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DISSERTATION ABSTRACT

Nathan Girard Perlmutter

Doctor of Philosophy

Department of Mathematics

June 2015

Title: Linking Forms, Singularities, and Homological Stability for Diffeomorphism
Groups of Odd Dimensional Manifolds

Let n ≥ 2. We prove a homological stability theorem for the diffeomorphism

groups of (4n + 1)-dimensional manifolds, with respect to forming the connected

sum with (2n − 1)-connected, (4n + 1)-dimensional manifolds that are stably

parallelizable. Our techniques involve the study of the action of the diffeomorphism

group of a manifold M on the linking form associated to the homology groups of

M . In order to study this action we construct a geometric model for the linking

form using the intersections of embedded and immersed Z/k-manifolds. In addition

to our main homological stability theorem, we prove several results regarding

disjunction for embeddings and immersions of Z/k-manifolds that could be of

independent interest.
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CHAPTER I

INTRODUCTION

Let M be a smooth manifold and let Diff(M) denote the group of

diffeomorphisms of M topologized in the C∞-topology. The classifying space,

BDiff(M), occupies a central place in smooth topology. In particular, for any

paracompact space X there is a natural bijection between the set of homotopy

classes of maps X → BDiff(M) and the set of isomorphism classes of principal

Diff(M)-bundles over X. This bijection reduces the study of principal Diff(M)-

bundles to the study of the weak homotopy type of the classifying space BDiff(M).

Furthermore, the cohomology ring H∗(BDiff(M)) contains all characteristic classes

for principal Diff(M)-bundles.

For an arbitrary manifold M , the space BDiff(M) is quite complicated and

there are very few “universal” results that pertain the homotopy type of BDiff(M)

for all manifolds M . A fundamental question is the following: to what extent does

the homology group H∗(BDiff(M)) depend on the structure of the underlying

manifold M? In particular, how does the structure of the group H∗(BDiff(M))

change if we alter the underlying manifold M by a surgery operation? Recently,

through the work of M. Weiss and I. Madsen in (28), and the work of S. Galatius

and O. Randal-Williams (11), (10), much progress has been made in answering

this question when the manifold M is of dimension 2n. This thesis is primarily

concerned with answering this question in the case that the manifold M is of

dimension 2n+ 1.
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1.1. Background and Basic Definitions

Fix a smooth manifold M . Let Diff∂(M) denote the subgroup of Diff(M)

consisting of all diffeomorphisms of M that restrict to the identity on some

neighborhood of the boundary ∂M . Our main object of interest is the classifying

space of the topological group Diff∂(M). For any topological group G, the

classifying space BG is characterized up to weak homotopy equivalence as the

base space of a principal G-bundle EG −→ BG with weakly contractible total

space EG. We will need to work with a particular model for the classifying space of

Diff∂(M) which we define below.

Definition 1.1.1. Fix a collar embedding h : (−∞, 0] × ∂M −→ M with

h−1(∂M) = {0} × ∂M , and fix an embedding θ : ∂M −→ {0} × R∞. We define

EDiff∂(M) to be the space of all smooth embeddings φ : M −→ (−∞, 0] × R∞,

for which there exists a real number ε > 0 such that φ(h(t, x)) = (t, θ(x)) when

−ε < t ≤ 0. We then define BDiff∂(M) to be the quotient of EDiff∂(M) obtained

by identifying embeddings that have the same image.

With the above definition, the underlying set of BDiff∂(M) is precisely the

set of all submanifolds V ⊂ (−∞, 0] × R∞ that are abstractly diffeomorphic to

the manifold M and that have boundary equal to θ(∂M). We will generally denote

elements of BDiff∂(M) by such submanifolds V . In this way BDiff∂(M) can be

thought as a “non-linear” generalization of a Grassmannian manifold.

Remark 1.1.1. The definition of BDiff∂(M) involved two arbitrary choices: the

collar h and the embedding θ. Any two embeddings ∂M ↪→ R∞ are isotopic.

Similarly, any two collar embeddings (−∞, 0] × ∂M −→ M are isotopic as well.

It follows that the topology of the space EDiff∂(M), and hence the topology of the
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space BDiff∂(M), does not depend on the choices of embedding θ and h used in the

definition. For this reason we are justified in excluding h and θ from the notation.

The topological group Diff∂(M) acts freely and continuously on EDiff∂(M)

by pre-composition (f, φ) 7→ φ ◦ f , and thus BDiff∂(M) is identified with the

orbit space EDiff∂(M)/BDiff∂(M). By (4), it follows that the quotient projection

EDiff∂(M) −→ BDiff∂(M) is a locally trivial fibre-budle with fibre equal to

Diff∂(M). Furthermore, it is well known that the total space EDiff∂(M) is weakly

contractible. It follows that our definition of BDiff∂(M) given in Definition 1.1.1

coincides with the standard definition of the classifying space BG for a general

topological group G given in (32). It then follows that for any paracompact

space X, there is natural bijection between the set of homotopy classes of maps

X −→ BDiff∂(M) and the set of isomorphism classes of principal Diff∂(M) fibre

bundles over X.

We will need to work with certain natural maps connecting the classifying

spaces of the diffeomorphism groups of different manifolds. Let M be a smooth

manifold of dimension m with non-empty boundary. Let K be an m-dimensional

manifold with boundary given by the disjoint union ∂K = ∂0K t ∂1K, where

∂0K = ∂M (in other words, K is a cobordism from ∂M to ∂1K). Let M ∪∂M K

denote the manifold obtained by attaching K to M along ∂M .

Definition 1.1.2. Let M and K be as above. Choose a collared embedding α :

K ↪→ [0, 1]×R∞ with α(∂iK) ⊂ {i}×R∞ for i = 0, 1, and such that α|∂0K coincides

with the embedding ∂M ↪→ {0} × R∞ used in the definition of BDiff∂(M). Let

t−1 : (−∞, 1]×R∞ −→ (−∞, 0]×R∞ be the diffeomorphism given by translation in

3



the first coordinate. We define

∪K : BDiff∂(M) −→ BDiff∂(M ∪∂M K)

to be the continuous map given by sending an element V ∈ BDiff∂(M) (which is

a submanifold of (−∞, 0] × R∞) to the element of BDiff∂(M ∩∂M K) given by the

submanifold t−1(V ∪ α(K)).

Remark 1.1.2. There was an arbitrary choice involved in the construction of

the map in the above definition, namely the embedding α. Since any two collared

embeddings K ↪→ [0, 1] × R∞ are isotopic, it follows that the homotopy class of the

map ∪ K in the above definition does not depend on the choice of embedding

α. It follows that the homotopy class of ∪ K is determined entirely by the

diffeomorphism class of the cobordism K.

A particular case of the above map that we will use is the following. Let W

be a closed manifold of dimension m and let KW denote the manifold obtained

by forming the connected sum of ∂M × [0, 1] with W . We identify the manifold

M ∪∂M KW with the connected-sum M#W and thus the classifying spaces

BDiff∂(M ∪∂M KW ) are BDiff∂(M#W ) identified. Using these identifications, the

map from Definition 1.1.2 yields a map

sW : BDiff∂(M) −→ BDiff∂(M#W ). (1.1)

1.2. Some Fundamental Results

Perhaps the first positive result pertaining to the homomorphism on

homology induced by the map sW : BDiff∂(M) −→ BDiff∂(M#W ), is the
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homological stability theorem of J. Harer in (13) for the diffeomorphism groups

of oriented surfaces. For an integer g ∈ N, let Lg denote the oriented surface

with boundary obtained by removing an open disk from the closed genus-g surface

(S1 × S1)#g. Since Lg+1
∼= Lg#(S1 × S1), for each integer g (1.1) yields the map

s : BDiff∂(Lg) −→ BDiff∂(Lg+1). The main theorem from (13) is the following.

Theorem 1.2.1 (J. Harer 1985). The map on homology

s∗ : H`(BDiff∂(Lg);Z) −→ H`(BDiff∂(Lg+1);Z)

induced by s is an isomorphism when ` < g
3
− 2.

The above theorem implies that the maps in the direct system

· · · // BDiff∂(Lg−1) // BDiff∂(Lg) // BDiff∂(Lg+1) // · · · (1.2)

induce isomorphisms on the homology groups H`( ;Z) when ` << g. We say then

that the direct system (1.3) satisfies homological stability and that Theorem 1.2.3

is a homological stability theorem. Significant improvements in the stability range

of the above theorem were made years latter, separately by Ivanov (18), Boldsen

(6), and Randal-Williams (31). Furthermore, an analogue of Theorem 1.2.1 for non-

orientable surfaces was proven by N. Wahl in (40).

Remark 1.2.1. In (8) it was proven that the diffeomorphism groups Diff∂(Lg) have

contractible path components when g > 1. It follows that BDiff∂(Lg) is homotopy

equivalent to the classifying space of the mapping-class group π0(Diff∂(Lg)) when

g > 1. The proof of Theorem 1.2.1 makes use of these facts and for this reason,
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Theorem 1.2.1 is usually stated in terms of the mapping-class groups of surfaces,

rather than of the diffeomorphism groups.

The above theorem has many formal similarities to other classical homological

stability theorems regarding direct systems of groups. For example, for large classes

of rings R, the direct system of classifying spaces of the general linear groups,

BGln(R) → BGln+1(R) → BGln+2(R) → · · · , is known to satisfy homological

stability (see (20)). Also the direct system, BΣn → BΣn+1 → BΣn+2 → · · · of

classifying spaces of the symmetric groups satisfies homological stability as well (see

(29)). The proof of Theorem 1.2.1 shares many formal similarities with the proofs

of these above mentioned homological stability results.

In (28) I. Madsen and M. Weiss identify the homology of the limiting space

colim
g→∞

BDiff∂(Lg). Let CP∞−1 denote the Thom-spectrum associated to the formal

inverse of the canonical complex line bundle γ1
C over CP∞. We will need to

consider the infinite loopspace Ω∞CP∞−1 associated to the spectrum CP∞−1. We will

denote by Ω∞0 CP∞−1 the path-component of Ω∞CP∞−1 containing the constant loop.

The following is the main theorem from (28).

Theorem 1.2.2 (Madsen-Weiss 2002). There is a homological equivalence,

colim
g→∞

BDiff∂(Lg)
∼=−→ Ω∞0 CP∞−1.

The cohomology of the space Ω∞0 CP∞−1 can be readily computed and thus

the above theorem, together with Theorem 1.2.3, enables a calculation of the

cohomology (and homology) groups of the space BDiff∂(L2n
g ) in a dimensional

range when g is large. With rational coefficients there is an isomorphism

H∗(Ω∞0 CP∞−1;Q) ∼= Q[κ1, κ2, . . . ], where κi ∈ H2i(Ω∞0 CP∞−1;Q) for i ≥ 0. The
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classes κi are known as the kappa classes and were studied by Miller, Morita, and

Mumford in (25), (26), and (27). This theorem of Madsen and Weiss proved the

long-standing Mumford Conjecture from (27), which conjectured the isomorphism

H∗(Ω∞0 CP∞−1;Q) ∼= Q[κ1, κ2, . . . , ].

Remark 1.2.2. If one views the symmetric group Σg as the diffeomorphism group

of the zero-dimensional manifold consisting of g-many points, then the theorem

of Barratt, Priddy, Quillen and Segal, establishing the homological equivalence

colim
g→∞

BΣg×Z
'−→ QS0 (see (2)), can be viewed as an analogue of the Madsen-Weiss

theorem for zero-dimensional manifolds. The proof of theorem 1.2.4 has formal

similarities to the theorem of Barrat, Priddy, Quillen, and Segal as well.

We now discuss some recent results pertaining to the diffeomorphism groups

of high dimensional manifolds analogous to those from the previous section. Let

n ∈ N be an integer an let M be a manifold of dimension 2n with non-empty

boundary. We will consider the map s : BDiff∂(M) −→ BDiff∂(M#(Sn × Sn))

and the direct system

· · · // BDiff∂(M#(Sn × Sn)#g) // BDiff∂(M#(Sn × Sn)#(g+1)) // · · ·

(1.3)

obtained by iterating this map s.

The idea of studying manifolds of dimension 2n up to connected sum with

factors of Sn × Sn can be traced back to Wall in his study of simply connected 4-

manifolds in (38). This idea was taken further by M. Kreck in (22) where he gives

a diffeomorphism classification of manifolds of dimension 2n ≥ 6, up to connected

sum with factors of Sn × Sn.
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In order to state the main theorems regarding the direct system (1.3), we will

need to define a generalized notion of genus for manifolds of dimension 2n. For

each g ∈ N, let L2n
g denote the manifold obtained by deleting an open disk from

(Sn × Sn)#g. We define g(M) to be the largest integer g ∈ N such that there exists

an embedding of L2n
g into M . The following result is the main theorem from (11).

Theorem 1.2.3 (Galatius, Randal-Williams 2014). Let M be a simply connected,

compact manifold of dimension 2n ≥ 6, with non-empty boundary. Let g(M) ≥ g.

Then the map on integral homology

s∗ : H`(BDiff∂(M);Z) −→ H`(BDiff∂(M#(Sn × Sn));Z)

induced by s is an isomorphism when ` ≤ 1
2
(g − 3) and an epimorphism when

` ≤ 1
2
(g − 1).

The above theorem implies that for any simply connected manifold M of

dimension 2n ≥ 6 with ∂M 6= ∅, the maps in the direct system (1.3) induce

isomorphisms on the homology groups H`( ;Z) when g >> `. Thus the above

theorem is a homological stability theorem analogous to Theorem 1.2.1 from the

previous section.

In addition to the homological stability theorem described in the previous

paragraphs, in (10) the authors identify the homological type of the limiting space

colim
g→∞

BDiff∂(L2n
g ). Let γ2n −→ BO(2n) denote the universal 2n-dimensional vector

bundle, let θn : Bθn −→ BO(2n) denote the n-connective cover, and let MTθn

denote the Thom-spectrum associated to the formal inverse of the pull-back bundle

θ∗n(γ2n) −→ Bθn.

8



Theorem 1.2.4 (Galatius, Randal-Williams 2014). Let n ≥ 3. Then there is a

homological equivalence, colim
g→∞

BDiff∂(L2n
g )

'−→ Ω∞0 MTθn.

The cohomology of the space Ω∞0 MTθn can be readily computed (it has

been completely determined rationally) and thus the above theorem, together

with Theorem 1.2.3, enables a calculation of the homology groups of the space

BDiff∂(L2n
g ) in a dimensional range when g is large. The proof of Theorem 1.2.4

was largely inspired by the proof of the Madsen-Weiss theorem and uses many of

the same techniques.

1.3. Statement of Our Main Results

The results about the diffeomorphism groups discussed in the previous

sections all pertain solely to manifolds of even dimension. Indeed, the results

of Galatius and Randal-Williams from (11) rely heavily on techniques from the

surgery theory of Kreck (22) and Wall (35) specialized to the category of manifolds

of dimension 2n ≥ 6. The homological type of the diffeomorphism groups of

manifolds of odd dimension have until now been largely untouched and there are

very few existing results in the literature. In this thesis we prove a homological

stability theorem for the diffeomorphism groups of manifolds of odd dimension. We

extend the techniques used by Galatius and Randal-Williams to the category of odd

dimensional manifolds, and thus also set the stage to approach an odd dimensional

version of Theorem 1.2.4.

Let M be a (4n + 1)-dimensional manifold with non-empty boundary, where

n ≥ 2. For any closed (4n + 1)-dimensional manifold W , we consider the map

9



BDiff∂(M) −→ BDiff∂(M#W ) from (1.1) and the direct system

BDiff∂(M) −→ BDiff∂(M#W ) −→ · · · −→ BDiff∂(M#W#g) −→ · · · (1.4)

obtained by iteration of this map. The main result of this thesis is a theorem

concerning the homological stability of the above direct system.

Theorem 1.3.1. Let n ≥ 2 and let M be a 2-connected, (4n + 1)-dimensional,

compact manifold with non-empty boundary. Let W be a closed, (4n + 1)-

dimensional manifold that satisfies the following conditions:

– W is (2n− 1)-connected,

– W is stably parallelizable,

– the homology group H2n(W ;Z) has no 2-torsion.

Then the group H`(BDiff∂(M#W#g);Z) is independent of the integer g if g ≥

2`+ 3. In particular, the direct system (1.4) satisfies homological stability.

Remark 1.3.1. The case of Theorem 1.3.1 when W is a product of spheres

S2n × S2n+1 follows as a special case of (30, Theorem 1.3) by the same author of

this thesis.

The proof of the above theorem draws heavily from the classification of

(2n − 1)-connected, (4n + 1)-dimensional manifolds of Wall in (37). In order

to describe the techniques used in the proof of Theorem 1.3.1, we must describe

this classification theorem of Wall. Let us first fix some notation that we will use

throughout the paper. Let W4n+1 denote the set of all (2n− 1)-connected, (4n+ 1)-

dimensional, compact manifolds. Let W̄4n+1 ⊂ W4n+1 denote the subset of those
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manifolds that are closed, let WS
4n+1 ⊂ W4n+1 denote the subset of those manifolds

that are stably-parallelizable, and let W̄S
4n+1 denote the intersection WS

4n+1 ∩ W̄4n+1.

In order to prove Theorem 1.3.1, we will need to analyze the diffeomorphism

invariants associated to elements of W4n+1. For M ∈ W4n+1, let πτ2n(M) ≤ π2n(M)

denote the torsion subgroup. The primary diffeomorphism invariant associated to

M is the linking form, which is a skew-symmetric, bilinear pairing

b : πτ2n(M)⊗ πτ2n(M) −→ Q/Z, (1.5)

which is non-singular in the case that M is closed. For n ≥ 2, the classification of

manifolds in W4n+1 was studied by Wall in (37). Recall that two closed manifolds

M1 and M2 are said to be almost diffeomorphic if there exists a homotopy sphere

Σ such that M1#Σ is diffeomorphic to M2. It follows from Wall’s classification

theorem (37, Theorem 7), that two elements M1,M2 ∈ W̄S
4n+1 are almost

diffeomorphic if and only if there exists an isomorphism, πτ2n(M1)
∼=−→ πτ2n(M2)

that preserves the linking form b. Furthermore, given any finite abelian group G

equipped with a non-singular, skew-symmetric bilinear form b′ : G ⊗ G −→ Q/Z,

there exists a manifold M ∈ W̄S
4n+1 and an isomorphism of forms, (πτ2n(M), b) ∼=

(G, b′).

We use the classification result discussed above to specify certain elements of

W̄S
4n+1. For each integer k ≥ 2, fix a manifold Wk ∈ W̄S

4n+1 whose linking-form

(πτ2n(Wk), b) is given by the data,

π2n(Wk) = Z/k ⊕ Z/k, b(σ, σ) = b(ρ, ρ) = 0, b(σ, ρ) = −b(ρ, σ) = 1
k

mod 1,

(1.6)
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where 〈ρ, σ〉 is the standard basis for Z/k ⊕ Z/k. It follows from (37, Theorem 7)

and the classification of skew symmetric bilinear forms over Q/Z in (38, Lemma 7),

that any element M ∈ W̄S
4n+1 is diffeomorphic to a manifold of the form

Wk1# · · ·#Wkl#(S2n × S2n+1)#g#Σ, (1.7)

where Σ is a homotopy sphere.

Remark 1.3.2. It follows from these classification results, (37, Theorem 7) and

(38, Lemma 7), that if k and ` are relatively prime, then Wk#W`
∼= Wk·`. In this

way, the (almost) diffeomorphism classification of W̄S
4n+1 mirrors the classification

of finitely generated abelian groups. Thus it will suffice to restrict our attention to

the manifolds Wk in the case that k = pj for a prime number p. By the connected-

sum decomposition (1.7) it follows that the manifolds Wpj are indecomposable.

Now, let M be a (4n + 1)-dimensional manifold with non-empty boundary.

For each integer k ≥ 2, let

sk : BDiff∂(M) −→ BDiff∂(M#Wk) (1.8)

denote the map from (1.1). We will refer to this map as the k-th stabilization map.

Let rk(M) be the quantity defined by,

rk(M) = max{g ∈ N | there exists an embedding, W#g
k \D

4n+1 −→M}. (1.9)

For each k we may think of rk(M) as a generalized version of the genus of a surface

or an analogue of the quantity g(M) used in the statement of Theorem 1.2.3. Using

the diffeomorphism classification for manifolds in W̄S
4n+1 described in Section III,
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the following result, combined with (30) implies Theorem 1.3.1. This is the main

homological stability result that we prove in this paper.

Theorem 1.3.2. For n ≥ 2, let M be a 2-connected, compact, (4n+ 1)-dimensional

manifold with non-empty boundary. If k > 2 is an odd integer, then the map on

homology induced by (1.8),

(sk)∗ : H`(BDiff∂(M); Z) −→ H`(BDiff∂(M#Wk); Z)

is an isomorphism if 2` ≤ rk(M)− 3 and an epimorphism when 2` ≤ rk(M)− 1.

1.4. Methodology

In this section we give an overview of the methods used in the proof of

Theorem 1.3.2. To prove our homological stability theorem, for each integer k ≥ 2

we construct a highly connected, semi-simplicial space X•(M)k, which admits an

action of the topological group Diff∂(M) that is transitive on the zero-simplicies.

The semi-simplicial space X•(M)k is defined roughly as follows. Let W ′
k denote the

manifold with boundary obtained from Wk by removing an open disk. The space of

p-simplices, Xp(M)k, is defined to be the space of ordered (p+ 1)-tuples (φ0, . . . , φp)

where φi : W ′
k −→ M is an embedding for i = 0, . . . , p and φj(W

′
k) ∩ φl(W ′

k) = ∅

if j 6= l. With this definition, a p-simplex in Xp(M)k can be viewed as a particular

way of splitting a connected-sum factor of W
#(p+1)
k off of M .

The majority of the technical work of this paper is devoted to proving

that if M is 2-connected and k is odd, then the geometric realization |X•(M)k|

is 1
2
(rk(M) − 4)-connected. This is established in Section VIII and uses all of

the techniques developed throughout the rest of the thesis. In Section IX it is
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shown how high connectivity of |X•(M)k| implies Theorem 1.3.2. This uses a

spectral sequence an argument essentially identical to (9, Section 5.2) and thus, the

majority of the technical work of this paper is devoted to proving that |X•(M)k| is

1
2
(rk(M)− 4)-connected.

Remark 1.4.1. This method of proving a homological stability theorem by

construction of a highly connected semi-simplicial space (or simplicial complex)

analogous to X•(M)k, is a fairly standard method and has been used to prove

homological stability theorems in many other contexts. A general overview of this

method of proving homological stability is given in (39) and many examples are

treated there as well.

The semi-simplicial space X•(M)k is very difficult to study directly. In order

to prove that its geometric realization is 1
2
(rk(M)− 4)-connected, we must compare

it to an auxiliary simplicial complex L(πτ2n(M))k whose definition is based on an

algebraic structure and thus can be analyzed via combinatorial methods. A p-

simplex in the simplicial complex L(πτ2n(M))k is defined to be a set of (p+ 1)-many,

pairwise orthogonal morphisms of linking forms (πτ2n(W ′
k), b) −→ (πτ2n(M), b),

which mimic the pairwise disjoint embeddings W ′
k → M from the semi-simplicial

space X•(M)k. In Section 4.3, we prove that the geometric realization |L(πτ2n(M))k|

is 1
2
(rk(M) − 4)-connected (see Theorem 4.3.2) using the simplicial techniques

developed in Chapter II and the algebraic properties of bilinear forms defined on

finite groups. This result is similar to the classical homological stability theorem of

R. Charney from (7).

To compare |X•(M)k| to L(πτ2n(M))k, we consider a map |X•(M)k| −→

|L(πτ2n(M))k| induced by sending an embedding ϕ : W ′
k −→ M , which

represents a 0-simplex in X•(M)k, to its induced morphism of linking forms,
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ϕ∗ : (πτ2n(W ′
k), b) −→ (πτ2n(M), b), which represents a vertex in L(πτ2n(M))k.

With the high-connectivity of L(πτ2n(M))k established, to prove that |X•(M)k| is

highly connected it will suffice to prove that the above map induces an injection

on homotopy groups πj( ) when j ≤ 1
2
(rk(M) − 4). This requires several new

geometric constructions which are of independent interest. In particular, we need

a technique for realizing morphisms (πτ2n(W ′
k), b) −→ (πτ2n(M), b) by actual

embeddings W ′
k →M .

To solve the problem of realizing morphisms of linking forms by actual

embeddings of manifolds, we will need a suitable geometric model for the linking

form based on Z/k-manifolds and their intersections. Roughly, an m-dimensional

Z/k-manifold is a manifold with singularities whose local structure at the

singularity is of the form Rn−1 × C(〈k〉), where 〈k〉 denotes the set of k distinct

points and C(〈k〉) is the cone formed over that set. Z/k-manifolds can be used

to represent cycles in homology groups with Z/k-coefficients and thus they arise

for us in our analysis of the linking form. Sections V through VII, as well as the

appendices, are devoted to developing the intersection theory of Z/k-manifolds.

Our Z/k-manifold methods are largely inspired by the work of Morgan and

Sullivan in (33). However, this thesis contains several (to our knowledge) new

results regarding Z/k-manifolds, and other types of manifolds with singularities,

that don’t currently exist in the literature. These new results/techniques include:

– An h-principle for immersions of Z/k-manifolds into a smooth (non-singular)

manifold (Appendix 11.2).

– A technique for eliminating the self-intersections of an immersion of a Z/k-

manifold (Appendix 11.4).
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– A method for modifying the intersections of embedded Z/k-manifolds when

a certain bordism invariant vanishes (Appendix ??). In the case that the

intersection in question is a zero dimensional manifold, this technique can

be viewed as a Z/k-version of the Whitney-trick (24, Theorem 6.6) used in

the proof of the h-cobordism theorem.

These techniques enable us to get a handle geometrically on the linking form and

they are all necessary to analyze the map which compares X•(M)k and L(M)k.

The main place where these singularity techniques are employed is in the proof of

Lemma 8.1.2.

Remark 1.4.2. Our main homological stability result requires the integer k to be

odd. The source of this restriction on the integer k is the technical result Theorem

10.5.1 and Theorem 11.6.1. If these theorems could be upgraded to include the case

that k is even, then Theorem 1.3.2 could be upgraded to include the case where k is

even as well.

It is also desirable to have a result analogous Theorem 1.3.1 for manifolds of

dimension 4n + 3. The key technical result in this paper for which the condition

that our manifolds be (4n + 1)-dimensional is required is Theorem 5.4.1 and

Corollary 11.5.3 (which is used to prove Theorem 5.4.1). If a version of Theorem

5.4.1 were to be extended to apply to manifolds of dimension 4n + 3, then an

analogue of the main result of this paper could be obtained for (4n+ 3)-dimensional

manifolds. However, the diffeomorphism classification of highly-connected manifolds

of dimension 4n + 3 (see (37)) is more involved than the classification in the

dimension 4n + 1 case, and so some other difficulties beyond Theorem 5.4.1 arise

as well.
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We will treat both of these extraordinary cases, where k is even or the

manifolds are of dimension 4n+ 3, in a sequel to this paper.

1.5. Organization

Chapter II is a recollection of some basic definitions and results about

simplicial complexes and semi-simplicial spaces. In Chapter III we describe the

classification of (2n − 1)-connected, (2n + 1)-dimensional manifolds in terms of

linking forms. In Chapter IV we define the primary semi-simplicial space X•(M)k.

Then define the simplicial complex of linking forms L(πτ2n(M)k), and prove that it

is highly-connected. In Chapters V, VI, and VII we give the necessary background

on Z/k-manifolds used in the proof of Theorem 1.3.2. In these three sections we

state all of the necessary technical results regarding the intersections of immersions

and embeddings of Z/k-manifolds, but we put off most of the difficult proofs until

Appendix X and XI. In Chapter VIII we prove that the geometric realization

|X•(M)k| is highly connected. In Chapter IX we show how high-connectivity of

|X•(M)k| implies Theorem 1.3.2. In Appendix X and Appendix XI, we prove

several technical results regarding the intersections of immersions and embeddings

of Z/k-manifolds that were used earlier in the paper.
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CHAPTER II

SIMPLICIAL TECHNIQUES

In this section we recall a number of simplicial techniques that we will need to use

throughout the paper. We will need to consider a variety of different simplicial

complexes and semi-simplicial spaces.

2.1. Cohen-Macaulay Complexes

Let X be a simplicial complex. Recall that the link of a simplex σ < X,

denoted by lkX(σ), is defined to be the subcomplex of X consisting of all simplices

ζ disjoint from σ, for which there exists a simplex ξ such that both σ and ζ are

faces of ξ.

We now present a key definition that will be used throughout the paper.

Definition 2.1.1. A simplicial complex X is said to be weakly Cohen-Macaulay of

dimension n if it is (n − 1)-connected and the link of any p-simplex is (n − p − 2)-

connected. In this case we write ωCM(X) ≥ n. The complex X is said to be locally

weakly Cohen-Macaulay of dimension n if the link of any simplex is (n − p − 2)-

connected (but no global connectivity is required on X itself). In this case we shall

write lCM(X) ≥ n.

We have some basic results about the links of simplices and Cohen-Macaulay

complexes. The following two lemmas are taken directly from (11, Lemmas 2.1 and

2.3).

Lemma 2.1.1. If ωCM(X) ≥ n and σ < X is a p-simplex, then ωCM(lkX(σ)) ≥

n− p− 1.
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Definition 2.1.2. We say that a simplicial map f : X −→ Y is simplexwise

injective if its restriction to each simplex of X is injective, i.e. if v, v′ are adjacent

vertices in X, then h(v) 6= h(v′).

Lemma 2.1.2. Let f : X −→ Y be a simplicial map of simplicial complexes. Then

the following conditions are equivalent.

i. f is simplexwise injective,

ii. f(lkX(σ)) ⊂ lkY (f(v)) for all vertices v ∈ X,

iii. f(lkX(v)) ⊂ lkY (f(v)) for all vertices v ∈ X,

iv. the image of any 1-simplex in X is a (non-degeneate) 1-simplex in Y .

The next theorem is proven in (11, Section 2.1) and is a generalization of the

“Coloring Lemma” of Hatcher and Wahl from (15, Lemma 3.1). We include the

proof here since the result is so fundamental to us.

Theorem 2.1.3. Let X be a simplicial complex with lCM(X) ≥ n, let f : ∂In →

|X| be a map which is simplicial with respect to some PL triangulation of ∂In, and

h : In → |X| be a null-homotopy of f . Then the triangulation of ∂In extends

to a PL triangulation of In, and h is homotopic relative ∂In, to a simplicial map

g : In → |X| with the property that g(lkIn(v)) ≤ lkX(g(v)) for any interior vertex

v ∈ Int(In). In particular, g is simplexwise injective on the interior of In.

Proof. Since |X| is in particular (n − 1)-connected, we may extend f to a map

h : In −→ |X| which, by the simplicial approximation theorem, may be assumed

simplicial with respect to some PL triangulation of In extending the given one on

∂In.
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Now, let us say that a simplex σ ∈ In is bad if every vertex v ∈ σ is contained

in a 1-simplex {v, v′} ⊂ σ with h(v) = h(v′). We will describe a procedure which

replaces the simplicial map h : In −→ X, by changing both h and the triangulation

of In, to a new map g : In −→ X with no bad simplices in the interior of In.

If all bad simplices are contained in ∂In, then we are done. If not, let σ < In

be a bad simplex not contained in ∂In, of maximal dimension p. By the definition

of bad simplex, the integer p must be greater than zero. Furthermore, we must

have h(lkIn(σ)) ⊂ lkX(h(σ)), since otherwise we could join a simplex in lkIn(σ) to

σ and get a new bad simplex of larger dimension. Now |σ| ⊂ In, so h restricts to a

map

∂In−p ∼= lkIn(σ) −→ lkX(h(σ)).

By badness of σ, the image h(σ) must be a simplex of dimension less than or

equal to p − 1, since otherwise h|σ would be injective. Since ωCM(X) ≥ n and

dim(h(σ)) ≤ p− 1, it follows that

ωCM(lkX(h(σ)) ≥ n− (p− 1)− 1 = n− p,

and in particular lkX(h(σ)) is (n − p − 1)-connected, so h|lkIn (σ) extends to a PL

map

In−p ∼= C(lkIn(σ))
ĥ−→ lkX(h(σ))

where C(lkIn(σ)) denotes he cone over lkIn(σ). By induction on n, we may assume

that ĥ is simplicial with respect to a PL triangulation of C(lkIn(σ)) which extends

the triangulation of lkIn(σ), and such that all bad simplices of ĥ are in ∂In−p =
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lk(σ). We may extend this map by forming the join with h|∂σ to get a map

σ ? lkIn(σ) ∼= (∂σ) ? (C(lkIn(σ))
ĥ−→ X,

which we may finally extend to In by setting it equal to h outside of σ ? lkIn(σ) ⊂

In. The new map ĥ has fewer bad simplices of dimension p. By continuing

this process we eliminate all interior bad simplices in finitely many steps. This

completes the proof of the theorem.

Next we prove a result (Corollary 2.1.4) which will be employed several times

in Section VIII. This result, along with the property defined in Definition 2.1.3,

abstracts and isolates the key technique used in the proof of (11, Lemma 5.4).

Definition 2.1.3. Let f : X −→ Y be a simplicial map. The map f is said to have

the link lifting property if for any vertex y ∈ Y , the following condition holds: given

any subcomplex K ≤ X with f(K) ≤ lkY (y), there exists a vertex x ∈ X with

f(x) = y such that K ≤ lkX(x).

Corollary 2.1.4. Let X and Y be simplicial complexes and let f : X −→ Y be a

simplicial map. Suppose that the following conditions are met:

i. f has the link lifting property,

ii. lCM(Y ) ≥ n.

Then the induced map |f |∗ : πj(|X|) −→ πj(|Y |) is injective for all j ≤ n − 1.

Furthermore, suppose that in addition to properties i. and ii., f satisfies

iii. f(lkX(ζ)) ≤ lkY (f(ζ)) for all simplices ζ < X.

Then it follows that lCM(X) ≥ n.
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Proof. For l + 1 ≤ n, let h : ∂I l+1 −→ |X| be a map which is simplicial with respect

to some PL triangulation of ∂I l+1, and let H : I l+1 −→ |Y | be a null-homotopy of

the composition |f | ◦ h, i.e. H|∂Il+1 = |f | ◦ h. To prove that |f |∗ : πl(|X|) −→ πl(|Y |)

is injective for all l ≤ n− 1, it will suffice to construct a lift Ĥ of H that makes the

diagram

∂I l+1
� _

��

h // |X|
|f |
��

I l+1 H //

Ĥ

77

|Y |

commute. Since lCM(Y ) ≥ n, by Theorem 2.1.3 there exists a PL triangulation

of I l+1 that extends the chosen PL triangulation on ∂I l+1. Furthermore, we may

arrange that the map H satisfy H(lkIl(x)) ≤ lkY (H(x)) for any interior vertex

x ∈ Int(I l+1) (without altering the original definition of H on the boundary ∂I l+1).

We construct the lift Ĥ by inductively choosing lifts of each vertex in Int(I l+1) as

follows.

Suppose that Ĥ has already been defined on a full subcomplex K ≤ I l+1 (we

may assume that ∂I l+1 ≤ K). Let v ∈ I l+1 be a vertex in the compliment of K.

Let 〈K, v〉 denote the full subcomplex of I l+1 generated by the vertices of K and

v. We will use the link lifting property of f to extend the domain of Ĥ to 〈K, v〉.

Consider the subcomplex K ′ := K ∩ lkIl(v). We have H(K ′) ≤ lkY (H(v)) (recall

that by applying Theorem 2.1.3, we arranged for H to have this property in the

above paragraph). By the link lifting property of f , we may then choose a vertex

v̂ ∈ Y with f(v̂) = H(v), such that Ĥ(K ′) ≤ lkX(v̂). We then define Ĥ(v) = v̂.

The fact that Ĥ(K ′) ≤ lkX(v̂), implies that the definition Ĥ(v) = v̂ determines a

well defined simplicial map from 〈K, v〉, that extends the definition of Ĥ on K. By

repeating this process, we can extend the lift Ĥ over all of I l+1 inductively. This
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establishes the existence of the lift Ĥ. It follows that |f |∗ : πl(|X|) −→ πl(|Y |) is

injective for all l < n.

Assume now that in addition to properties i. and ii. we have f(lkX(σ)) ≤

lkY (f(σ)) for all simplices σ < X. We will show that lCM(X) ≥ n. Let ζ ≤ X be a

p-simplex. Since f has the link lifting property, it follows that the map

f |lkX(ζ) : lkX(ζ) −→ lkY (f(ζ)) (2.1)

obtained by restricting f has the link lifting property as well. Since lCM(Y ) ≥ n,

it follows from (9, Lemma 2.2) that lCM [lkY (f(ζ))] ≥ n − p − 1. It follows from

the result proven in the previous paragraph that the map induced by (2.1) on πj( )

is injective for j ≤ n − p − 2. Since lkY (f(ζ)) is (n − p − 2)-connected, it follows

that lkX(ζ) is (n − p − 2)-connected as well. This proves that lCM(X) ≥ n and

completes the proof of the result.

Remark 2.1.1. The main technical challenge in this paper will be to prove that a

certain simplicial map (see (8.2) and Section 8.1) has the link lifting property. This

is established in the proof of Lemma 8.1.2 but it uses the geometric techniques

regarding Z/k-manifolds developed throughout Sections V, VI, VII and in the

appendix.

We will also need the useful following proposition, which was proven in (11,

Section 2.1). We will use it in the proof of Theorem 4.3.2.

Proposition 2.1.5. Let X be a simplicial complex and let Y ⊂ X be a full

subcomplex. Let n be an integer with the property that for each p-simplex σ < X,

the complex Y ∩ lkX(σ) is (n − p − 1)-connected. Then the inclusion |Y | ↪→ |X| is

n-connected.
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2.2. Topological Flag Complexes

We will need to work with a certain class of semi-simplicial spaces called

topological flag complexes (see (? , Definition 6.1)).

Definition 2.2.1. Let X• be a semi-simplicial space. We say that X• is a

topological flag complex if for each integer p ≥ 0,

i. the map Xp −→ (X0)×(p+1) to the (p + 1)-fold product (which takes a p-

simplex to its (p + 1) vertices) is a homeomorphism onto its image, which is

an open subset,

ii. a tuple (v0, . . . , vp) ∈ (X0)×(p+1) lies in the image of Xp if and only if (vi, vj) ∈

X1 for all i < j.

If X• is a topological flag complex, we may denote any p-simplex x ∈ Xp by a

(p+ 1)-tuple (x0, . . . , xp) of zero-simplices.

Definition 2.2.2. Let X• be a topological flag complex and let x = (x0, . . . , xp) ∈

Xp be a p-simplex. The link of x, denoted by X•(x) ⊂ X•, is defined to be the

sub-semi-simplicial space whose l-simplices are given by the space of all ordered

lists (y0, . . . , yl) ∈ Xl such that the list (x0, . . . , xp, y0, . . . , y`) ∈ (X0)×(p+`+2), is a

(p+ `+ 1)-simplex.

It is easily verified that the link X•(x) is a topological flag complex as well.

The topological flag complex X• is said to be weakly Cohen-Macaulay of dimension

n if its geometric realization is (n − 1)-connected and if for any p-simplex x ∈ Xp,

the geometric realization of the link |X•(x)| is (n− p− 2)-connected. In this case we

write ωCM(X•) ≥ n.
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The main result from this section is a result about the discretization of a

topological flag complex.

Definition 2.2.3. Let X• be a semi-simplicial space. Let Xδ
• be the semi-simplicial

set defined by setting Xδ
p equal to the discrete topological space with underlying

set equal to Xp, for each integer p ≥ 0. We will call the semi-simplicial set Xδ
• the

discretization of X•.

The following theorem is proven by repackaging several results from (11). In

particular, the proof is basically the same as the proof of (11, Theorem 5.5). We

provide a sketch of the proof here and we provide references to the key technical

lemmas employed from (11).

Theorem 2.2.1. Let X• be a topological flag complex and suppose that

ωCM(Xδ
•) ≥ n. Then the geometric realization |X•| is (n− 1)-connected.

Proof Sketch. For integers p, q ≥ 0, let Yp,q = Xp+q+1 be toplogized as a subspace

of the product (X0)×p × (Xδ
0)×q. The assignment [p, q] 7→ Yp,q defines a bi-semi-

simplicial space with augmentations

ε : Y•,• −→ X•, δ : Y•,• −→ Xδ
• .

This doubly augmented bi-semi-simplicial space is analogous to the one considered

in (11, Definition 5.6). Let ι : Xδ
• −→ X• be the map induced by the identity. By

(11, Lemma 5.7), there exists a homotopy of maps,

|ι| ◦ |δ| ' |ε| : |Y•,•| −→ |X•|. (2.2)
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For each integer p, consider the map

|Yp,•| −→ Xp (2.3)

induced by ε. By how Y•,• was constructed, it follows from (11, Proposition 2.8)

that for each p, (2.3) is a Serre-microfibration. For any x ∈ Xp, the fibre over x is

equal to the space |Xδ
•(x)|, where Xδ

•(x) is the link of the p-simplex x, as defined

in Definition 2.2.2. Since ωCM(Xδ
•) ≥ n, this implies that the fibre of (2.3) over

any x ∈ Xp is (n − p − 2)-connected. Using the fact that this map is a Serre-

microfibration, (11, Proposition 2.6) then implies that (2.3) is (n− p− 1)-connected.

It then follows by (11, Proposition 2.7) that the map

|ε| : |Y•,•| −→ |X•| (2.4)

is (n − 1)-connected. The homotopy from (2.2) implies that the map |ι| : |Xδ
• | −→

|X•| induces a surjection on homotopy groups πj( ) for all j ≤ n − 1. The proof of

the theorem then follows from the fact that |Xδ
• | is (n− 1)-connected by hypothesis.

2.3. Transitive Group Actions

In order to prove our homological stability theorem, we will need to consider

groups acting on simplicial spaces and simplicial complexes. We will need a

technique for determining when such actions are transitive. For the lemma that

follows, let X• be a topological flag complex, let G be a topological group, and let

G×X• −→ X•, (g, σ) 7→ g · σ
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be a continuous group action.

Lemma 2.3.1. Let G and X• be as above and suppose that the following conditions

hold:

– for any 1-simplex (v, w) ∈ X1, there exists g ∈ G such that g · v = w,

– for any two vertices x, y that lie on the same path-component of X0, there

exists g ∈ G such that g · x = y,

– the geometric realization |X•| is path-connected.

Then for any two vertices x, y ∈ X0, there exists g ∈ G such that g · x = y.

Proof. We define an equivalence relation on the elements of X0 by setting x ∼ y

if there exists g ∈ G such that g · x = y. Since G is a group (and thus every

element has a multiplicative inverse), it follows that this relation is indeed an

equivalence relation, i.e. it is transitive, reflexive, and symmetric. By transitivity

of the relation, it follows from the in the statement of the lemma that x ∼ y if there

exists some zig-zag of edges connecting x and y. It also follows that x ∼ y if x and

y lie on the same path component of X0.

Let v, w ∈ X0 be any two zero simplices. We will prove that there exists

g ∈ G such that g · v = w. Since the geometric realization |X•| is path-connected,

it follows that there exists a vertex v′ in the path component containing v and a

vertex w′ in the path component containing w, such that v′ and w′ are connected

by a zig-zag of edges. We have v ∼ v′ ∼ w′ ∼ w, and thus v ∼ w. This concludes

the proof of the lemma.

There is a similar result for simplicial complexes which is proven in essentially

the same way as the previous lemma. We state the proposition without proof.
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Proposition 2.3.2. Let K be a simplicial complex and let G×K −→ K be a group

action. Suppose |K| is path-connected and that for any edge {v, w} ≤ K, there

exists g ∈ G such that g · x = y. Then for any two vertices x, y ∈ K, there exists

g ∈ G such that g · x = y.
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CHAPTER III

LINKING FORMS AND ODD-DIMENSIONAL MANIFOLDS

3.1. Linking Forms

The basic algebraic structure that we will encounter is that of a bilinear form

on a finite abelian group. For ε = ±1, a pair (M, b) is said to be a (ε-symmetric)

linking form if M is a finite abelian group and b : M ⊗ M −→ Q/Z is an ε-

symmetric bilinear map. A morphism between linking forms is defined to be a

group homomorphism f : M −→ N such that bM(x, y) = bN(f(x), f(y)) for

all x, y ∈ M. We denote by Lε the category of all ε-symmetric linking forms. By

forming direct sums, Lε obtains the structure of an additive category.

Notational Convention 3.1.1. We will usually denote linking forms by their

underlying abelian group. We will always denote the bilinear map by b. If more

than one linking form is present, we will decorate b with a subscript so as to

eliminate ambiguity.

For M a linking form and N ≤ M a subgroup, N automatically inherits the

structure of a sub-linking form of M by restricting bM to N. We will denote

by N⊥ ≤ M the orthogonal compliment to N in M. Two sub-linking forms

N1,N2 ≤ M are said to be orthogonal if N1 ≤ N⊥2 , N2 ≤ N⊥1 , and N1 ∩N2 = 0.

If N1,N2 ≤ M are orthogonal sub-linking forms, we let N1 ⊥ N2 ≤ M denote the

sub-linking form given by the sum N1 + N2. If M1 and M2 are two linking forms,

the (external) direct sum M1 ⊕M2 obtains the structure of a linking form in a
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natural way by setting

bM1⊕M2(x1 + x2, y1 + y2) = bM1(x1, y1) + bM1(x2, y2) for x1, y1 ∈M1, x2, y2 ∈M2.

(3.1)

We will always assume that the direct sum M1 ⊕M2 is equipped with the linking

form structure given by (3.1). An element M ∈ Ob(Lε) is said to be non-singular if

the duality homomorphism

T : M −→ HomAb(M,Q/Z), x 7→ b(x, ) (3.2)

is an isomorphism of abelian groups.

We will mainly need to consider the category Lε in the case where ε = −1.

We denote by Ls−1 the full subcategory of L−1 consisting of linking forms that are

strictly skew symmetric, or in other words Ls−1 is the category of all linking forms

M for which bM(x, x) = 0 for all x ∈ M (even in the case when x is an element of

order 2).

We proceed to define certain basic, non-singular elements of Ls−1 as follows.

Definition 3.1.1. For a positive integer k ≥ 2, let Wk denote the abelian group

Z/k⊕Z/k. Let ρ and σ denote the standard generators (1, 0) and (0, 1) respectively.

We then let b : Wk −→ Q/Z be the −1-symmetric bilinear form determined by the

values

b(ρ, σ) = −b(σ, ρ) = 1
k
, b(ρ, ρ) = b(σ, σ) = 0. (3.3)

With b defined in this way, it follows that Wk is a non-singular object of Ls−1. It

follows easily that if k and ` are relatively prime, then Wk ⊕W` and Wk·` are
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isomorphic as objects of Ls−1. For g ≥ 2 an integer, we will let Wg
k denote the g-

fold direct sum (Wk)
⊕g.

For k ∈ N, let Ck denote the cyclic subgroup of Q/Z generated by the element

1/k mod 1. Any group homomorphism h : Wk −→ Q/Z must factor through the

inclusion Ck ↪→ Q/Z. Hence, it follows that the duality map from (3.2) induces an

isomorphism of abelian groups,

Wk

∼=−→ HomAb(Wk, Ck). (3.4)

Lemma 3.1.1. Let k ≥ 2 be a positive integer and let M ∈ Ob(Ls−1). Then any

morphism

f : Wk −→M

is split injective and there is an orthogonal direct sum decomposition, f(Wk) ⊥

f(Wk)
⊥ = M.

Proof. Let x and y denote the elements of M given by f(ρ) and f(σ) respectively

where ρ and σ are the standard generators of Wk. Let T : M −→ Hom(M,Q/Z)

denote the duality map from (3.2). Since both x and y have order k, it follows that

the homomorphisms

b(x, ), b(y, ) : M −→ Q/Z

factor through the inclusion Ck ↪→ Q/Z. Define a group homomorphism (which is

not a morphism of linking forms) by the formula

ϕ : M −→Wk, ϕ(z) = b(x, z) · ρ+ b(y, z) · σ.
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It is clear that the kernel of ϕ is the orthogonal compliment f(Wk)
⊥ and that the

morphism f : Wk −→M gives a section of ϕ. This completes the proof.

The following theorem is a specialization of the classification theorem of Wall from

(38, Lemma 7). The classification of objects of Ls−1 is analogous to the classification

of finite abelian groups.

Theorem 3.1.2. Let M ∈ Ob(Ls−1) be non-singular. Then there is an isomorphism,

M ∼= W`1
p
n1
1
⊕ · · · ⊕W`r

pnrr

where pj is a prime number and `j and nj are positive integers for j = 1, . . . , r.

Furthermore, the above direct sum decomposition is unique up to isomorphism.

3.2. The Homological Linking Form

For what follows, let M be a manifold of dimension 2s + 1. Let Hτ
s (M ;Z) ≤

Hs(M ;Z) denote the torsion subgroup of Hs(M ;Z). Following (37), the homological

linking form b̃ : Hτ
s (M ;Z) ⊗ Hτ

s (M ;Z) −→ Q/Z is defined as follows. Let x, y ∈

τHs(M ;Z) and suppose that x has order r > 1. Represent x by a chain ξ and let

∂ζ = r · ξ. Then if y is represented by the chain χ, we define

b̃(x, y) = 1
r
[ζ ∩ χ] mod 1, (3.5)

where ζ ∩ χ denotes the algebraic intersection number associated to the two chains

(after being deformed so as to meet transversally). It is proven in (37, Page 274)

that b̃ is (−1)s+1-symmetric. We refer the reader to (37) for further details on this

construction.
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Let πτs (M) ≤ πs(M) denote the torsion component of the homotopy group

πs(M). Using the homological linking form and the Hurewicz homomorphism h :

πs(M) −→ Hs(M), we can define a similar bilinear pairing

b : πτs (M)⊗ πτs (M) −→ Q/Z; b(x, y) = b̃(h(x), h(y)). (3.6)

The pair (πτs (M), b) is a (−1)s+1-symmetric linking form in the sense of Section

3.1 and we will refer to it as the homotopical linking form associated to M . In the

case that M is (s− 1)-connected, the homotopical linking form is isomorphic to the

homological linking form by the Hurewicz theorem.

3.3. The Classification Theorem

We are mainly interested in manifolds which are (4n + 1)-dimensional with

n ≥ 2. In this case the homological (and homotopical) linking form is anti-

symmetric. It follows from this that b(x, x) = 0 whenever x is of odd order. The

following lemma of Wall from (37) implies that for (4n + 1)-dimensional manifolds

for n ≥ 2, the linking form is strictly skew symmetric.

Lemma 3.3.1. For n ≥ 2, let M be a (2n − 1)-connected, (4n + 1)-dimensional

manifold. Then b(x, x) = 0 for all x ∈ πτ2n(M).

It follows from Lemma 3.3.1 that if M is a (2n − 1)-connected, (4n + 1)-

dimensional manifold (i.e. M ∈ W4n+1), then the homotopical linking form

(πτ2n(M), b) is an object of the category Ls−. If M is closed (or has boundary a

homotopy sphere), then (πτ2n(M), b) is non-singular. The following theorem is a

specialization of Wall’s classification theorem (37, Theorem 7).
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Theorem 3.3.2. For n ≥ 2, two manifolds M1,M2 ∈ W̄S
4n+1 are almost

diffeomorphic if and only if:

i. There is an isomorphism of Q-vector spaces, π2n(M1)⊗Q ∼= π2n(M2)⊗Q.

ii. There is an isomorphism of linking forms, (πτ2n(M1), b) ∼= (πτ2n(M2), b).

Furthermore, given any Q-vector space V and non-singular linking form M ∈ Ls−,

there exists an element M ∈ W̄S
4n+1 such that, π2n(M)⊗Q ∼= V and (πτ2n(M), b) ∼=

(M, bM).

Using the above classification theorem and the classification of skew

symmetric linking forms from Theorem 3.1.2, we may specify certain basic

manifolds.

Definition 3.3.1. For each integer k ≥ 2, fix a manifold Wk ∈ W̄S
4n+1 which

satisfies:

(a) the homotopical linking form associated to Wk is isomorphic to Wk,

(b) π2n(Wk)⊗Q = 0.

It follows from Theorem 3.3.2 that every element of W̄S
4n+1 is almost

diffeomorphic (i.e. diffeomorphic up to connect-sum with a homotopy sphere) to

the connected sum of copies of Wk and copies of S2n×S2n+1. The manifolds Wk are

the subject of our main result, Theorem 1.3.2.

Remark 3.3.1. The closed, stably parallelizable manifolds Wk ∈ W̄S
4n+1 are

uniquely determined by conditions (a) and (b) up to almost diffeomorphism. For

each k, let W ′
k denote the manifold obtained from Wk by removing an open disk. It
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follows from (37, Theorem 7) that W ′
k is determined by conditions (a) and (b) up

to diffeomorphism.
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CHAPTER IV

THE PRIMARY COMPLEXES

4.1. The Complex of Connected-Sum Decompositions

Fix integers k, n ≥ 2. Let Wk denote the closed (4n+ 1)-dimensional manifold

Wk defined in Section 3.3. We will make a slight alteration of Wk as follows. Let

W ′
k denote the manifold obtained from Wk by removing an open disk. Choose an

oriented embedding

α : {1} ×D4n −→ ∂W ′
k.

We then define W̄k to be the manifold obtained by attaching [0, 1] × D4n to W ′
k by

the embedding α, i.e.

W̄k := ([0, 1]×D4n) ∪αW ′
k. (4.1)

Let M be a (4n + 1)-dimensional manifold with non-empty boundary. Fix an

embedding

a : [0,∞)× R4n −→M

with a−1(∂M) = {0} × R4n.

Definition 4.1.1. Let M and a : [0,∞)× R4n −→ M be as above and let k ≥ 2 be

an integer. We define a semi-simplicial space X•(M,a)k as follows:

(i) Let X0(M,a)k be the set of pairs (φ, t), where t ∈ R and φ : W̄k → M is an

embedding that satisfies the following condition: there exists ε > 0 such that

for (s, z) ∈ [0, ε) ×D4n ⊂ W̄k, the equality φ(s, z) = a(s, z + te1) is satisfied

(e1 ∈ R4n denotes the first basis vector).

36



(ii) For an integer p ≥ 0, Xp(M,a)k is defined to be the set of ordered (p + 1)-

tuples

((φ0, t0), . . . , (φp, tp)) ∈ (X0(M,a)k)
×(p+1)

such that t0 < · · · < tp and φi(W̄k) ∩ φj(W̄k) = ∅ whenever i 6= j.

iii. For each p, the space Xp(M,a)k is topologized in the C∞-topology as a

subspace of the product (Emb(W̄k,M)× R)×(p+1).

iv. The assignment [p] 7→ Xp(M,a)k makes X•(M,a)k into a semi-simplicial space

where the i-th face map Xp(M,a)k → Xp−1(M,a)k is given by

((φ0, t0, . . . , (φp, tp)) 7→ ((φ0, t0, . . . , (̂φi, ti), . . . , (φp, tp)).

It is easy to verify that X•(M,a)k is a topological flag complex. For any

0-simplex (φ, t) ∈ X0(M,a)k, it follows from condition i. that the number t is

determined by the embedding φ. For this reason we will usually drop the number t

when denoting elements of X0(M,a)k.

We now state a consequence of connectivity of the geometric realization

|X•(M,a)k|, using Lemma 2.3.1. This is essentially the same as (9, Proposition

4.4) and so we only give a sketch of the proof.

Proposition 4.1.1 (Transitivity). For n ≥ 2, let M be a (4n + 1)-dimensional

manifold with non-empty boundary. Let k ≥ 2 be an integer, and let φ0 and φ1 be

elements of X0(M,a)k. Suppose that the geometric realization |X•(M,a)k| is path

connected. Then there exists a diffeomorphism ψ : M
∼=−→ M , isotopic to the

identity when restricted to the boundary, such that ψ ◦ φ0 = φ1.
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Proof Sketch. Let a : [0,∞)×R4n −→M be the embedding used in the definition of

X•(M,a). Let Diff(M,a) denote the group of diffeomorphisms ψ : M −→M with

ψ(a([0,∞)× R4n)) ⊂ a([0,∞)× R4n)

and such that ψ|∂M is isotopic to the identity. This group acts on X•(M,a)k, and

by Lemma 2.3.1 it will suffice to show that for (φ0, φ1) ∈ X1(M,a)k, there exists

ψ ∈ Diff(M,a) such that ψ ◦ φ0 = φ1. Let U ⊂ M be a collar neighborhood of the

boundary of M , that contains a([0,∞) × R4n). The union φ0(W̄k) ∪ φ1(W̄k) ∪ U is

diffeomorphic to manifold

Wk#(∂M × [0, 1])#Wk. (4.2)

To find the desired diffeomorphism ψ, it will suffice to construct a diffeomorphism

of (4.2), that is isotopic to the identity on the first boundary component, is equal

to the identity on the second boundary component, and that permutes the two

embedded copies of W ′
k, that come from the two connected-sum factors. Such

a diffeomorphism can be constructed “by hand” using the same procedure that

was employed in the proof of (9, Proposition 4.4). We leave the details of this

construction to the reader.

The next proposition is proven in the same way as (9, Corollary 4.5), using

Proposition 4.2.1.

Proposition 4.1.2 (Cancelation). Let M and N be (4n+ 1)-dimensional manifolds

with non-empty boundaries, equipped with a specified identification, ∂M = ∂N .

For k ≥ 2, suppose that there exists a diffeomorphism M#Wk

∼=−→ N#Wk, equal
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to the identity when restricted to the boundary. Then if |X•(M#Wk, a)k| is path-

connected, there exists a diffeomorphism M
∼=−→ N which is equal to the identity

when restricted to the boundary.

The main theorem that we will need is the following. Recall from (1.9) the

k-rank rk(M), of a (4n+ 1)-dimensional manifold M .

Theorem 4.1.3. Let n, k ≥ 2 be integers with k odd. Let M be a 2-connected,

(4n + 1)-dimensional manifold with non-empty boundary. Let g ∈ N be an integer

such that rk(M) ≥ g. Then the geometric realization |X•(M,a)k| is 1
2
(g − 4)-

connected.

The majority of the technical work of thesis is devoted to proving the

above theorem. The proof will finally be given in Section VIII using techniques

developed throughout the rest of the paper. Once this theorem is proven, the proof

of the main theorem of this thesis, Theorem 1.3.2, follows by a spectral sequence

argument given in Section IX.

4.2. The Complex of Linking Forms

The topological flag complex X•(M,a)k introduced in the previous section is

very difficult to study directly. Indeed, for each integer p ≥ 0, the space Xp(M,a)k

is a space of codimension-zero embeddings, and relatively little is known about

the homotopy type of such spaces of embeddings in general. In order to prove

Theorem 4.1.3, we will need to compare X•(M,a)k to as simplicial complex, whose

definition is more algebraic than X•(M,a)k, and thus can be analyzed by discrete

and combinatorial methods. Below we define a simplicial complex, analogous to

the one from (11, Definition 3.1), that is based on the linking forms introduced in

Section 3.1.
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Definition 4.2.1. Let M ∈ Ob(L−1) be a linking form and let k ≥ 2 be a positive

integer. We define L(M)k to be the simplicial complex whose vertices are given by

morphisms f : Wk −→ M of linking forms. The set {f0, . . . , fp} is a p-simplex if

the sub-linking forms fi(Wk) ≤M are pairwise orthogonal.

Suppose that σ = {f0, . . . , fp} is a p-simplex in L(M)k. Let M′ ≤ M

denote the sub-linking-form given by the orthogonal compliment [
∑
fi(Wk)]

⊥. It

follows from the definition of the link of a simplex that there is an isomorphism of

simplicial complexes,

lkL(M)k(σ) ∼= L(M′)k. (4.3)

Below are two formal consequences of path connectivity of L(M)k. They are proven

in the exact same way as (11, Propositions 3.3 and 3.4).

Proposition 4.2.1 (Transitivity). If |L(M)k| is path-connected and f0, f1 : Wk →

M are morphisms of linking forms, then there is an automorphism of linking forms

h : M→M such that f1 = h ◦ f0.

Proof. The group of linking form automorphisms Aut(M) acts on L(M)k by post-

composition with morphisms f : Wk −→ M. In order to prove the proposition, by

Proposition 2.3.2 it will suffice to show that given two morphisms f0, f1 : Wk →M

such that f0(Wk) and f1(Wk) are orthogonal, there exists ϕ ∈ Aut(M) such that

ϕ ◦ f0 = f1. So, let M′ ≤ M denote [f0(Wk) ⊥ f1(Wk)]
⊥. By Proposition 3.1.1

there is an orthogonal splitting M = f0(Wk) ⊥ M′. We then define ϕ to be the

morphism determined by the data:

ϕ(fi(σ)) = f1−i(σ), ϕ(fi(ρ)) = fi−1(ρ), ϕ(v) = v for all v ∈M′,

where i = 0, 1. Clearly ϕ has the desired property. This concludes the proof.
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Proposition 4.2.2 (Cancellation). Suppose that M and N are linking forms and

there is an isomorphism M ⊕Wk
∼= N ⊕Wk. If |L(M ⊕Wk)k| is path-connected,

then there is also an isomorphism M ∼= N.

4.3. High-Connectivity of the Linking Complex

In this section we prove a connectivity result for the complex L(M)k

introduced in the previous section. We will need to defined a notion of rank

analogous to (1.9) for skew-symmetric linking forms.

Definition 4.3.1. Let M be a linking form and let k ≥ 2 be a positive

integer. We define the k-rank of M to be the quantity, rk(M) = max{g ∈

N | there exists a morphism Wg
k →M}. We then define the stable k-rank of M

to be the quantity, r̄k(M) = max{rk(M⊕Wg
k)− g | g ∈ N.}

Corollary 4.3.1. Let f : Wg
k −→ M be a morphism of linking forms. Then

r̄k(f(Wk)
⊥) ≥ r̄k(M)− g.

Proof. This follows immediately from the orthogonal splitting f(Wg
k) ⊥ f(Wg

k)
⊥ =

M and the definition of the stable k-rank.

The main result that we will prove about the above complex is the following

theorem. The proof is very similar to the proof of (11, Theorem 3.2).

Theorem 4.3.2. Let g, k ∈ N and let M ∈ Ob(Ls−) be a linking form with r̄k(M) ≥

g. Then the geometric realization |L(M)k| is 1
2
(g−4)-connected and lCM(L(M)k) ≥

1
2
(g − 1).

The proof of Theorem 4.3.2 follows the same inductive argument as the proof

of (11, Theorem 3.2). We will need two key algebraic results (Proposition 4.3.3

41



and Corollary 4.3.4) given below which are analogous to (11, Proposition 4.1 and

Corollary 4.2).

Proposition 4.3.3. Let k, g ∈ N with k ≥ 2. Let Aut(Wg+1
k ) act on Wg+1

k , and

consider the orbits of elements of Wk ⊕ 0 ≤ Wg+1
k . We then have Aut(Wg+1

k ) ·

(Wk ⊕ 0) = Wg+1
k .

Proof. We will prove that for any v ∈ Wg+1
k , there is an automorphism ϕ :

Wg+1
k −→ Wg+1

k such that v ∈ ϕ(Wk ⊕ 0). An element v ∈ Wg+1
k is said

to be primitive if the subgroup 〈v〉 ≤ Wg+1
k generated by v, splits as a direct

summand. Every element of Wg+1
k is the integer multiple (reduced mod k) of a

primitive element. Hence it will suffice to prove the statement in the case that v is

a primitive element.

So, let v ∈ Wg+1
k be a primitive element. Since the linking form Wg+1

k is

non-singular and v is primitive, it follows that there exists w ∈ Wg+1
k such that

b(w, v) = 1
k

mod 1. We may then define a morphism f : Wk −→ Wg+1
k by

setting f(σ) = v and f(ρ) = w, where σ and ρ are the standard generators of Wk.

Consider the orthogonal splitting f(Wk) ⊥ f(Wk)
⊥ = Wg+1

k . Since both Wg+1
k

and f(Wk) are non-singular, it follows that the orthogonal compliment f(Wk)
⊥ is

nonsingular as well. It then follows from the classification theorem (Theorem 3.1.2)

that there exists an isomorphism h : Wg
k

∼=−→ f(Wk)
⊥ (according to Theorem 3.1.2,

there is only one such way, up to isomorphism, to write Wg+1
k as the direct sum

of Wk with another non-singular linking form). The morphism given by the direct

sum of maps

ϕ := f ⊕ h : Wk ⊕Wg+1
k −→ f(W) ⊥ f(W)⊥,
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is an isomorphism such that v ∈ ϕ(Wk ⊕ 0). This concludes the proof of the

proposition.

Corollary 4.3.4. Let M be a linking form with rk(M) ≥ g and let ϕ : M −→ Ck

be a group homomorphism. Then rk(Ker(ϕ)) ≥ g − 1. Similarly if r̄k(M) ≥ g then

r̄k(Ker(ϕ)) ≥ g − 1.

Proof. Since rk(M) ≥ g, there is a morphism f : Wg
k −→ M. Consider the group

homomorphism given by

ϕ ◦ f : Wg
k −→ Ck.

Since Wg
k is non-singular, there exists v ∈ Wg

k such that ϕ ◦ f(x) = b(v, x) for all

x ∈Wg
k. By Proposition 4.3.3, there exists an automorphism h : Wg

k −→Wg
k such

that h−1(v) is in the sub-module Wk ⊕ 0 ≤ Wg
k. It follows that the submodule

0⊕Wg−1
k is contained in the kernel of the homomorphism given by the composition,

Wg
k

h //Wg
k

f //M
ϕ // Ck.

This implies that f(h(0 ⊕ Wg−1
k )) is contained in the kernel of ϕ and thus

rk(Ker(ϕ)) ≥ g − 1.

Now suppose that r̄k(M) ≥ g and let ϕ : M −→ Ck be given. It follows

that rk(M ⊕Wj
k) ≥ g for some integer j ≥ 0. Consider the map ϕ̄ given by the

composition,

M⊕Wj
k

projM //M
ϕ // Ck.

By the result proven in the first paragraph, rk(Ker(ϕ̄)) ≥ g − 1. Clearly we have

Ker(ϕ̄) = Ker(ϕ)⊕Wj
k. It then follows that r̄k(Ker(ϕ)) ≥ g− 1. This completes the

proof of the corollary.
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The next proposition yields the first non-trivial case of Theorem 4.3.2.

Compare with (11, Proposition 4.3)

Proposition 4.3.5. If r̄k(M) ≥ 2, then L(M)k 6= ∅. If r̄k(M) ≥ 4, then L(M)k is

connected.

Proof. Let us first make the slightly stronger assumption that rk(M) ≥ 4. It follows

that there exists some morphism f0 : Wk −→ M such that rk(f0(Wk)
⊥) ≥ 3.

Given any morphism f : Wk −→ M, we have a homomorphism of abelian groups

f0(Wk)
⊥ −→ M −→ f(Wk), where the first map is the inclusion and the second

is orthogonal projection. The kernel of this map is the intersection f0(Wk)
⊥ ∩

f(Wk)
⊥. Since Wk = Z/k ⊕ Z/k ∼= Ck ⊕ Ck (as an abelian group), it follows from

Corollary 4.3.4 that rk(f0(Wk)
⊥ ∩ f(Wk)

⊥) ≥ 1. Thus, we can find a morphism

f ′ : Wk −→ f0(Wk)
⊥ ∩ f(Wk)

⊥.

It follows that the sets {f0, f} and {f0, f
′} are both 1-simplices, and so there is a

path of length 2 from f to f ′.

Now suppose that r̄k(M) ≥ 4. We then have an isomorphism of linking forms

M ⊕Wj
k
∼= N ⊕Wj

k for some j where rk(N) ≥ 4. By the first paragraph, L(N ⊕

Wj
k)k is connected for all j ≥ 0, and so we may apply Proposition 4.2.2 inductively

to deduce that M ∼= N and thus rk(M) ≥ 4. We then apply the result of the first

paragraph to conclude that L(M)k is connected.

If r̄k(M) ≥ 2 we may write M⊕Wj
k
∼= N⊕Wj

k for some integer j and linking

form N such that rk(N) ≥ 2. We may then inductively apply Proposition 4.2.2 to

obtain an isomorphism f : M ⊕Wk

∼=−→ N ⊕Wk. The linking form M is then

isomorphic to the kernel of the orthogonal projection, N ⊕Wk −→ f(0 ⊕Wk).
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Since rk(N ⊕Wk) ≥ 3 and Wk
∼= Ck ⊕ Ck, it follows from Corollary 4.3.4 that

rk(M) ≥ 1. From this, it follows that L(M)k is non-empty. This concludes the

proof of the proposition.

Proof of Theorem 4.3.2. We proceed by induction on g. The base case of the

induction, which is the case of the theorem where g = 4 and r̄(M) ≥ 4, follows

immediately from Proposition 4.3.5. Now suppose that the theorem holds for the

g − 1 case. Let M be a linking form with r̄k(M) ≥ g and g ≥ 4. By Proposition

4.3.5 there exists a morphism f : Wk −→ M and by Corollary 4.3.1 it follows

that r̄k(f(Wk)
⊥) ≥ g − 1. Let M′ denote the orthogonal compliment f(Wk)

⊥

and consider the subgroup M′ ⊥ 〈f(σ)〉 ≤ M, where σ is one of the standard

generators of Wk (M′ ⊥ 〈f(σ)〉 indicates an orthogonal direct sum). The chain

of inclusions M′ ↪→ M′ ⊥ 〈f(σ)〉 ↪→ M induces a chain of embeddings of sub-

simplicial-complexes

L(M′)k
i1 // L(M′ ⊥ 〈f(σ)〉)k

i2 // L(M)k. (4.4)

The composition is null-homotopic since the vertex in L(M)k determined by the

morphism f : Wk −→M, is adjacent to every simplex in the subcomplex L(M′)k ≤

L(M)k. To prove that L(M)k is 1
2
(g − 4)-connected, we apply Proposition 2.1.5 to

the maps i1 and i2 with n := 1
2
(g − 4). Since L(M′)k is (n − 1)-connected by the

induction assumption (recall that r̄(M′) ≥ g − 1), Proposition 2.1.5 together with

the fact that i2 ◦ i1 is null-homotopic will imply that L(M)k is 1
2
(g − 4)-connected.

Let ξ be a p-simplex of L(M′ ⊥ 〈f(σ)〉)k. The linking form on the subgroup

f(σ) ≤ M′ is trivial and thus it follows that the projection homomorphism, π :

M′ ⊥ 〈f(σ)〉 −→M′ preserves the linking form structure. Thus, there is an induced
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simplicial map

π̄ : L(M′ ⊥ 〈f(σ)〉)k −→ L(M′)k,

and it follows easily that i1 is a section of π̄. It follows from (4.3) that there is an

equality of simplicial complexes,

[lkL(M′⊥〈f(σ)〉)k(ξ)] ∩ L(M′)k = lkL(M′)k(π̄(ξ)).

Since r̄k(M
′) ≥ g − 1, the induction assumption (which is that lCM(L(M′)k) ≥

1
2
(g − 2)) implies that the above complex is

1
2
(g − 2)− p− 2 = (n− p− 1)− connected,

where recall, n = 1
2
(g − 4). Proposition 2.1.5 then implies that the map i1 is n-

connected.

We now focus on the map i2. Since b(σ, σ) = 0, it follows that the subgroup

M′ ⊥ 〈f(σ)〉 ≤M

is precisely the orthogonal compliment of 〈f(σ)〉 in M. Let ζ := {f0, . . . , fp} ≤

L(M)k be a p-simplex, and denote M′′ := [
∑

(fi(Wk))]
⊥ ≤M. We have,

L(M′ ⊥ 〈f(σ)〉)k ∩ lkL(M)(ζ) = L(M′′ ∩ 〈f(σ)〉⊥)k. (4.5)

Corollary 4.3.1 implies that r̄k(M
′′) ≥ g − p − 1. Passing to the kernel of the

homomorphism

b( , f(σ))|M′′ : M′′ −→ Ck,
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reduces the stable k-rank by 1, and so we have r̄k(M
′′ ∩ 〈f(σ)〉⊥) ≥ g − p − 2. By

the induction assumption, it follows that the complex L(M′′ ∩ 〈f(σ)〉⊥)k is at least

1
2
(g − p− 2− 4) ≥ (n− p− 1)− connected.

By Proposition 2.1.5 it follows that the inclusion i2 is n-connected. Combining with

the previous paragraph implies that i2 ◦ i1 is n-connected. It then follows that

L(M)k is n = 1
2
(g − 4)-connected since i2 ◦ i1 is null-homotopic.

The fact that lCM(L(M)k) ≥ 1
2
(g − 1) is proven as follows. Let ζ =

{f0, . . . , fp} ≤ L(M)k be a p-simplex and let V denote the orthogonal compliment

[
∑
fi(W)]⊥. We have r̄k(V) ≥ g − p − 1. By (4.3) we have lkL(M)k(ζ) ∼= L(V)k

and so by the induction assumption it follows that | lkL(M)k(ζ)| is 1
2
(g − p − 1 − 4)-

connected. The inequality

1
2
(g − p− 1− 4) = 1

2
(g − p− 1)− 2 ≥ 1

2
(g − 1)− p− 2

implies that | lkL(M)k(ζ)| is (1
2
(g − 1) − p − 2)-connected. This proves that

lCM(L(M)k) ≥ 1
2
(g − 1) and concludes the proof of the Theorem.
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CHAPTER V

Z/K-MANIFOLDS

5.1. Basic Definitions

One of the main tools we will use to study the diffeomorphism groups of

odd dimensional manifolds will be manifolds with certain types of Baas-Sullivan

singularities, namely Z/k-manifolds (which in this paper we refer to as 〈k〉-

manifolds). We will use these manifolds to construct a geometric model for the

linking form. Here we give an overview of the definition and basic properties of

such manifolds. For further reference on Z/k-manifolds or manifolds with general

Baas-Sullivan singularities, see (3), (5), and (33).

Notational Convention 5.1.1. For a positive integer k, we let 〈k〉 denote the

set consisting of k-elements, {1, . . . , k}. We will consider this set to be a zero-

dimensional manifold.

Definition 5.1.1. Let k be a positive integer. Let P be a p-dimensional smooth

manifold equipped with the following extra structure:

i. The boundary of P has the decomposition, ∂P = ∂0P ∪ ∂1P where ∂0P and

∂1P are (p− 1)-dimensional manifolds with boundary and

∂0,1P := (∂0P ) ∩ (∂1P ) = ∂(∂0P ) = ∂(∂1P )

is a (d− 2)-dimensional closed manifold.

ii. There is a manifold βP and diffeomorphism Φ : ∂1P
∼=−→ βP × 〈k〉.
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With P , βP, and Φ as above, the pair (P,Φ) is said to be a 〈k〉-manifold. The

diffeomorphism Φ is referred to as the structure-map and the manifold βP is called

the Bockstein.

Notational Convention 5.1.2. We will usually drop the structure-map from

the notation and denote P := (P,Φ). We will always denote the structure-map

associated to a 〈k〉-manifold by the same capital greek letter Φ. If another 〈k〉-

manifold is present, say Q, we will decorate the structure map with the subscript

Q, i.e. ΦQ.

Any smooth manifold M is automatically a 〈k〉-manifold by setting ∂0M =

∂M , ∂1M = ∅, and βM = ∅. Such a 〈k〉-manifold M with ∂1M = ∅, βM = ∅ is said

to be non-singular.

Now, let P be a 〈k〉-manifold as in the above definition. Notice that the

diffeomorphism Φ maps the submanifold ∂0,1P ⊂ ∂1P diffeomorphically onto ∂(βP ).

In this way, if we set

∂0(∂0P ) := ∅, ∂1(∂0P ) := (∂0P ) ∩ (∂1P ) = ∂0,1P, and β(∂0P ) = ∂(βP ),

the pair ∂0P := (∂0P, Φ|∂0,1P ) is a 〈k〉-manifold. We will refer to ∂0P as the

boundary of P . If ∂0P = ∅, then P is said to be a closed 〈k〉-manifold.

Given a 〈k〉-manifold P , one can construct a manifold with cone-type

singularities in a natural way as follows.

Definition 5.1.2. Let P be a 〈k〉- manifold. Let Φ̄ : ∂1P −→ βP be the map

given by the composition ∂1P
Φ
∼=

// βP × 〈k〉
projβP // βP. We define P̂ to

be the quotient space obtained from P by identifying points x, y ∈ ∂1P if and only

if Φ̄(x) = Φ̄(y).

49



We will need to consider maps from 〈k〉-manifolds to non-singular manifolds.

Definition 5.1.3. Let P be a 〈k〉-manifold and let X be a topological

space. A map f : P −→ X is said to be a 〈k〉-map if there exists a map

fβ : βP → X such that the restriction of f to ∂1P has the factorization

∂1P
Φ̄ // βP

fβ // X, where Φ̄ : ∂1P −→ βP is the map from

Definition 5.1.2. Clearly the map fβ is uniquely determined by f .

We denote by Maps〈k〉(P,X) the space of 〈k〉-maps P → M , topologized

as a subspace of Maps(P,X) with the compact-open topology. It is immediate

that any 〈k〉-map f : P → X induces a unique map f̂ : P̂ −→ X and that the

correspondence, f 7→ f̂ induces a homeomorphism, Maps〈k〉(P,X) ∼= Maps(P̂ , X).

Throughout the paper we will denote by f̂ : P̂ −→ Y , the map induced by the 〈k〉-

map f . In the case that X is a smooth manifold, f is said to be a smooth 〈k〉-map

if both f and fβ are both smooth.

5.2. Bordism of 〈k〉-Manifolds

We will need to consider the oriented bordism groups of 〈k〉-manifolds. For a

space X and non-negative integer j, we denote by ΩSO
j (X)〈k〉 the bordism group of

j-dimensional, oriented 〈k〉-manifolds associated to X. We refer the reader to (5)

and (33) for precise details of the definitions. We have the following Theorem from

(5).

Theorem 5.2.1. For any space X and integer k ≥ 2, there is a long exact

sequence:

· · · // ΩSO
j (X)

×k // ΩSO
j (X)

jk // ΩSO
j (X)〈k〉

β // ΩSO
j−1(X) // · · ·

(5.1)
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where ×k denotes multiplication by the integer k, jk is induced by inclusion (since

an oriented smooth manifold is an oriented 〈k〉-manifold), and β is the map induced

by P 7→ βP .

It is immediate from the above long exact sequence that for all integers k ≥ 2,

there are isomorphisms

ΩSO
0 (pt.)〈k〉 ∼= Z/k and ΩSO

1 (pt.)〈k〉 ∼= 0. (5.2)

5.3. Z/k-Homotopy Groups

For integers k, n ≥ 2, let M(Z/k, n) denote the n-th Z/k-Moore-space. Recall

that M(Z/k, n) is uniquely determined up to homotopy by the calculation,

Hj(M(Z/k, n); Z) ∼=



Z/k if j = n,

Z if j = 0,

0 else.

For a space X, we denote by πn(X; Z/k) the set of based homotopy classes of

maps M(Z/k, n) −→ X. Since M(Z/k, n) is a suspension when n ≥ 2, the set

πn(X; Z/k) has the structure of a group, which is abelian when n ≥ 3.

For integers n, k ≥ 2, we define a 〈k〉-manifold which will play the role of the

sphere in the category of 〈k〉-manifolds.

Construction 5.3.1. Choose an embedding Φ′ : Dn × 〈k〉 −→ Sn. Let V n
k denote

the manifold obtained from Sn by removing the interior of Φ′(Dn × 〈k〉) from Sn.

The inverse of the restriction of the map Φ′ to ∂Dn × 〈k〉 induces a diffeomorphism,
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Φ : ∂V n
k

∼=−→ Sn−1 × 〈k〉. By setting βV n
k = Sn−1, the above diffeomorphism Φ gives

V n
k the structure of a closed 〈k〉-manifold.

Let V̂ n
k denote the singular space obtained from V n

k as in Definition 5.1.2. An

elementary calculation shows that,

Hj(V̂
n
k ) ∼=


Z/k if j = n− 1 or 0,

Z⊕(k−1) if j = 1,

and π1(V̂ n
k ) ∼= Z?(k−1), (5.3)

where Z?(k−1) denotes the free group on (k − 1)-generators. It follows that the

Moore-space M(Z/k, n− 1) can be constructed from V̂ n
k by attaching (k − 1)-many

2-cells, one for each generator of the fundamental group. This yields the following

result.

Lemma 5.3.1. Let X be a 2-connected space and let k ≥ 2 and n ≥ 3 be

integers. The inclusion map V̂ n
k ↪→ M(Z/k, n − 1) induces a bijection of sets,

π0(Maps〈k〉(V
n
k , X))

∼=−→ πn−1(X;Z/k).

Proof. Since X is simply connected, any map V̂ n
k −→ X extends to a map

M(Z/k, n− 1) −→ X and since X is 2-connected, it follows that any such extension

is unique up to homotopy. This proves that the inclusion V̂ n
k ↪→ M(Z/k, n − 1)

induces a bijection π0(Maps(V̂ n
k , X)) ∼= πn−1(X;Z/k). The lemma then follows

from composing this bijection with the natural bijection, π0(Maps〈k〉(V
n
k , X))

∼=−→

π0(Maps(V̂ n
k , X)).

Corollary 5.3.2. Let X be a 2-connected space and let k ≥ 2 and n ≥ 3 be

integers. Let x ∈ πn−1(X) be an element of order k. Then there exists a 〈k〉-map

f : V n
k −→ X such that the associated map fβ : Sn−1 −→ X is a representative of x.
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Proof. The cofibre sequence Sj
×k // Sj //M(Z/k, j) induces a long exact

sequence,

· · · // πn(X)
×k // πn(X) // πn−1(X;Z/k) ∂ // πn−1(X)

×k // πn−1(X) // · · ·

It follows that if x ∈ πn−1(X) is of order k, then there is an element y ∈

πn−1(X;Z/k) such that ∂y = x. Let rβ : π0(Maps〈k〉(V
n
k , X)) −→ πn−1(X) denote

the map induced by, f 7→ fβ. It follows from the construction of the the map ∂ in

the above long exact sequence that the diagram,

π0(Maps〈k〉(V
n
k , X))

rβ

**

∼= // πn−1(X;Z/k)

∂
��

πn−1(X)

commutes, where the upper horizontal map is the bijection from Lemma 5.3.1. The

result then follows from commutativity of this diagram.

5.4. Immersions and Embeddings of 〈k〉-Manifolds

We will need to consider immersions and embeddings of a 〈k〉-manifold into

a smooth manifold. For what follows, let P be a 〈k〉-manifold and let M be a

manifold.

Definition 5.4.1. A 〈k〉-map f : P −→ M is said to be a 〈k〉-immersion if it is

an immersion when considering P as a smooth manifold with boundary. Two 〈k〉-

immersions f, g : P −→ M are said to be regularly homotopic if there exists a

homotopy Ft : P −→ M with F0 = f and F1 = g such that Ft is a 〈k〉-immersion

for all t ∈ [0, 1].
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In addition to immersions we will mainly need to deal with embeddings of

〈k〉-manifolds.

Definition 5.4.2. A 〈k〉-immersion f : P −→ M is said to be a 〈k〉-embedding if

the induced map f̂ : P̂ −→M is an embedding.

The main result about 〈k〉-embeddings that we will use is the following. The

proof is given in Section 11.6, using the techniques developed throughout all of

Section XI.

Theorem 5.4.1. Let n ≥ 2 be an integer and let k > 2 be an odd integer. Let

M be a 2-connected, oriented manifold of dimension 4n + 1. Then any 〈k〉-map

f : V 2n+1
k −→M is homotopic through 〈k〉-maps to a 〈k〉-embedding.

The following corollary follows immediately by combining Theorem 5.4.1 with

Corollary 5.3.2.

Corollary 5.4.2. Let n ≥ 2 be an integer and let k > 2 be an odd integer. Let

M be a 2-connected, oriented manifold of dimension 4n + 1. Let x ∈ π2n(M) be a

class of order k. Then there exists a 〈k〉-embedding f : V 2n+1
k −→ M such that the

embedding fβ : βV 2n+1
k = S2n −→M is a representative of the class x.
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CHAPTER VI

〈K,L〉-MANIFOLDS

6.1. Basic definitions

We will have to consider certain spaces with more complicated singularity

structure than that of the 〈k〉-manifolds encountered in the previous section.

Definition 6.1.1. Let k and l be positive integers. Let N be a smooth d-

dimensional manifold equipped with the following extra structure:

i. The boundary ∂N has the decomposition,

∂N = ∂0N ∪ ∂1N ∪ ∂2N

such that ∂0N , ∂1N and ∂2N are (d − 1)-dimensional manifolds, the

intersections

∂0,1N := ∂0,1N, ∂0,2N := ∂0N ∩ ∂2N, ∂1,2N := ∂1N ∩ ∂2N

are (d− 2)-dimensional manifolds, and

∂0,1,2N := ∂0N ∩ ∂1N ∩ ∂2N

is a (d− 3)-dimensional closed manifold.
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ii. There exist manifolds β1N, β2N, and β1,2N , and diffeomorphisms

Φ1 : ∂1N
∼= // β1N × 〈k〉,

Φ2 : ∂2N
∼= // β2N × 〈l〉,

Φ1,2 : ∂1,2N
∼= // β1,2N × 〈k〉 × 〈l〉,

such that the maps

Φ1 ◦ Φ−1
1,2 : β1,2N× 〈k〉× 〈l〉 // β1N×〈k〉,

Φ2 ◦ Φ−1
1,2 : β1,2N× 〈k〉× 〈l〉 // β1N×〈l〉,

are identical on the direct factors of 〈k〉 and 〈l〉 respectively.

With the above conditions satisfied, the 4-tuple N := (N,Φ1,Φ2,Φ1,2) is said to be

a 〈k, l〉-manifold of dimension d.

Remark 6.1.1. The above definition is a specialization of Σ-manifold from (5,

Definition 1.1.1) and a generalization of the definition of 〈k〉-manifold. In fact, any

〈k〉-manifold P is a 〈k, l〉-manifold with β2P = ∅.

As for the case with 〈k〉- manifolds, we will drop the structure maps

Φ1,Φ2,Φ1,2 from the notation and denote N := (N,Φ1,Φ2,Φ1,2). The manifold

∂0W is referred to as the boundary of the 〈k, l〉-manifold and is a 〈k, l〉-manifold in

its own right. A 〈k, l〉-manifold N is said to be closed if ∂0N = ∅.

From a 〈k, l〉-manifold N , one obtains a manifold with cone-type singularities

in the following way.

Definition 6.1.2. Let N be a 〈k, l〉-manifold. Let Φ̄1 : ∂1N −→ β1N be the

map defined by the composition ∂1N
Φ1

∼=
// β1N × 〈k〉

projβ1N // β1N. Define Φ̄2 :
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∂2N −→ β2N similarly. We define N̂ to be the quotient space obtained from N by

identifying two points x, y if and only if for i = 1 or 2, both x and y are in ∂iW and

Φ̄i(x) = Φ̄i(y).

6.2. Oriented 〈k, l〉-Bordism

We will need to make use of the oriented bordism groups of 〈k, l〉-manifolds.

For any space X and non-negative integer j, we denote by ΩSO
j (X)〈k,l〉 the j-th

〈k, l〉-bordism group associated to the space X. We refer the reader to (5) for

details on the definition. There are maps

β1 : ΩSO
j (X)〈k,l〉 −→ ΩSO

j−1(X)〈l〉, β2 : ΩSO
j (X)〈k,l〉 −→ ΩSO

j−1(X)〈k〉

defined by sending a 〈k, l〉-manifold N to β1N and β2N respectively. We also have

maps

j1 : ΩSO
j (X)〈k〉 −→ ΩSO

j (X)〈k,l〉, j2 : ΩSO
j (X)〈l〉 −→ ΩSO

j (X)〈k,l〉

defined by considering a 〈k〉-manifold or an 〈l〉-manifold as a 〈k, l〉-manifold. We

have the following theorem from (5).

Theorem 6.2.1. The following sequences are exact,

· · · // ΩSO
j (X)〈l〉

×l // ΩSO
j (X)〈l〉

j1 // ΩSO
j (X)〈k,l〉

β1 // ΩSO
j−1(X)〈l〉 // · · ·

· · · // ΩSO
j (X)〈k〉

×k // ΩSO
j (X)〈k〉

j2 // ΩSO
j (X)〈k,l〉

β2 // ΩSO
j−1(X)〈k〉 // · · ·

Using the isomorphisms ΩSO
0 (pt.)〈k〉 ∼= Z/k and ΩSO

1 (pt.)〈k〉 = 0, we obtain the

following basic calculations using the above exact sequence.
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Corollary 6.2.2. For any two integers k, l ≥ 2 we have the following

isomorphisms,

ΩSO
0 (pt.)〈k,l〉 ∼= Z/ gcd(k, l) and ΩSO

1 (pt.)〈k,l〉 ∼= Z/ gcd(k, l).

In particular we have,

ΩSO
0 (pt.)〈k,k〉 ∼= Z/k and ΩSO

1 (pt.)〈k,k〉 ∼= Z/k.

6.3. 1-dimensional, Closed, Oriented, 〈k, k〉-Manifolds

We will need to consider 1-dimensional 〈k, k〉-manifolds. They will arise for us

as the intersections of (n + 1)-dimensional 〈k〉-manifolds immersed in a (2n + 1)-

dimensional manifold. Denote by Ak the space [0, 1]× 〈k〉. By setting

∂1Ak = {0} × 〈k〉 and ∂2Ak = {1} × 〈k〉,

Ak naturally has the structure of a closed 〈k, k〉-manifold with, β1Ak = 〈1〉 =

β2Ak (the single point space). We denote by +Ak the oriented 〈k, k〉-manifold with

orientation induced by the standard orientation on [0, 1]. We denote by −Ak the

〈k, k〉-manifold equipped with the opposite orientation. It follows that

β1(±Ak) = ±〈1〉 and β2(±Ak) = ∓〈1〉. (6.1)

Using the fact that the map βi : ΩSO
1 (pt.)〈k,k〉 −→ ΩSO

0 (pt.)〈k〉 for i = 1, 2 is an

isomorphism (this follows from Corollary 6.2.2 and the exact sequence in Theorem

6.2.1), we have the following proposition.
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Proposition 6.3.1. The oriented, closed, 〈k, k〉 manifold +Ak represents a

generator for ΩSO
1 (pt.)〈k,k〉. Furthermore, any oriented, closed, 1-dimensional 〈k, k〉-

manifold that represents a generator of ΩSO
1 (pt.)〈k,k〉, is of the form

(+Ak × 〈r〉) t (−Ak × 〈s〉) tX,

where r, s ∈ N are such that r − s is relatively prime to k, and where X is some

null-bordant 〈k, k〉-manifold such that β1X = ∅ or β2X = ∅ (in other words, X has

the structure of 〈k〉-manifold).

Throughout, we will consider the element of ΩSO
1 (pt.)〈k,k〉 determined by the

oriented 〈k, k〉-manifold +Ak to be the standard generator.
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CHAPTER VII

INTERSECTION THEORY OF Z/K-MANIFOLDS

In this section and the next two sections after, we will discuss the

intersections of embeddings of 〈k〉-manifolds.

7.1. Preliminaries

Here we review some of the basics about intersections of embedded smooth

manifolds and introduce some terminology and notation.

For what follows, let M , X, and Y be oriented smooth manifolds of dimension

m, r, and s respectively and let t denote the integer r + s−m. Let

ϕ : (X, ∂X) −→ (M,∂M) and ψ : (Y, ∂Y ) −→ (M,∂M) (7.1)

be smooth, transversal maps such that ϕ(∂X) ∩ ψ(∂Y ) = ∅ (for these two maps

to be transversal, we mean that the product map ϕ × ψ : X × Y −→ M ×M is

transverse to the diagonal submanifold 4M ⊂ M ×M). We let ϕ t ψ denote the

transverse pull-back (ϕ × ψ)−1(4M), which is a closed submanifold of X × Y of

dimension t. The orientations on X, Y , and M induce an orientation on ϕ t ψ and

thus ϕ t ψ determines a bordism class in ΩSO
t (pt.) which we denote by Λt(ϕ, ψ;M).

It follows easily that, Λt(ϕ, ψ;M) = (−1)(m−s)·(m−r)Λt(ψ, ϕ;M).

7.2. Intersections of 〈k〉-Manifolds

We now proceed to consider intersections of 〈k〉-manifolds. Let M be an

oriented manifold of dimension m, let X be an oriented manifold of dimension
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r, and let P be an oriented 〈k〉-manifold of dimension p. Let t denote the integer

r + p−m. Let

ϕ : (X, ∂X) −→ (M,∂M) and f : (P, ∂0P ) −→ (M,∂M)

be a smooth map and a smooth 〈k〉-map respectively. Suppose that f and ϕ

are transversal and that f(∂0P ) ∩ ϕ(∂X) = ∅ (when we say that f and ϕ are

transversal, we mean that both f and fβ are transverse to ϕ as smooth maps). The

pull-back,

f t ϕ = (f × ϕ)−1(4M) ⊂ P ×X

has the structure of a closed 〈k〉-manifold as follows. We denote,

∂1(f t ϕ) := f |∂1P t ϕ and β(f t ϕ) := fβ t ϕ.

The factorization, ∂1P
Φ̄ // βP

fβ //M of the restriction map f |∂1P implies that

the diffeomorphism,

Φ× IdX : ∂1P ×X
∼= // (βP × 〈k〉)×X

maps ∂1(f t X) diffeomorphically onto β(f t X) × 〈k〉. It follows that f t ϕ has

the structure of a 〈k〉-manifold of dimension t = p + r − m. Furthermore, f t ϕ

inherits an orientation from the orientations of X, P and M .

Definition 7.2.1. Let f : (P, ∂0P ) −→ (M,∂M) and ϕ : (X, ∂X) −→ (M,∂M) be

exactly as above. We define Λt
k(f, ϕ;M) ∈ ΩSO

t (pt.)〈k〉 to be the oriented bordism

class determined by the pull-back f t ϕ and its induced orientation.
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Recall from Section V the Bockstein homomorphism, β : ΩSO
t (pt.)〈k〉 −→

ΩSO
t−1(pt.). We have the following proposition.

Proposition 7.2.1. Let f : (P, ∂0P ) −→ (M,∂M) and ϕ : (X, ∂X) −→ (M,∂M) be

exactly as above. Then

β(Λt
k(f, ϕ;M)) = Λt−1(fβ, ϕ;M),

where Λt−1(fβ, ϕ;M) ∈ ΩSO
t−1(pt.) is the bordism class defined in Section 7.1.

7.3. 〈k, l〉-Manifolds and Intersections

We now consider the intersection of a 〈k〉-manifold with an 〈l〉-manifold. For

what follows, let P be an oriented 〈k〉-manifold of dimension p, let Q be an oriented

〈l〉-manifold of dimension q, and let M be an oriented manifold of dimension m.

Let

f : (P, ∂0P ) −→ (M,∂M) and g : (Q, ∂0Q) −→ (M,∂M)

be a smooth 〈k〉-map and a smooth 〈l〉-map respectively. Suppose that f and g

are transversal and that f(∂0P ) ∩ g(∂0Q) = ∅ (when we say that f and g are

transversal, we mean that f and fβ are each transverse to both g and gβ as smooth

maps). Let t denote the integer p + q − m. We will analyze the t-dimensional

submanifold

f t g = (f × g)−1(4M) ⊂ P ×Q.
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The transversality condition on f and g implies that the space f t g, and the

subspaces

f |∂P t g ⊂ ∂P ×Q, f t g|∂Q ⊂ P × ∂Q, f |∂P t g|∂Q ⊂ ∂P × ∂Q,
fβ t g ⊂ βP ×Q, f t gβ ⊂ P × βQ, fβ t gβ ⊂ βP × βQ,

are all smooth submanifolds. We define

∂1(f t g) := f |∂P t g, ∂2(f t g) := f t g|∂Q, ∂1,2(f t g) := f |∂P t g|∂Q,
β1(f t g) := fβ t g, β2(f t g) := f t gβ, β1,2(f t g) := fβ t gβ.

The structure maps, ΦP : ∂P
∼=−→ βP × 〈k〉 and ΦQ : ∂Q

∼=−→ βQ × 〈l〉 induce

diffeomorphisms,

ΦP × Id : ∂P ×Q
∼= // βP × 〈k〉 ×Q,

Id× ΦQ : P × ∂Q
∼= // P × βQ× 〈l〉,

ΦP × ΦQ : ∂P × ∂Q
∼= // βP × 〈k〉 × βQ× 〈l〉.

(7.2)

The factorizations,

∂P
Φ̄P // βP

fβ //M,

∂Q
Φ̄Q // βQ

gβ //M,

of the restriction maps f |∂P and g|∂Q imply that the diffeomorphisms from (7.2)

map the submanifolds

∂1(f t g) ⊂ ∂P ×Q, ∂2(f t g) ⊂ P × ∂Q, and ∂1,2(f t g) ⊂ ∂P × ∂Q

diffeomorphically onto

β1(f t g)× 〈k〉, β2(f t g)× 〈l〉, and β1,2(f t g)× 〈k〉 × 〈l〉
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respectively. It follows that f t g has the structure of an oriented 〈k, l〉-manifold of

dimension t = p+ q −m.

Definition 7.3.1. Let f : (P, ∂0P ) −→ (M,∂M) and g : (Q, ∂0Q) −→ (M,∂M)

be exactly as above. We denote by Λ1
k,l(f, g;M) ∈ ΩSO

t (pt.)〈k,l〉 the bordism class

determined by the pull-back f t g.

For the following proposition, recall from Section 5.2 the Bockstein

homomorphisms,

β1 : ΩSO
t (pt.)〈k,l〉 −→ ΩSO

t−1(pt.)〈l〉 and β2 : ΩSO
t (pt.)〈k,l〉 −→ ΩSO

t−1(pt.)〈k〉.

Proposition 7.3.1. The bordism class Λt
k,l(f, g;M) ∈ ΩSO

t (pt.)〈k,l〉 satisfies the

following equations

i. Λt
k,l(f, g;M) = (−1)(m−p)·(m−q) · Λt

l,k(g, f ;M),

ii. β1(Λt
k,l(f, g;M)) = Λt−1

l (fβ, g;M),

iii. β2(Λt
k,l(f, g;M)) = Λt−1

k (f, gβ;M).

7.4. Main Disjunction Theorem

We now discuss the main result that we will need to use regarding the

intersections of k-manifolds. We will need the following terminology.

Definition 7.4.1. Let M be a manifold. We will call a smooth, one parameter

family of diffeomorphisms Ψt : M −→ M with t ∈ [0, 1] and Ψ0 = IdM a diffeotopy.

For a subspace N ⊂ M , we say that Ψt is a diffeotopy relative N , and we write

Ψt : M −→M rel N , if in addition, Ψt|N = IdN for all t ∈ [0, 1].
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The main case of intersections of 〈k〉 and 〈l〉-manifolds that we will need to

consider is the case when

k = l and dim(P ) + dim(Q)− dim(M) = 1.

For n ≥ 2, let M be an oriented manifold of dimension 4n + 1 and and let P and Q

be oriented k-manifolds of dimension 2n+ 1. Let

f : (P, ∂0P ) −→ (M,∂M) and g : (Q, ∂0Q) −→ (M,∂M) (7.3)

be transversal 〈k〉-embeddings such that f(∂0P ) ∩ g(∂0Q) = ∅. Suppose further that

M , P , and Q are 2-connected.

Theorem 7.4.1. With f and g the 〈k〉-embeddings given above, suppose that

Λ1
k,k(f, g;M) = 0. If the integer k is odd, then there exists a diffeotopy

Ψt : M −→M rel ∂M

such that Ψ1(f(P )) ∩ g(Q) = ∅.

We also have:

Corollary 7.4.2. Suppose that the class Λ1
k,k(f, g;M) ∈ ΩSO

1 (pt.)〈k,k〉 is equal to the

class represented by the closed 1-dimensional 〈k, k〉-manifold +Ak. If k is odd, there

exists a diffeotopy Ψt : M −→ M rel ∂M such that the 〈k, k〉-manifold given by the

transverse pull-back (Ψ1 ◦ f) t g, is diffeomorphic to Ak.

Remark 7.4.1. Both of these results are proven in Section ?? (see Theorem 10.5.1

and Corollary 10.5.4). These above results are crucial in the proof of our main
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homological stability theorem. The key place (only place) that they are used is

in the proof of Lemma 8.1.2.

7.5. Connection to the Linking Form

In practice we will need to consider intersections of 〈k〉 embeddings f, g :

V 2n+1
k −→ M . We will need to relate Λ1

k,k(f, g;M) to the homotopical linking form

b : πτ2n(M)⊗ πτ2n(M) −→ Q/Z. Let

Tk : ΩSO
1 (pt.)〈k,k〉 −→ Q/Z

be the homomorphism given by the composition

ΩSO
1 (pt.)〈k,k〉

+Ak 7→1 // Z/k 17→1/k // Q/Z.

The following proposition follows easily from the definition of the homological

linking form (3.5).

Proposition 7.5.1. Let M be a (4n+ 1)-dimensional, oriented manifold. Let

f, g : V 2n+1 −→M

be k-embeddings. Consider the homotopy classes [fβ], [gβ] ∈ πτ2n(M), which both

have order k. Then

b([fβ], [gβ]) = Tk(Λ
1
k,k(f, g;M)).

Combining this with Theorem 7.4.1 and Corollary 10.5.4 yields the following.
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Corollary 7.5.2. Let

f, g : V 2n+1 −→M

be k-embeddings and suppose that b([fβ], [gβ]) = 0. Then there exists a diffeotopy

Ψt : M −→ M such that Ψ1(f(V 2n+1
k ) ∩ g(V 2n+1

k ) = ∅. Suppose now that

b([fβ], [gβ]) = 1
k

mod 1. Then there exists a diffeotopy Ψt : M −→ M such that

there is a diffeomorphism (Ψ1 ◦ f) t g ∼= +Ak.
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CHAPTER VIII

HIGH CONNECTIVITY OF |X•(M,A)K |

Let n ≥ 2 be an integer. Let M be a 2-connected, (4n + 1)-dimensional

manifold with non-empty boundary. Fix an embedding a : [0,∞)× R4n −→M with

a−1(∂M) = {0} × R4n. Recall from Definition 4.1.1 the topological flag complex

X•(M,a)k. In this chapter we prove Theorem 4.1.3 which we restate again below

for the convenience of the reader. Recall from (1.9) the k-rank rk(M), of a (4n+ 1)-

dimensional manifold M .

Theorem 8.0.3. Let n, k ≥ 2 be integers with k odd. Let M be a 2-connected,

(4n + 1)-dimensional manifold with non-empty boundary. Let g ∈ N be an integer

such that rk(M) ≥ g. Then the geometric realization |X•(M,a)k| is 1
2
(g − 4)-

connected.

The proof of this theorem will require several intermediate constructions.

8.1. The Complex of 〈k〉-Embeddings

Fix integers n, k ≥ 2. Let M be a manifold of dimension (4n + 1) with non-

empty boundary. Consider transversal 〈k〉-embeddings

ϕ0, ϕ1 : V 2n+1
k −→M

such that the transverse pull-back ϕ0 t ϕ1 is diffeomorphic to Ak as a 〈k, k〉-

manifold. It follows that ϕ0(V 2n+1
k ) ∩ ϕ1(V 2n+1

k ) ∼= Âk, where Âk is the singular

space obtained from Ak as in Definition 6.1.2. It will be useful to have an abstract

model for the space given by the union, ϕ0(V 2n+1
k ) ∪ ϕ1(V 2n+1

k ).
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Construction 8.1.1. To begin the construction, fix a point y ∈ Int(V 2n+1
k ).

For i = 1, . . . , k, let ∂i1V
2n+1
k denote the component of the boundary given by

Φ−1(βV 2n+1
k × {i}), where 〈k〉 = {1, . . . , k}. Let Φ̄ : ∂1V

2n+1
k −→ βV 2n+1

k be

the map used in Definition 5.1.2.

i. For i = 1, . . . , k, fix points xi ∈ ∂i1V 2n+1
k such that, Φ̄(x1) = · · · = Φ̄(xk).

ii. For i = 1, . . . , k, choose embeddings γi : [0, 1] −→ V 2n+1
k such that

γi(0) = xi, γ−1
i (∂1V

2n+1
k ) = {0}, and γi(1) = y.

Then for each i, let γ̄i : [0, 1] −→ V 2n+1
k be the embedding given by the

formula

γ̄i(t) = γ(1− t).

iii. Recall that Ak = [0, 1]× 〈k〉 = tki=1[0, 1]. The maps

tki=1γi : Ak −→ V 2n+1
k and tki=1 γ̄i : Ak −→ V 2n+1

k ,

yield embeddings

Γ : Âk −→ V̂ 2n+1
k and Γ̄ : Âk −→ V̂ 2n+1

k .

iv. We define Y 2n+1
k to be the space obtained by forming the push-out of the

diagram,

Âk
Γ
ww

Γ̄
''

V̂ 2n+1
k V̂ 2n+1

k

(8.1)
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v. By applying the Mayer-Vietoris sequence and Van Kampen’s theorem we

compute,

Hs(Y
2n+1
k ;Z) ∼=



Z/k ⊕ Z/k if s = 2n,

Z⊕(k−1) if s = 1,

Z if s = 0,

π1(Yk) ∼= Z?(k−1),

where Z?(k−1) denotes the free-group on (k − 1)-generators.

The next proposition follows easily by inspection.

Proposition 8.1.1. Let ϕ0, ϕ1 : V 2n+1
k −→ M be transversal 〈k〉-embeddings

such that the pull-back is diffeomorphic to Ak as a 〈k, k〉-manifold. Then the union

ϕ0(V 2n+1
k ) ∪ ϕ1(V 2n+1

k ) is homeomorphic to the space Y 2n+1
k .

Notation 8.1.1. Let ϕ = (ϕ0, ϕ1) be a pair of 〈k〉-embeddings ϕ0, ϕ1 : V 2n+1
k −→

M such that the transverse pull-back is diffeomorphic to Ak as a 〈k, k〉-manifold.

We will denote by Yk(ϕ
0, ϕ1) the subspace of M given by the union ϕ0(V 2n+1

k ) ∪

ϕ1(V 2n+1
k ).

We now define a simplicial complex based on pairs of 〈k〉-embeddings,

V 2n+1
k →M as above.

Definition 8.1.1. Let M and k be as above. Let K(M)k be the simplicial complex

with vertex set given by the set of all pairs (ϕ0, ϕ1) of transverse 〈k〉-embeddings

ϕ0, ϕ1 : V 2n+1
k −→M
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such that the transverse pull-back is diffeomorphic to Ak as a 〈k, k〉-manifold. A set

{(ϕ0
0, ϕ

1
0) . . . , (ϕ0

p, ϕ
1
p)}

of vertices forms a p-simplex if Yk(ϕ
0
i , ϕ

1
i ) ∩ Yk(ϕ0

j , ϕ
1
j) = ∅ whenever i 6= j.

Now, recall from Section 4.2, the simplicial complex L(M)k associated to

an object M of the category L−1 of anti-symmetric linking forms. We will need

to compare the simplical complex K(M)k to the simplicial complex L(πτ2n(M))k,

where (πτ2n(M), b) is the homotopical linking form associated to M , see (3.6). We

construct a simplicial map

F : K(M)k −→ L(πτ2n(M))k (8.2)

as follows. For a vertex ϕ = (ϕ0, ϕ1) ∈ K(M)k, let 〈[ϕ0
β], [ϕ1

β]〉 ≤ πτ2n(M) denote

the subgroup generated by the homotopy classes determined by the embeddings

ϕνβ : S2n → M for ν = 0, 1. The classes [ϕνβ], ν = 0, 1 each have order k and

b([ϕ0
β], [ϕ1

β]) = 1
k
. It follows that the sub-linking form given by 〈[ϕ0

β], [ϕ1
β]〉 ≤ πτ2n(M)

is isomorphic to the standard non-singular linking form Wk from Definition 3.1.1.

The map F from (8.2), is then defined by sending a vertex ϕ to the morphism of

linking forms Wk → πτ2n(M) determined by

ρ 7→ [ϕ0
β], σ 7→ [ϕ1

β],

where ρ and σ are the standard generators of Wk. The disjointness condition from

condition ii. of Definition 8.1.1, implies that this formula preserves all adjacencies

and thus yields a well defined simplicial map. It follows easily that for any (4n+ 1)-
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dimensional manifold M and integer k ≥ 2 that

rk(π
τ
2n(M)) ≥ rk(M) (8.3)

where recall, rk(π
τ
2n(M)) is the k-rank of the linking form (πτ2n(M), b) as defined

in Definition 4.3.1, and rk(M) is the k-rank of the manifold M as defined in the

introduction.

Lemma 8.1.2. Let n, k ≥ 2 be integers with k odd. Let M be a 2-connected

manifold of dimension 4n + 1. Then the geometric realization |K(M)k| is

1
2
(rk(M)− 4)-connected and lCM(K(M)k) ≥ 1

2
(rk(M)− 1).

Proof. Let rk(M) ≥ g. Since L(πτ2n(M))k is 1
2
(g − 4)-connected and

lCM(L(πτ2n(M))k) ≥ 1
2
(g − 1), the proof of the lemma will follow directly from

Corollary 2.1.4 once we verify two things:

i. the map F has the link lifting property (see Definition 2.1.3),

ii. F (lkK(M)k(ζ)) ≤ lkL(πτ2n(M))k(F (ζ)) for any simplex ζ ∈ K(M)k.

Property i. is proven by applying Corollary 5.4.2, Corollary 10.5.4, and Theorem

7.4.1 as follows. Let f : Wk −→ πτ2n(M) be a morphism of linking forms (which

determines a vertex in L(πτ2n(M))k). Let ρ, σ ∈Wk denote the standard generators

as defined in Section ??. The elements f(ρ), f(σ) ∈ πτ2n(M) have order k and thus

by Corollary 5.4.2 we may choose 〈k〉-embeddings ϕ0, ϕ1 : V 2n+1
k −→ M such that

[ϕ0
β] = f(ρ) and [ϕ1

β] = f(σ). Furthermore, since b(f(ρ), f(σ)) = 1
k

mod 1, it

follows from Proposition 7.5.1 that,

Λ1
k,k([ϕ

0], [ϕ1]) = [+Ak] ∈ ΩSO
1 (pt.)〈k,k〉.
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We then may apply Corollary 10.5.4 (or Corollary 7.4.2) so as to obtain an isotopy

of ϕ0 through 〈k〉-embeddings to a 〈k〉-embedding ϕ̄0, so that ϕ̄0 t ϕ1 ∼= Ak.

The pair (ϕ̄0, ϕ1) determines a vertex in K(M)k and clearly F ((ϕ̄0, ϕ1)) = f . This

shows how to lift any vertex v ∈ L(πτ2n(M))k to a vertex v̂ ∈ K(M)k such that

F (v̂) = v.

Now let f : Wk → πτ2n(M) be a morphism representing a vertex of

L(πτ2n(M))k, let f1, . . . , fm an arbitrary set of vertices in L(πτ2n(M))k that are

adjacent to f , and let

(ϕ0
1, ϕ

1
1), . . . , (ϕ0

m, ϕ
1
m)

be vertices in K(M)k with F ((ϕ0
i , ϕ

1
i )) = fi, for i = 1, . . . ,m. To show that F

has the link lifting property, it will suffice to construct a vertex (ϕ̄0, ϕ̄1) ∈ K(M)k

mapping to f , such that (ϕ̄0, ϕ̄1) is adjacent to (ϕ0
i , ϕ

1
i ) for i = 1, . . . ,m.

For each i and ν = 0, 1, let ϕνβ,i : S2n = βV 2n+1
k −→ M denote the

map associated to ϕνi and let [ϕνβ,i] denote the associated class in π2n(M). For

i = 1, . . . ,m we have:

b(f(ρ), [ϕνβ,i]) = b(f(σ), [ϕνβ,i]) = 0 for ν = 0, 1. (8.4)

By Corollary 5.4.2, we may choose 〈k〉-embeddings ϕ0, ϕ1 : V 2n+1
k −→ M with

[ϕ0
β] = f(σ) and [ϕ1

β] = f(ρ). By (8.4) we may inductively apply Corollary 7.5.2

(or Theorem 7.4.1) to find isotopies of ϕ0 and ϕ1 (through 〈k〉-embeddings) to new

〈k〉-embeddings

ϕ̄0, ϕ̄1 : V 2n+1
k −→M

such that:
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(a) Yk(ϕ
0
i , ϕ

1
i ) ∩ Yk(ϕ̄0, ϕ̄1) = ∅ for i = 1, . . .m,

(b) ϕ̄0 t ϕ̄1 ∼= Ak.

This proves that F has the link lifting property.

The fact that F (lkK(M)k(ζ)) ≤ lkL(πτ2n(M))k(F (ζ)) for any simplex ζ ∈ K(M)k

follows immediately from the fact that if φ, ψ : V 2n+1
k −→ M are disjoint 〈k〉-

embeddings, then b([φβ], [ψβ]) = 0. This establishes property ii. and completes the

proof of the Lemma.

8.2. A Modification of K(M)k

Let (ϕ0, ϕ1) be a vertex of K(M)k and consider the subspace Yk(ϕ
0, ϕ1) ⊂ M .

We will need to make a further modification of Yk(ϕ
0, ϕ1) as follows.

Construction 8.2.1. Let (ϕ0, ϕ1) be as above. Since 2 < dim(M)/2, we may

choose an embedding

G : (tk−1
i=1D

2
i , tk−1

i=1 S
1
i ) // (M, Yk(ϕ

0, ϕ1)) (8.5)

which satisfies the following conditions:

(a)

G(tk−1
i=1 Int(D2

i ))
⋂

Yk(ϕ
0, ϕ1) = ∅.

(b) The maps

G|S1
i

: S1 −→ Yk(ϕ
0, ϕ1) for i = 1, . . . , k − 1,

represent a minimal set of generators for π1(Yk(ϕ
0, ϕ1)), which by Proposition

8.1.1 is the free group on k − 1 generators.
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Given such an embedding G as in (8.5), we denote

Y G
k (ϕ0, ϕ1) := Yk(ϕ

0, ϕ1)
⋃

G(tk−1
i=1D

2
i ). (8.6)

It follows from conditions i. and ii. above that Y G
k (ϕ0, ϕ1) is simply connected and

that

Hs(Y
G
k (ϕ0, ϕ1); Z) =



Z/k ⊕ Z/k if s = 2n,

Z if s = 0,

0 else.

It follows that Y G
k (ϕ0, ϕ1) has the homotopy type of the Moore-space M(Z/k ⊕

Z/k, 2n) and hence is homotopy equivalent to the manifold W ′
k. We will think of

Y G
k (ϕ0, ϕ1) ↪→M as being a choice of embedding of the (2n+ 1)-skeleton of W ′

k into

M .

Using the construction given above, we define a modification of the simplicial

complex K(M)k. Let M be a (4n + 1)-dimensional manifold with non-empty

boundary. Let

a : [0,∞)× R4n −→M

be an embedding with a−1(∂M) = {0} × R4n.

Definition 8.2.1. Let K̄(M,a)k be the simplicial complex whose vertices are given

by 4-tuples (ϕ,G, γ, t) which satisfy the following conditions:

i. ϕ = (ϕ0, ϕ1) is a vertex in K(M)k.

ii. G : (tk−1
i=1D

2
i , tk−1

i=1 S
1
i ) // (M, Yk(ϕ

0, ϕ1)) is an embedding as in

Construction (8.2.1).
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iii. t is a real number.

iv. γ : [0, 1] −→M is an embedded path which satisfies:

(a) γ−1(Y G
k (ϕ0, ϕ1)) = {1},

(b) there exists ε > 0 such that for s ∈ [0, ε), the equality

γ(s) = a(s, te1) ∈ [0, 1]× R4n

is satisfied, where e1 ∈ R4n denotes the first basis vector.

A set of vertices {(ϕ0, G0, γ0, t0), . . . , (ϕp, Gp, γp, tp)} forms a p-simplex if and only if

(
γi([0, 1]) ∪ Y Gi

k (ϕ0
i , ϕ

1
i )

)⋂(
γj([0, 1]) ∪ Y Gj

k (ϕ0
j , ϕ

1
j)

)
= ∅ whenever i 6= j.

There is a simplicial map

F̄ : K̄(M,a)k −→ K(M)k, (ϕ,G, γ, t) 7→ ϕ. (8.7)

Proposition 8.2.1. Let n, k ≥ 2 be integers with k odd. Let M be a 2-connected,

manifold of dimension 4n + 1 and let g ∈ N be such that rk(M) ≥ g. Then the

geometric realization |K̄(M)k| is 1
2
(g − 4)-connected and lCM(K̄(M)k) ≥ 1

2
(g − 1).

Proof. The proof of this proposition is proven by the same method as Lemma 8.1.2.

It is proven by verifying that the map F̄ from (8.7) has the link lifting property

(Definition 2.1.3) and that it preserves links. Since |K(M)k| is 1
2
(g − 4)-connected

and lCM(K(M)k) ≥ 1
2
(g − 1), we then may apply Corollary 2.1.4 to deduce the

claim of the proposition.
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Let ϕ = (ϕ0, ϕ1) be a vertex in K(M)k. Let (ϕ1, G1, γ1, t1), . . . , (ϕm, Gm, γm, tm)

be vertices in K̄(M,a)k such that ϕi is adjacent to ϕ for i = 1, . . . ,m. Since

dim(M)/2 > 2, there is no obstruction to choosing an embedding G as in

Construction 8.2.1 (with respect to ϕ so as to construct Y G
k (ϕ0, ϕ1)) so that the

image of G is disjoint from the images of Gi and γi for all i. Furthermore, with

G chosen, we may then choose an embedded path γ : [0, 1] −→ M , connecting

Y G
k (ϕ0, ϕ1) to ∂M so as to yield a vertex (ϕ,G, γ, t) ∈ K̄(M,a)k, which maps to

ϕ under F̄ and is adjacent to (ϕi, Gi, γi, ti) for all i. This proves the fact that F̄

has the link lifting property. The fact that F̄ preserves links is immediate from the

definition of F̄ . This concludes the proof of the proposition.

8.3. Reconstructing Embeddings

Let (ϕ,G, γ, t) be a vertex in K̄(M,a)k. We will need to consider smooth

regular neighborhoods of the subspace Y G
k (ϕ0, ϕ1) ∪ γ([0, 1]) ⊂ M. The following

lemma identifies the diffeomorphism type of such a regular neighborhood. Recall

from Section 4.1 the manifold W̄k = W ′
k ∪α ([0, 1] × D4n) used in the definition of

X•(M,a)k.

Lemma 8.3.1. Let (ϕ,G, γ, t) be a vertex in K̄(M,a)k. If k is odd then any closed

regular neighborhood U of the subspace Y G
k (ϕ0, ϕ1)∪γ([0, 1]) ⊂ M , is diffeomorphic

to the manifold W̄k = W ′
k ∪α ([0, 1]×D4n).

Proof. By definition of regular neighborhood, the inclusion map Y G
k (ϕ0, ϕ1) ↪→ U

is a homotopy equivalence (U collapses to Y G
k (ϕ0, ϕ1), see (17)). The maps ϕ0

β, ϕ
1
β :

S2n −→ U represent generators for π2n(U) and since ϕ0 t ϕ1 ∼= Ak, it follows that

b([ϕ0
β], [ϕ1

β]) = 1
k

mod 1

77



and hence, the linking form (πτ2n(U), b) is isomorphic to Wk. It follows from

Constructions 8.1.1 and 8.2.1 that the regular neighborhood U is (2n − 1)-

connected. Now, U is homotopy equivalent to the Moore-space M(Z/k ⊕ Z/k, 2n),

and so the set of isomorphism classes of (4n + 1)-dimensional vector bundles over

U is in bijective correspondence with the set [M(Z/k ⊕ Z/k, 2n), BSO]. Since

π2n(BSO;Z/k) = 0 whenever k is odd, it follows that the tangent bundle TU → U

is trivial and thus U ∈ WS
4n+1 (i.e. U is stably parallelizable). We will show

that the boundary ∂U is diffeomorphic to S4n. Once this is demonstrated, it will

follow from the classification theorem, Theorem 3.3.2 (and Remark 3.3.1), that U is

diffeomorphic to the manifold W ′
k.

Since U is parallelizable, by (21, Theorem 5.1) it will be enough to show

that ∂U is homotopy equivalent to S4n. From Constructions 8.1.1, 8.2.1 and the

Universal Coefficient Theorem, we have

Hs(U ;Z) ∼=



Z/k ⊕ Z/k if s = 2n+ 1,

Z if s = 0,

0 else.

Using Lefschetz Duality it then follows that

Hs(U, ∂U ;Z) ∼=


Z/k ⊕ Z/k if s = 2n,

0 else.

Consider the long exact sequence on homology associated to (U, ∂U). It follows

immediately that ∂U is (2n−2)-connected and that the long exact sequence reduces
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to

0 // H2n(∂U ;Z) // H2n(U ;Z) // H2n(U, ∂U ;Z) // H2n−1(∂U ;Z) // 0.

(8.8)

We claim that the map H2n(U,Z) → H2n(U, ∂U ;Z) is an isomorphism. To see this,

consider the commutative diagram

H2n(U ;Z) ∼=
x7→b(x, ) //

��

H2n(U ;Q/Z)

∼=
��

H2n(U, ∂U ;Z)
∼= // H2n+1(U ;Z).

In the above diagram the bottom-horizontal map is the Leftshetz duality

isomorphism, the right vertical map is the boundary homomorphism in the

Bockstein exact sequence (which in this case is an isomorphism), and the top-

horizontal map x 7→ b(x, ) is an isomorphism since the homological linking form

(H2n(U), b) is non-singular. It follows that the map H2n(U ;Z) → H2n(U, ∂U ;Z) is

indeed an isomorphism and it then follows from the exact sequence of (8.8) that ∂U

has the same homology type of S4n.

To prove that ∂U has the same homotopy type of S4n, we must show that

∂U is simply connected. To to this it will suffice to show that πi(U, ∂U) = 0 for

i = 1, 2. For i = 1, 2, let f : (Di, ∂Di) −→ (U, ∂U) be a map. Since

dim(U)− dim(Y G
k (ϕ0, ϕ1)) ≥ 3,

we may deform f so that its image is disjoint from Y G
k (ϕ0, ϕ1). We then may then

find another (strictly smaller) regular neighborhood U ′ of Y G
k (ϕ0, ϕ1) such that
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U ′ ( U and f(Di) ⊂ U \ U ′. The class [f ] ∈ πi(U, ∂U) is in the image of the map

πi(U \ Int(U ′), ∂U) −→ πi(U, ∂U)

induced by inclusion. Using the uniqueness theorem for smooth regular

neighborhoods (see (17)), it follows that the manifold U \ Int(U ′) is an H-cobordism

from ∂U to ∂U ′ and so it follows thatπi(U \ Int(U ′), ∂U) = 0. This proves that

[f ] = 0 and thus πi(U, ∂U) = 0 since f was arbitrary. It follows by considering

the exact sequence on homotopy groups associated to the pair (U, ∂U) that ∂U is

simply connected.

Since ∂U is simply connected and has the homology type of a sphere, it

follows that ∂U is a homotopy sphere. It then follows from (21, Theorem 5.1) that

∂U is diffeomorphic to S4n since ∂U bounds a parallelizable manifold, namely U .

This concludes the proof of the lemma.

We now define a new simplicial complex.

Definition 8.3.1. Let K̂(M,a)k be the simplicial complex whose vertices are given

by triples (ϕ̄,Ψ, s) which satisfy the following conditions:

i. The 4-tuple ϕ̄ = (ϕ,G, γ, t) is a vertex in K̄(M,a)k.

ii. s is a real number.

ii. Ψ : W̄k × [s,∞) −→ M is a smooth family of embeddings W̄k ↪→ M that

satisfies the following:

(a) for each t ∈ [s,∞), the embedding Ψ( , t) : W̄k −→ M is an element of

X0(M,a)k,
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(b) Y G(ϕ0, ϕ1) ∪ γ([0, 1]) ⊂ Ψ(W̄k, t) for all t ∈ [s,∞),

(c) for any neighborhood U of Y G(ϕ0, ϕ1)∪γ([0, 1]), there is tU ∈ [s,∞) such

that Ψ(W̄k, t) ⊂ U when t ≥ tU .

A set of vertices {(ϕ̄0,Ψ0, s0), . . . , (ϕ̄p,Ψp, sp)} forms a p-simplex if the associated

set {ϕ̄0, . . . , ϕ̄p} is a p-simplex in the complex K̄(M,a)k (no extra pairwise

condition on the Ψi and si are required).

By construction of K̂(M,a)k, there is a simplicial map,

F̂ : K̂(M,a)k −→ K̄(M,a)k, (ϕ̄,Ψ, s) 7→ ϕ̄. (8.9)

Proposition 8.3.2. Let n, k ≥ 2 be integers with k odd. Let M be a compact,

2-connected, manifold of dimension 4n + 1. Let g ∈ N be such that rk(M) ≥ g.

Then the geometric realization |K̂(M)k| is 1
2
(g − 4)-connected and lCM(K̄(M)k) ≥

1
2
(g − 1).

Proof. The proof of this proposition again follows the same strategy as Lemma

8.1.2. We check that the map F̂ has the cone lifting property, that it preserves

links, and then we apply Corollary 2.1.4.

The fact that F̂ preserves links follows immediately from the definition. We

will verify the link lifting property. Let ϕ̄ = (ϕ,G, γ, t) be a vertex of K̄(M)k. Let

(ϕ̄1,Ψ1, s1), . . . , (ϕ̄m,Ψm, sm)
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be a collection of vertices in K̂(M)k such that ϕ̄ is adjacent to ϕ̄i in K̄(M)k for

i = 1, . . . ,m. We will denote

Yk(ϕ̄) := Y G
k (ϕ0, ϕ1) ∪ γ([0, 1]). (8.10)

Let U ⊂ M be a regular neighborhood of Yk(ϕ̄). Since U collapses to Yk(ϕ̄) (by

definition of regular neighborhood), we may choose a one-parameter family of

embeddings:

ρ : U × [s,∞) −→ U (8.11)

which satisfies the following:

i. For all t ∈ [s,∞), the embedding ρt = ρ|U×{t} : U → U is the identity on

Yk(ϕ̄).

ii. Given any neighborhood U ′ ⊂ U of Yk(ϕ̄), there exists t′ > s such that

ρt(U) ⊂ U ′ for all t ≥ t′.

We call such an isotopy a compression isotopy of U to Yk(ϕ̄). By Lemma 8.3.1,

there exists a diffeomorphism Ψ : W̄k

∼=−→ U such that the composition W̄k
Ψ−→

U ↪→ M satisfies the conditions of Definition 8.2.1. It then follows that the triple

(ϕ̄, Ψ ◦ ρ, s) is a vertex of K̂(M,a)k that maps to ϕ̄ under F̂ . It follows from the

definition of K̂(M)k that (ϕ̄, Ψ ◦ ρ, s) is automatically adjacent to (ϕ̄i,Ψi, si) for

i = 1, . . . ,m. This proves that F̂ has the link lifting property. This completes the

proof of the proposition.
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8.4. Comparison with X•(M,a)k

We are now in a position to finally prove Theorem 8.0.3 by comparing

|X•(M,a)k| to |K̂(M,a)k|. We will need to construct an auxiliary semi-simplicial

space related to the simplicial complex K̂(M,a)k. Let M be a (4n + 1)-dimensional

manifold with non-empty boundary and let a : [0,∞)×R4n −→M be an embedding

as used in Definition 8.2.1. We define two semi simplicial spaces K̂•(M,a)k and

K̂ ′•(M,a)k.

Definition 8.4.1. The space of p-simplices K̂p(M,a)k is defined as follows:

i. The space of 0-simplices K̂0(M,a)k is defined to have the same underlying set

as the set of vertices of the simplicial complex K̂(M,a)k.

ii. The space of p-simplices K̂p(M,a)k ⊂ (K̂0(M,a)k)
×(p+1) consists of the

ordered (p + 1)-tuples ((ϕ̄0,Ψ0, s0), · · · , (ϕ̄p,Ψp, sp)) such that the associated

unordered set

{(ϕ̄0,Ψ0, s0), · · · , (ϕ̄p,Ψp, sp)}

is a p-simplex in the simplicial complex K̂(M,a)k.

The spaces K̂p(M,a)k are topologized using the C∞-topology on the spaces of

embeddings. The assignments [p] 7→ K̂p(M,a)k define a semi-simplicial space which

we denote by K̂•(M,a)k.

Finally, K̂ ′•(M,a)k ⊂ K̂•(M,a)k is defined to be the sub-semi-simplicial space

consisting of all (p + 1)-tuples ((ϕ̄0,Ψ0, s0), · · · , (ϕ̄p,Ψp, sp)) such that Ψi(W̄k) ∩

Ψj(W̄k) = ∅ whenever i 6= j.

It is easily verified that both K̂•(M,a)k and K̂ ′•(M,a)k are topological flag

complexes.
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Proposition 8.4.1. Let k, n ≥ 2 be integers with k odd. Let M be a 2-connected

(4n + 1)-dimensional manifold and let g ≥ 0 be such that rk(M) ≥ g. Then the

geometric realization |K̂•(M,a)k| is 1
2
(g − 4)-connected.

Proof. Let K̂•(M,a)δk denote the the discretization of K̂•(M,a)k as defined in

Definition 2.2.3. Consider the map

|K̂•(M,a)δk| −→ |K̂(M,a)k| (8.12)

induced by sending an ordered list ((ϕ̄0,Ψ0, s0), · · · , (ϕ̄p,Ψp, sp)) to its associated

underlying set. For any such set {(ϕ̄0,Ψ0, s0), · · · , (ϕ̄p,Ψp, sp)} which forms a

p-simplex in K̂(M,a)δk, there is only one possible ordering on it which yields an

element of K̂•(M,a)δk. Thus the map (8.12) is a homeomorphism. By Proposition

8.3.2, it follows that K̂•(M,a)δk (which is clearly a topological flag-complex) is

weakly Cohen-Macaulay of dimension 1
2
(g − 2), as defined in Definition 2.2.2. It

then follows from Theorem 2.2.1 that |K̂•(M,a)k| is 1
2
(g − 4)-connected.

We now consider the inclusion map K̂ ′•(M,a)k −→ K̂•(M,a)k.

Proposition 8.4.2. For any (4n + 1)-dimensional manifold M with non-empty

boundary, the map |K̂ ′•(M,a)k| −→ |K̂•(M,a)k| induced by inclusion is a weak

homotopy equivalence.

Proof. For p ≥ 0, let

x 7→ ((ϕ̄x0 ,Ψ
x
0 , s

x
0), · · · , (ϕ̄xp ,Ψx

p , s
x
p)) for x ∈ Dj (8.13)
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represent an element of the relative homotopy group

πj

(
K̂p(M,a)k, K̂

′
p(M,a)k

)
= 0. (8.14)

For each x, Yk(ϕ̄
x
i )
⋂
Yk(ϕ̄

x
j ) = ∅ whenever i 6= j. Using condition (c) in Definition

8.3.1, since Dj is compact we may choose a real number s ≥ max{sxi | i =

0, . . . , p, and x ∈ Dj}, such that for any x ∈ Dj,

Ψx
i (W̄k, t) ∩Ψx

j (W̄k, t) = ∅ whenever t ≥ s and i 6= j.

For each x ∈ Dj, t ∈ [0, 1], and i = 0, . . . , p, let sxi (t) denote the real number given

by the sum

(1− t) · sxi + t · s

and let Ψx
i (t) denote the restriction of Ψx

i to W̄k × [sxi (t), ∞). The formula,

(x, t) 7→ ((ϕ̄x0 , Ψx
0(t), sx0(t)), · · · , (ϕ̄xp , Ψx

p(t), s
x
p(t))) for t ∈ [0, 1]

yields a homotopy from the map defined in (8.13) to a map which represents the

trivial element in the relative homotopy group (8.14). This implies that for all

p, j ≥ 0, the relative homotopy group (8.14) is trivial and thus the inclusion

K̂ ′p(M,a)k −→ K̂p(M,a)k is a weak homotopy equivalence for all p. It follows that

the induced map |K̂ ′•(M,a)k| −→ |K̂•(M,a)k| is a weak homotopy equivalence.

Finally, we consider the map

K̂ ′•(M,a)k −→ X•(M,a)k, (ϕ̄,Ψ, s) 7→ Ψs = Ψ|W̄k×{s}. (8.15)
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The following proposition implies Theorem 8.0.3.

Proposition 8.4.3. Let n ≥ 2 and suppose that k > 2 is an odd integer. Then

for any (4n + 1)-dimensional manifold M with non-empty boundary, the degree

of connectivity of |X•(M,a)k| is bounded below by the degree of connectivity of

|K̂ ′•(M,a)k|.

Proof. To prove the proposition it will suffice to construct a section of the map

(8.15). The existence of such a section implies that the map on homotopy groups

induced by (8.15) is a surjection. The result then follows. Let x, y ∈ πτ2n(W̄k) be

two generators such that b(x, y) = 1
k

mod 1. By combining Corollary 5.4.2 and

Corollary 10.5.4, we may choose 〈k〉-embeddings ϕ0, ϕ1 : V 2n+1
k −→M such that

[ϕ0
β] = x, [ϕ1

β] = y, and ϕ0 t ϕ1 ∼= Ak.

We then may apply Construction 8.2.1 to obtain a vertex ϕ̄ = (ϕ,G, γ, t) ∈

K̄(W̄k, a)k. Now, the whole manifold W̄k is a regular neighborhood for Yk(ϕ̄). We

may choose a compression isotopy ρ : W̄k × [0,∞) −→ W̄k of W̄k to Yk(ϕ̄) as

in (8.11) and which satisfies the same conditions associated to the isotopy (8.11).

It follows that (ϕ̄, ρ, 0) is an element of K̂ ′0(W̄k, a)k. Using ϕ̄ and the compression

isotopy ρ, we then define a simplicial map

X•(M,a)k −→ K̂ ′•(M,a)k, Ψ 7→ (Ψ ◦ ϕ̄, Ψ ◦ ρ, 0), (8.16)

where Ψ ◦ ϕ̄ is the vertex in K̄(M,a)k given by the 4-tuple, ((Ψ ◦ ϕ0, Ψ ◦ ϕ1), Ψ ◦

G, Ψ ◦ γ, t). It follows that this map is a section of (8.15).

86



CHAPTER IX

HOMOLOGICAL STABILITY

With our main technical result Theorem 8.0.3 established, in this section we

show how Theorem 8.0.3 implies the main result of the paper which is Theorem

1.3.2.

9.1. A Model for BDiff∂(M)

Let M be a compact manifold of dimension m with non-empty boundary. We

now construct a concrete model for BDiff∂(M). Fix a collar embedding,

h : [0,∞)× ∂M −→M

with h−1(∂M) = {0}×∂M . Fix once and for all an embedding, θ : ∂M −→ R∞ and

let S denote the submanifold θ(∂M) ⊂ R∞.

Definition 9.1.1. We define M(M) to be the set of compact m-dimensional

submanifolds M ′ ⊂ [0,∞)× R∞ that satisfy:

i. M ′ ∩ ({0} × R∞) = S and M ′ contains [0, ε)× S for some ε > 0.

ii. The boundary of M ′ is precisely {0} × S.

iii. M ′ is diffeomorphic to M relative to S.

Denote by E(M) the space of embeddings ψ : M → [0,∞) × R∞ for which there

exists ε > 0 such that ψ ◦ h(t, x) = (t, θ(x)) for all (t, x) ∈ [0, ε) × ∂M . The space

M(M) is topologized as a quotient of the space E(M) where two embeddings are

identified if they have the same image.
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It follows from Definition 9.1.1 that M(M) is equal to the orbit space,

E(M)/Diff∂(M). By the main result of (4), the quotient map, E(M) −→

E(M)/Diff∂(M) = M(M) is a locally trivial fibre-bundle. This together with

the fact that E(M) is weakly contractible implies that there is a weak-homotopy

equivalence, M(M) ' BDiff∂(M).

Now suppose that m = 4n + 1 with n ≥ 2. Let k ≥ 2 be an integer. Recall

from Section I the manifold W̃k, given by forming the connected sum of [0, 1]× ∂M

with Wk. Choose a collared embedding α : W̃k −→ [0, 1] × R∞ such that for

(i, x) ∈ {0, 1} × ∂M ⊂ W̃k, the equation α(i, x) = (i, θ(x)) is satisfied. For any

submanifold M ′ ⊂ [0,∞) × R∞, denote by M ′ + e1 ⊂ [1,∞) × R∞ the submanifold

obtained by linearly translating M ′ over 1-unit in the first coordinate. Then for

M ′ ∈ M(M), the submanifold α(W̃k) ∪ (M ′ ∪ e1) ⊂ [0,∞) × R∞ is an element of

M(M ∪∂M W̃k). Thus, we have a continuous map,

sk :M(M) −→M(M ∪∂M W̃k); V 7→ α(W̃k) ∪ (V + e1). (9.1)

As in the introduction, we will refer to this map as the kth-stabilization map.

Remark 9.1.1. The construction of the stabilization map sk depends on the choice

of embedding α : W̃k → [0, 1] × R∞. However, any two such embeddings are

isotopic (the space of all such embeddings is weakly contractible). It follows that

the homotopy class of sk does not depend on any of the choices made. In this way,

the manifold W̃k determines a unique homotopy class of maps BDiff∂(M) −→

BDiff∂(M ∪∂M W̃k) which is in the same homotopy class as the map (1.8) used

in the statement of Theorem 1.3.2.
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9.2. A Semi-Simplicial Resolution

Let M be as in Section 9.1. For each positive integer K, we construct a semi-

simplicial space Z•(M)k, equipped with an augmentation εk : Z•(M)k −→ M(M)

such that the induced map |Z•(M)k| −→ M(M) is highly connected. Such an

augmented semi-simplicial space is called a semi-simplicial resolution.

Let θ : ∂M ↪→ R∞ be the embedding used in the construction of M(M).

Pick once and for all a coordinate patch c0 : Rm−1 −→ S = θ(∂M). This choice

of coordinate patch induces for any M ′ ∈ M(M), a germ of an embedding [0, 1) ×

Rm−1 −→ M ′ as used in the construction of the semi-simplicial space K̄•(M
′)k from

Definition 4.1.1.

Definition 9.2.1. For each non-negative integer l, let Zl(M)k be the set of pairs

(M ′, φ̄) where M ′ ∈ M(M) and φ̄ ∈ Zl(M
′)k, where Xl(M

′)k is defined using the

embedding germ

[0, 1)× Rm−1 −→M ′

induced by the chosen coordinate patch c0 : Rm−1 −→ S. The space Zl(M)k

is topologized as the quotient, Zl(M)k = (E(M) × Xl(M)k)/Diff∂(M). The

assignments [l] 7→ Zl(M)k make Z•(M)k into a semi-simplicial space where the

face maps are induced by the face maps in X•(M)k.

The projection maps Zl(M)k −→ M(M) given by (V, φ̄) 7→ V yield an

augmentation map εk : Zl(M)k −→ M(M). We denote by Z−1(M)k the space

M(M).

By construction, the projection maps Zl(M)k → M(M) are locally trivial

fibre-bundles with standard fibre given by Xl(M)k. From this we have:
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Corollary 9.2.1. The map |εk| : |Zl(M)k| −→ M(M) induced by the augmentation

is 1
2
(rk(M)− 2)-connected.

Proof. It follows from (31, Lemma 2.1) that there is a homotopy-fibre sequence

|Xl(M)k| → |Zl(M)k| → M(M). The result follows from the long-exact sequence on

homotopy groups.

9.3. Proof of the Main Theorem

We show how to use the semi-simplicial resolution εk : Z•(M)k → M(M)

to complete the proof of Theorem 1.3.2. First, we fix some new notation which will

make the steps of the proof easier to state.

Let M be a compact (4n+ 1)-dimensional manifold with non-empty boundary.

Fix an odd integer k > 2 (the integer k will be same throughout the entire section).

For each g ∈ N we denote by Mg,k the manifold obtained by forming the connected-

sum of M with W#g
k . Notice that ∂M = ∂Mg,k for all g ∈ N. We consider the

spaces M(Mg,k). For each g ∈ N, the stabilization map from (9.1) yields a map,

sk :M(Mg,k) −→M(Mg+1,k), M ′ 7→ W̃k ∪ (M ′ + e1).

Using the weak equivalence M(Mg,k) ' BDiff∂(Mg,k), Theorem 1.3.2 translates to

the following:

Theorem 9.3.1. The induced map (sk)∗ : Hl(M(Mg,k)) −→ Hl(M(Mg+1,k)) is an

isomorphism when l ≤ 1
2
(g − 3) and is an epimorphism when l ≤ 1

2
(g − 1).

We will need to consider the augmented semi-simplicial space Z•(Mg,k)k −→

M(Mg,k) that was constructed in the previous section.
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Notational Convention 9.3.1. In order to prevent overcrowding in our notation,

thought the rest of this section we will drop k from the notation and denote

Mg := Mg,k and Z•(Mg) := Z•(Mg,k)k.

Since k is fixed throughout this section, this is not an issue.

Since rk(Mg) ≥ g for g ∈ N, it follows from Corollary 9.2.1 that the map

|εk| : |Z•(Mg)| −→ Z−1(Mg) :=M(Mg).

is 1
2
(g − 2)-connected. With this established, the proof of Theorem 9.3.1 proceeds

in exactly the same way as in (9, Section 5). We provide an outline for how to

complete the proof and refer the reader to (9, Section 5) for details.

For what follows we fix g ∈ N. For each non-negative integer l ≤ g there is a

map

Fl :M(Mg−l−1) −→ Zl(Mg) (9.2)

which is defined in exactly the same way as the map from (9, Proposition 5.3).

From (9, Proposition 5.3, 5.4 and 5.5) we have the following.

Proposition 9.3.2. Let g ≥ 4.

i. The map Fl :M(Mg−l−1) −→ Zl(Mg) is a weak homotopy equivalence.

ii. The following diagram is commutative,

M(Mg−l−1)

Fl
��

sk //M(Mg−l)

Fl
��

Zl(Mg)
dl // Zl−1(Mg).
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iii. The face maps di : Zl(Mg) −→ Zl−1(Mg) are weakly homotopic.

Remark 9.3.1. The proof of Proposition 9.3.2 proceeds in the same way as the

proofs of (9, Proposition 5.3, 5.4 and 5.5). The key ingredients of this proof are

Propositions 4.2.1 and 4.1.2.

We consider the spectral sequence E∗∗,∗ associated to the skeletal filtration of the

augmented semi-simplicial space

Z•(Mg) −→M(Mg).

This spectral sequence has the following properties:

– The E1-term given by E1
p,q = Hq(Zp(Mg)) for l ≥ −1 and j ≥ 0.

– The differential is given by d1 =
∑

(−1)i(di)∗, where (di)∗ is the map on

homology induced by the ith face map in Z•(Mg).

– The group E∞p,q is a subquotient of the relative homology group

Hp+q+1(Z−1(Mg), |Z•(Mg)|).

Proposition 9.3.2 together with Corollary 9.2.1 imply the following:

(a) For g ≥ 4 + p, there are isomorphisms E1
p,q
∼= Hq(M(Mg−p−1)).

(b) When p is even, the differential d1 : E1
p,q −→ E1

p−1,l is equal to (sk)∗ (the

map on homology induced by the k-th stabilization map) when p is even. It is

equal to zero when p is odd.

(c) The term E∞p,q is equal to 0 when p+ q ≤ 1
2
(g − 4).

We now complete the proof of Theorem 9.3.1 by applying the spectral sequence

from (9, Proof of Theorem 1.2). We repeat the argument below for the convenience

of the reader.
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Proof of Theorem 9.3.1. Let a denote the integer 1
2
(g − 4). We will use the above

spectral sequence to prove that Hq(Mg−1) −→ Hq(Mg) is an isomorphism for

q ≤ a, assuming that we know inductively that for j > 0, the stabilization maps

Hq(Mg−2j−1) −→ Hq(Mg−2j) are isomorphisms for q ≤ a− j.

This inductive assumption implies that the differential

d1 : E1
2j,q −→ E1

2j−1,q

is an isomorphism for 0 < j ≤ a − q. Hence, it follows that E2
p,q = 0 whenever

0 < p ≤ 2(a− q). In particular the term E2
p,q vanishes whenever

p ≥ 1, q ≤ a− 1, and p+ q ≤ a+ 1.

Thus for r ≥ 2 and q ≤ a, it follows that the differentials

dr : Er
r−1,q−r+1 −→ Er

−1,q and dr : Er
r,q−r+1 −→ Er

0,q

both vanish. It follows that for q ≤ a we have

E∞0,q = E2
0,q = Ker(Hq(M(Mg−1))→ Hq(M(Mg)),

E∞−1,q = E2
−1,q = Coker(Hq(M(Mg−1))→ Hq(M(Mg)).

Since the group E∞p,q vanishes for p+ q ≤ a we see that the stabilization map

Hq(M(Mg−1)) −→ Hq(M(Mg))
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has vanishing kernel and cockerel for q ≤ a, establishing the induction step. The

statement of the theorem is vacuous for g = 1 and g = 2, which establishes the

base case of the induction. A similar argument proves that the stabilization map

Hq(M(Mg−1)) −→ Hq(M(Mg)) is an epimorphism when q = a + 1. This completes

the proof of the theorem.
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CHAPTER X

EMBEDDINGS AND DISJUNCTION FOR Z/K-MANIFOLDS

We now develop a technique for modifying the intersections of embedded 〈k〉-

manifolds that will allow us to prove Theorem 7.4.1 stated in Section VII. Recall

from Section 7.4 the definition of diffeotopy.

Definition 10.0.1. Let M be a manifold. We will call a smooth, one parameter

family of diffeomorphisms Ψt : M −→ M with t ∈ [0, 1] and Ψ0 = IdM a diffeotopy.

For a subspace N ⊂ M , we say that Ψt is a diffeotopy relative N , and we write

Ψt : M −→M rel N , if in addition, Ψt|N = IdN for all t ∈ [0, 1].

10.1. A Z/k Version of the Whitney Trick

We now discus a certain version of the Whitney trick for 〈k〉-manifolds.

Let M be an oriented manifold of dimension m, let X be an oriented manifold of

dimension r, and let P be an oriented 〈k〉-manifold of dimension p. Suppose that:

– both P and X are path-connected,

– m ≥ 6,

– p+ r = m,

– p, r ≥ 2.

Let

ϕ : (X, ∂X) −→ (M,∂M) and f : (P, ∂0P ) −→ (M,∂M) (10.1)
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be a smooth embedding and a 〈k〉-embedding respectively, such that

ϕ(∂X) ∩ f(∂0P ) = ∅.

We will need to consider the invariant Λ0
k(f, ϕ;M) defined in Section VII. Using the

standard identification

ΩSO
0 (pt.)〈k〉 = Z/k,

the element Λ0
k(f, ϕ;M) is equal to the modulo k reduction of the oriented,

algebraic intersection number associated to the intersection of f(Int(P )) and ϕ(X).

The following theorem is a version of the classical Whitney trick for 〈k〉-manifolds.

Theorem 10.1.1. Let f and ϕ be exactly as in (10.1) above. Using the

identification ΩSO
0 (pt.)〈k〉 = Z/k, suppose that

Λ0
k(f, ϕ;M) = j mod k.

Then there exists a diffeotopy Ψt : M −→M rel ∂M such that,

Ψ1(ϕ(X)) ∩ f(Int(P )) ∼= +〈j〉.

To prove the above theorem we will need to use the next lemma.

Lemma 10.1.2. Let P be a 〈k〉-manifold of dimension p ≥ 2, let M be a smooth

manifold of dimension m ≥ 6, and let f : (P, ∂0P ) −→ (M,∂M) be a 〈k〉-

embedding. Let r denote the integer m − p. Given any any positive integer n, there

exists an embedding

g : Sr −→ Int(M \ fβP (βP ))
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that satisfies the following:

i. g(Sr) ∩ f(Int(P )) ∼= ±〈n · k〉,

ii. the composition Sr
g−→ Int(M \ fβP (βP )) ↪→ Int(M) extends to an embedding

Dr+1 ↪→ Int(M).

Proof. We first prove this explicitly for the case that n = 1. So, suppose that n is

equal to 1. We construct the embedding g : Sr −→ Int(M) in stages as follows.

Construction 10.1.1. Let Φ̄ : ∂1P −→ βP be the map given by the composition

∂1P
Φ
∼=

// βP × 〈k〉 proj. // βP.

For i = 1, . . . , k, let ∂i1P denote the submanifold given by Φ−1(∂1P × {i}).

i. Choose a collar embedding h : ∂1P × [0,∞) −→ P such that h−1(∂1P ) =

∂1P × {0}.

ii. Choose a point y ∈ βP . For i = 1, . . . , k, let yi ∈ ∂i1P be the point such that

Φ̄(yi) = y. Then define embeddings

γi : [0, 1] −→ f(P ), γi(t) = f(h(yi, t)).

It is clear that γi(0) = f(y) for all i. We then denote

xi := γi(1) for i = 1, . . . , k.

iii. Choose an embedding α : D2 −→M that satisfies the following conditions:
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(a) α(D2) ∩ f(P ) = tki=1γi([0, 1]),

(b) α(∂D2) ∩ f(P ) = {x1, . . . , xk},

(c) α(D2) intersects f(P ) orthogonally (with resect to some metric on M),

(d) f(βP ) ∩ α(D2) ⊂ α(Int(D2)).

Since 2 < m/2, there is no obstruction to choosing such an embedding.

iv. Let r denote the integer m − p. Choose a (r − 1)-frame of orthogonal vector

fields (v1, . . . , vr−1) over the embedded disk α(D2) ⊂ M with the property

that vi is orthogonal to α(D2) and orthogonal to f(P ) over the intersection

α(D2) ∩ f(P ), for i = 1, . . . , r − 1. Since the disk is contractable, there is no

obstruction to the existence of such a frame.

The orthogonal (r − 1)-frame chosen in step iv. induces an embedding

ḡ : Dr+1 −→M.

The orthogonality condition (condition (c)) in Step iii. of the above construction,

together with the orthogonality condition on the frame chosen in step iv., implies

that ḡ(Dr+1) is transverse to f(P ). Furthermore, condition (b) from step iii. of the

above construction implies that

g(∂Dr+1) ∩ f(Int(P )) = {x1, . . . , xk},

and all points on the right-hand side of the equality have the same orientation. We

then set the map g : Sr −→ M equal to the embedding obtained by restricting ḡ

to the boundary of Dr+1. This proves the lemma in the case that n = 1. To prove
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the lemma for general n one simply iterates n-times the exact construction given

above.

Proof of Theorem 10.1.1. It will suffice to prove the following: suppose that

f(Int(P )) ∩ X consists of exactly k points, all of which are positively oriented.

Then there exists a diffeotopy Ψt : M −→ M rel ∂M such that Ψ0 = IdM and

Ψ1(X)∩f(P ) = ∅. So, suppose that f(Int(P ))∩X consists of exactly k points, all of

which are positively oriented. By the previous lemma, there exists and embedding

g : Sr −→ Int(M \X ∪ fβ(βP ))

such that g(Sr) ∩ f(Int(P )) consists of exactly k points, all of which are negatively

oriented. Furthermore, the embedding g can be chosen so that it admits an

extension to an embedding

ḡ : Dr+1 −→ Int(M \X).

Let X̃ ⊂ M be the submanifold obtained by forming the connected sum of g(Sr) ⊂

M with X along some embedded arc in M that is disjoint from f(P ). It follows

easily from the fact that g extends to an embedding of a disk, that X̃ is ambient

isotopic to X. By construction, it follows that we have

f(Int(P )) ∩ X̃ ∼= +〈k〉 t −〈k〉.
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Since both f(Int(P )) and X̃ are path connected and M is simply connected by

assumption, we may then apply the Whitney trick to obtain a diffeotopy

Ψt : M −→M rel ∂M

with Ψ1(X) ∩ f(P ) = ∅. This concludes the proof of the theorem.

10.2. A Higher Dimensional Intersection Invariant

We recall now a certain construction developed by Hatcher and Quinn in (16).

Let M , X, and Y be smooth manifolds of dimension m, r, and s respectively. Let

t = r + s−m. Let

ϕ : (X, ∂X) −→ (M,∂M) and ψ : (Y, ∂Y ) −→ (M,∂M)

be smooth maps. Let E(ϕ, ψ) denote the homotopy pull-back of ϕ and ψ.

Specifically, this is given by

E(ϕ, ψ) = {(x, y, γ) ∈ X × Y × Path(M) | ϕ(x) = γ(0), ψ(y) = γ(1) }.

Consider the diagram,

E(ϕ, ψ)
πX //

πM

((

πY
��

X

ϕ

��
Y

ψ //M

(10.2)

where πX and πY are projection maps and πM is given by the formula (x, y, γ) 7→

γ(1/2). It is easily verified that this diagram commutes up to homotopy. Let νX

and νY denote the stable normal bundles associated to X and Y . We will need to
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consider the stable vector bundle over E(ϕ, ψ) given by the Whitney sum

π∗X(νX)⊕ π∗Y (νY )⊕ π∗M(TM).

We will denote this stable bundle by ν̂(ϕ, ψ). We will need to consider the normal

bordism group

Ωfr.
t (E(ϕ, ψ), ν̂(ϕ, ψ)).

Elements of this bordism group are represented by triples (N, f, F ), where N is a

t-dimensional closed manifold, f : N −→ E(ϕ, ψ) is a map, and F : νN −→ ν̂(ϕ, ψ)

is an isomorphism of stable vector bundles covering the map f .

Now, suppose that the maps ϕ and ψ are transversal and that

ϕ(∂X) ∩ ψ(∂Y ) = ∅.

It follows that the pullback ϕ t ψ ⊂ X × Y is a closed submanifold of dimension t.

There is a natural map

ιϕ,ψ : ϕ t ψ −→ E(ϕ, ψ), (x, y) 7→ (x, y, cϕ(x)),

where cϕ(x) is the constant path at point ϕ(x). Let νϕtψ denote the stable normal

bundle associated to the pull-back ϕ t ψ. The following is given in (16, Proposition

2.1) (see also the discussion on Pages 331-332).

Proposition 10.2.1. There is a natural bundle isomorphism ι̂ϕ,ψ : νϕtψ
∼=−→

ν(ϕ, ψ), determined uniquely by the homotopy classes of ϕ and ψ, that covers the

map ιϕ,ψ. In this way, the triple (ϕ t ψ, ιϕ,ψ, ι̂ϕ,ψ) determines a bordism class in

Ωfr.
t (E(ϕ, ψ), ν̂(ϕ, ψ)).
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The bordism group Ωfr.
t (E(ϕ, ψ), ν̂(ϕ, ψ)) can be quite difficult to compute

in general. However, in the case that the manifolds X, Y , and M are highly

connected, the group Ωfr.
t (E(ϕ, ψ), ν̂(ϕ, ψ)) reduces to something much more

simple. The following proposition is proven in (16, Section 3).

Proposition 10.2.2. Suppose that X, Y , and M are (t + 1)-connected (recall that

t = dim(X) + dim(Y )− dim(M) = r + s−m). Then the homomorphism

Ωfr.
t (pt.)→ Ωfr.

t (E(ϕ, ψ), ν̂(ϕ, ψ))

induced by the inclusion of any point into E(ϕ, ψ), is an isomorphism.

Definition 10.2.1. In the case that X, Y , and M are (t + 1)-connected, we will

denote by

αt(ϕ, ψ;M) ∈ Ωfr.
t (pt.) (10.3)

the image of the bordism class in Ωfr.
t (E(ϕ, ψ), ν̂(ϕ, ψ)) associated to ϕ t ψ under

the isomorphism of the previous proposition.

Remark 10.2.1. We emphasize that it is not necessary for both ϕ and ψ to be

embeddings in order for the class αt(ϕ, ψ;M) to be defined. It is only necessary

that ϕ and ψ be transversal as smooth maps. Furthermore its is easy to see that

αt(ϕ, ψ,M) is an invariant of the homotopy class of ϕ and ψ. However, the next

theorem (Theorem 10.2.3) does require that ϕ and ψ be embeddings.

The following is proven in (16, Theorem 2.2) (and in (36)).

Theorem 10.2.3. Let

ϕ : (X, ∂X) −→ (M,∂M) and ψ : (Y, ∂Y ) −→ (M,∂M)
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be embeddings such that ϕ(∂X) ∩ ψ(∂Y ) = ∅. Suppose that m > r + s
2

+ 1 and

m > s+ r
2
+1, and that X, Y , and M are (t+1)-connected. Then if αt(ϕ, ψ;M) = 0,

there exists a diffeotopy

Ψt : M −→M rel ∂M

such that Ψ1(ϕ(X)) ∩ ψ(Y ) = ∅.

Remark 10.2.2. In (16) the above theorem is only explicitly proven in the case

when X and Y are closed manifolds, though their proof can easily by modified to

yield the version stated above. In (41), a proof of the relative version stated exactly

as above is given.

The next lemma, which we will use latter, is a restatement of (16, Theorem

1.1).

Lemma 10.2.4. Let

ϕ : (X, ∂X) −→ (M,∂M) and ψ : (Y, ∂Y ) −→ (M,∂M)

be embeddings with ϕ(∂X) ∩ ψ(∂Y ) = ∅. Suppose that ϕ is homotopic relative ∂X,

to a map ϕ′ such that ϕ′(X) ∩ ψ(Y ) = ∅. If m > r + s/2 + 1, then there exists a

diffeotopy

Ψt : M −→M rel ∂M

such that (Ψ1 ◦ ϕ(X)) ∩ ψ(Y ) = ∅.

Remark 10.2.3. The main dimensional case when will use Theorem 10.2.3 and

Lemma 10.2.4 is when dim(M) = 2n+ 1, dim(X) = dim(Y ) = n+ 1, and n ≥ 4.

103



10.3. Creating Intersections

There is a particular application of the above theorem that we will need

to use. Let M and Y be oriented, connected manifolds of dimension m and s

respectively and let

ψ : (Y, ∂Y ) −→ (M,∂M)

be an embedding. Let r = m − s and let ϕ : Sr −→ Int(M) be a smooth map

transverse to ψ(Y ) ⊂ M . Let j ≥ 0 be an integer strictly less than r and let

γ : Sr+j −→ Sr be a smooth map. Denote by

Pj : πr+j(S
r)

∼=−→ Ωfr.
j (pt.) (10.4)

the Pontryagin-Thom isomorphism (see (23)). The following lemma shows how to

compute

αj(ϕ ◦ γ, ψ; M)

in terms of α0(ϕ, ψ,M) and the element Pj([γ]) ∈ Ωfr.
j (pt.).

Lemma 10.3.1. Let ψ, ϕ and γ : Sr+j → Sr be exactly as above. Then

αj(ϕ ◦ γ, ψ; M) = α0(ϕ, ψ;M) · Pj([γ]),

where the product on the right-hand side is the product in the graded bordism ring

Ωfr.
∗ (pt.).

Proof. Let s ∈ Z denote the oriented, algebraic intersection number associated to

the intersection of ϕ(Sr) and ψ(Y ). By application of the Whitney trick, we may
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deform ϕ so that

ϕ(Sr) ∩ ψ(Y ) = {x1, . . . , x`}, (10.5)

where the points xi for i = 1, . . . , ` all have the same sign. It follows that

(ϕ ◦ γ)−1(ψ(Y )) =
⊔̀
i=1

γ−1(xi).

For each i ∈ {1, . . . , `}, the framing at xi (induced by the orientations of γ(Sr),

ψ(Y ) and M) induces a framing on γ−1(xi). We denote the element of Ωfr.
1 (pt.)

given by γ−1(xi) with this induced framing by [γ−1(xi)]. By definition of the

Pontryagon-Thom map Pj (see (23, Section 7)), the element [γ−1(xi)] is equal to

Pj([γ]) for i = 1, . . . , `. Using the equality (10.5), it follows that

αj(ϕ ◦ γ, ψ; M) = ` · Pj([γ]).

The proof then follows from the fact that α0(ϕ, ψ,M) is identified with the

algebraic intersection number associated to ϕ(Sr) and ψ(Y ).

10.4. A Technical Lemma

Before we proceed further, we develop a technical result that will play an

important role in the proof of Theorem 10.5.1. For n ≥ 4, let M be a 2-connected,

oriented (2n + 1)-dimensional manifold and let P be a 2-connected, oriented, 〈k〉-

manifold of dimension n+1. Let f : (P, ∂0P ) −→ (M,∂M) be a 〈k〉-embedding. Let

U be a tubular neighborhood of fβ(βP ) ⊂ M whose boundary intersects f(Int(P ))

transversally. Denote,

Z := M \ Int(U), P ′ := f−1(Z), f ′ := f |P ′ . (10.6)
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It follows from the fact that ∂U intersects Int(f(P )) transversally that P ′ is a

smooth manifold with boundary (after smoothing corners) and that f ′ maps ∂P ′

into ∂M . Let ξ denote the generator of the framed bordism group Ωfr.
1 (pt.), which

is isomorphic to Z/2.

Lemma 10.4.1. Let f : (P, ∂0P ) −→ (M,∂M) be as above and let iZ : Z ↪→

M denote the inclusion map. There exists an embedding ϕ : Sn+1 −→ Z which

satisfies:

i. α1(f ′, ϕ;Z) = k · ξ ∈ Ωfr.
1 (pt.),

ii. the composition iZ ◦ ϕ : Sn+1 −→M is null-homotopic.

Proof. By Lemma 10.1.2, we may choose an embedding φ : Sn −→ M \ fβ(βP ) an

embedding that satisfies:

– φ(Sn) intersects f(Int(P )) transversally,

– φ(Sn) ∩ f(Int(P )) ∼= +〈k〉,

– iZ ◦ φ : Sn →M extends to an embedding Dn+1 ↪→M .

By shrinking the tubular neighborhood U of fβ(βP ) if necessary, we may assume

that

φ(Sn) ⊂ Z = M \ Int(U).

Denote by φ̂ : Sn −→ Z the map obtained by restricting the codomain of φ. Let

γ : Sn+1 −→ Sn
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represent the generator of πn+1(Sn) ∼= Z/2. By Lemma 10.3.1 it follows that,

α1(φ̂ ◦ γ, f ′;Z) = α0(φ̂, f ′;Z) · P1([γ]) = k · P1([γ]) = k · ξ,

where P1 : πn+1(Sn) −→ Ωfr.
1 (pt.) is the Pontryagin-Thom map for framed bordism.

Since Z is 2-connected and n ≥ 4, we may apply (37, Proposition 1) (or the

main theorem of (12)), and find a homotopy of the map φ̂ ◦ γ, to an embedding

ϕ : Sn+1 −→ Z. Since the map iZ ◦ φ : Sn −→ M is null-homotopic, it follows

that iZ ◦ ϕ : Sn+1 → M is null-homotopic as well. This completes the proof of the

lemma.

10.5. Modifying Intersections

We now state the main result of this section (which is a restatement of

Theorem 7.4.1 from Section 7.4). Fix an integer n ≥ 4, let M be an oriented, 2-

connected manifold of dimension 2n + 1. Let P and Q be oriented, 2-connected,

〈k〉-manifolds of dimension n + 1. We will use the same M , P , and Q throughout

this section.

Theorem 10.5.1. With M , P , and Q as above and let

f : (P, ∂0P ) −→ (M,∂M) and g : (Q, ∂0Q) −→ (M,∂M)

be transversal 〈k〉-embeddings such that f(∂0P ) ∩ g(∂0Q) = ∅. Suppose that

Λ1
k,k(f, g;M) = 0. If the integer k is odd, then there exists a diffeotopy Ψt : M −→

M rel ∂M such that Ψ1(f(P )) ∩ g(Q) = ∅.
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The proof of the above theorem is proven in stages via several intermediate

propositions.

Proposition 10.5.2. Let

f : (P, ∂0P ) −→ (M,∂M) and g : (Q, ∂0Q) −→ (M,∂M)

be 〈k〉-embeddings as above and suppose that

β1(Λ1
k,k(f, g;M)) = Λ0

k(fβ, g;M) = 0.

Then there exists a diffeotopy Ψt : M −→ M rel ∂M such that Ψ1(fβ(βP )) ∩ g(Q) =

∅.

Proof. Since 0 = β1(Λ1
k,k(f, g;M)) = Λ0

k(g, fβ;M), it follows that the algebraic

intersection number associated to fβ(βP ) and g(IntQ) is a multiple of k. The

desired diffeotopy exists by Theorem 10.1.1.

Proposition 10.5.3. Let g : (Q, ∂0Q) −→ (M,∂M) be a 〈k〉-embedding as above.

Let X be a smooth manifold of dimension n + 1 and let ϕ : (X, ∂X) −→ (M,∂M)

be a smooth embedding such that

ϕ(∂X) ∩ g(∂0Q) = ∅.

If the integer k is odd, then there exists a diffeotopy, Ψt : M → M rel ∂M such

that,

Ψ1(ϕ(X)) ∩ g(Q) = ∅.
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Proof. By Proposition 7.2.1, we have

β(Λ1
k(g, ϕ;M)) = Λ0(gβ, ϕ;M) ∈ ΩSO

0 (pt.)

where

β : ΩSO
1 (pt.)〈k〉 −→ ΩSO

0 (pt.), [V ] 7→ [βV ]

is the Bockstein homomorphism. By (5.2), this Bockstein homomorphism is

the zero map for all k (the group ΩSO
1 (pt.)〈k〉 is equal to zero). It follows that

Λ0(gβ, ϕ;M) ∈ ΩSO
0 (pt.) is the zero element and thus the oriented, algebraic

intersection number associated to gβ(βQ) ∩ X is equal to zero. By application of

the Whitney trick (24, Theorem 6.6), we may find a diffeotopy of M , relative ∂M ,

which pushes X off of the submanifold gβ(βQ) ⊂ M . Using this, we may now

assume that ϕ(X) ∩ g(∂1Q) = ∅.

Let U ⊂ M be a closed tubular neighborhood of fβ(βP ), disjoint from X,

such that the boundary of U intersects f(P ) transversely. As in (10.6), we denote

Z := M \ IntU, P ′ := f−1(Z), f ′ := f |P ′ .

Notice that P ′ is a manifold with boundary and that f ′ is an embedding which

maps (P ′, ∂P ′) into (Z, ∂Z). Furthermore, ϕ maps (X, ∂X) into (Z, ∂Z). To prove

the corollary it will suffice to construct a diffeotopy Ψ′t : Z −→ Z rel ∂Z such

that Ψ′1(X) ∩ P ′ = ∅. By Theorem 10.2.3, the obstruction to the existence of such

a diffeotopy is the class α1(f ′, ϕ;Z) ∈ Ωfr
1 (pt.). If α1(f ′, ϕ;Z) is equal to zero, we

are done. So suppose that α1(f ′, ϕ;Z) = ξ where ξ is the non-trivial element in
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Ωfr
1 (pt.) ∼= Z/2. Denote by iZ : Z ↪→ M the inclusion map. By Lemma 10.4.1 there

exits an embedding φ : Sn+1 −→ Z such that:

– α1(f ′, φ;Z) = k · ξ where ξ ∈ Ωfr
1 (pt.) ∼= Z/2 is the standard generator,

– the embedding iZ ◦ φ : Sn+1 −→M is null-homotopic.

Since k is odd, we have α1(f ′, φ;Z) = ξ. We denote by ϕ̂ : X −→ M the

embedding obtained by forming the connected sum of ϕ(X) with iZ ◦ ϕ(Sn+1) along

the thickening of an embedded arc that is disjoint from f(P ), U , and X. Since

iZ ◦ ϕ : Sn+1 −→ M is null-homotopic, it follows that ϕ̂ is homotopic, relative to

∂X, to the original embedding ϕ. We have

α1(f ′, ϕ̂;Z) = α1(f ′, ϕ;Z) + α1(f ′, φ;Z) = ξ + ξ = 0,

and so there exists a diffeotopy Ψ′t : Z → Z rel ∂Z such that Ψ′1(ϕ̂(X))∩ f ′(P ′) = ∅.

We then extend Ψ′t identically over M \ Z to obtain a diffeotopy

Ψ̂t : M −→M rel ∂M

such that Ψ̂1(ϕ̂(X)) ∩ f(P ) = ∅. Now, since ϕ is homotopic relative ∂X to the

embedding Ψ̂1 ◦ ϕ̂ and Ψ̂1(ϕ̂(X))∩ f(P ) = ∅, we may apply Lemma 10.2.4 to obtain

a diffeotopy

Ψt : M −→M rel ∂M

such that (Ψ1 ◦ ϕ(X)) ∩ f(P ) = ∅. This concludes the proof of the proposition.

We can now complete the proof of Theorem 10.5.1.
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Proof of Theorem 10.5.1. By hypothesis we have Λ1
k,k(f, g;M) = 0, and thus

Λ0
k(fβ, g;M) = 0, and so by Proposition 10.5.2 we may assume that fβ(βP ) ∩

g(Q) = ∅. Choose a closed tubular neighborhood U ⊂ M of fβ(βP ), disjoint from

g(Q), with boundary transverse to f(P ). As in (10.6) we denote,

Z := M \ IntU, P ′ := f−1(Z), and f ′ := f |P ′ . (10.7)

With these definitions, P ′ is an oriented manifold with boundary and

f ′ : (P ′, ∂P ′) −→ (Z, ∂Z)

is an embedding. Furthermore, since U was chosen to be disjoint from g(Q), we

have g(Q) ⊂ Z. Let g′ : (Q, ∂0) −→ (Z, ∂Z) denote the 〈k〉-embedding obtained by

restricting the codomain of g. To finish the proof, we then apply Proposition 10.5.3

to the embedding f ′ : (P ′, ∂P ′) −→ (Z, ∂Z) and 〈k〉-embedding g′ : (Q, ∂0Q) −→

(Z, ∂Z), to obtain a diffeotopy of Z (relative ∂Z) that pushes f ′(P ′) off of g′(Q).

This completes the proof of the theorem.

We now come to an important corollary. Recall from Section 6.3 the 〈k, k〉-

manifold Ak.

Corollary 10.5.4. Let f and g be exactly as in the statement of Theorem 10.5.1.

Suppose that the class Λ1
k,k(f, g;M) is equal to the class represented by the closed

1-dimensional 〈k, k〉-manifold +Ak. If k is odd then there exists a diffeotopy Ψt :

M −→ M rel ∂M such that the transverse pull-back (Ψ1 ◦ f) t g is diffeomorphic to

Ak.
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Proof. Since Λ1
k,k(f, g;M) is equal to the class represented by +Ak in ΩSO

1 (pt.)〈k,k〉,

it follows that f t g is diffeomorphic (as an oriented 〈k, k〉-manifold) to the

disjoint union of precisely one copy of +Ak together with some other oriented

〈k, k〉-manifold, that represents the zero element in ΩSO
1 (pt.)〈k,k〉. We may write

f(P ) ∩ g(Q) = A t Y, (10.8)

where

A ∼= +Ak and [Y ] = 0 in ΩSO
1 (pt.)〈k,k〉.

Let U ⊂M be a closed neighborhood of fβ(βP )∪A, disjoint from Y , with boundary

transverse to both f(P ) and g(Q). We then denote

Z := M \ Int(U), P ′ := f−1(Z), Q′ := g−1(Z). (10.9)

Notice that both P ′ and Q′ are 〈k〉-manifolds with

∂0P
′ = f−1(∂Z), ∂1P

′ = (f |∂1P )−1(Z), βP ′ = f−1
β (Z),

∂0Q
′ = g−1(∂Z), ∂1Q

′ = (g|∂1Q)−1(Z), βQ′ = g−1
β (Z).

We denote by

f ′ : (P ′, ∂0P
′) −→ (Z, ∂Z) and g′ : (Q′, ∂0Q

′) −→ (Z, ∂Z)

the 〈k〉-embeddings given by restricting f and g. By construction, the pull-back

f ′ t g′ is diffeomorphic as an oriented 〈k, k〉-manifold to Y , which represents the

zero element in ΩSO
1 (pt.)〈k,k〉. It follows that Λ1

k,k(f
′, g′;Z) = 0. By Theorem 10.5.1
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we obtain a diffeotopy Ψt : Z −→ Z rel ∂Z, such that Ψ1(f
′
(P ′)) ∩ g′(Q′) = ∅. This

concludes the proof.
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CHAPTER XI

IMMERSIONS AND EMBEDDINGS OF Z/K-MANIFOLDS

In this section we determine the conditions for when a 〈k〉-map can be

deformed to a 〈k〉-immersion or a 〈k〉-embedding. The techniques of this section

enable us to prove Theorem 5.4.1 (which is restated again in this section as

Theorem 11.6.1).

11.1. A Recollection of Smale-Hirsch Theory

Let N and M be smooth manifolds of dimensions n and m respectively.

Denote by Imm(N,M) the space of immersions N → M , topologized in the

C∞-topology. Let Immf (N,M) denote the space of bundle maps TN −→ TM

which are fibre-wise injective. Elements of the space Immf (N,M) are called formal

immersions. There is a map D : Imm(N,M) −→ Immf (N,M) defined by sending

an immersion φ : N −→ M to the bundle injection given by its differential

Dφ : TN −→ TM . The following theorem is proven in (1, Chapter III, Section

9) and is originally due to Hirsch and Smale.

Theorem 11.1.1. The if dim(N) < dim(M), then the map D : Imm(N,M) −→

Immf (N,M) is a weak homotopy equivalence. In the case that dim(N) = dim(M),

then D is a weak homotopy equivalence if N is an open manifold.

Let Îmm(N,M) denote the space of pairs (φ,v) ∈ Imm(N,M)×Maps(N, TM) that

satisfy:

i. π(v(x)) = φ(x) for all x ∈ N , where π : TM →M is the bundle projection,
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ii. for each x ∈ N , the vector v(x) is transverse to the vector subspace

Dφ(TxN) ⊂ Tφ(x)M,

where Dφ is the differential of φ.

Similarly, we define Îmm
f
(N,M) to be the space of pairs (ψ,v) ∈ Immf (N,M) ×

Maps(N, TM) which satisfy:

i. π(v(x)) = π(ψ(x)) for all x ∈ N , where π : TM → M is the bundle

projection,

ii. for all x ∈ N , the vector v(x) is transverse to the vector subspace

ψ(TxN) ⊂ Tπ(ψ(x))M.

There is a map

D̂ : Îmm(N,M) −→ Îmm
f
(N,M), (φ,v) 7→ (Dφ,v). (11.1)

The following is an easy corollary of Theorem 11.1.1.

Corollary 11.1.2. Suppose that dim(N) < dim(M). Then the map D̂ from (11.1)

is a weak homotopy equivalence.

11.2. The Space of 〈k〉-Immersions

We now proceed to prove a version of Theorem 11.1.2 for immersions of 〈k〉-

manifolds. For what follows, let M be a manifold of dimension m and let P be
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a 〈k〉-manifold of dimension p. We will need to construct a suitable space of 〈k〉-

immersions and formal 〈k〉-immersions.

Choose a collar embedding h : ∂1P×[0,∞) −→ P , with h−1(∂1P ) = ∂1P×{0}.

Denote by vh ∈ Γ∂1P (TP ) the inward pointing vector field along ∂1P determined by

the differential of the collar embedding h. Using vh we have maps,

R : Imm(P,M) −→ Îmm(∂1P,M), φ 7→ (φ|∂P , Dφ ◦ vh),

Rf : Immf (P,M) −→ Îmm
f
(∂1P,M), ψ 7→ (ψ|∂P , ψ ◦ vh).

(11.2)

The next lemma follows from the basic results of (1, Chapter III: Section 9).

Lemma 11.2.1. The map Rf is a Serre-fibration in the case that dim(P ) ≤

dim(M). The map R is a Serre-fibration in the case that dim(P ) < dim(M).

Let Φ̄ : ∂1P −→ βP be the map given by the composition

∂1P
Φ
∼=
// βP × 〈k〉

projβP // βP. Using Φ̄ we have a map

Tk : Îmm(βP,M) −→ Îmm(∂1P,M), (φ,v) 7→ (φ ◦ Φ̄, v ◦ Φ̄). (11.3)

Similarly, by using the differential DΦ̄ of Φ̄, we define a map

T fk : Îmm
f
(βP,M) −→ Îmm

f
(∂1P,M), (ψ,v) 7→ (ψ ◦DΦ̄, v ◦ Φ̄). (11.4)

Definition 11.2.1. We define Imm〈k〉(P,M) to be the space of pairs

(φ, (φ′,v)) ∈ Imm(P,M)× Îmm(βP,M)
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such that Tk(φ
′,v) = R(φ). Similarly we define Immf

〈k〉(P,M) to be the space of

pairs

(ψ, (ψ′,v)) ∈ Immf (P,M)× Îmm
f
(βP,M)

such that T fk (ψ′,v) = Rf (ψ).

Remark 11.2.1. Let (φ, (φ′,v)) ∈ Imm〈k〉(P,M). By construction, the

immersion φ : P −→ M is a 〈k〉-immersion and φ′ = φβ. The pair (φ′,v) is

completely determined by the 〈k〉-immersion φ and so, the space Imm〈k〉(P,M) is

homeomorphic to the subspace of Maps〈k〉(P,M) consisting of all 〈k〉-immersions

P →M .

Lemma 11.2.2. The following two commutative diagrams

Imm〈k〉(P,M) //

��

Imm(P,M)

R
��

Immf
〈k〉(P,M)

��

// Immf (P,M)

Rf
��

Îmm(βP,M)
Tk // Îmm(∂1P,M), Îmm

f
(βP,M)

T fk // Îmm
f
(∂1P,M),

are homotopy cartesian.

Proof. This follows immediately from Lemma 11.2.1 and the fact that both of the

diagrams are pull-backs.

Finally we may consider the map

Dk : Îmm〈k〉(P,M) −→ Îmm
f

〈k〉(P,M), (φ, (φ′,v)) 7→ (Dφ, (Dφ′,v)). (11.5)

We have the following theorem.

Theorem 11.2.3. Suppose that dim(P ) < dim(M). Then the map Dk of (11.5) is

a weak homotopy equivalence.
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Proof. The map from (11.5) induces a map between the two commutative squares

in Lemma 11.2.2. The maps between the entries on the bottom row and the

entries on the upper-right are weak homotopy equivalences by Theorem 11.1.1 and

Corollary 11.1.2. It then follows from Lemma 11.2.2 that the upper-left map (which

is (11.5)) is a weak homotopy equivalence.

11.3. Representing Classes of 〈k〉-Maps by 〈k〉-Immersions

Let P be a 〈k〉-manifold of dimension p and let h : ∂1 × [0,∞) −→ P be a

collar embedding with h−1(∂1P ) = ∂1P × {0}. We have a bundle map

Φ∗ : TP |∂1P −→ T (βP )⊕ ε1 (11.6)

given by the composition, TP |∂1P
∼= // T (∂1P )⊕ ε1

DΦ̄⊕Idε1 // T (βP )⊕ ε1, where

the first map is the bundle isomorphism induced by the collar embedding h. Using

this bundle isomorphism Φ∗, we define a new space T P̂ as a quotient of TP by

identifying two points v, v′ ∈ TP |∂1P ⊂ TP if and only if Φ∗v = Φ∗v′. With this

definition, there is a natural projection π̂ : T P̂ −→ P̂ which makes the diagram

TP

π
��

// T P̂

π̂��

P // P̂

(11.7)

commute. It is easy to verify that the projection map π̂ : T P̂ −→ P̂ is a vector

bundle and that the upper-horizontal map in the above diagram is a bundle map

that is an isomorphism on each fibre.

Definition 11.3.1. The 〈k〉-manifold P is said to be parallelizable if the induced

vector bundle π̂ : T P̂ → P̂ is trivial.
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Corollary 11.3.1. Let P be a parallelizable 〈k〉-manifold and let M be a manifold

of dimension greater than dim(P ). Let f : P −→ M be a 〈k〉-map and consider the

induced map f̂ : P̂ −→ M . Suppose that the pull-back bundle f̂ ∗(TM) −→ P̂ is

trivial. Then f is homotopic through 〈k〉-maps to a 〈k〉-immersion.

Proof. Since both T P̂ → P̂ and f̂ ∗(TM) → P̂ are trivial vector bundles and

dim(M) > dim(P ), we may choose a bundle injection T P̂ → f̂ ∗(TM) covering the

identity on P̂ , and hence a fibrewise injective bundle map ψ̂ : T P̂ −→ TM that

covers the map f̂ . Using the quotient construction from (11.7), the bundle map ψ̂

induces a unique formal 〈k〉-immersion ψ ∈ Immf
〈k〉(P,M) whose underlying 〈k〉-

map is f . It then follows from Theorem 11.2.3 that there exists a 〈k〉-immersion

φ ∈ Imm〈k〉(P,M) such that D(φ) is on the same path component as ψ. It then

follows that φ is homotopic through 〈k〉-maps to the map that underlies ψ, which is

f . This completes the proof of the corollary.

11.4. The Self-Intersections of a 〈k〉-Immersion

For what follows let M be a manifold of dimension m and let P be a 〈k〉-

manifold of dimension p. We will need to analyze the self-intersections of 〈k〉-

immersions P →M .

Definition 11.4.1. For M a manifold and P a 〈k〉-manifold, a 〈k〉-immersion f :

P −→M is said to be in general position if the following conditions are met:

i. The immersion fβ : βP →M is self-transverse.

ii. The restriction map f |Int(P ) : Int(P ) −→ M is a self-transverse immersion and

is transverse to the immersed submanifold fβ(βP ) ⊂M .
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Let f : P −→ M be a 〈k〉-immersion that is in general position. Let q̂ : P −→ P̂

denote the quotient projection and let 4̂P ⊂ P × P be the subspace defined by

setting

4̂P = (q̂ × q̂)−1(4P̂ ),

where 4P̂ ⊂ P̂ × P̂ is the diagonal subspace. It follows from Definition 11.4.1 that

the map

(f × f)|(P×P )\4̂P : (P × P ) \ 4̂P −→M ×M

is transverse to the diagonal submanifold 4M ⊂ M × M . We denote by Σf ⊂

(P × P ) \ 4̂P the submanifold given by

Σf :=

(
(f × f)|(P×P )\4̂P

)−1

(4M). (11.8)

By the techniques of Section 7.3, Σf has the structure of a 〈k, k〉-manifold with

∂1Σf = f |∂1P t f, ∂2Σf = f t f |∂1P , ∂1,2Σf = f |∂1P t f |∂1P ,
β1Σf = fβ t f, β2Σf = f t fβ, β1,2Σf = fβ t fβ.

The involution

P × P \ 4̂P −→ P × P \ 4̂P , (x, y) 7→ (y, x)

restricts to an involution on Σf ⊂ P × P \ 4̂P which we denote by

TΣf : Σf −→ Σf . (11.9)
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It is clear that the involution TΣf has no fixed-points. Since

∂1Σf ⊂ (∂1P )× P and ∂2Σf ⊂ P × (∂1P ),

it follows that

TΣf (∂1Σf ) ⊂ ∂2Σf and TΣf (∂2Σf ) ⊂ ∂1Σf .

If both M and P are oriented, then Σf obtains a unique orientation induced

from orientations on P and M in the standard way. Furthermore, TΣf preserves

orientation if m− p is even and reverses orientation if m− p is odd. We sum up the

observations made above into the following proposition.

Proposition 11.4.1. Let P be an oriented 〈k〉-manifold of dimension p and let M

be an oriented manifold of dimension m. Let f : P −→ M be a 〈k〉-immersion

which is in general position. Then the double-point set Σf has the structure of an

oriented 〈k, k〉-manifold of dimension 2p −m, equipped with a free involution TΣf :

Σf −→ Σf such that

TΣf (∂1Σf ) ⊂ ∂2Σf and TΣf (∂2Σf ) ⊂ ∂1Σf .

The involution TΣf preserves orientation if m− p is even and reverses orientation if

m− p is odd.

11.5. Modifying Self-Intersections

In this section, we develop a technique for eliminating the self-intersections

of a 〈k〉-immersion P → M by deforming the 〈k〉-immersion to a 〈k〉-embedding

via a homotopy through 〈k〉-maps. We will solve this problem in the special case
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that P is a 2-connected, oriented, (2n + 1)-dimensional 〈k〉-manifold and M is a

2-connected, oriented, (4n+ 1)-dimensional manifold and n ≥ 2.

By Proposition 11.4.1, if f : P −→ M is such a 〈k〉-immersion in general

position, then the double-point set Σf is a 1-dimensional 〈k, k〉-manifold with an

orientation preserving, involution T : Σf −→ Σf with no fixed points, such that

T (∂1Σf ) = ∂2Σf and T (∂2Σf ) = ∂1Σf .

We will need the following general result about such 1-dimensional, 〈k, k〉-manifolds

equipped with such an involution as above.

Lemma 11.5.1. Let N be a 1-dimensional, closed, oriented, 〈k, k〉-manifold.

Suppose that N is equipped with an orientation preserving, involution T : N −→ N

with no fixed points, such that

T (∂1N) = ∂2N and T (∂2N) = ∂1N.

Then,

β1N = β2N = +〈j〉 t −〈j〉

for some integer j.

Proof. We prove this by contradiction. Suppose that β1N = +〈j〉 t −〈l〉 where

j 6= l. Since T preserves orientation and T (∂1N) = ∂2N and T (∂2N) = ∂1N , it

follows that β2N = +〈j〉 t −〈l〉 as well.
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If we forget the 〈k, k〉-structure on N , then N is just an oriented, 1-

dimensional manifold with boundary equal to

∂1N t ∂2N = [(+〈j〉 t −〈l〉)× 〈k〉]
⋃

[(+〈j〉 t −〈l〉)× 〈k〉]. (11.10)

By reorganizing the above union, we see that the zero-dimensional manifold in

(11.10) is equal to +〈2 · k · j〉 t −〈2 · k · l〉.

However since j 6= l, there is no oriented, one dimensional manifold with

boundary equal to +〈2 · k · j〉 t −〈2 · k · l〉. This yields a contradiction. This proves

the lemma.

Proposition 11.5.2. Let P be a closed 〈k〉-manifold of dimension 2n + 1, let M

be a manifold of dimension 4n + 1 and let f : P −→ M be a 〈k〉-immersion.

Then there is a regular homotopy (through 〈k〉-immersions) of f to a 〈k〉-immersion

f ′ : P −→M , such that

β1Σf ′ = β2Σf ′ = f ′β(βP ) ∩ f ′(Int(P )) = ∅.

Proof. First, by choosing a small, regular homotopy, we may assume that f is in

general position. Since βP is a closed 2n-dimensional manifold and 2n < 4n+1
2

, the

fact that f is in general position implies that fβ : βP −→M is an embedding.

Furthermore, we may assume that fβ(βP ) is disjoint from the image of the

double point set of the immersion f |Int(P ) : Int(P ) −→M .

Consider the intersection fβ(βP ) ∩ f(Int(P )). We choose a closed, disk

neighborhood U ⊂ Int(P ) that contains f |−1
Int(P )(fβ(βP )), such that the restriction

f |U : U −→ M is an embedding (we may choose U so that f |U is an embedding

because fβ(βP ) is disjoint from the image of the double point set of f |Int(P )). By
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Lemma 11.5.1 it follows that there is a diffeomorphism

f |−1
U (fβ(βP )) ∼= β1Σf

∼= +〈j〉 t −〈j〉

for some integer j, and so, the oriented, algebraic intersection number associated to

the intersection f(U) ∩ fβ(βP ) is equal to zero. By the Whitney trick, we may find

an isotopy through embeddings φt : U −→M with

φ0 = f |U and φt|∂U = f |∂U for all t ∈ [0, 1]

such that φ1(U) ∩ fβ(βP ).

We then may extend this isotopy over the rest of P by setting it equal to f

for all t ∈ [0, 1] on the compliment of U ⊂ P . This concludes the proof of the

lemma.

Corollary 11.5.3. Let P be a 2-connected, closed, oriented 〈k〉-manifold of

dimension 2n + 1. Let M be a 2-connected, oriented, manifold of dimension 4n + 1,

and let f : P −→ M be a 〈k〉-immersion. Then f is homotopic through 〈k〉-maps to

a 〈k〉-embedding.

Remark 11.5.1. In the statement of the above corollary, we are not asserting that

any 〈k〉-immersion f : P −→ M is regularly homotopic to a 〈k〉-embedding. The

homotopy through 〈k〉-maps constructed in the proof of this result may very well

not be a homotopy through 〈k〉-immersions.

Proof. Assume that f is in general position. By the previous proposition we may

assume that fβ : βP −→ M is an embedding and that β1Σf = ∅. We may choose a
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collar embedding

h : ∂1P × [0,∞) −→ P with h−1(∂1P ) = ∂P1 × {0},

such that for each i ∈ 〈k〉, the restriction map

f |h(∂i1P×[0,∞)) : h(∂i1P × [0,∞)) −→M

is an embedding, where ∂i1P = Φ−1(βP × {i}). Now let U ⊂ M be a closed tubular

neighborhood of fβP (βP ) ⊂M , disjoint from the image f(P \h(∂1P × [0,∞))), such

that the boundary ∂U is transverse to f(P ). We define,

Z := M \ Int(U), P ′ := f−1(Z), f ′ := f |P ′ . (11.11)

By construction, P ′ and Z are a manifolds with boundary, f ′ maps ∂P ′ into ∂Z,

and f ′(Int(P ′)) ⊂ Int(Z). The corollary will be proven if we can find a homotopy of

f ′, relative ∂P ′, to a map

f ′′ : (P ′, ∂P ′) −→ (Z, ∂Z)

which is an embedding. Using the 2-connectivity of both P ′ and Z (and the

dimensional conditions on P ′ and Z), the existence of such a homotopy follows

from (12, Theorem 4.1) (or from (19, Theorem 1.1)).
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11.6. Representing 〈k〉-Maps by 〈k〉-Embeddings

We are now in a position to prove Theorem 5.4.1 from Section 5.4. It follows

as a corollary of the results developed throughout this section. Here is the theorem

restated again for the convenience of the reader.

Theorem 11.6.1. Let n ≥ 2 be an integer and let k > 2 be an odd integer. Let

M be a 2-connected, oriented manifold of dimension 4n + 1. Then any 〈k〉-map

f : V 2n+1
k −→M is homotopic through 〈k〉-maps to a 〈k〉-embedding.

Proof. Since M is 2-connected, it follows that the map f̂ : V̂ 2n+1
k −→ M (which

is the map induced by the 〈k〉-map f), extends to a map M(Z/k, 2n) −→ M ,

where M(Z/k, 2n) is a Z/k-Moore-space (see Lemma 5.3.1). It then follows that

the vector bundle f̂ ∗(TM) −→ V̂ 2n+1
k is classified by a map V̂ 2n+1

k −→ BSO that

factors through a map M(Z/k, 2n) −→ BSO. When k is odd, the Z/k-homotopy

group π2n(BSO;Z/k) is trivial. It follows that the bundle f̂ ∗(TM) −→ P̂ is

trivial. Now, it is easy to verify that the 〈k〉-manifold V 2n+1
k is parallelizable as

a 〈k〉-manifold (see Definition 11.3.1). It then follows from Corollary 11.3.1 that

the map f is homotopic through k-maps to a 〈k〉-immersion, which we denote by

f ′ : V 2n+1
k −→ M . The proof of the theorem then follows by applying Corollary

11.5.3 to the 〈k〉-immersion f ′.
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