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DISSERTATION ABSTRACT

Aaron Montgomery

Doctor of Philosophy

Department of Mathematics

June 2013

Title: Topics in Random Walks

We study a family of random walks defined on certain Euclidean lattices that are

related to incidence matrices of balanced incomplete block designs. We estimate the

return probability of these random walks and use it to determine the asymptotics of

the number of balanced incomplete block design matrices. We also consider the

problem of collisions of independent simple random walks on graphs. We prove

some new results in the collision problem, improve some existing ones, and provide

counterexamples to illustrate the complexity of the problem.
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CHAPTER I

INTRODUCTION

In this thesis, we investigate attributes of a particular Markov chain known as

a random walk. We begin with the intuitive definition of a random walk: if S is a

(countable) set, a random walk is envisioned as a walker that starts at some element

o of S and chooses where to go next according to some preset distribution. After

taking this step, the walker will take another step based on some preset distribution,

then another, and so forth. These distributions can (and often do) depend on where

the walker is, but they do not depend on the path the walker took to get there. If

the walker happens to wander back to some vertex that it has previously visited, its

options for how to take its next step are identical to what they were on its previous

visit.

For our purposes, a random walk on S is a function X : N → S with random

outputs. (We use N to denote the nonnegative integers.) We will typically denote

this function by Xn. The outputs of the function must be governed by a nonnegative

transition density function p : S × S → R with the property that for any x,

∑
y∈S

p(x, y) = 1.

This function corresponds to the ‘choices’ of the imaginary walker; the quantity p(x, y)

represents the probability that the walker, standing at x, will move next to y. For

n ≥ 2, we inductively define pn(x, y) via convolution; that is,

pn+1(x, y) =
∑
z∈S

pn(x, z)p(z, y).
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We then set

Po(Xn = x) = pn(o, x)

to give the distribution of the functionX. Our use of the subscript o on the probability

symbol P corresponds to the notion that the random walk is started at o. As is typical

of probability theory, we will only ‘define’ the function X in the sense of providing

the distribution of Xn.

With these definitions, it follows that a random walk is entirely determined by

the transition function p(x, y). Hence, to understand the random walk, we will need

stipulate how p(x, y) is generated. There are two primary ways that this will occur

in this thesis. The ‘classical’ definition of a random walk usually takes place on some

countable subset of a Euclidean lattice Rd. This is generally given by specifying a

sequence of random, independent, identically distributed increments ~ξi and specifying

that

Xn =
n∑
i=1

ξi.

(The empty sum should be regarded as the zero vector so that the walk starts at the

origin.) This definition will be the one used in Chapter II, but it requires the ambient

space to be a vector space and thus does not generalize well to graphs.

For our purposes, a graph G consists of a vertex set v(G) and an edge set e(G) ⊂

v(G) × v(G) that gives an adjacency relation. We will use x ∼ y to denote that

(x, y) ∈ e(G); that is, that there is an edge from x to y in G. We will use d(x) to

denote the vertex degree of x, and will require that d(x) < ∞ for all x ∈ v(G). The
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simple random walk on G will be defined by the transition density

p(x, y) =


1/d(x), x ∼ y

0, x 6∼ y

which will be used in Chapter III. We note that applying this definition to a Euclidean

lattice Zd gives a particular instance of the type of random walk on Rd as previously

defined. Specifically, this corresponds to the case where the vector ξi can be any

lattice vector of length 1, each selected with equal probability.

Finally, we also remark that the above machinery yields the definition of a

discrete-time random walk on S, which will be the one used by default in the sequel.

However, we will occasionally need to refer to a continuous-time random walk on

S. To construct a (random) function X : R≥0 → S, we will employ a sequence of

independent, identically distributed mean-1 exponential random variables Wi. If Xn

is a discrete-time random walk on G, we define the continuous-time random walk on

G by

Yt = XN(t)

where N(t) is the random variable

N(t) = min

{
s :

[
s∑
i=1

Wi

]
< t

}
.

The interpretation is that the Wi variables represent the wait time between moves of

the process Yt. This interpretation allows us to reframe the continuous-time walk in

terms of the discrete-time walk.
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In Chapter II, we will employ the theory of random walks to derive results

about the number of a certain type of combinatorially-defined matrix. We will apply

some basic Fourier analysis to the random walk, and will use this analysis to gain

information regarding the probability of its return to the origin. This will then

immediately yield results about the number of these combinatorially-defined matrices.

In Chapter III, we will consider two simultaneous independent random walks on a

given graph G and will ask about the probability that they will be in the same place

at the same time infinitely often. This question, while easy to state, turns out to have

a surprisingly delicate and difficult answer. We will not come close to fully answering

the question, but will provide some developments in that direction.
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CHAPTER II

COUNTING BALANCED INCOMPLETE BLOCK DESIGN INCIDENCE

MATRICES

In this chapter, we will relate a random walk on a certain Euclidean lattice to

the existence of a matrix that is important to combinatorial design theory. We will

then employ well-established techniques involving the random walk to gain knowledge

about the combinatorial matrices.

Definition 2.1. We say that an n×t matrix populated with 1’s and 0’s is an incidence

matrix of a balanced incomplete block design if there are positive integers k and ` such

that:

– each column has exactly k 1’s, and

– each pair of distinct rows has inner product `, which is independent of the choice

of the pair.

We will use BIBD as a shorthand for balanced incomplete block design. It is

well-known that the above conditions imply that the number of 1’s in each row is a

constant, which we will call r. The following relations between n, t, k, r, and ` are

also well-known:

tk = nr (2.1)

r(k − 1) = `(n− 1) (2.2)

tk(k − 1) = `n(n− 1) (2.3)
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A reference for (2.1) and (2.2) can be found at [DS92, p. 2]; from these, one can easily

derive (2.3). We note from these relations that choosing values for the parameters

n, t, k forces the values of r and `, so we will focus our attention on the various

possibilities for n, k, t.

Our strategy for generating these incidence matrices will be as follows: for a fixed

n and k, we define Vn,k to be the collection of all vectors in Rn with k 1’s and n− k

0’s. We will construct a BIBD incidence matrix by concatenating randomly-drawn

columns from the collection Vn,k and considering whether the inner product condition

is satisfied for the randomly-generated matrix.

We now define our random walk and explain its correspondence with BIBD

incidence matrices. For an integer n ≥ 2, we set d =
(
n
2

)
; the random walk will

occur in Rd, which will be regarded as a set of column vectors. Instead of using the

standard index system for coordinates of Rd (i.e. 1, . . . , d), we will take our index set

to be the set of all S ⊂ {1, . . . , n} with |S| = 2. When important, we will refer to a

lexicographic ordering; that is, for ~x ∈ Rd,

~x = (x{1,2}, x{1,3}, . . . , x{n−2,n}, x{n−1,n})
T .

We define a function Z : Vn,k → Rd by

Z(~y) = (y1y2, y1y3, . . . , yn−2yn, yn−1yn)T .

The purpose of this function is that if Y = [~y(1) . . . ~y(t)] and ~1 is the vector of all ones,

then

Z(~y(1)) + · · ·+ Z(~y(t)) = ~̀1
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if and only if the inner product between any two rows of Y is `. This allows us to

reframe out constraint about the inner product or rows as one of a sum, which gives

us a way to consider a random walk.

Definition 2.2. We define our random walk Xt on Zd to be the random walk with

increments drawn randomly and uniformly from {Z(~y) : ~y ∈ Vn,k}.

From the previous discussion, the existence of a BIBD incidence matrix is then

equivalent to the entry of the random walk Xt into the diagonal set ∆ = { ~̀1 : ` ∈ Z}.

The random walk Xt is not the ideal random walk to consider, for two reasons: first,

the set ∆ is infinite, which makes the probability that Xt enters it a bit complicated.

Second, the increments of Xt clearly do not have mean ~0, since vectors of the form

{Z(~y) : ~y ∈ Vn,k} also have entries that are only 0 and 1.

To fix the issues with Xt, we introduce a new random walk, Yt, which is the drift-

corrected version of Xt. If a vector is chosen uniformly from {Z(~y) : ~y ∈ Vn,k}, then

the probability of a given coordinate (say, {i, j}) being 1 is equal to the probability

that yi = 1 and yj = 1. This probability is
(
n−2
k−2

)
/
(
n
k

)
= k(k−1)

n(n−1)
, so to get a centered

random walk, we subtract this term from each coordinate of the increments. That is,

Yt = Xt −
k(k − 1)

n(n− 1)
t~1.

Since we are interested in the probability that the random walk Xt is equal to ~̀1 for

some constant `, we notice by (2.3) that ` = k(k−1)
n(n−1)

t, which implies that Xt = ~̀1 iff

Yt = 0. Hence, our tactic will be to estimate the probability that the random walk

Yt returns to ~0 after t steps, which we will denote P(t)
n,k(~0,~0).
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Since n×t matrices populated with columns from Vn,k lie in a 1-1 correspondence

with paths of the random walk Xt (hence, with Yt), it follows that

# BIBD incidence matrices

# total matrices
=

# return paths of Yt to ~0

# all paths of Yt
.

The right-hand side of this equation is precisely the probability that the random walk

Yt returns to 0, which we will denote by P(t)
n,k(~0,~0). (Our random walks in this chapter

will be understood to always start at the origin, and the n, k subscript serves only

to indicate the preset parameters n and k.) The denominator of the left-hand side is(
n
k

)t
, since there are

(
n
k

)
distinct choices for each of the t columns. Thus,

# BIBD incidence matrices =

(
n

k

)t
P(t)
n,k(~0,~0) (2.4)

so to count the number of BIBD incidence matrices, we need only to find sufficiently

accurate estimates on the return probability of the random walk Yt. We will prove a

local central limit theorem for the quantity P(t)
n,k(~0,~0), which will yield the following

theorem:

Theorem 2.3. Let n, k, t be such that k ≥ 2, n − k ≥ 2, t k
n
∈ Z, and t k(k−1)

n(n−1)
∈ Z.

Let Ψn,k,t be the number of BIBD incidence matrices of dimensions n× t with k 1’s

in each column, and let d =
(
n
2

)
. If

f(n, k) =
2
(

(n−3)(k−1)
n−k−1

)n
(n− 2)

(
k(k−1)[k(k+1)−2kn+n(n−1)]

n(n−1)(n−2)(n−3)

)d
(n− k)(k − 1)2k

,

then

Ψn,k,t = [1 + o(1)]

(
n

k

)t
(k − 1)n−1√

(2πt)d−1f(n, k)
as t→∞.
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The basic strategy for estimating P(t)
n,k(~0,~0) will be the standard tactic of using

the Fourier inversion formula (see, for instance, [Spi76, P3, p. 57]). Using the

characteristic function ΦY (~θ), defined as

ΦY (~θ) = E[ei
~θ·Y1 ] =

∑
~y∈Vn,k

(
n

k

)−1

ei
~θ·(Z(~y)− k(k−1)

n(n−1)
~1)

the return probability can be obtained by using

P(t)
n,k(~0,~0) =

1

(2π)d

∫
[−π,π]d

ΦY (~θ)t d~θ . (2.5)

Since the random walk Yt is merely a spatially-shifted version of Xt, it will also be

useful to consider the analogously-defined characteristic function ΦX(~θ) = E[ei
~θ·X1 ];

we will explore the connections between the two and will switch our focus between

ΦX and ΦY depending on what is more convenient.

We note that the Fourier inversion formula in (2.5) only holds when Yt is

supported on Zd, which will occur if and only if t k(k−1)
n(n−1)

∈ Z; however, it is not

necessary to consider the case when t k(k−1)
n(n−1)

6∈ Z, since by (2.3) we see that no such

BIBD incidence matrix can exist. To estimate the integral in (2.5), we will divide

[−π, π]d into regions where |ΦY (~θ)| is close to 1 and those where it is not, and provide

estimates on ΦY (~θ) accordingly. As t becomes large, the bulk of the integral will be

determined by the regions where |ΦY (~θ)| is close to 1, and the contributions from the

other parts will become negligible.

Before the proof of Theorem 2.3, we note that the restrictions that k ≥ 2 and

n−k ≥ 2 occur for technical reasons, although if k = 1, the BIBD incidence matrices

are trivial in the sense that the inner product of any two distinct rows of any such

matrix is automatically 0. The case where k = 2 is nearly trivial as well, since a
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BIBD incidence matrix with k = 2 can only occur when every possible column from

Vn,k occurs the same number of times. One can see without any advanced tactics that

the number of such matrices must then be

Ψn,2,t =
t!

[(t/d)!]d

which is asymptotically equivalent to the formula in Theorem 2.3 as shown by

Stirling’s formula.

We also remark that while in principle the calculation of the return probability of

Yt is just a matter of computing asymptotic values in a local central limit theorem, the

walk has a special structure that complicates matters. In particular, the increment

set of the walk is not symmetric, and the walk takes place on a sublattice of Rd which

is difficult to specify as a purely combinatorial entity. For these reasons, the common

approach of explicitly transforming the walk Yt to a simple random walk on an integer

lattice is challenging here, and we will instead opt for the Fourier-analytic approach

as previously outlined.

As a final remark, although we do not carry out these computations here, we

note that the estimates used to prove Theorem 2.3 are sufficiently sharp to prove

existence results for balanced incomplete block designs. Specifically, for a fixed n and

k, the return probability in (2.5) could be shown to be positive for sufficiently large

suitable t (that is, t where t k
n
∈ Z and t k(k−1)

n(n−1)
∈ Z). This would imply that there

exist balanced incomplete block designs with those parameters. This claim would

be similar in principle to Wilson’s Theorem (see [DS92, Theorem 4.1, p. 7]), which

asserts the same result for fixed k and ` = 1 while allowing n to increase to infinity.

The outline of the sections is as follows: in Section 2.1, we give an explicit

description of the so-called ‘maximal set’; that is, the set where |ΦY (~θ)| = 1. This set

10



has the structure of a number of distinct lines in Rd. In Section 2.2, we discuss how

to decompose the integral in (2.5) in terms of this maximal set. In Section 2.3, we

provide estimates on the integral contributions far from the maximal set. In Section

2.4, we introduce an important combinatorially-defined matrix N and use it to get

bounds on the integral contribution near the maximal set. In Section 2.5, we compute

the expression f(n, k) found in the statement of Theorem 2.3. This expression will

arise as the determinant of a principal submatrix of the aforementioned matrix N .

Finally, in Section 2.6 we put all the parts together to prove Theorem 2.3.

2.1 Extreme Values of the Characteristic Function

In this section, we seek to understand the set where the characteristic functions

ΦX and ΦY have maximum absolute value. We begin with the operative definitions:

ΛX = {~θ ∈ [−π, π]d : |ΦX(~θ)| = 1}

ΛY = {~θ ∈ [−π, π]d : |ΦY (~θ)| = 1}

Proposition 2.4. The sets ΛX and ΛY are equal.

Proof. Note that Y1 = X1 − ~v, where ~v is deterministic. Then for any ~θ,

|ΦY (~θ)| = |E[ei
~θ·(X1−~v)]|

= |e−i~θ·~v||E[ei
~θ·X1 ]|

= |ΦX(~θ)|

which gives the desired result.

11



Although ΛY corresponds to the random walk actually used in the calculation

and in the Fourier Inversion formula in (2.5), ΛX corresponds to the walk without

the drift correction and is at times more computationally convenient. We note that

~λ ∈ ΛX ⇐⇒ ei
~λ·Z(~x) = ei

~λ·Z(~y) for all ~x, ~y ∈ Vn,k

which implies that

~λ ∈ ΛX ⇐⇒ for all ~x, ~y ∈ Vn,k, ~λ · Z(~x) ≡ ~λ · Z(~y) (mod 2π). (2.6)

Proposition 2.5. If ~λ ∈ ΛX and ~γ ∈ [−π, π]d, then ΦX(~λ + ~γ) = ΦX(~λ)ΦX(~γ) and

ΦY (~λ+ ~γ) = ΦY (~λ)ΦY (~γ).

Proof. Let ~λ ∈ ΛX . By (2.6), we see that ~λ · X1 does not depend on the random

vector X1, so ei
~λ·X1 is a deterministic quantity. Hence,

ΦX(~λ+ ~γ) = E[ei(
~λ+~γ)·X1 ]

= ei
~λ·X1E[e~γ·X1 ]

and since ei
~λ·X1 = E[ei

~λ·X1 ], the result is shown. The proof of the same statement for

ΦY is identical.

Remark 2.6. In particular, we see that ΛX is closed under addition modulo 2π.

Moreover, (2.6) shows that ΛX is closed under negation, so it is closed under

subtraction as well.

In all the following, we will assume that k ≥ 2 and n− k ≥ 2.
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Lemma 2.7. Let ε0 > 0 and let ~µ ∈ [−π, π]d. Suppose that there exists ε0 >

0 such that for all ~x, ~y ∈ Vn,k, there exist z ∈ Z and ε with |ε| < ε0 such that

[Z(~x) · ~µ−Z(~y) · ~µ] = 2πz+ ε. Then for any integers a, b, c, d ∈ {1, . . . , n} there exist

z ∈ Z and ε with |ε| < 2ε0 such that [µ{a,c} − µ{b,c}] = [µ{a,d} − µ{b,d}] + 2πz + ε.

The interpretation of this lemma is that if [Z(~x) · ~µ− Z(~y) · ~µ] mod 2π is nearly

0 for all ~x, ~y ∈ Vn,k, then expressions of the form [µ{a,j} − µ{b,j}] mod 2π are (nearly)

independent of j. We also remark that the use of {a, c} as an index pair implicitly

requires that a 6= c; similar constraints exist for the other constants, which we will

assume to be satisfied henceforth.

After establishing Lemma 2.7, we obtain a useful corollary by letting ε0 → 0 and

using (2.6):

Corollary 2.8. If ~λ ∈ ΛX , then for any fixed a, b the expression λ{a,j} − λ{b,j} is

independent of j (mod 2π).

We remark that the original idea for Corollary 2.8 was communicated by Warwick

de Launey in his personal notes ([dL]).

Proof of Lemma 2.7. We first define the following vectors in Vn,k:

~x1 = (1, 0, 1, 0,

k−2︷ ︸︸ ︷
1, . . . , 1,

n−k−2︷ ︸︸ ︷
0, . . . , 0)T

~x2 = (1, 0, 0, 1, 1, . . . , 1, 0, . . . , 0)T

~x3 = (0, 1, 1, 0, 1, . . . , 1, 0, . . . , 0)T

~x4 = (0, 1, 0, 1, 1, . . . , 1, 0, . . . , 0)T

13



These vectors are identical except in the first four coordinates. For any ~µ ∈ [−π, π]d,

we have

~µ · Z(~x1) = µ{1,3} +
k+2∑
j=5

µ{1,j} +
k+2∑
j=5

µ{3,j} +
∑

5≤i<j≤k+2

µ{i,j}

~µ · Z(~x2) = µ{1,4} +
k+2∑
j=5

µ{1,j} +
k+2∑
j=5

µ{4,j} +
∑

5≤i<j≤k+2

µ{i,j}

~µ · Z(~x1) = µ{2,3} +
k+2∑
j=5

µ{2,j} +
k+2∑
j=5

µ{3,j} +
∑

5≤i<j≤k+2

µ{i,j}

~µ · Z(~x1) = µ{2,4} +
k+2∑
j=5

µ{2,j} +
k+2∑
j=5

µ{4,j} +
∑

5≤i<j≤k+2

µ{i,j}

and hence,

~µ · [Z(~x1)− Z(~x2)] + ~µ · [Z(~x4)− Z(~x3)]

= ~µ · [Z(~x1)− Z(~x2)− Z(~x3) + Z(~x4)]

= µ{1,3} + µ{2,4} − µ{1,4} − µ{2,3}.

Our assumption implies that there exist z ∈ Z and ε1 ∈ (−2ε0, 2ε0) such that

[µ{1,3} − µ{2,3}] = [µ{1,4} − µ{2,4}] + ε1 + 2πz

by the triangle inequality.

Now, we let a, b, c, d be arbitrary and distinct. We can adjust the previous

argument by permuting the coordinates of ~x1, ~x2, ~x3, ~x4 so that the vectors are

identical in all coordinates but a, b, c, d, and that those coordinates exhibit a pattern
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similar to the one found in coordinates 1, 2, 3, 4 in the original vectors. Repeating the

above argument then shows that there exist z ∈ Z and ε1 with |ε1| < 2ε0 such that

[µ{a,c} − µ{b,c}] = [µ{a,d} − µ{b,d}] + ε1 + 2πz

as desired.

Lemma 2.9. Let ε0 > 0 and ~µ ∈ [−π, π]d. Suppose that there exists ε0 > 0 such that

for all ~x, ~y ∈ Vn,k, there exist z ∈ Z and ε with |ε| < ε0 such that [Z(~x) ·~µ−Z(~y) ·~µ] =

2πz + ε. Then for all a, b, c, d, there exists z ∈ Z and ε with |ε| < 4ε0 such that

[µ{a,b} − µ{c,d}] = 2π
k−1

z + ε.

The interpretation of this lemma is that if [Z(~x) · ~µ− Z(~y) · ~µ] mod 2π is nearly

0 for all ~x, ~y ∈ Vn,k, then all vector components of ~µ are nearly constant modulo 2π
k−1

.

As before, Lemma 2.9 yields a useful corollary obtained by letting ε0 → 0 and using

(2.6):

Corollary 2.10. If ~λ ∈ ΛX , then all the components of ~λ are congruent to one

another (mod 2π
k−1

).

Proof of Lemma 2.9. As before, we define some vectors from Vn,k:

~y1 = (1, 0,

k−1︷ ︸︸ ︷
1, . . . , 1,

n−k−1︷ ︸︸ ︷
0, . . . , 0)T

~y2 = (0, 1, 1, . . . , 1, 0, . . . , 0)T

15



These vectors are identical except in the first two coordinates. For any ~µ, we have

~µ · Z(~y1) =
k+1∑
j=3

µ{1,j}

~µ · Z(~y2) =
k+1∑
j=3

µ{2,j}

so by assumption, we then have z ∈ Z and ε1 ∈ (−ε0, ε0) such that

~µ · [Z(~y1)− Z(~y2)] =
k+1∑
j=3

[µ{1,j} − µ{2,j}]

= 2πz + ε1.

Next, we fix some integer c with 3 ≤ c ≤ n. For each term in the sum where

j 6= c, we use Lemma 2.7 to replace [µ{1,j} − µ{2,j}] with [µ{1,c} − µ{2,c}] plus an error

term. Executing this replacement for all j shows that there exist z ∈ Z and ε2 with

|ε2| < 2(k − 1)ε0 such that

(k − 1)[µ{1,c} − µ{2,c}] = 2πz + ε2.

Dividing by k − 1 then shows that there exists ε3 with |ε3| < 2ε0 such that

[µ{1,c} − µ{2,c}] =
2π

k − 1
z + ε3.

We note here that the choices of 1 and 2 in the coordinates of µ were merely

consequences of the construction of the vectors ~y1 and ~y2. For any distinct a, b, c,

permuting the coordinates of those vectors appropriately shows that there exist z ∈ Z
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and ε3 with |ε3| < 2ε0 such that

[µ{a,c} − µ{b,c}] =
2π

k − 1
z + ε3. (2.7)

Finally, we let a, b, c, d be distinct. By applying (2.7) twice and using the triangle

inequality, we see that there exist z ∈ Z and ε4 with |ε4| < 4ε0 such that

[µ{a,b} − µ{c,d}] = [µ{a,b} − µ{a,d}] + [µ{a,d} − µ{c,d}]

= 2πz + ε4

as desired.

Next, we examine some “building block” vectors that will help to characterize

the set ΛX . For a fixed n and k and 1 ≤ a ≤ n, we define the vector ~βa to be the

vector with βa{i,j} = 1 if i = a or j = a and 0 otherwise. We also define ~αa = ~1− ~βa;

that is, αa{i,j} = 0 if i = a or j = a and αa{i,j} = 1 otherwise.

Proposition 2.11. The vectors 2π
k−1

~βa and 2π
k−1

~αa are in ΛX . Moreover, so also is γ~1

for any real γ.

Proof. In light of (2.6), we wish to show that 2π
k−1

~βa · Z(~x) and 2π
k−1

~αa · Z(~x) do not

depend on the choice of ~x ∈ Vn,k.

Fix a. First, suppose that xa = 1. The vector Z(~x) will have exactly k − 1

coordinates of the form {a, ·} whose entry is 1, corresponding to the pairings of the

ath coordinate of ~x with the other k− 1 coordinates whose entry is 1. Since there are

a total of
(
k
2

)
1’s in Z(~x), the rest are found in coordinates not of the form {a, ·}. If

on the other hand xa = 0, then all the components of Z(~x) of the form {a, ·} will be

0, and the
(
k
2

)
1’s will all be found elsewhere.

17



To see that 2π
k−1

~βa ∈ ΛX , we note that if xa = 1, then Z(~x)· 2π
k−1

~βa = (k−1) 2π
k−1
≡ 0

(mod 2π), and if xa = 0, then Z(~x) · 2π
k−1

~βa = 0. Next, to see that 2π
k−1

~αa ∈ ΛX , we

note that if xa = 1, then Z(~x) · 2π
k−1

~αa =
((
k
2

)
− (k − 1)

)
2π
k−1
≡
(
k
2

)
2π
k−1

(mod 2π), and

if xa = 0, then Z(~x) · 2π
k−1

~αa =
(
k
2

)
2π
k−1

. Finally, we observe that for any ~x ∈ Vn,k,

Z(~x) · γ~1 =

(
k

2

)
γ (2.8)

as desired.

Using these vectors, we arrive at the desired full characterization of ΛX .

Lemma 2.12. Suppose that ~λ ∈ [−π, π]d and ~λ ∈ ΛX . Then there exist γ ∈ [0, 2π)

and integers mi ∈ [0, k − 1) such that

~λ = γ~1 +m1
2π

k − 1
~α1 +

n∑
j=3

mj
2π

k − 1
~βj.

Moreover, this representation of ~λ is unique.

Remark 2.13. This decomposition of ΛX(= ΛY ) shows that the set is made up of a

number of distinct 1-dimensional sets, all of which are parallel to the vector ~1.

Proof of Lemma 2.12. Let λ ∈ ΛX . First, suppose that λ{1,2} ≡ γ 6≡ 0 (mod 2π). By

Remark 2.6 and Proposition 2.11, we can subtract γ~1 from λ to obtain a new vector

~θ, still in ΛX , for which θ{1,2} ≡ 0 (mod 2π). Hence, we will assume that λ{1,2} ≡ 0

(mod 2π). By Corollary 2.10, this implies that λ{a,b} ≡ 0 (mod 2π
k−1

) for all {a, b}.

Next, we suppose that λ{1,j} 6≡ 0 (mod 2π) for some j ≥ 3. Since 2π
k−1

~βj ∈ ΛX by

Proposition 2.11, then by Remark 2.6 we can subtract a requisite number of copies

(where the number is an integer between 0 and k− 2, inclusively) of 2π
k−1

~βj to obtain

a new vector ~θ for which θ{1,j} ≡ 0 (mod 2π). Moreover, for j ≥ 3, each vector
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~βj has precisely one nonzero component of the form βj{1,a} (namely, βj{1,j}), which

implies that this same reduction can be applied to each j ≥ 3 simultaneously. Hence,

we will assume that λ{1,j} ≡ 0 (mod 2π) for all j ≥ 2, since our previous reduction

established that λ{1,2} ≡ 0 (mod 2π).

From here, we observe that if λ{1,j} ≡ 0 (mod 2π) for all j, then ~λ is an integer

multiple of 2π
k−1

~α1. To see this, we notice the following: if j ≥ 4, then by Corollary

2.8 we must have

λ{2,j} − λ{2,3} ≡ λ{1,j} − λ{1,3} (mod 2π),

which we assumed to be 0. In particular, this implies that all coordinates of the form

λ{2,j} are constant modulo 2π. Further, if 3 ≤ i < j ≤ n, then again by Corollary 2.8

we have

λ{i,j} − λ{1,j} ≡ λ{2,i} − λ{1,2} (mod 2π).

From these relations and the assumption that λ{1,j} ≡ 0 (mod 2π) for all j, we see

that λ{i,j} ≡ λ{2,j} ≡ λ{2,3} (mod 2π) whenever 1 < i < j ≤ n. Since we also knew

that these terms were all equivalent to 0 (mod 2π
k−1

), this shows that ~λ = m1
2π
k−1

~α1

for some integer m1 ∈ [0, k − 1), as desired.

Finally, to see the uniqueness of this expression, suppose that

γ~1 +m1
2π

k − 1
~α1 +

n∑
j=3

mj
2π

k − 1
~βj

≡ δ~1 + p1
2π

k − 1
~α1 +

n∑
j=3

pj
2π

k − 1
~βj mod 2π (2.9)

for some γ, δ ∈ [0, 2π
k−1

) and integers mj, pj ∈ [0, k−1). Of the vectors ~1, ~α1, ~β3, . . . ~βn,

the only vector with a nonzero {1, 2} coordinate is ~1; hence, we must have γ = δ. For
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j ≥ 3, ~βj is the only term in the sum other than ~1 with a nonzero entry in the {1, j}

coordinate; this implies that mj = pj for j ≥ 3. By subtracting off the terms in (2.9)

that are already known to be equal, we obtain

m1
2π

k − 1
~α1 ≡ p1

2π

k − 1
~α1 mod 2π

which shows that m1 = p1, as desired.

2.2 Anatomy of the Integral

Having worked in the previous section to obtain a full characterization of the

set ΛY , our next goal is to explain how we will decompose the integral in (2.5). The

ultimate goal of this section will be to work toward the decompositions found in (2.21)

and (2.22). These expression will require a good deal of technical setup. The outline

of this section is as follows: first, Lemma 2.14 and Proposition 2.15 will explore the

nature of the multi-set {ΦY (~λ)t : ~λ ∈ ΛY }. Next, we will discuss how we separate the

region [−π, π]d into smaller pieces, culminating with (2.20). Finally, we will combine

these two ideas to obtain (2.21) and (2.22).

We begin with the multi-set {ΦY (~λ)t : ~λ ∈ ΛY } and will first consider the case

where t = 1.

Lemma 2.14. Let ~λ = γ~1 +m1
2π
k−1

~α1 +
∑n

j=3mj
2π
k−1

~βj be in ΛY , and define S(~λ) =

m1 −
∑n

j=3mj. Then ΦY (~λ) = ei
2πk
n
S(~λ).

Proof. We make the three relevant computations in Zd, where d =
(
n
2

)
. We are only

concerned with the value of these calculations modulo 2π. The first computation is
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straightforward from the definition of X1.

~1 · Y1 = ~1 ·
(
X1 −

k(k − 1)

n(n− 1)
~1

)
=

(
k

2

)
−
(
k
2

)(
n
2

)(n
2

)
= 0

Next,

2π

k − 1
~α1 · Y1 =

2π

k − 1
~α1 ·

(
X1 −

k(k − 1)

n(n− 1)
~1

)
≡ 2π

k − 1

(
k

2

)
− 2πk

n(n− 1)

[(
n

2

)
− (n− 1)

]
= πk − πk +

2πk

n

The calculation that ~α1 · X1 ≡
(
k
2

)
comes from (2.8). To compute ~α1 · ~1, we notice

that all
(
n
2

)
of the coordinates of ~α1 are 1 except for the n − 1 coordinates whose

indices possess a 1. Finally,

2π

k − 1
~βj · Y1 =

2π

k − 1
~βj ·

(
X1 −

k(k − 1)

n(n− 1)
~1

)
≡ 0− 2πk

n(n− 1)
(n− 1)

Here again, the computation that 2π
k−1

~βj · X1 ≡ 0 was carried out in the proof of

Proposition 2.11, while the observation that ~βj ·~1 = (n− 1) comes from the fact that

all coordinates of ~βj are 0 except for the n− 1 coordinates whose indices possess a j.

The desired conclusion is now immediate.
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Our next goal is to investigate the nature of the multi-set

{ΦY (~λ) : ~λ ∈ ΛY }.

Since the set ΛY is always necessarily infinite, we define a set

Λ�
Y =

{
m1

2π

k − 1
~α1 +

n∑
j=3

mj
2π

k − 1
~βj : mi ∈ Z ∩ [0, k − 1)

}
(2.10)

by eliminating the γ~1 component of ΛY . We also define the set

Λ?
Y =

{
~λ ∈ [−π, π)d : ~λ ≡ ~λ� (mod 2π) for some ~λ� ∈ Λ�

Y

}
. (2.11)

We note that each vector in Λ�
Y has a unique representative in [−π, π)d. Lemma 2.14

shows that for any ~λ ∈ ΛY and any γ, we have ΦY (~λ + γ~1) = ΦY (~λ). Therefore,

in order to understand the nature of the multi-set {ΦY (~λ) : ~λ ∈ ΛY }, it suffices to

consider the multi-set {ΦY (~λ) : ~λ ∈ Λ?
Y }. This is particularly useful since ΛY consists

of several subsets parallel to ~1, whence the set Λ?
Y consists of one representative vector

for each distinct diagonal component. It is easy to see that |Λ?
Y | = (k − 1)n−1.

We remark here that since

Yt = Xt −
k(k − 1)

n(n− 1)
t~1

and Xt ∈ Zd, the random walk Yt is supported on the lattice Zd if and only if t k(k−1)
n(n−1)

∈

Z. Hence, the Fourier Inversion Formula in (2.5) only applies when t k(k−1)
n(n−1)

∈ Z, and

when this is is not the case the return probability is trivially 0. This constraint

that t k(k−1)
n(n−1)

∈ Z corresponds to the BIBD constraint in (2.3). We also note by the
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BIBD constraint in (2.1) that we must have t k
n
∈ Z as well, though this requirement

manifests in a more subtle way than the necessity that t k(k−1)
n(n−1)

∈ Z. For certain

choices of k and n, such as k = 3 and n = 5, it holds that t k(k−1)
n(n−1)

∈ Z implies that

t k
n
∈ Z. For other choices, such as k = 3 and n = 6, this is not the case. Our next

lemma will eventually be used to show how a positive return probability of the Yt

intrinsically requires that t k
n
∈ Z.

Proposition 2.15. Suppose t k(k−1)
n(n−1)

∈ Z.

– If t k
n
∈ Z, then the multi-set {ΦY (~λ)t : ~λ ∈ Λ?

Y } consists only of the number 1,

repeated (k − 1)n−1 times.

– If t k
n
6∈ Z, then the multi-set {ΦY (~λ)t : ~λ ∈ Λ?

Y } consists of all the powers of a

certain root of unity, each appearing the same number of times; consequently,

the sum of these roots is zero.

Proof. Suppose that t k
n
∈ Z. By Lemma 2.14, we have

ΦY (~λ)t = ei2πt
k
n
S(~λ)

and since t k
n
S(~λ) ∈ Z, it follows that ΦY (~λ)t = 1 for all ~λ ∈ ΛY .

Next, suppose that t k
n
6∈ Z, but that t k(k−1)

n(n−1)
= j with j ∈ Z. In this case, we

have t k
n

= j(n−1)
k−1

. We can express this in a reduced form; i.e. t k
n

= a
b

with b|(k − 1),

b 6= 1, and a relatively prime to b. By examining (2.10), we see that the multi-set

{S(~λ) mod (k − 1) : λ ∈ Λ?
Y } consists of the numbers in {0, . . . , k − 2}, counted

(k − 1)n−2 times each. Since

ΦY (~λ) = exp
(

2πi
a

b
S(~λ)

)
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and b|(k − 1), it follows that the multi-set {ΦY (~λ) : ~λ ∈ Λ?
Y } consists of all the bth

roots of unity, each having the same number of appearances.

We now seek to break up the integral (2π)−d
∫

[−π,π]d
ΦY (~θ)t d~θ into manageable

pieces. We define the set

Λ0 =
{
~λ ∈ Rd : λ{a,b} ≡ λ{c,d} (mod 2π/(k − 1)) for all a, b, c, d ∈ {1, . . . , n}

}

and note by Corollary 2.10 that ΛX ⊂ Λ0. For δ > 0, we divide the set of equivalence

classes modulo 2πZd, which we will regard as [−π, π]d, into three regions:

Rδ
A = {~λ+ ~ζ : ~λ ∈ ΛX and |ζ{i,j}| < δ for all i, j}

Rδ
B = {~λ+ ~ζ : ~λ ∈ Λ0 \ ΛX and |ζ{i,j}| < δ for all i, j}

Rδ
C = Rd \ (Rδ

A ∪Rδ
B)

We first prove some needed results about the disjointness of these regions.

Lemma 2.16. If δ < π
2(k−1)

, the regions Rδ
A and Rδ

B are disjoint.

Proof. Suppose that Rδ
A and Rδ

B are not disjoint. Then there are vectors ~λ1, ~λ2, ~ζ1, ~ζ2

such that ~λ1 + ~ζ1 ≡ ~λ2 + ~ζ2 with ~λ1 ∈ ΛX , ~λ
2 ∈ Λ0 \ ΛX , and |ζ i{a,b}| < δ for i = 1, 2

and all choices of a, b. We can equivalently replace the vectors ~ζ1, ~ζ2 by a single vector

~ζ = ~ζ2 − ~ζ1, so that

~λ1 ≡ ~λ2 + ~ζ (mod 2π) (2.12)

with |ζ{a,b}| < 2δ for all coordinates {a, b}. By subtracting λ1
{1,2}

~1 from both sides of

(2.12), we have

~λ1 − λ1
{1,2}

~1 ≡ (~λ2 − λ1
{1,2}

~1) + ~ζ (mod 2π). (2.13)
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Next, we set ~θ1 = ~λ1 − λ1
{1,2}

~1. By Proposition 2.11, we know that λ1
{1,2}

~1 ∈ ΛX ;

hence, it follows by Remark 2.6 that ~θ1 ∈ ΛX . Moreover, the coordinates θ1
{a,b}

of ~θ1 are all integer multiples of 2π
k−1

. Similarly, we observe from (2.12) that taken

modulo 2π
k−1

, the coordinates of (~λ2 − λ1
{1,2}

~1) are all equivalent to some constant c

with |c| < 2δ. Accordingly, we set ~θ2 = ~λ2 − λ1
{1,2}

~1 − c~1; Proposition 2.11 implies

that ~θ2 ∈ Λ0 \ΛX , and therefore, the components θ2
{a,b} of ~θ2 are all integer multiples

of 2π
k−1

. Equation (2.13) then becomes

~θ1 ≡ ~θ2 + (~ζ + c~1) (mod 2π)

where each component of ~ζ + c~1 is an integer multiple of 2π
k−1

. Since ~θ1 ∈ ΛX and

~θ2 6∈ ΛX , there is a coordinate {a, b} for which θ1
{a,b} 6≡ θ2

{a,b} (mod 2π); since they

are supported on 2π
k−1

Z, their residues modulo 2π must differ by at least 2π
k−1

. Because

|θ1
{a,b}−θ2

{a,b}| = |ζ{a,b}+c|, it follows that |ζ{a,b}+c| ≥ 2π
k−1

. We also have |ζ{a,b}+c| ≤

|ζ{a,b}|+ |c| < 4δ, so it must be the case that 4δ ≥ 2π
k−1

.

Lemma 2.17. Suppose δ < π
2(k−1)

and that ~µ1 ≡ ~µ2 (mod 2π) with ~µ1, ~µ2 ∈ Rδ
A.

Let ~µ1 = ~λ1 + ~ζ1 and ~µ2 = ~λ2 + ~ζ2, and using the notation of Lemma 2.12 let ~λ1 be

defined by coefficients γ1,m1
i and let ~λ2 be defined by coefficients γ2,m2

i . Then for

all i, it must follow that m1
i = m2

i .

Remark 2.18. The purpose of this lemma is to show that while expressions of vectors

in Rδ
A are certainly not unique, they are unique up to the diagonal components of ΛX ,

which are determined by the coefficients mi. We will eventually want to decompose

Rδ
A into a collection of tubes, and it will be important that these tubes are disjoint,

which is what is proved by this lemma.
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Proof of Lemma 2.17. Suppose that

~ζ1 + γ1~1 +m1
1

2π

k − 1
~α1 +

n∑
j=3

m1
j

2π

k − 1
~βj

≡ ~ζ2 + γ2~1 +m2
1

2π

k − 1
~α1 +

n∑
j=3

m2
j

2π

k − 1
~βj (mod 2π). (2.14)

We first examine the {1, 2} coordinate of this relationship. All of the vectors ~α1 and

~β3, . . . , ~βn have 0 in the {1, 2} position, whence (2.14) yields

ζ1
{1,2} + γ1 = ζ2

{1,2} + γ2 + 2πz

for some z ∈ Z. Rearranging this yields

γ1 − γ2 = 2πz + ζ2
{1,2} − ζ1

{1,2}. (2.15)

Next, we examine the {1, j} coordinate for j ≥ 3. Of ~α1, ~β3, . . . , ~βn, the only

vector with a nonzero {1, j} coordinate is ~βj; hence, (2.14) becomes

ζ1
{1,j} + γ1 +m1

j

2π

k − 1
≡ ζ2

{1,j} + γ2 +m2
j

2π

k − 1
(mod 2π).

Rearranging this and using (2.15) shows that for some z′ ∈ Z,

2πz′ + (m1
j −m2

j)
2π

k − 1
= (ζ1

{1,2} − ζ2
{1,2}) + (ζ2

{1,j} − ζ1
{1,j}).
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The left-hand side is supported on 2π
k−1

Z, while the right is at most 4δ < 2π
k−1

by the

triangle inequality. Hence, the right-hand side is 0. This implies that

z′(k − 1) = m2
j −m1

j

and since |m2
j −m1

j | < k − 1 we must have m2
j = m1

j .

Finally, by subtracting off the terms m1
j

2π
k−1

~β1 and m2
j

2π
k−1

~β2 with j ≥ 3 from

(2.14), we see that

~ζ1 + γ1~1 +m1
1

2π

k − 1
~α1+ ≡ ~ζ2 + γ2~1 +m2

1

2π

k − 1
~α1 (mod 2π)

and examining the {2, 3} coordinate shows that

ζ1
{2,3} + γ1 +m1

1

2π

k − 1
≡ ζ2

{2,3} + γ2 +m2
1

2π

k − 1
(mod 2π).

An argument identical to the one made for the {1, j} coordinate above shows that

m1
1 = m2

1.

We now discuss the full anatomy of the integral used in the Fourier inversion

formula. For convenience of notation, we define

In,k(t) = (2π)−d
∫

[−π,π]d
ΦY (~θ)t d~θ .

Here, the parameter n is implicitly involved in determining d =
(
n
2

)
. When δ < π

2(k−1)
,

by Lemma 2.16 we have

(2π)dIn,k(t) =

∫
RδA

ΦY (~θ)t d~θ +

∫
RδB∪R

δ
C

ΦY (~θ)t d~θ (2.16)
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which is motivated by segregating the region where |ΦY (~θ)t| is close to 1 (that is, Rδ
A)

from those where it is not.

To further analyze the integral over Rδ
A, we recall from Remark 2.13 that ΛY (=

ΛX) consists of a disjoint union of dimension 1 subsets of [−π, π]d, all parallel to the

vector ~1. Accordingly, the region Rδ
A consists of a disjoint union of ‘tubes’ surrounding

lines parallel to the vector ~1. We formalize this notion by defining the following sets,

where ~λ is a fixed vector in ΛX :

T δ~λ = {~λ+ γ~1 + ~ζ : γ ∈ [0, 2π) and |ζ{i,j}| < δ for all i, j}. (2.17)

This definition sets T δ~λ as the ‘tube’ in [−π, π)d that contains the vector ~λ. We remark

that in the case that ~λ+ γ~1 + ~ζ 6∈ [−π, π)d, we can add or subtract multiples of 2π in

each coordinate to find its representative in [−π, π)d.

From here, we can re-express Rδ
A as a union of the pieces T δ~λ : namely,

Rδ
A =

⋃
~λ∈Λ?Y

T δ~λ (2.18)

where Λ?
Y is defined as in (2.11). We recall that |Λ?

Y | = (k − 1)n−1, and Lemma 2.17

shows that this is a disjoint union when δ < 2π
k−1

.

We now use (2.18) to reconsider the integral in (2.16), which yields

(2π)dIn,k(t) =
∑
~λ∈Λ?Y

∫
T δ
~λ

ΦY (~θ)t d~θ +

∫
RδB∪R

δ
C

ΦY (~θ)t d~θ. (2.19)
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We note that ~0 ∈ Λ?
Y and so we consider the nonzero vectors ~λ ∈ Λ?

Y . Proposition

2.5 implies that if ~θ = ~λ+ γ~1 + ~ζ, then

ΦY (~θ) = ΦY (~λ)ΦY (~ζ)

since ΦY (γ~1) = 1 as implied by the proof of Lemma 2.14. Hence, it follows that

∫
T δ
~λ

ΦY (~θ) d~θ = ΦY (~λ)

∫
T δ
~0

ΦY (~θ) d~θ

whence (2.19) becomes

(2π)dIn,k(t) =

∑
~λ∈Λ?Y

ΦY (~λ)t

∫
T δ
~0

ΦY (~θ)t d~θ +

∫
RδB∪R

δ
C

ΦY (~θ)t d~θ. (2.20)

Finally, we note by Proposition 2.15 that if t k(k−1)
n(n−1)

∈ Z but t k
n
6∈ Z, then the

sum in the parentheses of (2.20) is 0 and we have

(2π)dIn,k(t) =

∫
RδB∪R

δ
C

ΦY (~θ)t d~θ. (2.21)

On the other hand, if t k(k−1)
n(n−1)

∈ Z and t k
n
∈ Z, then by Proposition 2.15, (2.20)

becomes

(2π)dIn,k(t) = (k − 1)n−1

∫
T δ
~0

ΦY (~θ)t d~θ +

∫
RδB∪R

δ
C

ΦY (~θ)t d~θ. (2.22)

Later, we will observe that as t and δ vary in a certain way together, the integral over

Rδ
B ∪Rδ

C approaches zero in both (2.21) and (2.22). This corresponds to the fact that
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a balanced incomplete block design cannot exist unless t k
n
∈ Z, which is shown by

(2.1).

2.3 Bounds Far from the Maximal Set

Having established our decomposition of the integral, we now desire to estimate

the integral terms that appear in (2.21) and (2.22). The region RA is the set that is

“near” ΛX and will contribute the bulk of the integral, so our goal is to provide upper

bounds for the integrand on the regions Rδ
B and Rδ

C to show that their contribution is

negligible when compared to that of Rδ
A. We begin with the integrand on the region

Rδ
B.

Lemma 2.19. Suppose δ < k−2
(
n
k

)−2
[

1
6·962

(
2π
k−1

)4
]
. Then if ~µ ∈ Rδ

B, we have

|ΦX(~µ)| ≤ 1−
(
n

k

)−1
[

1

96

(
2π

k − 1

)2
]
.

Remark 2.20. The essential point is that the bound holds when δ is sufficiently

small in a manner that depends only on the preset and fixed parameters n and k. In

the sequel, we will allow δ → 0 and the exact threshold for when the bound takes

place will not be of importance.

Remark 2.21. Our previous assumptions on n and k are that k ≥ 2 and n− k ≥ 2.

We notice that in the particular case where k = 2, the set Rδ
B is empty. This is because

the defining characteristic of Λ0 simply reduces to all coordinates being congruent to

one another modulo 2π; hence, taken modulo 2π the vector is a multiple of ~1. By

Proposition 2.11, vectors which satisfy this condition are necessarily in ΛX , implying

that ΛX = Λ0 in this case. Since Rδ
B is empty, the bound in Lemma 2.19 vacuously

holds in this case, so we will assume that k ≥ 3 in the proof.
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Proof of Lemma 2.19. Let ~x, ~y ∈ Vn,k; if ~λ ∈ Λ0, then |Z(~x) · ~λ − Z(~y) · ~λ| ∈
2π
k−1

Z. Hence, taken modulo 2π, the possible values of |Z(~x) · ~λ − Z(~y) · ~λ| are

{0, 2π
k−1

, . . . , (k−2)2π
k−1

}. If ~λ /∈ ΛX , then by (2.6) there exist ~x, ~y so that modulo 2π,

we have |Z(~x) · ~λ− Z(~y) · ~λ| 6= 0. Hence, for ~λ ∈ Λ0 \ ΛX ,

|ΦX(~λ)| =

∣∣∣∣∣∣ 1(
n
k

) ∑
~x∈Vn,k

ei
~λ·Z(~x)

∣∣∣∣∣∣
≤ 1(

n
k

)
∣∣∣ei~λ·Z(~x) + ei

~λ·Z(~y)
∣∣∣+

∣∣∣∣∣∣
∑
~w 6=~x,~y

ei
~λ·Z(~w)

∣∣∣∣∣∣


and since |eia + eib|2 = 2 + 2 cos(a− b), we have

|ΦX(~λ)| ≤ 1(
n
k

) [√2 + 2 cos

(
2π

k − 1

)
+

(
n

k

)
− 2

]
. (2.23)

We note that

√
x ≤ 1 + x/4

and that

cos

(
2π

k − 1

)
≤ 1−

(
2π
k−1

)2

2
+

(
2π
k−1

)4

24

so substituting these into (2.23) yields

|ΦX(~λ)| ≤ 1− 1(
n
k

) [( 2π
k−1

)2

4
−
(

2π
k−1

)4

48

]
. (2.24)

We also note that when k ≥ 3,

(
2π

k − 1

)4

< 11

(
2π

k − 1

)2
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and applying this to (2.24) gives

|ΦX(~λ)| ≤ 1− 1(
n
k

) [ 1

48

(
2π

k − 1

)2
]
. (2.25)

Now, let ~µ = ~λ + ~ζ, where |ζ{i,j}| < δ for all i, j. Since ΦX(~µ) =(
n
k

)−1∑
~x∈Vn,k e

i~µ·Z(~x), by the triangle inequality and the fact that | cos(a + b) −

cos(a)| ≤ |b|, we have

|Re(ΦX(~λ+ ~ζ))− Re(ΦX(~λ))|

=

(
n

k

)−1

∣∣∣∣∣∣
∑
~x∈Vn,k

(
cos((~λ+ ~ζ) · Z(~x))− cos(~λ · Z(~x))

)∣∣∣∣∣∣
≤
(
n

k

)−1 ∑
~x∈Vn,k

∣∣∣~ζ · Z(~x)
∣∣∣ .

We note that |~ζ · Z(~x)| ≤
(
k
2

)
δ < k2δ, since the vector Z(~x) is 1 in exactly

(
k
2

)
coordinates and is 0 elsewhere. Since |Vn,k| =

(
n
k

)
, this shows that

|Re(ΦX(~µ))− Re(ΦX(~λ))| ≤ k2δ

and that in particular,

|Re(ΦX(~µ))| ≤ |Re(ΦX(~λ))|+ k2δ. (2.26)

An identical argument with sines instead of cosines shows that

| Im(ΦX(~µ))| ≤ | Im(ΦX(~λ))|+ k2δ. (2.27)
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By (2.26) and (2.27), we have

|ΦX(~µ)|2 = |Re(ΦX(~µ))|2 + | Im(ΦX(~µ))|2

≤ |Re(ΦX(~λ))|2 + | Im(ΦX(~λ))|2 + 4k2δ + 2k4δ2

and since our assumptions on δ imply that δ < k2, we employ the estimate

|ΦX(~µ)| ≤
√
|ΦX(~λ)|2 + 6k2δ

≤ |ΦX(~λ)|+
√

6k2δ.

Putting this together with (2.25) and our assumptions on δ gives

|ΦX(~µ)| ≤ 1−
(
n

k

)−1
[

1

48
·
(

2π

k − 1

)2
]

+

(
n

k

)−1
[

1

96

(
2π

k − 1

)2
]

as desired.

Next, we seek to find a bound for the integrand on the region Rδ
C , which will be

achieved with the use of Lemma 2.9

Lemma 2.22. Suppose δ < 4. Then if ~µ ∈ Rδ
C , we have

|ΦX(~µ)| ≤ 1−
(
n

k

)−1
11

48

(
δ

4

)2

.

Proof. For x ∈ R and y, ε0 > 0, we say that

|x| mod y < ε0
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if there exist z ∈ Z and ε ∈ R such that x = yz + ε and |ε| < ε0. Its negation is

denoted

|x| mod y ≥ ε0

and signifies that for every z ∈ Z and ε ∈ R, if x− yz = ε, then |ε| > ε0.

Suppose ~µ ∈ Rδ
C ; then there must exist a choice of a, b, c, d such that |µ{a,b} −

µ{c,d}| mod 2π
k−1
≥ δ. To see this, we suppose that for every choice of a, b, c, d, we have

|µ{a,b} − µ{c,d}| mod 2π
k−1

< δ. In this case, we form vectors ~ζ and ~λ by setting ζ{a,b}

to be the 2π
k−1

-residue of µ{a,b} − µ{1,2} and ~λ = ~µ− ~ζ. It follows that ~µ = ~λ+ ~ζ with

~λ ∈ Λ0 and |ζ{a,b}| < δ for all {a, b}, which immediately implies that ~µ is either in Rδ
A

or Rδ
B.

Since there exists a choice of a, b, c, d such that |µ{a,b}−µ{c,d}| mod 2π
k−1
≥ δ, we see

by Lemma 2.9 that there are vectors ~x, ~y ∈ Vn,k for which |Z(~x)·~µ−Z(~y)·~µ| mod 2π ≥

δ/4. This condition implies that

cos(Z(~x) · ~µ− Z(~y) · ~µ) ≤ cos(δ/4). (2.28)

When computing ΦX(~µ), we use the same calculations that led to (2.23) and (2.24),

but with δ/4 in place of 2π
k−1

as indicated by (2.28), to obtain

|ΦX(~µ)| ≤ 1−
(
n

k

)−1 [
(δ/4)2

4
− (δ/4)4

48

]
.

Then if δ < 4, we have

|ΦX(~µ)| ≤ 1−
(
n

k

)−1
11

48

(
δ

4

)2

as desired.
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Having established our bounds on the integrands on regions Rδ
B and Rδ

C , we are

now prepared to bound the corresponding integrals in (2.21) and (2.22). The previous

lemmas give rise to the following upper bound on the regions of the integral that are

far from ΛX .

Proposition 2.23. When δ < k−2
(
n
k

)−2
[

1
6·962

(
2π
k−1

)4
]
,

∣∣∣∣∣(2π)−d
∫
RδB∪R

δ
C

ΦY (~θ)t d~θ

∣∣∣∣∣ < exp

(
−
(
n

k

)−1
11

768
tδ2

)
.

Proof. We remark that since |ΦY (~µ)| = |ΦX(~µ)| as shown in the proof of Proposition

2.4, the bounds in Lemmas 2.19 and 2.22 apply to |ΦY (~µ)| as well. The assumption

on δ implies that both Lemmas 2.19 and 2.22 apply. Moreover, when this assumption

on δ holds, it is easy to verify that the upper bound given in Lemma 2.22 is larger

than the upper bound given in Lemma 2.19. Putting those estimates together yields

∣∣∣∣∣(2π)−d
∫
RδB∪R

δ
C

ΦY (~θ)t d~θ

∣∣∣∣∣ ≤ (2π)−d
∫
RδB∪R

δ
C

|ΦY (~θ)|t d~θ

<

[
1−

(
n

k

)−1
11

48

(
δ

4

)2
]t

≤ exp

(
−
(
n

k

)−1
11

768
tδ2

)
.

2.4 Bounds Near the Maximal Set

We now seek to analyze the integrand in the region Rδ
A. By considering (2.22),

we see that our primary concern will be to determine bounds for the integral on the

region T δ~0 ⊂ Rδ
A. We first define some combinatorial terms; for j ∈ Z+ with j ≤ n,
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we set

Cj =

∏j−1
i=0 (k − i)∏j−1
i=0 (n− i)

and we note that if j ≤ k, then

Cj =

(
k
j

)(
n
j

)
whereas if j > k then Cj = 0. (Although the Cj terms depend on both parameters n

and k, we will opt to omit this from the notation.)

We first observe a pair of computations that will be referenced several times:

Proposition 2.24. With C2, C3, C4 defined as above, and with k ≥ 2, n − k ≥ 2,

and d =
(
n
2

)
,

1 + 2(n− 2) +

(
n− 2

2

)
= d (2.29)

and

C2 + 2(n− 2)C3 +

(
n− 2

2

)
C4 = d · C2

2 . (2.30)

We also define a d × d matrix N . We regard the indices of N in the same way

that we regard the indices of Rd; that is, its indices are sets of the form {a, b} with

1 ≤ a < b ≤ n. Entries in the matrix N will be denoted by N{a,b},{c,d}. We define

these entries in terms of the aforementioned combinatorial coefficients Cj, as follows:

N{a,b},{c,d} =



C2 − C2
2 , |{a, b} ∩ {c, d}| = 2

C3 − C2
2 , |{a, b} ∩ {c, d}| = 1

C4 − C2
2 , |{a, b} ∩ {c, d}| = 0

(2.31)

This makes N a real, symmetric matrix.
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Proposition 2.25. With N as defined in (2.31) and with k ≥ 2 and n − k ≥ 2, we

have N~1 = ~0 and ~1TN = ~0T .

Proof. We will show that the sum of the columns of N is ~0. For a fixed {a, b}, we

consider coordinates of the form {c, d}. Exactly one coordinate (namely, {a, b}) has

|{a, b} ∩ {c, d}| = 2, exactly 2(n − 2) coordinates have |{a, b} ∩ {c, d}| = 1, and

exactly
(
n−2

2

)
= (n−2)(n−3)

2
coordinates have |{a, b}∩{c, d}| = 0. The proposition then

amounts to showing that

(C2 − C2
2) + (C3 − C2

2) · 2(n− 2) + (C4 − C2
2) ·
(
n− 2

2

)
= 0

which follows immediately from (2.29) and (2.30). The equation ~1TN = ~0T then

follows from the symmetry of N .

To motivate the construction of the matrix N , we let ~ξ be an element of Vn,k ∈ Rn

and we recall that Z(~ξ) = (ξ1ξ2, ξ1ξ3, . . . , ξn−1ξn). We also recall that the random walk

Yt has increments of the form Z(~ξ)−C2
~1 where ξ is chosen randomly and uniformly

from the elements in Vn,k. For ~µ ∈ [−π, π]d, we will be interested in computing and

estimating quantities of the form

E
[(
~µ · (Z(~ξ)− C2

~1)
)p]

(2.32)

for p = 1, 2, 3, 4. The purpose of constructing N is the following proposition:

Proposition 2.26. Let ~µ ∈ [−π, π]d. Then

E
[(
~µ · (Z(~ξ)− C2

~1)
)2
]

= ~µTN~µ .
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Proof. The left term is

E
[(
~µ · (Z(~ξ)− C2

~1)
)2
]

= E

∑
{a,b}

µ{a,b}(ξaξb − C2)

2
=

∑
{a,b},{c,d}

µ{a,b}µ{c,d}E [(ξaξb − C2)(ξcξd − C2)]

where the last sum is taken over all ordered pairs of coordinate sets. To prove the

result, we must show that this quadratic form agrees with the entries of N ; that is,

that E[(ξaξb − C2)(ξcξd − C2)] is given by the coefficients of N in (2.31).

We first consider the case where |{a, b} ∩ {c, d}| = 2; that is, {c, d} = {a, b}.

Here,

E[(ξaξb − C2)(ξaξb − C2)] = E[ξaξb − 2C2ξaξb + C2
2 ] (2.33)

since all vectors in Vn,k have entries that are either 0 or 1. The product ξaξb will be

1 if ξa = 1 and ξb = 1; otherwise, it will be 0. Of the
(
n
k

)
vectors in Vn,k, there are(

n−2
k−2

)
vectors which have ξa = 1 and ξb = 1, corresponding to the ways to select the

locations for the remaining k − 2 1’s from the remaining n − 2 possible positions.

Hence, the probability that ξaξb is 1 is
(
n−2
k−2

)
/
(
n
k

)
= C2, from which it follows that

E[ξaξb] = C2 . (2.34)

Substituting this into (2.33) gives

E[(ξaξb − C2)(ξaξb − C2)] = C2 − C2
2
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which agrees with the corresponding coefficient of N .

Next, we consider the case where |{a, b} ∩ {c, d}| = 1 by considering an index

pair of the form {a, b}, {a, c}. In this case,

E[(ξaξb − C2)(ξaξc − C2)] = E[ξaξbξc − C2ξaξb − C2ξaξc + C2
2 ] . (2.35)

By analyzing the first term in a fashion similar to our discussion of (2.34), we see

that E[ξaξbξc] =
(
n−3
k−3

)
/
(
n
k

)
= C3. Using this and (2.34) in (2.35) shows that

E[(ξaξb − C2)(ξaξc − C2)] = C3 − C2
2

which again agrees with the corresponding coefficient of N .

Finally, we consider the case where |{a, b} ∩ {c, d} = 0|; that is, a, b, c, d are all

distinct. Here,

E[(ξaξb − C2)(ξcξd − C2)] = E[ξaξbξcξd − C2ξaξb − C2ξcξd + C2
2 ] (2.36)

and as before, the expectation of the first term is
(
n−4
k−4

)
/
(
n
k

)
= C4, whence (2.36)

becomes

E[(ξaξb − C2)(ξcξd − C2)] = C4 − C2
2

which also agrees with the corresponding entry of N .

Corollary 2.27. The matrix N is positive semidefinite.

Proof. This is immediate from Proposition 2.26 since the expectation term is

nonnegative.
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Remark 2.28. The process Yt was defined as being the process Xt with a drift

correction, which corresponds to the calculation in (2.34). That calculation shows

that the term in (2.32) is 0 when p = 1. We have now calculated the term when

p = 2; we will choose to estimate, rather than to compute, the terms with p = 3 and

p = 4.

Lemma 2.29. Let δ > 0. Then there is a function ε1 : T δ~0 → R such that for all

~µ ∈ T δ~0 , we have

Re(ΦY (~µ)) = e−
1
2
~µTN~µ(1 + ε1(~µ)) (2.37)

and |ε1(~µ)| < 1
6
(dδ)4e

1
2
d2δ2 . Moreover,

| Im(ΦY (~µ))| ≤ (dδ)3

6
. (2.38)

Further, if dδ < 1, then for ~µ ∈ T δ~0 we have

Re(ΦY (~µ)) ≥ 1

3
. (2.39)

Proof. For this proof, we will mimic the proof of Lemma 3.1 in [dLL10]. Since ~µ ∈ T δ~0 ,

we can write

~µ = γ~1 + ~ζ (2.40)

where |ζ{i,j}| < δ for all {i, j}. We begin with the remainder bounds on Taylor

polynomials for ez. If a ≥ 0 and b is real, we have

∣∣∣∣∣e−a −
j∑
s=0

(−a)j

s!

∣∣∣∣∣ ≤ min

{
2|a|j

j!
,
|a|j+1

(j + 1)!

}
, (2.41)∣∣∣∣∣eib −

j∑
s=0

(ib)s

s!

∣∣∣∣∣ ≤ min

{
2|b|j

j!
,
|b|j+1

(j + 1)!

}
. (2.42)
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For a reference, one can find (2.41) as [Bil95, equation 26.4]; (2.42) is proved similarly.

Using (2.41) with j = 1 shows that

∣∣∣∣e− 1
2
~µTN~µ −

(
1− 1

2
~µTN~µ

)∣∣∣∣ ≤ 1

8
(~µTN~µ)2. (2.43)

By (2.40) and Proposition 2.25, we note that

~µTN~µ = (γ~1T + ~ζT )N(γ~1 + ~ζ)

= ~ζTN~ζ.

We note from the triangle inequality that

|~ζTN~ζ| ≤
∑

{a,b},{c,d}

|ζ{a,b}ζ{c,d}N{a,b},{c,d}|

and we observe that all coefficients ofN have absolute value at most 1 since 0 ≤ Cj < 1

for j = 2, 3, 4. Since the components of ~ζ are bounded by δ, it follows that

|~µTN~µ| <
∑

{a,b},{c,d}

δ2 = d2δ2 . (2.44)

Using this in conjunction with (2.43) establishes that

∣∣∣∣e− 1
2
~µTN~µ −

(
1− 1

2
~µTN~µ

)∣∣∣∣ ≤ 1

8
d4δ4. (2.45)
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Next, let ~y be any vector in Vn,k. For convenience of notation, we set W (~y) =

Z(~y)− C2
~1. Using (2.42) with j = 3 implies that

∣∣∣∣ei~µ·W (~y) −
[
1 + i~µ ·W (~y)− 1

2
(~µ ·W (~y))2 − i

6
(~µ ·W (~y))3

]∣∣∣∣
≤ 1

24
(~µ ·W (~y))4

Using this with the fact that |Re(z)| < |z| for any z ∈ C, we see that

∣∣∣∣Re(ei~µ·W (~y))−
[
1− 1

2
(~µ ·W (~y))2

]∣∣∣∣ ≤ 1

24
(~µ ·W (~y))4. (2.46)

We now let ~ξ be a random, uniformly-chosen element of Vn,k. From (2.46), we see

that

∣∣∣∣E [Re(ei~µ·W (~ξ))
]
− E

[
1− 1

2
(~µ ·W (ξ))2

]∣∣∣∣
≤ E

∣∣∣∣Re(ei~µ·W (~ξ))−
[
1− 1

2
(~µ ·W (~ξ))2

]∣∣∣∣
≤ 1

24
E[(~µ ·W (~ξ))4]. (2.47)

Since Re is linear, we have E[Re(ei~µ·W (~ξ))] = Re(ΦY (~µ)). Hence, (2.47) and

Proposition 2.26 combine to yield

∣∣∣∣Re(ΦY (~µ))−
[
1− 1

2
~µTN~µ

]∣∣∣∣ ≤ 1

24
E[(~µ ·W (~ξ))4]. (2.48)

To obtain a preliminary bound on Im(ΦY (~µ)), we set j = 2 in (2.42) to obtain

∣∣∣∣ei~µ·W (~y) −
[
1 + i~µ ·W (~y)− 1

2
(~µ ·W (~y))2

]∣∣∣∣ ≤ 1

6
|~µ ·W (~y)|3
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and since | Im(z)| < |z|, we have

∣∣Im(ei~µ·W (~y))− ~µ ·W (~y)
∣∣ ≤ 1

6
|~µ ·W (~y)|3.

Using the same argument as for the real part, we see that if ~ξ is a random, uniformly-

chosen element of Vn,k,

|Im(ΦY (~µ))− E[~µ ·W (~y)]| ≤ 1

6
E[|~µ ·W (~y)|3]

and by Remark 2.28 we have E[~µ ·W (~y)] = 0, so it follows that

|Im(ΦY (~µ))| ≤ 1

6
E[|~µ ·W (~y)|3]. (2.49)

To prove (2.37) and (2.38), we need to bound the expectations in (2.48) and

(2.49). For any ~y ∈ Vn,k, we have ~1 · Z(~y) =
(
k
2

)
, and ~1 · C2

~1 = k(k−1)
n(n−1)

n(n−1)
2

=
(
k
2

)
;

hence, using ~µ = γ~1 + ~ζ from (2.40) shows that

~µ ·W (y) = (γ~1 + ~ζ) · (Z(~y)− C2
~1) = ~ζ ·W (y) .

For any ~y ∈ Vn,k, the components of W (~y) all have absolute value at most 1; this

follows from the fact that components of Z(~y) are either 1 or 0 and that 0 < C2 < 1.

Since the components of ~ζ have absolute value at most δ, by the triangle inequality

we have

|~µ ·W (~y)| ≤
∑
{a,b}

|ζ{a,b}| ≤ dδ. (2.50)
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Combining (2.50) with (2.49) yields (2.38). Likewise, using (2.50) with (2.48) shows

that ∣∣∣∣Re(ΦY (~µ))−
[
1− 1

2
~µTN~µ

]∣∣∣∣ ≤ (dδ)4

24

and combining this with (2.45) via the triangle inequality gives

∣∣∣Re(ΦY (~µ))− e−
1
2
~µTN~µ

∣∣∣ ≤ (dδ)4

6
.

Dividing both sides by e−
1
2
~µTN~µ yields

∣∣∣∣Re(ΦY (~µ))

e−
1
2
~µTN~µ

− 1

∣∣∣∣ ≤ 1

6
(dδ)4e

1
2
~µTN~µ

and by (2.44), we see that

∣∣∣∣Re(ΦY (~µ))

e−
1
2
~µTN~µ

− 1

∣∣∣∣ ≤ 1

6
(dδ)4e

1
2
d2δ2 .

Therefore, we have

Re(ΦY (~µ)) = e−
1
2
~µTN~µ

[
Re(ΦY (~µ))

e−
1
2
~µTN~µ

]
= e−

1
2
~µTN~µ(1 + ε1(~µ))

where

|ε1(~µ)| ≤ 1

6
(dδ)4e

1
2
d2δ2

which establishes (2.37).

Finally, to establish (2.39), we note from (2.37) that

Re(ΦY (~µ)) ≥ e−
1
2
~µTN~µ

(
1− 1

6
(dδ)4e

1
2

(dδ)2
)
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and by (2.44) and the assumption that (dδ) < 1, we see that

Re(ΦY (~µ)) ≥
1− 1

6
(dδ)4e

1
2

(dδ)2

e
1
2

(dδ)2

≥ 1−
√
e/6√
e

≥ 1/3

as desired.

2.5 The Submatrix Determinant

We now reconsider the d × d matrix N as defined in (2.31). As implied by

Proposition 2.25 this matrix is singular. Our primary concern in the upcoming

calculations will not be N , but its (d− 1)× (d− 1) principal submatrix obtained by

removing the row and column with index {n− 1, n}. We will denote this submatrix

by M . We will need to discuss the corresponding subspace Rd−1 ⊂ Rd, so we specify

that if our enumeration of the coordinates of Rd is

{1, 2}, {1, 3}, . . . , {n− 2, n}, {n− 1, n}

then the coordinates of Rd−1 are enumerated as

{1, 2}, {1, 3}, . . . , {n− 2, n}

to correspond to our definition of M .
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Lemma 2.30. With M,N as previously defined,

2π

∫
[−δ,δ]d−1

e−
t
2
~µTM~µ d~µ ≤

∫
T δ
~0

e−
t
2
~θTN~θ d~θ ≤ 2π

∫
[−2δ,2δ]d−1

e−
t
2
~µTM~µ d~µ.

Proof. We begin by reparametrizing the middle integral. We define a region better

suited for the upcoming reparametrization:

Sδ~0 =
{
~γ~1 + ~ζ : γ ∈ [0, 2π), |ζ{i,j}| < δ for all i, j and ζ{n−1,n} = 0

}

where as always, coordinates of Sδ~0 are understood to be taken modulo 2π. We note

from (2.17) that Sδ~0 ⊂ T δ~0 is clear. We also claim that T δ~0 ⊂ S2δ
~0

. To see this, we

let γ~1 + ~ζ ∈ T δ~0 ; if we set ~ζ ′ = ~ζ − ζ{n−1,n}~1 and γ′ = γ + ζ{n−1,n}, then we have

γ~1+~ζ = γ′~1+~ζ ′, and the latter is in S2δ
~0

by the triangle inequality. From the relation

that Sδ~0 ⊂ T δ~0 ⊂ S2δ
~0

, it follows that

∫
Sδ
~0

e−
t
2
~θTN~θ d~θ ≤

∫
T δ
~0

e−
t
2
~θTN~θ d~θ ≤

∫
S2δ
~0

e−
t
2
~θTN~θ d~θ. (2.51)

To reparametrize the integral, we define a function g : Rd → Rd such that

g(~µ){1,2} = ν{1,2} + ν{n−1,n}

g(~ν){1,3} = ν{1,3} + ν{n−1,n}

...

g(~ν){n−2,n} = ν{n−2,n} + ν{n−1,n}

g(~ν){n−1,n} = ν{n−1,n}.
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It is easy to see that the Jacobian determinant of this transformation is 1, and that

g
(
[−δ, δ]d−1 × [0, 2π)

)
= Sδ~0 .

For convenience of notation, we write ~ν0 = (ν{1,2}, . . . , ν{n−2,n}, 0)T and we set ~θ =

g(~ν), so that ~θ = ~ν0 + ν{n−1,n}~1. From Proposition 2.25, we see that

~θTN~θ = (~ν0 + ν{n−1,n}~1)TN(~ν0 + ν{n−1,n}~1)

= (~ν0)TN~ν0.

By applying the change of variables formula to the integral, we obtain

∫
Sδ
~0

e−
t
2
~θTN~θ d~θ =

∫ 2π

0

∫ δ

−δ
. . .

∫ δ

−δ
e−

t
2

(~ν0)TN~ν0

dν{1,2} . . . dν{n−2,n} dν{n−1,n}

and since the rightmost integrand no longer involves ν{n−1,n}, we can integrate that

variable to get

∫
Sδ
~0

e−
t
2
~θTN~θ d~θ = 2π

∫ δ

−δ
. . .

∫ δ

−δ
e−

t
2

(~ν0)TN~ν0

dν{1,2} . . . dν{n−2,n} . (2.52)

Next, we consider the subspace R × · · · × R × {~0} of Rd and the function h :

R×· · ·×R×{~0} → Rd−1 given by h((ν{1,2}, . . . , ν{n−2,n}, 0)T ) = (ν{1, 2}, . . . , ν{n−2,n});

we also set ~µ = h(~ν). (We introduce this notation only so that we have a convenient

way to distinguish between vectors in Rd and in Rd−1). Since the {n−1, n} component

of ~ν0 is 0, we have (~ν0)TN~ν0 = ~µTM~µ. Applying the change of variables formula to

47



(2.52) then yields

∫
Sδ
~0

e−
t
2
~θTN~θ d~θ = 2π

∫
[−δ,δ]d−1

e−
t
2
~µTM~µ d~µ .

Using this on the left and right of (2.51) completes the proof.

For a variety of reasons, it will be important for us to know that the matrix

M is nonsingular. We can of course deduce this fact by computing the determinant

(which we will do eventually anyway) and arguing that it is nonzero. However, the

determinant computation is rather lengthy and difficult, and it is possible to argue

the nonsingularity of M at an elementary level while bypassing the need to compute

det(M) at all. We will accomplish this task in Lemma 2.32. Though the result of

Lemma 2.32 is redundant with that of Lemma 2.40, the method is quite different,

and we present it for interest’s sake.

We will first require a small bit of machinery. Let σ be a transposition of the

set {1, . . . , n}; that is, σ is a permutation of the elements of {1, . . . , n} that swaps

two elements. This permutation induces a permutation on the collection of subsets

of {1, . . . , n} of size 2 in a natural way, given by σ({i, j}) = {σ(i), σ(j)}. This

permutation on 2-element sets also has cycle length 2 and can therefore be represented

with a symmetric d× d permutation matrix Pσ.

Proposition 2.31. Let σ be a transposition of S = {1, . . . , n} and let Pσ be the

matrix corresponding to the induced permutation of 2-element subsets of S. Then

PσN = NPσ.

Proof. Since the induced permutation has cycle length 2, it follows that Pσ =

P T
σ = P−1

σ . Using the notation of (2.31), the {a, b}, {c, d} entry of PσNPσ is
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N{σ(a),σ(b)},{σ(c),σ(d)}. Since

N{σ(a),σ(b)},{σ(c),σ(d)} = |{σ(a), σ(b)} ∩ {σ(c), σ(d)}|

= |{a, b} ∩ {c, d}|

= N{a,b},{c,d}

the desired result follows.

Lemma 2.32. The matrix M is nonsingular.

Proof. Suppose that there is a nonzero vector ~x ∈ Rd−1 for which M~x = ~0. We

will derive a contradiction by constructing a vector ~x0 ∈ Rd formed by appending

a zero to ~x; the contradiction will come from considering N~x0. By construction, all

coordinates of N~x0 are 0 except possibly the last coordinate.

If the last coordinate of N~x0 is 0, i.e. N~x0 = ~0, then for any real a ∈ R we have

(a~x0)TN(a~x0) = 0. By Proposition 2.26, it follows that E[(a~x0 · Y1)2] = 0, whence

a~x0 · Y1 = 0 almost surely. By (2.6), this implies that a~x0 ∈ ΛY . Since this holds

for any real a, Lemma 2.17 implies that ~x0 = c~1 for some real c. By construction,

the last coordinate of ~x0 is 0; therefore we must have ~x0 = ~0, which contradicts our

assumption that ~x 6= 0.

Suppose instead that the last coordinate of N~x0 is nonzero. Without loss of

generality, we can assume that N~x0 = ~e{n−1,n}, which is the vector whose {n− 1, n}

coordinate is 1 and all other coordinates are 0. Let {i, j} be arbitrary; we will show

that ~e{i,j} is in the range of M . First, assume that |{i, j} ∩ {n− 1, n}| = 0; let σ be

the transposition that swaps n− 1 and i, and let τ be the transposition that swaps n

and j. We let Pσ, Pτ denote the respective d×d matrices of the induced permutations
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on 2-element subsets of {1, . . . , n}. Since

PτPσN~x
0 = PτPσ~e{n−1,n}

and since

PτPσ~e{n−1,n} = Pτ~e{i,n} = ~e{i,j}

then from Proposition 2.31 it follows that

N(PτPσ~x
0) = ~e{i,j}.

In the case that |{i, j} ∩ {n− 1, n}| = 1, we can repeat the same argument as above

using only a single permutation matrix instead of two. Thus, every ~e{i,j} is in the

range of N , and N is therefore invertible. This contradicts the singularity of N proven

in Proposition 2.25 and completes the proof.

The nonsingularity of M yields some useful corollaries:

Corollary 2.33. The matrix M is positive definite.

Proof. By Corollary 2.27, we know that N is positive semidefinite; hence, its

eigenvalues are all nonnegative. By Cauchy’s interlace theorem (see, for example,

[Hwa04]), the eigenvalues of M are also all nonnegative. But by Lemma 2.32 we see

that their product, det(M), is nonzero. This means that each eigenvalue is strictly

positive and that M is therefore positive definite.

Since M is positive definite, there is a unique symmetric, positive definite matrix

P such that P 2 = M . In an upcoming integral computation, we will need to
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understand the set

P [−δ, δ]d−1 =
{
P~µ : ~µ ∈ Rd−1 and |µ{i,j}| < δ for all i, j

}
.

Rather than actually computing this set, it will suffice for us to bound it.

Proposition 2.34. There exist positive constants D1, D2 which depend only on n

and k such that for all δ > 0,

[−D1δ,D1δ]
d−1 ⊂ P [−δ, δ]d−1 ⊂ [−D2δ,D2δ]

d−1.

Proof. Since P is positive definite, the linear transformation corresponding to P

maps the box [−1, 1]d−1 to some nondegenerate subset of Rd−1. Therefore, there

are constants D1 and D2 such that

[−D1, D1]d−1 ⊂ P [−1, 1]d−1 ⊂ [−D2, D2]d−1.

These constants depend on the matrix P , which is defined in terms of the matrix M ,

which depends only on the constants n and k. We scale these sets by a factor of δ

and exploit the linearity of the transformation associated to matrix P to obtain

[−D1δ,D1δ]
d−1 ⊂ P [−δ, δ]d−1 ⊂ [−D2δ,D2δ]

d−1

as desired.

Remark 2.35. The salient detail of Proposition 2.34 is that D1 and D2 do not depend

on δ.
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The remainder of this section is dedicated to computing det(M). The first

step toward this goal is finding a convenient expression of N in terms of elementary

matrices. We remark here that at several points in the upcoming calculations, we will

refer to 1× 1 matrices, to their entries, and to their determinants interchangeably.

Fix r ∈ N. We will denote the r × r identity matrix by Ir. We will define ~xr to

be the vector in Rr with all entries 1; i.e.

~xr = (1, . . . , 1)T . (2.53)

We will also define yr ∈ Rr to be the vector with the last two entries 1 and all other

entries 0; i.e.

~yr = (0, . . . , 0, 1, 1)T . (2.54)

We collect some useful computations involving these vectors:

~xr~x
T
r =


1 . . . 1

...
. . .

...

1 . . . 1

 (2.55)

~xTr ~xr = r (2.56)

~yr~y
T
r =



0 . . . 0 0 0

...
. . .

...
...

...

0 . . . 0 0 0

0 . . . 0 1 1

0 . . . 0 1 1


(2.57)

~xTr ~yr = ~yTr ~xr = ~yTr ~yr = 2 (2.58)
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We recall from the discussion immediately preceding Proposition 2.11 that ~βa is

defined by βa{i,j} = 1 if i = a or j = a and βa{i,j} = 0 otherwise. We let ~χa be the

vector obtained by truncating the {n− 1, n} coordinate from ~βa, so that ~χa ∈ Rd−1.

We define a (d− 1)× n matrix Q by

Q =

[
~χ1 ~χ2 . . . ~χn

]
. (2.59)

For example, if n = 5, then

Q =



1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 1 0 0

0 1 0 1 0

0 1 0 0 1

0 0 1 1 0

0 0 1 0 1



{1, 2}

{1, 3}

{1, 4}

{1, 5}

{2, 3}

{2, 4}

{2, 5}

{3, 4}

{3, 5}

where the labels to the right denote the standard coordinate enumeration. We note

that of all the vectors ~βa, the only ones that had a (now removed) 1 in the {n− 1, n}

coordinate are ~βn−1 and ~βn.

The primary importance of the matrix Q is the computation of the (d−1)×(d−1)

matrix QQT , which can be found by examining the inner products of rows {a, b} and
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{c, d} of Q:

(QQT ){a,b},{c,d} =



2, |{a, b} ∩ {c, d}| = 2

1, |{a, b} ∩ {c, d}| = 1

0, |{a, b} ∩ {c, d}| = 0.

(2.60)

Comparing this computation with (2.31) sheds light on why Q is a useful matrix. We

will also need to consider the n× n matrix QQT , which is given by the formula

QTQ = (n− 2)In + ~xn~x
T
n − ~yn~yTn . (2.61)

To see this, we consider the inner products of columns of the matrix Q. The inner

product of any column with itself is the number of 1’s in that column, which is n− 1

for all but the last two columns and is n − 2 for the last two columns; these agree

with the diagonal entries of the sum in (2.61). Similarly, the inner product of distinct

columns i and j is 1, corresponding to the 1 found in the {i, j} row of each column.

The exception is if i = n− 1 and j = n (or vice versa), where the inner product is 0.

These entries are also given by the sum in (2.61).

We also make note of the following computation, to be used when computing

det(M):

~xTd−1Q = (n− 1)~xTn − ~yTn . (2.62)

This follows from fact the every column in Q has n− 1 entries equal to 1, except for

the last two, which have only n− 2 entries equal to 1.

We are ready to express our matrix M of interest in terms of these constituent

parts:
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Proposition 2.36. With matrices M , Id−1, ~xd−1, Q, and coefficients Ci as previously

defined, and with a1 = C2 − 2C3 + C4, a2 = C4 − C2
2 , and a3 = C3 − C4,

M = a1Id−1 + a2~xd−1~x
T
d−1 + a3QQ

T . (2.63)

Proof. Let R = a1Id−1 + a2~xd−1~x
T
d−1 + a3QQ

T . We will verify that these entries of

R agree with the entries in (2.31) by using (2.55) and (2.60). A coordinate pair of

the form {a, b}, {a, b} (i.e. one on the diagonal of R) receives a contribution from all

three parts of the sum in (2.63):

R{a,b},{a,b} = a1 + a2 + 2a3

= C2 − C2
2 .

A coordinate pair of the form {a, b}, {a, c} (i.e. exactly one shared component) does

not receive a contribution from the identity matrix in (2.63), so

R{a,b},{a,c} = a2 + a3

= C3 − C2
2 .

Finally, a coordinate pair of the form {a, b}, {c, d} (i.e. no shared components)

receives a contribution only from the ~xd−1~x
T
d−1 term in (2.63):

R{a,b},{c,d} = a2

= C4 − C2
2 .
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The useful characterization of M in Proposition 2.36 will allow us to compute

the determinant of M when combined with the following lemmas:

Lemma 2.37 (Matrix Determinant Lemma). Let W be an invertible r × r matrix

and let U, V be r × s matrices. Then

det(W + UV T ) = det(W ) det(Is + V TW−1U) .

Proof. See [Har97, Theorem 18.1].

Lemma 2.38 (Generalized Sherman-Morrison-Woodbury Identity). Let W be an

invertible r × r matrix and for i = 1, . . . , L let Ui, Vi be r × s matrices. Define the

Ls× Ls matrix X by

X =



Is + V T
1 W

−1U1 V T
1 W

−1U2 . . . V T
1 W

−1UL

V T
2 W

−1U1 Is + V T
2 W

−1U2 . . . V T
2 W

−1UL
...

...
. . .

...

V T
L W

−1U1 V T
L W

−1U2 . . . Is + V T
L W

−1UL


.

If X is invertible, then the matrix
(
W +

∑L
i=1 UiV

T
i

)
is invertible, and its inverse is

given by

(
W +

L∑
i=1

UiV
T
i

)−1

= W−1 −W−1[ U1 . . . UL ]X−1[ V T
1 . . . V T

L
]TW−1 .

Proof. See [Bat08].

In particular, with L = 1 in Lemma 2.38, we obtain the following:
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Lemma 2.39 (Woodbury Matrix Identity). Let W be an invertible r × r matrix

and let U, V be r × s matrices. Define X = Is + V TW−1U . If X is invertible, then

W + UV T is invertible, and

(W + UV T )−1 = W−1 −W−1UX−1V TW−1 .

The basic strategy for computing det(M) will be to use the Matrix Determinant

Lemma several times to trade the products QQT and ~xd−1~x
T
d−1 for their lower-

rank counterparts, QTQ and ~xTd−1~xd−1. Executing this plan will require use of the

generalized Sherman-Morrison-Woodbury and Woodbury Matrix Identities.

We are nearly ready to compute det(M). We first remark that if k = 2, we have

C3 = C4 = 0 and therefore a3 = 0 in Lemma 2.36. For technical reasons, this will

require us to approach the computation differently when k = 2. However, the formula

given in the calculation will still hold in this case, even though the method of proof

is different.

Lemma 2.40. The (d− 1)× (d− 1) matrix M has

det(M) =
2
(

(n−3)(k−1)
n−k−1

)n
(n− 2)

(
(k−1)k[k(k+1)−2kn+n(n−1)]

n(n−1)(n−2)(n−3)

)d
(n− k)k(k − 1)2

. (2.64)

Proof. We first assume that k ≥ 3. Recalling the definitions of a1, a2, and a3 in

Proposition 2.36, we have

a3 = C3 − C4 =
k(k − 1)(k − 2)

n(n− 1)(n− 2)

(
1− k − 3

n− 3

)
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so a3 > 0. Similarly,

a1 = C2 − 2C3 + C4

=
k(k − 1)

n(n− 1)

(
1− 2

k − 2

n− 2
+

(k − 2)(k − 3)

(n− 2)(n− 3)

)

and since

0 < [(n− 3)− (k − 2)]2 + (n− k − 1)

= (n− 3)(n− 2)− 2(k − 2)(n− 3) + (k − 2)(k − 3)

it follows that a1 > 0 as well. We define a constant w that will appear in several

places:

w =
a3

a1

(n− 2) + 1 (2.65)

Since a3 > 0 and a1 > 0, it follows that w ≥ 1.

Starting with the decomposition in Proposition 2.36, we set

E = a1Id−1 + a3QQ
T (2.66)

so that we have

M = E + a2~xd−1~x
T
d−1 .

Once we have shown that E is invertible, by the Matrix Determinant Lemma we will

have

det(M) = det(E)(1 + a2~x
T
d−1E

−1~xd−1). (2.67)

This breaks the computation of det(M) into two smaller computations; we will handle

the computation of 1 + ~xTd−1E
−1~xd−1 first. Since E = a1Id−1 + a3QQ

T , so long as the
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matrix

G = In +
a3

a1

QTQ

is invertible, applying the Woodbury Matrix Identity to (2.66) yields

E−1 = a−1
1 Id−1 − a−2

1 a3Q

(
In +

a3

a1

QTQ

)−1

QT . (2.68)

We recall from (2.61) that

QTQ = (n− 2)In + ~xn~x
T
n − ~yn~yTn

so using w as in (2.65), we have

G = wIn +
a3

a1

~xn~x
T
n −

a3

a1

~yn~y
T
n . (2.69)

To argue that G is invertible (hence, that E is), and to compute G−1, we use the

generalized Sherman-Morrison-Woodbury Identity on (2.69). Here, the matrix X in

Lemma 2.38 is the 2× 2 matrix which can be computed using (2.56) and (2.58):

X =

 1 + 1
w
a3

a1
~xTn~xn − 1

w
a3

a1
~xTn~yn

1
w
a3

a1
~xTn~yn 1− 1

w
a3

a1
~yTn ~yn

 =

 1 + n a3

a1w
−2 a3

a1w

2 a3

a1w
1− 2 a3

a1w

 (2.70)

We note that

det(X) =

(
1 + n

a3

a1w

)(
1− 2

a3

a1w

)
+ 4

(
a3

a1w

)2

=

(
a3

a1w

)2((
a1w

a3

+ n

)(
a1w

a3

− 2

)
+ 4

)
.
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Since a1w
a3

= n− 2 + a1

a3
≥ 2, it follows that this determinant is nonzero. Hence, X is

invertible, which implies that G is invertible, and therefore E is invertible, justifying

the use of (2.67).

By inverting the 2×2 matrix X and applying the generalized Sherman Morrison-

Woodbury Identity, after some algebra we have

G−1 =
1

w

(
In −

1

(a1w
a3

+ n)(a1w
a3
− 2) + 4

×
[
~xn −~yn

] a1w
a3
− 2 2

−2 a1w
a3

+ n


 ~xTn

~yTn

) (2.71)

giving us an explicit formula for G−1. By (2.68), this also gives an explicit formula

for E−1. The right half of the computation in (2.67) can be rewritten using (2.68) to

obtain

1 + a2~x
T
d−1E

−1~xd−1

= 1 +
a2

a1

~xTd−1~xd−1 −
a2a3

a2
1

~xTd−1QG
−1QT~xd−1

and by using (2.62) to replace ~xTd−1Q and QT~xd−1 we have

1 + a2~x
T
d−1E

−1~xd−1

= 1 +
a2

a1

~xTd−1~xd−1 −
a2a3

a2
1

[(n− 1)~xTn − ~yTn ]G−1[(n− 1)~xn − ~yn] (2.72)
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which can be computed due to the explicit formula for G−1 given in (2.71). For

convenience of notation, we set

U =

[
~xn −~yn

]

H =

 a1w
a3
− 2 2

−2 a1w
a3

+ n


V T =

 ~xTn

~yTn


since these matrices appear in the more complicated portion of G−1. To expand the

product in (2.72), we observe four useful calculations that make use of (2.56) and

(2.58):

~xTnUHV
T~xn = (n− 2)

(
a1w

a3

(n+ 2)− 2n

)
~xTnUHV

T~yn = 2(n− 2)

(
a1w

a3

− 2

)
~yTnUHV

T~xn = 2(n− 2)

(
a1w

a3

− 2

)
~yTnUHV

T~yn = 8− 4n

Using these calculations in (2.72), along with (2.56) and (2.58) again and a great deal

of algebra, we have

1 + a2~x
T
d−1E

−1~xd−1

= 1 +
a2

a1

[
d− 1− w − 1

w

{
n2 − 3− n− 2

(a1w
a3

+ n)(a1w
a3
− 2) + 4

×
(

(n− 3)(n2 + n− 4) +
a1

a3

(n− 1)(n+ 3)

)}]
. (2.73)
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This yields a formula for the second factor on the right-hand side of (2.67).

To find a formula the first factor on the right-hand side of (2.67), we seek to

compute det(E). To accomplish this, we will use the Matrix Determinant Lemma on

(2.66). From (2.61), we have

det(E) = ad−1
1 det

(
Id−1 +

a3

a1

QQT

)
= ad−1

1 det

(
In +

a3

a1

QTQ

)
= ad−1

1 det

(
wIn +

a3

a1

~xn~x
T
n −

a3

a1

~yn~y
T
n

)
.

We set

F = wIn +
a3

a1

~xn~x
T
n (2.74)

and we note that if F is invertible, then by the Matrix Determinant Lemma, we have

det(E) = ad−1
1 det(F )

(
1− a3

a1

~yTnF
−1~yn

)
. (2.75)

To establish that F is invertible and to compute F−1, we use the Woodbury Matrix

Identity on (2.74). Because

1 +
a3

a1w
~xTn~xn = 1 +

a3n

a1w
> 0

it follows from Lemma 2.39 that F is invertible, so that the use of (2.75) is indeed

justified. Moreover, from this lemma we obtain

F−1 =
1

w

(
In −

1
a1w
a3

+ n
~xn~x

T
n

)
.
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We combine this with (2.58) and find, after some algebra, that

1− a3

a1

~yTnF
−1~yn = 1− a3

wa1

(
2− 4

a1w
a3

+ n

)
. (2.76)

To find det(F ), we apply the Matrix Determinant Lemma to (2.74) to see that

det(F ) = wn det

(
In +

a3

a1w
~xn~x

T
n

)
= wn−1

(
w +

a3

a1

n

)
. (2.77)

By substituting the results of (2.77) and (2.76) into (2.75) and simplifying, we find

that

det(E) = ad−1
1 wn−2

(
2w2 − w − 2

a3

a1

(w − 1)

)
. (2.78)

From here, (2.78) and (2.73) yield the two factors of det(M) in (2.67). We multiplying

these together and substitute the definition of w in (2.65). Then, we substitute the

values of a1, a2, a3 in Proposition 2.36; following this, using the definition of the Ci

constants and simplifying yields (2.64).

Finally, in the case where k = 2, we note that (2.64) reduces to the particularly

simple expression

det(M) =
1

dd
. (2.79)

When k = 2, the coefficients a1, a2, a3 are

a1 = C2 = d−1,

a2 = −C2
2 = −d−2,

a3 = 0.
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The preceding proof does not work since a3 appears in many denominators. To

verify that the formula in (2.79) still holds, we reconsider the decomposition of M in

Proposition 2.36. In this case,

M = a1Id−1 + a2~xd−1~x
T
d−1 (2.80)

so the determinant is much more straightforward than the case where k ≥ 3. In

particular, since a1 6= 0 we can apply the Matrix Determinant Lemma to (2.80). This

gives

det(M) = det(a1Id−1)

(
1 +

a2

a1

~xTd−1~xd−1

)
= (d−1)d−1

(
1− d−2

d−1
(d− 1)

)
= d−d

which matches (2.79) and completes the proof.

2.6 Proof of Main Theorem

Our next task is to find suitable lower and upper bounds for the integral used

to compute P(t)
n,k(~0,~0). With D1 and D2 defined as in Proposition 2.34, we define two

quantities of interest:

L(n, k, t, δ) = [1 + t2(dδ)6]−1/2

[
1− 1

3
(dδ)4

]t
[1− e−

1
2
t(D1δ)2 ](d−1)/2

U(n, k, t, δ) =

[
1 +

1

4
(dδ)6

]t/2 [
1 +

1

3
(dδ)4

]t
[1− e−t(2D2δ)2 ](d−1)/2

64



Theorem 2.41. Suppose that δ < k−2
(
n
k

)−2
[

1
6·962

(
2π
k−1

)4
]
, and let t ≥ 2 be any

integer. If t k(k−1)
n(n−1)

is not an integer, then

P(t)
n,k(~0,~0) = 0. (2.81)

If t k(k−1)
n(n−1)

is an integer but t k
n

is not, then

P(t)
n,k(~0,~0) ≤ exp

(
−
(
n

k

)−1
11

768
tδ2

)
. (2.82)

Finally, if both t k(k−1)
n(n−1)

and t k
n

are integers with t < 2(dδ)−3, then

P(t)
n,k(~0,~0) ≤ (k − 1)n−1√

(2πt)d−1 det(M)
U(n, k, t, δ) + e−(nk)

−1 11
768

tδ2 (2.83)

and

P(t)
n,k(~0,~0) ≥ (k − 1)n−1√

(2πt)d−1 det(M)
L(n, k, t, δ)− e−(nk)

−1 11
768

tδ2 . (2.84)

Remark 2.42. In the sequel, δ will be chosen to vary with t in such a way that tδ2

diverges to infinity. This will cause the bound in (2.82) to tend to 0, which reflects

the fact that a balanced incomplete block design can only exist when t k
n

is an integer

as shown in (2.1). The terms U(n, k, t, δ) and L(n, k, t, δ) will also approach 1, which

will cause (2.83) and (2.84) to yield the asymptotics for the return probability of the

random walk Yt. This will then give the asymptotics for the number of balanced

incomplete block designs as t increases.

Remark 2.43. Since k ≥ 2 and n − k ≥ 2, we have
(
n
k

)
≥
(
n
2

)
= d; hence,

our assumption on δ implies in particular that δ < d−1, which will be referenced

throughout the proof.
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Proof of Theorem 2.41. We first consider the case where t k(k−1)
n(n−1)

is not an integer.

From the definitions of Xt and Yt, since Xt is supported on Zd then it is trivially only

possible to have Yt = ~0 if t k(k−1)
n(n−1)

∈ Z, which establishes (2.81).

When t k(k−1)
n(n−1)

∈ Z, we recall from (2.5) that

P(t)
n,k(~0,~0) = (2π)−d

∫
[−π,π]d

ΦY (~θ)t d~θ .

We first suppose that t k
n
6∈ Z. From (2.21), in this case we have

P(t)
n,k(~0,~0) = (2π)−d

∫
RδB∪R

δ
C

ΦY (~θ)t d~θ

whence Proposition 2.23 gives rise to (2.82). If instead t k
n
∈ Z, (2.22) implies that

∣∣∣∣∣P(t)
n,k(~0,~0)− (2π)−d(k − 1)n−1

∫
T δ
~0

ΦY (~θ)t d~θ

∣∣∣∣∣
=

∣∣∣∣∣(2π)−d
∫
RδB∪R

δ
C

ΦY (~θ)t d~θ

∣∣∣∣∣
so that Proposition 2.23 yields

∣∣∣∣∣P(t)
n,k(~0,~0)− (2π)−d(k − 1)n−1

∫
T δ
~0

ΦY (~θ)t d~θ

∣∣∣∣∣ ≤ e−(nk)
−1 11

768
tδ2 .

Therefore, to prove (2.83) and (2.84), it will suffice to show that

L(n, k, t, δ)√
(2πt)d−1 det(M)

≤ (2π)−d
∫
T δ
~0

ΦY (~θ)t d~θ ≤ U(n, k, t, δ)√
(2πt)d−1 det(M)

. (2.85)
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Moreover, since ΦY (−~θ) and ΦY (~θ) are complex conjugates, we have

∫
T δ
~0

ΦY (~θ)t d~θ =

∫
T δ
~0

Re(ΦY (~θ)t) d~θ. (2.86)

Our strategy will be to relate Re(ΦY (~θ)t) to [Re(ΦY (~θ))]t by using Lemma 2.45.

Let t ≥ 2 be an integer. For a complex number z = a + bi with a > 0, we set

β(z) = b/a and α(z, t) = 1−
(
t
2

)
β(z)2. From Lemma 2.29, for ~θ ∈ T δ~0 we have

|β(ΦY (~θ))| ≤ (dδ)3/6

1/3
=

(dδ)3

2
(2.87)

Since by hypothesis t < 2(dδ)−3, it follows that
(
t
2

)
β(ΦY (~θ))2 ≤

(
t
2

) (dδ)6

4
< 1

2
, whence

α(ΦY (~θ), t) > 1
2
. In particular, since Re(ΦY (~θ)) > 0 by (2.39) and since α(ΦY (~θ), t) >

0, we can make full use of Lemma 2.45. From (2.95) and (2.87) we have

Re(Φt
Y (~θ)) ≤

[
Re(ΦY (~θ))

]t(
1 +

(dδ)6

4

)t/2
(2.88)

and if β and α denote β(ΦY (~θ)) and α(ΦY (~θ), t) respectively, then from (2.98) we

have

Re(ΦY (~θ)t)

≥
[
Re(ΦY (~θ))

]t (
1 + β2

)t/2(
1 + t2

[
β

α

]2
)− 1

2

≥
[
Re(ΦY (~θ))

]t(
1 + t2

[
β

α

]2
)−1/2

. (2.89)
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Since α(ΦY (~θ), t) ≥ 1/2 and β(ΦY (~θ)) ≤ (dδ)3/2, it follows that

[
β(ΦY (~θ))

α(ΦY (~θ), t)

]2

≤ (dδ)6

so (2.88) and (2.89) combine to give

[1 + t2(dδ)6]−1/2

∫
T δ
~0

[
Re(ΦY (~θ))

]t
d~θ

≤
∫
T δ
~0

Re(ΦY (~θ)t) d~θ

≤
[
1 +

(dδ)6

4

]t/2 ∫
T δ
~0

[
Re(ΦY (~θ))

]t
d~θ. (2.90)

The inequality (2.90) grants us the ability to consider
[
Re(ΦY (~θ))

]t
instead of

Re(ΦY (~θ)t) in our calculations. From Lemma 2.29, we see that there exists a function

ε1 : T δ~0 → R such that for ~θ ∈ T δ~0 ,

[
Re(ΦY (~θ))

]t
= e−

1
2
~θTN~θ(1 + ε1(~θ))t

and |ε1(~θ)| < 1
6
(dδ)4e

1
2

(dδ)2 . Since our assumptions imply that dδ < 1, it follows that

e
1
2

(dδ)2 < 2, so |ε1(~θ)| < 1
3
(dδ)4. Hence, we have

e−
t
2
~θTN~θ

[
1− 1

3
(dδ)4

]t
≤
[
Re(ΦY (~θ))

]t
≤ e−

t
2
~θTN~θ

[
1 +

1

3
(dδ)4

]t
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and substituting these bounds into (2.90) gives

[1 + t2(dδ)6]−1/2

[
1− 1

3
(dδ)4

]t ∫
T δ
~0

e−
t
2
~θTN~θ d~θ

≤
∫
T δ
~0

Re(ΦY (~θ)t) d~θ

≤
[
1 +

(dδ)6

4

]t/2 [
1 +

1

3
(dδ)4

]t ∫
T δ
~0

e−
t
2
~θTN~θ d~θ. (2.91)

To verify (2.85) (and thus complete the proof), by (2.91) and (2.86) it suffices to show

that

[1− e− 1
2
t(D1δ)2 ](d−1)/2√
det(M)

(2π)

(
2π

t

)(d−1)/2

≤
∫
T δ
~0

e−
t
2
~θTN~θ d~θ

≤ [1− e−t(2D2δ)2 ](d−1)/2√
det(M)

(2π)

(
2π

t

)(d−1)/2

(2.92)

so we now turn our attention to the integral in the middle.

By Lemma 2.30, we first notice that that we can replace the Gaussian integral

in (2.92) with a different one:

2π

∫
[−δ,δ]d−1

e−
t
2
~µTM~µ d~µ ≤

∫
T δ
~0

e−
t
2
~θTN~θ d~θ ≤ 2π

∫
[−2δ,2δ]d−1

e−
t
2
~µTM~µ d~µ

The main purpose of this exchange is that while N is only positive semidefinite (by

Lemma 2.27), M is positive definite (by Corollary 2.33); additionally, the limits on the

leftmost and rightmost integrals are easier to manage. We recall from the discussion

preceding Proposition 2.34 and its preceding discussion that there exists a symmetric,
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positive definite matrix P for which P 2 = M . Hence,

2π

∫
[−δ,δ]d−1

e−
t
2
~µTM~µ d~µ = 2π

∫
[−δ,δ]d−1

e−
t
2

(P~µ)T (P~µ) d~µ

so if we use the change of variables ~λ = P~µ, we have

2π

∫
[−δ,δ]d−1

e−
t
2
~µTM~µ d~µ =

2π

det(P )

∫
P [−δ,δ]d−1

e−
t
2
~λT~λ d~λ

and similarly,

2π

∫
[−2δ,2δ]d−1

e−
t
2
~µTM~µ d~µ =

2π

det(P )

∫
P [−2δ,2δ]d−1

e−
t
2
~λT~λ d~λ .

Since the integrand is positive, using Proposition 2.34 gives

2π

det(P )

∫
[−D1δ,D1δ]d−1

e−
t
2
~λT~λ d~λ

<

∫
[−δ,δ]d−1

e−
t
2
~µTM~µ d~µ

<
2π

det(P )

∫
[−2D2δ,2D2δ]d−1

e−
t
2
~λT~λ d~λ.

Making one last change of variables with ~ν =
√
t~λ on the upper and lower bounds

yields

2π

det(P )
(
√
t)−(d−1)

∫
[−D1

√
tδ,D1

√
tδ]d−1

e−
1
2
~νT ~ν d~ν

<

∫
[−δ,δ]d−1

e−
t
2
~µTM~µ d~µ

<
2π

det(P )
(
√
t)−(d−1)

∫
[−2D2

√
tδ,2D2

√
tδ]d−1

e−
1
2
~νT ~ν d~λ.
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Since ~νT~ν =
∑
ν2
{i,j}, we can regard the integrals in the lower and upper bounds as

the product of d− 1 integrals of the form
∫
e−

1
2
x2

dx. Using the estimates in Lemma

2.46 gives

2π

det(P )
(
√
t)−(d−1)

(√
2π(1− e− 1

2
t(D1δ)2)

)d−1

<

∫
[−δ,δ]d−1

e−
t
2
~µTM~µ d~µ

<
2π

det(P )
(
√
t)−(d−1)

(√
2π(1− e−t(2D2δ)2)

)d−1

and since det(P ) =
√

det(M), this yields (2.92) and completes the proof.

Proof of Theorem 2.3. The main point of the proof is to allow t and δ to vary in such

a way that in (2.83) and (2.84), the U and L terms tend to 1, while the error terms

in (2.82), (2.83), and (2.84) tend to 0. For a fixed n and k, we claim that setting

δ = t−5/12 will accomplish this.

We first note that for sufficiently large t, δ is arbitrarily small and thus

δ < k−2
(
n
k

)−2
[

1
6·962

(
2π
k−1

)4
]

eventually holds. Similarly, since (dδ)−3 = d−3t5/4, for

sufficiently large t we have t < 2(dδ)−3. This allows all parts of Theorem 2.41 to be

used.

We turn our attention to the terms in square brackets in L and U . Since t2δ6 =

t−1/2, it follows that [1 + t2(dδ)6]−1/2 → 1 as t → ∞. For any constant C that does

not depend on t, we have

(1 + Ct−5/3)t = eCt
−2/3

[1 + o(1)]

which tends to 1 as t → ∞. Since d4

3
does not depend on t, it follows that[

1− 1
3
(dδ)4

]t → 1 and
[
1 + 1

3
(dδ)4

]t → 1 as t→∞. Since tδ2 = t1/6 and D1, D2, d do
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not depend on t, it follows that [1−e− 1
2
t(D1δ)2 ](d−1)/2 → 1 and [1−e−t(2D2δ)2 ](d−1)/2 → 1

as t→∞. Finally, for C that does not depend on t we have

(1 + Ct−5/2)t = eCt
−3/2

[1 + o(1)]

which tends to 1 as t → ∞; since d6

4
does not depend on t, it follows that[

1 + 1
4
(dδ)6

]t/2 → 1 as t→∞.

Putting the above pieces together, we have now shown that as t → ∞,

L(n, k, t, t−5/12) → 1 and U(n, k, t, t−5/12) → 1. Hence, (2.83) and (2.84) imply that

if t is such that t k
n
∈ Z and t k(k−1)

n(n−1)
∈ Z,

lim inf
t→∞

P(t)
n,k(~0,~0)[

(k−1)n−1√
(2πt)d−1 det(M)

]

≥ lim
t→∞

L(n, k, t, t−5/12)− e−(nk)
−1 11

768
t1/6[

(k−1)n−1√
(2πt)d−1 det(M)

]
 = 1

and

lim sup
t→∞

P(t)
n,k(~0,~0)[

(k−1)n−1√
(2πt)d−1 det(M)

]

≤ lim
t→∞

U(n, k, t, t−5/12)− e−(nk)
−1 11

768
t1/6[

(k−1)n−1√
(2πt)d−1 det(M)

]
 = 1.

Combining these inequalities with (2.4) and the calculation of det(M) in Lemma 2.40

completes the proof.
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2.7 Conclusion

In this chapter, for fixed values n and k we have developed a non-symmetric

random walk in R(n2). We have related this walk to the existence of balanced

incomplete block design incidence matrices with n columns and k occurrences of

1 per each column. From there, we obtained estimates on the return probability

of the random walk. We then exploited the relationship between the walk and the

incidence matrices to calculate the asymptotic number of incidence matrices with the

given parameters as the number of columns increases.

The basic strategy is one adopted in principle from [dLL10], where these

analogous tasks were completed for partial Hadamard matrices instead of BIBD

incidence matrices. However, these projects were vastly different in two key

areas. First, the maximal set of the Hadamard walk characteristic function had a

significantly different structure than the one given for the BIBD walk characteristic

function in (2.12). In particular, the maximal set for the partial Hadamard walk

characteristic function was a zero-dimensional subset of R(n2), whereas the maximal

set for the BIBD walk characteristic function was a one-dimensional subset of R(n2).

This corresponds to the fundamental difference that the partial Hadamard walk was

supported on a
(
n
2

)
-dimensional sublattice of R(n2), whereas the BIBD walk is actually

supported on an
((
n
2

)
− 1
)
-dimensional sublattice of R(n2).

The second key difference between the partial Hadamard walk and the BIBD

walk rested in a computation of a second moment. Specifically, finding the return

probabilities of each walk required computation of the quantity E
[
(~µ · Y1)2], where

~µ ∈ R(n2) and Y1 represented a single step of the respective random walks. In both
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cases, it was computed that

E
[
(~µ · Y1)2] = ~µTN~µ

for some
(
n
2

)
×
(
n
2

)
matrix N . In the BIBD walk, N was the combinatorially-defined

matrix given in (2.31), which required significant further analysis and a lengthy

computation of its principal minor. In the partial Hadamard walk, N was instead the

identity matrix Id, which simplified some of the calculations and entirely avoided the

need for a discussion such as that in Section 2.5.

While we believe that counting the incidence matrices of balanced incomplete

block designs is of independent interest, we note here that a related and well-studied

problem in combinatorial design theory is that of the number of isomorphism classes

of balanced incomplete block designs. These designs are typically regarded as a

set of elements (called points) and a multi-set of subsets (called blocks) of these

points. Each BIBD incidence matrix corresponds to a balanced incomplete block

design, though this correspondence is not one-to-one. Permuting different columns of

a BIBD incidence matrix will yield a different incidence matrix, but these correspond

to the same underlying design. The isomorphism classes of the underlying designs

correspond to certain permissible permutations of the rows of the incidence matrices.

Translating the equivalence classes of the underlying designs to equivalence classes of

the incidence matrices is a nontrivial combinatorial problem that we hope to consider

in the future. Specifically, we hope to relate Theorem 2.3 to these equivalence classes

of incidence matrices to see if anything can be learned about the number of the

underlying design isomorphism classes.
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Finally, as first remarked in [dLL10], we point out that this general strategy of

relating a random walk to the existence of combinatorial designs can be applied to

other types of designs as well, such as difference matrices.

2.8 Supplementary Material

In this section, we state and prove inequalities that relate Re(zt) with Re(z)t.

These statements and their proofs are nearly identical to those found in the appendix

of [dLL10]. Our first lemma is a variant of the Neyman-Pearson Lemma.

Lemma 2.44. Let λ0, . . . , λn, A0, . . . , An be positive real numbers and Bn, . . . , Bn

be real numbers. Then

min
0≤s≤n

(
Bs

As

)
≤
∑n

s=0 λsBs∑n
s=0 λsAs

≤ max
0≤s≤n

(
Bs

As

)
.

Lemma 2.45. Let t ≥ 2 be a positive integer, and let z ∈ C with Re(z) > 0. Set

α(z, t) = 1−
(
t

2

)[
Im(z)

Re(z)

]2

.

Then

Re(zt)

(
1 +

[
Im(zt)

Re(zt)

]2
)1/2

2

=

(1 +

[
Im(z)

Re(z)

]2
)t/2

Re(z)t

2

. (2.93)

Further, if α(z, t) > 0, then all the following hold:

Re(zt) > 0, (2.94)

Re(zt) = Re(z)t

(
1 +

[
Im(zt)

Re(zt)

]2
)−1/2(

1 +

[
Im(z)

Re(z)

]2
)t/2

, (2.95)
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Re(zt) ≤ Re(z)t

(
1 +

(
Im(z)

Re(z)

)2
)t/2

, (2.96)

[
Im(zt)

Re(zt)

]2

≤
(

t

α(z, t)

)2 [
Im(z)

Re(z)

]2

, (2.97)

and

Re(zt) ≥ Re(z)t

(
1 +

[
Im(z)

Re(z)

]2
)t/2(

1 +

[
t

α(z, t)

]2 [
Im(z)

Re(z)

]2
)−1/2

. (2.98)

Lemma 2.46. Let ρ be a positive real number. Then

√
2π(1− e−ρ2/2) ≤

∫ ρ

−ρ
e−

1
2
x2

dx ≤
√

2π(1− e−ρ2).

Proof of Lemma 2.44. Let s0 and s1 be such that

Bs0

As0
= min

0≤s≤n

{
Bs

As

}

and

Bs1

As1
= max

0≤s≤n

{
Bs

As

}
.

Then

Bs0

As0
=

∑
λsAs(Bs0/As0)∑

λsAs

≤
∑
λsBs∑
λsAs

≤
∑
λsAs(Bs1/As1)∑

λsAs

=
Bs1

As1
.
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Proof of Lemma 2.45. We begin by computing |z|2t in two different ways:

(|z|2)t =

(
Re(z)2

[
1 +

(
Im(z)

Re(z)

)2
])t

=

Re(z)t

[
1 +

(
Im(z)

Re(z)

)2
]t/22

(|zt|)2 = Re(zt)2

[
1 +

(
Im(zt)

Re(zt)

)2
]

=

Re(zt)

[
1 +

(
Im(zt)

Re(zt)

)2
]1/2

2

The equality of these expressions yields (2.93).

To show the remaining claims, we will show first that if α(z, t) > 0, then Re(zt) >

0. For technical reasons, we split this consideration up into four cases which are based

on the residue of t mod 4 and use the binomial theorem. Though we will only need

the computations of Re(zt) to prove (2.95), we will require the computations of Im(zt)

for the proof of (2.97), so we record them both at this time. In what follows, we set

a = Re(z) and b = Im(z).

If t = 4x for x ∈ Z, then using the convention that
(

4x
4x+1

)
= 0, we have

Re(zt) = a4x

x∑
s=0

{(
4x

4s

)(
b

a

)4s

×

[
1− (4x− 4s)(4x− 4s− 1)

(4s+ 1)(4s+ 2)

(
b

a

)2
]}

(2.99)
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and

Im(zt) = a4x

x∑
s=0

{(
4x

4s+ 1

)(
b

a

)4s+1

×

[
1− (4x− 4s− 1)(4x− 4s− 2)

(4s+ 2)(4s+ 3)

(
b

a

)2
]}

. (2.100)

One can check that if z = 4x + y with y ∈ {0, 1, 2, 3}, then valid decompositions of

Re(zt) and Im(zt) can be obtained by replacing every instance of 4x in (2.99) and

(2.100) with 4x+ y. The essential detail is that regardless of the residue of t mod 4,

by adopting the convention that
(
t
t+1

)
= 0 we can write

Re(zt) = at
bt/4c∑
s=0

{(
t

4s

)(
b

a

)4s

×

[
1− (t− 4s)(t− 4s− 1)

(4s+ 1)(4s+ 2)

(
b

a

)2
]}

, (2.101)

and

Im(zt) = at
bt/4c∑
s=0

{(
t

4s+ 1

)(
b

a

)4s+1

×

[
1− (t− 4s− 1)(t− 4s− 2)

(4s+ 2)(4s+ 3)

(
b

a

)2
]}

. (2.102)

Examining the terms in (2.101), we note that since we assume a > 0, every term is

positive except potentially the terms in square brackets. However, regardless of what

s is, by inspection each term in square brackets is at least 1−
(
t
2

) (
b
a

)2
= α(z, t), which

we also assume to be positive. Hence, Re(zt) > 0 in every case, which establishes

(2.94).

78



We continue under the assumption that α(z, t) > 0. To prove (2.95), we notice

that

(
1 +

[
Im(zt)
Re(zt)

]2
)1/2

and

(
1 +

[
Im(z)
Re(z)

]2
)t/2

are both clearly positive, that Re(z)t

is positive by assumption, and that Re(zt) is positive by (2.94). Hence, taking

square roots in (2.93) and solving for Re(zt) yields (2.95), and (2.96) is an immediate

consequence thereof.

To prove (2.97), we employ Lemma 2.44. Again, let z = a+ bi and assume that

t = 4x+ y with x ∈ Z and y ∈ {0, 1, 2, 3}. For s ∈ {0, . . . , x}, we set

λs =

(
t

4s

)(
b

a

)4s

,

As =

[
1− (t− 4s)(t− 4s− 1)

(4s+ 1)(4s+ 2)

(
b

a

)2
]
,

Bs =

(
t− 4s

4s+ 1

)[
1− (t− 4s− 1)(t− 4s− 2)

(4s+ 2)(4s+ 3)

(
b

a

)2
]
.

From (2.101) and (2.102), it follows that

Re(zt) = at
bt/4c∑
s=0

λsAs, (2.103)

Im(zt) = at
(
b

a

) bt/4c∑
s=0

λsBs. (2.104)

We note that each term Bs is at most t, and each term As is at least
[
1− t(t−1)

2

(
b
a

)2
]

=

α(z, t). Hence,

max
0≤s≤bt/4c

{
Bs

As

}
≤ t

α(z, t)

and therefore by Lemma 2.44 and equations (2.103) and (2.104),

(
Im(zt)

Re(zt)

)2

=

(
b

a

)2(∑
λsBs∑
λsAs

)2

≤
(
b

a

)2(
t

α(z, t)

)2
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which gives (2.97). Finally, to obtain (2.98), we substitute (2.97) into (2.95).

Proof of Lemma 2.46. Using the standard trick of multiplying two copies of the

integral together, using Fubini’s Theorem, and converting to polar coordinates, we

have ∫ ρ

0

2πre−
1
2
r2 dr <

∫
[−ρ,ρ]2

e−
1
2

(x2+y2) dy dx <

∫ √2ρ

0

2πre−
1
2
r2 dr

so computing the left and right integrals and taking square roots gives the result.
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CHAPTER III

COLLISIONS OF INDEPENDENT RANDOM WALKS ON GRAPHS

Given an infinite, locally finite graph G, we let Xn and X ′n denote two

independent simple random walks on G (started at the same distinguished vertex o).

After a certain number of steps, one can ask about the probability that Xn and X ′n

have collided; that is, P(Xn = X ′n). However, a more interesting and more delicate

question is this: with what probability does the event {Xn = X ′n infinitely often}

occur?

This question was first posed by George Pólya, who was primarily concerned with

the case where the graphs were Euclidean lattices Zd. Because Euclidean lattices are

highly structured, the problem simply amounted to computing whether the event

{Xn = o infinitely often} occurred for a single walk Xn. In other words, for Zd, the

event {Xn = X ′n i.o.} had probability 1 if and only if the graph was recurrent, which

for Zd was known to be true if and only if d ≤ 2.

In [KP04], Krishnapur and Peres considered the comb graph Comb(Z,Z)

obtained by removing all horizontal edges from Z2 except those on the x-axis. This

graph is recurrent, since it is a subgraph of Z2; however, two random walks on

Comb(Z,Z) have the property that P(Xn = Xn i.o.) = 0. This result was surprising

because it was the first bounded-degree graph for which the question of infinite

collisions of two independent random walks was not equivalent to the question of

the recurrence of the graph. This discovery marked the beginning of a new line

of investigation into the structural properties of graphs that govern the quantity

P(Xn = X ′n i.o.).
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This question of infinite collisions on a graph was later partially answered by

[BPS10], which developed a criterion in terms of certain Green’s functions of a graph.

The importance of this criterion is when it is satisfied (for a particular graph), it

follows P(Xn = X ′n i.o.) = 1. Other aspects of the quantity P(Xn = X ′n i.o.)

have been investigated by various authors, including the importance of the ambient

time parameter. Additionally, some work has been done on the analogous question

regarding three independent simple random walks on a graph.

The outline of this chapter is as follows: in Section 3.1, we discuss a number

of counterexamples that show the complexity and nuance of the infinite collision

question. In Section 3.2, we prove that if Comb(Z,Z) is truncated to retain only

vertices (x, y) with y ≤ C|x|1−ε for C, ε > 0, then two walks will collide infinitely

often almost surely. In Section 3.3, we show that the Green’s function criterion given

in [BPS10] is stable under certain types of graph mappings known as rough isometries.

In Section 3.4, we give a complete answer to the collision question for certain types of

well-structured graphs. Finally, in Section 3.5, we show that the analogous question

of having four independent random walks collide simultaneously has a trivial answer

when the underlying graph has bounded degree.

We remark that the work in Section 3.2 is redundant with some existing

literature. Additional results regarding truncations of Comb(Z,Z) were developed

independently in both [CWZ08] and [BPS10], both of which were published after the

development of the material in Section 3.2. After these developments, the strongest

results in this topic were proved in [CC10]. Each of the four results show that certain

truncations of Comb(Z,Z) have the property that P(Xn = X ′n i.o.) = 1. The result

in [CWZ08] permits truncations that retain vertices (x, y) with y ≤ |x|1/5−ε. The

result in Section 3.2 requires only that y ≤ C|x|1−ε. The result in [BPS10] relaxes
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this assumption further to permit that y ≤ C|x|, while the result in [CC10] permits

that y ≤ C|x| log(|x|). Although the main result of Section 3.2 is now obsolete, we

provide it here because it was discovered independently of the results in [BPS10] and

[CC10], and because the method of proof of Theorem 3.16 differs significantly from

the methods in [CWZ08], [BPS10], or [CC10].

Finally, we remark here that a result of Section 3.4 is an improvement on previous

work in [CWZ08]. In Theorem 5 of [CC10], Chen and Chen assert that if a graph is

quasi-transitive and of sub-exponential growth, then the collision property does not

depend on whether the ambient time parameter is discrete or continuous. This fact

is established in Corollary 3.40, but without the need for the assumption that the

graph is of sub-exponential growth.

3.1 Counterexamples in Collision Theory

In this section, we will attempt to illustrate the complexity of the infinite collision

question with a number of counterexamples. In Claims (3.3) and (3.4), we explore

a transient graph of unbounded degree for which two independent walkers collide

infinitely often with probability 1. (This graph first appeared in this context in

[KP04]). In Claim (3.7), we explore a transient graph for which the probability of

infinite collisions is strictly between 0 and 1; this result contrasts with Proposition

2.1 of [BPS10], which shows that this phenomenon is not possible for a recurrent

graph. In Claim (3.9), we explore a transient graph for which the continuous-time

and discrete-time collision properties differ. We also remark that this graph represents

a case where adding a single edge changes the collision property (in discrete time);

the question of whether such a phenomenon can occur in the recurrent case remains

open.
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Definition 3.1. Let G be the graph defined by taking vertices corresponding to

{1, 2, . . . } and adding 2n paths of length 2 between vertices n and n+ 1 as shown in

Figure 3.1. (We emphasize that this graph is not an original construction and that

it appeared first in [KP04].)

FIGURE 3.1: The graph G.

Remark 3.2. If Xn is a simple random walk on G, then X2n is a biased lazy random

walk on {1, 2, . . . }. For k ≥ 2, it is clear that

Pk(X2 = j) =



1
2
, j = k

1
6
, j = k − 1

1
3
, j = k + 1.

Claim 3.3. Two independent discrete-time simple random walks on G started at

vertex 1 will collide infinitely many times with probability 1.
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Proof. Let Yn be a random walk on Z started at 1 with transition probability

Pk(Y1 = j) =



1
2
, j = k

1
6
, j = k − 1

1
3
, j = k + 1,

so that Yn is a lazy p ↑ q ↓ random walk on Z. We can condition Yn never to reach

the vertex 0. Specifically, let T0 = inf{n ≥ 0 : Yn = 0}; it is easy to compute that

P(T0 =∞) = 1/2.

Let Y ′n be an independent copy of the same chain, and define the analogous

stopping time T ′0. An easy calculation shows that Yn−Y ′n is a martingale with bounded

increments. Since this martingale clearly does not converge to a limit, it follows from

Theorem 4.3.1 of [Dur96] that lim sup(Yn − Y ′n) = ∞ and lim inf(Yn − Y ′n) = −∞.

In particular, because the martingale is supported on a discrete set and has bounded

increments, it is equal to 0 infinitely often, meaning that Yn = Y ′n infinitely often a.s.

Now, let An denote the event that Yn = Y ′n only finitely often. Then

P(An) ≥ P(An|T0 = T ′0 =∞) · P(T0 = T ′0 =∞)

= P(An|T0 = T ′0 =∞) · (1/2)2.

Hence P(An|T0 = T ′0 = ∞) is 0, meaning that Yn = Y ′n infinitely often even if

conditioned never to move to the left of 0.

Finally, if Xn and X ′n are independent copies of a simple random walk on G,

we can consider the walks X2n and X ′2n. The walks X2n and X ′2n are supported on

the vertex set {1, 2, . . . } ⊂ v(G) and their distributions are the same as those of Yn
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and Y ′n conditioned not to move to the left of 1. It follows that X2n = X ′2n infinitely

often.

Claim 3.4. Two independent continuous-time simple random walks on G started at

vertex 1 will collide infinitely many times with probability 1.

Remark 3.5. It is perhaps unsurprising that the continuous-time question would

have the same result as the discrete-time question; however, the trick of considering

X2n as a lazy p ↑ q ↓ random walk no longer works in the continuous-time case, so

the proof of this result is more involved. Moreover, Claim 3.9 below will establish the

existence of a graph for which the discrete-time and continuous-time questions have

different answers, which will show that the difference between the two environments

is indeed somewhat delicate.

Proof of Claim 3.4. We consider a (discrete-time) random walk Yk on the set Z∪(Z+

5
12

) with transition probabilities as follows:

Pz(Y1 = j) =


2
3
, j = z + 5

12

1
3
, j = z − 7

12

(z ∈ Z)

Pz+5/12(Y1 = j) =


1
2
, j = z

1
2
, j = z + 1

(z ∈ Z)

The walk Y2k is supported on Z, and it is easy to see that

Pz(Y2 = j) =



1
3
, j = z + 1

1
6
, j = z − 1

1
2
, j = z
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which is the same transition probability as the walk from the proof of Claim 3.3.

Again, there is a positive probability that Yk will never move to the left of vertex 1

which we will use momentarily.

It is easy to check that Yk is a submartingale with E[Yk+1|Fk] = Yk+1/12. Let Yk

and Y ′k be independent copies of the same walk, and let Bk be an independent sequence

of i.i.d. variables with P(Bk = 0) = P(Bk = 1) = 1/2; then Mk = YkBk − Y ′k(1−Bk)

forms a martingale with bounded increments. Intuitively, we throw a coin to decide

which walk is allowed to move, and this move will have an expected increment of + 1
12

;

the coin throw determines whether this gain is added or subtracted. By reasoning

exactly like that in the proof of Claim 3.3, it follows that Mk = 0 infinitely often.

Further, there is a positive probability that neither walk will move to the left of vertex

1 at any point. Thus, a conditioning argument identical to that in the proof of Claim

3.3 shows that the two walks collide infinitely often almost surely even if conditioned

never to move to the left of 1.

We now seek to relate this walk to one on G; we let the vertices {1, 2, . . . } ⊂ v(G)

correspond to the same integers in the submartingale, and we let the vertices in the

paths of length 2 correspond to the non-integer vertices in this walk. To model the

continuous-time walks on G, we consider (independent) walkers Xt and X ′t on G. We

inductively define a sequence of stopping times by Tk = inf{t ≥ Tk−1 : Yt 6= XTk−1

or Y ′t 6= X ′Tk−1
}. Finally, we define new processes Zk = XTk and Z ′k = X ′Tk , which

completes the discretization of this problem. With these definitions, Zk and Z ′k are

discrete-time simple random walks on G; at each time k, a fair coin is flipped and a

corresponding walker is allowed to take a step while the other walker does nothing.

By using the vertex association above, we see that Zk and Z ′k project onto walks Ŷk

and Ŷ ′k on the set Z ∪ (Z + 5
12

). Their transition probabilities are identical to those
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of Yk conditioned never to move to the left of 1, and the two projections therefore

collide infinitely often almost surely.

It is not true that Ŷk = Ŷ ′k implies that Zk = Z ′k, since the vertices at Z+ 5
12

have

multiple preimages in G. However, if Ŷk = Ŷ ′k somewhere in the vertex set Z + 5
12

,

then to induce a collision Zk = Z ′k, it is sufficient that the next two moves not be

made by the same walk (but rather, each walk takes one step), and that each walk

takes its next step in the same direction. The probability of this occurring 1/4, and

since there are infinitely many opportunities for this to occur, it will occur infinitely

often almost surely.

Definition 3.6. Let H1 be the graph formed by taking two disjoint copies of G and

identifying the two copies of vertex 1 as shown in Figure 3.2.

The idea of this construction was due to a question asked by Jon Wherry during

a seminar talk ([Whe]).

FIGURE 3.2: The graph H1.
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Claim 3.7. Two independent discrete-time simple random walks on H1 started at

the identified vertex will collide infinitely often with probability 1/2.

Proof. We model a simple random walk on H1 by modifying a simple random walk

on G. Let Xn be a simple random walk on G and let Bn be a sequence of independent

fair coin flips, i.e. P(Bn = 0) = P(Bn = 1) = 1/2. Let Rn =
∑n

k=1 1Xn=1 denote the

number of visits of Xn to vertex 1. Then Yn = (Xn, BRn) models a simple random

walk on H1; at each visit to the wedge point, the walk chooses which of the two copies

of G it will visit next, where the choice between the two copies of G corresponds to

the coin value BRn .

Let X ′n, B
′
n, R

′
n, and Y ′n all be defined analogously and independently of their

unprimed counterparts. Then for Yn = Y ′n, clearly we must have Xn = X ′n and

BRn = B′R′n . Claim 3.3 shows that Xn = X ′n infinitely often with probability 1.

Walkers Xn and X ′n will almost surely have a last visit to vertex 1, whence BRn and

B′R′n converge almost surely. Since they are independent, they converge to the same

value with probability 1/2. Thus, P(Yn = Yn i.o.) = 1/2.

Definition 3.8. Let H2 be a modification of G formed by adding a single edge

between vertices 1 and 2 as shown in Figure 3.3.

Claim 3.9. Consider two independent random walkers on H2 started at 1. With

a discrete time parameter, the two walkers will collide infinitely often with positive

probability that is strictly less than 1; with a continuous time parameter, the two

walkers will collide infinitely often with probability 1.

Proof. The difference between these two cases is one of periodicity. In the discrete

time parameter, by the transience of the graph there is a positive probability that

neither walker will ever traverse the new edge. If we condition on this event, we see
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FIGURE 3.3: The graph H2.

that their distribution is equal to that of the simple random walk on G; hence, on this

event of positive probability, the walkers collide infinitely often. On the other hand,

there is a positive probability that one walker will use the edge exactly once and the

other will never use it. The walker who traversed the new edge will eventually be on

the vertex set {1, 2, . . . } only at odd times and on the midpoints of the paths between

them only at even times. The other walker will eventually do the opposite.

In the continuous time parameter, the periodicity phenomenon is no longer an

obstruction. It should seem intuitively reasonable that the two walks collide infinitely

often; what follows is a technical proof.

Our strategy here will be the same as in the proof of Claim 3.4. We wish to

relate this walk to one on some discrete subset of R, but will have to adjust some

nodes and probabilities to account for the added edge. We maintain the same vertices

and transition probabilities on (−∞, 0]∪ [29
12
,∞) while adjusting those on the interior

of (0, 29
12

) in a way that relates to the graph H2 and maintains an expected increment

of 1
12

. We will replace vertex 1 with a vertex at 37
24

and we will replace vertex 17
12

with
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vertex 27
16

; all mappings from G will respect these replacements. We will also adjust

a few transition probabilities, as follows:

P37/24(Y1 = j) =



58
99
, j = 27

16

4
33
, j = 5

12

29
99
, j = 2

P27/16(Y1 = j) =


1
2
, j = 37

24

1
2
, j = 2

P2(Y1 = j) =



1
7
, j = 37

24

2
7
, j = 27

16

4
7
, j = 29

12

Any vertex whose transition probabilities are not listed above is assumed to have the

same probabilities as in the proof of Claim 3.4. Given that a walk started at 37
24

does

not move to the left, it takes one step to the right with probability 2
3

and it takes

two steps to the right with probability 1
3
. Hence, the projections of random walks on

H2 onto our new random walk preserves probabilities if we condition that our walk

never moves to to the left of 37
24

. There is a nonzero chance that both walks will fail

to move to the left of 37
24

, whence we apply the same argument as made in Claim 3.4

to show that two walks on H2 meet infinitely often almost surely.

Remark 3.10. In [BPS10], the authors asked whether adding or removing a finite

number of edges and vertices from a graph could alter its collision properties. Graphs

G and H2 differ only by a single edge, yet their discrete-time collision properties differ.
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Remark 3.11. Barlow, Peres and Sousi also remarked that in the discrete-time

environment, three independent simple random walks on Z collide infinitely often.

This is false in the continuous-time environment, since the joint distribution of the

three independent walks is the same as that of a simple random walk on Z3, as seen

by identifying each independent walk with a dimension in Z3.

3.2 Truncations of the Comb Graph

In [KP04], Krishnapur and Peres proved that on Comb(Z,Z), defined as the

subgraph of Z2 with all horizontal edges off the x-axis removed, two independent

simple random walks collide only finitely often. We will show that for certain

truncations of Comb(Z,Z), two independent simple random walks collide infinitely

often.

Definition 3.12. Let G ⊂ Comb(Z) be a connected subgraph of the comb that is

symmetric about the y-axis and does not include any vertices below the x-axis. Let

v(G) and e(G) represent the vertex and edge sets of G, respectively. For a fixed n,

we define branch n to be the subgraph of G with vertex set {(n, y) : (n, y) ∈ v(G)}

and edge set {((n, a), (n, b)) : |a − b| = 1}. We define the height of branch n to be

H(n) = sup{x : (n, x) ∈ v(G)}.

Remark 3.13. The assumptions that G must be symmetric about the y-axis and

have vertices only on or above the x-axis are merely for simplicity and are not essential

to the proof.
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Lemma 3.14. Let Fn, n ≥ 0 be a filtration with F0 = {An, n ≥ 1} a sequence of

events with An ∈ Fn for all integers n ≥ 1. Then

{An i.o.} =

{
∞∑
n=1

P(An|Fn−1) =∞

}
.

Proof. See Corollary 4.3.2 of [Dur96].

Lemma 3.15. Let X1, X2, . . . be i.i.d. with E|X1| =∞ and let Sn = X1 + · · ·+Xn.

Let an be a sequence of positive numbers with an/n increasing. Then
∑

n P(|X1| ≥

an) <∞ implies that lim supn |Sn|/an = 0.

Proof. See Theorem 1.8.9 of [Dur96].

Theorem 3.16. If G has the property that H(n) ≤ C|n|1−ε for some ε > 0, then G

has the infinite collision property.

Proof. We let Yt and Y ′t denote the two (independent) copies of the simple random

walk on G, both started at (0, 0), and we let Xt and X ′t denote the projection of these

walks onto the x−axis. We inductively define a sequence of stopping times by T0 = 0

and

Tm = inf
{
t : t > Tm−1 and

[
Xt 6= XTm−1 or X ′t 6= X ′Tm−1

]}
.

This sequence of times advances each time one of the copies of the walk changes

its x-coordinate. (It is also possible that both walks change their x-coordinates

simultaneously.) It is easy to see that each Tm is a stopping time, that m < n

implies Tm < Tn almost surely, and that for each m, Tm <∞ almost surely.

With these stopping times the process Zm = XTm−X ′Tm is an unbiased, bounded-

increment walk on Z, since at each advancement of Tm, one or both of the walkers

takes an unbiased step in either a positive or negative direction. As such, Zm crosses

93



0 infinitely many times with probability 1. We define a subsequence {Sn} ⊂ {Tm} by

S0 = 0 and Sn = inf{t : t > Sn−1 and Zt = 0} to represent the nth occurrence that

at least one walker has changed x-coordinates and the two x-coordinates are now the

same.

Let {Gt} be the natural filtration defined by the two walks. Let Am be the event

of a collision in the interval [Tm, Tm+1). Since Tm is a stopping time, we can define

Fm = GTm , the usual σ-algebra corresponding to a stopping time. Our goal will be to

provide a lower bound for P(Am|Fm). By Lemma 3.14, to show that G has infinite

collisions it suffices to show that

∞∑
m=1

P(Am|Fm) =∞ almost surely. (3.1)

Here, we define some quantities of interest: We note that for each fixed (deterministic)

n, there is some (random) p such that Sn = Tp. We define the random variable Mn

to be this p. Conversely, for a fixed (deterministic) m, depending on the ω ∈ Ω there

may or may not be some (random) r such that Sr = Tm. We let Gm be the event

that Tm = Sr from some r, and on the event Gm we define the random variable Nm

to be this r.

We consider time Sn, which is equal to Tm for some (random) m = Mn ≥ n. At

time Sn, one walker is positioned on the x-axis, and the other is either at or directly

above the same location. Suppose that YSn lies on the x−axis and that Y ′Sn lies above

the x−axis (on the same branch, by the definition of Sn). These assumptions are

only for clarity of exposition and do not affect the estimates that follow. Because

the underlying graph is bipartite, it is not possible for the walks to move ‘past’ each

other without colliding. Hence, for a fixed m, provided that Tm = Sn for some n, in

order for a collision to occur in time interval [Tm, Tm+1) it is sufficient for Yt to first
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choose to step above the x-axis and then to visit the extreme high end of the branch

before returning to the x-axis. The latter condition amounts simply to a Gambler’s

Ruin consideration. Hence, on the event Gm, by hypothesis we have

P(Am|Fm) ≥ 1

3
· 1

1 +H(XTm)
1Gm

≥ 1

3
· 1

1 + |XTm|1−ε
1Gm . (3.2)

We begin with the left side of (3.1) and seek to use the estimate derived in (3.2).

Let Bm denote the event {|XTm| ≤
√

2m log(m)}. Then

∞∑
m=1

P(Am|Fm) ≥
∞∑
m=1

1

3
· 1

1 + |XTm|1−ε
1Gm1Bm

≥
∞∑
m=1

1

3
·

1Gm1m≤N2+ε
m

1 +
(√

2m log(m)
)1−ε1Bm . (3.3)

We note that for any fixed m,

1Gm =
∞∑
n=1

1m=Mn

and therefore (3.3) and Fubini’s Theorem show that

∞∑
m=1

P(Am|Fm) ≥
∞∑
m=1

1

3
·

1m≤N2+ε
m

1 +
(√

2m log(m)
)1−ε1Bm

∞∑
n=1

1m=Mn

≥
∞∑
n=1

∞∑
m=1

1

3
·

1m=Mn1m≤N2+ε
m

1 +
(√

2m log(m)
)1−ε1Bm . (3.4)
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For a fixed ω ∈ Ω and for fixed values n and m, the definitions of Nm and Mn imply

that m = Mn if and only if n = Nm. Therefore, (3.4) can be reframed as

∞∑
m=1

P(Am|Fm) ≥
∞∑
n=1

∞∑
m=1

1

3
· 1m=Mn1m≤n2+ε

1 +
(√

2m log(m)
)1−ε1Bm

≥
∞∑
n=1

1

3
· 1

1 +
(√

2n2+ε log(n2+ε)
)1−ε

×
∞∑
m=1

1m=Mn1Mn≤n2+ε1Bm . (3.5)

Now, we wish to consider the three indicator variables; we will first consider

1Bm . We recall that Tm represents the sequence of times where either of the two

processes Xt or X ′t takes a step. Therefore, XTm is a delayed random walk, since it

does not necessarily take a step at every value Tm. We define the variable Nm to

be the number of times that Xt (as opposed to X ′t) has moved by time Tm; clearly,

Nm ≤ m almost surely. When XTm does move, it is a simple random walk on Z, so

the law of the iterated logarithm implies that with probability 1, it eventually holds

that |XTm | <
√

2Nm log(Nm) ≤
√

2m log(m). Therefore, as m → ∞, the indicator

1Bm converges to 1 almost surely.

Next, we turn our attention to the first two indicator variables in (3.5). The

presence of the first indicator means that for a fixed m, there exists n such that

Tm = Sn. The interpretation is that m is the number of times that the random walks

have changed x-coordinates, and n is the number of times that the walks have had

the same x-coordinate. We claim that with probability 1,

{m = Mn} ⊂ {Mn ≤ n2+ε} for sufficiently large m. (3.6)
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To see this, we regard m as the number of steps taken by the random walk XTm−X ′Tm ,

and n as the number of its returns to 0. The process Zm = XTm − X ′Tm is not a

true random walk on Z, but rather a random walk that on certain time increments

takes two steps simultaneously (corresponding to the occasion that both XTm and

X ′Tm change at the same time). Since this Zm is an accelerated random walk on Z,

the lengths of times between its returns to 0 are shorter than those of a standard

random walk. This can be seen via a coupling argument where we consider each time

value where both Xt and X ′t move simultaneously. On such times, we can insert an

additional value into the time index, and we use this new time value to flip a coin

to impose an order of the two moves. Doing this transforms the sample paths of the

process Zm to sample paths of a genuine simple random walk. Return times in the

simple random walk are then necessarily longer than those of Zm (almost surely),

since extra time increments were added to the process Zm.

For a fixed n, we note that the quantity Mn measures the number of steps taken

by the process Zm before its nth visit to 0. We define Pn = Mn−Mn−1 to denote the

length of the nth excursion of Zm from 0. We wish to compare these quantities to

those of a simple random walk, so we define αn to be the number of steps taken by

a simple random walk on Z before it returns to 0, and we define βn = αn − αn−1 to

be the excursion lengths. Our previous analysis shows that we can establish a single

probability space on which Mn, Pn, αn, and βn are all defined and for which Pn ≤ βn

almost surely (and consequently, Mn ≤ αn almost surely). The increments βn are

i.i.d. variables for which it is well known (see, for example, [Dur96, Equation 3.4, p.

199]) that there is some constant C such that

P(β1 ≥ r) ∼ Cr−1/2.
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Hence, if we set an = n2+ε, we observe that P(β1 ≥ an) ∼ Cn−(2+ε)/2 is summable.

By Lemma 3.15, this implies that lim supn αn/n
2+ε = 0 almost surely. In particular,

with probability 1 it is true that αn < n2+ε for sufficiently large n, and since Mn ≤ αn

we conclude that with probability 1, Mn ≤ n2+ε for sufficiently large n as well. Since

Mn = m if and only if Nm = n and the mapping n 7→ Mn is increasing, it follows

that 1Mn≤n2+ε = 1m≤N2+ε
m

, which also converges to 1 almost surely as m→∞.

Finally, to handle the leftmost indicator of (3.5), we note that for any fixed n,

the sum
∞∑
m=1

1m=Mn

is equal to 1 (almost surely). Thus, combining all our previous analysis shows that

for almost all ω ∈ Ω, for sufficiently large m and n we have

1Bm = 1

and

1m=Mn1Mn≤n2+ε = 1m=Mn .

Define M?(ω) and N?(ω) so that these conditions hold when m ≥ M? and n ≥ N?.

Then the sum in (3.5) is bounded by

∞∑
m=1

P(Am|Fm) ≥
∞∑

n=N?

1

3
· 1

Cεn
1− 1

2
ε− 1

2
ε2 (log(n))

1
2
− 1

2
ε

∞∑
m=M?

1m=Mn . (3.7)

For sufficiently large n (specifically, for n such that Mn ≥ M?), the sum∑∞
m=M?

1m=Mn is equal to 1 and the right-hand side of (3.7) therefore diverges. By

Lemma 3.14 the proof is complete.
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We remark here that a theorem similar to Theorem 3.16 was proved in [CWZ08];

there, the authors required that H(n) ≤ |n|1/5−ε. Likewise, two results stronger than

Theorem 3.16 have been shown. In [BPS10], the authors used the Green’s function

criterion to prove the result for the case where H(n) ≤ C|n|. Finally, in [CC10], the

authors proved the result for the case where H(n) ≤ C|n| log(|n|).

3.3 Stability of the Green’s Function Criterion

In this section, we will recall the Green’s function criterion for sufficiency of

infinite collisions of two independent simple random walks on G due to Barlow, Peres,

and Sousi in [BPS10]. Our aim is to show that this criterion is preserved under rough

isometries of graphs. In particular, this criterion is preserved when performing basic

graph operations such as adding or removing finitely many vertices or edges.

In all of the following, any graph G will be assumed to be connected, recurrent,

and to have uniformly bounded degree. We will use v(G) to refer to the vertex set

of G and e(G) to refer to the (directed) edge set of G. Our goal is to develop results

for graphs with undirected edges, but our consideration of directed edge sets is a

technical convenience. To resolve the distinction, we will require that if (x, y) ∈ e(G),

then (y, x) ∈ e(G), so that the edge set is a symmetric set of undirected edges.

We will abuse notation by using d(x) to denote the degree of vertex x and

d(x, y) to denote the graph distance between vertices x and y. We will denote the

transition density function by p(x, y), and we will use the symmetric Green’s function,

i.e. G(x, y) :=
∑

n p
n(x, y)/d(y). An exhaustion of a graph G will be an increasing

sequence of finite subgraphs Bn (i.e., Bn ⊂ Bn+1) such that
⋃
nBn = G. We will use

GBn(x, y) to refer to the Green’s function of the walk that is killed upon leaving Bn;
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that is,

GBn(x, y) =
∞∑
t=0

Px
(
Xn = y and τBcn > n

)
= Ex [number of visits to y before exiting Bn] .

Definition 3.17. A graph G with a distinguished vertex o satisfies the Green’s

function criterion if there exists an exhaustion Bn of G and a uniform constant C <∞

such that for all x ∈ v(Bn),

GBn(x, x) ≤ CGBn(o, o).

For shorthand, we will say that such a graph satisfies GFC.

Theorem 3.18. If G satisfies GFC, then two simple independent random walks on

G will collide infinitely often almost surely.

Proof. See Theorem 3.1 of [BPS10].

The goal of this section is to prove the following theorem:

Theorem 3.19. Let ϕ1 : v(G) → v(G′) be a rough isometry. If G′ satisfies GFC,

then so also does G.

We will prove that rough isometries form an equivalence class on graphs, so it will

follow from Theorem 3.19 that for roughly isometric graphs G andG′, G′ satisfies GFC

if and only if G does. Rough isometries are a rather broad class of mappings which

preserve the global structure of graphs while potentially radically altering the local

structure. In particular, the following can all be realized as corollaries of Theorem

3.19:

100



Corollary 3.20. If G satisfies GFC, then the following graph operations yield a

graph which is roughly isometric to G and hence has infinite collisions:

– adding an edge between existing vertices,

– removing an edge between vertices (as long as this removal does not disconnect

the graph),

– adding a new vertex and connecting it with a single edge to an existing vertex,

– removing a vertex and any edges connected to it (as long as this removal does

not disconnect the graph),

– identifying two vertices and deleting any resulting loops,

or any finite combinations thereof.

Proof. This corollary follows from Theorem 3.19 since each of the operations are

rough isometries.

Although the results in Theorem 3.19 and Corollary 3.20 are not necessarily

surprising, we remark that the question of whether these operations can change the

collision properties in general remain open, even for recurrent, bounded-degree graphs.

We note that we provided a transient, unbounded-degree counterexample to this

phenomenon in Section 3.1 (see Remark 3.10).

It will take a good deal of machinery to work up to the proof of Theorem 3.19.

We will use R(A↔ B) to denote the effective resistance between disjoint sets A and

B; for a definition of this concept, see Section 9.4 of [LPW09]. In this expression, we

will often abuse notation and write R(x↔ A) to mean R({x} ↔ A). The following
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equality, which can be found (for instance) in Lemma 9.6 of [LPW09], will be of use

to us:

GBn(x, x) = R(x↔ Bc
n). (3.8)

To analyze these Green’s functions, we will use tools that are well-suited for

discussing effective resistances. We will recall a number of preliminary notions; these

can all be found within Section 2.4 of [LP13]. Let G be any finite graph. The space

of functions on the vertices is a real Hilbert space with inner product

〈f, g〉 =
∑
x∈v(G)

f(x)g(x)

and the space of antisymmetric functions on the (directed) edges is a real Hilbert

space with inner product

〈θ, φ〉 =
1

2

∑
c∈e(G)

θ(c)φ(c).

We denote these real Hilbert spaces by `2(V ) and `2
−(E), respectively. Next, we define

two operators between these spaces. For any directed edge c, let c+ denote its head

and c− denote its tail. Let ∇ : `2(V )→ `2
−(E) and ∇∗ : `2

−(E)→ `2(V ) be given by

(∇f)(c) = f(c−)− f(c+),

(∇∗θ)(x) =
∑
c−=x

θ(c) .

Let A and Z be disjoint subsets of v(G). We call θ ∈ `2
−(E) a flow from A to

Z if the function ∇∗θ(x) is 0 off of A and Z, nonnegative on A, and nonpositive

on Z. We say that θ is a unit flow if
∑

a∈A∇∗θ(a) = 1; this condition implies

that
∑

z∈Z ∇∗θ(z) = −1. If for every cycle c1, . . . , cn of directed edges we have
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∑n
i=1 θ(ei) = 0, then we say θ is the unit current flow. Although this is a different

characterization of the unit current flow than is typical in the literature, one can

show that it is equivalent to the typical definition; see, for instance, Proposition 9.4

of [LPW09]. For a fixed A and B, one can also show that this unit current flow exists

and is unique, which are immediate consequences of the typical definition of the unit

current flow. We define the energy of a flow by E (θ) = ||θ||2 = 〈θ, θ〉.

Remark 3.21. The inner product of `2
−(E) is often defined with an inclusion of edge

conductances or resistances. However, such considerations will not be necessary for

our purposes, since we consider only simple random walks which correspond to all

edge conductances (and resistances) being 1.

Remark 3.22. Our setup so far, as well as many theorems to come, will only

explicitly deal with finite graphs. Though our considerations will be on infinite graphs,

all applications of theorems will be to the case of random walk that is killed upon

exiting some finite set. Consequently, all functions considered in `2(V ) and `2
−(E)

will be finitely supported, and the theorems will still apply.

There are two main notions we will need to reference throughout the course of

this proof. Let C (A↔ Z) = 1/R(A↔ Z); this is the effective conductance between

A and Z.

Lemma 3.23 (Thomson’s Principle). If A and Z are disjoint vertex sets on a finite

graph G, then

R(A↔ Z) = min
{
||θ||2

}
where the minimum is taken over unit flows from A to Z. The minimizer in this

expression is the unit current flow.
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Proof. See, for instance, Theorem 9.10 of [LPW09].

Lemma 3.24 (Dirichlet’s Principle). If A and Z are disjoint vertex sets on a finite

graph G, then

C (A↔ Z) = min
{
||∇F ||2

}
where the minimum is taken over functions F ∈ `(V ) for which F |A = 1 and F |Z = 0.

Proof. See, for instance, Exercise 2.13 of [LP13].

Next, we will define a rough isometry and discuss some basic lemmas.

Definition 3.25. Let ϕ be a function from v(G) to v(G′). We say that ϕ is a rough

isometry if there exist constants α ≥ 1, β ≥ 0 such that

– for all x, y ∈ v(G), α−1dG(x, y)− β ≤ dG′(ϕx, ϕy) ≤ αdG(x, y) + β, and

– for all x′ ∈ v(G′), dG′(x, ϕG) ≤ β.

We will use prime notation for vertices in G′; e.g., x′ ∈ v(G′).

Lemma 3.26. If ϕ1 : v(G) → v(G′) is a rough isometry with constants α, β, then

there exists a rough isometry ϕ2 : v(G′) → v(G) with constants α, 3αβ. Moreover,

for any x ∈ v(G), we have dG(x, ϕ2(ϕ1x)) ≤ 2αβ. We call ϕ2 a rough inverse of ϕ1.

Remark 3.27. We will reserve the notation ϕ−1 for preimages of sets under ϕ. When

necessary, we will always distinguish between a rough isometry and its rough inverse

by ϕ1 and ϕ2 instead.

Proof of Lemma 3.26. For each x′ ∈ v(G′), there is at least one x ∈ v(G) for which

dG′(x
′, ϕ1x) ≤ β; choose any one of these and set ϕ2x

′ = x. Then for any x′, y′ ∈ v(G′)
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and corresponding x = ϕ2x
′, y = ϕ2y

′:

dG(x, y) ≤ αdG′(ϕ1x, ϕ1y) + βα

≤ α[dG′(ϕ1x, x
′) + dG′(x

′, y′) + dG′(y
′, ϕ1y)] + βα

≤ αdG′(x
′, y′) + 3αβ. (3.9)

Similarly,

dG(x, y) ≥ α−1dG′(ϕ1x, ϕ1y)− β/α

≥ α−1[dG′(x
′, y′)− dG′(x′, ϕ1x)− dG′(ϕ1y, y

′)]− β/α

≥ α−1dG′(x
′, y′)− 3βα−1. (3.10)

Putting (3.9) and (3.10) together gives the first part of the definition. For the second,

pick any x ∈ v(G); we must exhibit some y′ ∈ v(G′) for which dG(x, ϕ2y
′) ≤ 3αβ.

We claim that ϕ1x works in place of y. Note that

dG(x, ϕ2(ϕ1x)) ≤ αdG′(ϕ1x, ϕ1(ϕ2(ϕ1x))) + βα

but that ϕ2(ϕ1x) is by definition some vertex y for which dG′(ϕ1x, ϕ1y) ≤ β. Hence,

dG(x, ϕ2(ϕ1x)) ≤ 2αβ. This establishes the final statement in the lemma, but is in

particular also less than 3αβ.

Lemma 3.28. If ϕ1 : v(G1) → v(G2) and ϕ2 : v(G2) → v(G3) are both rough

isometries, then so also is their composition ϕ2 ◦ ϕ1.

Proof. Let α1, β1 denote the constants for ϕ1 and let α2, β2 denote the constants for

ϕ2. The constants for the composition will be α1α2 and α2β1 + 2β2.
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First, for any x, y ∈ v(G1) we have

dG3(ϕ2ϕ1x, ϕ2ϕ1y) ≤ α2dG2(ϕ1x, ϕ2y) + β2

≤ α2 [α1dG1(x, y) + β1] + β2

= α1α2dG1(x, y) + α2β1 + β2

and

dG3(ϕ2ϕ1x, ϕ2ϕ1y) ≥ α−1
2 dG2(ϕ1x, ϕ1y)− β2

≥ α−1
2

[
α−1

1 dG1(x, y)− β1

]
− β2

= [α1α2]−1dG1(x, y)− α−1
2 β1 − β2

which verifies the first condition.

For the second condition, choose any z ∈ v(G3). There is some y ∈ v(G2) for

which dG3(ϕ2y, z) ≤ β2; similarly, there is some x ∈ v(G1) for which dG1(ϕ1x, y) ≤ β1.

Then,

dG3(ϕ2ϕ1x, z) ≤ dG3(ϕ2ϕ1x, ϕ2y) + dG3(ϕ2y, z)

≤ [α2dG2(ϕ1x, y) + β2] + β2

≤ α2β1 + 2β2

which verifies the second condition.

We say that graphsG andH are roughly isometric if there exists a rough isometry

ϕ : G→ H.

Corollary 3.29. Rough isometry is an equivalence relation on graphs.
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Proof. From Lemmas 3.26 and 3.28, we obtain the following:

Lemma 3.30. Let G′ have a distinguished vertex o′. If ϕ : v(G) → v(G′) is a

rough isometry, then there exists a rough isometry ϕ0 : v(G) → v(G′) such that

o′ ∈ ϕ0(v(G)).

Proof. Let α, β be the constants for ϕ. There is some z ∈ v(G) for which dG′(ϕz, o
′) ≤

β. Construct a new map ϕ0 : v(G) → v(G′) by ϕ0(x) = ϕ(x) for all x 6= z, and for

which ϕ0(z) = o′. We claim that this map is a rough isometry with constants α, 2β.

To check the first condition, let x, y ∈ v(G). If neither x nor y is equal to z, then

the inequality holds since ϕ is a rough isometry. Hence, it suffices to assume y = z.

We have

dG′(ϕ0x, ϕ0z) ≤ dG′(ϕ0x, ϕz) + dG(ϕz, ϕ0z)

≤ αdG(x, y) + β + β

and on the other side,

dG′(ϕ0x, ϕ0z) ≥ dG′(ϕ0x, ϕz)− dG(ϕ0z, ϕz)

≥ α−1dG(x, z)− β − β

as desired.

To check the second condition, choose any x′ ∈ v(G′). First, if dG′(x
′, o′) > 2β,

then

dG′(x
′, ϕz) ≥ dG′(x

′, o′)− dG′(ϕz, o′) > 2β − β
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whence there is some other vertex y 6= z for which dG′(x
′, ϕy) ≤ β. Since ϕ0(y) = ϕ(y)

for this vertex, we have dG′(x
′, ϕ0y) ≤ β. Second, if dG′(x

′, o′) ≤ 2β, then since

ϕ0(z) = o′, we are done.

Next, we attempt to bridge the gap between effective resistances and rough

isometries.

Lemma 3.31. If G and G′ are infinite graphs with bounded degree and ϕ : G→ G′

is a rough isometry, then there is a universal constant K > 0 (depending only on ϕ)

such that for all f ∈ `0(v(G′)),

||∇f ||2G′ ≥ K||∇(f ◦ ϕ)||2G.

Proof. See Theorem 3.10 in [Woe00].

Lemma 3.32. Suppose ϕ : v(G) → v(G′) is a rough isometry. Then there is a

constant M , depending only on ϕ, such that whenever x ∈ v(G) and A′ ⊂ v(G′)

satisfy ϕ(x) ∈ A′ and ϕ−1(A′) ⊂ A, then R(ϕx↔ A′c) ≤MR(x↔ Ac).

Proof. Let K be as in Lemma 3.31, and let x,A,A′ be as in the hypotheses. By

Dirichlet’s Principle, C (ϕx↔ A′c) = ||∇F ||2G′ for some function F which is 1 on ϕx

and is 0 on A′c. The function F ◦ ϕ is 1 on x and is 0 on Ac, since by assumption

elements not in A cannot map into A′. By Lemma 3.31, there is a constant K

depending only on ϕ for which K||∇(F ◦ ϕ)||2G ≤ ||F ||2G′ . Using Dirichlet’s Principle

once again shows that

K · C (x↔ Ac) ≤ K||∇(F ◦ ϕ)||2G ≤ ||∇F ||2G′ = C (ϕx↔ A′
c
).
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and thus,

R(ϕx↔ A′
c
) ≤ 1

K
R(x↔ Ac)

as desired.

Lemma 3.33. If A and B are disjoint vertex sets in a finite graph G for which there

is a path of length k connecting a vertex in A to a vertex in B, then R(A↔ B) ≤ k.

Proof. Assume the path to be loopless. Consider the unit flow from A to B which

is 1 on the assumed path. This flow has energy k, so Thomson’s Principle gives the

desired result.

We denote the ball of radius R around the vertex x by B(x,R) = {z ∈ v(G) :

d(z, x) ≤ R}.

Lemma 3.34. Let S be a finite, connected set of vertices in G, and fix some vertex

o ∈ S. Let L be some nonnegative integer for which B(o, L) ⊂ S, and define T =

{x ∈ v(G) : B(x, L) ⊂ S}. If L ≤ R(o↔ T c), then

R(o↔ Sc) ≤ 4R(o↔ T c).

Proof. For a set S, define its outer boundary ∂S by {x ∈ v(G) : d(x, S) = 1}. Note

that ∂S ⊂ Sc. By Dirichlet’s Principle, we have C (x↔ Sc) = C (x↔ ∂S), since the

minimizing function F in C (x ↔ ∂S) will be 0 on all of Sc. Hence, R(x ↔ Sc) =

R(x↔ ∂S).

Let i be the unit current flow from o to ∂T . For each vertex t ∈ ∂T , we have

∇∗i(t) ≤ 0, and collectively they satisfy
∑

t∈∂T ∇∗i(t) = −1. For each t ∈ ∂T , we let
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θt denote the unit current flow from t to ∂S. We define a new function by

Θ = i+
∑
t∈∂T

|∇∗i(t)| · θt.

We see that Θ is a unit flow from o to ∂S, as follows: for any s ∈ ∂T , the term

∇∗θt(s) vanishes except when t = s, so ∇∗Θ(s) = ∇∗i(s) + |∇∗i(s)| = 0. We also

have ∇∗Θ(o) = ∇∗i(o) = 1. For all other x ∈ S besides o and those in ∂T , the terms

∇∗i(x) and ∇∗θt(x) are all 0, so ∇∗Θ(x) = 0 as well.

Note that every element of ∂T is within L steps of ∂S; it follows by Lemma 3.33

that L ≥ R(t↔ Sc) = ||θt||2. Then by our assumption that

L ≤ R(o↔ T c) = ||i||2

we have

||Θ|| ≤ ||i||+
∑
t∈∂T

|∇∗i(t)| · ||θt||

≤ ||i||+
√
L

[∑
t∈∂T

|∇∗i(t)|

]

= ||i||+
√
L

≤ 2||i||.

Thomson’s Principle shows that

R(o↔ Sc) ≤ ||Θ||2 ≤ 4||i2|| = 4R(o↔ T c).
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Lemma 3.35. Let G be finite with S ⊂ v(G) and let x, y be distinct points not

contained in S. Set D = d(x, y); then

R(x↔ Sc) ≤ 4 max{R(y ↔ Sc), D}.

Proof. By Thomson’s Principle, there exists i ∈ `2
−(E) such that R(y ↔ Sc) = ||i||2.

There is a directed path of length D from x to y; define a unit flow θ from x to y by

assigning each edge in the directed path a value of 1. This flow has energy E (θ) =

||θ||2 = D. Adding the two flows gives a unit flow from x to Sc, so Thomson’s Principle

shows that R(x ↔ Sc) ≤ ||i + θ||2. But ||i + θ|| ≤ ||i|| + ||θ|| ≤ 2 max{||i||,
√
D}, so

we have

R(x↔ Sc) ≤ ||i+ θ||2 ≤ 4 max{||i||2, D}

as desired.

We arrive now at the proof of the main result.

Proof of Theorem 3.19. By Lemma 3.30, we can assume without loss of generality

that there is some vertex (call it o) for which ϕ1o = o′. Let α, β denote the constants

for ϕ1, and let ϕ2 denote a rough inverse of ϕ1 as in Lemma 3.26. Set L = α(1+5αβ).

We note that there exists an N such that n ≥ N implies B(o′, L) ⊂ Bn, so we assume

without loss of generality that B(o′, L) ⊂ B1. Further, since R(o′ ↔ (B′n)c) diverges

to infinity, it is eventually more than L, so we can assume without loss of generality

that L ≤ R(o′ ↔ (B′1)c). These two assumptions will eventually allow us to use

Lemma 3.34. For each n, we define T ′n by T ′n = {x′ ∈ v(G′) : B(x′, L) ⊂ B′n}. Note

that T ′n is also an exhaustion of G′. Define an exhaustion of G by Bn = ϕ−1
1 (T ′n).
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Next, we seek to show that ϕ−1
2 (Bn) ⊂ B′n. Suppose x′ /∈ B′n; then dG′(x

′, T ′n) ≥

L. For any y ∈ Bn, we have dG′(x
′, ϕ1y) ≥ L. Using the constants for ϕ2 obtained

from Lemma 3.26, we see that

dG(ϕ2x
′, ϕ2(ϕ1y)) ≥ α−1dG′(x

′, ϕ1y)− 3αβ

≥ α−1L− 3αβ

= 1 + 5αβ − 3αβ

= 1 + 2αβ.

However, the second claim in Lemma 3.26 implies that

dG(ϕ2x
′, y) ≥ dG(ϕ2x

′, ϕ2(ϕ1y))− dG(y, ϕ2(ϕ1y))

≥ [1 + 2αβ]− [2αβ]

≥ 1.

Thus, ϕ2x
′ 6= y, which shows that ϕ−1

2 (Bn) ⊂ B′n, as desired.

Now, let x ∈ Bn. Assume first that dG(x,Bc
n) > 3αβ. Then there is some

y′ ∈ v(G′) for which dG(x, ϕ2y
′) ≤ 3αβ; this implies that ϕ2y

′ ∈ Bn. By Lemma 3.35,

we have

R(x↔ Bc
n) ≤ 4 max{R(ϕ2y

′ ↔ Bc
n), 3αβ}. (3.11)

Since ϕ−1
2 (Bn) ⊂ B′n, by Lemma 3.32 there is a universal constant M2 depending only

on ϕ2 such that

R(ϕ2y
′ ↔ Bc

n) ≤M2 ·R(y′ ↔ (B′n)c). (3.12)
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The GFC assumption yields that

R(y′ ↔ (B′n)c) ≤ C ·R(o′ ↔ (B′n)c) (3.13)

so putting (3.11), (3.12), and (3.13) together yields

R(x↔ Bc
n) ≤ 4 max{M2C ·R(o′ ↔ (B′n)c), 3αβ}. (3.14)

We assumed first that dG(x,Bc
n) > 3αβ; if this is not true, then by Lemma 3.33 we

still have R(x↔ Bc
n) ≤ 3αβ, so this estimate holds in either case.

Next, our earlier assumptions about the exhaustion imply that the hypotheses

of Lemma 3.34 are satisfied with S = B′n and T = T ′n, so we have

R(o′ ↔ (B′n)c) ≤ 4R(o′ ↔ (T ′n)c). (3.15)

Since Bn is the preimage of T ′n under ϕ1, then again by Lemma 3.32 there is some

universal constant M1 for which

R(o′ ↔ (T ′n)c) ≤M1 ·R(o↔ Bc
n) (3.16)

since ϕ1o = o′. Combining (3.14) with (3.15) and (3.16) shows that

R(x↔ Bc
n) ≤ 4 max{4M1M2C ·R(o↔ Bc

n), 3αβ}.

As n ↑ ∞, the terms R(o↔ Bc
n) increase to infinity. Since none of the constants M1,

M2, or C depends on x or on n, there is some constant K so that K[4M1M2CR(o↔
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Bc
n)] ≥ 3αβ for all n. Therefore,

R(x↔ Bc
n) ≤ 16KM1M2C ·R(o↔ Bc

n)

which, when combined with (3.8), completes the proof.

3.4 Quasi-transitive Graphs

In this section, we provide a complete answer to the question of infinite collisions

in the case of quasi-transitive graphs. While this result is not necessarily surprising,

it does nevertheless yield Corollary 3.40 as a consequence, which is an improvement

to an existing theorem in [CWZ08].

Definition 3.36. We say that a graph G is quasi-transitive if there exists a finite

set S = {v1, . . . , vn} of vertices such that for any x ∈ V (G), there exists a bijection

φ : G→ G which preserves edge relations and for which φ(x) ∈ S.

For notation’s sake, if x, y are neighboring vertices of G, we will write x ∼ y.

We will use d(x) to denote the degree of vertex x. If for the map φ in the definition

of quasi-transitivity we have φ(x) = vk, we will write x ≈ vk. If G is quasi-transitive

then its graph has uniformly bounded degree; we call this bound M . We will abuse

notation below when the meaning is clear; for instance, Px may refer to starting eiter

one or two simple random walks at vertex x.

Theorem 3.37. If G is quasi-transitive, then two independent continuous-time

simple random walks on G will collide infinitely often a.s. if G is recurrent and will

collide finitely often a.s. if G is transient.
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Theorem 3.38. If G is quasi-transitive, then two independent discrete-time simple

random walks on G will collide infinitely often a.s. if G is recurrent and will collide

finitely often a.s. if G is transient.

Remark 3.39. The two claims are separated because the technical details involved

in their proofs are slightly different.

Proof of Theorem 3.37. Let Xt and X ′t denote the two (independent) random walks

started at vertex o; let T denote the amount of time the two walks spend at the same

vertex, and let N denote the number of meetings between them. We will show that

for a quasi-transitive graph G,

G is recurrent ⇐⇒ EoT =∞ ⇐⇒ EoN =∞ ⇐⇒ N =∞ a. s.

To show the first implication, we observe that

EoT = Eo

∫ ∞
0

∑
x∈v(G)

1Xt=x1X′t=x
dt


=

∫ ∞
0

∑
x∈v(G)

[
pt(o, x)

]2
dt

=

∫ ∞
0

∑
x∈v(G)

pt(o, x) · pt(x, o)d(x)

d(o)
dt .

Since G is quasi-transitive, it has bounded degree; suppose that d(x) ≤ M for all x.

Chapman-Kolmogorov shows that

∑
x∈v(G)

pt(o, x)pt(x, o) = p2t(o, o)
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so we have

1

d(o)
·
∫ ∞

0

p2t(o, o) dt ≤ EoT ≤
M

d(o)
·
∫ ∞

0

p2t(o, o) dt .

The left and right sides of this expression diverge to infinity if and only if G is

recurrent, which establishes that recurrence is equivalent to EoT =∞.

Next, let Tn denote the time that the two walks spend together during their nth

meeting. Then

T =
N∑
n=1

Tn .

It is easy to see that the variables Tn are i.i.d., so we have

EoT = [EoN ] [EoTn]

and one easily computes that EoTn = 1/2, establishing that EoT = ∞ if and only if

EoN =∞.

Finally, we seek to show that EoN = ∞ if and only if N = ∞ almost surely.

The implication (⇐) is obvious. To show (⇒), suppose that Po(N < ∞) > 0. This

implies that there is some vertex z for which Pz(Xn 6= X ′n for all n) = δ1 > 0; in

words, there is some vertex that has a positive probability of being the site of the last

collision. Without loss of generality, suppose that z ≈ v1.

For k, j ∈ {1, . . . , n}, define Bk,j to be the event that two independent simple

random walks started at the same x ≈ vk will have their next meeting at some y ≈ vj.

In the continuous time parameter environment, we have Px(Bk,1) > 0 for all k. This

can be seen as follows: there is a path γ of length L from x to a vertex y ≈ v1.

Assume γ has no loops. There is a nonzero probability that:
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– Immediately after meeting at x, the first L steps will all be taken by the walk

Xt, and these L steps will involve Xt traveling along the path γ and ending at

y.

– The next L steps after that will all be taken by the walk X ′t, which will also

traverse path γ and ending at y.

Since γ has no loops, the two walkers do not meet any time strictly between the

beginning and end of these 2L steps. This event has nonzero probability, and there

are only finitely many starting state classes vk to consider, so the probability Px(Bk,j)

is uniformly bounded below.

It follows that Px(N = 1) ≥ δ1δ2 since it is sufficient for the two walkers to meet

next at some y ≈ v1, and to then never meet again. In particular,

Px(N > 1) ≤ 1− δ1δ2 (3.17)

for all x. Let TK denote the time of the Kth collision. By the Strong Markov Property,

Po(N ≥ K + 2) = Eo

[
1N≥KPXTK (N ≥ 2)

]
(3.18)

and combining (3.17) with (3.18) shows that

Po(N ≥ K + 2) ≤ Po(N ≥ K) · (1− δ1δ2) .

so inductively, we have

Po(N ≥ 2k) ≤ (1− δ1δ2)k
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for any integer k. This geometric bound implies that Eo[N ] < ∞, which shows that

N =∞ a.s. if and only if EoN =∞. Since we have already established that EoN =∞

if and only if G is recurrent, the proof is complete.

Proof of Theorem 3.38. Let Xt, X
′
t be two independent discrete-time simple random

walks on G started at the same vertex (call it o). Let N denote the number of

collisions between Xt and X ′t; note that

N =
∞∑
t=1

∑
x∈V (G)

1Xt=x1X′t=x
.

We will show that

G is recurrent ⇐⇒ EoN =∞ ⇐⇒ N =∞ a. s.

First, we observe that

Eo[N ] = Eo

 ∞∑
t=0

∑
x∈V (G)

1Xt=x1X′t=x


=
∞∑
t=0

∑
x∈V (G)

Po(Xt = x)2

=
∞∑
t=0

∑
x∈V (G)

Po(Xt = x) · Px(Xt = o) · d(x)

d(o)
.

Chapman-Kolmogorov gives

∞∑
t=0

∑
x∈V (G)

Po(Xt = x)Px(Xt = 0) =
∞∑
t=0

Po(X2t = o)
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and since 1
d(o)
≤ d(x)

d(o)
≤ M

d(o)
, we have

1

d(o)

∞∑
t=0

Po(X2t = o) ≤ Eo[N ] ≤ M

d(o)

∞∑
t=0

Po(X2t = o).

The left and right sides diverge to infinity if and only if G is recurrent, so EoN =∞

if and only if G is recurrent.

Next, we will again show that if Eo[N ] = ∞, then N is infinite almost surely.

Suppose that Po(N < ∞) > 0. This implies that there is some vertex z for which

Pz(Xn 6= X ′n for all n) = δ1 > 0; in words, there is some vertex that has a positive

probability of being the site of the last collision. Without loss of generality, suppose

that z ≈ v1.

This proof will not be exactly the same as that of Theorem 3.37. In particular, if

we define Bk,j to be the event that two independent simple random walks started at

x ≈ vk will have their next meeting y ≈ vj, it need not be the case that Px(Bk,1) ≥ 0

for all k. For example, on the quasi-transitive graph shown in Figure 3.4, the event

B3,1 has probability zero, since two random walks started at a vertex x ≈ v3 must

meet on the next step at the vertex directly below x. On that graph, there is no

chance that they will meet next at a vertex y ≈ v1.

FIGURE 3.4: A certain quasi-transitive truncation of Comb(Z,Z).
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To adjust for this, we reconsider a length L loopless path γ : x→ y with x ≈ vk

and y ≈ v1. Suppose that γ = (x, a1, a2, . . . , aL−1, y). We specify a length L+ 2 path

for Xt by (x, a1, a2, . . . , aL−1, y, aL−1, y) and one for X ′t by (x, a1, x, a1, a2, . . . , aL−1, y).

We observe that after starting, there are exactly three meetings between the two

walkers given these paths. Using this analysis, we see that if we redefine Bk,j to be

the event that two walks started at x ≈ vk have their third next meeting at some

y ≈ vj, that Px(Bk,j) ≥ δ3 > 0 uniformly.

We now change our bounds to mimic the proof of Theorem 3.37. We have

Px(N = 3) ≥ δ1δ3, since it is sufficient for the two walkers to have their third next

meeting at some y ≈ v1 and then to never meet again. Thus,

Px(N > 3) ≤ 1− δ1δ3 (3.19)

for all x. Let TK denote the time of the Kth collision. By the Strong Markov Property,

Po(N ≥ K + 4) = Eo

[
1N≥KPXTK (N ≥ 4)

]
(3.20)

and combining (3.19) with (3.20) yields

Po(N ≥ K + 4) ≤ P0(N ≥ K) · (1− δ1δ3)

so inductively, we have

Po(N ≥ 4k) ≤ (1− δ1δ3)k

for any integer k. Thus, in the discrete time environment we can still establish a

geometric bound, which implies that Eo[N ] < ∞. Hence, we have preserved the
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claim that if Eo[N ] = ∞, then Po(N < ∞) = 0. Since Eo[N ] = ∞ is equivalent to

the recurrence of G, the proof is complete.

Corollary 3.40. If G is quasi-transitive, then collision properties do not depend on

the time parameter of the walk.

This corollary strengthens Theorem 5 of [CWZ08], which requires the additional

assumption that G be of sub-exponential growth.

Remark 3.41. In general, it may be the case that discrete-time collision

properties and continuous-time collision properties differ, as was demonstrated by

counterexample in Claim 3.9.

3.5 Quadruple-collisions

All our previous efforts have been directed toward considering the case of two

independent simple random walks on some graph G. Some work has been done (for

example, in [KP04] and [CC10]) on the case of three independent simple random walks

on G. In such schemes, one considers random walks X
(1)
n , X

(2)
n , X

(3)
n and considers

the probability P(X
(1)
n = X

(2)
n = X

(3)
n i.o.). In this section, we show that when

G is of bounded degree, the analogous problem of four (or more) walkers colliding

simultaneously has a trivially negative result.

Let G be a locally finite graph with vertex set v(G), and let X1
t , . . . , X

n
t be jointly

independent discrete-time simple random walks on G started at some distinguished

vertex o.

Theorem 3.42. On any graph G of bounded degree, four simple independent random

walks will collectively meet only finitely many times (a.s.). That is, the set {t : X1
t =

X2
t = X3

t = X4
t } is almost surely finite.
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Lemma 3.43. For any simple random walk on an infinite graph of bounded degree,

there exists a constant C such that the transition density satisfies

sup
x,y

p(t)(x, y) ≤ C/
√
t

for t ≥ 1.

Proof. See Corollary 14.6 of [Woe00].

Proof of Theorem 3.42. Let M denote the maximum degree of all vertices v ∈ G, and

let N =
∑∞

t=0 1{X1
t = X2

t = X3
t = X4

t } denote the number of meetings between all

four walks strictly after time t = 0. In what follows, Eo will denote that all four walks

are started at vertex o.

Eo[N ] = Eo

 ∞∑
t=1

∑
y∈v(G)

4∏
i=1

1Xi
t=v


=
∞∑
t=1

∑
y∈v(G)

[
p(t)(o, y)

]4
≤

∞∑
t=1

C3

t3/2

∑
y∈v(G)

p(t)(o, y)

The inner sum is equal to 1, so the entire summation is finite. Since the expected

number of meetings is finite, the number of meetings is finite almost surely.

Corollary 3.44. If n ≥ 4, then n simple independent random walks on G will

collectively meet only finitely many times (almost surely).
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3.6 Conclusion

In this chapter, we have explored a number of facets of the study of collisions

of simple independent random walks on a graph. We remark here that despite these

developments, some of the most basic questions remain open. The following two

questions in particular are quite basic, yet answers (positive or negative) have thus

far remained elusive:

Question 3.45. Let G,G′ be connected, bounded-degree, recurrent graphs with the

same vertex set such that the edge set of G′ differs from that of G by only one edge.

Must the quantity P(Xn = X ′n i.o.) be the same for both G and G′?

Question 3.46. Let G be a connected, bounded-degree, recurrent graph. Is the

quantity P(Xn = X ′n i.o.) independent of whether the ambient time medium is

discrete or continuous?

We note that without the assumption of recurrence, each of these questions has

a negative answer, as discussed in Section 3.1. However, these counterexamples were

particularly messy; they required a graph that was transient, of unbounded degree,

and weakly aperiodic. Moreover, the phenomena exhibited by these graphs were

not extreme in the sense that while the quantity P(Xn = X ′n i.o.) changed, it did

not go from 1 to 0 or vice versa; rather, it went from 1 to some number strictly

between 0 and 1. As observed in Proposition 2.1 of [BPS10], if the underlying graph

is recurrent, then P(Xn = X ′n i.o.) ∈ {0, 1}. This would imply that if the answer

to either Questions 3.45 or 3.46 were negative, then the change in P(Xn = X ′n i.o.)

would be from 0 to 1 or vice versa. Such a finding would be conterintuitive, but has

not yet been proven to be impossible.
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We end with some interesting observations: if G is a graph with vertex and edge

sets v(G) and e(G), respectively, then there are a number of reasonable ways that

one can define the Cartesian product G×G. We will use the obvious vertex set, i.e.

v(G×G) = v(G)×v(G). Our first edge set, which is a subset of v(G×G)×v(G×G),

will be governed by the edge relation

(x, y) ∼ (z, w)⇐⇒ x ∼ y and y ∼ w.

It can be shown that a simple discrete-time random walk on G×G with this edge set

corresponds to two independent simple discrete-time random walks on G. Hence, the

collision property P(Xn = X ′n i.o.) can be reframed as the probability that the single

walk on G×G enters the diagonal set ∆ = {(x, x) : x ∈ v(G)} infinitely often.

Similarly, we can define the Cartesian product as a network (graph with edge

weights called conductances) rather than just a graph. With v(G×G) = v(G)×v(G),

we define the edge relation by

(x, y) ∼ (z, y)⇐⇒ x ∼ z

(x, y) ∼ (z, w)⇐⇒ y ∼ w

with conductances c[(x, y), (z, y)] = d(y) and c[(x, y), (x,w)] = d(x). Here, d denotes

the degree of a vertex. If a continuous-time random walk is performed on G×G where

steps are taken proportionally to the edge weights, then this walk can be shown to

correspond to two simple independent continuous-time walks on the underlying graph

G. Hence, the collision property can again be reframed as the probability of infinite

entry into the diagonal set ∆.
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As long as G is either bipartite, or is strongly aperiodic (i.e. every set is part of a

short odd cycle), then the two graph constructions are themselves roughly isometric.

In the case that G is weakly aperiodic, such as the graph defined in Definition 3.8,

then the two constructions are not roughly isometric. We suspect this may be why the

graph in Definition 3.8 serves as a counterexample to Question 3.46, but have thus far

been unable to find a general proof that verifies this. Similarly, if G and G′ are roughly

isometric graphs, and both are either bipartite or weakly aperiodic, then one can show

that their product graphs G×G and G′×G′ (using either construction) are roughly

isometric. We suspect that weak aperiodicity is what makes the counterexample in

Remark 3.10 possible, but have thus far been unable to prove this claim. These

observations lead us to believe that Questions 3.45 and 3.46 could potentially have

affirmative answers if in addition the graphs are assumed to be bipartite or strongly

aperiodic.
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