〉 where Z/2〈Sp,q〉

has underlying space given by the usual Dold-Thom space of configurations of

points in Sp with labels in Z/2, and has C2-action given by the action on Sp,q.

Thus the element ρ can be realized as an element of the homotopy class of

based maps S0 → Z/2〈S1,1〉. Specifically, the map ρ : S0 → Z/2〈S1,1〉 is given by

the inclusion of the fixed set S0 ↪→ S1,1 followed by the canonical map ι : S1,1 →

Z/2〈S1,1〉 that takes each point to the corresponding point in Z/2〈S1,1〉 with label

one.
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Let U be a tubular neighborhood of C ' S1,δ so U ∼= S1,δ × R1,1 where

δ ∈ {0, 1}. By excision and the suspension isomorphism

H1,1(X,X − C) ∼= H1,1(U,U − C) ∼= H1,1(U, ∂U) ∼= H̃1,1(S1,1 ∧ S1,δ
+ ) ∼= H̃0,0(S1,δ

+ ).

The nonzero element α ∈ H̃0,0(S1,δ
+ ) is given by a map α̃ : S1,δ

+ → S0 that crushes

S1,δ to the non-basepoint in S0 followed by the inclusion ι : S0 → Z/2〈S0〉. Hence

the generator of H̃1,1(S1,1 ∧ S1,δ
+ ) is given by

Σ1,1(ι ◦ α̃) = Σ1,1ι ◦ Σ1,1α̃ = ι ◦ Σ1,1α̃.

Thus we investigate Σ1,1α̃ which is illustrated in the figure below.

b b r

b

b

S1,1 ∧ S1,0
+ S1,1

rr

u

u

C

b b r

b

b

S1,1 ∧ S1,1
+ S1,1

rr

u

u

C

u u

FIGURE 37. The (1, 1)-suspension of the map S1,δ
+ → S0. The conjugate green

circles in the left-hand pictures are mapped to the conjugate green points in the
right-hand pictures.

If q is one of the fixed points in C illustrated by the blue squares in Figure

37, then precomposing with the inclusion ιq : {q} → S1,1 ∧ S1,δ
+ maps q to the

non-basepoint fixed point of S1,1. Thus post-composing with the canonical inclusion

S1,1 ↪→ Z/2〈S1,1〉 will exactly yield the map ρ as described above. This shows

(ιq)
∗ : H̃1,1(S1,1 ∧ S1,δ

+ ) → H1,1(q) takes the unique nonzero element to ρ. The

commutative diagram below then shows ι∗q([C]) = ρ:
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H̃1,1(S1,1 ∧ S1,δ
+ ) H1,1(X,X − C) H1,1(X)

H1,1(q)

∼

ι∗q

ι∗q
ι∗q

We now investigate how doing surgery introduces new fundamental classes.

Lemma 8.0.7. Let Y be a closed C2-surface such that H∗,∗(Y ) is generated by

fundamental classes. If X = Y + [S1,0 − AT ], then H∗,∗(X) is also generated by

fundamental classes.

Proof. The surface X contains a fixed circle, so by Theorem 6.0.6

H∗,∗(X) ∼= M2 ⊕ Σ2,1M2 ⊕ . . .

where the remaining modules appearing in the decomposition depend on Y . As

usual, the class [X] will generate the free summand appearing in bidegree (0, 0)

while if x ∈ X is any point contained in a fixed circle, the class [x] will generate

a free summand in bidegree (2, 1). We just need to find various one-dimensional

submanifolds of X that generate the remainder of the cohomology. The procedure

to find such submanifolds will depend on the isomorphism type of Y .

Suppose Y1, . . . , Yn are nonfree one-dimensional equivariant submanifolds of

Y and F1, . . . Fm are free one-dimensional submanifolds of Y whose fundamental

classes together with [Y ] and [y] generate H∗,∗(Y ). Let U1, . . . , Un, V1, . . . , Vm be

equivariant tubular neighborhoods of Y1, . . . , Yn, F1, . . . Fm, respectively. In order to

form X = Y + [S1,0 − AT ], we must remove disjoint conjugate disks D, σD from

Y , and we may assume without loss of generality that these disks and the tubular

neighborhoods are chosen in a way such that (D ∪ σD) ∩ Ui and (D ∪ σD) ∩ Vj are

empty for all i, j.
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Let Y ′ be the space obtained by removing D t σD from Y . We would

like to relate the cohomology of Y to the cohomology of X, and we will use the

cohomology of the space Y ′ as a stepping stone from H∗,∗(Y ) to H∗,∗(X).

Observe Y and X can be realized as the homotopy pushouts of the following

diagrams, respectively.

∂ (D t σD) Y ′

C2

ι

π

∂ (D t σD) Y ′

S1,0

ι

π

Using the diagram on the left, for each q we have a long exact sequence as shown

below:

H0,q(Y ′)⊕H0,q(C2) H0,q(∂(D t σD)) H1,q(Y ) H1,q(Y ′)⊕H1,q(C2)

The map π∗ : H0,q(C2) → H0,q(∂(D t σD)) is an isomorphism because on the level

of spaces

C2 ↪→ ∂(D t σD)
π→ C2

is the identity, so π∗ is an injective map from Z/2 to Z/2. Thus the leftmost map is

surjective, and the rightmost map is injective by exactness. Though H1,q(C2) = 0

so the map H1,q(Y ) → H1,q(Y ′) is injective. The inclusion Y ′ ↪→ X induces a map

H1,q(X) → H1,q(Y ′); this map is often not injective, but for each submanifold C

from our list, we have the following commutative diagram:

H1,q(Y, Y − C) H1,q(Y ′, Y ′ − C) H1,q(X,X − C)

H1,q(Y ) H1,q(Y ′) H1,q(X)

∼= ∼=

Note the top horizontal maps are isomorphisms due to excision: all three of

these groups are isomorphic to H1,q(U,U − C) where U is the chosen tubular

neighborhood of C (note this is why we chose the disks and neighborhoods to be

disjoint). The bottom left horizontal map is injective from the above discussion.
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In particular, this commutative diagram holds for C = Y1, . . . , Yn and C =

F1, . . . , Fm. Hence, the image of each of the classes [Yi] and [Fj]k in H1,∗(X) under

the right horizontal map is equal to the image of the respective class [Yi] or [Fj]k

in H1,∗(Y ) under the left horizontal map. The injectivity of the left map shows the

fundamental classes [Yi], [Fj]k inherit no new relations in the cohomology of X that

were not present in the cohomology of Y . Intuitively, this is unsurprising: attaching

a handle should not introduce dependence relations, and the above formalizes this

intuition.

There are three cases for how the cohomology of X differs from the

cohomology of Y . First, suppose Y already contains a fixed oval. Then by Theorem

6.0.6

H∗,∗(Y ) ∼= M2 ⊕
(
Σ1,0M2

)⊕C(Y )−1 ⊕
(
Σ1,1M2

)⊕F (Y )+C(Y )−1
(8.0.1)

⊕
(
Σ1,0A0

)β(Y )+2−(F (Y )+2C(Y ))
2 ⊕ Σ2,1M2

while

H∗,∗(X) ∼= M2 ⊕
(
Σ1,0M2

)⊕C(X)−1 ⊕
(
Σ1,1M2

)⊕F (X)+C(X)−1

⊕
(
Σ1,0A0

)β(X)+2−(F (X)+2C(X))
2 ⊕ Σ2,1M2

Since X = Y + [S1,0 − AT ], we have the following relations

F (X) = F (Y ), C(X) = C(Y ) + 1, β(X) = β(Y ) + 2

that show

H∗,∗(X) ∼= H∗,∗(Y )⊕ Σ1,1M2 ⊕ Σ1,0M2. (8.0.2)
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Recall the classes [X] and [x] generate free summands in topological degrees zero

and two, respectively, while the classes [Yi], [Fj]q generate any summands appearing

in topological dimension one coming from H∗,∗(Y ) by the discussion above. Thus it

suffices to find two new fundamental classes in H1,∗(X).

There is an obvious choice for one of the submanifolds, namely the fixed circle

contained in the attached handle. Let C1 be this circle and note [C1] ∈ H1,1(X).

For the other submanifold, let p ∈ C1 be a fixed point, and choose a point s

contained in another fixed circle. It is shown in [7] that we can construct a path

γ from p to s such that

Cγ := im(γ) ∪ im(σγ) ∼= S1,1

and such that Cγ and C1 intersect at the single point p. Let U be a tubular

neighborhood of Cγ. Over each fixed point the normal fiber is a fixed interval, so

[Cγ] ∈ H1,0(X). The two classes are in the correct bidegrees; we next show they are

linearly independent from the classes coming from Y .

We begin with [Cγ]. By construction C1 and Cγ intersect at a single fixed

point, so

[C1][Cγ] = [p] 6= 0.

On the other hand, C1 does not intersect any of the other submanifolds Yi, Fj, and

so for any M2-linear combination of these fundamental classes

[C1] · (Σiai[Yi] + Σjbj[Fj]q) = 0.

Hence, it must be that [Cγ] is not in the M2-span of these classes. By the

isomorphism in 8.0.1, the fact that H∗,∗(Y ) is generated by fundamental classes,
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and consideration of degrees, it must be that

dim
(
H1,0(Y )

)
= dim

(
M2{[Yi], [Fj]q, [Y ], [y]} ∩H1,0(Y )

)
= dim

(
M2{[Yi], [Fj]q} ∩H1,0(Y )

)
.

We have already remarked that

dim (M2 · {[Yi], [Fj]q} ∩H1,0(Y )) = dim (M2 · {[Yi], [Fj]q} ∩H1,0(X)) .

By the isomorphism in 8.0.2,

dim (H1,0(Y )) = dim (H1,0(X))− 1.

We just proved [Cγ] is not in the M2-span of the classes [Yi], [Fj]q, so by dimensions

it must now follow that

M2 · {[Cγ], [Yi], [Fj]q} ∩H1,0(X) = H1,0(X).

Thus any generator of the new summand Σ1,0M2 is a linear combination of

fundamental classes.

Returning to C1, we can apply Lemma 8.0.6 to see ι∗p([C1]) is nonzero. Since

{p} does not intersect any of the submanifolds Yi, Fj, ι
∗
p([Yi]) = ι∗p([Fj]q) = 0. For

degree reasons, ι∗p([Cγ]) is also zero, and thus any M2-combination of these classes

must be in the kernel of ιp. We conclude [C1] is not in the M2-span of any of these

classes. Again using our isomorphisms and degree arguments we can say

dim (M2{[C1], [Cγ], [Yi], [Fj]q, [X]} ∩H1,1(X)) = dim (H1,1(X)) .

We conclude any generator of the new summand Σ1,1M2 is in this span. Thus

H∗,∗(X) = M2{[C1], [Cγ], [Yi], [Fj]q, [X], [x]}
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as desired. This completes the proof in the case that Y already contains a fixed

oval.

Next suppose the fixed set of Y contains only isolated fixed points. Then by

Theorem 6.0.6

H∗,∗(Y ) ∼= M2 ⊕ (Σ1,1M2)
⊕F (Y )−2 ⊕ (Σ1,0A0)

β(Y )+2−F (Y )
2 ⊕ Σ2,2M2

while

H∗,∗(X) ∼= M2 ⊕
(
Σ1,1M2

)⊕F (X)+C(X)−1

⊕
(
Σ1,0A0

)β(X)+2−(F (X)+2C(X))
2 ⊕ Σ2,1M2

We have the relations

F (X) = F (Y ), C(X) = 1, C(Y ) = 0, β(X) = β(Y ) + 2.

Hence the number of Σ1,0M2 and Σ1,0A0 summands match, and we just need to find

two new classes that generate the two additional Σ1,1M2-summands.

As in the previous case, we need to find two new fundamental classes. Again

let C1 be the attached (and now only) fixed oval, noting [C1] ∈ H1,1(X). Let γ be

a path from a fixed point p ∈ C1 to an isolated fixed point s, choosing the path γ

such that

Cγ := im(γ) ∪ im(σγ) ∼= S1,1.

and such that Cγ and C1 only intersect at a single point. Let U be a tubular

neighborhood of the circle Cγ, and note that the fiber over p is isomorphic to R1,0,

while the fiber over s is isomorphic to R1,1, so it must be that [Cγ] ∈ H1,1(X) as

well.
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We can do the same tricks as before to conclude [C1] and [Cγ] generate the

rest of the cohomology of X. Namely, their nontrivial product shows [Cγ] is not an

M2-combination of our current classes. To see [C1] is not in the span of the classes

given by Yi, Fj, Cγ, choose another point on the fixed oval p′ 6= p and use the map

ιp′ . This will complete the proof in this case.

Lastly, suppose Y is a free C2-surface. Then by Theorem 5.0.5, ignoring the

action of ρ,

H∗,∗(Y ) ∼= A0 ⊕ (Σ1,0A0)
β(Y )+2

2 ⊕ Σ2,1A0

while by Theorem 6.0.6

H∗,∗(X) ∼= M2 ⊕ (Σ1,0A0)
β(X)+2−(F (X)+2C(X))

2 ⊕ Σ2,1M2

We now have the relations

F (X) = F (Y ) = 0, C(X) = 1, C(Y ) = 0 β(X) = β(Y ) + 2.

The number of summands generated in topological dimension one is the same in

H∗,∗(X) as in H∗,∗(Y ). Thus, by adding [X] and [x] to our list of classes [Yi], [Fj]q,

we will have found a collection of fundamental classes that generate the cohomology

of X.

Lemma 8.0.8. Let Y be a nontrivial C2-surface such that H∗,∗(Y ) is generated by

fundamental classes. If X = Y + [S1,1 − AT ], then H∗,∗(X) is also generated by

fundamental classes.

Proof. The proof is similar to that of the previous lemma. Instead of having a fixed

circle in the attached handle, we have a circle C1
∼= S1,1. The circle C1 is still two-

sided and its fundamental class is contained in bidegree (1, 1). In the case where

Y has an isolated fixed point, the other class will be given by a circle Cγ where γ
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is a path from a fixed point on C1 to this other isolated fixed point. To see this

circle is two-sided, note the two fixed points in Cγ are isolated fixed points in Y ,

so the fibers over these points in the normal bundle are both isomorphic to R1,1.

There is only one action on the Möbius bundle over S1,1 and the fibers over the

fixed points in this bundle are R1,0 and R1,1. In the case where Y only has fixed

ovals, the other class will given by a circle Cγ where γ is a path from a fixed point

on C1 to a point on a fixed oval. This circle must be one-sided because the fibers of

the normal bundle over the two fixed points are different representations. Lastly, in

the case where Y is free, no other classes besides [X] and [x] will be needed.

We are now ready to prove the main theorem of this section.

Theorem 8.0.9. Let X be a C2-surface. Then H∗,∗(X;Z/2) is generated by

fundamental classes of equivariant submanifolds.

Proof. If X is trivial, then by Lemma 3.0.7

H∗,∗(X) ∼= M2 ⊗Z/2 H
∗
sing(X).

Since H∗sing(X) is generated by fundamental classes, it immediately follows that

H∗,∗(X) is generated by fundamental classes.

Assume X is nontrivial. We proceed by induction on the β-genus of X. If the

β-genus is zero, then we are done by Lemma 8.0.4. For the inductive hypothesis, let

k ≥ 1 and assume the statement holds for all surfaces of β-genus less than k.

Let X be a surface of β-genus k. If X is a free C2-surface or a doubling space,

then we are done by Lemmas 8.0.3 and 8.0.5. Thus suppose X is nonfree and not

a doubling space. By Theorem 4.2.3, there are three cases for X: the surface X is

isomorphic to a space given by doing S1,1−, S1,0−, or FM− surgery to a surface of

lower β-genus.
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Combining the first and second cases, suppose X ∼= Y + [S1,ε − AT ] where

ε ∈ {0, 1}. Note β(Y ) = β(X) − 2, so we can apply the inductive hypothesis

to conclude H∗,∗(Y ) is generated by fundamental classes. We are then done after

applying either Lemma 8.0.7 or Lemma 8.0.8.

The remaining case is X ∼= Y + [FM ]. There are four subcases based on

the fixed set of Y . First, suppose Y contains a two-sided fixed circle. Note Y

also contains an isolated fixed point, so the circle must be non-separating, i.e.

the complement of this circle is connected. Thus we can do surgery around this

fixed circle to see Y ∼= Z + [S1,0 − AT ] where Z is some other C2-surface with

β(Z) = β(Y )− 2 = β(X)− 3. Let W = Z + [FM ], and note β(W ) = β(X)− 2, so

the inductive hypothesis implies H∗,∗(W ) is generated by fundamental classes. We

are done after noting X ∼= W + [S1,0 − AT ] and applying Lemma 8.0.7.

Second, suppose Y contains at least three isolated fixed points. From [7] there

is a path γ between two of the points such that the image of γ and its conjugate

path form a copy of S1,1. As before, this copy of S1,1 must non-separating, so we

can do surgery to see Y ∼= Z + [S1,1 − AT ] for some other C2-surface Z. As in the

previous case, we are done after noting X ∼= (Z + [FM ]) + [S1,1 −AT ], applying the

inductive hypothesis to Z + [FM ], and then applying Lemma 8.0.8.

Third, suppose Y is isomorphic to a doubling space Doub(Z, 1 : 1, 1). In

this case, we can find fundamental classes for X by hand. By substituting β(X) =

2β(Z) + 1 and C(X) = F (X) = 1 into Theorem 6.0.6, we have that

H∗,∗(X) ∼= M2 ⊕ Σ1,1M2 ⊕ (Σ1,0A0)
⊕β(Z) ⊕ Σ2,1M2.

Let C be the fixed circle contained in the attached Möbius band and Z1, . . . , Zβ(Z)

be the circles whose fundamental classes generate H1
sing(Z). The classes [C], [Z1 t
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σZ1], . . . , [Zβ(Z) t σZβ(Z)], [X], [x] will generate H∗,∗(X) where x ∈ XC2 is a point

on the fixed circle. We leave the details to the reader.

Lastly, suppose Y is not a doubling space, contains no two-sided fixed ovals,

and has at most two isolated fixed points. In this case, we need more specific

details from the classification given in [7]. There are two cases for the isomorphism

class of X. The two cases are

X ∼= S2,2 + C(X)+F (X)−2
2

[S1,1 − AT ] + C(X)[FM ], or

X ∼= W + C(X)+F (X)
2

[S1,1 − AT ] + C(X)[FM ],

where W is some free C2-surface. In both cases, fundamental classes can be found

by hand; we provide an outline of how to find such classes.

Suppose X is given by the top isomorphism. For notational simplicity, let

r = C(X) and s = F (X) (note s = 0 or s = 1). By Theorem 6.0.6,

H∗,∗(X) ∼= M2 ⊕ (Σ1,0M2)
⊕r−1 ⊕ (Σ1,1M2)

⊕r+s−1 ⊕ Σ2,1M2.

Let C1, . . . , Cr be the fixed circles contained in the attached Möbius bands. The

circles give r classes in H1,1(X), and the forgetful map shows these classes are

linearly independent. Next, for j = 1, . . . , r, fix a point pj ∈ Cj. Let γ1j be a

path from p1 to pj such that C1j = im(γ1j) ∪ im(σγ1j) is isomorphic to S1,1 for

j = 2, . . . , r. These circles will give (r − 1) linearly independent classes in H1,0(X).

If s = 0, the classes given by C1, . . . , Cr, C12, . . . , C1r together with [X] and [x]

where x ∈ X is a fixed point contained in a fixed circle will generate H∗,∗(X). If

s = 1, we can construct one more circle D using a path from p1 to the isolated

fixed point. The class [D] ∈ H1,1(X) together with the other classes will generate

H∗,∗(X).
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For the second case, note β(X) = β(W ) + 2C + F and thus by Theorem 6.0.6

the cohomology of X is

H∗,∗(X) ∼= M2 ⊕ (Σ1,0M2)
C−1 ⊕ (Σ1,1M2)

F+C−1 ⊕ (Σ1,0A0)
⊕β(W )/2+1 ⊕ Σ2,1M2.

To find equivariant classes, construct nonfree circles as in the previous case, and

also include the free generators for H1,∗(W ) (note we saw in the proof of Lemma

8.0.3 there are β(W )/2 + 1 such generators).

We have exhausted all cases, and we conclude H∗,∗(X) is generated by

fundamental classes for all C2-surfaces.
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APPENDIX A

A THEOREM FOR C2-MANIFOLDS

In this appendix we provide a proof of Theorem 3.0.8 which is given as

Theorem A.0.1 below. Here by “manifold” we mean a piecewise linear manifold,

and by C2-action, we mean a locally linear C2-action. Note this is sufficient to

guarantee the fixed set is a disjoint union of submanifolds.

Theorem A.0.1. Let X be an n-dimensional, closed C2-manifold with a nonfree

C2-action. Suppose n − k is the largest dimension of submanifold appearing as a

component of the fixed set. Then there is exactly one summand of H̃∗,∗(X;Z/2) of

the form Σi,jM2 where i ≥ n, and it occurs for (i, j) = (n, k).

Proof. If X is a trivial space, then this follows immediately from Lemma 3.0.7 and

facts about the singular cohomology of closed n-manifolds in Z/2-coefficients. Thus

assume X is nontrivial. We first show there is a unique summand generated in

topological dimension n, we then show it must be free, and lastly we argue it must

be in weight k.

From the structure theorem given in Theorem 3.0.11, the cohomology of X

must have a direct sum decomposition given by

H∗,∗(X) ∼= (⊕iΣmi,kiM2)⊕ (⊕jΣrjAsj). (A.0.1)

Consider the following portion of the forgetful long exact sequence for X:

Hp−1,q(X)
ρ−→ Hp,q+1(X)

ψ−→ Hp
sing(X) −→ Hp,q(X)

Since X is a closed n-manifold, Hp
sing(X) = 0 for p > n while Hn

sing(X) ∼= Z/2. By

exactness, it must be that Hp,q(X) = im(ρ) for p > n, and when p = n, there are
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two possibilities: either Hn,q(X) = im(ρ) or Hn,q(X)/ im(ρ) ∼= Z/2. Returning

to A.0.1, this immediately implies mi, rj ≤ n for all i, j. We claim this also

implies there are either zero summands or one summand generated in topological

dimension n; that is there is at most one i or j such that mi = n or rj = n. Indeed,

if there were two or more summands generated in topological dimension n, then

there would exist a sufficiently large q such that dim (Hn,q(X)/ im(ρ)) ≥ 2.

To see there is a summand generated in topological dimension n, pick a point

x ∈ XC2 that is contained in a connected component of dimension n − k, where

recall n − k is the maximum dimension. There exists an open equivariant disk D

such that x ∈ D ⊂ X and D ∼= Rn nonequivariantly. By consideration of the fixed

set, we see that D ∼= D(Rn,k) where D(Rn,k) denotes the unit disk in Rn,k. Consider

the quotient map

q : X → X/(X −D) ∼= Sn,k.

We have the following commutative square involving the forgetful map:

H̃n,k(Sn,k) H̃n
sing(S

n,k)

H̃n,k(X) H̃n
sing(X)

ψ

q∗ q∗

ψ

Recall H̃∗,∗(Sn,k) ∼= Σn,kM2 by the suspension isomorphism, so the top map is an

isomorphism. The right vertical map is also an isomorphism because X is a closed

n-manifold. By commutativity of the square, the forgetful map ψ : H̃n,k(X) →

H̃n
sing(X) must be nonzero. Returning to the forgetful long exact sequence above,

we see Hn,k(X)/ im(ρ) ∼= Z/2 and there is indeed exactly one summand generated

in topological dimension n.
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There are thus two options for the cohomology of X. Either

H∗,∗(X) ∼= (⊕iΣmi,kiM2)⊕ (⊕jΣrjAsj)⊕ ΣnAb; or (A.0.2)

H∗,∗(X) ∼= (⊕iΣmi,kiM2)⊕ (⊕jΣrjAsj)⊕ Σn,cM2. (A.0.3)

where in both equations mi, rj < n. We show the first case cannot happen.

Suppose to the contrary the cohomology of X is given by A.0.2. Let p be a

nonfixed point and consider the punctured space X − {p, σp} ' X − {D(p), σD(p)}

where D(p) is a small open disk around p that does not intersect its conjugate disk

σD(p). Note X − {D(p), σD(p)} is an n-manifold with boundary, so

Hj
sing(X − {D(p), σD(p)}) = 0 for j ≥ n.

We can put a C2-CW structure on X − {D(p), σD(p)} with no cells of dimension

greater than n. The map q : X − {D(p), σD(p)} → (X − {D(p), σD(p)})/C2

will be a cellular map that induces a levelwise surjective map on the cellular chain

complexes. Using this map of chain complexes and the above fact, a diagram chase

shows

Hj
sing((X − {D(p), σD(p)})/C2) = 0 for j ≥ n.

By the quotient lemma given in 3.0.1, it follows that Hj,0(X − {p, σp}) = 0 for

j ≥ n.

Consider the pair (X,X − {p, σp}). Note

H∗,∗(X,X − {p, σp}) ∼= H̃∗,∗(X/(X − {D(p), σD(p)})) ∼= H̃∗,∗(C2+ ∧ Sn) ∼= ΣnA0.

We have the following diagram where the rows are exact:
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Hn,0(X,X − {p, σp}) Hn,0(X) Hn,0(X − {p, σp})

Hn
sing(X,X − {p, σp}) Hn

sing(X) Hn
sing(X − {p, σp})

ψ ψ ψ

The right-hand groups are both zero by the above discussion, so the left horizontal

maps are both surjective. The middle vertical map is surjective based on the

decomposition given in A.0.2, while the left vertical map is given by the diagonal

map

H̃∗,∗(C2+ ∧ Sn) ∼= H̃∗sing(S
n)→ H̃∗sing(S

n ∨ Sn) ∼= H̃∗sing(S
n)⊕ H̃∗sing(Sn).

Thus we have the following commutative diagram coming from the left square

where ∆ is the diagonal map and ∇ is the fold map.

Z/2 Hn,0(X)

Z/2⊕ Z/2 Z/2

∆ ψ

∇

We have arrived at a contradiction: going around the diagram one way is

zero, while the other way is nonzero. We conclude the cohomology of X must

have a decomposition as in A.0.3. In particular, there is a unique free summand in

topological dimension n, and furthermore there are no other summands generated

in topological dimension greater than or equal to n.

We now show this free summand is generated in weight k. Let’s reconsider

the quotient map

q : X → X/(X −D) ∼= Sn,k.

Let s ≥ k. We have the following map between the forgetful long exact sequences

for X and Sn,k.
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. . . H̃n−1,s−1(Sn,k) H̃n,s(Sn,k) H̃n
sing(S

n,k) . . .

. . . H̃n−1,s−1(X) H̃n,s(X) H̃n
sing(X) . . .

ρ

q∗

ψ

q∗ q∗∼=

ρ ψ

Recall H̃∗,∗(Sn,k) ∼= Σn,kM2 by the suspension isomorphism. We provide an

illustration of this cohomology below for reference. The above map of long exact

p

q

n

k

FIGURE 38. The reduced cohomology of Sn,k.

sequences is thus

0 Z/2 Z/2

H̃n−1,s−1(X) H̃n,s(X) Z/2

q∗

ψ

∼=

q∗ q∗∼=

ρ ψ

The square on the right shows

q∗ : H̃n,s(Sn,k)→ H̃n,s(X)

is injective for all s ≥ k. If we let a ∈ H̃n,k(Sn,k) be the generator, the exactness

also shows the nonzero element q∗a is not in the image of ρ.

Returning to decomposition given in A.0.3, we can write q∗a as an M2-

combination of generators of the summands. Observe a τ -multiple of the generator

of the summand Σn,cM2 must appear in this linear combination since otherwise q∗a

would be in the image of ρ. Thus the weight c must be less than or equal to k.
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To see c = k, note ρ-localization will yield a generator in H̃n−c
sing(X

C2). Since

n−k is the largest dimension appearing in the fixed set, it must be that n−c ≤ n−k

or c ≥ k. We conclude c = k, as desired.

We end by mentioning one corollary of the above proof.

Corollary A.0.2. Let X be an n-dimensional nonfree C2-manifold and let x ∈ XC2

be a point in a component of the fixed set of smallest codimension k. Then the map

q : X → Sn,k that collapses the complement of a small disk around x to a point

induces a split injection.

Proof. In the proof above, we showed q∗a where a is the generator of H̃∗,∗(Sn,k)

generates a free summand of H∗,∗(X). This implies the map is injective, and it is

split because M2 is self-injective.
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APPENDIX B

C2-VECTOR BUNDLES AND THOM ISOMORPHISM THEOREMS

In this appendix, we provide some background on C2-vector bundles and then

prove the Thom isomorphism theorems given as Theorem 1.4.1 and Theorem 1.5.1

in the introduction. Another approach to the Thom isomorphism is given in [3] and

uses a grading system larger than the usual RO(G)-grading. Presumably there is a

connection between the two approaches, but we haven’t investigated this.

The two main theorems in this appendix are broken into two parts. The

first part focuses on the existence of the Thom classes and their relations to the

cohomology of the fibers. The second part focuses on the map given by cupping

with the Thom class.

Notation B.0.1. All coefficients in this section are understood to be Z/2. Given a

vector bundle E, we will often write E ′ for the complement of the zero-section.

B.1. Background

We begin by reviewing C2-vector bundles. The following can be found in

Section 1 of [15].

Definition B.1.1. Let X be a C2-space. A C2-vector bundle over X is the

data of a nonequivariant vector bundle π : E → X such that E is a C2-space.

Furthermore, C2 should act on E via vector bundle maps over the action of C2 on

X. Explicitly, the following diagram should commute where σ denotes the action of

C2
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E E

X X

σ

π π

σ

and for each x ∈ X the restriction of the action to the fibers

Ex Eσx
σ

should be a linear map.

Many of the constructions for nonequivariant bundles exist for C2-vector

bundles. For example, any C2-vector bundle can be given a C2-invariant Euclidean

metric that allows us to define the unit disk bundle and the unit sphere bundle,

which in turn allows us to define the Thom space. Also, given an equivariant map

f : Y → X and a vector bundle E → X we can form the pullback bundle

f ∗E → Y . When working with these pullback bundles, the following important

fact is still true; see [15] for a proof.

Lemma B.1.2. Let X and Y be C2-CW complexes. Suppose f, g : Y → X are

equivariantly homotopic and E → X is a C2-vector bundle. Then f ∗E ∼= g∗E as

C2-vector bundles over Y .

This allows us to prove the following.

Lemma B.1.3. Let E → X be a finite dimensional C2-vector bundle over

a C2-CW complex. Suppose x, y are two fixed points contained in the same

connected component of XC2. Then the fibers Ex and Ey are isomorphic as C2-

representations.

Proof. Consider the maps jx : ∗ ↪→ X and jy : ∗ ↪→ X which include the point

as x and y, respectively. Since x and y are in the same connected component of
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the fixed set, these two inclusions are homotopic. Thus j∗xE
∼= j∗yE which implies

Ex ∼= Ey.

While many of the constructions and basic lemmas carry over from

nonequivariant vector bundle theory, issues arise when we start considering

cohomology. In particular, there is no direct analog of the Thom isomorphism

theorem in Bredon cohomology that holds for general vector bundles in Z/2-

coefficients, as seen in the following example.

Example B.1.4. Let E → S1,1 be the nontrivial one-dimensional bundle over

S1,1. An illustration of the disk bundle is shown below. As usual, the fixed set is

shown in blue, while conjugate points are indicated by matching symbols. In this

bl l

*

*

ut

ut

⊗

⊗

b

b

b

FIGURE 39. The Möbuis bundle over S1,1.

example, there are two components of the fixed set of the base space, both of which

are isolated points. Over one point, the fiber is isomorphic to the C2-representation

R1,0; over the other point, the fiber is isomorphic to the C2-representation R1,1. We

have

H∗,∗(E,E − 0) ∼= H∗,∗(DE,SE) ∼= H̃∗,∗(DE/SE)

where DE and SE are the unit disk and unit sphere bundle, respectively. Now

DE/SE is a familiar space: the underlying space is the projective plane, so in

particular, it is a C2-surface with exactly one fixed circle and one fixed point. The

cohomology is given by Theorem 6.0.6 to be
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H̃∗,∗(DE/SE) ∼= Σ1,1M2 ⊕ Σ2,1M2.

On the other hand, the cohomology of the base space is given by the suspension

isomorphism to be

H∗,∗(S1,1) ∼= M2 ⊕ Σ1,1M2.

We see the cohomology of the Thom space is not a shift of the cohomology of

the base space, but there are still similarities. There are the same number of free

summands, and both summands are shifted by one topological dimension. There

is also a unique class in H∗,∗(E,E − 0) that generates a free summand and has

topological dimension equal to the dimension of the bundle. Note the weight of this

class corresponds to the maximum weight representation over the fixed set. This

class will be the Thom class described in Theorem B.2.1.

B.2. The Theorem for Nonfree Bundles, Part I

There is no direct analog of the Thom isomorphism theorem, but the above

example hints there may still be connections between the cohomology of the base

space and the cohomology of the Thom space. Indeed, we prove the existence of a

unique class that acts similarly to the singular Thom class for bundles over nonfree,

finite C2-CW complexes. In this part, we show the class generates a free summand

and restricts to τ -multiples of the generators of the cohomology of the fibers. In

a later subsection, we show cupping with this class gives an isomorphism within a

certain range.

We begin with some setup. Let X be a finite, nonfree C2-CW complex and

E → X be an n-dimensional C2-vector bundle. Let X1, . . . , Xm denote the

connected components of the fixed set XC2 . By Lemma B.1.3, for each Xi there
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is an integer qi such that for all x ∈ Xi, Ex ∼= Rn,qi . Let q = max{q1, . . . qm} be the

largest weight. We now restate and prove the first parts of Theorem 1.4.1.

Theorem B.2.1 (Nonfree Bundles, Part I). Let X, π : E → X, n, Xi, qi and q be

defined as above and let E ′ = E − 0. There exists a unique class uE ∈ Hn,q(E,E ′)

such that the following holds:

(i) ψ(uE) is the singular Thom class, where ψ : Hn,q(E,E ′)→ Hn
sing(E,E

′) is the

forgetful map;

(ii) M2 · uE ∼= Σn,qM2, where M2 · uE denotes the submodule generated by uE;

(iii) For every i and x ∈ Xi, the class uE restricts to τ q−qiαx where αx is the

generator of H∗,∗(Ex, Ex − 0) ∼= H̃∗,∗(Sn,qi);

(iv) For every x ∈ X \ XC2, the class uE restricts to the unique nonzero class in

Hn,q(Ex,σx, Ex,σx−0) ∼= H̃n,q(Sn,0∧C2+) where Ex,σx = π−1({x, σ}) ∼= C2×Rn.

Proof. The proof of (i) and (ii) will be shown together, followed by a short proof

of (iii) and then (iv). Begin by considering the fixed set of the vector bundle E.

Based on the definition of C2-vector bundles, EC2 maps to XC2 , and over each

component Xi, we have a vector bundle Ei = (π−1(Xi))
C2 of dimension n − qi.

By the nonequivariant Thom isomorphism theorem,

Hk+n−qi
sing (Ei, E

′
i)
∼= Hk

sing(Xi).

In particular, H`
sing(Ei, E

′
i) = 0 for all ` < n − qi. Now n − q is the smallest vector

bundle rank amongst the components EC2 . Since

H`
sing(E

C2 , (E ′)C2) ∼=
⊕m

i=1H
`
sing(Ei, E

′
i),
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we see that H`
sing(E

C2 , (E ′)C2) = 0 for ` < n − q. We will be using this fact

throughout the proof.

Since X is a finite C2-CW complex, the Thom space DE/SE is also a finite

C2-CW complex. Thus Theorem 3.0.11 holds, and the cohomology of the pair

(E,E ′) must decompose as

H∗,∗(E,E ′) ∼= (⊕iΣki,`iM2)⊕ (⊕jΣsj ,0Arj).

We now use the forgetful long exact sequence to connect the above

decomposition to the singular cohomology of (E,E ′). Based on the summands

above, for each i there is a class in bidegree (ki, `i) that is not the in the image

of ρ and thus forgets to a distinct nonzero class in Hki
sing(E,E

′). Similarly for each j

there is a class in bidegree (sj, 0) that is not in the image of ρ and thus forgets to a

distinct nonzero class in H
sj
sing(E,E

′). The Thom isomorphism theorem applied to

H∗sing(E,E
′) implies Hk

sing(E,E
′) = 0 if k < n and Hn

sing(E,E
′) = Z/2. We conclude

ki ≥ n and sj ≥ n, and even better, exactly one of these integers must be n. Thus

there are really two cases for this decomposition, both with ki, sj > n:

H∗,∗(E,E ′) ∼= Σn,cM2 ⊕ (⊕iΣki,`iM2)⊕ (⊕jΣsj ,0Arj), or (B.2.1)

H∗,∗(E,E ′) ∼= (⊕iΣki,`iM2)⊕ Σn,0Ad ⊕ (⊕jΣsj ,0Arj). (B.2.2)

Consider the following portion of the forgetful long exact sequence for (E,E ′):

Hn,q(E,E ′) Hn
sing(E,E

′) Hn,q−1(E,E ′)
ρ ψ g ρ

There is a unique nonzero class u ∈ Hn
sing(E,E

′), namely the Thom class of E.

Thus either

(a) there is a nonzero class α ∈ Hn,q(E,E ′) such that ψ(α) = u; or
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(b) g(u) = β 6= 0.

Suppose to the contrary (b) holds. If we had a decomposition as in B.2.2,

then the forgetful map would be nonzero in topological dimension n for all weights

which violates (b). Thus it must be that the cohomology of X has a direct sum

decomposition as in B.2.1. Based on this decomposition, the forgetful map ψ :

Hn,j(E,E ′) → Hn
sing(E,E

′) is nonzero for all j ≥ c where c is the weight of the free

summand in topological dimension n. Since we are still in case (b), it must be that

q < c. Now by the ρ-localization given in Lemma 3.0.2, Hn−c
sing(E

C2 , (E−0)C2) ∼= Z/2,

but n − c < n − q and this contradicts the discussion in the first paragraph of this

proof. We conclude (b) is false, so it must be that (a) holds.

We have shown there exists a class α ∈ Hn,q(E,E ′) such that ψ(α) = u. This

class α is our candidate for uE in statement (i) of the theorem. Pick an index j

such that qj = q and let y ∈ Xj. The inclusion ι : (Ey, E
′
y) ↪→ (E,E ′) induces a map

between the forgetful long exact sequences. The relevant portion is shown below:

Hn,q(E,E ′) Hn
sing(E,E

′) Hn,q−1(E,E ′)

Hn,q(Ey, E
′
y) Hn

sing(Ey, E
′
y) Hn,q−1(Ey, E

′
y)

ψ

ι∗

g

ι∗ ∼= ι∗

ψ

∼=

The middle vertical map is an isomorphism by the nonequivariant Thom

isomorphism theorem. The bottom left map is an isomorphism because

Hn,q(Ey, E
′
y)
∼= H̃n,q(Sn,q). The top left map is surjective from the above discussion.

Thus the element α ∈ Hn,q(E,E ′) has the property that ι∗(α) is the generator

of H̃∗,∗(Sn,q) ∼= Σn,qM2. Hence θα 6= 0 because θι∗(α) 6= 0. In [13] it is shown

that θ detects free submodules and furthermore M2 is self-injective. It must be that

M2 · α ∼= Σn,qM2, and this submodule splits off as a summand. We have shown (i)

and (ii) hold.
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For (iii), let x ∈ Xi. The statement follows from the below diagram and

noting H∗,∗(Ex, E
′
x)
∼= H̃∗,∗(Sn,qi) ∼= Σn,qiM2 (recall, q ≥ qi).

Hn,q(E,E ′) Hn
sing(E,E

′)

Hn,q(Ex, E
′
x) Hn

sing(Ex, E
′
x)

ψ

ι∗ ι∗ ∼=

ψ

∼=

For (iv), let x ∈ X \ XC2 . The fiber Ex,σx is isomorphic to C2 × Rn and thus

H∗,∗(Ex,σx, E
′
x,σx)

∼= H̃∗,∗(C2+ ∧ Sn,0). Consider the following diagram:

Hn,q(E,E ′) Hn
sing(E,E

′)

Hn,q(Ex,σx, E
′
x,σx) Hn

sing(Ex,σx, E
′
x,σx)

ψ

ι∗ ι∗

ψ

The bottom map is the diagonal map. Similarly from the singular Thom

isomorphism theorem, the right vertical map is also the diagonal map. Thus the

left vertical map is nonzero, and ι∗(uE) is the unique nonzero element.

The following corollary is helpful for understanding the fundamental classes in

Section VII.

Corollary B.2.2. Let X, E → X, n, and q be defined as above. Then the forgetful

map ψ : Hn,t(E,E ′)→ Hn
sing(E,E

′) is an isomorphism for all t ≥ q.

Proof. Fix t ≥ q. By parts (i) and (ii) of the above theorem, the forgetful map

ψ : Hn,t(E,E ′)→ Hn
sing(E,E

′) is surjective. Namely, the element τ t−q · uE forgets to

the unique nonzero class in Hn
sing(E,E

′). We show Hn,t(E,E ′) ∼= Z/2 to conclude

this map is an isomorphism.

In the previous proof, it was shown

H∗,∗(E,E ′) ∼= Σn,qM2 ⊕ (⊕iΣki,`iM2)⊕ (⊕jΣsj ,0Arj)
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where ki, sj > n. The summands in the last family contribute no nonzero elements

to Hn,t(E,E ′), but it is possible a priori that an M2-multiple of a generator of some

free summand is in bidegree (n, t). In other words, the lattice point (n, t) might fall

in the bottom cone of some other M2. Assume to the contrary this happens.

All lattice points (x, y) in the bottom cone of a summand generated at (ki, `i)

satisfy the inequality y−(`i−2) ≤ x−ki. Thus t−(`i−2) ≤ n−ki or ki−`i+2 ≤ n−t.

Now n − t ≤ n − q, so we have ki − `i < n − q. From the first paragraph of the

previous proof and ρ-localization, ki − `i ≥ n− q for all i, so this is a contradiction.

We conclude Hn,t(E,E ′) ∼= Z/2, and the proof is complete.

B.3. The Theorem for Free Bundles, Part I

We now prove an analog to the above for free bundles. This was given as

parts (i)-(iii) of Theorem 1.5.1 in the introduction. Let X be an equivariantly

connected free C2-CW complex. By equivariantly connected, we simply mean X

cannot be covered by two nonempty, disjoint, equivariant open subsets.

Theorem B.3.1. Let X be as above. Suppose E → X is an n-dimensional

equivariant vector bundle. Then for every integer q, there exists a unique class

uE,q ∈ Hn,q(E,E ′) such that the following holds:

(i) ψ(uE,q) is the singular Thom class, where ψ : Hn,q(E,E ′) → Hn
sing(E,E

′) is

the forgetful map;

(ii) τ · uE,q = uE,q+1;

(iii) For every pair of conjugate points x, σx ∈ X, the class uE,q restricts to the

unique nonzero element in Hn,q(Ex,σx, E
′
x,σx)

∼= H̃n,q(Sn ∧ C2+).
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Proof. Note H∗,∗(E,E ′) ∼= H̃∗,∗(DE/SE) where DE and SE are the unit disk

and sphere bundles, respectively. Since X is a finite CW-complex and E is a finite

dimensional vector bundle, the Thom space DE/SE is also a finite CW-complex,

and hence a finite C2-CW complex. The space DE/SE has exactly one fixed point,

so Corollary ?? implies there are integers sj, rj such that

H∗,∗(E,E ′) ∼= H̃∗,∗(DE/SE) ∼= ⊕jΣsj ,0Arj . (B.3.3)

We find restrictions on the integers sj. By the nonequivariant Thom

isomorphism theorem, Hk
sing(E,E

′) = 0 for k < n. Based on the isomorphism in

B.3.3, for each j and integer q, the forgetful map

ψ : Hsj ,q(E,E ′)→ H
sj
sing(E,E

′)

must be nonzero by the forgetful long exact sequence. Hence sj ≥ n for all j.

Consider the following portion of the forgetful long exact sequence for some

integer q:

. . .
ρ−→ Hn,q(E,E ′)

ψ−→ Hn
sing(E,E

′) −→ Hn,q−1(E,E ′)
ρ−→ . . . .

Based on the decomposition in B.3.3, Hn,q(E,E ′) ∼= Hn,q−1(E,E ′). Now if X is

connected in the nonequivariant sense, then Hn
sing(E,E

′) ∼= Z/2 and so by exactness

of the above, it must be that Hn,q(E,E ′) ∼= Z/2 or Hn,q−1(E,E ′) ∼= Z/2. Whichever

is given by exactness, we can then conclude Hn,i(E,E ′) ∼= Z/2 for all integers

i. If X ∼= C2 × Y for some nonequivariant connected space Y , then the vector

bundle E must also have two nonequivariant connected components. In particular,

E ∼= C2 × F where F = π−1(Y ) is an n-dimensional vector bundle over Y . In this

case Hn,i(E,E − 0) ∼= Hn
sing(F, F − 0) ∼= Z/2 for all i by Lemma 3.0.6.
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We have shown in either case Hn,q(E,E − 0) ∼= Z/2 for all q. If we let

uE,q be the unique nonzero element in Hn,q(E,E − 0), then properties (i) and

(ii) immediately follow. Lastly, property (iii) holds by considering the following

diagram:

Hn,q(E,E ′) Hn,q(Ex,σx, E
′
x,σx)

∼= H̃n,q(Sn ∧ C2+)

Hn
sing(E,E

′) Hn
sing(Ex,σx, E

′
x,σx)

∼= H̃n
sing(S

n ∧ C2+)

If E is nonequivariantly connected, then the left vertical map is an isomorphism,

and the bottom horizontal map is injective by the singular Thom isomorphism

theorem. If E ∼= F t F , then the the left vertical map is injective, and the bottom

horizontal map is an isomorphism by the singular Thom isomorphism theorem. In

either case, the top horizontal map is nonzero, and the result follows after noting

both groups are Z/2.

B.4. Part II of the Theorems

In the nonequivariant setting, cupping with the Thom class gives an

isomorphism from the cohomology of the base space to a shift of the cohomology

of the Thom space. It is natural to ask what happens when we cup with the

equivariant Thom classes defined in the previous subsections. We explore that

question now, first introducing some definitions and notation.

Notation and Terminology

Given an M2-module that is isomorphic to a direct sum of shifts of free

modules and modules of the form Ar = τ−1M2/(ρ
r+1), we will refer to the Ar-

summands as “antipodal summands”. Given an antipodal summand of the form
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Σs,0Ar, we can associate the tuple (s; r), where an antipodal summand with tuple

(s; r) begins in topological dimension s and ends in topological dimension (s + r).

Lastly for an M2-module V and an element v ∈ V , we will write wt(v) for the

weight of v.

Definition B.4.1. Let X be a finite C2-CW complex and π : E → X be an n-

dimensional vector bundle. If X is nonfree, let uE ∈ Hn,q(E,E ′) be the Thom class

and define φE : H∗,∗(X) → H∗+n,∗+q(E,E ′) to be the map φE(x) = π∗(x) ^ uE. If

X is free, let φE,q denote the degree (n, q) map φE,q(x) = π∗(x) ^ uE,q.

Here are the two main theorems we will prove in this subsection:

Theorem B.4.2 (Nonfree Bundles, Part II). Let X, E → X be as in Theorem

B.2.1. We can add the following properties to this theorem:

(v) The map φE is an isomorphism in bidegrees (f, g) where g ≥ f ;

(vi) Suppose H∗,∗(X) ∼= (⊕ci=1Σki,`iM2) ⊕ (⊕dj=1Σsj ,0Arj). Then H∗,∗(E,E ′) ∼=

(⊕ci=1Σki+n,`
′
iM2)⊕ (⊕dj=1Σsj+n,0Arj). where the weights `′i satisfy `i + q ≥ `′i ≥

0;

(vii) If in fact Ex ∼= Ey for all x, y ∈ XC2, then φE is an isomorphism in all

bidegrees and H∗,∗(X) ∼= H∗+n,∗+q(E,E ′).

Theorem B.4.3 (Free Bundles, Part II). Let X and E → X be as in Theorem

B.3.1. The following property can be added to the theorem:

(iv) The map φE,j : H∗,∗(X) → H∗+n,∗+j(E,E ′) is an isomorphism for all j. In

particular, H∗,∗(E,E ′) ∼= H∗+n,∗(X).

114



We prove these theorems in a sequence of lemmas. We begin with trivial

bundles, and as in singular cohomology, the isomorphism follows easily from the

suspension isomorphism.

Lemma B.4.4. Let X be a finite C2-CW complex and E = Rn,q × X be a trivial

C2-vector bundle over X. If X is nonfree, then φE is an isomorphism. If X is free,

then φE,j is an isomorphism for all j

Proof. Note H∗,∗(E,E ′) ∼= H̃∗,∗(X+ ∧ Sn,q) and so we have the suspension

isomorphism

Σn,q : H∗,∗(X)→ H̃∗+n,∗+q(X+ ∧ Sn,q) ∼= H∗,∗(E,E ′).

This agrees with the map φE if X is nonfree, and thus φE is an isomorphism.

If X is free, the above agrees with the map φE,q. In this case the cohomology

of (E,E ′) and X are both τ−1M2-modules. By property (ii) of Theorem B.3.1,

uE,j = τ j−quE,q so φE,j = τ j−qφE,q. We see that φE,j is a composition of

isomorphisms, and thus an isomorphism for all j.

To prove the main theorems, we will choose a cellular filtration for X such

that each successive space is obtained by attaching a single equivariant cell. This

will require us to understand how the Thom class behaves when restricted to the

boundary of our trivial and nontrivial cells. The following lemmas address these

questions.

Lemma B.4.5. Let X be a finite C2-CW complex and E → X be an n-dimensional

C2-vector bundle. Suppose A is a subcomplex of X and let EA = E|A.

(i) Suppose X is nonfree and the maximum weight over XC2 is q. If A is nonfree

and the maximum weight over AC2 is qA, then the Thom class uE restricts to

τ q−qAuEA. If A is free, then uE restricts to uEA,q.
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(ii) Suppose X is free. Then the Thom class uE,j restricts to uEA,j for all j.

Proof. Both (i) and (ii) follow by considering how the Thom classes restrict to the

fibers and the uniqueness of these classes given in Theorem B.2.1.

Lemma B.4.6. Let E be an n-dimensional bundle over the trivial sphere Sj,0 with

j ≥ 1. Then the map φE is an isomorphism in all bidegrees.

Proof. We proceed by induction on j beginning with j = 1. The base space is

trivial and connected, so there is a q such that Ex ∼= Rn,q for all x ∈ S1,0. Cover

S1,0 with two contractible open sets U1 and U2 such that U1 ∩ U2 is homotopic to

S0. Let Ei = E|Ui and E12 = E|U1∩U2 . Note Ei ∼= Rn,q × Ui and similarly E12
∼=

Rn,q × (U1 ∩ U2). Consider the following map between Mayer-Vietoris sequences:

Hf−1,g(U1 ∩ U2) Hf,g(S1,0) Hf,q(U1)⊕Hf,g(U2)

Hf−1,g(E12, E
′
12) Hf,g(E,E ′) Hf,q(E1, E

′
1)⊕Hf,g(E2, E

′
2)

φE12
∼= φE φE1

⊕φE2
∼=

Note the diagram commutes by Lemma B.4.5. Now the outer vertical maps and the

previous and following vertical maps not shown are isomorphisms by Lemma B.4.4.

By the five-lemma, the middle vertical map must also be an isomorphism.

For the inductive step. Let j ≥ 2 and cover Sj,0 with two contractible open

sets U1, U2 such that U1 ∩ U2 ' Sj−1,0. We can again use the map between Mayer-

Vietoris sequences now with Lemma B.4.4 and the inductive hypothesis to prove

the claim.

Lemma B.4.7. Suppose Y is a finite CW complex and consider the free space

X = C2 × Y . Let E → X be an n-dimensional vector bundle over X. Then φE,j is

an isomorphism for all j.
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Proof. Let C2 = {0, 1} and F = π−1({1} × Y ). Then F → Y is a nonequivaraint

bundle and E ∼= C2 × F . We have fold maps ∇ : X → Y and ∇ : E → F .

On singular cohomology, note ∇∗ = ∆ where ∆ is the diagonal map. Consider the

following commutative diagram

H∗,∗(X) H∗+n,∗(E,E ′)

H∗sing(X) H∗+n,∗sing (E,E ′)

H∗sing(Y ) H∗+n,∗(F, F ′)

φE,0

ψ ψ

φE

φF

∆ ∆

From the proof of Lemma 3.0.6, the image of H∗,∗(X) and H∗,∗(E,E ′) under the

forgetful map is the same as the image of H∗sing(Y ) and H∗,∗(F, F ′) under the

diagonal map, respectively. The bottom map is an isomorphism by the singular

Thom isomorphism theorem, and thus the top map is an isomorphism as well.

We have shown φE,0 is an isomorphism. Since H∗,∗(X) and H∗,∗(E,E ′) are

both τ−1M2-modules and φE,j = τ jφE,0, we see that φE,j must be an isomorphism

for all j.

In what follows, we will need to understand how powers of τ act on the

cohomology of a space. The result below tells us this action is an isomorphism in

a certain range.

Lemma B.4.8. Let X be a finite C2-CW complex. For k > 0, action by τ k gives

an isomorphism τ k : Hf,g(X)→ Hf,g+k(X) if g ≥ f .

Proof. By inspection this holds for modules of the form Σs,0Ar and Σp,qM2 where

p ≥ q. The statement then follows because H∗,∗(X) is isomorphic to a direct sum of

such modules by Theorem 3.0.11.
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We are now ready to prove part (v) of Theorem B.4.2.

Lemma B.4.9. Let X be a finite, nonfree C2-CW complex and π : E → X be an

n-dimensional vector bundle with maximum weight q over XC2. Then the map φE

is an isomorphism in bidegrees (f, g) such that g ≥ f .

Proof. Fix a C2-CW structure on X. Choose a cellular filtraton

A0 ⊂ A1 ⊂ · · · ⊂ An = X

such that A0 is the zero skeleton and each Ai+1 is obtained by adding a single

equivariant cell to Ai. Let Ei = E|Ai . We inductively prove the statement holds

for each φEi . The weight of the class uEi may change as i changes, and thus let

qi = wt(uEi). Note qi ≤ q for all i.

The zero skeleton A0 is a disjoint union of fixed points xi and free orbits

{yj, σyj}. The restricted bundle E0 is a disjoint union of trivial vector bundles of

the form Vj = {xi} × Rn,kj and V` = {y`, σy`} × Rn. Let k = max{kj}. In this

case, φE0 is just the sum of τ k−kjφVj = φVjτ
k−kj and φVj ,k, each of which is an

isomorphism in the described range by Lemmas B.4.4 and B.4.8.

Now for i ≥ 0 assume φEi is an isomorphism in the described range. The zero

skeleton A0 must be nonfree since X is nonfree, and thus Ai is nonfree. There are

two cases based on the cell we are attaching to form Ai+1. First, assume the cell is

a trivial cell of the form C2/C2 × Dj for some j ≥ 1. Let Ṽ = Dj − ∂Dj and let

Ũ ⊂ Dj be a small neighborhood of the boundary of Dj such that Ũ ' ∂Dj and

Ũ ∩ Ṽ ' Sj−1. Now let U ⊂ Ai+1 be the open set consisting of Ai and the image

of Ũ under the attaching map, and let V be the image of Ṽ in Ai+1. Note U ' Ai,

V ' Ṽ ' pt, and U ∩ V ' Sj−1,0.
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Our plan is to consider the maps between Mayer-Vietoris sequences as in

Lemma B.4.6. To do so, we introduce some notation. Let G1 = Ei|U , G2 = Ei|V ,

and G12 = Ei|U∩V . Note the weights of the corresponding Thom classes are

less than or equal to the weight of uEi+1
. Let gk = qi+1 − wt(uGk) and g12 =

qi+1 − wt(uG12). Now consider the following map between Mayer-Vietoris sequences

where g ≥ f .

. . . Hf−1,g(U ∩ V ) Hf,g(Ai+1)

. . . Hf−1+n,g+q(G12, G
′
12) Hf+n,g+q(Ei+1, E

′
i+1)

τg12φG12
∼= φEi+1

Hf,g(U)⊕Hf,g(V ) Hf,g(U ∩ V ) . . .

Hf+n,g+q(G1, G
′
1)⊕Hf+n,g+q(G2, G

′
2) Hf+n,g+q(G12, G

′
12) . . .

τg1φG1
⊕τg2φG2

∼= τg12φG12
∼=

The upper left and bottom right vertical maps are given by τ g12φG12 which is equal

to φG12τ
g12 . By Lemma B.4.8, τ g12 is an isomorphism since g ≥ f > f − 1. By

Lemma B.4.6, φG12 is an isomorphism on τ g12Hf−1,g(X). Similarly the bottom left

vertical map and the previous vertical map that is not pictured are isomorphisms

by the inductive hypothesis and Lemma B.4.4. The five-lemma now implies the

upper right vertical map is an isomorphism.

This completes the case when the attached cell is trivial. The argument

is similar when the attached cell is of the form C2 × Dj. Again let U be a

neighborhood of Ai such that U ' Ai, and now let V be the image of C2 × (Dj −

∂Dj). The intersection will be homotopic to C2 × Sj−1. We can again use Mayer-

Vietoris and the five-lemma, now replacing φG12 with φG12,q and φG2 with φG2,q.

This will complete the proof in the case when the attached cell is free.
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Corollary B.4.10. Let X be a nonfree, finite C2-CW complex and E → X be an

n-dimensional C2-vector bundle. Suppose there is a q such that for every x ∈ XC2,

Ex ∼= Rn,q. Then φE is an isomorphism in all bidegrees.

Proof. In the previous proof, the values of qi will be constant, and there will be

no powers of τ needed in the maps between the Mayer-Vietoris sequences. In

particular, one will have that maps φG12 (or φG12,q if the attached cell is free) and

φG1 ⊕ φG2 (or φG1 ⊕ φG2,q if the attached cell is free) are isomorphisms for all f, g,

and by the five-lemma φEi+1
will be an isomorphism for all f, g.

We now provide a proof of the main theorems, beginning with the statement

for nonfree bundles.

Proof of Theorem B.4.2. Parts (v) and (vii) were done in Lemma B.4.9 and

Corollary B.4.10. The proof of the isomorphism in (vi) is entirely algebraic, and

follows from Theorem B.5.3 below.

Proof of Theorem B.4.3. We can put a cellular filtration on the free C2-CW

complex X as in the proof of Lemma B.4.9. The proof will then follow similarly,

though now we will only be attaching free cells. By taking φE,0, we obtain the

isomorphism H∗,∗(X) ∼= H∗+n,∗(E,E ′).

B.5. Algebra Proof

We conclude this appendix by stating and proving a theorem about maps

between nice M2-modules that are isomorphisms in a certain range. This theorem

will imply property (vi) of Theorem B.4.2.
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Notation and Terminology

We say an M2-module is “nice” if it is a direct sum of finitely many copies of

shifted free modules and shifted copies of Ar = τ−1M2/(ρ
r+1) for various values

of r, and furthermore, if all shifts are given by actual representations, i.e. the

shifts are given by (p, q) where p ≥ q ≥ 0. We will refer to the Ar-summands as

“antipodal summands”. Given an antipodal summand of the form Σs,0Ar, we can

associate the tuple (s; r); note an antipodal summand with tuple (s; r) begins in

topological dimension s and ends in topological dimension (s + r). Given an M2-

module V and an element v ∈ V we will write wt(v) for the weight of v. When

considering a single bidegree, we will write V f,g for the elements of V in bidegree

(f, g).

In the proof, we will consider certain quotients, submodules, and localizations

of nice M2-modules in order to detect the properties of free versus antipodal

summands. For an M2-module M let T (M) = {m ∈ M : ρim = 0 for some i}. If M

is a nice module, note T (M) consists of the antipodal summands and the bottom

cones of free summands. We can then consider the quotient M/T (M) which is

isomorphic to a direct sum of top cones, one for each free summand in M . We will

denote such quotients by M̃ . If we further quotient to form M̃/ im(ρ), we obtain a

module isomorphic to a direct sum of shifts of the module Z/2[τ ], one for each free

summand. We can also consider the localization τ−1T (M) which is isomorphic to

the antipodal summands of M .

We begin by proving a lemma about Z/2[t]-modules which will be useful when

considering the quotient M̃/ im(ρ).

Lemma B.5.2. Consider the graded polynomial ring R = Z/2[t] where |t| = 1. Let

M be a finitely generated, free R-module with R-basis {α1, . . . , αm}. Suppose N is
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another finitely generated, free R-module, and φ : M → N is a degree q map such

that φ : M g → N g+q is an isomorphism whenever g ≥ g0 for some integer g0. Then

there exists an R-basis {β1, . . . , βm} for N such that |αi|+ q ≥ |βi|.

Proof. There exist integers j1, . . . , jm such that g = |tjiαi| is larger than g0 and

constant for all i. The elements tjiαi form a linearly independent set in M g and

thus the images φ(tjiαi) form a linearly independent set in N g+q. This implies there

are at least m free summands in N . We can similarly use φ−1 in the range it exists

to show there can be at most m free summands in N . We conclude N has an R-

basis consisting of m elements.

We proceed by induction on m to show there is a basis {β1, . . . , βm} for N

such that |αi| + q ≥ |βi|. This is clear if the bases consist of exactly one element

since otherwise φ would be zero. For the inductive hypothesis, suppose we can find

such a basis whenever we have a map that is an isomorphism in sufficiently high

degrees between finitely generated, free R-modules of rank m − 1. Choose some R-

basis {b1, . . . , bm} for N and suppose φ(α1) =
∑

i εit
jibi where εi ∈ Z/2. Let bk be a

basis element of maximal degree such that the coefficient εi is nonzero. Reorder the

set so that this element is now b1. We can factor out powers of t to obtain

φ(α1) = tj1
(
b1 +

∑
i>1 εit

ji−j1bi
)
.

Let β1 = b1 +
∑

i>1 εit
ji−j1bi and note the set {β1, b2, . . . , bm} is still an R-basis for

N . Furthermore, we obtain a map

〈α2, . . . , αm〉 φ−→ N � N/〈β1〉

that is still an isomorphism in the desired range. By the inductive hypothesis, there

exists an R-basis β′2, . . . , β
′
m for the quotient such that |β′i| ≤ |αi| + q. Let βi be a

lift of β′i to N . Then β1, . . . , βm will be a basis for N such that |βi| ≤ |αi|+ q.
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Theorem B.5.3. Let V and W be two nice M2-modules such that V has c free

summands generated in bidegrees (ki, `i) and d antipodal summands with tuples

(sj; rj). Suppose φ : V → W is an (n, q)-degree M2-module map such that φ :

V f,g → W f+n,g+q is an isomorphism whenever g ≥ f . Then W has exactly c free

summands generated in bidegrees (ki + n, `′i) such that `i + qi ≥ `′i ≥ 0 and exactly d

antipodal summands with tuples (sj + n; rj).

Proof. One readily checks the restrictions φ : T (V )→ T (W ) and φ : im(ρ)→ im(ρ)

are isomorphisms in the given range. The map φ then descends to a map

φ̃ : (Ṽ / im(ρ))f,g → (W̃/ im(ρ))f+n,g+q

that is still an isomorphism when g ≥ f . The quotients Ṽ / im(ρ) and W̃/ im(ρ)

are isomorphic to a direct sum of shifts of the module Z/2[τ ], one for each free

summand in V and W , respectively. Explicitly

Ṽ / im(ρ) ∼=
⊕c

i=1 Σki,`iZ/2[τ ].

Fix a topological dimension k and consider (Ṽ / im(ρ))k,∗ and (W̃/ im(ρ))k+n,∗.

These are both finitely generated, free Z/2[τ ]-modules and the map

φ̃ : (Ṽ / im(ρ))k,g → (W̃/ im(ρ))k+n,g+q

is an isomorphism whenever g ≥ k. By Lemma B.5.2, there are respective bases

{α1, . . . , αm} and {β1, . . . , βm} for (Ṽ / im(ρ))k,∗ and (W̃/ im(ρ))k+n,∗ such that

wt(βi) ≤ wt(αi) + q. Lifts of the elements αi and βi to V and W will generate the

free summands in bidegrees (k, wt(αi)) and (k+n,wt(βi)) in V and W , respectively.

This proves the statement about the free summands.

We next consider the antipodal summands. Consider the localization

τ−1T (V ). Let F = Z/2[τ, τ−1] and note τ−1T (V ) is a finitely generated F [ρ]-
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module. By the decomposition of V into summands as an M2-module, we can say

explicitly

τ−1T (V ) ∼=
⊕d

j=1 Σsj ,0F [ρ]/(ρrj+1).

Similarly τ−1T (W ) is isomorphic to a direct sum of shifts of F [ρ]/(ρr+1), one for

each antipodal summand of W .

Note φ restricts to a map φ : T (V ) → T (W ) which then localizes to give a

map τ−1φ : τ−1T (V ) → τ−1T (W ) of finitely generated F [ρ]-modules. Since φ was

an isomorphism in bidegrees (f, g) such that g ≥ f , the map τ−1φ is guaranteed to

be an isomorphism in these bidegrees. Though, now that τ is invertible, we see that

τ−1φ is an isomorphism in all bidegrees. We conclude τ−1T (V ) ∼= τ−1T (W ) and W

must have exactly d antipodal summands with tuples (sj + n; rj).

124



REFERENCES CITED

[1] S. Araki and M. Murayama. τ -cohomology theories. Japan. J. Math. (N.S.),
4(2):363–416, 1978.

[2] S. R. Costenoble, T. Hudson, and S. Tilson. The Z/2-equivariant cohomology of
complex projective spaces. arXiv preprint arXiv:1811.07355, 2018.

[3] S. R. Costenoble and S. Waner. Equivariant Poincaré duality. Michigan Math.
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