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We study the Bousfield localization functors known as L~, as described in

[MahS] . In particular we would like to understand how they interact with suspension

and how they stabilize.

We prove that suitably connected L~-acyclic spaces have suspensions which

are built out of a particular type n space, which is an unstable analog of the fact

that L~-acyclic spectra are built out of a particular type n spectrum. This theorem

follows Dror-Farjoun's proof in the case n = 1 with suitable alterations. We also

show that L~ applied to a space stabilizes in a suitable way to L~ applied to the

corresponding suspension spectrum.
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CHAPTER I

INTRODUCTION

The notion of localization is an important one in algebraic topology, and can

be thought of as analogous to the classical algebraic localization of a module. The

general idea is described in [Dw]. Given a category C, and a subcategory £ C C,

one wants to functorially modify all of the objects and morphisms in the category

so that the morphisms in £ become isomorphisms. The modification of an object in

this sense is called the localization of that object. This is not possible for all pairs

(C, £), but when it is we say the pair has good localizations. One situation where

this notion is familiar is the localization of the category of R-modules with respect

to a multiplicatively closed set.

Given a ring R, and a multiplicative subset 8 C R, take C to be the category

of R-modules. A module M is S-torsion if for each x E M there is an element

s E 8 such that sx = O. Then, take £ to be all of the objects of C, along with all

morphisms f such that ker(f) and coker(f) are S-torsion. The pair (C, £) has good

localizations, and the localization of a module M is its classical algebraic localization

8-1M. In general, localization can be thought of as a functor from C to itself.

One can see this idea at work in [Se], where Serre lays the foundation for

modern topological localization by studying what he calls classes of abelian groups.

For instance, one of the classes of abelian groups described is the class of finite
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abelian groups with order relatively prime to some prime p. A group homomorphism

is considered an isomorphism with respect to this class if both the kernel and cokernel

lie in the class. A homomorphism such as this is considered an isomorphism "mod­

p." Serre considers C to be the category of spaces, and £ to be maps between

spaces such that on homology such maps induce isomorphisms mod- p. He proves

a series of theorems which are reinterpretations of classical theorems in topology,

now seen as a class of theorems, one for each class of abelian groups. For instance,

he proves a mod-p version of the Whitehead theorem, which states: Given simply

connected topological spaces X and Y with finitely generated homology groups and

f: X ---t Y inducing an isomorphism in 1l"2, if f: Hi(X;Z/pZ) ---t Hi(Y;Z/pZ) is an

isomorphism for all i < n, then f :1l"i(X) ---t 1l"i(Y) is an isomorphism mod-p for all

i < n.

The original conceptual idea of localization in the topological category in­

volved inverting maps between spaces which induced isomorphisms in regular ho­

mology with coefficients in some group G. Quillen's closed model category structure

allows one to do this [Q], but we'll take the approach of Bousfield in [Bl]. In fact,

Bousfield extends this idea to any generalized homology theory, where a general­

ized homology theory, h*, is a suitable functor from the category of spaces to the

category of graded groups.

Today, localization in the topological category usually refers to Bousfield

localization with respect to some generalized homology theory. In [Rav], Ravenel

considers Bousfield localization with respect to several interesting homology theories,

among them, the Morava K-theories K(n)*, and the Johnson-Wilson theories E(n)*.

(These homology theories and the spectra that represent them are carefully defined

in [Rav2]). He lists seven conjectures related to these ideas and their connection to

stable homotopy in general. All but one of the conjectures have been proven. The
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unproven conjecture is often referred to as the "telescope conjecture."

L~ (-) is another chromatic localization functor described, for instance, in

[Rav3], [B4], [MahS], and [Mil], but I'll use the description from Section 3 of [MahS].

It's worth noting that the superscript f stands for "finite", not some map f. The

reference to finite is because L~-acyclic spectra are direct limits of finite L~-acyclic

spectra.

Definition 1.1. Let X be a pointed space or a GW-spectrum. X is type n if

Definition 1.2. Let X be a pointed space or a GW-spectrum, with f : ~dX -------+ X

a self-map. f is a Vn map if K(n)*(J) is an isomorphism and K(i)*(J) = 0 for all

i =F n.

Choose, for each 0 :s; i :s; n, a finite type-i spectrum F( i). It is proven in

Theorem 9 of [HSm] that such spectra admit a vn-self map ex : ~kF( i) -------+ F( i) for

some k. Let, T( i) be the telescope of this self map

hocolim (F( i) -------+ ~-kF(i) -------+ ~-2k F( i) -------+ ••• ) •

Then, L~ (-) is localization with respect to the homology theory defined by

VT(i).
i

It is an easy consequence of [HSm] (see, for example, [MahS], Lemma 2.1) that

the resulting functor is independent of the choices of F(i). One statement of the

telescope conjecture is that the spectra which have contractible localizations with

respect to E(n)* are the same spectra for which L~(-) is contractible.
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I am interested in studying the effect of suspension and stabilization on chro-

matic localizations. For instance, there is a map

(1.1 )

1 ::; i ::; 00, where L E is localization with respect to some chromatic homology

theory, thought of as a functor in the category of spaces (unless i = 00, in which

case <Pi is a map of spectra and we can think of this map as comparing unstable

and stable localization). In an effort to draw a connection between the stable and

unstable settings, I've proven the following homotopy equivalence of spectra:

Theorem IV.6.

~~-i~ooL~~iX~ L~~ooX.

i

A similar result holds for spaces, of the form

limni~ooL~~iX ~ n ooL~~ooX.
-----+

i

The above equivalences are both corollaries of the following lemma: Given a CW-

spectrum X = {Xo, Xl, X 2,'" },

The proof relies on the fact that L~ acyclics are direct limits of finite L~ acyclics.

This result is described in chapter III.

The chromatic homology theories we're dealing with are non-connective,

meaning the spectra they are represented by have non-trivial homotopy groups in

negative dimension. Therefore, when i = 00, the homotopy groups of the fiber of <Pi
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may not be bounded below, as the domain spectrum is a suspension spectrum, hence

connective, but the target spectrum will often not be. Under these circumstances,

analyzing <Pi is quite difficult. However, the situation can be trivial if the homology

theory is connective. For instance, when considering localization with respect to

regular homology <Pi is an equivalence for all 1 ::; i ::; 00. The difficulty in analyzing

<Poo is why we use the colimit in Theorem IV.5. We hoped this would be an easier

stabilization of <Pi to consider.

Since analyzing acyclics is an important way to compare localization func­

tors, one question that has proven to be worth investigating is whether all (stable

or unstable) acyclics with respect to a given homology theory are built out of a

"generating space" or spaces. If X is built out of Y, we say X is Y-cellular.

Let C* be the category of pointed topological spaces, and let A be a set of

spaces in C*. The following definition can be found in a variety of places, for instance

Definition 5.1 of [Ch].

Definition 1.3. The class of A-cellular spaces is the smallest class of spaces in C*

such that

1. all spaces in A are A-cellular;

2. if X and Yare weakly homotopy equivalent and X is A-cellular) then so is Y;

3. if F : I ---+ C* is a diagram such that each Fi is A-cellular) then hocolimF is

A-cellular.

(A similar definition holds for any model category, replacing weakly homo­

topy equivalent with weakly equivalent). One consequence of this definition is that

a contractible space is A-cellular for any A since it is weakly homotopy equivalent
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to a point, which is the homotopy colimit of the empty diagram. Therefore ~A is

A-cellular as it is the homotopy colimit of the diagram * +-- A -----+ *.

In Chapter 8 of [DF], Dror Farjoun proves that simply connected rational

acyclics are A-cellular, where

A = {M2 (p) : p is a prime}.

In other words, simply connected p-Iocal E(O)*-acyclics are M 2 (p)-cellular.

In [A1], Adams produced for each prime p a self-map VI : ~kpMp -----+ Mp of

the mod(p) Moore spectrum. Here kp = 2p - 2 if p is odd, k2 = 8, and Mp is

the cofiber of the degree p map p : SO -----+ So. He showed that this map induced

an isomorphism in complex K-theory. The cofiber of this map is called V(l). It's

a consequence of [HSm] that p-Iocal K-theory acyclic spectra are A-cellular for

A = {~kV(l) : k E Z}.

In [CoN], it is shown that there is a map c¥ : ~2p-2M3(p) -----+ M3(p), for

odd primes p, where M 3 (p) = S2 Up e3
. This map also induces an isomorphism in

complex K-theory and, in fact, is a particular desuspension of VI' We'll refer to the

cofiber of c¥ as W(l). This space is intended to be an unstable analog of V(l). In

fact, ~ooW(l) ~ ~2V(l). In Corollary B.5 of [DF], Dror Farjoun proves that simply

connected, p-Iocal, K-theory acyclics are, after a suspension, W(l)-cellular. This

result can be stated in the following way: If X is p-Iocal, simply connected, and

L1(X) ~ *, then ~X is W(l)-cellular.

Dror Farjoun suggested in [DF] that similar techniques could be used to

generalize this result to L~-acyclic spaces. To do this, one should define W (n) to be

a minimally connected type n space. We do this below.

If X is a finite p-Iocal space of type n, the work in [HSm] guarantees the
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existence of a vn map

an : ~d+iX ---+ ~iX

for some i and where d is a multiple of 2pn - 2. Set W (-1) = 51.

Definition 104. For each n 2:: 0, choose a finite p-local type n + 1 space W (n)

satisfying:

1. W(n) = Cof (an : ~dn+inH/(n - 1) ---+ ~inW(n -1)), where an is a vn-map.

2. in is chosen to be as small as possible and dn is chosen to be as small as

possible for the given in.

We'll choose W(O) to be the cofiber of the degree p map from 51 to itself, so

W(O) = M2(p). Then, d1 = 2p - 2 and i 1 = 1 and W(l) = cof(a). The following

result is proved in the next chapter.

Corollary 111.6. If X is p-local and simply connected and L~(X) ~ *, then ~MX

is W (n) -cellular, where
n

M = I:>k + n - 1.
k=l
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CHAPTER II

PRELIMINARIES

In this chapter we'll describe the localization, nullification and cellularization

functors. These are functors either from the homotopy category of pointed spaces

to itself, or from the homotopy category of CW-spectra to itself. We'll begin by

carefully describing localization with respect to a homology theory. See, for instance,

[Bl].

Definition ILL A map f : A ---+ B is an E*-equivalence if it induces an isomor­

phism f* : E*(A) ~ E*(B).

Definition II.2. A space X is E-Iocal if, given any E*-equivalence f : A ---+ B, the

map map*(f, X) : map*(B, X) ---+ map*(A, X) is an equivalence.

Theorem II.3 (Bousfield). There is a functor L E(-) such that LEX is E-local,

and a natural transformation from the identity functor to LE(-) which is an E*­

equivalence IL : X ---+ LEX for all spaces X satisfying

1. for any map, f : X ---+ Y inducing E*(X) t'V E*(Y), there is a unique map

r : Y ---+ LE(X) with r 0 f = IL, and

2. for any map, g : X ---+ Y, where Y is E-local, there is a unique map

s : LE(X) ---+ Y with SOIL = g.
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One consequence of these properties is LE(LE(X)) ~ LE(X), that is, this

functor is idempotent. In fact, Dror Farjoun, in [DF], calls functors such as these

coaugmented idempotent functors. Coaugmented refers to the existence of the map

/1 : X ----t LE(X).

Another coaugmented idempotent functor that we'll use is the nullification

functor. This is carefully described in [B3], 2.8.

Definition 11.4. Given a space, C, we say X is C-null if map*(A, X) ~ *.

Definition 11.5. A map f : A ----t B is a C-null equivalence if it induces an equiva­

lence map* (B, Y) ~ map* (A, Y), for all C -null spaces Y.

Theorem II.6 (Bousfield). There is a functor Pc( -) such that PcX is C-null,

and a natural transformation from the identity functor to Pc (-) which is a C-null

equivalence /1 : X ----t PcX for all spaces X satisfying

1. for any C-null equivalence, f : A ----t B, there is a unique map r : B ----t Pc(A)

with r 0 f = /1, and

2. given 9 : X ----t Y, with Y C-null, there is a unique map s : Pc(X) ----t Y with

SO/1 = g.

Given an arbitrary homology theory, E*( -), represented by a spectrum E,

we can construct Pc so that it is a reasonable approximation to LE . It's proven in

[B6] that there is some infinite cardinal .x so that all E-acyclic spaces are colimits of

directed systems of E-acyclic subspaces of cardinality::; .x. So, let C = Vi Xi, be an

infinite wedge of E-acyclic spaces, one of each homotopy type such that #(Xi ) ::; .x.

Here, #(X) is the number of cells of the minimal CW-complex structure that X

admits. The following proposition is proven in [B6]. Since the proof is short, we

include it here.
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Proposition 11.7 (Bousfield). With C as described above,

Proof. Assume Pc(X) ~ *. First, we'll notice that the map f.L : X ---+ Pc(X) is

an E*-equivalence by describing the construction of Pc(X), as in [B3]. Let, be

the first limit ordinal with cardinality greater than C, and inductively construct an

increasing sequence of CW-complexes

X = X(O) C X(I) C ... C X(a) C X(a + 1) c ... eXb')

indexed by the ordinals ::; , as follows. Given X (a), choose a set of maps {g :

r}C ---+ X(a)}9EG(i) for each i ;::: 0 representing all the pointed homotopy classes

from EiC to X (a), and let X (a + 1) be the homotopy pushout of the diagram

Also, let

X(fJ) = UX(a)
a<f3

for each limit ordinal {3. Then, Xb) = Pc(X). Notice that in the pushout diagram

the vertical map is between E*-acyclic spaces, so it is an E*-equivalence. This means

that the map X(a) ---+ X(a + 1) is also an E*-equivalence. Thus, X ---+ Pc(X) is an

E*-equivalence. Therefore
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as we're assuming that Pc(X) is contractible. So, X is E-acyclic and LE(X) c:::: *.

To prove the other implication, we assume that X is E-acyclic. This means

that X is the colimit of a directed system of E-acyclic subspaces which are included

in the wedge of acyclics C. Let X' be one of these acyclic subspaces. Since X'

appears as a wedge summand of C, the null-homotopic map X' ~ (1) factors

through X, which means the map X ---+ X(l) is the zero map in homotopy. We're

using here that X is the colimit of a directed system. This can be repeated for all

X ---+ X(a), so Pc(X) is the direct limit of a sequence of maps all of which are the

zero map in homotopy, so Pc(X) c:::: *. D

Despite having the same acyclic spaces, the functors won't necessarily be

equivalent. However, since X ---+ Pc(X) is an E*-equivalence, there is a natural

transformation Pc(X) ---+ LE(X). The following is Lemma 2.1 in [Tai]. Recall that

a group G is perfect if its abelianization is trivial.

Theorem 11.8 (Tai). Let X be a CW -complex with perfect fundamental group.

Then

Here X+ is the Quillen plus construction, defined many places, including in

[A3].

The final functor we'll describe here is the cellularization functor. This is

described carefully in Chapter 2 of [DF].

Definition 11.9. The class of A-cellular spaces is the smallest class of spaces in C*

such that

1. all spaces in A are A-cellular;

2. if X and Yare weakly homotopy equivalent and X is A-cellular, then so is Y;
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3. if F : I -----t C is a diagram such that each Fi is A-cellular, then hocolimF is

A -cellular.

Here, C* is either the category of pointed spaces or the category of CW­

spectra.

Definition 11.10. A map f : B -----t C is an A-cellular equivalence if it induces an

equivalence map*(A, B) c::::: map*(A, C), for all A E A.

Theorem 11.11 (Dror-Farjoun). There is a functor CA(-) such that CAX is A­

cellular, and a natural transformation from CA (-) to the identity functor which is

an A-cellular equivalence I-" : CAX -----t X for all spaces X satisfying

1. for any A-cellular equivalence f : Y -----t X there is a unique map s : CA(X) -----t

Y satisfying f ° s = 1-".

2. given g : Y -----t X with Y A-cellular, there is a unique r : Y -----t CA(X) with

I-"0r=g.

Given the map I-" : CAX -----t X, and the fact that CA(CA(X)) c::::: CA(X), this

functor is referred to as an augmented idempotent functor. A useful result relating

CA and PA is proven in [DF], 3.B.2:

Lemma 11.12 (Dror-Farjoun). Let X and A be pointed OW-complexes.

1. If X is A-cellular, then PA(X) c::::: *.

2. If P~AX c::::: *, then X is A-cellular.

In this paper, if we want to prove that a space, X, is A-cellular, we'll show

that P~A(X) is contractible. Unfortunately, it is possible for PA(X) to be con­

tractible without X being A-cellular, and Chacholski provides examples of this in
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[Ch], page 35. For instance, Pnsn+lSn~ *, however sn is only nSn+l-cellular when

n is 1,3, or 7. However, if PA(X) ~ *, this does imply that PL;A(~X) ~ *, which

means that ~X is A-cellular.
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CHAPTER III

GENERATING OBJECTS FOR CHROMATIC HOMOLOGY

As mentioned above, L~-acyclic spectra are direct limits of finite L~ acyclics,

and in fact, this motivates the "f." Therefore, L~-acyclic spectra are C-cellular if C

is the collection of all finite L~-acyclics.

Let A = {L;k Fn +1 : k E Z}, with Fn+1 is any finite, p-local, type (n + 1)

spectrum. The following proposition is an easy consequence of [HSm] and [MahS].

Proposition IILl. Let X be a p-local L~ -acyclic spectrum. Then X is A-cellular.

Proof. To prove this, one needs the thick subcategory theorem, which is Theorem

7 of [HSm]. A full subcategory of finite p-local CW-spectra is thick if it is closed

under retract, cofibration and weak equivalence. If X is in the subcategory, and Y is

a retract of X or weakly equivalent to X, then Y is also in the subcategory. Closed

under cofibration means if A ---+ B ---+ C is a cofibration of spectra, and if any two

of the spectra are in the subcategory, then so is the third. The thick subcategory

theorem tells us that if a subcategory of finite p-local spectra is thick it must be Cr

for some r, where Cr is the full subcategory of finite p-local K(r - l)*-acyclics.

First, since a retract can be obtained as an infinite direct limit of the re­

traction followed by the inclusion, the class of A-cellular spectra is closed under

retracts. Secondly, the cofiber of a map f : A ---+ B of spectra can be obtained as

the homotopy colimit of the diagram * <- A ---+ B, so given a cofiber sequence of
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spectra, if any two of the spectra are A-cellular so is the third. We already have

that the class of A-cellular spectra is closed under weak equivalence. Therefore, the

subcategory of finite p-local A-cellular spectra is a thick subcategory, so it is Cr for

some r. However, Fn+1 E Cn +1 \ Cn+2 , so r :s; n + 1. Also, there are no type n spec­

tra in A so r = n + 1. So we have that the subcategory of finite p-local A-cellular

spectra is exactly the subcategory of finite p-local K(n)*-acyclic spectra.

So, given any p-local L~-acyclic spectrum, it's built out of finite p-local L~­

acyclics. A finite p-local L~-acyclic is a finite p-local K (n) *-acyclic, and these are

finite p-local A-cellular spectra. It follows easily from the universal properties of the

cellularization functor that if A is B-cellular and B is C-cellular then A is C-cellular.

Therefore, p-local L~-acyclic spectra are A-cellular. 0

In the next section we prove analogous results for unstable L~-acyclics.

IIL1 Generating Spaces for Unstable Acyclics

The main goal in this section is to prove Corollary III.6, describing spaces,

X, with L~(X) ~ *. First, we need a definition. Let X and A be pointed spaces,

and g : ~dA A a map of pointed spaces.

Definition III.2.

where the maps defining the colimit are induced by ~dig) for i ~ O.

Since mapping out of finite complexes commutes with homotopy colimits, we
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have

So we see that TgX is an infinite loop space.

Recall that W (n) is defined as the homotopy cofiber of a V n map

So we can consider TD:nX, In fact, we'll show that this space is L~-local. To prove

this, we'll construct a L~-local spectrum, Y, such that TD:nX ~ nooy. This, com­

bined with the fact that n°o(-) takes local spectra to local spaces, will give the

desired result.

Lemma 111.3. TD:nX is an L~-local space.

Proof. We use the construction <pv(X) from [K], 3.1, where X is a space and v

is a self map of spaces ~dB ----+ B. Here <pv(X)o =Map*(B,X) and <Pv(X)di-k =

nkMap*(B, X) for i > 1 and 0 < k < d. If k =J. 0, the structure maps are the

identity.

When k = 0 and i 2:: 0 the structure maps are induced by the self map v.
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We're again using the fact that n d Map *(B, X) c:::: Map *(~dB, X). So, when k = 0

and i ~ 0 our structure maps are of the form

Kuhn proves, in [K] Theorem 4.2, that when v is a vn-self map and B is

a finite, type n space, <pv(X) is T(n)-local. Since every L~-equivalence is a T(n)­

equivalence, it follows that <pv(X) is L~-local.

If we can show noo<pv(X) c:::: TvX, this will imply that TvX is an L~-local

space. Taking B = ~inW(n - 1) and v = an we will have that TanX is L~-local.

Given an arbitrary spectrum, X = {Xl, X 2 , ... }, nOO(X) c:::: hocolimniXi .

Applied to our situation, this yields

I've omitted from the colimit the maps that are simply the identity. But the colimit

above is equivalent to

This shows that TanX is an L~-local space. o

Corollary III.6 follows from two theorems. The first of these demonstrates a

connection between L~-acyc1ics and Tan -acyc1ics. Recall the definition of W (n):
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Theorem IlIA. If X is N-connected, where N = 'L7~; dj + 'L7=1 i j + n + 1, and

L~(nkX) ~ * for all k :::; N then TanX ~ *.

We'll use the following fact several times in the proof of this theorem. If X

is N-connected and Y is a finite cell complex with top cell in dimension i < N, then

map*(Y, X) is path-connected.

Proof. Given the below cofibration for k ~ 2,

we can map it into X yielding a fibration,

Notice that the top cell in L;k-2W(0) is in dimension k so the space on the right

is connected when k :::; N because of the connectivity of X. In [DF](1.H.1), Dror

Farjoun proves that if F - E - B is a fibration with connected base and h*(F) =

h*(E) = 0, then h*(B) = 0, for any homology theory h*(-). Since, by hypothesis,

L~(nk) rv *, we see that L~(X~k-2W(O))~ * for all k in the above range.

Similarly, we have cofibrations

L;ao-d1 W(O)

L;a1 -d2 W(1)

where ao = k - 2, aj = k - 2 - j - (i1 + i 2 + ... + i j ) - (d1 + d2 + ... + dj ). These

cofibrations are simply shifted versions of the ones that define the W(j). One can



19

check that each space on the left has top cell in dimension k. Now, we can map

these cofibrations into X yielding fibrations, each one having a connected base for

the same reason as above. Then, using successive applications of the Dror Farjoun

result listed above, we see that:

for all 2 + i l + d l :s; k :s; N, which means:

for all 4 + i l + i 2 + dl + d2 :s; k :s; N. Continuing this, we eventually get:

for all N - in :s; k :s; N. So, letting k = N we get,

Since T X is Lf-local any map x~inW(n-l) ---+ T X factors through Lf(x~inW(n-I»)an n , an n'

which we've just shown is contractible.

Now consider the natural maps arising from the telescope TanX:

b . X~inW(n-I) ---+ T Xa . an

We've just shown that bo is null-homotopic. In fact, bk is null homotopic for all k,
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since bk is identified with D,kdnbo under the identification of D,dnTanX with TanX.

These maps come from including the spaces from which the telescope is built into

the telescope itself. It's a general fact that applying the colimit functor to the map

of diagrams

where the vertical maps are the normal maps of the constituent spaces into

the colimit , yields the identity map id : colimXi ---+ colimXi. Applying this to

our situation, where the bk are all null homotopic, we see that the identity map

id : Tan ---+ Tan is null homotopic. Therefore, Tan c::: *.

[J

Since the ultimate goal of this chapter is to prove a connection between L~­

acyclics and W(n)-cellular spaces, and the above theorem demonstrates a connection

between L~-acyclics and Tan -acyclics, we now need to demonstrate a connection

between Tan-acyclics and W(n)-cellular spaces.

Theorem 111.5. Let X be ~inW(n - I)-cellular. Then p~W(n)~X c::: * if and only

if there exists an M 2: 1 with Tan ~MX c::: *.

Proof. Assume Tan~MX c::: *, for some M 2: 1. To prove this, we'll take the

following steps. First, we'll prove the equivalence

(p ~MX)~dn+inW(n-l) rv T ",MX
~W(n) - an LJ ,

proving that the space on the left is contractible. Then, we'll show that p~W(n)~MX

is both ~in+lW(n-I)-cellularand ~in+lW(n-I)-null,which means it's contractible.
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If M = 1, we're done at this point. If M > 1, we use a lemma of Bousfield's to show

that PEW(n)I;X c::::: * implies PEW(n)I;MXc::::: *, for M > 1.

In [DF] Theorem A.I0, Dror Farjoun proves that given a self map of a finite

complex w : I;qW ~ W there is a weak equivalence

Here, C =cof(w) and Tw is the associated telescope, as in Definition III. 2. We

will apply this to the self map defining W (n ), namely Q n : I;in+dn W (n - 1) ~

I;in W (n - 1). This yields

Looping this equivalence dn - 2 times gives us

Recall the fact, discussed in the construction of Tan' that there is an equivalence

ndnTanZ c::::: TanZ. So we have an equivalence

(p X)Edn+inW(n-l) ,......, T X
EW(n) - an .

Replacing X with I;MX yields
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But we're assuming that Tan 'EMX is contractible. Therefore, we have that

(F ",MX)Edn+inW(n-l) '"EW(n)LJ - *.

Consider the cofibration

Setting (PEW(n)'EMX) = Z, we then get a fibration

S· zEdn+inW(n-l) d nzEdn+inW(n-l) ZEdn+in+lW(n-l) h th t thmce ~ * an H ~ ,we ave a e

fibration has contractible base. The fiber is contractible since Z is by definition

'EW(n)-null. Therefore, zEin+1W(n-l) '" *. But X is 'Ein W(n - I)-cellular so, if

M 2: 1, 'EM X is 'Ein+1W(n - I)-cellular. 'EW(n) is also 'Ein+1W(n - I)-cellular

since the collection of 'Ein+1W(n - I)-cellular spaces is closed under cofibrations.

If we examine how Z is constructed, we see that Z is also 'Ein+IW(n ­

I)-cellular as it is built from 'EM X and 'EvV(n) as a homotopy colimit. Recall

(PEW(n)'EM X) = Z. Thus Z = hocolirnZ(i), where the maps Z(i) ---+ Z(i + 1) are

induced by the homotopy pushout

Vi Vf 'Ei'EW(n) --;..) Z(i)

1 !
* ) Z(i + 1)

The inner wedge is taken over all f E ['Ei+1W(n), Z(i)]. Since Z(O) = 'EMX,

Z(O) is 'Ein+IW(n - I)-cellular. If Z(i) is 'Ein+IW(n - I)-cellular then Z(i + 1) is
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Ei n+1W(n - I)-cellular since it's the homotopy pushout of a diagram wherein each

of the spaces in the diagram is Ei n+1W(n-1)-cellular. Recall any contractible space

is A-cellular for any A.

Finally, Z = hocolimZ(i) and each Z(i) is Ein+lW(n - I)-cellular so Z is

Ei n+1W(n - I)-cellular.

Dror-Farjoun's Lemma 11.12, (i), tells us that if Z is Ein+1W(n -I)-cellular

then P~in+lW(n-l)Z is contractible. But, we already proved that Z~in+lW(n-l) c:::: *

which means that Z is already Ein+1W(n - I)-nUll. Therefore, P~in+lW(n-l)Z c:::: Z.

So, Z ~ *.

Assume M > 1. In [B1], Theorem 9.10, Bousfield shows that

Px(EW) c:::: *

if, and only if both

where W is a p-torsion CW-complex with bottom cell in dimension n, k 2: 1,

and X is any CW-complex. In Lemma 7.4 of the same article, he proves that

Pw(K(Zjp,j)) ~ * if W is a p-torsion CW-complex with bottom cell in dimension

nand j 2: n. His results are more general than this, but this is what we need. In our

situation, EX is Ein+1W(n-1)cellular, so it is a p-torsion CW-complex with bottom

cell in dimension no smaller than CL]=l i j )+3. We have that (P~W(n)EMX) c:::: *. By

the above Lemma, PW(n) (K(Zjp, CL]=l i j ) + 4)) c:::: *, so P~W(n)EX is contractible,

as desired.

In the other direction, if we assume P~W(n)EX c:::: *, then [DF], Proposition
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D

Recall Dror-Farjoun's Lemma 11.12, (ii), which states that P'L,AX ~ * implies

that X is A-cellular. Thus, in light of the following corollary, P'L,W(n)~X ~ * implies

that ~X is W(n)-cellular.

Set
n

M = :Lij +n-1
j=l

and
n-l n

N = :L dj +:L i j + n + 1.
j=l j=l

Corollary 111.6. If L~X ~ * and X is p-local and simply connected, then

Proof. Thompson proves, in [Th] that E*X

where E* is any homology theory. We also have that E*~kX = 0, for all k > O.

Therefore, if X is E*-acyclic, we can arrange it so that E*(nk~NX) = 0 for all

o :::; k :::; N. Also, L~X ~ * implies that L{X ~ * for all i :::; n, so we have that

L{nk~N ~ * for all i :::; n. ~NX is certainly N-connected so Theorem IlI.4 applies

yielding Tn; ~NX ~ * for all i :::; n.

Since X is an L{-acyclic, Corollary B.5 of [DF] tells us that ~X is W(l)-

cellular. Since i 1 = 1, this is equivalent to ~ilX is W(l)-cellular. Therefore, ~il+i2X

is ~i2W(1)-cellular. As mentioned above, Tn2~NX ~ *, and N > i 1 +i 2 , so we may

apply Theorem III.5 to ~il+i2X, which tells us that ~il+i2+1X is W(2)-cellular.

Therefore, ~il+i2+i3+1X is ~i3W(2)-cellular, and another application of Theorem
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III.5 implies that ~il+i2+i3+2X is W(3)-cellular. Repeated applications, if necessary,

of Theorem III.5 show that ~MX is W(n)-cellular, as desired. D
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CHAPTER IV

STABLE AND UNSTABLE LOCALIZATION

As mentioned in the introduction, much of this work came from an attempt

to understand something about the map <Pi,X : 2:, iL E X -----t L E 2:,iX, when L E is

localization with respect to some chromatic homology theory. This map exists by

Property 2.2 above, applied to the E*-isomorphism 2:,ip, : 2:,iX -----t 2:, i L E X, where p,

is the E*-localization of X. We consider the following diagram:

The i th map in this diagram is ni - 1L E 2:,i-l X -----t ni L E 2:,i X, which is ni - 1 (-) applied

to the adjoint of CPl,2~i-1X : 2:,LE 2:,i-l X -----t L E 2:,iX. Theorem IY.3 describes the

homotopy colimit of this diagram, when LE = L~.

A stable version of this diagram that we also consider is

To understand the maps in this diagram, begin by considering the map of

spectra ofthe form 2:,2:,00 L E 2:,i X -----t 2:,00 L E 2:,i+lX, defined by maps on the constituent

spaces of the form 2:,n+lLE 2:,iX -----t 2:,nLE 2:,i+1X, for n;::: O. The unstable maps are

simply 2:,n <p 1,Z::'x, for n ;::: O. Desuspending this map of spectra i times, produces
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above diagram. Theorem IV.6 describes the homotopy colimit of this diagram, when

LE = L~.

It turns out that both of these Theorems will follow from a more general

Lemma. In the proof of the Lemma, we'll use the E*-colocalization functor. The

following can be found in section 1 of [B5].

Definition IV.l. A spectrum X is E*-colocal ij[X, A] ~ [X, B] is an isomorphism

for every E*-equivalence f : A --+ B.

In Prop. 1.5 of [B5], it is proven that each spectrum X has an E*-colocalization

EX, and that there exists a map EX --+ X. In fact, this functor is another example

of an augmented localization functor.

Let X be any CW-spectrum X {Xo,Xl, X 2 ,'" }, with structure maps

Proof. Let L' (X) be a spectrum with L' (Xh = L~Xk, and structure maps given by

'E,Lf(X ))~ Lf('E,X ) L~(Sk) Lf(X )
n k n k n k+l'

We'll show that L'(X) is a L~-local spectrum, then we'll exhibit an L~-isomorphism

from X to L' (X) which implies that the Lemma holds.

To show that L'(X) is L~-local requires that we show [A, L'(X)J* = 0 for any

L~-acyclic spectrum A. This will require two steps.

First, we'll show that 'E,A c:::: hocolimCs , where Cs is a sequence of spectra

such that Co and Cof (Cs --+ Cs+d are equivalent to wedges of finite L~-acyclics.
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Then, we will show that [B, L'(X)]* = 0 for any finite L~-acyclic B. There­

fore, [Co, L'(X)] = 0, and [Cs, L'(X)] = 0 =? [Cs+1 , L'(X)] = O. This will allow us

to argue, inductively, that [Cs, L'(X)] = 0 for all s, hence

[~A, L'(X)] rv lim[Ci , L'(X)] = 0,
-----+

i

which implies [A, L'(X)] = O. We will be using the fact that mapping out of a

cofibration of spectra is exact.

Let A be an arbitrary L~-acyclic spectrum. We want to consider the Fn+r

colocalization of A where Fn +1 is any finite type-(n + 1) spectrum. Since Fn+1 is

type-(n+1), it is K(n)*-acyclic. Since Fn+1 is finite, it is also a L~-acyclic. Then, the

colocalization construction (see Prop. 5 in [B5]) proceeds as follows. Take Bo = A,

and then inductively construct a countable sequence of CW-spectra

where B, = hocolimBs and where B s ---t B s+1 is given by the homotopy pushout

square

ViEZ Vj ~iFn+1 ~Bs

1 1
* ) B s+1

in which f ranges over all cellular functions ~iFn+1 ---t B s of degree O. Since Bo = A

one has maps A ---t B s for all s. Set Cs = hocolimA ---t B s . Then, the Fn+1­

colocalization of A is
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And one has a homotopy cofiber sequence

Furthermore, one can see that Co is a wedge of finite L~-acyclics. Also, since

cof (Bs -+ B s+1 ) is a wedge of finite L~-acyclics and cof (A ~ A) c:::: *, it follows

that cof (Cs -+ Cs+1 ) is a wedge of finite L~-acyclics.

Given a homotopy pushout square

with all Xi E*-acyclic for some E, then Z is E*-acyclic. Therefore, a consequence of

this construction is that since Bo = A is L~-acyclic and Fn+1 is L~-acyclic, then B 1

is L~-acyclic. Hence, all Bs are L~-acyclic. Hence B-y is L~-acyclic. As explained

in Prop. 3.3 of [MahS], B-y is also L~-local, hence B-y c:::: *. This gives that A is

equivalent to its colocalization, or I:A rv hocolimCs' where cof (Cs -+ Cs+1 ) is a

wedge of finite L~-acyclics, as desired.

At this point, if we knew that [Y, L'(X)] = 0 whenever Y was a wedge of

finite acyclics, we'd have [Co, L'(X)] = O. Then, whenever [Cs, L'(X)] = 0 we have

that [Cs+1' L'(X)] = 0 since mapping out a cofibration is exact and the cofiber of the

map Cs -+ Cs+1 is a wedge of finite acyclis. This would give us that [Cs, L'(X)] = 0

for all s, hence [I:A, L'(X)] = 0 which gives [A, L'(X)] = O. So, what's left is to

show that [Y, L'(X)] = 0 whenever Y is a wedge of finite acyclics.

If B is a finite L~-acyclic spectrum, then we may assume B c:::: I:-kI:oo Z with

Z a finite L~-acyclic CW-complex. We'd like to know that [I:-kI:oo Z, L'(X)]r = 0 for

all r. This is equivalent to [I:00 Z, L'(X)]r-k, which, it is proven in [A2] Proposition
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2.8, is isomorophic to

\11\.

lim[~m+r-k Z, L~Xm] ~ O.
--t
m

The final equivalence is a result of there being no non-trivial maps from a L~-acyclic

space to a L~-local one. So, we have that finite acyclics can't map non-trivially into

L'(X). Therefore, [Os, L'(X)] = 0 for all i ~ 0, which gives [A, L'(X)] = O. So,

L'(X) is L~-local.

Clearly, there is a map from X to L'(X) built out of the maps on the un­

derlying spaces /-Lk : X k - L~Xk, which is a L~-equivalence since the maps on each

space are such. This induces a L~-isomorphism from L'(X) to L~X. Therefore

L'(X) ~ L~X.

[J

The above Theorem fails for localization with respect to integral homology.

If we take Y = {Yo, Y1, Y2 , ••• } to be the spectrum representing K(n)*, then Y is

a non-contractible Lm~-acyclic spectrum. If Y (1) = {Yo(l), Y1 (1), Y2 (1),'" } where

Yk (l) is the simply connected cover of Yk , then one can show that Y(l) ~ Y. But

the constituent spaces of Y (1) are simply connected, hence Lm~-local. But, since Y

is a homology acyclic, it's localization should be contractible, which Y is not.

Theorem IV.3. With L~ as defined above, we have

0,00L~~ooX ~ lli!; D,iL~~iX
i

Proof. Applying the above lemma yields an equivalence L~~ooX ~ L'(X).

Therefore, D,ooL'(X) ~ limD,iL~~iX, must also be homotopy equivalent to
--t

i
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.000L~~ooX, yielding

.000L~~ooX ~ lli!; Di L~~iX.
i

[J

Before proving the next theorem, we need a technical lemma about homotopy

colimits of spectra.

Definition IV.4. Let Y (i) be a sequence of GW-spectra) with maps cPi : Y (i) ---+

Y(i+1) induced by maps on the underlying spaces of the form cPi,j : Y(i)j ---+ Y(i+1)j

which commute) up to homotopy) with the structure maps.

Thus, we have the following commutative square of spaces, for each i, j ?: 0:

Let Y be the CW-spectrum with ph space hocolimY(i)j.

Lemma IV.5. hocolimY(i) ~ Y

Proof. We have maps 'l/Ji,jj : Y(i)j ---+ hocolimY(i)j into the colimit for each i, j ?: O.

These induce a map of spectra 'I/J : hocolimY(i) ---+ Y. We'll show that this map

induces an isomorphism of homotopy groups. We have the following diagram:

7rn (hocolimY(i)) __'l/J_*__~) 7rn (Y)

~I ~I
lli!; 7rn (Y (i)) lli!; 7rn+j (hocolimY(i) j)

i j

~I ~I
lli!; lli!; 7rn+j(Y(i)j) __rY----+)~ lli!; 7rn+j(Y(i)j)

j j
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To see that this diagram is commutative, we notice that the isomorphism

lli!;lli!; 7fn+j(Y(i)j) ---+ lli!; 7fn +j(hocolimY(i)j)
j i j

is induced by

'l/Ji,j : Y(i)j ---+ hocolimY(ik

Therefore, 'l/J induces an ismorphism of homotopy groups and we have an equivalence

of spectra hocolimY(i) c::: Y.

Theorem IV.6.

L~~OOX c::: lim ~-i~ooL~~iX.
~-.oo

D

Proof. Let ~-i~ooL~~iX be modeled by the spectrum Y(i), where Y(ih = L~~kX

for a :s; k :s; i-I, and Y(ih = ~k-iL~~iX for k :::: i are. The structure maps,

~Y(i)k ---+ Y(ih+l' for k :s; i-I, are given by <Pl(~kX) : ~L~~kX ---+ L~~k+l X.

For k :::: i, the structure maps are the identity. Clearly, this model for ~-i~ooL~~iX

is equivalent to the standard one.

One has maps ((i) : Y(i) ---+ Y(i + 1), defined on the constituent spaces via

the identity if k :s; i and via ~k-(i+l)<Pl(~iX) if k :::: i + 1. It's immediate that these

maps commute with the structure maps. Therefore, if we fix a k, and consider the

sequence Y(1h ---+ Y(2)k ---+ ••. , eventually the maps are identity maps. This gives,

under these circumstances, lli!;Y(i) rv Z, where Zk c::: !imY(ih c::: L~~kX. Now,
i

the previous lemma can be applied to see that

L~~OOX c::: Z c::: lim ~-i~ooL~~iX.
~-.oo

o
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