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DISSERTATION ABSTRACT

Li-An Daniel Wang

Doctor of Philosophy

Department of Mathematics

June 2012

Title: Multiplier Theorems on Anisotropic Hardy Spaces

We extend the theory of singular integral operators and multiplier theorems to

the setting of anisotropic Hardy spaces. We first develop the theory of singular integral

operators of convolution type in the anisotropic setting and provide a molecular

decomposition on Hardy spaces that will help facilitate the study of these operators.

We extend two multiplier theorems, the first by Taibleson and Weiss and the second by

Baernstein and Sawyer, to the anisotropic setting. Lastly, we characterize the Fourier

transforms of Hardy spaces and show that all multipliers are necessarily continuous.
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CHAPTER I

INTRODUCTION

The most fundamental space in harmonic analysis is the Lebesgue space Lp(Rn),

defined for p > 0 by the collection of functions that are finite under the Lp-norm:

‖f‖Lp =

(∫
Rn
|f(x)|pdx

)1/p

<∞.

For a function K that is locally integrable away from the origin, we define a singular

integral operator by Tf = K ∗ f . A fundamental problem is the study of singular

integral operators on Lp. Denote B(x, r) = {y ∈ Rn : |x − y| < r}. To facilitate the

study of such operators, one uses the Hardy-Littlewood maximal operator, defined

by

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy.

As is well known, M is bounded Lp → Lp for p > 1.

However, for p = 1, M is only weakly bounded on L1. If E ⊂ Rn is measurable,

denote |E| as the Lebesgue measure of E. Then there exists a constant C = C(n, p)

so that for all α > 0 and f ∈ L1,

|{x ∈ Rn : Mf(x) > α}| ≤ C
‖f‖L1

α
.

where |E| denotes the Lebesgue measure of a set E. In fact, elementary considerations

show that if f ∈ L1 and Mf ∈ L1, then f must be identically 0. Analogous to this,

many singular integral operators are also bounded on Lp when p > 1, but only weakly

bounded on L1. Furthermore, when p < 1, the space Lp is even more pathological, as
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it may include non-integrable functions. One example is the function f(x) = 1
x
1[−1,1],

which is in Lp(R) for any p < 1, but f itself is not locally integrable. The natural

replacement turns out to be the Hardy space Hp(Rn).

1.1. Hardy Spaces

We now introduce Hardy spaces and explain why they are the natural spaces to

consider when p ≤ 1. Hardy spaces first originated in complex analysis, characterized

as spaces of holomorphic functions on the unit disk or the upper half plane.

But complex-analytic methods were not readily generalizable to higher dimensions.

Through the ground breaking work of Stein and Weiss [SW68] and Fefferman and

Stein [FS72], the theory of Hp spaces was reformulated in the setting of real analysis,

thus opening it up to a broad range of new approaches. We will now briefly describe

three such characterizations of Hp: The maximal characterization [FS72], the atomic

characterizations [Coi74b], and the Littlewood Paley characterization [FJ90]. After

the introduction of singular integrals, we will also briefly describe the singular integral

characterization of Hp.

1.1.1. Maximal Characterization of Hp

Recall that the Schwartz class S(Rn) is the collection of functions φ ∈ C∞ such

that for all multi-indices α, β,

‖φ‖α,β = sup
x∈Rn
|xα∂βφ(x)| <∞.

We denote S ′(Rn) as the dual space of S, which we call the class of tempered

distributions. Let φ̃(y) = φ(−y) be the reflection operator and Txφ(y) = φ(y − x)
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be the translation operator. If f ∈ S ′ and φ ∈ S, we use the bracket notation 〈f, φ〉

to denote the distribution f is acting on φ. By defining the convolution f ∗ φ by

(f ∗ φ)(x) = 〈f, Tx(φ̃)〉, we say f ∈ S ′(Rn) is bounded if f ∗ φ ∈ L∞ whenever φ ∈ S.

Note that this definition is a generalization of the convolution between two functions

in L1.

With their origins in complex analysis, Hp spaces initially relied on Poisson

integrals in their definition. If Γ is the classical Gamma function, denote cn =
Γ(n+1

2
)

π(n+1)/2 .

The Poisson kernel on Rn is defined by

P (x) =
cn

(1 + |x|2)
n+1

2

.

We define the (isotropic) dilation by Pt(x) = t−nP (x/t). With this kernel, we define

the Poisson integral of f ∈ S ′ as a function on the upper half plane Rn+1
+ = {(x, t) :

x ∈ Rn, t > 0}:

u(x, t) = (f ∗ Pt)(x),

and the non-tangential maximal function of u by

u∗(x) = sup
t>0

sup
y∈B(x,t)

|u(y, t)|.

Definition 1.1. Let 0 < p < ∞. Suppose f ∈ S ′(Rn) is a bounded distribution.

Then f ∈ Hp(Rn) if u∗ ∈ Lp.

This definition is restrictive, due to the use of the Poisson integral. It is the

key observation in [FS72] that the Poisson kernel can be replaced by any non-trivial
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smooth function. If Φ ∈ S, we define the radial maximal function by

M0
Φf(x) = sup

t>0
|(f ∗ Φt)(x)|.

Now let F = {‖ · ‖αi,βi}αi,βi be any finite collection of seminorms on S. We denote

SF = {Φ ∈ S : ‖Φ‖α,β ≤ 1 for all ‖ · ‖α,β ∈ F}.

Given such a collection F of seminorms, we define the grand maximal function

associated with F by

M0
Ff(x) = sup

Φ∈SF
M0

Φf(x).

The key connection between MΦ and MF is that the two are actually comparable in

Hp-norm, made concrete by the following theorem of [FS72]. For norms on a space

X, we denote ‖f‖X ' ‖g‖X by the existence of two constants, independent of f and

g, so that

c1‖f‖X ≤ ‖g‖X ≤ c2‖f‖X .

If Φ ∈ S, we define the isotropic dilation by Φt(x) = t−nΦ(x/t), analogous to the

Poisson kernel. The following theorem is originally from Fefferman and Stein [FS72].

The present form is taken from Chapter 3, Theorem 1 of Stein [Ste93].

Theorem 1.1. Let p ∈ (0,∞] and f ∈ S ′. Then the following conditions are

equivalent:

1. There is Φ ∈ S with
∫

Φ 6= 0 so that M0
Φf ∈ Lp(Rn).

2. There is a finite collection F of seminorms so that M0
Ff ∈ Lp(Rn).

3. The distribution f is bounded and u∗ ∈ Lp(Rn).
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With this theorem, we say f ∈ Hp if any one of the above three conditions holds,

and for a fixed Φ with
∫

Φdx 6= 0, we have ‖f‖Hp ' ‖M0
F‖Lp ' ‖M0

Φf‖Lp ' ‖u∗‖Lp ,

and any one of these can serve as the Hardy space norm. Furthermore, Hp generalizes

Lp as follows: When p > 1, Hp = Lp. If p = 1, H1 ⊂ L1. And when p < 1, Hp and

Lp are not compatible, as there exist f ∈ Hp that are not even functions, and any

non-locally integrable functions in Lp will not be in S ′, and therefore will not be in

Hp. Here is an example illustrating this difference.

Example 1.1. Let x ∈ Rn. The Dirac-delta distribution δx is defined by δx(ϕ) = ϕ(x)

for ϕ ∈ S. Let f = δ−1−δ1 ∈ S ′(R). We will show f ∈ Hp(R) for p ∈ (1/2, 1). To see

this, we need to show that there exists ϕ ∈ S(R),
∫
ϕ 6= 0, such that M0

ϕf ∈ Lp(R).

We let ϕ ∈ S that is compactly supported:

supp(ϕ) = [−2, 2], and ϕ

∣∣∣∣
[−1,1]

= 1.

We denote C(ϕ) = max{‖ϕ‖∞, ‖ϕ′‖∞}. The maximal operator is then given by:

M0
ϕf(x) = sup

t>0

∣∣∣∣1t
(
ϕ

(
x− 1

t

)
− ϕ

(
x+ 1

t

))∣∣∣∣ .
Fix x ∈ R. Since the support of ϕ is in [−2, 2], we have

ϕ

(
x− 1

t

)
= 0 if t <

|x− 1|
2

ϕ

(
x+ 1

t

)
= 0 if t <

|x+ 1|
2

.

Therefore, in estimating M0
ϕf(x), we only need to consider t ≥ |x−1|

2
or t ≥ |x+1|

2
.
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1. Now suppose |x| > 2. Then for each t, by the Mean Value Theorem, we have

ξ = ξ(x, t) ∈ (x−1
t
, x+1

t
) such that:

∣∣∣∣2t
(
ϕ

(
x− 1

t

)
− ϕ

(
x+ 1

t

))∣∣∣∣ =
2

t2

∣∣∣∣t(ϕ(x− 1

t

)
− ϕ

(
x+ 1

t

))∣∣∣∣ =
2

t2
|ϕ′(ξ)|.

Let Cϕ = ‖ϕ‖∞. With our prior restriction on t, we then have:

sup
t>0
|(ϕt ∗ f)(x)| ≤ sup

t≥max(
|x−1|

2
,
|x+1|

2

1

t2
|ϕ′(ξ)| ≤


Cϕ
|x−1|2 if x < 0

Cϕ
|x+1|2 if x > 0.

We conclude that if p > 1/2, then

∫
|x|>2

|Mϕf(x)|pdx <∞.

So the “tail” of Mϕf is taken care of by the fact that ϕ is compactly supported

and ϕ ∈ C1(R).

2. Now suppose |x| ≤ 2. Then since ϕ is bounded, we have:

sup
t>0
|ϕt ∗ f(x)| ≤


Cϕ
|x+1| if − 2 ≤ x ≤ 0

Cϕ
|x−1| if 0 ≤ x ≤ 2.

We conclude that if p ∈ (0, 1), then

∫
[−2,2]

|Mϕf(x)|pdx ≤
∫ 0

−2

Cϕ
|x+ 1|p

dx+

∫ 2

0

Cϕ
|x− 1|p

dx <∞.
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3. Now we show f 6∈ Hp for p ≥ 1. To do this, we make one small restriction on

ϕ by requiring ϕ(−1) 6= 0. (In light of the maximal characterization, such a

change will not affect whether f ∈ Hp). Given x, set t = |x−1|. We then have:

Mϕf(x) ≥ 1

|x− 1|
·
∣∣∣∣ϕ( x− 1

|x− 1|

)
− ϕ

(
x+ 1

|x− 1|

)∣∣∣∣ =
1

|x− 1|
·
∣∣∣∣ϕ (−1)− ϕ

(
x+ 1

|x− 1|

)∣∣∣∣ .
Our goal is to ‘do away’ with one of the ϕ-terms above so the expression above

is approximately 1
|x−1| for x near 1. To do this, we first note that as x → 1−,

x+1
|x−1| → ∞. Formally, for every ε > 0, there exists δ > 0 such that |x − 1| < δ

implies ∣∣∣∣ϕ( x+ 1

|x− 1|

)∣∣∣∣ < ε.

Making sure ε is small enough, we can find a δ > 0 such that whenever 1− δ <

x < 1,

Mϕf(x) ≥ 1

|x− 1|
· |(|ϕ((−1) | − ε)| = Cϕ

|x− 1|
.

Therefore we have

∫ 1

1−δ
Mϕf(x)dx ≥

∫ 1

1−δ

Cϕ
|x− 1|

dx =∞.

This shows f 6∈ H1(R), or any Lp for p ≥ 1.

4. Now to see why we require p > 1/2, we will look at the long-term behavior of

Mϕf(x). It suffices to show there exists one ϕ ∈ S for which Mϕf 6∈ Lp. With

our previous ϕ, we make one more requirement, namely, that ϕ′(1) > 0. Then

by the Mean Value Theorem, for a fixed x and t, there exists ξ ∈ (x−1
t
, x+1

t
)

7



such that

2

t

∣∣∣∣ϕ(x− 1

t

)
− ϕ

(
x+ 1

t

)∣∣∣∣ =
2

t2
ϕ′(ξ).

We set t = |x− 1|. Then as x→∞, the interval ξ is from shrinks:

ξ ∈
(
x− 1

|x− 1|
,
x+ 1

|x− 1|

)
=

(
1,

x+ 1

|x− 1|

)
→ {1}.

Since ϕ′ is continuous at 1, if ε > 0 is small enough, then there exists N > 0

such that whenever x > N , ξ ∈ (1, x+1
|x−1|) implies |ϕ′(ξ)−ϕ′(1)| < ε, or |ϕ′(ξ)| >

ϕ′(1)− ε > 0. All together, for such an ε and N , and x > N , we have

Mϕf(x) ≥ Cϕ
|x− 1|2

.

Therefore if 2p ≤ 1, or p ≤ 1/2, we have

∫ ∞
N

(Mϕf(x))pdx ≥
∫ ∞
N

Cϕ
|x− 1|2p

dx =∞.

This shows f 6∈ Hp(R) for any p < 1/2.

Of course, it is not surprising that f 6∈ Lp since elements in Lp are defined

almost everywhere, while the Dirac-delta masses are concentrated at two points.

This immediately rules out the possibility that f be represented by locally integrable

functions.

1.1.2. Littlewood-Paley Characterization

The Littlewood-Paley characterization of Hp provides another unifying view on

why Hp naturally replaces Lp when p ≤ 1. Furthermore, this generalization also

unites Sobolev and Lipschitz spaces, as shown by the work of Frazier and Jawerth
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[FJ90], though it follows the work of many others in both classical harmonic analysis

and wavelet theory.

We briefly describe the Hp-Lp connection. Let Ψ ∈ S(Rn) be radial with Fourier

transform Ψ̂ is supported in the annulus 1
2

+ 1
10
≤ |ξ| ≤ 2− 1

10
, and for all ξ 6= 0,

∑
j∈Z

Ψ̂(2−jξ) = 1.

Associated with this bump function, we define

∆j(f) = Ψ2−j ∗ f.

Then following characterization of Hp spaces is originally due to Frazier and Jawerth

[FJ90]. Its present form is taken from Grafakos [Gra09], Section 6.4.6.

Theorem 1.2. Let Ψ and ∆j be as above, and let 0 < p ≤ 1. Then there exists a

constant C = C(n, p,Ψ) so that for all f ∈ Hp(Rn),

∥∥∥∥∥∥
(∑
j∈Z

|∆j(f)|2
)1/2

∥∥∥∥∥∥
Lp

≤ C‖f‖Hp .

Conversely, suppose a tempered distribution f satisfies

∥∥∥∥∥∥
(∑
j∈Z

|∆j(f)|2
)1/2

∥∥∥∥∥∥
Lp

<∞.

Then there exists a unique polynomial Q such that f−Q ∈ Hp, satisfying the estimate

‖f −Q‖Hp ≤ C

∥∥∥∥∥∥
(∑
j∈Z

|∆j(f)|2
)1/2

∥∥∥∥∥∥
Lp

.

9



This characterization is generalized in Triebel-Lizorkin spaces. If α ∈ R and

0 < p, q ≤ ∞ and f ∈ S ′, we say f ∈ Ḟα,q
p

‖f‖Ḟα,qp
=

∥∥∥∥∥∥
(∑
j∈Z

(2jα|∆j(f)|)q
)1/q

∥∥∥∥∥∥
Lp

<∞.

In light of this, we have

Ḟ 0,2
p =


Lp if 1 < p <∞,

Hp if 0 < p ≤ 1.

In other words, under the Littlewood-Paley decomposition, Hp and Lp are unified

under one definition, as is the case of the maximal characterization. This again

shows Hp is the natural replacement for Lp when p ≤ 1.

1.1.3. Atomic Decomposition of Hp

The next characterization of Hp, through the work of Coifman [Coi74b] and

Latter [Lat78], uses a special type of functions called atoms that provides a

decomposition of distributions in Hp. We denote the floor of x by bxc, defined as the

largest integer k such that k ≤ x. Let p ∈ (0, 1] and 1 ≤ q ≤ ∞, satisfying p < q. A

function a is a (p, q) atom on Rn if a is supported on a ball B, and satisfies

1. The size condition: ‖a‖Lq ≤ |B|
1
q
− 1
p

2. The vanishing moment condition: For all |α| ≤ N =
⌊
n(1

p
− 1)

⌋
, we have∫

a(x) xαdx = 0.

If q =∞, the size condition takes the form ‖a‖∞ ≤ |B|−1/p.

10



Remark 1.1. We now explain the importance of both conditions. For simplicity,

suppose a(x) is a (p, 2) atom.

1. The exponent of |B| is negative, so the larger the support of a(x), the smaller

its L2-norm, and vice versa. This is a crucial fact if we consider the previous

example of f = δ−1 − δ1 ∈ S. Each Dirac-delta mass is, essentially, an

approximation of identity at the points x = −1 and x = 1. Classically, we

can duplicate the Dirac-delta mass at x = 0 by taking two smooth functions

f, ϕ ∈ S with
∫
Rn ϕ dx = 1. Then it is well-known that

lim
ε→0

f ∗ ϕε = f everywhere.

In particular, as ε → 0, the support of ϕε(x) = ε−1ϕ(x/ε) is shrinking, while

its L∞ norm is going to ∞, exhibiting the same behavior as atoms. This is not

surprising, as we expect the atoms to be building blocks of Hp.

2. The vanishing moment condition is also crucial. As we will see later when we

estimate f̂ , a a necessary condition for f ∈ Hp is that f̂(0) = 0. In fact,

we require |f̂(ξ)| ≤ C|x|n( 1
p
−1), so the order of 0 at the origin necessitates the

vanishing moment conditions.

The atomic decomposition of Hp(R) is originally due to Coifman [Coi74b].

The case of Hp(Rn) is due to Latter [Lat78]. The following form of the atomic

decomposition is from Stein [Ste93], Chapter 3, Theorem 2.

Theorem 1.3. Let p ∈ (0, 1] and 1 ≤ q ≤ ∞, satisfying p < q. A distribution f ∈ S ′

is in Hp(Rn) exactly when there exists a sequence {λj} ∈ `p and (p, q) atoms {aj} so

11



that

f =
∞∑
j=1

λjaj

with the convergence in Hp, i.e.,

lim
N→∞

∥∥∥∥∥f −
N∑
j=1

λjaj

∥∥∥∥∥
Hp

= 0.

Furthermore, we have

‖f‖Hp ' inf


(
∞∑
j=1

|λj|p
)1/p

: f =
∞∑
j=1

λjaj

 ,

with the infimum taken over all possible decompositions of f .

The most direct proof of the atomic decomposition uses (p,∞) atoms. By

showing every (p,∞) atom is also a (p, q) atom, it is easy to show that the

decomposition holds for (p, q) atoms for any p and q. Because the decomposition

into (p,∞) atoms is the most accessible, in much of the literature, to prove the

boundedness of an operator T : Hp → Y on a normed space Y , one first proves that

for all (p,∞) atoms a,

‖Ta‖Y ≤ C, (1.1)

with C independent of the atom, and extends this estimate to all f ∈ Hp as follows.

With f =
∑

j λjaj decomposed using (p,∞) atoms, one wishes the following were

true:

‖Tf‖pHp =

∥∥∥∥∥∑
j

λjT (aj)

∥∥∥∥∥
p

Hp

≤
∑
j

|λj|p‖Taj‖pHp ≤ C
∑
j

|λj|p ≤ C‖f‖pHp .
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However, the first equality above does not hold in general since the sum is infinite.

In fact, Bownik provided an example in [Bow05] of an operator that is uniformly

bounded on (p,∞) atoms but is not bounded on Hp.

To overcome this, we observe that for any q such that 1 ≤ q ≤ ∞ (and p < q if

p = 1), the collection of finite combinations of (p, q) atoms, Hp,q
fin, with the norm

‖f‖Hp,q
fin

= inf


(

N∑
j=1

|λj|p
)1/p

: f =
∑
j

λjaj

 ,

is dense in Hp. Here, the infimum taken over all possible finite decompositions. Meda,

Sjögren, and Vallarino [MSV08] showed that if q <∞, then ‖f‖Hp,q
fin
' ‖f‖Hp . Then

to prove T : Hp → Y is bounded, it suffices to show T : Hp,q
fin → Y is bounded.

With each f ∈ Hp,q
fin admitting a finite atomic decomposition, we can pass T directly

through the summation, and indeed, it suffices to prove (1.1) for (p, q) atoms. The

equivalence ‖f‖Hp,q
fin
' ‖f‖Hp for q < ∞ has been extended to a number of settings,

most notably the weighted anisotropic setting in [BLYZ08], which also includes our

anisotropic setting. For most of our results on boundedness of operators, we will

prove (1.1) for (p, 2) atoms and Y = Lp or Hp.

1.2. Singular Integral Operators

Having defined Hardy spaces, we now give a general introduction to singular

integral operators. Given a set E ∈ Rn, we denote Ec = Rn\E as the complement of

E.

Definition 1.2. Suppose K ∈ S ′. Then the operator Tf(x) = (K ∗ f)(x), initially

defined on the Schwartz class S(Rn), is a singular integral operator if K̂ ∈ L∞(Rn)

and K coincides with a function k ∈ L1
loc(Rn\{0}), there exists a constant CK such
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that such that for all y ∈ Rn,

∫
B(0,2|y|)c

|K(x− y)−K(x)|dx ≤ CK . (1.2)

Condition (1.2) is called Hörmander’s condition.

Remark 1.2. We briefly mention the consequences of the definition of a singular

integral operator. Details can be found in Chapter II.5 of [GCRdF85].

1. If K ∈ S ′ and f ∈ S(Rn), the convolution K ∗f ∈ C∞ has, at most, polynomial

growth.

2. By requiring K̂ ∈ L∞, we can extend T to be a bounded operator on L2(Rn),

with ‖T‖L2→L2 = ‖K̂‖L∞ .

3. Hörmander’s condition is the key ingredient in showing T is also weakly bounded

on L1(Rn): There is a constant C such that for all α > 0,

|{x : |Tf(x)| > α}| ≤ C
‖f‖L1

α
.

4. With T : L1(Rn) → L1,∞(Rn) weakly bounded and T : L2(Rn) → L2(Rn)

(strongly) bounded, we can apply an interpolation result to obtain boundedness

of T : Lp(Rn) → Lp(Rn) for p ∈ (1, 2). A duality argument then gives

boundedness for p ∈ (2,∞).

When p ≤ 1, we can replace Lp by the Hardy space Hp, on which the

singular integral operator can be expected to be bounded. In particular, for p = 1,

T : H1(Rn) → L1(Rn) is bounded. However, we will need additional conditions on

T if T : H1(Rn) → H1(Rn) is to be bounded. This is not surprising, as H1(Rn)
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is a subspace of L1(Rn), so showing Tf ∈ H1 for f ∈ H1 will require additional

assumptions on K. We summarize what we have so far with Table 1.1.

TABLE 1.1. Singular Integral Operators I

+ K̂ ∈ L∞ + Hörmander

T : L2 → L2 Bounded Bounded
T : L1 → L1,∞ Weakly Bounded
T : Lp → Lp, for p ∈ (1,∞) Bounded
T : H1 → L1 Bounded

We now address the following questions.

Q1: Under what additional conditions on K will T be bounded from H1 to H1?

Q2: If p ∈ (0, 1), under what additional conditions on K will T be bounded from

Hp to Lp and to Hp?

The answers to these two questions are regularity conditions. With additional

regularity on K, we will indeed have boundedness Hp → Lp for values of p not

too close to 0. The closer we want the values of p to be 0, the more regularity will be

required. We now state the regularity conditions.

Definition 1.3. Suppose Tf = K ∗ f is a singular integral operator.

1. We say T is regular if the function K ∈ L1
loc(Rn\{0}) satisfies

|K(x)| ≤ B|x|−n for x ∈ Rn\{0} (1.3)

|K(x− y)−K(x)| ≤ B|y| |x|−(n+1) for |x| > 2|y| > 0. (1.4)

2. If T is regular, we say T has additional regularity of order m if the kernel K is

in Cm+1(Rn\{0}), and there exists C such that for all multi-index β such that
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|β| ≤ m+ 1 and x 6= 0, we have

|∂βK(x)| ≤ C|x|−(n+|β|). (1.5)

The constant C is independent of x and β.

The following theorem is taken from [GCRdF85], Chapter III.7.

Theorem 1.4. Suppose T is a singular integral operator, with kernel K.

1. If T is regular, then T : Hp → Lp is bounded if n
n+1

< p ≤ 1.

2. If T has additional regularity of order m, (i.e., T satisfies (1.3), (1.4), and

(1.5)), then T : Hp → Lp is bounded if n
n+m+1

< p ≤ 1. Furthermore, T : Hp →

Hp is also bounded for the same values of p.

Classically, the proof of each part of the theorem starts by proving ‖Ta‖Lp and

‖Ta‖Hp are uniformly bounded for (p,∞) atoms. The second, more involved part,

is to show the operator T can be passed through the infinite atomic decomposition

because of the regularity condition. But in light of the finite atomic decomposition,

it suffices to prove the uniform boundedness on atoms. Table 1.2 incorporates the

new information.

TABLE 1.2. Singular Integral Operators II

Range of p Spaces K ∈ S ′ With With + Additional

K̂ ∈ L∞ Hörmander Regularity k- Regularity

p = 2 L2 → L2 Bounded Bounded Bounded Bounded
p = 1 L1 → L1,∞ Weakly Bdd Weakly Bdd Weakly Bdd

1 < p <∞ Lp → Lp Bounded Bounded Bounded
n
n+1

< p ≤ 1 Hp → Lp Bounded Bounded
n

n+m+1
< p ≤ 1 Hp → Lp Bounded

n
n+m+1

< p ≤ 1 Hp → Hp Bounded
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1.2.1. Singular Integral Characterization of Hp

We now provide one more characterization of Hp using singular integral

operators. Classically, the Hilbert transform Hf = p.v.

∫
f(y)

x− y
dy is known to be

weakly bounded on L1(R). The Hardy space H1(R) was defined to be all f ∈ L1(R)

such that Hf ∈ L1(R). This differs from the action of the Hardy-Littlewood maximal

operator M , for which Mf ∈ L1 only if f = 0. For n ≥ 2, H1(Rn) can be formulated

accordingly by generalizing the Hilbert transform using the Riesz transforms Rj. If

cn = Γ(n+1
2

)/π
n+1

2 , the Riesz transforms are defined by

Rj(f)(x) = cn p.v.

∫
xj − yj
|x− y|n+1

f(y)dy,

These are natural generalizations of the Hilbert transform in n dimensions. The

following result is due to Stein and Weiss [SW68]. Its present form is taken from

Grafakos [Gra09], Section 6.7.4.

Theorem 1.5. For n ≥ 2, there exists a constant Cn such that for f ∈ L1(Rn), we

have

Cn‖f‖H1 ≤ ‖f‖L1 +
n∑
k=1

‖Rk(f)‖L1 .

When n = 1,

C1‖f‖H1 ≤ ‖f‖L1 + ‖H(f)‖L1 ,

for all f ∈ L1.
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This is a very involved result that uses the Poisson kernel extensively. Given

f ∈ L1, we define n+ 1 functions

u1(x, t) = (Pt ∗R1(f))(x),

...

un(x, t) = (Pt ∗Rn(f))(x),

un+1(x, t) = (Pt ∗ f)(x).

This system satisfies the generalized Cauchy-Riemann equations:

n+1∑
j=1

∂uj
∂xj

= 0,
∂uj
∂xk
− ∂uk
∂xj

= 0 for k, j ∈ {1, . . . , n+ 1} with k 6= j.

By defining F = (u1, . . . , un+1), the function

|F |q =

(
n+1∑
j=1

|uj|2
)q/2

is subharmonic when q ≥ (n − 1)/n, that is, ∆(|F |q) ≥ 0 on Rn+1
+ . This property,

called harmonic majorization, is the key step in the singular integral characterization

of H1. The formulation of Hp(Rn) can also be achieved with singular integrals, and

is used in [BS85] to extend multiplier theorems from Hp → Lp to Hp → Hp.

1.3. Multiplier Theorems

Singular integral operators can be studied from the frequency side, resulting in

multiplier operators. Results of these nature, which do not start with conditions on

the kernel K, are called multiplier theorems. Instead, the starting point is conditions
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on m = K̂ where K̂ denotes the Fourier transform of K. If K ∈ L1(Rn), then the

transform is given by the usual formula

K̂(ξ) =

∫
Rn
K(x)e−2πixξdx.

If K ∈ S ′, then its Fourier transform is defined by duality: For φ ∈ S,

〈K̂, φ〉 = 〈K, φ̂〉.

will give a bounded operator on appropriate pairs of spaces. To start, we define what

a multiplier operator is.

Definition 1.4. Let m ∈ L∞(Rn). The multiplier operator Tm is defined initially on

S(Rn) by the formula

Tmf = (f̂m)∨.

Given that m ∈ L∞, we can initially define the operator Tm : S → C0 ∩ L2,

or Tm : L2 → L2, and aim to extend Tm to Hp → Hp. There are two approaches.

The first approach, of Taibleson and Weiss [TW80], uses molecules, which are a

generalization of atoms, to decompose Hp spaces. The definition of a molecule can

be reformulated in the frequency domain, where most of the analysis takes place,

using the Fourier transform. The second approach, of Baernstein and Sawyer [BS85],

generalizes the notion of a molecule to that of a Herz space, whose norm dominates the

Lp-norm. This initially gives boundedness Hp → Lp, and is improved to boundedness

Hp → Hp using the Riesz characterization of Hp. We now state these two classical

results in more detail.
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1.3.1. Multiplier Theorem: Molecular Approach

We introduce molecules and provide a molecular decomposition of Hp(Rn).

Unlike atoms, they do not have to be compactly supported.

Definition 1.5. We say (p, q, b) is admissible if 0 < p ≤ 1 < q ≤ ∞ and b > 1
p
− 1

q
.

We define θ = (1
p
− 1

q
)/b, so that θ ∈ (0, 1). A function M ∈ L2(Rn) is a (p, q, b)

molecule centered at x0 ∈ Rn if it satisfies the size condition

N(M) = ‖M‖1−θ
q ‖|x− x0|nbM‖θq <∞,

and the vanishing moment condition: for all multiindex β such that |β| ≤ bn(1
p
−1)c =

N ,

∫
Rn
xβM(x)dx = 0.

We call N(M) the molecular norm of M .

Roughly speaking, we think of atoms as the basic building blocks of Hardy

spaces, and singular integral operators map atoms to molecules, due to the fact that

T , as a convolution operator, ‘spreads’ an atom a out so it is no longer compactly

supported. Fortunately, these molecules are still specialized enough to decompose Hp

in a meaningful way.

Remark 1.3. Here are two immediate connections between atoms and molecules.

1. The molecular norms of atoms are uniformly bounded: For every admissible

(p, q, b), there exists a constant C such that every (p, q) atom is a (p, q, b)

molecule whose molecular norm is uniformly bounded N(a) ≤ C.
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2. T maps atoms to molecules: Suppose T is a singular integral operator with

additional regularity of order m, n
n+m+1

< p ≤ 1 < q < ∞, and (p, q, b) is

admissible. Then T maps (p, q) atoms to (p, q, b) molecules, and there is a

constant C such that

N(Ta) ≤ C.

The following molecular decomposition is due to Taibleson and Weiss [Tai66].

The present form is taken from [GCRdF85], Chapter III.7.

Theorem 1.6. Let (p, q, b) be admissible, and M be a (p, q, b) molecule in Rn. Then

M ∈ Hp(Rn) and there exists a constant C independent of M such that

‖M‖Hp(Rn) ≤ CN(M).

Furthermore, a tempered distribution f is in Hp(Rn) exactly when, as tempered

distributions, there are (p, q, b) molecules {Mj}j such that

f =
∞∑
j=1

Mj,

and
∑

j N(Mj)
p < ∞. In particular, there exists a constant C such that with the

above decomposition,

‖f‖pHp ≤ C
∑
j

N(Mj)
p and

∑
j

N(Mj)
p ≤ C‖f‖pHp ,

with C independent of f and the decomposition.

The first benefit of this molecular decomposition is that N(M), as a product of Lq

norms, is much easier to compute than ‖M‖Hp . Second, when q = 2, the definition
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of a molecule can be reformulated using the Fourier transform. Using Parseval’s

identity, we have the following characterization. Let k ∈ N. Then F ∈ L2 is the

Fourier transform of a (p, 2, k/n) molecule M exactly when

sup
|α|=k
‖F‖1−θ

2 ‖∂αF‖θ2 <∞,

∂βF (0) = 0 for every β such that 0 ≤ |β| ≤ N.

These are the frequency analogues of the size and vanishing moment conditions in the

definition of a molecule. The pointwise condition on ∂βF makes sense because the

vanishing moment condition on M is equivalent to the existence of enough integrable

weak derivatives so that ∂βF is continuous, and be defined pointwise.

We now present the multiplier theorem of Taibleson and Weiss [TW80]. The

key condition is the Hörmander condition. The present form of the theorem is from

[GCRdF85], Chapter III.7.

Definition 1.6. Let k ∈ N and m ∈ L1
loc(Rn\{0}). We say m satisfies the Hörmander

condition of order k if there exists a constant A such that for all indices β such that

|β| ≤ k,

sup
R>0

∫
R<|x|<2R

|∂βm(x)|2dx ≤ ARn−2|β|. (1.6)

Theorem 1.7. Let n ∈ N and k ∈ N, k > n/2. Suppose m satisfies Hörmander’s

condition of order k, and A the constant in (1.6). Then there exists a constant C such

that if a is a (p, 2, k−1) atom centered at the origin with 0 < p ≤ 1 and 1
p
− 1

2
< k/n,
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then (mâ)∨ is a (p, 2, k/n)-molecule centered at the origin with

N((mâ)∨) ≤ CA,

with C = C(p, k, n). Furthermore, for every p such that 1/( k
n

+ 1
2
) < p ≤ 1, Tm :

Hp(Rn)→ Hp(Rn) is bounded, with

‖Tf‖Hp = ‖(mf̂)∨‖Hp ≤ CA‖f‖Hp .

To prove this theorem, we perform our analysis in the frequency domain: though

our goal is to show N((mâ)∨) ≤ CA, we can equivalently show there exists another

general constant C, independent of f , such that

sup
|α|=k
‖mâ‖1−θ

2 ‖∂α(mâ)‖θ2 ≤ C,

∂β(mâ)(0) = 0 for every 0 ≤ |β| ≤ m+ 1.

The second condition is immediate, since â(0) = 0 due to its vanishing moment

condition (in time). The first condition follows from combining the integral

Hörmander’s condition (1.6) on m with estimates on â. Since a(x) is compactly

supported, we expect â to be infinitely differentiable, with certain decay properties.

Specifically, the following are true. Denote N = bn(1
p
− 1)c. Given a (p, 2, k) atom a

with k ≤ N :

1. There exists a constant A of the form A(k, n) = d(k+1
n

+ 1
2
) − 1 > 0 such that

for every α such that 0 ≤ |α| ≤ k,

|∂αâ(ξ)| ≤ C|ξ|k+1−|α| ‖a‖−A(k,n)
2 .
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2. There exists a constant B of the form B(α, r, n) = d(2|α|
n

+ 1
r
)− 2 such that for

every index α and every r ∈ [1,∞], and 1
r

+ 1
r′

= 0,

‖ |∂αâ|2‖r′ ≤ C‖a‖−B(α,r,n)
2 .

These two estimates are proved using the Fourier inversion formula and exploiting

the vanishing moments condition with Taylor’s approximation. They also lead to the

important result of Taibleson and Weiss [TW80] that if f ∈ Hp, then f̂ is continuous,

and

|f̂(ξ)| ≤ C‖f‖Hp |ξ|n( 1
p
−1). (1.7)

Combining these estimates on â and condition (1.6) will give uniform

boundedness of the molecular norm of (mâ)∨. Since the molecular norm dominates

the Hp norm, this conclude the first multiplier theorem.

Lastly, these estimates on â and (1.7) are extended in our anisotropic setting in

Chapter IV.

1.3.2. Multiplier Theorem: Herz Spaces

The second result, from [BS85], generalizes the notion of a molecule using the

Herz space. We define Ak = {x ∈ Rn : 2k ≤ |x| ≤ 2k+1}, the kth dyadic annulus.

Definition 1.7. Suppose 1 ≤ a ≤ ∞, 0 ≤ α <∞, and 0 < b ≤ ∞.

1. K̇α,b
a consists of all functions f ∈ Laloc(Rn\{0}) such that

‖f‖K̇α,b
a

=

(
∞∑

k=−∞

(∫
Ak
|f(x)|adx

)b/a
2kαb

)1/b

<∞.
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2. We define Kα,b
a = La ∩ K̇α,b

a , with

‖f‖Kα,b
a

= ‖f‖La + ‖f‖K̇α,b
a
.

3. Bα,b
a consists of all functions F ∈ La(Rn) such that if u(x, t) is the Poisson

extension of f to Rn × [0,∞),

‖F‖Bαa = ‖F‖La +

(∫ ∞
0

[
ts−α(

∫
Rn
|∂st u(ξ, t)|adξ)1/a

]b
dt

t

)1/b

<∞,

Immediately, one sees that a (p, q, b) molecule is in Kα,q
q for some α > n

(
1
p
− 1

q

)
.

Second, by a simple application of Hölder’s inequality, we have

‖f‖Lp ≤ C‖f‖
K̇
n( 1
p−1),p

1

.

By the Fourier transform and Parseval’s identity, we have the following facts.

Theorem 1.8. Let η ∈ C∞c (Rn) be supported on the annulus {1
4
≤ |ξ| ≤ 4}, takes

values in [0, 1], and be identically 1 on the annulus {ξ ∈ Rn : 1
2
≤ |ξ| ≤ 2}. Let

m ∈ L1
loc(Rn\{0}). For δ > 0, define

mδ(ξ) = m(δξ)η(ξ).

1. Let s ∈ N. Then m satisfies Hörmander’s condition of order s exactly when

sup
δ>0
‖(mδ)

∧‖Ks,2
2
<∞.
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2. The Fourier transform F maps Bα,q
2 to Kα,q

2 isomorphically for α ≥ 0 and

0 < q ≤ ∞.

We are now ready to state the multiplier theorem of [BS85]. There are two cases:

when p < 1 and p = 1. From now on, we fix η and the notation mδ from the previous

theorem. The following two multiplier theorems are Theorem 3a and 3b of Baernstein

and Sawyer [BS85], respectively.

Theorem 1.9 (Multiplier Theorem for p < 1). Suppose p ∈ (0, 1), and

M = sup
δ>0
‖(mδ)

∧‖
K
n( 1
p−1),p

1

<∞.

1. There exists a constant C = C(n, p) such that Tm : Hp → Hp is bounded, with

‖Tm‖ ≤ CM .

2. Suppose that either α = n(1
p
− 1

2
) and q ≤ p or α > n(1

p
− 1

2
). If

sup
δ>0
‖(mδ)

∧‖Kα,q
2

<∞ or equivalently sup
δ>0
‖mδ‖Bα,q2

<∞,

then Tm : Hp → Hp is bounded.

Theorem 1.10 (Multiplier Theorem for p = 1). Let M be as in the previous theorem.

Suppose w : N∪ {0} → [1,∞) is increasing: 1 ≤ w(k) ≤ w(k+ 1) <∞ for all k, and

define the weighted Herz space to be the set of all f ∈ L1(Rn) such that

‖f‖K(w) =

∫
|x|<1

|f(x)|dx+
∞∑
k=0

(∫
Ak
|f(x)|dx

)
w(k) <∞.

If w also satisfies

W =
∞∑
k=0

1

w(k)2
<∞,
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then there exists a constant C = C(n) such that Tm : H1 → H1 is bounded, with

‖T‖op ≤ CMW .

The proofs of both results take place in the time domain, that is, they use the

condition on (mδ)
∧ as a starting point. We will prove a uniform bound on Ta for all

(p, 2) atoms a. The fact that the Herz norm majorizes the Lp-norm means it suffices

to show

‖Ta‖
K̇
n( 1
p−1),p

1

≤ C,

which then yields the boundedness of T : Hp → Lp. This result is improved to

T : Hp → Hp by using the Riesz characterization of Hp, to show that for each Riesz

transform Rj,

‖Rj(Ta)‖Lp ≤ C.

This is equivalent to ‖Ta‖Hp ≤ C, and boundedness is proved for the first theorem

(when p < 1). For the case p = 1, we bypass the Herz space and prove directly, for

(1, 2) atoms a, the uniform bound

‖Ta‖L1 ≤ C.

Both theorems start with a Littlewood-Paley decomposition of (mâ)∨. Given η from

Theorem 1.8, we define ψ ∈ C∞c , with supp(ψ) ⊂ {ξ ∈ Rn : 1
2
≤ |ξ| ≤ 2}, with values

in [0, 1] such that ∑
j∈Z

ψ(2−jξ) = 1.

We define âδ(ξ) = (â)δ(ξ) = â(δξ) ψ(ξ), and define the following functions:

fj = (m2j)
∨, bj = (â2j)

∨.
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Then we have the decomposition:

(mâ)∨ =
∑
j∈Z

2nj(fj ∗ bj)(2jx).

The conditions on m take care of fj. So the proof is mainly concerned with the

analysis of bj, as provided by the following two lemmas.

Lemma 1.1. Let N = bn(1
p
− 1)c and suppose we have a (p, 2) atom a supported on

B(0, 1), the unit ball, and r > 0 be a fixed constant. Then there exists a constant C,

depending only on n, p, r, such that for all j ≤ 0,

1. |bj(x)| ≤ C2j(N+1)(1 + |x|)−r.

2. For j ≥ 0,

|bj(x)| ≤


C2−jn for all x,

C|x|−r for all x such that |x| > 2j+1.

The constants C depend only on p, n, r.

Lemma 1.2. Suppose 0 < p < 1, j ≥ 0 and r > n/p. Then there is a constant C,

depending only on n, p, r, such that for all g ∈ K
n( 1
p
−1),p

1 and Q ∈ L1(Rn) satisfying

∫
Rn
|Q|dx ≤ 1 |Q(x)| ≤ |x|−r if |x| > 2j+1,

we have
∞∑

k=j+2

(∫
Ak
|g ∗Q|dx

)p
2kn(1−p) ≤ C‖g‖p

K
n( 1
p−1),p

1

.

These two lemmas are key ingredients in the multiplier theorems. In Chapter III,

we give anisotropic adaptations of these lemmas. Finally, we remark that in [BS85],
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only (p,∞) atoms are used in proving the uniform bound on ‖Ta‖Hp . In light of the

work of Bownik in [Bow05], this is not sufficient. So in our work below, we employ

(p, 2) atoms in our results. This does not affect the estimates in any major way.

1.4. Anisotropic Structure on Rn

Having introduced Hardy spaces, singular integral operators, and multiplier

theorems in the isotropic setting, we now introduce the anisotropic setting in detail.

The anisotropic structure considered here was motivated by wavelet theory, and

replaces the Euclidean norm with a more general quasinorm assocaited with a dilation

matrix. It is certainly not the first generalization of the underlying Rn structure.

Calderón and Torchinsky [CT75, CT77] studied the parabolic setting, using dilations

of continuous groups {At}t>0 on Rn, which arose naturally from the study of singular

integral operators along curves. Folland and Stein [FS82] replaced the underlying

space Rn with homogeneous groups, and Coifman and Weiss initiated the study of

Hardy spaces on spaces of homogeneous type in [CW77]. However, the extension of

(4.1) was not considered in the parabolic setting, and the Fourier transform takes a

more abstract form on homogeneous groups. Moreover, the Fourier transform is not

even considered on spaces of homogeneous type, as these spaces might not have an

underlying group structure.

The key difference is in replacing the Euclidean norm with a more general

anisotropic norm associated with a dilation matrix. For more details, see Bownik

[Bow03].

Definition 1.8. Fix n ∈ N. Let A be an n× n matrix, and define b = | detA|.

1. A is a dilation matrix if all eigenvalues λ of A satisfy |λ| > 1.
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2. A homogeneous quasinorm associated with a dilation A is a measurable mapping

ρ : Rn → [0,∞) so that

(a) ρ(x) = 0 exactly when x = 0,

(b) ρ(Ax) = bρ(x) for all x ∈ Rn,

(c) there is a doubling constant c > 0 so that for all x, y ∈ Rn, ρ(x + y) ≤

c(ρ(x) + ρ(y)).

Now let λ1, . . . , λn be the eigenvalues of A, taken according to multiplicity, and

ordered so that

1 < |λ1| ≤ · · · ≤ |λn|.

We choose λ− and λ+ such that

1 < λ− < |λ1| ≤ |λn| < λ+.

Then there exists c′ > 0 so that for all x ∈ Rn,

1

c′
λj−|x| ≤ |Ajx| ≤ c′λj+|x| if j ≥ 0

1

c′
λj+|x| ≤ |Ajx| ≤ c′λj−|x| if j ≤ 0.

If λ is an eigenvalue and A does not have Jordan blocks corresponding to any

eigenvalue λ, then we can set λ− = |λ1| and λ+ = |λn|. We call the ratios ζ± = log λ±
log b

the eccentricities of A. Roughly speaking, the larger the eccentricities are, the more

A differs from the isotropic setting.

In the isotropic case, the ‘basic’ geometric object is the ball B(x, r), centered

at x ∈ Rn with radius r. This has the nice property that whenever r1 < r2, we
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have B(x, r1) ⊂ B(x, r2). But for a general dilation matrix A, we do not expect

B(x, r) ⊂ A(B(x, r)). Instead, if A is a dilation, then there exists an ellipsoid ∆ and

r > 1 such that

∆ ⊂ r∆ ⊂ A∆.

Scaling ∆ so that it has measure 1, we define Bk = Ak∆ for all k ∈ Z. Then we have

Bk ⊂ Bk+1 and |Bk| = bk.

These nested ellipsoids will serve as the basic geometric object in the anisotropic

setting. Conveniently, any two quasinorms ρ1, ρ2 associated with a dilation A are

equivalent, that is, if there exists constants c1 and c2 so that for all x ∈ Rn,

c1ρ1(x) ≤ ρ2(x) ≤ c2ρ(x),

then the Hardy spaces generated by the two quasinorms are exactly the same.

Therefore it suffices to fix one particular quasinorm. We will use the following

canonical quasinorm used throughout this dissertation. For j, k ∈ Z with j ≤ k,

we denote the annulus by Bj\Bk = {x ∈ Rn : x ∈ Bj, x 6∈ Bk}.

Definition 1.9. Let A be a dilation on Rn and {Bk}k∈Z be the nested ellipsoids fixed

above. The step homogeneous quasinorm ρ on Rn induced by the dilation A is

ρA(x) =


bj if x ∈ Bj+1\Bj

0 if x = 0.

(1.8)

With this step norm, we define ω as the smallest integer so that 2B0 ⊂ AωB0 =

Bω. Then this norm is a homogeneous quasinorm associated with the dilation A, with
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c = bω as the doubling constant. We make the following observations, which are the

analogues of what is commonly known in the isotropic case.

Proposition 1.1. Let A be a dilation matrix.

1. Let x, y ∈ Rn, with ρ(x) = bi and ρ(y) = bj for some i, j ∈ Z. Then

ρ(x+ y) ≤ bω(ρ(x) + ρ(y)) (1.9)

ρ(x− y) ≥ b−ωρ(x)− ρ(y). (1.10)

2. If for some i ∈ Z and x, y ∈ Bi, then x+ y ∈ Bi+ω.

3. If for some i ∈ Z and x 6∈ Bi+ω and y ∈ Bi, then x+ y 6∈ Bi.

The following lemma, which allows us to relate the Euclidean norm to the

quasinorm, is due to Lemarie-Rieusset [LR94],.

Lemma 1.3. Suppose ρ is a homogeneous quasinorm associated with dilation A.

Define ζ± =
log λ±
log b

. Then there is a constant cA depending only on A such that:

1

cA
ρ(x)ζ− ≤ |x| ≤ cAρ(x)ζ+ if ρ(x) ≥ 1, (1.11)

1

cA
ρ(x)ζ+ ≤ |x| ≤ cAρ(x)ζ− if ρ(x) < 1. (1.12)

1.5. Anisotropic Hardy Spaces

Now that we have the anisotropic structure on Rn, we can use this to develop

the anisotropic Hardy spaces Hp
A(Rn) associated with the dilation matrix A.
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Let S be the Schwartz class. In light of (1.11) and (1.12), an equivalent condition

for ϕ ∈ C∞(Rn) to be in S is that for every multi-index α and integer m ≥ 0,

‖ϕ‖α,m = sup
x∈Rn

ρ(x)m|∂αϕ(x)| <∞.

In other words, replacing the Euclidean norm by the quasinorm will not change the

space. Recall that the dual space of S, that is, the space of tempered distributions

on Rn, is denoted by S ′(Rn). For N ≥ 0, we also define the family

SN = {ϕ ∈ S : ‖ϕ‖α,m ≤ 1 for |α|,m ≤ N}.

For ϕ ∈ S and k ∈ Z, the anisotropic dilation is defined by ϕk(x) = bkϕ(Akx).

To define the anisotropic Hardy spaces, we need the following anisotropic versions

of maximal operators.

Definition 1.10. Let ϕ ∈ S satisfy
∫
ϕ = 1 and let f ∈ S ′.

1. The radial maximal function of f respect to ϕ is defined as

M0
ϕf(x) = sup

k∈Z
|(f ∗ ϕk)(x)|. (1.13)

2. The grand maximal function of f is

M0
Nf(x) = sup

ϕ∈SN
M0

ϕf(x). (1.14)

With these definitions, we can define the anisotropic Hardy space, this time

independent of the Poisson kernel.

33



Definition 1.11. For a given dilation A and p ∈ (0,∞), denote

Np =


b(1
p
− 1) log b/ log λ−c+ 2 if 0 < p ≤ 1,

2 if p > 1.

We define the anisotropic Hardy space associated with the dilation A as

Hp
A(Rn) = {f ∈ S ′ : MNpf ∈ Lp},

with the quasinorm ‖f‖Hp = ‖MNpf‖p.

As before, this maximal characterization is independent of the operator or test

function used. Furthermore, for all N ≥ Np, we obtain the same Hardy space. The

following is Theorem 7 of Bownik [Bow05].

Theorem 1.11. Let p ∈ (0,∞) and suppose ϕ ∈ S with
∫
ϕ 6= 0. Then for any

f ∈ S ′ and any N ≥ Np, the following are equivalent.

1. f ∈ Hp
A(Rn)

2. M0
Nf ∈ Lp(Rn.

If so, then we have a constant, independent of f , such that

‖f‖Hp
A

= ‖M0
Nf‖p ≤ C‖M0

ϕf‖p.

With this maximal characterization in place, we give the atomic decomposition

of Hp
A. We first define the anisotropic atoms, and then state the anisotropic version

of theorem 1.3.
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Definition 1.12. A triple (p, q, s) is admissible with respect to the dilation A if

0 < p ≤ 1, 1 ≤ q ≤ ∞, and p < q, s ∈ N, and s ≥ b(1
p
− 1) log b/ log λ−c. A (p, q, s)

atom is a function a(x) supported on an ellipsoid x0 +Bj for some x0 ∈ Rn and j ∈ Z,

such that

1. (Size Condition) ‖a‖q ≤ |Bj|
1
q
− 1
p ,

2. (Vanishing Moments) For all α such that |α| ≤ s, we have

∫
Rn
a(x)xαdx = 0.

The anisotropic atomic decomposition, the result of a number of lemmas, is found

in Chapter 6 of [Bow05].

Theorem 1.12 (Atomic decomposition of Hp
A). Suppose (p, q, s) is admissible. Then

f ∈ Hp
A exactly when there exist {λj} ∈ `p and (p, q, s) atoms {aj} so that

f =
∞∑
j=1

λjaj,

with convergence in Hp
A-norm. Furthermore we have

‖f‖Hp ' inf


(
∞∑
j=1

|λj|p
)1/p

: f =
∞∑
j=1

λjaj

 ,

where the infimum is taken over all possible decompositions of f .

The anisotropic setting, roughly speaking, lacks the rotational invariance

property of the isotropic setting. This is reflected in a number of places, which we will

discuss briefly below. In the isotropic setting on Rn, the ‘basic’ geometric object is the

n-dimensional ball. For example, the Hardy-Littlewood maximal operator is defined

by taking supremum over all balls centered at the same point. Similarly, in the theory

of real Hardy spaces, the non-tangential maximal function is defined by taking the
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supremum over a cone Mϕf(x) = supt>0 |(f ∗ ϕt)(x)| where ϕt(y) = t−nϕ(y/t). We

notice the dilation on ϕ, given by y 7→ y
t

for t > 0. This operation scales y ∈ Rn evenly

in all coordinates by the same scalar t. We can generalize this dilation as follows.

Suppose λ1, . . . , λn > 0 are fixed. Then we define the dilation on y = (y1, . . . , yn) ∈ Rn

by

(y1, . . . , yn) 7→ (λt1y1, . . . , λ
t
nyn).

Though the dilation is still using only one parameter, t, the scaling in each coordinate

is different. The basic geometric object, reflecting this dilation, is now an ellipsoid,

which is not rotationally invariant. This dilation can be further generalized to that

of a dilation matrix, which our anisotropic setting is based on.

Furthermore, the Euclidean norm |x| itself is also rotationally invariant. So to

appropriately study a general dilation and carry out our analysis, we not only have

to use ellipsoids, but to also use a quasinorm ρ(x) that behaves well with respect to

the ellipsoids. Therefore any analysis that uses |x| and its properties will now have

to be modified. Lastly, we note that if A has large eccentricity, that is, log b
log λ−

>> 0,

then the atoms will require additional vanishing moments compared to the isotropic

setting. Table 1.3 summarizes these differences.

TABLE 1.3. Isotropic and Anisotropic Settings

Isotropic Anisotropic

Geometric object B(x, r) {Bj}j∈Z
Norm Continuous: |x| Discrete: ρ(x)

Dilation on Rn y 7→ y/t y 7→ Ay
Dilation on φ φt(x) = t−nφ(x/t) for t > 0 φk(x) = bkφ(Akx) for k ∈ Z

Maximal Operator Mφf(x) supt>0 |(f ∗ φt)(x)| supk∈Z |(f ∗ φk)(x)|
Hp Mφf ∈ Lp Mφf ∈ Lp

Atoms Supported on balls Supported on ellipsoids
Vanishing moments |α| ≤ bn(1

p
− 1)c |α| ≤ b(1

p
− 1)c log b/ log λ−
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CHAPTER II

SINGULAR INTEGRAL OPERATORS AND MOLECULES

We now study anisotropic singular integral operators associated with a dilation

matrix A, extending the classical formulation in Definition (1.2). For the rest of the

section, we fix a dilation matrix A and its associated step quasinorm ρ as discussed in

(1.8). Generally when extending the classical theory, global results involving norms

go through, while local results involving pointwise estimates and algebraic identities

break down and require more work.

2.1. Definition of Singular Integral Operators

If u ∈ Rn, we denote Eu = {z : ρ(z) ≥ b2ωρ(u)}. Recall the complement Ec
u is

defined by {x ∈ Rn : x 6∈ Eu}.

Definition 2.1. Let K ∈ S ′ satisfy the following properties:

K̂ ∈ L∞(Rn), (2.1)

and there exists a positive constant CH such that for all u ∈ Rn\{0},

∫
Ecu

|k(z − u)− k(z)|dz ≤ CH , (2.2)

Then the operator Tf = f ∗ K, defined initially on S(Rn), is called an anisotropic

singular integral operator with kernel K.

Remark 2.1. Suppose T is an anisotropic singular integral operator associated with the

kernel K ∈ S ′(Rn). Then by (2.1), T extends to the operator T : L2(Rn)→ L2(Rn),
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with operator norm ‖T‖L2 = ‖K̂‖∞. To see this, we use Parseval’s identity:

‖Tf‖2 = ‖f ∗K‖2 = ‖f̂ ∗K‖2 = ‖f̂ · K̂‖2 ≤ ‖K̂‖∞‖f̂‖2.

This is, of course, identical to the isotropic setting.

We will refer to (2.2) as the (anisotropic) Hörmander’s condition, which can be

strengthened to the following Lipschitz condition that is generally easier to check.

Definition 2.2. We say k : Rn → C satisfies the Lipschitz condition if there exist

constants CL, γ > 0 such that whenever ρ(z) ≥ ρ(u)b2ω > 0,

|k(z − u)− k(z)| ≤ CLρ(u)γρ(z)−(1+γ). (2.3)

Proposition 2.1. If k satisfies the Lipshcitz condition, then it also satisfies

Hörmander’s condition (2.2) with CH depending only on A, γ, CL.

Proof. If u ∈ Rn\{0}, then there exists a unique j ∈ Z such that u ∈ Bj+1\Bj and

ρ(u) = bj. Therefore

z ∈ Eu ⇒ z 6∈ Bj+2ω ⇒ z ∈ Rn\Bj+2ω.
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Then

∫
Ecu

|k(z − u)− k(z)|dz ≤ CLρ(u)γ
∫
Ecu

ρ(z)−1+γdz

≤ CLρ(u)γ
∞∑

m=j+2ω

∫
Bm+1\Bm

ρ(z)−(1+γ)dz

= CLρ(u)γ
∞∑

m=j+2ω

b−m(1+γ)(bm+1 − bm)

= CL(b− 1)bjγ
∞∑
m=0

b−γ(m+j+2ω)

=

(
(b− 1)b−2γω

1− b−γ

)
CL = CH ,

with CH depending only on the constants CL, γ, and A.

We will focus on singular integral operators of the form Tf = K ∗ f , where the

convolution is given by a convolution defined as a principal value type. Specifically,

K will be represented by a locally integrable function k (denoted by lower case) on

Rn\{0} with operator action defined by

Tf = K ∗ f = p.v.

∫
k(x− y)f(y)dy.

In this case, we write K = p.v.k, and will refer to T and K interchangeably. If k is a

locally integrable function, and K = p.v.k, we seek sufficient conditions so that the

operator Tf = f ∗K is a singular integral operator. In particular,

Q1 Under what conditions on the function k will K = p.v.k be a tempered

distribution?

Q2 Under what conditions on k will K̂ ∈ L∞? Recall that if K ∈ S ′, then K̂ ∈ S ′

is defined by duality.
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Roughly speaking, we we will require k to have decay at infinity and the singularity

to have enough cancelation so that a principal value can be defined. Specifically, we

define the following size, limit, and cancelation properties.

Definition 2.3. Suppose k(x) ∈ L1
loc(Rn\{0}).

1. We say k satisfies the size condition if there exists a constant C1 > 0 such that

for all j ∈ Z,

∫
Bj+1\Bj

|k(x)|dx ≤ C1 <∞. (2.4)

2. We say k satisfies the limit condition if there exists L ∈ C such that

L = lim
j→−∞

∫
B0\Bj

k(x)dx. (2.5)

3. We say k has the cancelation property if there exists C2 > 0 such that for all

j, R ∈ Z with j ≤ R,

∣∣∣∣∣
∫
BR\Bj

k(x)dx

∣∣∣∣∣ ≤ C2. (2.6)

Our goal is the following theorem.

Theorem 2.1. Suppose k ∈ L1
loc(Rn\{0}), and satisfies Hörmander’s condition

condition (2.2), the size condition (2.4), the limit condition (2.5), and the cancelation

condition (2.6). Then K = p̂.v.k gives rise to a singular integral operator T of

principal type:

Tf(x) = ((p.v.k) ∗ f) (x) = lim
j→−∞

∫
Rn\Bj

k(x− y)f(y)dy,
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defined initially on the Schwartz class S.

To prove this theorem, we will break it up into the following lemmas.

2.1.1. Sufficiency for K = p.v.k ∈ S ′

The following lemma gives sufficient conditions for a locally integrable function

k to be a tempered distribution. Roughly speaking, it suffices for k to have some

decay at infinity, and any singularity at the origin to be manageable.

Lemma 2.1. Suppose k ∈ L1
loc(Rn\{0}) satisfies conditions (2.4) and (2.5). For

φ ∈ S, if we define K : S → C as

K(φ) = (p.v.k)(φ) = lim
j→−∞

∫
Rn\Bj

k(x)φ(x)dx (2.7)

then K = p.v.k ∈ S ′.

Proof. We break up K(φ) into a ‘local’ and ‘global’ piece.

(p.v.k)(φ) = lim
j→−∞

∫
B1\Bj

k(x)φ(x)dx+

∫
Rn\B1

k(x)φ(x)dx

which we denote by I1 and I2, respectively. To bound the ‘local piece’ I1, we use the

(2.4) and (2.5) as follows:

I1 = lim
j→−∞

∫
B1\Bj

(k(x)φ(x) + φ(0)k(x)− φ(0)k(x))dx

= lim
j→−∞

φ(0)

∫
B1\Bj

k(x)dx+ lim
j→−∞

∫
B1\Bj

k(x)(φ(x)− φ(0))dx

= φ(0)L+ lim
j→−∞

∫
B1\Bj

k(x)(φ(x)− φ(0))dx.
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Since φ ∈ S, it follows that ‖∇φ‖∞ is bounded. Using this, along with the fact that

for x ∈ B1, we have |x| ≤ cAρ(x)ζ− , we use (2.4) in the last estimate below:

∣∣∣∣∣ lim
j→−∞

∫
B1\Bj

k(x)(φ(x)− φ(0))dx

∣∣∣∣∣ ≤ lim
j→−∞

∫
B1\Bj

|k(x)|‖∇φ‖∞ · |x|dx

≤ cA‖∇φ‖∞ lim
j→−∞

∫
B1\Bj

|k(x)|ρ(x)ζ−dx

= cA‖∇φ‖∞
0∑

j=−∞

∫
Bj+1\Bj

|k(x)|ρ(x)ζ−dx

≤ cAC1‖∇φ‖∞
0∑

j=−∞

bjζ− = cAC1

(
1

1− b−ζ−

)
‖∇φ‖∞.

With c′A = cA

(
1

1−b−ζ−

)
, we have |I1| ≤ |φ(0)L|+ c′AC1‖∇φ‖∞ <∞.

Now we bound I2. Using (2.4) and the fact that φ ∈ S,

|I2| =
∣∣∣∣∫

Rn\B1

k(x)φ(x)dx

∣∣∣∣ ≤ ∫
Rn\B1

|k(x)||φ(x)|ρ(x)

ρ(x)
dx

≤
(

sup
x∈Rn
|φ(x)|ρ(x)

)∫
Rn\B1

|k(x)|
ρ(x)

dx = ‖φ‖0,1

∞∑
j=0

∫
Bj+1\Bj

|k(x)|
ρ(x)

dx

≤ C1‖φ‖0,1

∞∑
j=0

1

bj
=

(
1

1− b−1

)
C1‖φ‖0,1.

All together, we have:

|p.v.k(φ)| ≤ |Lφ(0)|+ c′AC1‖∇φ‖∞ +

(
1

1− b−1

)
C1‖φ‖0,1 <∞.

Moreover, p.v.k is easily seen to be a linear mapping S(Rn) → C. Lastly, from the

this estimate, we also see that if φj → φ in S, then |p.v.k(φj − φ)| → 0. This means

p.v.k is indeed a continuous linear functional on S(Rn), so p.v.k ∈ S ′(Rn).
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2.1.2. Sufficiency for K̂ ∈ L∞

With K = p.v.k established as a tempered distribution, we now seek conditions

under which K̂ ∈ L∞(Rn). To state our main result, we define the truncated kernel

as follows. Given a kernel k ∈ L1
loc(Rn\{0}) and j, R ∈ Z, with j < R, we define the

truncated kernel kRj (x) = k(x)1BR\Bj(x).

If A is a dilation matrix, then its transpose A∗ is also a dilation matrix. We will

denote ρ∗ as the associated quasinorm of A, and the annulus of A∗ by {B∗j }j∈Z.

Lemma 2.2. Suppose k ∈ L1
loc(Rn\{0}) satisfies Hörmander’s condition (2.2), the

size condition (2.4), and the cancelation condition (2.6). Then there exists a constant

Ck such that for all j, R ∈ Z with j ≤ R and ξ 6= 0,

|k̂Rj (ξ)| ≤ Ck, (2.8)

with Ck independent of j and R. Moreover, p̂.v.k ∈ L∞.

Now Lemma 2.2 follows from a uniform bound on a specific annulus, given by

the following lemma which we will prove later. We define the dilation operator DA by

DAk(x) = k(Ax). We will need the following fact regarding dilations and the Fourier

transform.

bj(Dj
A∗FD

j
Af)(ξ) = f̂(ξ). (2.9)

Lemma 2.3. Define βA = − logb(b − 1) − ω > 0. Suppose k satisfies the conditions

in Lemma 2.2. Then there exists M ∈ Z and a constant C, such that for all ξ ∈

B∗M+1\B∗M ,

|k̂Rj (ξ)| ≤ C,
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with j, R ∈ Z satisfying R− j ≥ βA.

Proof of Lemma 2.2. Let M be the integer from Lemma 2.3. Suppose for all ξ ∈

B∗M+1\B∗M , |k̂Rj (ξ)| ≤ C. We now extend this estimate to any ξ ∈ Rn using a dilation

argument. We first have the relation DA(kRj )(x) = kRj (Ax) = (DAk)R−1
j−1 (x). Next, we

define the scaled dilation operator

TAk(x) = bDAk(x) = bk(Ax).

We will prove that TA preserves the conditions on k with the same bounds in (2.3),

(2.4), and (2.6).

We start with condition (2.3). This requires showing that whenever ρ(z) ≥

ρ(y)b2ω > 0,

|(TAk)(z − y)− (TAk)(z)| = b|k(Az − Ay)− k(Az)| ≤ CLρ(y)γρ(z)−(1+γ).

Now since ρ(z) ≥ ρ(y)b2ω,

ρ(Az) = bρ(z) ≥ bρ(y)b2ω = ρ(Ay)b2ω.

Therefore by (2.3),

b|k(Az − Ay)− k(Az)| ≤ bCLρ(Ay)γρ(Az)−(1+γ)

= CLb · bγρ(y)γb−(1+γ)ρ(z)−(1+γ)

= CLρ(y)γρ(z)−(1+γ).

This shows that (2.3) holds for DAk with the same constants CL and γ.
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To see that condition (2.4) holds, we let r ∈ Z. With a change of variables, we

obtain:

∫
Br+1\Br

TAk(x)dx =

∫
Br+1\Br

b|k(Ax)|dx = b

∫
Br+1\Br

|k(Ax)|dx

= b

∫
Br+2\Br+1

|k(u)|b−1du =

∫
Br+2\Br+1

|k(u)|du ≤ C1.

To see condition (2.6) holds, let r1, r2 ∈ Z with r1 < r2. Again, by a change of

variables, we obtain:

∣∣∣∣∣
∫
Br2\Br1

TAk(x)dx

∣∣∣∣∣ =

∣∣∣∣∣
∫
Br2+1\Br1+1

k(u)du

∣∣∣∣∣ ≤ D2.

With TAk satisfying the same estimates as k, we can now extend any result for k to

TmA k (for any m ∈ Z), as long as these results depend only on the constants appearing

in the conditions (2.3), (2.4), and (2.6), that is, CL, γ, C1, and C2. Then we conclude

that for all m ∈ Z and ξ ∈ B∗M+1\B∗M ,

| ̂(TmA k)Rj (ξ)| ≤ C, (2.10)

with the same constant C = C(A,C1, C2, C3,M). Therefore for any j ∈ Z, the dilated

kernel TmA k satisfies the same estimates as k, and the estimates for k̂Rj (ξ) also hold

for T̂mA (kRj )(ξ). This observation allows us to extend our bounds above to all ξ ∈ Rn

as follows.
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Let z 6= 0. Then there exists q ∈ Z such that z ∈ B∗M+1−q\B∗M−q, which is

equivalent to (A∗)qz ∈ B∗M\B∗M−1. Then by (2.9), we have the following identity:

|k̂Rj (z)| = |F(kRj )(z)| = |bq(Dq
A∗FD

q
A)kRj (z)|

= bq|(Dq
A(kRj ))∧(A∗qz)| = |(T qAk

R
j )∧(A∗qz)|

= |((T qAk)R−qj−q )∧((A∗)qz)| ≤ C.

The last inequality holds since T qAk is a kernel satisfying the same conditions as k

with the same constants. Therefore we can use (2.10) with ξ = (A∗)qz ∈ B∗M+1\B∗M .

With j, R arbitrary, this uniform bound holds for all truncations.

It now remains to prove Lemma 2.3. This requires two propositions.

Proposition 2.2. Suppose βA = − logb(b− 1)− ω > 0. If k ∈ L1
loc(Rn\{0}) satisfies

the size condition (2.4), then there exists Ck > 0 such that for all j, R ∈ Z with

0 < R− j ≤ βA, ‖k̂Rj ‖∞ ≤ CK.

Proof. By assumption, βA > 0. (This means b is quite close to 1.) Then by (2.4),

k̂Rj (ξ)| =
∣∣∣∣∫ kRj (x)e−2πi〈x,ξ〉dx

∣∣∣∣ ≤ ∫
BR\Bj

|k(x)|dx

=
R∑

m=j

∫
Bm+1\Bm

|k(x)|dx ≤ C1(R− j) ≤ C1βA = Ck.

We now provide an estimate on a Hörmander type integral that we will need

when we look at the case when R − j > βA. If βA < 0, then the above lemma is not

needed at all.
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Proposition 2.3. Let j, R ∈ Z satisfy R − j ≥ βA > 0. Suppose k ∈ L1
loc(Rn\{0})

satisfies Hörmander’s condition (2.2) and the size condition (2.4). If r ∈ Z satisfies

Br+2ω ⊆ Bj, then there exists C3, depending only on C1, CH , A such that for all

y ∈ Br,

∫
Rn
|kRj (x− y)− kRj (x)|dx ≤ C3. (2.11)

Proof. If R− j ≥ βA, then we have the inequality

bj ≤ bR+ω(b− 1).

We denote the integral in (2.11) by I and we break I into the following five pieces.

I1 =

∫
U1

|kRj (x− y)− kRj (x)|dx where U1 = (BR + y)\BR,

I2 =

∫
U2

|kRj (x− y)− kRj (x)|dx where U2 = BR\(BR + y),

I3 =

∫
U3

|kRj (x− y)− kRj (x)|dx where U3 = (Bj + y)\Bj,

I4 =

∫
U4

|kRj (x− y)− kRj (x)|dx where U4 = Bj\(Bj + y),

I5 =

∫
U5

|kRj (x− y)− kRj (x)|dx where U5 = BR ∪ (BR + y))\

(
(

4⋃
n=1

Un) ∪Bj ∪ (Bj + y)

)

Estimate on I1. If y ∈ Br, then since r < j < R, we have the the containment

y +BR ⊂ Br +BR ⊂ BR+ω.
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Since the support of kRj is contained in BR, we have

I1 =

∫
U1

|kRj (x− y)− kRj (x)|dx =

∫
U1

|kRj (x− y)|dx

≤
∫
BR+ω\BR

|kRj (x− y)|dx =
ω−1∑
m=0

∫
BR+m+1\BR+m

|kRj (x− y)|dx.

Fix m ∈ {0, 1, . . . , ω − 1}. If x ∈ BR+m+1\BR+m, then ρ(x) ≤ bR+m, giving

ρ(x− y) ≤ bω(ρ(x) + ρ(y)) ≤ bω(bR+m + br−1).

Next, we provide a lower bound using (1.10),

ρ(x− y) ≥ b−ωρ(x)− ρ(y) = b−ωbR+m − ρ(y) ≥ b−ωbR+m − br−1.

Therefore if x ∈ BR+m+1\BR+m,

b−ωbR+m − br−1 ≤ ρ(x− y) ≤ bω(bR+m − br−1).

After a change of variables, we have:

∫
BR+m+1\BR+m

|kRj (x− y)|dx ≤
∫
b−ωbR+m−br−1≤ρ(z)≤bω(bR+m−br−1)

|kRj (z)|dz.

Since we have a truncated kernel, we can simplify the domain by just looking at z ∈

BR. Furthermore, by the definition of ω and m ≤ ω, we have bR−ω ≤ bR+m+1−ω − br,
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which allows us to restrict our domain to BR\BR−ω+1. Finishing with (2.4),

∫
BR+m+1\BR+m

|kRj (x− y)|dx ≤
∫
bR−ω≤ρ(z)≤bR

|k(z)|dz =

∫
BR\BR−ω+1

|k(z)|dz

=
ω−2∑
i=0

∫
BR−ω+1+i+1\BR−ω+1+m

|k(z)|dz

≤ (ω − 1)C1.

Since this estimate holds for each m, we have:

I1 ≤
ω−1∑
m=0

∫
BR+m+1\BR+m

|kRj (x− y)|dx ≤
ω−1∑
m=0

(ω − 1)C1 = C1(ω − 1)ω.

Estimate on I2. Since U2 = BR\(BR + y), and supp(kRj (x− y)) ⊆ BR + y,

I2 =

∫
U2

|kRj (x− y)− kRj (x)|dx =

∫
BR\(BR+y)

|kRj (x)|dx.

Now for y ∈ Br, BR−ω−y ⊆ BR−ω−By ⊆ BR−ω+ω = BR. (Since r ≤ j−2ω < j < R,

so R− ω > r, the last inclusion holds.) Therefore:

BR−ω − y ⊆ BR ⇒ BR−ω ⊆ BR + y ⇒ BR\(BR + y) ⊆ BR\BR−ω.

We now complete the estimate on I2 using (2.4).

I2 =

∫
BR\(BR+y)

|kRj (x)|dx ≤
∫
BR\BR−ω

|k(x)|dx ≤ (ω − 1)C1

=
ω−1∑
m=0

∫
BR−ω+m+1\BR−ω+m

|k(x)|dx ≤ ωC1.
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Estimate on I3. Since U3 = (Bj + y)\Bj, and kRj (x − y) = 0 on Bj + y, we

have:

I3 =

∫
(Bj+y)\Bj

|kRj (x)|dx.

Since r < j, for y ∈ Br, we have Bj + y ⊆ Bj +Br ⊆ Bj+ω. Therefore (Bj + y)\Bj ⊆

Bj+ω\Bj. Again by (2.4),

I3 ≤
∫

(Bj+y)\Bj
|k(x)|dx ≤

∫
Bj+ω\Bj

|k(x)|dx

=
ω−1∑
m=0

∫
Bj+m+1\Bj+m

|k(x)|dx ≤ ωC1.

Estimate on I4. Since U4 = Bj\(Bj + y), and kRj (x) = 0 on Bj,

I4 =

∫
Bj\(Bj+y)

|kRj (x− y)|dx.

Since r+2ω ≤ j, if y ∈ Br, we have Bj−ω−y ⊆ Bj−ω−Br ⊆ Bj−ω+ω = Bj. Therefore

Bj−ω ⊆ Bj + y for all y ∈ Br, thus giving Bj\(Bj + y) ⊆ Bj\Bj−ω. Another fact is

this:

x ∈ Bj\Bj−ω and y ∈ Br ⇒ x− y ∈ Bj+ω.

Since kRj is 0 on Bj, a change of variables then gives

I4 =

∫
Bj\(Bj+y)

|kRj (x− y)|dx ≤
∫
Bj\Bj−ω

|kRj (x− y)|dx

≤
∫
bj≤ρ(z)≤bj+ω

|kRj (z)|dz ≤
∫
Bj+ω\Bj

|k(z)|dz

=
ω−1∑
m=0

∫
Bj+m+1\Bj+m

|k(z)|dz ≤ C1ω.
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Estimate on I5. Since U5 ⊂ (BR∪ (BR+y))\(U1∪U2∪Bj ∪ (Bj +y)), we have:

I5 =

∫
U5

|kRj (x− y)− kRj (x)|dx ≤
∫
BR\Bj

|kRj (x− y)− kRj (x)|dx.

Observe that BR\Bj ⊆ Bc
j . Next, for y ∈ Br, we see that:

Ey = {z : ρ(z) < b2ωρ(y)} ⊆ {z : ρ(z) ≤ b2ω+r} = Br+2ω.

Therefore Bc
r+2ω ⊆ Ec

y. This gives the following containment:

Ey ⊆ Br+2ω ⊆ Bj ⇒ Ec
y ⊇ Bc

r+2ω ⊇ Bc
j .

Using condition (2.2):

I5 =

∫
BR\Bj

|kRj (x− y)− kRj (x)|dx ≤
∫
Bcj

|kRj (x− y)− kRj (x)|dx

≤
∫
Ecy

|kRj (x− y)− kRj (x)|dx ≤ CH .

In summary, given j, R, r ∈ Z as defined above, we have shown that for any y ∈ Br,

the following estimate holds:

∫
Rn
|kRj (x− y)− kRj (x)|dx ≤ C1ω(ω − 1) + 3C1ω + CH = C3.

Armed with this Hörmander-type estimate, we can now prove Lemma 2.3.

Proof of Lemma 2.3. By Proposition 2.2, we only need to consider the case when

R − j ≥ βA. We will now show that there exists M ∈ Z and a constnat C such that
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for all R and j such that R− j ≥ βA and ξ ∈ B∗M+1\B∗M , we have:

|k̂Rj (ξ)| ≤ C,

where C depends only on the matrix A and the constants C1, C2, C3,M .

Without loss of generality, we can take cA >
√

2 in the inequality (1.11). We

define δ = logb(c
2
A/2) and

M = inf

{
n ∈ Z : n ≥ 1

ζ−
(δ + 2ωζ+

}
. (2.12)

We first note that M ≥ 1, since δ > 0. Now fix ξ ∈ B∗M+1\B∗M . We have three cases

to consider for j, R: when j < R ≤ 0, j < 0 < R, and 0 ≤ j < R.

Case 1. Assume j < 0 < R. Then |k̂Rj (ξ)| ≤ |k̂0
j (ξ)| + |k̂R0 (ξ)|, and we estimate

each piece separately. Given ξ ∈ B∗M+1\B∗M , we define y = − ξ
2|ξ|2 . We first claim

y ∈ B−2ω. Indeed, the definition of M implies the following inequality:

cA
2
b2ωζ+ ≤ 1

cA
bMζ− .

Then since ξ ∈ B∗M+1\B∗M , and M ≥ 0, by (1.11),

cA
2
b2ωζ+ ≤ 1

cA
bMζ− =

ρ(ξ)ζ−

cA
≤ |ξ|.

Next, by taking the reciprocal of the inequality above. we obtain:

|y| = 1

2|ξ|
≤ b−2ωζ+

cA
.
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Now if ρ(y) ≤ 1, (we can assume this since M is large enough) we have the inequality:

1

cA
ρ(y)ζ+ ≤ |y| ≤ b−2ωζ+

cA
.

The inequality above implies ρ(y) ≤ b−2ω, which means y ∈ B−2ω.

Next, we bound |k̂R0 (ξ)|. For ξ, y as above, 〈ξ, y〉 = −1
2
. Then because our choice

of M forces y ∈ B−2ω, by the claim above, we can use (2.11) to obtain

|k̂R0 (ξ)| = 1

2
|k̂R0 (ξ)(1− e−2πi〈y,ξ〉)|

=
1

2

∣∣∣∣∫
Rn

(kR0 (x)− kR0 (x− y))e−2πi〈ξ,x〉dx

∣∣∣∣
≤ 1

2

∫
Rn
|kR0 (x)− kR0 (x− y)|dx ≤ 1

2
C3.

We now bound k̂0
j (ξ). We have

|k̂0
j (ξ)| =

∣∣∣∣∫ k0
j (x)(e−2πi〈x,ξ〉 − 1) + k0

j (x)dx

∣∣∣∣
≤
∫
|k0
j (x)||e−2πi〈x,ξ〉 − 1|dx+

∣∣∣∣∫ k0
j (x)dx

∣∣∣∣
≤ C

∫
B0\Bj

|k(x)| · |x| · |ξ|dx+ C2

≤ CA|ξ|
−j−1∑
m=0

(∫
Bj+m+1\Bj+m

|k(x)|ρ(x)ζ−dx

)
+ C2

= CAC1|ξ|bjζ−
−j−1∑
m=0

bmζ− + C2 = CAC1|ξ|bjζ−
(
b−jζ− − 1

bζ− − 1

)
+ C2

=
cAC1

bζ− − 1
ρ(ξ)ζ+(1− bjζ−) + C2 =

cAC1

bζ− − 1
bMζ+(1− bjζ−) + C2.

This completes this case, with |k̂Rj (ξ)| ≤ C, with C = C(A,C1, C2, C3,M).
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Case 2. Assume j < R ≤ 0. Then by the same Lipshitz argument in case 1, we

have:

|k̂Rj (ξ)| ≤ C

∫
BR\Bj

|k(x)| · |x| · |ξ|dx+ C2

≤ C

∫
Bo\Bj

|k(x)| · |x| · |ξ|dx+ C2

≤ C(A,C1, C2,M).

Case 3. Assume 0 ≤ j < R. Then if ξ ∈ B∗M\B∗M−1, we have y = − ξ
2|ξ|2 ∈

B−2ω ⊆ Bj−2ω, since j ≥ 0. Therefore we can apply (2.11) and the argument in case

1 to estimate k̂R0 (ξ), obtaining

|k̂Rj (ξ)| = 1

2
|k̂Rj (ξ)(1− e−2πi〈y,ξ〉)|

=
1

2

∣∣∣∣∫ (kRj (x)− kRj (x− y))e−2πi〈ξ,x〉dx

∣∣∣∣
≤ 1

2

∫
|kRj (x)− kRj (x− y)|dx ≤ 1

2
C3.

In summary, given j, R ∈ Z and ξ ∈ B∗M+1\B∗M , we have shown the existence of

C = C(A,C1, C2, C3,M) such that |p̂.v.kRj (ξ)| ≤ C.
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2.2. Molecules and the Molecular Norm

We now define anisotropic molecule, which will be seen as the image of an atom

under a singular integral operator. Molecules also give another decomposition of

Hardy spaces.

Fix A. We recall that a triple (p, q, s) is admissible if p ∈ (0, 1], q ∈ [1,∞] with

p < q, and s ∈ N such that s ≥ b(1
p
− 1) log b

log λ−
c.

2.2.1. Definition of a Molecule

Definition 2.4. Let (p, q, s) be admissible and let d satisfy

d > s
log λ+

log b
+ 1− 1

q
. (2.13)

Define θ =

1
p
− 1

q

d
. Then M ∈ Lq(Rn) is a (p, q, d) molecule centered at x0 ∈ Rn if:

(i) N(M) = ‖M‖1−θ
q ‖ρ(x− x0)dM(x)‖θq <∞.

(ii)

∫
Rn
xβM(x)dx = 0 for all β such that |β| ≤ s.

We call N(M) the molecular norm of M .

Remark 2.2. 1. Whenever we call M a (p, q, d) molecule, we are implicitly

assuming we have already fixed an admissible triplet (p, q, s) associated with

a dilation A as well as d satisfying (2.13).

2. The integral in (ii) is absolutely convergent simply by assuming (i). Indeed,

since M ∈ Lq(Rn), then on a compact set K, we also have χKM ∈ L1(Rn). So
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it suffices to show the integral is finite away from the origin:

∫
Bc1

|x|s|M(x)|dx <∞.

Now this integral can be estimated using Holder’s inequality, with 1
q

+ 1
q′

= 1:

∫
Bc1

|x|s|M(x)|dx ≤ Cs
A

∫
Bc1

ρ(x)sζ+|M(x)|dx =

∫
Bc1

|ρ(x)dM(x)|ρ(x)sζ+−ddx

≤ Cs
A

(∫
Bc1

ρ(x)dq|M(x)|qdx

)1/q(∫
Bc1

ρ(x)q
′(sζ+−d)dx

)1/q′

≤ ‖ρ(x)dM(x)‖q

(∫
Bc1

ρ(x)q
′(sζ+−d)dx

)1/q′

.

Assuming (i) to be true, we only have to show the last integral above is finite.

This is true if and only if the exponent is small enough: q′(sζ+− d) < −1. This

also explains the necessity of condition (2.13) on d. Lastly, we observe that the

above quantities remain finite if we shift ρ(x) to ρ(x−x0), so the above analysis

can readily be extended to the case when x0 6= 0.

3. Let M be a (p, q, d) molecule. If for some d,

s
log λ+

log b
+ 1− 1

q
< d < d,

then M is also a (p, q, d) molecule. Without loss of generality, let x0 = 0. We

only have to check condition (i) in the definition of the molecule, with θ =
1
p
− 1
q

d
.

This is satisfied if the following term is finite:

‖ρ(x− x0)dM(x)‖θq <∞.
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Again, we only need to show that the above term is finite over Bc
1. But on Bc

1,

we have the following inequality:

ρ(x)dM(x) ≤ ρ(x)dM(x).

Therefore the above q-norm is also finite, and (i) is satisfied.

The next result shows that every atom is also a molecule whose molecular norm

is uniformly bounded as well.

Lemma 2.4. Let (p, q, s) be admissible. Then every (p, q, s) atom a(x) supported on

an annulus x0 + Bk is also a (p, q, d) molecule centered at x0. Furthermore, there

exists a constant C = C(A, d) such that for all atoms a,

N(a) ≤ C.

Proof. Let a be a (p, q, s) atom supported on an annulus x0 +Bk. Condition (ii) holds

immediately, so we only need to show (i). The first term in (i) is estimated by the

size condition on the atom:

‖a‖1−θ
q ≤ |Bk|(1−θ)(

1
q
− 1
p

).

The second term in (i) is estimated as follows:

‖ρ(x− xo)da(x)‖q =

(∫
xo+Bk

|ρ(x− x0)dqa(x)q|dx
)1/q

≤ (bk−1)d
(∫

xo+Bk

|a(x)|qdx
)1/q

= b−d|Bk|d‖a‖q ≤ |Bk|d|Bk|
1
q
− 1
p .
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All together,

N(a) = ‖a‖1−θ
q ‖ρ(x−x0)da(x)‖θq ≤ b−d|Bk|(1−θ)(

1
q
− 1
p

)|Bk|(d+ 1
q
− 1
p

)θ = b−d|Bk|
1
q
− 1
p

+dθ = b−d.

Note that the power of the |Bk| term is precisely 0 due to the definition of θ.

2.2.2. Molecular Decomposition of Hp
A

We now prove that the Hp-norms of molecules are bounded by their molecular

norms. To see this, we will provide an atomic decomposition into (p, q, s) atoms and

show the resulting coefficients are uniformly bounded in `p. Our goal is the following

result.

Theorem 2.2. (Molecular Decomposition of Hardy Spaces) Let (p, q, s) be a

admissible triplet and let d satisfy (2.13). Then f ∈ Hp(Rn) if and only if there exist

(p, q, d)-molecules {Mj} such that the following converges in S ′ and in Hp-norm:

f =
∑
j

Mj and
∑
j

N(Mj)
p <∞.

Furthermore there exist constants C1, C2, independent of f , such that given the above

series, we have:

‖f‖pHp ≤ C1

∑
j

N(Mj)
p and

∑
j

N(Mj)
p ≤ C2‖f‖pHp .

This theorem follows directly from ‖M‖Hp ≤ CN(M), which is Theorem 2.3. A

weaker version of this appears in [Bow03] in which a more specialized definition of

molecules is used, though our result follows from a direct iteration of that result. We

need two preliminary results from Chapter 1.9 of [Bow03] involving projections.
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Definition 2.5. Let s ∈ N and B = {x + Bj : x ∈ Rn, j ∈ Z}. Define Ps to be the

space of polynomials, in n variables, of degree at most s. If B ∈ B, we define πB as

the natural projection defined by the Riesz Lemma:

∫
B

(πBf(x))Q(x)dx =

∫
B

f(x)Q(x)dx, for all f ∈ L1(B) and Q ∈ Ps.

We also define ‖f‖L1(B) =
∫
B
|f(x)|dx.

To obtain the properties of πB for a general ellipsoid B, we start with πB0 on the

unit ellipsoid B0, and extend its properties by dilation and translations.

Proposition 2.4. Let Q = {Qα}|α|≤s be an orthonormal basis of Ps in L2(B0)-norm:

〈Qα, Qβ〉 =

∫
B0

Qα(x)Qβ(x)dx = δα,β.

1. πB0 : L1(B0)→ Ps is given by

πB0f =
∑
|α|≤s

(∫
B0

f(x)Qα(x)dx

)
Qα. (2.14)

2. If j ∈ Z, then πBj : L1(Bj)→ Ps is given by

πBjf =
(
D−jA πB0D

j
A

)
f. (2.15)

If B = y +Bj, then πB : L1(B)→ Ps is given by

πBf =
(
TyπBjT−y

)
f. (2.16)
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3. There exists C0, depending only on s and Q, such that for all B ∈ B, given

x ∈ B,

|πBf(x)| ≤ C0

∫
B

|f | dx
|B|

. (2.17)

4. Let π̃B = Id − πB be the complementary projection. Then for all B ∈ B,

π̃B : Lq(B)→ Lq(B) is bounded, with

‖π̃B(f)‖Lq(B) ≤ (1 + C0)‖f‖Lq(B). (2.18)

Furthermore, for all α with |α| ≤ s,

∫
B

xα · (π̃Bf)(x)dx = 0.

Lemma 2.5. Let M be a (p, q, d) molecule centered at x0.

1. Then ‖πjM‖L1(Bj) → 0 as j →∞.

2. Define gj = (π̃BjM)1Bj = (M − πBjM)1Bj . Then gj →M in L1 as j →∞.

We now show that every (p, q, d) molecule is in Hp(Rn), and that its Hp-norm is

dominated by its molecular norm.

Theorem 2.3. Let (p, q, s) be a admissible triple and let d satisfy (2.13). Then there

is a constnat C such that for all (p, q, d) molecules M , we have ‖M‖Hp ≤ CN(M).

Proof. Let M be a (p, q, d) molecule. Without loss of generality, we assume N(M) =

‖M‖1−θ
q ‖M(u)ρ(u)d‖θq = 1. Define σ by

‖M‖q = σ
1
q
− 1
p ,
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and choose k ∈ Z such that bk ≤ σ < bk+1. From the previous lemmas, we have the

following expression for M , with convergence in L1:

M = gk +
∞∑
j=k

(gj+1 − gj).

Note that for each j, gj has vanishing moments of order up to s, and has compact

support. We will decompose M as follows:

gk = µkak and gj+1 − gj = µjaj,

where (µj)
∞
j=k ∈ lp has a uniform norm independent of M and (aj)

∞
j=k is a sequence

of (p, q, s) atoms.

We start with gk = (M − πkM)1Bk . With C0 as in Proposition 2.4,

‖gk‖Lq(Bk) ≤ ‖M‖Lq(Bk) + ‖πkM‖Lq(Bk) ≤ (1 + C0)‖M‖Lq(Bk).

Scaling the measure, we obtain

‖gk‖Lq
(χBk
|Bk|

dx
) =

(∫
Bk

|gk(x)|q dx
|Bk|

)1/q

≤ (1 + C0)‖M‖Lq( dx
|Bk|

).

Note that because 1
q
− 1

p
< 0, we have σ ≥ bk ⇒ σ

1
q
− 1
p ≤ bk( 1

q
− 1
p

). Continuing our

estimate using the definition of σ, we have

‖M‖Lq( dx
|Bk|

) = |Bk|−1/q‖M‖q = |Bk|−1/qσ
1
q
− 1
p

≤ |Bk|−
1
q |Bk|

1
q
− 1
p = |Bk|

1
p .
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Therefore we have:

‖gk‖q ≤ (1 + C0)|Bk|
1
q
− 1
p ,

which gives gk = µkak where ak is a (p, q, s) atom and µk = 1 + C0. For j > k, we

have

gj+1 − gj = 1Bj+1\BjM − πBj+1
M + πBjM.

We start with the first term.

‖M1Bj+1\Bj‖Lq( dx
|Bj+1|

) = |Bj+1|−1/q

(∫
Bj+1\Bj

|M(x)|q
(
ρ(x)

bj

)dq
dx

)1/q

= |Bj+1|−
1
q b−jd

(∫
Bj+1\Bj

|M(x)|qρ(x)dqdx

)1/q

≤ bd|Bj+1|−
1
q |Bj+1|−d‖M(x)ρ(x)d‖q = bd|Bj+1|−

1
q
−d‖M‖

θ−1
θ

q

= bd|Bj+1|−
1
q
−dσ( 1

q
− 1
p

)( θ−1
θ

) = bd|Bj+1|−
1
q
−dσd(1−θ)

≤ bd|Bj+1|−
1
q
−db(k+1)d(1−θ) = bd|Bj+1|−

1
p b(j+1)( 1

p
− 1
q
−d)b(k+1)d(1−θ)

= bd|Bj+1|−
1
p b(k−j)d(1−θ).

Setting a = d(1− θ) > 0, we obtain

‖M1Bj+1\Bj‖q ≤ bd|Bj+1|
1
q
− 1
p b(j−k)(−a).

Next, we estimate πBjM . It is given by

πBjM(x) =
∑
|α|≤s

(∫
Bj

M(u)Qα(A−ju)
du

bj

)
Qα(A−jx).

62



By Minkowski’s inequality,

‖πBjM‖Lq(Bj) ≤
∑
|α|≤s

b−j

∣∣∣∣∣
∫
Bj

M(u)Qα(A−ju)du

∣∣∣∣∣ ‖D−jA Qα‖Lq(Bj).

Let C(Q) a uniform bound for ‖Qα‖Lq(B0). By a change of variables, we have

‖D−jA Qα‖Lq(Bj) = b
j
q ‖Qα‖Lq(B0) ≤ C(Q)b

j
q . Next, since M has vanishing moments,

and 1
q

+ 1
q′

= 1,

∣∣∣∣∣
∫
Bj

M(u)Qα(A−ju)du

∣∣∣∣∣ =

∣∣∣∣∣
∫
Bcj

M(u)Qα(A−ju)du

∣∣∣∣∣ ≤
∫
Bcj

|M(u)||Qα(A−ju)|du

≤ C(Q)

∫
Bcj

|M(u)||A−ju|sdu ≤ C(Q)cA

∫
Bcj

|M(u)|ρ(A−ju)sζ+du

= C(Q)cAb
−jsζ+

∫
Bcj

|M(u)|ρ(u)sζ+du

= C(Q)cAb
−jsζ+

∫
Bcj

|M(u)|ρ(u)dρ(u)sζ+−ddu

≤ C(Q)cAb
−jsζ+

(∫
Bcj

|M(u)|qρ(u)dqdu

)1/q(∫
Bcj

ρ(u)q
′(sζ+−d)du

)1/q′

.

The first integral in the last expression can be computed as follows:

(∫
Bcj

|M(u)|qρ(u)dqdu

)1/q

≤ ‖M(x)ρ(x)d‖q = ‖M‖
θ−1
θ

q

= σ( 1
q
− 1
p)(

θ−1
θ ) = σd(1−θ) ≤ bkd(1−θ) = bka.

The second integral from Holder’s inequality can be computated directly as a

geometric series. With with C a constant depending only on A, q, s, and d, and
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d > sζ+1− 1
q
, we have

∫
Bcj

ρ(u)q
′(sζ+−d)du =

∞∑
m=j

∫
Bm+1\Bm

ρ(u)q
′(sζ+−d)du

= (b− 1)
∞∑
m=j

bm(1+q′(sζ+−d))

= (b− 1)bj(1+q′(sζ+−d))

∞∑
m=0

bm(1+q′(sζ+−d))

= Cbj(1+q′(sζ+−d)).

Therefore, (∫
Bcj

ρ(u)q
′(sζ+−d)du

)1/q′

= Cbj(1−
1
q

+sζ+−d).

This gives

∣∣∣∣∣
∫
Bj

M(u)Qα(A−ju)du

∣∣∣∣∣ ≤ Cb−jsζ+bkabj(1−
1
q

+sζ+−d) = Cbkabj(1−
1
q
−d).

Going back to πBjM , we have

‖πBjM‖Lq ≤ Cb−jbkabj(1−
1
q
−d)b

j
q = Cb−jdb−k(−a)

= Cbj(
1
q
− 1
p

)bj(
1
p
− 1
q

)b−jdb−k(−a) = Cbj(
1
q
− 1
p

)b(j−k)(−a).

Finally, going back to gj+1 − gj, we have

‖gj+1 − gj‖q ≤ ‖M1Bj+1\Bj‖q + ‖πBj+1
M‖q + ‖πBjM‖q

≤ C|Bj+1|
1
q
− 1
p b(j−k)(−a).

64



Therefore if j > k, gj+1 − gj = µjaj, with µj = Cb(j−k)(−a) and where aj is a (p, q, s)

atom supported on Bj+1. Summing the coefficients, we have

∞∑
j=k

|µj|p = µk +
∞∑
j=1

Cpb−jap = (1 + C0) +
C

1− b−ap
.

All together, we have shown that a (p, q, d) molecule is also in Hp(Rn), with

‖M‖Hp ≤ CN(M),

with C depending only on A, p, q, s, d and the cube Q, and is independent of M . This

completes our proof of Theorem (2.3).
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CHAPTER III

ANISOTROPIC MULTIPLIER THEOREMS

We now extend the theorems of Taibleson and Weiss [TW80] and Baernstein and

Sawyer [BS85] to the anisotropic setting. Aside from these two results, there are other

multiplier conditions in both the isotropic (classical) and anisotropic setting. In the

isotropic setting, we can define the Mihlin condition of order s if s =

⌊
n(

1

p
+

1

2
)

⌋
+1,

and m ∈ Cs(Rn\{0}) has the property that for all γ such that |γ| ≤ s,

|∂γm(ξ)| ≤ Cγ|ξ|−|γ|.

This pointwise Mihlin condition implies Hörmander’s condition (1.6) and is strong

enough for the associated multiplier operator to be bounded on Triebel-Lizorkin

spaces Ḟα,q
p (see Peetre [Pee75]). Table 3.1 summarizes the three multiplier conditions,

in the order that increases the class of multipliers.

TABLE 3.1. Classical Multiplier Theorems

Condition Mihlin of ⇒ Hörmander of ⇔ Ks,2
2 ⇒ K

n( 1
p
−1),p

1

order s order s

Tm bounded on Ḃα,q
p and Ḟα,q

p Hp Hp Hp

Reference [Pee75] [TW80] [CT75] [BS85]

The arrows in the first row mean the Mihlin condition of order s implies the

Hörmander condition of order s, which is equivalent to the Herz condition Ks,2
2 , which

implies the Herz condition K
n( 1
p
−1),p

1 , making the last condition the most general.
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In the anisotropic setting, Ding and Lan [DL06] were the first to study

the multiplier problem, obtaining multiplier theorems associated with expansive

symmetric matrices, extending the argument of [BS85]. Our Theorem 3.2 removes

the requirement that the matrices be symmetric. Benyi and Bownik [BB10] used the

anisotropic Mihlin condition on bounded symbols associated with pseudodifferential

operators. Our Theorem 3.1 is closely related to their result, though we require

minimal regularity requirement on m.

In an attempt to adapt the classical proof to the anisotropic setting, we run

into significant problems. Theorem 1.7 of Taibleson and Weiss uses molecules, which

can be defined in both time and frequency domains by the Fourier transform. This

is possible due to Parseval’s identity and the relationship between smoothness and

decay under the Fourier transform: For α, there exists a constant C depending only

on n and α such that

∫
|f(x) · xα|2dx '

∫
|∂αf̂(ξ)|2dξ.

In the anisotropic setting, the generalization of the Euclidean norm |x| to the

quasinorm ρ(x) destroys much of this symmetry, and more care is needed to relate

decay (now measured by ρ) to smoothness (still measured by ∂α).

Another hurdle is the reliance on the chain rule: For j ∈ Z,

∂α(f(2jx)) = 2j|α|(∂αf)(2j(x)).

But if we replace 2jx by Ax where A is a matrix, then we do not have a usable

algebraic formula to carry out our analysis. We can get around this if we know,

roughly speaking, that A has small operator norm.
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The main hurdle regarding the theorems of Baernstein and Sawyer is their use

of the characterization of classical Hp in terms of Riesz transforms (due to Stein and

Weiss [SW68]) in extending the boundedness of T : Hp → Lp to T : Hp → Hp. But

this singular integral characterization of Hp is not available in the anisotropic setting,

as there are no analogues of the Riesz transforms.

Because of these considerations, we will only be able to adapt some of the results

in the isotropic setting. Specifically, we are unable to reinterpret molecules in the

frequency domain. Instead, we start with a multiplier m and study K = m̌. This

analysis will provide the first multiplier theorem. The second multiplier theorem is

restricted to the setting of T : Hp
A → Lp due to the the aforementioned difficulty of

obtaining a singular integral characterization of Hp.

3.1. Two Anisotropic Multiplier Theorems

We now present the two multiplier theorems. We first observe that if A∗ is the

adjoint of A, then A∗ is also a dilation matrix with its own anisotropic ellipsoids

{B∗j }. The anisotropic Mihlin condition first appeared in [BB10]. Since we will be

working in both the time and frequency domain, we will generally reserve ξ for the

independent variable in the frequency domain, and ∂ξ denotes differentiation with

respect to ξ.

Definition 3.1. Let N ∈ N ∪ {0} and let m ∈ CN(Rn\{0}). We say m has the

anisotropic Mihlin condition of order N if there exists a constant C = CN such that

for all multi-indices β such that |β| ≤ N , all j ∈ Z, and all ξ ∈ B∗j+1\B∗j ,

|D−jA∗∂
β
ξD

j
A∗m(ξ)| ≤ C. (3.1)
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Theorem 3.1. Let N ∈ N and suppose m satisfies the Mihlin condition of order N

and Tm : Hp
A(Rn) → Hp

A(Rn) is the corresponding multiplier operator, and denote

L =
(
N log λ−

log b
− 1
)

log b
log λ+

. Then Tm is bounded on Hp
A provided

0 ≤ 1

p
− 1 < dL− 1e (log λ−)2

log b log λ+

.

For our second multiplier theorem, we introduce the anisotropic Herz spaces.

Recall for a fixed annulus {Bj}j∈Z, the associated annuli are given by Aj = Bj+1\Bj

for all j ∈ Z.

Definition 3.2. Let a ∈ [1,∞], let s ∈ [0,∞), and let β ∈ (0,∞]. If f ∈

Laloc(Rn\{0}), we define the anisotropic Herz norm by

‖f‖β
K̇s,β
a

=
∞∑

k=−∞

(∫
Ak
|f(x)|adx

)β
a

bksβ, (3.2)

and define

‖f‖K
as,β

= ‖f‖La + ‖f‖K̇s,β
a
. (3.3)

Let w : N ∪ {0} → [1,∞) be an increasing sequence, that is, w(k) ≤ w(k + 1) for all

k. For f ∈ L1(Rn), we define

‖f‖K(w) =

∫
B1

|f(x)|dx+
∞∑
k=1

(∫
Ak
|f(x)|dx

)
w(k). (3.4)

Then K(w) = {f ∈ L1(Rn) : ‖f‖K(w) <∞} is the weighted Herz space.

We define Ak = Bk+1\Bk the kth annulus. We fix ψ ∈ S such that ψ̂ ∈ C∞c (Rn),

is supported on B∗1\B∗−1, with values in [0, 1], and such that for all ξ 6= 0, we have
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∑
j∈Z ψ̂(A∗−jξ) = 1. We also fix η ∈ S such that η̂ ∈ C∞c (Rn), supported on B∗2\B∗−2,

with values in [0, 1], such that on B∗1\B∗−1, we have η̂(ξ) = 1. Trivially, η̂ψ̂ = ψ̂. Let

a be a (p, 2, s) atom supported on the ellipsoid B1, and define f = (mâ)∨, and

mj(ξ) = m(A∗jξ)η̂(ξ), fj = (mj)
∨, (3.5)

âj(ξ) = â(A∗jξ)ψ̂(ξ), gj = (âj)
∨. (3.6)

Recall the identity bjFDAj(fj ∗ gj)(ξ) = m(ξ)η(A∗−j) · â(ξ)ψ(A∗−j). Then we have

(mâ)∨(x) =
∑
j∈Z

bj(fj ∗ gj)(Ajx). (3.7)

Theorem 3.2. Let m be a measurable function and let Tmf = (f̂m)∨ be its multiplier

operator.

1. Let p ∈ (0, 1). Then Tm : Hp
A → Lp is bounded provided m satisfies

sup
j∈Z
‖(mj)

∧‖
K

1
p−1,p

1

<∞. (3.8)

2. Let w : N ∪ {0} → [1,∞) be an increasing sequence satisfying
∞∑
k=0

1

w(k)2
< ∞.

Then Tm : H1
A → L1 is bounded provided m satisfies

sup
j∈Z
‖(mj)

∧‖K(w) <∞. (3.9)

3.1.1. Proof of Theorem (3.1)

We now prove Theorem (3.1). Unlike the classical multiplier theorem of Taibleson

and Weiss, most of our analysis will take place in the time domain. Starting with m,
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we will show that K = m̌ has enough regularity so that Tf = K ∗ f is bounded on

Hp
A.

Definition 3.3. Let (p, q, s) be admissible and let R ∈ N satisfy

R > max

{(
1

p
− 1

)
log b

log λ−
, s

log λ+

log λ−

}
, (3.10)

and let K ∈ CR(Rn\{0}). We say K is a Calderón-Zygmund convolution kernel of

order R if there exists a constant C such that for all multi-indices α with |α| ≤ R,

and all k ∈ Z, x ∈ Bk+1\Bk,

|D−kA ∂αxD
k
AK(x)| ≤ C

ρ(x)
. (3.11)

If K is such a kernel, we say K satisfies (CZC-R) and its associated singular integral

operator T is defined by Tf = K ∗ f .

The following lemma first appears as Theorem 9.8 of [Bow03] for the more

general Calderón-Zygmund operators. We give an alternate proof using the molecular

decomposition of Hp
A.

Lemma 3.1. Let R ∈ N. Suppose T is a singular integral operator whose kernel K is

a Calderón-Zygmund convolution kernel of order R. Then T : Hp
A → Hp

A is bounded

provided p satisfies

0 <
1

p
− 1 < R

(
(log λ−)2

log b log λ+

)
. (3.12)

Proof. Let p satisfy the above inequality and (p, q, s) is an admissible triple. We

will show there exists a constant C such that for all (p, q, s) atoms a, Ta is a

molecule with N(Ta) ≤ C. Once this uniform bound is established, Lemma 2.3
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implies ‖Ta‖Hp
A
≤ C, which establishes the boundedness of T on Hp

A. To bound the

molecular norm N(Ta) = ‖Ta‖1−θ
q ‖ρ(x−x0)dTa(x)‖θq, we first note that as a singular

integral operator, T is bounded from Lq to Lq for q > 1. There is a C, depending

only on T , q, and θ, such that

‖Ta‖1−θ
q ≤ C‖a‖1−θ

q ≤ Cbr(
1
q
− 1
p

)(1−θ),

where C = C(T, q, θ). By Minkowski’s inequality:

‖ρ(x− x0)dTa(x)‖q ≤
(∫

x0+Br+2ω

|ρ(x− x0)dqTa(x)|qdx
)1/q

+

(∫
(x0+Br+2ω)c

|ρ(x− x0)dqTa(x)|qdx
)1/q

= I1 + I2

where we denote the two integrals by I1 and I2, respectively. The estimate for I1 is

immediate:

I1 ≤ bd(r+2ω)

(∫
x0+Br+2ω

|Ta(x)|qdx
)1/q

≤ bd(r+2ω)‖Ta‖q ≤ C
1

1−θ bdrbr(
1
q
− 1
p

) = C
1

1−θ br(d+ 1
q
− 1
p

).

To estimate I2, we require the following pointwise estimate from [Bow03, Lemma

9.5]: Suppose T is a singular integral operator whose kernel k is (CZC-R), with R

satisfying (3.10). Then there exists a constant C such that for every (p, q, s) atom a

with support x0 +Br, all l ≥ 0 and x ∈ x0 + (Br+l+2ω+1\Br+l+2ω),

|Ta(x)| ≤ Cb−lRζ−−l|Br|−1/p. (3.13)
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With this estimate, we have

I2 =
∞∑
j=0

∫
xo+(Br+2ω+j+1\Br+2ω+j)

ρ(x− xo)dq|Ta(x)|qdx

≤ Cb−
rq
p

∞∑
j=0

b−jq(1+Rζ−)

(∫
xo+Br+2ω+j+1\Br+2ω+j

ρ(x− xo)dqdx

)

= Cb−
rq
p

∞∑
j=0

b−jq(1+Rζ−)b(dq+1)(r+2ω+j) = Cbr(dq+1− q
p

)
∞∑
j=0

bj(dq+1−q(1+Rζ−)).

The geometric series converges exactly when R satisfies (3.12). Taking the power θ/q

on both sides, we have

‖ρ(x− xo)dTa(x)‖θq ≤ Cbrθ(d+ 1
q
− 1
p

).

Going back to the molecular norm,

N(Ta) ≤ Cbk( 1
q
− 1
p

)(1−θ)bkθ(d+ 1
q
− 1
p

) = C,

as the exponent is exactly 0.

Theorem 3.1 follows from the following lemma that relates the relationship

between m and K = m̌.

Lemma 3.2. Suppose m satisfies the Mihlin condition of order N and let K =

m̌. Then K is a Calderón-Zygmund convolution kernel of order R provided R ∈ N

satisfies

0 ≤ R <

(
N

log λ−
log b

− 1

)
log b

log λ+

. (3.14)
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Proof. Let m satisfy the Mihlin condition of order N and let R satisfy (3.14). We

will show that K = m̌ is the kernel of a Calderón-Zygmund operator of order R. Fix

Ψ ∈ S(Rn) such that Ψ̂ is supported on B∗1\B∗−1, and for all ξ 6= 0,

∑
j∈Z

Ψ̂(A−jξ) = 1.

By setting Ψj(x) = bjΨ(Ajx), we have the identity Ψ̂j(ξ) = D−jA∗Ψ̂(ξ) = Ψ̂((A∗)−j)ξ),

and Ψ̂j is supported on B∗j+1\B∗j−1. We define mj = mΨ̂j, which is supported on

B∗j+1\B∗j−1, and define Kj = (mj)
∨. Then we have immediate convergences:

m =
∑
j∈Z

mj pointwise and in S ′,

K =
∑
j∈Z

Kj in S ′.

We’ll see that the equality for K also holds pointwise.

We make the following reductions to prove the (CZC-R) condition (3.11). First,

it suffices to show that for all β such that |β| ≤ R, k ∈ Z, x ∈ B1\B0,

|∂αxDk
AK(x)| ≤ C

bk
.

Second, this will follow from the absolute convergence

∑
j∈Z

|∂βxDk
AKj(x)| ≤ C

bk
.
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Lastly, it suffices to prove the above convergence for k = 0:

∑
j∈Z

|∂βxKj(x)| ≤ C. (3.15)

Indeed, if k ∈ Z, and m has the Mihlin property, then so does Dk
A∗m, with the same

constant C. Therefore if ξ ∈ B∗j+1\B∗j , then A∗kξ ∈ Bj+k+1\Bj+k.

|(D−jA∗ ∂
β
ξ D

j
A∗)(D

k
A∗m)(ξ)| = |(D−j−kA∗ ∂βξ D

j+k
A∗ m(A∗kξ)| ≤ Cβ.

To prove (3.15), we decompose the sum using a well-chosen integer M , which

will depend on how close R is to L. Denote λ∗max as the eigenvalue of A∗ with the

largest norm and ‖ · ‖op is the operator norm on Rn → Rn. By the spectral theorem,

λ∗max = lim sup
j→∞

‖A∗j‖1/j
op .

Let ε > 0. Then there exists an integer M > 0 such that for all j > M ,

‖A∗j‖1/j
op ≤ (1 + ε)λ∗max ≤ (1 + ε)λ+.

With this M , we write

∑
j∈Z

|∂βxKj(x)| =
∑
j≤M

|∂βxKj(x)|+
∑
j>M

|∂βxKj(x)| = SL + SH .

We call SL and SH the low and high spatial terms, respectively. Starting with the

high spatial terms, we fix j > M and x ∈ B−1\B0. Then we can fix another multi-

index α satisfying |α| = N such that there exists a constant c depending only on n

such that |(Ajx)α| ≥ c|Ajx|N . This can be done by picking α = Nei where ei is the
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ith unit vector in the canonical basis of Rn and the direction i is where Ajx has the

largest value in norm. Define w(u) = (A∗ju)βm(A∗ju)Ψ̂(u). Using Parseval’s identity,

integration by parts, and a change of variables, we have

∂βxKj(x) = cβb
j

∫
B∗1\B∗−1

(∂αuw)(u)
e2πi〈Ajx,u〉

(2πiAjx)α
du,

which we estimate using the bound from the spectral theorem.

If α = (α1, . . . , αn) and γ = (γ1, . . . , γn) are two multi-indices, we say γ ≤ α if

for each i, 1 ≤ i ≤ n, γi ≤ αi. We also define the binomial coefficients by

(
α

γ

)
=

(
α1

γ1

)
. . .

(
αn
γn

)
.

Then the product rule gives:

(∂αw)(u) =
∑
γ≤α

(
α

γ

)
∂α−γ(Dj

A∗m · Ψ̂)(u)︸ ︷︷ ︸
I1

· ∂γ((A∗ju)γ)︸ ︷︷ ︸
I2

. (3.16)

By another application of the product rule, we have a uniform constant c′, independent

of m, j, u such that

I1 ≤ c sup
δ≤γ
|∂δDj

A∗m)(u)| = c sup
δ≤γ
|(D−jA∗∂

δDj
A∗m)(A∗ju)| ≤ c′.

We now bound I2. With u ∈ B∗1\B∗−1, elementary considerations from expressing

(A∗ju)β as a sum of monomials show that there exists c depending only on N , such

that by our choice of M and j > M ,

I2 = |∂γ(A∗ju)β| ≤ c‖A∗j‖|β|op ≤ c(λ∗+(1 + ε))j|β|,
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Combining our estimates of I1 and I2 in (3.16), we have a constant C, depending on

the past constants, such that

|(∂αw)(u)| ≤ C(λ∗+(1 + ε))j|β|.

Then we have

|∂βKj(x)| ≤ bj
∫
B∗1\B∗−1

∣∣∣∣ (∂αw)(u)

(2πiAjx)α

∣∣∣∣ du
≤ C

(
bj(λ∗+(1 + ε))j|β|

|Ajx||α|

)
≤ C

(
bj(λ∗+(1 + ε))j|β|

bj|α|ζ−

)
.

Note that with our choice of α and (1.11), we can sum |∂βKj(x)| for j > M if

b(λ∗+(1 + ε))|β|

b|α|ζ−
< 1 that is, |β| <

(
N log λ−

log b
− 1

)
log b

log(λ∗+(1 + ε))
.

Indeed, for |β| ≤ R, there exists ε > 0 such that the series below converges: For C1

depending only on A, n,Ψ, β,M , we have

∞∑
j=M+1

|∂βKj(x)| ≤ C

∞∑
j=M+1

(
b(λ∗+(1 + ε))|β|

b|α|ζ−

)j
≤ C1.

Turning our attention to SL, we start with Parseval’s identity and a change of

variables. With C a dimensional constant, we have

|∂βxKj(x)| =

∣∣∣∣∣
∫
B∗j+1\B∗j−1

(2πiξ)βmj(ξ)e
2πi〈x,ξ〉dξ

∣∣∣∣∣
≤ cbj

∫
B∗1\B∗−1

|(A∗ju)β|︸ ︷︷ ︸
J1

· |mj(A
∗ju)|︸ ︷︷ ︸

J2

du ≤


Cbj(1+|β|ζ+) if j ≥ 0

Cbj(1+|β|ζ−) if j < 0.
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Indeed, for u in the unit annulus and A∗ju ∈ B∗j+1\B∗j−1, J1 ≤ c|A∗ju||β| ≤

Cbjζ±ρ∗(u)ζ± , with the eccentricity ζ± depending on the sign of j. Since m ∈ L∞

and J2 ≤ C(m,Ψ), we obtain the above estimate. Returning to SL, we have a

constant C, depending only on n,A,N,Ψ,M such that

SL ≤
−1∑

j=−∞

|∂βxKj(x)|+
M∑
j=0

|∂βxKj(x)| ≤ C

−1∑
j=−∞

bj(1+|β|ζ−) + C

M∑
j=0

bj(1+|β|ζ+) ≤ C2,

with C2 = C2(n,A,N,Ψ,M). This completes the estimate (3.15), and the proof of

this theorem.

Proof of Theorem 3.1. Let m be satisfy the Mihlin condition of order N . Recall that

we defined

L =

(
N

log λ−
log b

− 1

)
log b

log λ+

.

If L is not an integer, dLe − 1 < L. By Lemma (3.2), K = m̌ is a (CZC-R) kernel

with R = dLe − 1. Using this value of R in Lemma 3.1, we obtain the first range

of p on which T : Hp
A → Hp

A is bounded. Similarly, if L is an integer, then we take

R = L− 1. This gives the second range of p.

3.2. Proof of Theorem 3.2

We need two lemmas that provide estimates for gj. We will defer the proofs to

the last section.

Lemma 3.3. Let r > 0.

1. There exists a constant C1, depending only on A, s, ψ, r, such that for all j ≤ 0

and x ∈ Rn,

|gj(x)| ≤ C1
bj(s+1)ζ−

(1 + ρ(x))r
.

78



2. There exists a constant C2, depending only on A, p, r, such that for all j ≥ 0,

|gj(x)| ≤


C2b

−j/2 for all x,

C2
b−j/2

ρ(x)r
for x ∈ Bc

j+1.

Lemma 3.4. Let p ∈ (0, 1), let j ≥ 0, let r > 1
p
, and g ∈ K

1
p
−1,p

1 . Then there exists

a constant C3, depending only on A, r, p, such that if Q ∈ L1(Rn) satisfies ‖Q‖L1 ≤ 1

and |Q(x)| ≤ 1

ρ(x)r
if x ∈ Bc

j+1, then

∞∑
k=j+2ω

(∫
Ak
|(g ∗Q)(x)|dx

)p
bk(1−p) ≤ C3‖g‖p

K
( 1
p−1),p

1

.

We make one more important observation. By a simple application of Hölder’s

inequality, there is a constant C, depending only on b and p, such that

‖f‖pLp ≤
∑
k∈Z

(∫
Ak
|f(x)|dx

)p(∫
Ak
dx

)1−p

= C‖f‖p
K̇

1
p−1,p

1

.

Then we have

‖f‖Lp ≤ C(p, b)‖f‖
K̇

1
p−1,p

1

. (3.17)

Proof of Theorem 3.2 for p < 1. In light of (3.17), it suffices to prove the following

estimate for all unit (p, 2, s) atoms a, that is, atoms supported on B1:

‖Tma‖p
K̇

1
p−1,p

1

=
∑
k∈Z

(∫
Ak
|(mâ)∨(x)|dx

)p
bk(1−p) ≤ C. (3.18)
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To simplify our proof, we may assume sup
j∈Z
‖(mj)

∧‖
K

1
p−1,p

1

= 1. By the definition, for

all j ∈ Z, we have

‖(mj)
∧‖

K
1
p−1,p

1

= ‖(mj)
∧‖L1 + ‖(mj)

∧‖
K̇

1
p−1,p

1

≤ 1.

We split the sum in (3.18) into the cases k ≤ 2ω− 1 and k ≥ 2ω. If k ≤ 2ω− 1, there

is a constant Cb,m, depending only on b and m, such that by Hölder’s inequality,

∫
B2ω

|(mâ)∨(x)|dx ≤
(∫

B2ω

|(mâ)∨(x)|2dx
)1/2

|B2ω|1/2

≤ bω
(∫

Rn
|m(ξ)â(ξ)|2dξ

)1/2

≤ Cb,m.

Then we have C = C(A, p,m) so that

2ω∑
k=−∞

(∫
Ak
|(mâ)∨(x)|dx

)p
bk(1−p) ≤ C

2ω∑
k=−∞

bk(1−p) ≤ C

1− b1−p .

Now fix k ≥ 2ω. We use (3.7) to decompose the integral in the kth term of the sum.

∫
Ak
|(mâ)∨(x)|dx ≤

∞∑
j=−∞

∫
Ak+j

|(fj ∗ gj)(y)|dy

=
−k+2ω−1∑
j=−∞

+
0∑

j=−k+2ω

+
∞∑
j=1

∫
Ak+j

|(fj ∗ gj)(y)|dy

We denote the three sums by αk, βk, and γk respectively. Summing over k,

∞∑
k=2ω

(∫
Ak
|(mâ)∨(x)|dx

)p
bk(1−p) ≤

∞∑
k=2ω

(αpk + βpk + γpk) b
k(1−p)

=
∞∑

k=2ω

αpkb
k(1−p) +

∞∑
k=2ω

βpkb
k(1−p) +

∞∑
k=2ω

γpkb
k(1−p) = Sα + Sβ + Sγ.
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To estimate Sα, for each k, we apply Part 1 of Lemma 3.3 to αk, with j ≤ 0 and

r large enough so that the integral

∫
Rn

1

(1 + ρ(x))r
dx is finite. Then there exists a

constant Cα, depending only on A and r so that

αk =
−k+2ω∑
j=−∞

∫
Ak+j

|(fj ∗ gj)(y)|dy ≤
−k+2ω∑
j=−∞

‖fj‖L1 · ‖gj‖L1 ≤
−k+2ω∑
j=−∞

‖gj‖L1

≤ Cα

−k+2ω∑
j=−∞

∫
Rn

bj(s+1)ζ−

(1 + ρ(x))r
dx ≤ Cα

−k+2ω∑
j=−∞

bj(s+1)ζ− = Cαb
(−k+2ω)(s+1)ζ− .

Summing over k ≥ 2ω, and by the fact that (s + 1)ζ− >
1
p
− 1, we have a constant

C = C(A, p, s, r) so that

Sα ≤ Cα

∞∑
k=2ω

bp(−k+2ω)(s+1)ζ−)+k(1−p) ≤ C.

We estimate the sum Sγ:

Sγ ≤
∞∑

k=2ω

bk(1−p)
∞∑
j=1

(∫
Ak+j

|(fj ∗ gj)(y)|dy

)p

=
∞∑
j=1

∞∑
l=j+2ω

(∫
Al
|fj ∗ gj(y)|dy

)p
b(l−j)(1−p)

=
∞∑
j=1

[
∞∑

l=j+2ω

(
bj/2

∫
Al
|fj ∗ gj(y)|dy

)p
bl(1−p)

]
︸ ︷︷ ︸

Ij

b−j(1−
p
2

).

To estimate Ij, observe that since j ≥ 1 and r > 0, Part 2 of Lemma 3.3 gives

bj/2|gj(y)| . 1
ρ(y)r

if y ∈ Bj+1. Up to a general constant c, we can apply Lemma 3.4

with Q = cbj/2gj so ‖Q‖L1 ≤ 1, and usingfj ∈ K
1
p
−1,p

1 , we see that Ij ≤ C‖fj‖p
K

1
p−1,p

1

.

Then since ‖fj‖
K

1
p−1,p

1

≤ 1, and 1− p
2
> 0, there exists a constant Cγ, depending only

on A, r, p so that

Sγ ≤ Cγ

∞∑
j=1

‖fj‖p
K

1
p−1,p

1

· b−j(1−
p
2

) ≤ Cγ.
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Lastly, we estimate Sβ.

Sβ ≤
∞∑

k=2ω

0∑
j=−k+2ω

(∫
Ak+j

|fj ∗ gj(y)|dy

)p

bk(1−p) =
0∑

j=−∞

∞∑
k=2ω−j

(∫
Ak+j

|fj ∗ gj|dy

)p

bk(1−p)

=
0∑

j=−∞

b−j(1−p)
∞∑

`=2ω

b`(1−p)
(∫
A`
|fj ∗ gj|dyb−j(s+1)ζ−

)p
︸ ︷︷ ︸

Jj

bjp(s+1)ζ− .

We estimate Jj using Part 1 of Lemma 3.3 to obtain b−j(s+1)ζ− |gj(y)| . 1
ρ(x)r

. Setting

Q = bj(s+1)ζ−gj in Lemma 3.4 gives a constant Cβ, depending only on A, p, r such

that Jj ≤ C‖fj‖p
K

1
p−1,p

1

≤ Cβ. Inserting this into the above sum, we obtain another

uniform bound C ′β, also dependent on A, p, r, so that Sβ ≤ C ′β. This completes our

estimate on Sβ and our proof of (3.18).

Proof of Theorem 3.2 for p = 1. As in the case p < 1, it suffices to prove the following

uniform bound for all (1, 2, s) atoms a supported on B1:

‖(mâ)∨‖L1 = ‖f‖L1 ≤ C. (3.19)

We again make the following reductions. We suppose m satisfies

sup
j∈Z
‖(mj)

∧‖K(w) = 1. (3.20)

Then by our definition (3.4), our assumption that w(k) ≥ 1so for all j ∈ Z, and for

all j, we have ‖mj‖L∞ ≤ ‖(mj)
∨‖L1 ≤ 1

‖fj‖L1 ≤ ‖fj‖K(w) = ‖(mj)
∧‖K(w) ≤ 1 and ‖mj‖L∞ ≤ 1. (3.21)
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In estimating ‖f‖L1 , we will repeatedly peel away ‘low-spatial’ terms, each of

which is relatively simple to estimate, until we arrive at the term
∑∞

j=1 ‖gj‖2
L1(Bcj ). To

start, ‖f‖L1 = ‖f‖L1(B2ω) + ‖f‖L1(Bc2ω), the first low-spatial term is the integral over

B2ω. By Hölder’s inequality, there is a constant C, depending on A,m, such that

‖f‖L1(B2ω) ≤ C

(∫
Rn
|f(x)|2dx

)1/2

=

(∫
Rn
|mâ(ξ)|2dξ

)1/2

≤ C

To continue our estimate on the integral ‖f‖L1(Bc2ω), we use (3.7) to obtain the

pointwise decomposition of f :

f(x) =
0∑

j=−∞

bj(fj ∗ gj)(Ajx) +
∞∑
j=1

bj(fj ∗ gj)(Ajx).

We denote the above two sums by fL and fH respectively. By Hölder’s inequality,

∫
Bc2ω

|fL(x)|dx ≤
0∑

j=−∞

‖fj‖L1‖gj‖L1 ≤
0∑

j=−∞

‖gj‖L1 .

Since j ≤ 0, and taking r > 1, Part 1 of Lemma 3.3 gives a constant C, depending

on C1, r, A, s such that

‖gj‖L1 =

∫
Rn
|gj(x)|dx ≤ C

∫
Rn

bj(s+1)ζ−

(1 + ρ(x))r
dx = Cbj(s+1)ζ− ,

which implies

∫
Bc2ω

|fL(x)|dx ≤ C
0∑

j=−∞

‖gj‖L1 ≤ C

0∑
j=−∞

bj(s+1)ζ− ≤ C.
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To continue our estimate for the integral over fH , we give a pointwise estimate to the

convolution fj ∗ gj. For k ∈ Z, we define two integers a1, a2, by

a1(k) =

⌊
k − ω − 1 +

log(b− 1)

log b

⌋
a2(k) = max{bk + log(1 + bω)c, k + 2ω}.

Observe that a1 − ak is a constant independent of k. Then

b−ω − ba1−k ≥ b−ω−1 (3.22)

ba2−k−ω−1 ≥ b−ω. (3.23)

By a change of variables, we have

∫
Bc2ω

|fH(x)|dx ≤
∞∑
j=1

∞∑
k=j+2ω

∫
Ak
|(fj ∗ gj)(y)|dy

≤

S1︷ ︸︸ ︷
∞∑
j=1

∞∑
k=j+2ω

(∫
Ba1

|fj(z)gj(y − z)|dz +

∫
Bca2

|fj(z)gj(y − z)|dz

)

+
∞∑
j=1

∞∑
k=j+2ω

∫
Ba2\Ba1

|fj(z)gj(y − z)|dz︸ ︷︷ ︸
S2

.

We start with S1. Let r > 0, and fix z ∈ Ba1 and y ∈ Bk. Then by (3.22), we can

apply Lemma 3.3 on gj to obtain

|gj(y − z)| . 1

b(k−ω−1)r
.
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For the integral over Bac2
, we fix and z ∈ Bc

a2
, y ∈ Bk. Then by Lemma 3.3 again, we

have

|gj(y − z)| . 1

b(k−ω)r
.

These estimates, combined with (3.21), give

|(fj ∗ gj)(y)| ≤ C(b−kr + |(fj1Ba2\Ba1
∗ |gj)|(y)|).

Define J(l, j) =
∫
Al
|fj|dy, with a2− a1 depending only on ω, b and independent of k.

Then integrating over Ak, we have

∫
Ak
|(fj ∗ gj)(y)|dy . b−k(r−1) +

∫
Ak

(∫
Ba2\Ba1

|fj(z)gj(y − z)|dz

)
dy

≤ b−k(r−1) +

(∫
Ba2\Ba1

|fj(y)|dy

)
‖gj‖L1 = b−k(r−1) +

a2∑
l=a1

J(l, j) ‖gj‖L1 .

Returning to S1, we then have a constant C depending only on A, b, r, s and C1 and

C2 from Lemma 3.3 and 3.4 such that

S1 ≤
∞∑
j=1

Cb−j +
∞∑

k=j+2ω

a2∑
l=a1

J(l, j)‖gj‖L1 ≤ C + C

∞∑
j=1

‖gj‖L1

∞∑
k=j+2ω

J(k, j).

Note that in the last inequality, we changed the index from J(l, j) to J(k, j), since

l runs over a fixed range, regardless of what k is. We rewrite S2 using the same

reasoning:

S2 =
∞∑

k=j+2ω

∞∑
j=1

a2∑
l=a1

∫
Al
|fj(z)gj(y − z)|dz ≤ C

∞∑
j=1

‖gj‖L1

∞∑
k=j+2ω

J(k, j).
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By the condition on our weight w and the definition of the Herz norm of fj (3.4), we

have

∞∑
k=j+2ω

J(k, j) =
∞∑

k=j+2ω

w(k)

w(k)
J(k, j) ≤ 1

w(j)

∞∑
k=j+2ω

w(k)J(k, j)

=
1

w(j)

∞∑
k=j+2ω

(
w(k)

∫
Ak
|fj|dy

)
≤
‖fj‖K(w)

w(j)
≤ 1

w(j)
.

In light of this, we can combine the estimates on S1 and S2 to obtain

∫
Bcj+2ω

|fH(x)|dx ≤ S1 + S2 ≤ C + C

(
∞∑
j=1

‖gj‖2
L1

)1/2

‖1/w‖`2 ≤ C + C

(
∞∑
j=1

‖gj‖2
L1

)1/2

.

We now prove a uniform estimate for the sum
∑∞

j=1 ‖gj‖2
L1 , starting with Hölder’s

inequality to obtain the following decomposition for each gj:

∞∑
j=1

‖gj‖2
L1 =

∞∑
j=1

‖gj‖2
L1(Bj)︸ ︷︷ ︸

G1

+
∞∑
j=1

‖gj‖2
L1(Bcj )︸ ︷︷ ︸

G2

+2

(
∞∑
j=1

‖gj‖2
L1(Bj)

)1/2( ∞∑
j=1

‖gj‖2
L1(Bcj )

)1/2

.

We will prove that G1 and G2 are uniformly bounded. As has been the case in this

proof, the estimate on the low-spatial sum G1 is immediate. We recall that ψ is a

smooth function defined on the annulus B∗1\B∗−1. By Hölder and Parseval’s identity,

we have a constant C depending only on ψ and A such that

‖gj‖2
L1(Bj)

≤ bj
∫
B∗1\B∗−1

|â((A∗j)ξ)ψ(ξ)|2dξ ≤ C

∫
B∗j+1\B∗j−1

|â(u)|2du.
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Summing over j, we have

G1 =
∞∑
j=1

‖gj‖2
L1(Bj)

≤ C

∞∑
j=1

∫
B∗j+1\B∗j−1

|â(u)|2du ≤ 2C‖â‖2
L2 ,

which is uniformly bounded. It remains to estimate G2. If we fix j ≥ 1 and set

q = sζ−, we have a constant C depending only on A and q such that

‖gj‖2
L1(Bcj ) =

(∫
Bcj

|gj(x)| ρ(x)q

ρ(x)q
dx

)2

≤
∫
Bcj

|gj(x)|2ρ(x)2qdx

∫
Bcj

ρ(x)−2qdx

≤ Cbj(1−2q)

∫
Bcj

|gj(x)|2ρ(x)2qdx.

(3.24)

This last integral will be estimated by exploiting the fact that ĝj has compact support

in the frequency domain. By the same constant above, we use a change of variables

and (2.9) and obtain

∫
Bcj

|gj(x)|2ρ(x)2qdx = bj(2q−1)

∫
Bc0

|(bjDj
Agj)(y)|2ρ(y)2qdy

≤ Cbj(2q−1)
∑
|α|=s

∫
Rn
|∂α(FbjDj

Agj)(ξ)|
2dξ

= Cbj(2q−1)
∑
|α|=s

∫
Rn
|∂α(D−jA∗ ĝj)(ξ)|

2dξ,

(3.25)

To motivate the expression in the present form, we first write:

ĝj(ξ) = â((A∗j)ξ)p̂si(ξ) ⇒ D−jA∗ ĝj(ξ) = â(ξ)ψ̂(A∗−jξ).
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Applying the differential ∂α, the product rule gives

|∂α(D−jA∗ ĝj)(ξ)|
2 ≤

(∑
β≤α

∣∣∣∣(αβ
)
∂βâ(ξ) · ∂α−β[ψ̂((A∗−j)ξ)]

∣∣∣∣
)2

≤

(∑
β≤α

∣∣∣∣(αβ
)
∂α−β[ψ̂(A∗−jξ)]

∣∣∣∣2
) (∑

β≤α

|∂βâ(ξ)|2
)

≤ C

(
sup
γ≤α
|∂γ[p̂si((A∗−j)ξ)]|2

) ∑
β≤α

|∂βâ(ξ)|2

≤ C1B∗j+1\B∗j−1
(ξ)

∑
β≤α

|∂βâ(ξ)|2.

Thus, the dilation operator is moved from â to ψ. Integrating over Rn, we have

∫
Rn
|∂α(D−jA∗ ĝj)(ξ)|

2dξ ≤ C

∫
B∗j+1\B∗j−1

∑
β≤α

|∂βâ(ξ)|2dξ = C
∑
β≤α

∫
B∗j+1\B∗j−1

|∂βâ(ξ)|2dξ.

(3.26)

Plugging (3.26) into (3.25), we have

∫
Bcj

|gj(x)|2ρ(x)2qdx ≤ C
∑
|α|=s

∑
β≤α

∫
Bj+1\Bj−1

|∂βâ(ξ)|2dξ. (3.27)
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Let Cn denote a dimensional constant. Since a is supported on B1, the integral∫
B1
|a(x)|2dx ≤ Cn. We can now finish our estimate on G2. By (3.24) and (3.27),

G2 =
∞∑
j=1

‖gj‖2
L1(Bcj ) ≤ C

∞∑
j=1

(
bj(1−2q)

[∫
Bcj

|gj(x)|2ρ(x)2qdx

])

≤ C
∞∑
j=1

∑
|α|=s

∑
β≤α

∫
B∗j+1\B∗j−1

|∂βâ(ξ)|2dξ


≤ C

∞∑
j=1

∑
|β|≤s

∫
B∗j+1\B∗j−1

|∂βâ(ξ)|2dξ ≤ C
∑
|β|≤s

∫
Rn
|∂βâ(ξ)|2dξ

= C sup
|β|≤s

∫
Rn
|(a(x) · xβ)|2dx ≤ C sup

m≤s

∫
Rn
|a(x)|2 |x|2mdx ≤ CC(n)‖a‖2

L2 ≤ CCn.

This concludes the proof of Theorem 3.2.

3.3. Proof of Lemmas 3.3 and 3.4

Proof of Lemma 3.3. Let j ≤ 0. Let T (u) be the degree s Taylor polynomial of

u 7→ ψ(x− u), centered at the origin. We express gj(x) as follows:

gj(x) = (âj)
∨(x) = ((Dj

A∗ â)∨ ∗ ψ)(x) =

∫
Rn

(Dj
A∗ â)∨(u)ψ(x− u)du

=

∫
Rn
b−jD−jA a(u)ψ(x− u)du = b−j

∫
Bj+1

a(A−ju) (ψ(x− u)− T (u)) du.

Since j ≤ 0, with L being line between 0 and u ∈ Bj, the remainder term R(u)

satisfies the following estimates, with Cs a constant depending only on s:

|R(u)| ≤ Cs|u|s+1 sup
|β|=s+1

sup
z∈L
|∂β(ψ(x− z))|, with

|∂β(ψ(x− z))| ≤ Cs
(1 + ρ(x− z))r

≤ Cs
(1 + ρ(x))r

.
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By the vanishing moments condition on the atom, we continue the estimate (3.28):

|gj(x)| ≤
∫
Bj+1

|a(A−ju)||R(u)|du
bj
≤ C

∫
Bj+1

|a(A−ju)| |u|s+1

(1 + ρ(x))r
du

bj

≤ C

(1 + ρ(x))r

(∫
Bj+1

|a(A−ju)| · ρ(u)(s+1)ζ−
du

bj

)

≤ C
bj(s+1)ζ−

(1 + ρ(x))r

∫
B1

|a(y)|dy ≤ Cb1/2 bj(s+1)ζ−

(1 + ρ(x))r
.

This gives the first estimate. For the second estimate, we fix j ≥ 0. For a general

x ∈ Rn, we apply Hölder’s inequality to (3.28), which gives a constant C depending

only on ψ and b such that

|gj(x)| =

∣∣∣∣∣ 1

bj

∫
Bj+1

a(A−ju)ψ(x− u)du

∣∣∣∣∣ ≤ C

bj

(∫
B1

|a(y)|2bjdy
)1/2

≤ Cb−j/2.

If x ∈ Bc
j+1, there exists R > j + 1 ≥ 1 such that x ∈ BR+1\BR. Then if y ∈ Bj+1,

we have

ρ(x− y) ≥ bR−ω−2, that is, x− y ∈ Bc
R−ω−1. (3.28)

Returning to estimating gj, we have

|gj(x)| ≤ b−j/2

(∫
Bj+1

|ψ(x− u)|2du

)1/2
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With x, y as in (3.28), since x−y ∈ Bc
R−ω−1, along with ψ ∈ S, and r′ = r+1/2 > 1/2,

we have a constant C, depending only on A, r, and r′ such that

∫
Bj+1

|ψ(x− y)|2dy ≤
∫
BcR−ω−1

|ψ(u)|2du ≤ C

∫
BcR−ω−1

1

ρ(u)2r′
du = C

∞∑
i=R−ω

∫
Bi+1\Bi

b−2ir′du

= C
∞∑

i=R−ω

bi(1−2r′) = C
1

1− b1−2r′
b(1−2r′)R = CbR(1−2r′) =

C

ρ(x)2r′−1
,

the above sum converges. Then we have

|gj(x)| . b−j/2

ρ(x)r′−1/2
=
b−j/2

ρ(x)r
,

completing the proof of lemma 3.3.

Proof of Lemma 3.4. Fix such a Q. Without loss of generality, we assume

‖g‖
K

1
p−1,p

1

= 1. Then it suffices to prove the existence of a uniform constant C,

independent of g and Q, such that

∞∑
k=j+2ω

(∫
Ak
|g ∗Q(x)|dx

)p
bk(1−p) ≤ C,

which will follow from the following pointwise estimate on (g ∗Q)(x). Define J(l) =∫
Al
|g(y)|dy. If x ∈ Ak and k ≥ j + 2ω, then we claim there exists C = C(b, ω, r)

such that

|(g ∗Q)(x)| ≤ C

[
b−r(k−2ω)

a1∑
l=−∞

J(l) +
∞∑
l=a2

J(l)b−r(l−ω) +

a2−1∑
l=a1+1

∣∣∣∣∫
Al
g(y)Q(x− y)dy

∣∣∣∣
]
.

(3.29)
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Indeed, assuming (3.29) holds, we integrate g ∗Q over the annulus Ak:

∫
Ak
|(g ∗Q)(x)|dx ≤ C

∫
Ak

(
b−r(k−2ω)

a1∑
l=−∞

J(l) +
∞∑
l=a2

J(l)b−r(l−ω) +

a2−1∑
l=a1+1

∣∣∣∣∫
Al
g(y)Q(x− y)dy

∣∣∣∣
)
dx

≤ C

(
b−r(k−2ω)bk +

∞∑
l=a2

J(l)b−r(l−ω)bk +

a2−1∑
l=a1+1

∫
Ak

(∫
Al
|g(y)Q(x− y)|dy

)
dx

)
.

We define the following:

PL = b−r(k−2ω)bk,

PH =
∞∑
l=a2

J(l)b−r(l−ω)bk

Pk =

a2−1∑
l=a1+1

∫
Ak

(∫
Al
|g(y)Q(x− y)|dy

)
dx.

Summing over k, we have

∞∑
k=j+2ω

(∫
Ak
|(g ∗Q)(x)|dx

)p
bk(1−p) ≤ C

∞∑
k=j+2ω

(P p
L + P p

H + P p
k )bk(1−p).

To evaluate the sum
∞∑

k=j+2ω

P p
Lb

k(1−p), we note that r > 1
p

and k ≥ j + 2ω ≥ 0. Then

there is a constant CL, depending only on ω, r, p, and b, such that

∞∑
k=2ω

P p
Lb

k(1−p) =
∞∑

k=j+2ω

bpk−pr(k−2ω)bk(1−p) = b2ωrp

∞∑
k=j+2ω

bk(1−rp) ≤ CL.

To evaluate the sum
∞∑

k=j+2ω

P p
H , we note that if r > 1

p
> 1 and l ≥ a2, then p−1−rp =

p(1− r)− 1 < 0 is equivalent to l(p− 1− rp) ≤ a2(p− 1− rp). By the definition of
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a2(k), there exists a constant c, depending only on b, r and ω, such that

∞∑
k=j+2ω

P p
Hb

k(1−p) ≤
∞∑

k=j+2ω

(
∞∑
l=a2

J(l)pb−rp(l−ω)bkp

)
bk(1−p) = c

∞∑
k=j+2ω

bk
∞∑
l=a2

J(l)pbl(1−p)bl(p−1−rp)

≤ c
∞∑

k=j+2ω

bkba2(p−1−rp)

(
∞∑
l=a2

J(l)pbl(1−p)

)

≤ c

∞∑
k=j+2ω

bkba2(p−1−rp)‖g‖p
K

1
p−1,p

1

≤ c
∞∑

k=j+2ω

bkba2(p−1−rp)

≤ max

{
∞∑

k=j+2ω

bkb(k+log(1+bω))(p−1−rp),
∞∑

k=j+2ω

bkb(k+2ω)(p−1−rp)

}
,

Now in the first estimate, there is a constant C, depending only on b, ω, r and p such

that the power of b is given by

k + k(p− 1− rp) + log(1 + bω)(p− 1− rp) = kp(1− r) + C.

In the second estimate, the power of b is given by

k + k(p− 1− rp) + 2ω(p− 1− rp) = kp(1− r) + C.

Since r > 1
p
> 1, both estimates lead to a uniform bound for

∑∞
k=j+2ω P

p
Hb

k(1−p).

We now estimate the sum
∑∞

k=j+2ω P
p
k b

k(1−p). By Fubini and the fact that a2−a1

depend only on ω, b, and the estimate in the lemma is proved.We have a constant C,
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depending only on ω and b, such that

∞∑
k=j+2ω

P p
k b

k(1−p) =
∞∑

k=j+2ω

(
a2−1∑
l=a1+1

∫
Ak

∫
Al
|g(y)Q(x− y)|dydx

)p

bk(1−p)

≤
∞∑

k=j+2ω

(
a2−1∑
l=a1+1

(∫
Al
|g(y)|dy

)
‖Q‖L1

)p

bk(1−p)

≤
∞∑

k=j+2ω

(
a2−1∑
l=a1+1

J(l)p

)
bk(1−p) ≤ C(ω, b)

∞∑
k=j+2ω

J(l)pbk(1−p) ≤ C(ω, b).

It remains to prove the pointwise estimate (3.29). We start with a simple

decomposition. With a1(k) and a2(k) as before, we have

(g ∗Q)(x) =
∞∑

l=−∞

∫
Al
g(y)Q(x− y)dy =

a1∑
l=−∞

+

a2−1∑
a1+1

+
∞∑
l=a2

∫
Al
g(y)Q(x− y)dy,

and we denote the first two sums by SL and SH , respectively. To estimate SL, let

l ≤ a1 and let y ∈ Al. We claim that ρ(x − y) ≥ bj. To prove this, we use the

anisotropic triangle inequality:

ρ(x− y) ≥ b−ωρ(x)− ρ(y) = b−ωbk − bl ≥ b−ωbk − ba1

≥ bk(b−ω − ba1−k) ≥ bkb−ω−1 ≥ bk−2j ≥ bj.

Then by our assumption on Q, we have

|Q(x− y)| ≤ 1

ρ(x− y)r
≤ 1

br(k−2ω)
.
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Returning to SL, we have

|SL| =

∣∣∣∣∣
a1∑

l=−∞

∫
Al
g(y)Q(x− y)dy

∣∣∣∣∣ ≤
a1∑

l=−∞

∫
Al
|Q(x− y)| · |g(y)|dy

≤

(
a1∑

l=−∞

∫
Al
|g(y)|dy

)
b−r(k−2ω) = b−r(k−2ω)

a1∑
l=−∞

J(l).

To estimate SH , we let x ∈ Ak, let l ≥ a2 and let y ∈ Al. We claim that ρ(x−y) ≥ bj.

Indeed, starting with the anisotropic triangle inequality, we have

ρ(x− y) ≥ b−ωρ(y)− ρ(x) = b−ωbl − bk ≥ b−ωba2 − bk

= bk(ba2−k−ω − 1) ≥ bkb−ω = bk−ω ≥ bj+2ω−ω ≥ bj.

The condition on Q gives the estimate Q(x− y) ≤ 1
ρ(x−y)r

. Since a2 ≥ k + 2ω. Then

there exists c, depending only on A, such that

ρ(x− y) ≥ b−ωρ(y)− ρ(x) = b−ωbl − bk ≥ b−ωbl − ba2−2ω ≥ b−ωbl − bl−2ω,

so
1

ρ(x− y)
≤ c

bω−l
. We now complete our estimate on SH :

|SH | =

∣∣∣∣∣
∞∑
l=a2

∫
Al
g(y)Q(x− y)dy

∣∣∣∣∣ ≤
∞∑
l=a2

∫
Al

|g(y)|
ρ(x− y)r

dy

≤ C

∞∑
l=a2

∫
Al

|g(y)|
br(ω−l)

dy =
∞∑
l=a2

b−r(l−ω)J(l).

This completes the proof of (3.29).
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CHAPTER IV

FOURIER TRANSFORM OF HP
A

4.1. Introduction

We now look at a well-known problem of the characterization of f̂ for f ∈ Hp.

Coifman [Coi74a] characterized all such f̂ on R using entire functions of exponential

type. In higher dimensions necessary conditions have been studied by a number of

authors [Col82, GCK01, Tai66]. In particular, Taibleson and Weiss [GCK01] showed

that for p ∈ (0, 1], the Fourier transform of f ∈ Hp(Rn) is continuous and satisfies

the following estimate:

|f̂(ξ)| ≤ C‖f‖Hp|ξ|n( 1
p
−1). (4.1)

This leads to the following consequences; see [GCRdF85, III.7], [Tai66] for more

details. At the origin, the estimate (4.1) forces f ∈ Hp ∩ L1 to have vanishing

moments, as seen by the degree of 0 of f̂ at the origin, illustrating the necessity of

the vanishing moments of the atoms. Away from the origin, the polynomial growth

is sharp, as given by an extension of the Hardy-Littlewood inequality for f ∈ Hp,

0 < p ≤ 1,

∫
Rn
|ξ|n(p−2)|f̂(ξ)|pdξ ≤ C‖f‖pHp . (4.2)

The estimate (4.1) also sheds light on multiplier operators of Hp. When paired with

the molecular characterization of Hp, it shows that the multiplier operator Tm :

Hp → Hp is bounded provided the multiplier m satisfies the (integral) Hörmander
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condition. On the other hand, if Tm is any bounded multiplier operator on Hp, then m

is necessarily continuous and bounded on Rn\{0}. The main purpose of this chapter

is to extend (4.1) from the isotropic (classical) setting to anisotropic Hardy spaces

Hp
A associated with a dilation matrix A. We recall that the adjoint A∗ is a dilation

matrix, with its associated quasinorm ρ∗.

Theorem 4.1. Let p ∈ (0, 1]. If f ∈ Hp
A(Rn), then f̂ is a continuous function and

satisfies

|f̂(ξ)| ≤ C‖f‖Hp
A
ρ∗(ξ)

1
p
−1 (4.3)

with C = C(A, p).

Theorem 4.1 leads to similar consequences as in the isotropic setting. At

the origin, we obtain a sharper order for the convergence of f̂(ξ) as ξ → 0.

This is given by Corollary 4.2, and shows the necessity of vanishing moments for

anisotropic atoms in Hp
A. We then obtain necessary conditions for a function m to

be a multiplier on Hp
A, given by Corollary 4.3. Lastly, we show in Corollary 4.4

that the function |f̂(ξ)|pρ∗(ξ)p−2 is integrable, which is a generalization of Hardy-

Littlewood’s inequality (4.2). In Theorem 4.5, we further improve this estimate using

rearrangement functions as in the work of Garćıa-Cuerva and Kolyada [Tai66], though

we use a slightly different argument.

Lastly, the notion of an atom can be generalized to a molecule (See Theorem

2.3): A function f is a molecule localized around x0 + Bk if it satisfies the above
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vanishing moment condition, and

(
1

|Bk|

∫
x0+Bk

|f(x)|qdx
)1/q

≤ C|Bk|−1/p,

|f(x)| ≤ C|Bk|−1/pρ(A−k(x− x0))−δ for x ∈ x0 +Bc
k.

All such molecules are in Hp
A. In particular, f does not have to be compactly

supported, and any Schwartz function satisfying the vanishing moments is

immediately such a molecule.

4.2. Proof of Theorem 4.1

To prepare for the following two lemmas, we recall two basic facts. If we define

the dilation operator by DA(f)(x) = f(Ax), then (2.9) states it commutes with the

Fourier transform by the following identity for all j ∈ Z:

bj(Dj
A∗FD

j
Af)(ξ) = f̂(ξ).

Second, the eccentricities of A∗ are the same as A, that is, (1.11) and (1.12) hold with

the same constants cA, ζ+, ζ−. Indeed, A∗ has the same eigenvalues as A.

Lemma 4.1. Let a be a (p, q, s) atom supported on x0 + Bk for some x0 ∈ Rn and

k ∈ Z. Suppose α is a multi-index, with |α| ≤ s. There exists a constant C = C(s)

such that

|∂α(FDk
Aa)(ξ)| ≤ Cb−

k
q ‖a‖q min{1, |ξ|s−|α|+1}. (4.4)
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Proof. Without loss of generality, we can assume a is supported on Bk, so

supp(Dk
Aa) ⊂ B0. Fixing a multi-index |α| ≤ s, we have

|∂α(FDk
Aa)(ξ)| =

∣∣∣∣ ∫
B0

(−2πix)α(Dk
Aa)(x)e−2πi〈x,ξ〉dx

∣∣∣∣.
Let T (x) be the degree s−|α| Taylor polynomial of the function x 7→ e−2πi〈x,ξ〉 centered

at the origin. Using the vanishing moments of an atom, we have

|∂α(FDk
Aa)(ξ)| =

∣∣∣∣ ∫
B0

(−2πix)α(Dk
Aa)(x)e−2πi〈x,ξ〉dx

∣∣∣∣
=

∣∣∣∣ ∫
B0

(−2πix)α(Dk
Aa)(x)

[
e−2πi〈x,ξ〉 − T (x)

]
dx

∣∣∣∣ ≤ C

∫
B0

|xα||a(Akx)||x|s−|α|+1|ξ|s−|α|+1dx

≤ C|ξ|s−|α|+1

∫
B0

|x|s+1|a(Akx)|dx ≤ C|ξ|s−|α|+1

∫
Bk

|a(y)|dy
bk
≤ C|ξ|s−|α|+1b−k/q‖a‖q.

The third line is a consequence of Taylor’s remainder formula. To obtain the other

estimate, we estimate without the Taylor approximation

|∂α(FDk
Aa)(ξ)| =

∣∣∣∣ ∫ (−2πix)α(Dk
Aa)(x)e−2πi〈x,ξ〉dx

∣∣∣∣ ≤ C

∫
B0

|x||α||a(Akx)|dx

≤ C b−k
∫
Bk

|a(y)|dy ≤ Cb−k/q‖a‖q.

This completes the proof.

Lemma 4.2. Let a be a (p, q, s) atom supported on x0 + Bk for some x0 ∈ Rn and

k ∈ Z. Then we have the following bound, with C independent of a,

|â(ξ)| ≤ Cρ∗(ξ)
1
p
−1. (4.5)
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Proof. Setting α = 0, (4.4) reduces to the following estimate

|â(ξ)| ≤


Cbk(1−1/p)b(s+1)kζ−ρ∗(ξ)

(s+1)ζ− for ρ∗(ξ) ≤ b−k,

Cbk(1−1/p) for all ξ.

(4.6)

Indeed, with (2.9) and setting α = 0 in (4.4),

|â(ξ)| = |bk(FDk
Aa)(A∗kξ))| ≤ Cbkb−

k
q ‖a‖q min(1, |A∗kξ|s+1)

≤ Cbk(1−1/p) min(1, |A∗kξ|s+1).

This immediately yields the second estimate (4.6). To see the first estimate, we

take ρ∗(ξ) ≤ b−k, which is equivalent to A∗kξ ∈ B∗1 . Hence, by (1.11), |(A∗)kξ)| ≤

cAb
kζ−ρ∗(ξ)

ζ− . Thus,

|â(ξ)| ≤ Cbk(1−1/p)(bkζ−ρ∗(ξ)
ζ−)s+1.

This shows (4.6), which we will use to prove (4.5).

If ρ∗(ξ) ≤ b−k, then

|â(ξ)| ≤ Cbk((1−1/p)+(s+1)ζ−)ρ∗(ξ)
(s+1)ζ−

≤ Cρ∗(ξ)
−(1−1/p)−(s+1)ζ−ρ∗(ξ)

(s+1)ζ− = Cρ∗(ξ)
1
p
−1.

In the second inequality we used the fact that 1− 1
p

+ (s+ 1)ζ− ≥ 0, since (p, q, s) is

admissible. If ρ∗(ξ) > b−k, then by (4.6), we have

|â(ξ)| ≤ Cb−k(1/p−1) ≤ Cρ∗(ξ)
1
p
−1,
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where the last inequality holds since 1/p − 1 ≥ 0. This completes the proof of the

lemma.

We are now ready to prove Theorem 4.1 by extending (4.5) to every f ∈ Hp
A.

Proof of Theorem 4.1. Let f ∈ Hp
A. By the atomic decomposition of Hp

A, we can find

coefficients (λi) and atoms (ai) such that f =
∑
λiai (in Hp

A-norm) and 2‖f‖Hp
A
≥

‖(λi)‖`p . This sum converges in Hp
A-norm, which implies convergence in S ′. So by

taking the Fourier transform on f , we have f̂ =
∑

i λiâi, converging in S ′. By (4.5)

and the fact that (λi) ∈ `1,

∞∑
i=1

|λi||âi(ξ)| ≤ C
∞∑
i=1

|λi| ρ∗(ξ)
1
p
−1 ≤ 2Cρ∗(ξ)

1
p
−1‖f‖Hp <∞.

Therefore, the sum f̂(ξ) =
∑

i λiâi(ξ) converges absolutely on Rn. Furthermore,

on each compact set K, ρ∗(ξ) is bounded by a constant C ′ independent of a, so

the absolute convergence above is also uniform on each compact set K. With âi

infinitely differentiable (hence continuous) for all i, we conclude f̂(ξ) is continuous on

all compact sets K, and hence on Rn.

4.3. Applications of Theorem 4.1

We now consider consequences of Theorem 4.1. The first corollary refines the

order of 0 at the origin, and the second gives necessary conditions on a multiplier

m on Hp
A. The third corollary is the Hardy-Littlewood inequality on Hardy spaces,

which will be strengthened by a rearrangement argument.
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Corollary 4.2. Let f ∈ Hp
A(Rn), 0 < p ≤ 1. Then,

lim
ξ→0

f̂(ξ)

ρ∗(ξ)
1
p
−1

= 0. (4.7)

Proof. We start by verifying this on an atom a, with support Bk. By (4.6), if ρ∗(ξ) ≤

b−k, we have

|â(ξ)| ≤ Cbk(1−1/p)b(s+1)kζ−ρ∗(ξ)
(s+1)ζ− .

Since s ≥ b(1/p − 1)ζ−c, this implies (s + 1)ζ− >
1
p
− 1. Therefore, we obtain (4.7)

for atoms;

lim
ξ→0

â(ξ)

ρ∗(ξ)
1
p
−1

= 0.

Now if f ∈ Hp
A, we can decompose f =

∑
i λiai, for (λi) ∈ `p and (p, q, s)-atoms ai.

Thus,

|f̂(ξ)|
ρ∗(ξ)

1
p
−1
≤

∞∑
i=1

|âi(ξ)|
ρ∗(ξ)

1
p
−1
|λi|.

By (4.5) and the fact that (λi) ∈ `1, we can apply the Dominated Convergence

Theorem to the above sum (treated as an integral). Since each term in the sum goes

to 0 as ξ → 0 we obtain (4.7).

Corollary 4.3, which is a generalization of [GCRdF85, Theorem III.7.31], gives a

necessary condition for multipliers on anisotropic Hardy spaces Hp
A.

Corollary 4.3. Suppose m is a multiplier on Hp
A, 0 < p ≤ 1. That is, the following

operator is bounded:

Tm : Hp
A → Hp

A, Tm(f) = (mf̂)∨,
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with M > 0 as the operator norm of Tm. Then, m is continuous on Rn\{0} and

uniformly bounded with ‖m‖∞ ≤ CM .

Proof. Fix 0 < p ≤ 1. For k ∈ Z, we denote fk(x) = bk/pf(Akx). Then, this dilation

is invariant under Hp
A (and Lp) norm: ‖fk‖Hp

A
= ‖f‖Hp

A
. Under the Fourier transform,

we have

f̂k(ξ) = bk( 1
p
−1)f̂((A∗)−kξ).

Then by (4.3), the following estimate holds for all k ∈ Z, ξ ∈ Rn,

|m(ξ)f̂((A∗)−kξ)| ≤ CM‖f‖Hp ρ∗(ξ)
1
p
−1bk(1− 1

p
).

If ξ ∈ B∗k+1\B∗k, then (A∗)−kξ ∈ B∗1\B∗0 , and we have

|m(ξ)f̂((A∗)−kξ)| ≤ CM‖f‖Hp .

This estimate will force m to be bounded if there exists f ∈ Hp
A such that f̂ does

not vanish on the unit annulus B∗1\B∗0 . Take g ∈ C∞c , supported on B∗2\B∗−1 such

that g is identically 1 on B∗1\B∗0 . Setting f̂ = g, f is immediately in the Schwartz

class S, with vanishing moments of all order. In particular, f is a molecule for Hp
A

(see Remark in [Bow03, Section 9]), hence f ∈ Hp
A. This shows that ||m||∞ ≤ CM .

Moreover, by Theorem 4.1 the function ξ 7→ m(ξ)f̂((A∗)−kξ) is continuous for each

k ∈ Z. Thus, m is continuous on Rn\{0}.

Corollary 4.4. If f ∈ Hp
A(Rn), 0 < p ≤ 1, then

∫
Rn
|f̂(ξ)|pρ∗(ξ)p−2dξ ≤ C‖f‖p

Hp
A
. (4.8)

103



Proof. Suppose a (p, 2, s) atom a is supported on x0 +Bk. We claim that

∫
Rn
|â(ξ)|pρ∗(ξ)p−2dξ ≤ C. (4.9)

Indeed, by (4.6) we can estimate the integral on B∗−k

∫
B∗−k

|â(ξ)|pρ∗(ξ)p−2dξ ≤ Cpbk(p−1)bp(s+1)kζ−

∫
B∗−k

ρ∗(ξ)
p−2+p(s+1)ζ−dξ ≤ Cp.

For the integral outside of B∗−k, we use Hölder’s inequality

∫
(B∗−k)c

|â(ξ)|pρ∗(ξ)p−2dξ ≤ C

(∫
(B∗−k)c

|â(ξ)|2dξ

) p
2
(∫

(B∗−k)c
ρ∗(ξ)

−2dξ

) 2−p
2

≤ C||a||p2b−k( p
2
−1) ≤ C.

Combining these two estimates, we obtain (4.9). Now let f ∈ Hp
A have an atomic

decomposition f =
∑

i λiai with ‖(λi)‖`p ≤ 2‖f‖Hp
A

. Since p ∈ (0, 1], we have

∫
Rn
|f̂(ξ)|pρ∗(ξ)p−2dξ ≤

∑
i

|λi|p
∫
Rn
|âi(ξ)|pρ∗(ξ)p−2 dξ ≤ C

∑
i

|λi|p ≤ C‖f‖p
Hp
A
.

This shows (4.8).

The following result improves (4.8) by extending [GCRdF85, Lemma 3.1] to the

anisotropic setting. We denote S0(Rn) as the collection of all measurable functions

f , finite almost everywhere, whose distributional functions satisfy

df (t) = |{x ∈ Rn : |f(x)| > t}| <∞ for all t > 0. (4.10)
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For f ∈ S0(Rn), its rearrangement function is defined by

f ?(t) = inf{s > 0 : df (s) ≤ t}.

We recall the following facts regarding the rearrangement function. If f ≤ g on Rn,

then f ?(t) ≤ g?(t) for all t. For all λ > 0,

(|f |λ)?(t) = f ?(t)λ. (4.11)

These follow immediately from the definition. Lastly,

∫ t

0

(∑
j

fj

)?

(u)du ≤
∑
j

∫ t

0

f ?j (u)du, (4.12)

for all t > 0, provided the right-hand side is finite; see [BS88, Chapter 2, §3].

Theorem 4.5. Let ε > 0, 0 < p < 1 and define λ = 1
p
− 1 + ε. Then, there exists C

such that for all f ∈ Hp
A(Rn),

(∫ ∞
0

tεp−1F ?
ε (t)pdt

)1/p

≤ C‖f‖Hp
A
, (4.13)

with Fε(ξ) = ρ∗(ξ)
−λ|f̂(ξ)|.

To see why Theorem 4.5 strengthens (4.8), we observe that if g(ξ) = 1/ρ∗(ξ), a

simple computation shows

g?(t) ' 1/t. (4.14)
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If f, g ∈ S0(Rn),

∫
Rn
|f(ξ)g(ξ)|dx ≤

∫ ∞
0

f ?(t)g?(t)dt.

Together, these two facts can be used to show the left-hand side of (4.13) majorizes

the left-hand side of (4.8).

Proof of Theorem 4.5. We will prove the following estimate for all f ∈ Hp
A:

(∫ ∞
0

tεp−2

[∫ t

0

F ?
ε (u)pdu

]
dt

)1/p

≤ C‖f‖Hp
A
, (4.15)

which implies (4.13). Indeed, the rearrangement function is always decreasing for

0 < t <∞. Thus, F ?
ε (t)p ≤ 1

t

∫ t
0
F ?
ε (u)pdu. Then,

∫ ∞
0

tεp−1F ?
ε (t)pdt ≤

∫ ∞
0

tεp−1

(
1

t

∫ t

0

F ?
ε (u)pdu

)
dt =

∫ ∞
0

tεp−2

(∫ t

0

F ?
ε (u)pdu

)
dt.

We first prove (4.15) for unit atoms. Using a dilation argument, we extend it to all

atoms, and to any f ∈ Hp
A using the atomic decomposition.

Let f be a unit (p, 2, s) atom, that is, an atom supported on x0 + B0. Without

loss of generality, we set x0 = 0. On unit atoms, the estimates (4.5) and (4.6) reduce

to

‖f̂‖∞ ≤


ρ∗(ξ)

(s+1)ζ− for ξ ∈ B∗0

ρ∗(ξ)
1
p
−1 for all ξ.
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This implies

Fε(ξ) ≤


ρ∗(ξ)

ζ−(s+1)−λ for ξ ∈ B∗0 ,

ρ∗(ξ)
1
p
−1−λ for all ξ,

where the first estimate has a positive power, and the second has a negative power.

These give ‖Fε‖∞ ≤ C, and Fε(ξ) ≤ Cρ∗(ξ)
−λ, which by the properties of the

rearrangement function and (4.14), imply

F ?
ε (t) ≤ C min{1, t−λ}.

With these estimates,

∫ ∞
0

tεp−2

(∫ t

0

F ?
ε (u)pdu

)
dt =

∫ 1

0

+

∫ ∞
1

tεp−2

(∫ t

0

F ?
ε (u)pdu

)
dt = I1 + I2.

By the fact that F ?
ε (t) ≤ C, we have I1 ≤ C. To estimate I2,

I2 ≤
∫ ∞

1

tεp−2

(∫ t

0

F ?
ε (u)pdu

)
dt ≤

∫ ∞
1

tεp−2

(∫ t

0

u−λpdu

)
dt

'
∫ ∞

1

tεp−2t1−λpdt =

∫ ∞
1

tp−2dt ≤ C.

Since ‖f‖Hp
A
≤ C for all atoms, we have (4.15) for unit atoms.

We now extend it to all atoms using a dilation argument. Let f be a general

(p, 2, s) atom supported on Bk. Then the dilated atom fk(x) = bk/pf(Akx) is an atom

with the same Hp
A-norm, but supported on B0, that is, fk is a unit atom. Denoting

107



Gε(ξ) = ρ∗(ξ)
−λ |f̂k(ξ)|, we have just shown that

∫ ∞
0

tεp−2

(∫ t

0

G?
ε(u)pdu

)
dt ≤ C.

The fact that (4.15) holds for all atoms follows if we can show that the above quantity

is the same if we replace Gε by Fε(ξ) = ρ∗(ξ)
−λ|f̂(ξ)|.

As before, we denote DA∗g(x) = g(A∗x). Then

Gε(ξ) = b−εk(Dk
A∗Fε)(ξ).

The distribution function is affected as follows.

dGε(s) = |{ξ : Gε(ξ) > s}| = |{ξ : (D−kA∗Fε)(ξ) > sbεk}|

= |{ξ : Fε((A
∗)−kξ) > sbεk}| = bk|{u : Fε(u) > sbεk}| = bkdFε(sb

εk).

This affects the rearrangement function as follows:

G?
ε(t) = inf{s : dGε(s) ≤ t} = inf{s : dFε(sb

εk) ≤ b−kt}

= b−εk inf{r : dFε(r) ≤ b−kt} = b−εkF ?
ε (b−kt).

(4.16)

By two changes of variables and (4.16), we have

∫ ∞
0

tεp−2

(∫ t

0

F ?
ε (u)pdu

)
dt =

∫ ∞
0

tεp−2

(∫ t

0

bpεkG?
ε(b

ku)pdu

)
dt

=

∫ ∞
0

sεp−2

(∫ s

0

G?
ε(r)

pdr

)
ds ≤ C.
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This extends (4.15) to all atoms, and we now extend it to all f ∈ Hp
A. If f ∈ Hp

A,

then we have the atomic decomposition

f =
∑
j

λjaj,

with (p, 2, s) atoms aj and (λj) ∈ `p. Taking the Fourier transform, we have the

following sum in the distributional and pointwise sense:

f̂(ξ) =
∑
j

λj âj(ξ).

With Fε(ξ) = |ξ|−λ|f̂(ξ)| and p ∈ (0, 1),

Fε(ξ)
p =

(
|ξ|−λ|

∑
j

λj âj(ξ)|

)p

≤
∑
j

|λj|p ·
(
|ξ|−λ|âj(ξ)|

)p
=
∑
j

|λj|pAj(ξ)p,

where Aj(ξ) = |ξ|−λ|âj(ξ)|. Recall that the rearrangement operation is order-

preserving (f ≤ g ⇒ f ? ≤ g?). By (4.11) and (4.12), we have

∫ t

0

F ?
ε (u)pdu ≤

∫ t

0

(∑
j

|λj|pApj(·)

)?

(u)du ≤
∑
j

|λj|p
∫ t

0

A?j(u)pdu.

Therefore,

∫ ∞
0

tεp−2

[∫ t

0

F ?
ε (u)pdu

]
dt ≤

∫ ∞
0

tεp−2

[∑
j

|λj|p
∫ t

0

A?j(u)pdu

]
dt

=
∑
j

|λj|p
∫ ∞

0

tεp−2

(∫ t

0

A?j(u)pdu

)
dt ≤ C

∑
j

|λj|p,

where the last inequality comes from (4.15) for all atoms. Taking the infimum over

all possible atomic decompositions, we obtain (4.15) for all f ∈ Hp
A.
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