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DISSERTATION ABSTRACT

Jonathan M. Wells

Doctor of Philosophy

Department of Mathematics

June 2019

Title: On the Solvability of Beta-Ensembles when Beta is a Square Integer

We use combinatorial identities in the shuffle and exterior algebra to present

hyperpfaffian formulations of partition functions for β-ensembles with arbitrary

probability measure when β is a square integer. This is an analogue of the de

Bruijn integral identities for the β = 1 and β = 4 ensembles. We also generalize

several classic algebraic identities for determinants and Pfaffians to identities

for Hyperpfaffians, extending the fermionic and bosonic Wick formulas which

frequently arise in Quantum Field Theory.

iv



CURRICULUM VITAE

NAME OF AUTHOR: Jonathan M. Wells

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR
Whitman College, Walla Walla, WA

DEGREES AWARDED:

Doctor of Philosophy, Mathematics, 2019, University of Oregon
Master of Science, Mathematics, 2015, University of Oregon
Bachelor of Arts, Mathematics and Philosophy, 2011, Whitman College

AREAS OF SPECIAL INTEREST:

Random Matrix Theory, Combinatorics, Statistical Physics

PROFESSIONAL EXPERIENCE:

Graduate Teaching Fellow, University of Oregon, 2012 to 2019

Writing Fellow, Whitman College 2010 to 2012

Mathematics Tutor, Whitman College, 2008 to 2011

PUBLICATIONS:

R. A. Gordon and J. M. Wells, On the perimeter of integral triangles,
International Journal of Pure and Applied Mathematics 64 (2010).

v



ACKNOWLEDGEMENTS

I am greatly indebted to my doctoral adviser, Christopher Sinclair, for his

assistance in preparation of this manuscript, for his guidance and mentorship

during my long tenure as a graduate student, for his ever-insightful discourse and

instruction, and for introducing me to the wonderful world of random matrix

theory.

I also thank the many scholars who provided helpful conversation, comment,

and critique during the creation of this document, including David Levin, Benjamin

Young, Jonathan Brundan, Elisha Wolff, Joe Webster, Doeke Buursma, Andrew

Wray, Eric Hogle, and Matthew Ruppel.

I owe much gratitude to my undergraduate mentor at Whitman College,

Barry Balof, for finding a wayward mathematician and guiding him back home,

and to my undergraduate adviser, Russel Gordon, for instilling in me the virtues of

excellence, precision, and tenacity.

I am also grateful to the many mathematicians at the University of Oregon

and Whitman College with whom I have shared innumerable mathematical

discussions, on topics ranging from the trivial to the profound.

Finally, I must express extreme thanks to my family: to my parents Russ and

Connie, whose unconditional love allowed me to choose the path that led me here,

to my brother Andrew, who ceaselessly motivates me to achieve higher and higher

goals, to my wife Kayla, whose unfailing support keeps me standing even in darkest

days, and to my son Oliver, who I know will one day read this dissertation and

remark on how obvious it all is.

vi



For my father, the best teacher I have ever had.

vii



TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

II. PRELIMINARY DEFINITIONS AND LEMMAS . . . . . . . . . . . . 13

Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

The Symmetric Group . . . . . . . . . . . . . . . . . . . . . . . . . 15

The Tensor Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 19

The Shuffle Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 20

The Exterior Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 22

Pfaffians and Hyperpfaffians . . . . . . . . . . . . . . . . . . . . . . 25

III. ANDREIEF AND DE BRUIJN IDENTITIES . . . . . . . . . . . . . . 30

A Few Important Polynomial Definitions and Identities . . . . . . 30

Expectation Operator and Chen’s Lemma . . . . . . . . . . . . . . 36

A Key Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Statement of the Main Result . . . . . . . . . . . . . . . . . . . . . 41

viii



Chapter Page

IV. PFAFFIAN AND HYPERPFAFFIAN IDENTITIES . . . . . . . . . . 60

Properties of Pfaffians . . . . . . . . . . . . . . . . . . . . . . . . . 61

The Wick Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Hyperpfaffian Identities . . . . . . . . . . . . . . . . . . . . . . . . 81

REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

ix



CHAPTER I

INTRODUCTION

Introduction

Random matrix theory is the study of the eigenvalue statistics of ensembles

of matrices, which are a collection of (typically) square matrices along with a

probability measure defined on this set. Often, the probability measure is presented

as the distribution of individual entries of the matrix, along with a specification

for inter-entry dependence. This probability measure then induces a probability

measure on the eigenvalues of the matrix. Although a rich field of study on its

own, random matrix theory also enjoys rather abundant application throughout

mathematics and physics, since the eigenvalue statistics of many matrix ensembles

can be used to model a wide variety of phenomena. The statistics of discrete

energy levels in atomic spectra bear many of the same features as the eigenvalues

of Hermitian matrices. Additionally, these same Hermitian ensembles can be used

to describe the statics of a multi-particle system in one dimension interacting

via a repulsive force and subject to a fixed potential. Alternatively, the Wishart

ensemble of matrices can be used in the estimation of the covariance matrix

for a population vector, given a large sample. The widespread applicability of

random matrices evinces a universal paradigm—a collection of theorems akin to

the classical Central Limit Theorem. But the utility of such theorems depends on

an available supply of solvable ensembles in each universality class—collections of

matrices for which the densities of eigenvalues can be expressed in terms of ‘known’

functions whose properties and asymptotics are well-studied.

1



The β-ensembles are one such collection, and are composed of random

matrices whose eigenvalue densities take a common form, indexed by a non-

negative, real parameter β. The classic β-ensembles (β = 1, 2, 4) correspond

to Hermitian matrices with real, complex, or quaternionic Gaussian entries, and

were first studied in the 1920s by John Wishart in multivariate statistics [27] and

the 1950s by Eugene Wigner in nuclear physics [26]. In the subsequent decade,

Freeman Dyson and Madan Mehta[12] unified a previously disparate collection of

random matrix models by demonstrating that the three classic β-ensembles are

each variations of a single action on random Hermitian matrices (representing the

three associative division algebras over R). More recently, the development [10]

of matrix models representing arbitrary, non-negative values of β, as well as the

discovery and expansion of Central Limit Theory-like results [20] lead to a renewed

focus on these ensembles. In addition to their historical role in the development of

random matrix theory, the classic β-ensembles remain essential to the current study

of random matrices due to their membership in the class of integrable probability

models—a somewhat nebulously-defined collection of objects which are enriched by

some essential, overarching algebraic structure. The β = 2 ensemble is an example

of a determinantal point process, while the β = 1, 4 ensembles are examples of

Pfaffian point processes.

Background

In the sequel, suppose µ is a finite measure on R (historically, dµ(x) =

exp(−x2/2)dx). For each β ∈ R+, consider the N -point process specified by the
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joint probability density

ρN(x1, . . . , xN) =
1

ZN(β)N !

∏
i<j

|xj − xi|β

where ZN(β) denotes the partition function of β, and is the normalizing constant

required for ρN to be a probability density function. For each 1 ≤ n ≤ N , define

the nth correlation function by

Rn(x1, . . . , xn) =
1

ZN(β)(N − n)!

∫
RN−n

ρN(x1, . . . , xn, y1, . . . , yN−n) dµN−n(y)

where dµN−n(y) denotes the (N − n)-fold product measure on RN−n. For β-

ensembles, the correlation functions are nothing more than rescaled marginal

density functions, and are completely determined by the joint density function.

However, the study of the local statistics of the ensemble is made simpler by using

the correlation functions in place of the marginal densities.

When β = 1, 2, or 4, these correlation functions can be rewritten in a

particularly nice form. For β = 2, elementary matrix operations and Fubini’s

Theorem can be used to show that

Rn(x1, . . . , xn) =
1

ZN(2)
det (K(xi, xj)1≤i,j≤n)

where the kernel K(x, y) is a certain square integrable function R×R→ R that can

most easily be expressed in terms of the orthogonal polynomials for the measure µ.

The details of this derivation are given in [20].
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And for β = 1 or 4,

Rn(x1, . . . , xn) =
1

ZN(β)
Pf (K(xi, xj)1≤i,j≤n)

where Pf(A) denotes the Pfaffian of an antisymmetric matrix A (with Pf(A) :=√
det(A)) and where K(x, y) is an antisymmetric matrix kernel. This result was

first shown for Hermitian ensembles by Mehta in [19], and then for general weights

by Mehta and Mahoux in [18] (except for the case β = 1 and N odd). Finally, the

last remaining case was given by Adler, Forrester and Nagao in [1]

Of fundamental concern in the theory of random matrices is the behavior of

eigenvalue statistics of matrix ensembles as N → ∞. The immediate advantage

of these determinantal and Pfaffian formulations for the correlation functions is

that the fundamental characteristics of the eigenvalues are encoded in the kernel

function, which does not increase in complexity as N grows large, considerably

simplifying the asymptotic analysis of the eigenvalue statistics in β-ensembles.

The Method of Tracy and Widom

Derivations of the determinantal/Pfaffian forms of the correlation functions

have been presented in numerous guises over the past several decades. However,

of particular note is the method of Tracy and Widom [24], which evokes the

underlying algebraic structure of the ensemble, and proceeds by first establishing

that the partition function ZN(β) takes a determinant/Pfaffian form, and then uses

the Sylvester Determinant Identity

det(Im + BA) = det(In + AB) A ∈Mn×m(R), B ∈Mm×n(R)
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(where Im and In are the identity matrices of rank m and n, respectively) to show

that the correlation functions must have the same form as well. For β = 2, the

result follows almost immediately from the application of the Sylvester Identity,

while the proof in the case when β is 1 or 4 required considerably more ingenuity.

This complication arises chiefly from the fact that, for most of the history

of random matrix theory, results involving Pfaffians were often stated in terms of

a quaterion determinant of a matrix, and calculations involving the Pfaffian were

performed by first transforming the expressions into corresponding ones involving

the determinant. However, the Pfaffian can also be viewed in an independent light

as a particular evaluation in the exterior algebra of a vector space, and doing so

allows for further generalization of the Tracy-Widom method.

The Exterior Algebra

For a vector space of even dimension K = 2N , the kth exterior power∧k V of V consists of all antisymmetric k-tensors of elements in V , and the

exterior algebra
∧
V is formed from the direct sum of all the exterior powers

of V , with multiplication given by the antisymmetric tensor operation. Of key

importance is the exterior square
∧2 V , whose elements bijectively correspond

to K × K antisymmetric matrices. Under this correspondence, the Pfaffian of an

antisymmetric matrix A can be obtained by taking the Nth power of the associated

antisymmetric tensor. That is, if {~e1, . . . , ~eK} is a basis for V and ω ∈
∧2 V is the

antisymmetric tensor associated with the matrix A, then

ω∧N

N !
= {Pf(A)} ~e1 ∧ · · · ∧ ~eK
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But from this perspective, Pfaffian identities naturally arise as structural properties

of the exterior algebra. In particular, the Sylvester Determinant Identity has a

Pfaffian analogue

Pf(Z−1 + BTAB)

PfZ−1
=

Pf(A−1 + BZBT )

PfA−1

where A ∈ Mn(R) and Z ∈ Mm(R) are invertible antisymmetric matrices, and

B ∈ Mn×m(R) is arbitrary, which then can be used to give a nearly identical proof

of the Pfaffian form for the β = 1, 4 correlation functions as was used to prove the

determinantal form for the β = 2 correlation functions.

Partition Functions as Hyperpfaffians

For the classical β-ensembles, the first step for rewriting the correlation

functions as determinants/Pfaffians is to observe that the partition function ZN(β)

is itself a determinant/Pfaffian of a matrix of integrals of appropriately chosen

orthogonal polynomials. One way to do so is to apply the Andreief determinant

identity [2] to the partition function ZN(β). The result follows immediately

when β = 2, and by viewing the Pfaffian as the square root of a determinant,

the result can also be shown when β = 1, 4 with some additional finesse. But

when the Pfaffian is viewed from the context of the exterior algebra, the Andreief

determinant identity can be extended to analogous Pfaffian identities (referred to

in the literature as the de Bruijn identities [8]). In fact, adopting this perspective

illuminates an underlying algebraic structure, allowing the identity to be further

generalized in the case when β is an arbitrary square integer.

Recalling the exterior algebra definition of the Pfaffian of an antisymmetric

2-tensor, we can define the Hyperpfaffian, PF(ω), of an antisymmetric L-tensor
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ω ∈
∧L V by

ω∧N

N !
= {PF(ω)} ~e1 ∧ · · · ∧ ~eK ,

provided that V has dimension K = NL.

In 2002, Jean-Gabriel Luque and Jean-Ives Thibon [17] used techniques in the

shuffle algebra to show that when β = L2 is an even square integer, the partition

function ZN(β) can be written as a Hyperpfaffian of an L form whose coefficients

are integrals of Wronskians of suitable orthogonal polynomials. Then in 2011, Chris

Sinclair [23] used combinatorial methods to show that the result also holds when β

is an odd square integer.

In the sequel, we show that the shuffle algebra techniques first implemented

by Thibon and Luque can, with some modification, be adopted to give a universal

proof that ZN(β) can be written as a Hyperpfaffian when β is a square integer,

regardless of whether β is even or odd.

Outline

The Shuffle Algebra and de Bruijn’s Identities

Given a set X and a commutative ring with unity R, the shuffle algebra

can be obtained by endowing the free R-algebra on X, R〈X〉, with an additional

product �, which is first defined on basis elements and then extended linearly. For

words v = u1 . . . uk and w = uk+1 . . . uk+n in R〈A〉, let

v� w :=
∑

σ∈Sh(k,n)

uσ−1(1) . . . uσ−1(n+k)

7



where Sh(k, n) is the subset of the symmetric group on n + k letters consisting of

permutations satisfying

σ(1) < · · · < σ(k) σ(k + 1) < · · · < σ(n).

That is, given two words v and w of length k and n, the product v � w is the sum

of all
(
n+k
k

)
words formed by interlacing the letters in v and w.

While the shuffle algebra is of great interest in its own right in representation

theory and combinatorics (If V is a free R-module and V ∗ is its algebraic dual

space, then R〈V ∗〉� is isomorphic as a Hopf algebra to the graded dual of the

tensor algebra T (V ) [21]), of more immediate relevance, it also appears to be the

correct setting for performing the iterated integrals that appear in calculations of

the partition function, ZN(β).

In particular, since the joint density function ρN(x) for the β-ensemble is

completely symmetric in the N variables, it can be restricted to the N -simplex

∆N = {x1 < · · · < xN} at the cost of a combinatorial factor N !. That is,

ZN(β) =
1

N !

∫
RN

∏
i<j

|xj − xi|β dµN(x) =

∫
∆N

∏
i<j

(xj − xi)βdµN(x).

This has the added benefit of eliminating a pesky absolute value sign in the case

when β is an odd integer.

Now, take H to be a vector space of suitably integrable functions with basis

set X, (say, H = L2(R, µ), where dµ(x) = e−x
2/2 dx) and define a linear functional

〈−〉 on R〈X〉� by

〈f1 · · · fn〉 =

∫
∆N

f1(x1) · · · fn(xn) dµ(x) where f1 · · · fn is a word in R〈X〉� .
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Then 〈−〉 is, in fact, an algebra homomorphism, in the sense that

〈
(f1 · · · fk)� (fk+1 · · · fk+n)

〉
=
〈
f1 · · · fk

〉
·
〈
fk+1 · · · fk+n

〉
.

This result is equivalent to the celebrated lemma first proved by K.T. Chen in the

context of cohomology of loop space [6].

With this lemma in hand, the main result (an extension of the de Bruijn

identities to the case when β = L2) can be obtained. Proof of part (1) is first due

to J. Thibon and J. Luque in [17], while the first proofs of parts (2) and (3) appear

in [23] by C. Sinclair. In the sequel, we present a new proof of the result covering

all three cases.

Theorem (Wells). Suppose N and L are positive integers, that p =

{p1, p2, . . . , pN ;x} is a complete family of monic orthogonal polynomials in the

variable x, that t = {ti} and s = {si} are subsets of {1, . . . , NL} of size L,

that ~et = ~et1 ∧ · · · ∧ ~etL, and that Wr(pt;x) is the Wronskian of a subset of

polynomials pt = {pt1 , . . . , ptL} in the variable x. Then ZN(β) is given by the

following expressions:

1. if β = L2 is even,

PF

(∑
t

〈
Wr(pt;x)

〉
~et

)

2. if β = L2 is odd and N is even,

PF

([∑
t

〈
Wr(pt;x)

〉
~et

]
∧

[∑
s

〈
Wr(ps; y)

〉
~es

])

9



3. if β = L2 is odd and N is odd,

PF

([∑
t

〈
Wr(pt;x)

〉
~et

]
∧

[∑
s

〈
Wr(ps; y)

〉
~es

]

+

[∑
t

〈
Wr(pt;x)

〉
~et ∧ ~ei′

])

where ~ei′ = ~eNL+1 ∧ · · · ∧ ~e(N+1)L.

Identities in the Exterior Algebra

Several algebraic identities of the determinant (the Laplace Expansion, the

Cauchy-Binet Formula, and the Jacobi Minor Inverse Formula, for example) have

been well-studied since the days of Jacobi, Cayley, and Sylvester. Given that the

Pfaffian is the square root of the determinant, it is not terribly surprising that

many of these identities have a Pfaffian analogue (a few of which appear in other

guises elsewhere in the literature as the famed Wick Formulas [4],[3]). However, by

representing an antisymmetric matrix as an antisymmetric 2-tensor, many of these

Pfaffian identities can be realized simply as structural properties of the exterior

algebra. And moreover, by adopting this perspective, it becomes clear that there

is little unique about the Pfaffian of an antisymmetric 2-tensor—many of the same

identities also hold for the Hyperpfaffian of an antisymmetric L-tensor.

Concise statements of the Laplace Expansion, the Cauchy-Binet formula,

the Jacobi Minor Inverse formula, and the Sylvester identity are facilitated by

introducing two auxillary transformations on the exterior algebra as follows:

For ω ∈
∧L V , define exp(ω) ∈

∧
V by

exp(ω) =
∑
k=1

ω∧k

k!

10



and note that exp(ω) is actually a finite sum, since ω∧k = 0 for all k with kL >

dimV .

Suppose 〈· | ·〉 is an inner product on V , which is extended to an inner

product on ∧k
V by

〈f1f2 · · · fk|g1g2 · · · gk〉 = det
(
〈fi|gj〉

)k
i,j=1

for f1, . . . , fk, g1, . . . , g` ∈∧1
(η).

The Hodge dual operator ∗ on
⊕

k

∧2k V is defined for α ∈
∧2k V by ∗(α) = β,

where β is the unique antisymmetric (n− 2k)-tensor so that

α ∧ β = 〈α|α〉~e1 ∧ · · · ∧ ~en.

It turns out that in some cases, an antisymmetric 2k-tensor α has an inverse

antisymmetric 2k-tensor α′ with the property that

exp(α) =
1

PF(α)
∗ [exp(α′)],

in which case the coefficients of α contain essentially the same information as those

of α′. Remarkably, if α is an antisymmetric 2-tensor with Pf(α) 6= 0 (corresponding

to an invertible antisymmetric matrix A), then the inverse form α′ always exists

and corresponds to the matrix inverse of A.

Now, the Cauchy-Binet formula for Hyperpfaffians is equivalent to the

observation that the k-homogeneous component of exp(ω) is given by

ω∧k

k!
=
∑
I

PF(ωI)

11



where the sum is taken over all k-element subsets I ⊂ {1, 2, . . . , N}, and where ωI

is called the I-minor of ω and denotes the L-formed obtained by setting the basis

vectors ~ei equal to 0, when i 6∈ I.

Meanwhile, the Laplace Expansion for Hyperpfaffians arises by combining the

Cauchy-Binet Formula with observation that if ω ∈
∧L V and α ∈

∧K V with

ω = α∧k, then PF(ω) = PF(α).

By combining the equation exp(α) = 1
PF(α)

∗ [exp(α′)] with the Cauchy-

Binet formula, the Hyperpfaffians of minors of α can be expressed in terms of the

Hyperpfaffians of minors of α′. In particular, when α is an antisymmetric 2-tensor,

this result is equivalent to the Jacobi Minor Inverse Formula for Pfaffians.

In the language of the exterior algebra, the Pfaffian Sylvester Identity can be

restated as

PF(ζ ′ + B · α)

PF(ζ ′)
=

PF(α′ + BT · ζ)

PF(α′)
for α, ζ ∈∧2

V and B ∈ Mn(R)

where B · α denotes the antisymmetric 2-tensor given by

B · α =
∑
i<j

αij (Bvi) ∧ (Bvj) when α =
∑
i<j

αij ~ei ∧ ~ej.

But more generally, by using the Hyperpfaffian in place of the Pfaffian, the same

identity also holds for antisymmetric L-tensors α and ζ, provided that the inverse

forms for α and ζ exist.
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CHAPTER II

PRELIMINARY DEFINITIONS AND LEMMAS

Conventions

Unless otherwise stated, we assume that every ring R is a commutative ring

with unity, and moreover, that every non-negative integer is a unit in R. Of course,

while several of the properties discussed in the sequel can indeed be extended to

arbitrary commutative rings with unity, this restriction is sufficient to cover all

cases relevant to the main results in the following chapters, with the benefit of

obviating the need for distinguishing between results which hold for general rings,

and those which only hold for the restricted class of rings.

To simplify matters when writing multi-indices and permutations, we make

use of the following conventions:

– For any positive integer n, let n denote the set of the first n integers

{1, . . . , n}.

– For any multi-index (i1, . . . , ik) where each ij is an integer in n, we define a

function t : k → n by t(1) = i1, . . . , t(k) = ik and write Qt for Qi1,...,ik .

– Frequently, we will need to permute the order of indices in a multi-indexed

symbol, and so viewing a permutation σ of the first k integers as a bijection

σ : k → k, we write the symbol Qiσ(1),...,iσ(k) as Qt◦σ.

– It will often be useful to write t : k ↗ n for a strictly increasing function

from k to n. In particular, note that any such t simply represents a choice of

k integers from among the first n integers. Moreover, in light of the previous

13



convention, observe that every injective function s : k ↗ n can be written

uniquely as the composition s = t ◦ τ of a strictly increasing function t : k ↗ n

and a permutation τ ∈ Sk.

– Given an increasing function t : k ↗ n, let t′ denote the complimentary

increasing function t′ : n− k ↗ n with t(k) t t′(n− k) = n. Let sgn(t) denote

the signature of the permutation σ ∈ Sn given by

σ(i) =


t(i), if i ∈ k

t′(i− k), if i ∈ n \ k

– In the sequel, we will need to consider the restriction of permutations and

increasing functions to subsets of their domain. If t : k → n is a function and

k = NL for positive integers N and L, we write t = (t1| . . . |tN), where each tn

is the restriction of t to the set nL \ nL− L.

– Finally, although a slight abuse of notation, given functions t1, . . . , tN : L →

n, we let t = (t1| . . . |tN) denote the function t : NL→ n given by

t(m) =



t1(m), if 1 ≤ m ≤ L,

t2(m− L), if L+ 1 ≤ m ≤ 2L,

. . . ,

tN(m− (N − 1)L), if (N − 1)L+ 1 ≤ m ≤ NL

In this way, we will often equate the restriction ti of t = (t1| . . . |tN) with

the function ti : k → n, although strictly speaking, the two functions have

14



different domains. In many cases, the distinction will not matter, and when it

does, the domain will be made clear.

The Symmetric Group

The symmetric group SN of degree N consists of all set automorphisms of

the set X = {1, . . . , N}, with multiplication given by function composition. For a

standard reference on the symmetric group, see [22].

Given any subset Y = {i1, . . . , ik} ⊂ {1, . . . , N}, let Si1,...,ik denote the set of

permutations of Y , given by σ(j) = j unless j ∈ Y . We can identify Si1,...,ik with Sk

in the obvious way.

A partition λ = (λ1, . . . , λk) of a non-negative integer n is a sequence of non-

negative integers so that
∑
λi = n. If n = NL for non-negative integers N,L,

let ΛN denote the partition of n into N equal parts, each of size L. That is, ΛN =

(L,L, . . . , L).

For each partition λ of n, we define the following subgroups and subsets of

the symmetric group:

1. The Young subgroup Hλ of Sn is the internal direct product

Hλ = S1,...,λ1 × Sλ1+1,...,λ1+λ2 × · · · × Sn−λk+1,...,n,

where Sm+1,...,m+λi = {σ ∈ Sn |σ(j) = j, unless m + 1 ≤ j ≤ m + λi}.

Demonstrably,

|Hλ| = λ1!λ2! · · ·λk!.
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2. The subset of block permutations Bl(λ) ⊂ Sn consists of those permutations

satisfying

σ(j) + 1 = σ(j + 1) for all j except possibly for j = λ1 + · · ·+ λi.

Block permutations preserve the contiguity of elements in the ‘blocks’

{1, . . . , λ1}, {λ1 + 1, . . . , λ1 + λ2}, . . . {n− λk + 1, . . . , n}

while permuting the blocks themselves. As block permutations are completely

determined by the values of σ(λ1 + · · ·+ λi + 1) for 1 ≤ i ≤ k, then

|Bl(λ)| = k!.

For any block permutation θ ∈ Bl(λ), let βθ denote the corresponding

permutation in Sk.

3. The subset of shuffle permutations Sh(λ) ⊂ Sn consists of those permutations

satisfying

σ(j1) < σ(j2) whenever λ1 + · · ·+ λi ≤ j1 < j2 ≤ λ1 + · · ·+ λi+1

Shuffle permutations in Sh(λ) are so called because they represent iterative

riffle shuffles on a set of n cards sorted into k stacks of λ1, . . . , λk ordered

cards each. A straightforward induction argument on k can be used to show

that

|Sh(λ)| =
(

n

λ1, . . . , λk

)
=

n!

λ1! . . . λk!
.
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4. The subset of λ-ordered permutations O(λ) ⊂ Sn consists of those

permutations which satisfy

σ(1) < σ(λ1 + 1) < σ(λ1 + λ2 + 1) < · · · < σ(n− λk + 1).

Since each permutation in O(λ) can produce k! distinct permutations in Sn

by composing with elements of Bl(λ), then

|O(λ)| = n!

k!

5. Let Sh(λ)/Bl(λ) denote the collection of equivalence classes of elements of

Sh(λ) under multiplication by Bl(λ). Observe that if σ ∈ Sh(λ) and θ ∈

Bl(λ), then σ ◦ θ ∈ Sh(λθ), where λθ is the partition (λβθ(1), . . . λβθ(k)). Let

Sho(λ) denote the subset of permutations of the form σ ◦ θ ∈ O(λθ) ∩ Sh(λθ),

where σ ∈ Sh(λ) and θ ∈ Bl(λ).

Of course, in the case when λ = ΛN (that is, λi = λj for all i, j), much of the

preceding obfuscatory notation can be avoided, since for any θ ∈ Bl(λ), we

have λθ = λ, and so each equivalence class in Sh(λ)/Bl(λ) is actually a subset

of Sh(λ), in which case Sho(λ) = O(λ) ∩ Sh(λ).

Properties of the Symmetric Group

Lemma 1. Let λ = (λ1, . . . , λk) be a partition of n, and let Hλ be the Young

subgroup of this partition. Then for each coset K ∈ Sn/Hλ, there is exactly one

permutation σ ∈ K with σ ∈ Sh(λ).
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Proof. Suppose σ ∈ Sn. For each 1 ≤ i ≤ k and for each 1 ≤ j ≤ λi, let tij =

σ(λ1 + · · ·+ λi−1 + j). Define an ordering permutation π ∈ Sλi by

tiπ−1(1) < · · · < tiπ−1(λi)

Then the permutation π = (π1| . . . |πk) is an element of the Young subgroup Hλ,

and

σ ◦ π(j1) < σ ◦ π(j2) whenever λ1 + · · ·+ λi ≤ j1 < j2 ≤ λ1 + · · ·+ λi+1,

which shows that every coset K ∈ Sn/Hλ contains at least one shuffle permutation.

But |Sn Hλ| = n!/(λ1! . . . λk!) = |Sh(λ)|, so these shuffle permutations must

necessarily be unique.

Corollary 1. Given any σ ∈ SNL, there exist unique permutations π, τ so that

σ = τ ◦ π, where π is an element of the Young subgroup HΛN ⊂ SNL, and where

τ ∈ Sh(ΛN).

Lemma 2. Let λ = (λ1, . . . , λk) be a partition of n, let Sh(λ) be the set of shuffle

permutations for this partition, and let Bl(λ) be the set of block permutations for

this partition. Then for each equivalence class K ∈ Sh(λ)/Bl(λ), there exists exactly

one permutations σ ∈ K with σ ∈ Sho(λ).

Proof. Suppose σ ∈ Sh(λ), and for each 1 ≤ i ≤ k, let si = σ(λ1 + · · · + λi−1 + 1).

Define an ordering permutation β ∈ Sk by

sβ−1(1) < · · · < sβ−1(k)
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and define a new partition µ = {µ1, . . . , µk} = {λβ−1(1), λβ−1(2), . . . , λβ−1(k)}. Let

θ ∈ Bl(µ) be defined by

θ(µ1 + · · ·+ µi−1 + j) = λ1 + · · ·+ λβ−1(i−1) + j for 1 ≤ j ≤ µi

Then by construction, σ ◦ θ ∈ O(µ) ∩ Sh(µ) = Sho(λ), as desired. Moreover, since

|O(µ) ∩ Sh(µ)| = n!

λβ−1(1)! · · ·λβ−1(k)!
=

n!

λ1! · · ·λk!
= |Sh(λ)/Bl(λ)|

then each such ordered shuffle permutation is indeed unique.

The Tensor Algebra

The following discussion of the tensor algebra mirrors the treatment in [11].

Let R be a commutative ring with unity, and let V be an R-module. The tensor

product T 2(V ) = V ⊗ V is formed by taking the quotient of the free abelian group

on V × V by the ideal I generated by elements of the form

(v1+v2, w1)−(v1, w1)−(v2, w1), (v1, w1+w2)−(v1, w1)−(v1, w2), (rv1, w1)−(v1, rw1)

for r ∈ R, vi, wi ∈ V .

For each integer k ≥ 1, define the kth tensor power of V by

T k(V ) = V ⊗ V ⊗ · · · ⊗ V (k factors)

and let T 0(V ) = R. We will call elements of T k(V ) k-tensors.
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Theorem 1. If V is a rank d free R-module with basis X = {~e1, . . . ~ed}, then T k(V )

has a basis

{~ei1 ⊗ · · · ⊗ ~eik | 1 ≤ i1, . . . , ik ≤ d}.

Define the Tensor Algebra T (V ) by

T (V ) =
∞⊕
k=0

T k(V ).

and observe that T (V ) is indeed an R-algebra with multiplication

(v1 ⊗ · · · ⊗ vk)⊗ (w1 ⊗ · · · ⊗ w`) = v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ w`

For a set X and a ring R, let R〈X〉 denote the free unital algebra on X over R,

with multiplicative unit e. We may (and often will) identify the tensor algebra

T (V ) of a free R-module V with the free R-algebra R〈X〉, where X is an R-basis

for V . The identification is given by v ⊗ w = vw, for v, w ∈ X.

The Shuffle Algebra

The shuffle product was first introduced by Eilenberg and Mac Lane in [13].

Define an operation � on R〈X〉 inductively as follows:

1. e� e = e

2. For all a ∈ X,

a� e = e� a = a
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3. For all w, u ∈ S〈X〉 and a, b ∈ X,

ua� wb = (u� wb)a+ (ua� w)b

The algebra R〈X〉 with � is called the Shuffle Algebra on X, and denoted R〈X〉�.

By construction, this algebra is commutative and associative.

An explicit presentation of the operation � is also possible. For 1 ≤ k ≤ n,

let Sh(k, n − k) denote the subset of the permutation group Sn of permutations σ

satisfying

σ(1) < · · · < σ(k), σ(k + 1) < · · · < σ(n).

By convention, let Sh(0, n) = {id}. Thus, if u = u1 . . . uk and u′ = uk+1 . . . un are

words in A of length k and n− k, respectively, then

u� u′ =
∑

σ∈Sh(k,n−k)

uσ−1(1) . . . uσ−1(n).

That is, given two words w and u of length k and n − k, the product w � u is the

sum of all
(
n
k

)
words formed by interlacing the letters in u and w.

Demonstrating that the two definitions of � coincide is a straightforward

induction exercise.

Example. Let w = abc and u = xy. Then

w�u = abcxy+abxcy+axbcy+xabcy+abxyc+axbyc+xabyc+axybc+xaybc+xyabc
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The Exterior Algebra

Suppose V is a real vector space of dimension d, with basis X = {~e1, . . . , ~ed},

and let T (V ) be the tensor algebra of V over R. The exterior algebra of V is

obtained by taking quotients of T (V ) by the ideal I generated by elements of the

form v ⊗ v, for v ∈ V . The exterior algebra T (V )/I is denoted by ∧RV and the

image of v1 ⊗ v2 ⊗ · · · ⊗ vk in ∧RV is denoted by v1 ∧ v2 ∧ · · · ∧ vk.

Note that I is generated by homogeneous elements, and so is a graded

ideal. Hence, ∧RV is a graded algebra, and the kth homogeneous component

∧k
RV = T k(V )/Ik is called the kth exterior power of V . Elements of ∧k

RV are

called antisymmetric k-tensors, or k-forms. The multiplication

(v1 ∧ · · · ∧ vk) ∧ (w1 ∧ · · · ∧ w`) = v1 ∧ · · · ∧ vk ∧ w1 ∧ · · · ∧ w`

in the exterior algebra is called the wedge or exterior product. Multiplication is

anticommutiative, since for all v, w ∈ V ,

0 = (v + w) ∧ (w + v) = v ∧ v + w ∧ w + v ∧ w + w ∧ v = v ∧ w + w ∧ v

Theorem 2. For any non-negative integer k, the kth exterior power ∧k
RV has a

basis

{~ei1 ∧ · · · ∧ ~eik | 1 ≤ i1 < · · · < ik ≤ d, }.

In particular, ∧k
RV has dimension

(
d
k

)
.

As with multi-indexed symbols above, we write et for ei1 ∧ · · · ∧ eik , where

t : k ↗ n is an increasing function with t(j) = ij. We will write ~evol for the ‘volume

form’ element ~e1 ∧ · · · ∧ ~ed.
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More generally, for any commutative ring with unity R and finite-rank free

R-module V , we may define the exterior algebra ∧RV just as above by taking a

suitable quotient of the tensor algebra T (V ). All of the aforementioned properties

of the exterior algebra still hold, where subspace and dimension are replaced with

submodule and rank, as appropriate.

It will often be convenient to extend the linear functional 〈 · 〉 : T (H) → R

defined previously to an R-linear map 〈 · 〉 : ∧RV → ∧V , where R = T (H)� and

V is a free R-module of rank N . In this case, we first define 〈 · 〉 on a basis vector

~ei1 ∧ · · · ∧ ~eik for ∧RV by

〈f ~ei1 ∧ · · · ∧ ~eik〉 = 〈f〉~ei1 ∧ · · · ∧ ~eik where f ∈ T (H)

and then extend R-linearly to all of ∧RV .

Properties of the Exterior Algebra

The following properties of the exterior algebra are well-known, but we

include proofs due to their importance in the sequel.

Theorem 3. If V is a free R-module of rank N , and α ∈∧k
V and β ∈∧`

V with

α =
∑

t:k↗N

at ~et β =
∑
t:`↗N

bt ~et

then

α ∧ β =
∑

t:k+`↗N

ct ~et

where

ct =
∑

σ∈Sh(k,`)

sgn(σ)at◦σ1bt◦σ2 ~et.
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Proof. This follows from Lemma 1.

Theorem 4 (Normal form for antisymmetric 2-forms). Suppose V is a free R-

module of rank N and α ∈ ∧2
V . Then there exists a basis {~v1, . . . , ~vN} for V in

which

α =
k∑
i=1

~v2i−1 ∧ ~v2i

for some k with 2k ≤ N .

Proof. We proceed by inducting on N . When N = 1, the result is vacuously true,

since ∧2
V is rank 0. When N = 2, the exterior square ∧2

V is rank 1, and so every

non-degenerate element α ∈∧2
V is of the form α = a~e1∧~e2. Define ~vi =

√
a~ei, and

observe that α = ~v1 ∧ ~v2. Suppose now that the result holds for all N = 1, . . . , n.

Let V be a rank n + 1 free R-module, and suppose α ∈ ∧2
V is a non-degenerate

element with α =
∑

i<j aij ~ei ∧ ~ej. By relabeling indices and scaling both ~en and

~en+1 by
√
an,n+1, assume an,n+1 = 1. Let

~vn = ~en +
n−1∑
i=1

ai,n+1~ei ~vn + 1 = ~en+1 −
N−1∑
i=1

ai,n~ei

and observe that

α = ~vn ∧ ~vn+1 + β

for some β ∈∧2
V with

β =
∑

1≤i<j≤N−1

bij ~ei ∧ ~ej.

But by the induction hypothesis, there exist {~v1, . . . , ~v2k} with 2k ≤ N − 1 so that

β =
k∑
i=1

~v2i−1 ∧ ~v2i
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and hence,

α = ~vn ∧ ~vn+1 +
k∑
i=1

~v2i−1 ∧ ~v2i,

as desired.

Pfaffians and Hyperpfaffians

Throughout this section, we assume that R is a commutative ring with unity

such that every positive integer k is a unit, and that V is a free R-module of rank

2N .

Pfaffians

Let A be a 2N × 2N antisymmetric matrix. Define the Pfaffian of A, Pf(A),

by

Pf(A) =
1

2NN !

∑
σ∈S2N

sgn(σ)
N∏
i=1

Aσ(2i−1),σ(2i)

To each antisymmetric matrix A, associate a 2-form ω ∈
∧2 V with V by

ω =
∑
i<j

Aij~ei ∧ ~ej.

Similarly, to each two form ω ∈
∧2 V with ω =

∑
i<j aij~ei ∧ ~ej, associate the

antisymmetric matrix A by

Aij =



aij, if i < j,

−aij, if i > j,

0, if i = j.
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This gives a bijective correspondence between 2-forms and antisymmetric matrices.

We define the Pfaffian, Pf(ω), of a 2-form ω to be the Pfaffian of the associated

antisymmetric matrix.

Theorem 5. The Pfaffian of a 2N × 2N antisymmetric matrix A is given by

Pf(A) =
1

N !

∑
σ∈Sh(ΛN )

sgn(σ)
N∏
i=1

Aσ(2i−1),σ(2i).

Proof. Since A is antisymmetric, the expression

sgn(σ)
N∏
i=1

Aσ(2i−1),σ(2i)

is constant across each coset in S2N/HΛN . But |HΛN | = 2N , and so

1

N !

∑
σ∈Sh(ΛN )

sgn(σ)
N∏
i=1

Aσ(2i−1),σ(2i) =
1

2NN !

∑
σ∈S2N

sgn(σ)
N∏
i=1

Aσ(2i−1),σ(2i)

as desired.

Corollary 2. The Pfaffian of a 2N × 2N antisymmetric matrix A with associated

2-form ω is given by

1

N !
ω∧N = Pf(A)~evol.

Proof. This follows by combining the previous theorem with Theorem 3.

Theorem 6. The Pfaffian of a 2N × 2N antisymmetric matrix A is given by

Pf(A) =
∑

σ∈Sho(ΛN )

sgn(σ)
N∏
i=1

Aσ(2i−1),σ(2i).
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Proof. Since the entries of A are elements of a commutative ring R, then the

expression

sgn(σ)
N∏
i=1

Aσ(2i−1),σ(2i)

is constant across each coset in Sh(ΛN)/Bl(ΛN). But |Bl(ΛN)| = N !, and so

∑
σ∈Sho(ΛN )

sgn(σ)
N∏
i=1

Aσ(2i−1),σ(2i) =
1

N !

∑
σ∈Sh(ΛN )

sgn(σ)
N∏
i=1

Aσ(2i−1),σ(2i),

as desired

Corollary 3. If ω ∈∧2
V with ω =

∑
i<j Aij ~ei ∧ ~ej, then

Pf(ω)~evol =
2N−1∧
i=1

(∑
j>i

Aij ~ei ∧ ~ej

)
.

Proof. This follows from the previous theorem, along with Lemma 2.

Hyperpfaffians

Throughout this section, we assume that R is a commutative ring and V is a

free R-module of rank NL.

Let A = {At |t : L → NL} be an array of values in R with the property that

for each σ ∈ SL,

sgn(σ)At◦σ = At.

By way of analogy with antisymmetric matrices, we will call such collections

antisymmetric (NL)L-arrays. Define the Hyperpfaffian of A, PF(A), by

Pf(A) =
1

(L!)NN !

∑
σ∈SNL

sgn(σ)
N∏
i=1

Aσi
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Now, to each antisymmetric (NL)L-array A, associate an L-form ω ∈
∧L V by

ω =
∑

t:L↗NL

At~et.

Similarly, to each L-form ω ∈
∧L V with ω =

∑
t at~et, associate the antisymmetric

(NL)L array A by

At◦σ = sgn(σ)at for t : L↗ NL and σ ∈ SL

This gives a bijective correspondence between L-forms and antisymmetric (NL)L

arrays. We define the Hyperpfaffian PF(ω) of an L-form to be the Hyperpfaffian of

the associated array.

Proofs for the following results follow from nearly identical arguments to

those of the corresponding Pfaffian properties.

Theorem 7. The Hyperpfaffian of an antisymmetric (NL)L-array A is given by

PF(A) =
1

N !

∑
σ∈Sh(ΛN )

sgn(σ)
N∏
i=1

Aσi .

Corollary 4. The Hyperpfaffian of an antisymmetric (NL)L-array A with

associated L-form ω is given by

1

N !
ω∧N = PF(A)~evol.

Theorem 8. The Hyperpfaffian of an antisymmetric (NL)L-array A is given by

PF(A) =
∑

σ∈Sho(ΛN )

sgn(σ)
N∏
i=1

Aσi
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Corollary 5. If ω ∈∧L
V with ω =

∑
t At ~et, then

PF(ω)~evol =
NL−L+1∧

i=1

 ∑
t:L↗NL
t(1)=i

At ~et

 .
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CHAPTER III

ANDREIEF AND DE BRUIJN IDENTITIES

A Few Important Polynomial Definitions and Identities

The Wronskian

A complete k-family of monic polynomials is a collection {pi(x)}ki=0 such that

each pi is monic of degree i − 1. Given an increasing function t : k ↗ n, let pt(x)

denote the subset {pt(i)(x)}ki=1.

To simplify the appearance of several formula, we define the `th modified

differential operator D` for any non-negative integer `, by

D`f(x) =
1

`!

d`f

dx`

In particular, this allows us to define the Wronskian Wr(f) of a family f =

{fi(x)}ni=1 of n many differentiable functions as

Wr(f) = det
[
D`−1fi

]n
i,`=1

Observe that our Wronskian differs by a combinatorial factor from the typical

Wronskian which appears in the study of differential equations.

Now, for each complete NL-family of monic polynomials p, we define an L-

form ωp ∈∧L
RV , where R = T (H)� and V is a free R-module of rank N , by

ωp =
∑

t:L↗NL

Wr(pt)~et. (3.1)
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Observe that the coefficients of ωp are in fact polynomials of a single variable.

To obtain an L-form with real coefficients, 〈ωp〉, we integrate term-by-term with

respect to dµ. That is,

〈ωp〉 =
∑

t:L↗NL

〈
Wr(pt(x))

〉
~et =

∑
t:L↗NL

{∫
Wr(pt(x)) dµ(x)

}
~et.

When the complete monic family of polynomials p is clear from context, we will

omit the subscript and simply write ω. In several places, it will be convenient to

instead view ω as a collection of forms ω(x) ∈ ∧L
RV indexed by x ∈ R. Of course,

ω(x) is simply the evaluation of ω at x ∈ R.

The Vandermonde and Confluent Vandermonde

While the following is a standard result, due to its importance to the work

that follows, its proof deserves a moment of reflection.

Theorem 9. Let {p1(x), . . . , pN(x)} be a collection monic polynomials such that

each pk(x) is of degree k. Then

∏
i<j

(xj − xi) = det

[
pi(xj)

]N
i,j=1

Proof. Let V(x) =

[
pi(xj)

]
, and observe that det V(x) = 0 whenever xi = xj with

i 6= j. Therefore, (xi − xj) must be a factor of det V(x) for each i 6= j. Moreover,

by the Liebniz formula for the determinant, det V(x) must be a homogeneous

polynomial of degree
∑N−1

i=0 i = N(N−1)
2

=
(
N
2

)
. Of course,

∏
i<j(xj − xi) is also

a homogeneous polynomial of the same degree with the same irreducible factors,

and so det V(x) = C
∏

i<j(xj − xi) for some constant C.
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Now, as each pk is monic of degree k, then pk(xk) = xk + qk(xk) where

the degree of qk is less than k. Appealing again to the Leibniz formula for the

determinant, observe that the only term of the form α · xN−1
N−1x

N−2
N−2 · · ·x1 is obtained

by expanding along the main diagonal, and so the coefficient on xN−1
N−1x

N−2
N−2 · · ·x1

in det V(x) is 1. On the other hand, the only way to obtain a term of the form

α · xN−1
N−1x

N−2
N−2 · · ·x1 in the expansion of

∏
i<j(xj − xi) is by taking the product of the

the first term xi in each factor (xj − xi), which shows that the coefficient on this

monomial is also 1. The result then follows.

For any complete NL-family of monic polynomials p, we define the Lth

confluent NL × NL Vandermonde matrix VL
p(x) for x ∈ RN by first defining

the NL× L matrix

VL
p(x) =

[
D`−1pn(x)

]NL,L
n,`=1

where p is a complete NL-family of monic polynomials. Then take

VL
p(x) =

[
VL

p(x1) VL
p(x2) . . . VL

p(xN)

]
for x = (x1, x2, . . . , xN)

Observe that the confluent Vandermonde specializes to the ordinary Vandermonde

matrix when L = 1.

The confluent Vandermonde matrix satisfies the following identity which

shows that the determinant of the confluent Vandermonde doesn’t depend on the

choice of family of monic polynomials.

Theorem 10. For any complete NL-family of monic polynomials p,

det VL
p(x) =

∏
i<j

(xj − xi)L
2
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An efficient proof of this result proceeds by expressing each higher derivative

p
(n)
k in the confluent Vandermonde matrix as a higher-order difference quotient of

the polynomial pk. Doing so makes use of the following lemma, which while well-

known in numerical approximation circles, is proved in full here for completeness.

Lemma 3. Suppose f is a smooth function, and let ∆n
h[f ](x) be the n-step finite

forward difference formula for f at x defined by

∆n
h[f ](x) =

n∑
k=0

(−1)k
(
n

k

)
f
(
x+ (n− k)h

)
.

Then

lim
h→0

∆n
h[f ](x)

hn
= f (n)(x)

Proof. We proceed by induction. When n = 1, we have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

∆1
h[f ](x)

h
,

by definition of the derivative. Suppose the formula holds for N = 1, . . . , n. Then

∆n
h[f ](x+ h)−∆n

h[x] =
n∑
k=0

(−1)k
(
n

k

)
f
(
x+ h+ (n− k)h

)
−

n∑
k=0

(−1)k
(
n

k

)
f
(
x+ (n− k)h

)
=f(x+ (n+ 1)h) + (−1)n+1f(x)

+
n−1∑
k=0

(−1)k+1f
(
x+ (n− k)h

) [( n

k + 1

)
+

(
n

k

)]

=
n+1∑
k=0

(−1)k
(
n+ 1

k

)
f
(
x+ ((n+ 1)− k)h

)
=∆n+1

h [f ](x),
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where the 3rd equality follows from the Vandermonde identity,
(
n+1
k

)
=
(
N
k+1

)
+
(
n
k

)
.

Thus, since f is smooth, then we may freely interchange the following limits, and

f (n+1)(x) = lim
r→0

f (n)(x+ r)− f (n)(x)

r

= lim
r→0

1

r

[
lim
h→0

∆n
h[f ](x+ r)−∆n

h[f ](x)

hn

]
= lim

h→0

∆n
h[f ](x+ h)−∆n

h[f ](x)

hn+1

= lim
h→0

∆n+1
h [f ](x)

hn+1
,

as desired.

We now proceed to a proof of Theorem 10.

Proof. Suppose now that x ∈ RN and h ∈ R. To improve readability, we use the

convention that for any single variable function f , the expression f(x) denotes the

vector (f(x1), f(x2), . . . , f(xN)) ∈ RN .

For each 0 ≤ k ≤ L − 1, let fk(x) = x + kh, and define yk = fk(x),

and let z denote the NL-tuple z = (y0, . . . ,yL−1). Observe that the n-step finite

forward difference formula ∆k
h[f ](x) (as defined in the preceding Lemma) is a linear

combination of {f(x+ kh) | 0 ≤ k ≤ n− 1}. Hence, using matrix column operations,
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the Vandermonde determinant, det Vp(z), may be expressed as

det Vp(z) = det


p1(y0) p1(y1) p1(y2) . . . p1(yL−1)

...
...

pNL(y0) . . . . . . pNL(yL−1)



= det


p1(x) ∆1

h[p1](x) ∆2
h[p1](x) . . . ∆L−1

h [p1](x)

...
...

pNL(x) . . . . . . ∆L−1
h [pNL](x)


By factoring out common powers of h from each column, we obtain

det Vp(z) =C(h) · det


p1(x)

∆1
h[p1](x)

h

∆2
h[p1](x)

h22!
. . .

∆L−1
h [p1](x)

hL−1(L−1)!

...
...

pNL(x) . . . . . .
∆L−1
h [pNL](x)

hL−1(L−1)!

 (3.2)

where

C(h) = h
NL(L−1)

2

[
L−1∏
k=1

k!

]N
Let Mh denote the matrix which appears in line 3.2 above, and observe that by

Lemma 3,

det VL
p(x) = lim

h→0
det Mh.

On the other hand, by expanding the Vandermonde determinant according to

Theorem 9 and grouping products depending on whether pairwise difference are

taken between entries in the same vector yk or between entries in different vectors
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ym and yn, then

Vp(z) =

[
L−1∏
k=0

∏
i<j

(
(xj + kh)− (xi + kh)

)]
·

[∏
m<n

N∏
i,j=1

(
(xj + nh)− (xi +mh)

)]

=

[ ∏
i<j

(
xj − xi

)L] · [∏
m<n

N∏
i,j=1

(
(xj − xi) + (n−m)h)

)]

=

[ ∏
i<j

(
xj − xi

)L] · [∏
m<n

N∏
i 6=j

(
(xj − xi) + (n−m)h)

)]

·

[
h
NL(L−1)

2

∏
m<n

(n−m)N

]

=C(h) ·

[ ∏
i<j

(
xj − xi

)L] · [∏
m<n

N∏
i 6=j

(
(xj − xi) + (n−m)h)

)]
.

Thus,

[ ∏
i<j

(
xj − xi

)L] · [∏
m<n

N∏
i 6=j

(
(xj − xi) + (n−m)h)

)]
=

Vp(z)

C(h)
= det Mh

Taking limits as h→ 0 of the left and right expressions above, we obtain

∏
i<j

(xj − xi)L
2

= det VL
p(x),

as desired.

Expectation Operator and Chen’s Lemma

The Shuffle and Function Algebras

Let H be the Hilbert space L2(R, µ) of square integrable functions with

respect to a finite measure µ on R, and suppose H is a finite-dimensional subspace

of H with basis X (We assume H is large enough to contain all functions of interest
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to the current program). For each k, view the kth tensor space T k(H) as a subset

of L2(Rk, µ) by defining

(f1 ⊗ · · · ⊗ fk)(x1, . . . , xk) = f1(x1) · · · fk(x1)

By identifying the tensor algebra T (H) with the free algebra R〈X〉 (via the map

f1⊗· · ·⊗fk 7→ f1 · · · fk), we may define the shuffle of two functions f = f1⊗· · ·⊗fk

and g = fk+1 ⊗ · · · ⊗ fn by

f � g =
∑

σ∈Sh(k,n)

fσ−1(1) ⊗ · · · ⊗ fσ−1(n)

Now, for each non-negative integer k, we define a linear functional 〈 · 〉k on T k(V )

by

〈f1 ⊗ · · · ⊗ fk〉k =

∫ ∞
−∞

∫ xk

−∞
· · ·
∫ x1

−∞
f1(x1) · · · fk(xk) dx1 · · · dxk

Moreover, this collection {〈 · 〉k|k ∈ Z≥0} induces a functional 〈 · 〉 on T (V ), whereby

〈 · 〉 acts as 〈 · 〉k on the kth graded component of a non-homogeneous tensor.

We can think of 〈 · 〉 as an expectation operation on the space of functions H

which are measurable with respect to a random variable with distribution µ.

The following lemma, due to Chen in [6], asserts that this expectation

operator 〈 · 〉 is actually an algebra homomorphism from T (V )� to R:

Lemma 4 (Chen). If f, g ∈ T (V ), then

〈f � g〉 = 〈f〉 〈g〉.
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Chen’s Lemma

Using Fubuni’s Theorem, each iterated integral that appears in 〈f〉n can also

be realized as an n-fold integral across the n-simplex {(x1, . . . , xn) ∈ Rn |x1 <

x2 < · · · < xn}, and thus, 〈f〉k〈g〉n−k represents an integral across the Cartesian

product of two such regions. Chen’s Lemma, in essence, asserts that this product

can be written as a (nearly) disjoint union of several n-simplices, indexed by shuffle

permutations.

Let X be the set of points in Rn whose coordinates are all distinct, and

observe that Rn \ X has Lebesgue measure 0. Each point (x1, . . . , xn) ∈ X can

be associated with an ordering permutation σ ∈ Sn, where σ(i) = j when xi is the

jth smallest coordinate. Then for each σ ∈ Sn, let ∆n
σ be the set of all points in A

with ordering permutation σ, that is,

∆n
σ = {(x1, . . . , xn) ∈ X |xσ−1(1) < · · · < xσ−1(n)}.

In particular, observe that the collection {∆n
σ} partitions X into mutually disjoint

subsets, and that for (x1, . . . , xn) ∈ ∆n
σ, xi < xj if and only if σ(i) < σ(j).

Now, the key observation for Chen’s Lemma can be stated as

∆k
id ×∆n−k

id = Y t
⊔

σ∈Sh(k,n−k)

∆n
σ. (3.3)

where Y = (Rn \X)∩ (∆k
id×∆n−k

id ). Note that as Y ⊂ Rn \X, then Y has Lebesgue

measure 0.

For one inclusion, suppose (x1, . . . , xn) ∈ ∆k
id × ∆n−k

id with ordering

permutation σ. Since (x1, . . . , xk) ∈ ∆k
id, then x1 < · · · < xk and so σ(1) < · · · <
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σ(k). Similarly, since (xk+1, . . . , xn) ∈ ∆n−k
σ , then σ(k + 1) < · · · < σ(n). Hence,

σ ∈ Sh(k, n− k). On the other hand, if (x1, . . . , xn) ∈ ∆n
σ for some σ ∈ Sh(k, n− k),

then σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(n), and so x1 < · · · < xk and

xk+1 < · · · < xn.

To prove Chen’s Lemma, suppose f = f1⊗ · · · ⊗ fk and g = fk+1⊗ · · · ⊗ fn are

functions in T (V ). Then

〈f〉〈g〉 =

(∫
∆k

id

f1(x1) . . . fk(xk) dx1 · · · dxk

)

·

(∫
∆n−k

id

fk+1(xk+1) · · · fn(xn) dxk+1 . . . dxn

)

=

∫
∆k

id×∆n−k
id

f1(x1) · · · fn(xn) dx1 . . . dxn

=

∫
⊔
σ∈Sh(k,n) ∆n

σ

f1(x1) · · · fn(xn) dx1 . . . dxn

=
∑

σ∈Sh(k,n)

∫
∆n
σ

f1(x1) · · · fn(xn) dx1 . . . dxn

=
∑

σ∈Sh(k,n)

∫
∆n

id

f1(yσ(1)) · · · fn(yσ(n)) dy1 . . . dyn

=
∑

σ∈Sh(k,n)

∫
∆n

id

fσ−1(1)(y1) · · · fσ−1(n)(yn) dy1 . . . dyn

= 〈f � g〉

where the second equality follows from Fubini’s Theorem, where the third follows

from 3.3 and the observation that Y ⊂ Rn \X has Lebesgue measure 0, and where

the fourth follows from the relabeling of variables xi = yσ(i).
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A Key Lemma

Let {Qt | t : L → NL} be a subset of an alphabet I, let F be a field of

characteristic 0, and for each t : L→ NL, define At ∈ F 〈I〉 by

At =
∑
τ∈SL

sgn(τ)Qt◦τ .

For example, when L = 2, we can view {Qt◦τ} = {Qi,j | 1 ≤ i, j ≤ N} as in an

N ×N matrix with entries in I, in which case Ai,j = Qi,j −Qj,i is the (i, j) entry in

the matrix A = Q−QT .

Lemma 5. Let L be an even integer, let {Qt} and {At} be as above, let F be a field

of characteristic 0, let V be a rank NL free module over R = F 〈I〉�, and consider(∑
t:L↗NLAt ~et

)
as an element of ∧RV . Then

∑
σ∈SNL

sgn(σ)Qσ1Qσ2 · · ·QσN = PFR

 ∑
t:L↗NL

At ~et


Proof. For each σ ∈ HNL, write σ = (σ1| . . . |σN). Then

PFR

 ∑
t:L↗NL

At ~et

 =
∑

σ∈HNL

sgn(σ)Aσ1 � Aσ2 � · · ·� AσN

=
∑

σ∈HNL

sgn(σ)
( ∑
τ∈SL

sgn(τ)Qσ1◦τ

)
� · · ·�

( ∑
τ∈SL

sgn(τ)QσN◦τ

)
=
∑

σ∈HNL

sgn(σ)
∑

τ1,...,τN∈SL

sgn(τ1 · · · τN)Qσ1◦τ � · · ·�QσN◦τ

=
∑

σ∈HNL

sgn(σ)
∑

τ1,...,τN∈SL

sgn(τ1 · · · τN)
∑
π∈SN

Qσπ(1)◦τ · · ·Qσπ(N)◦τ

=
∑
α∈SNL

sgn(α)Qα1 · · ·QαN .
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Here, the equalities in lines (1) through (4) follow from appropriate application of

definition and elementary properties of the shuffle operation. To obtain the equality

in line (5), observe that every permutation α ∈ SNL can be transformed into a

unique element σ ∈ HNL via a collection of ordering permutations (π, τ1, . . . , τN) ∈

SN × SL × · · · × SL, where π is specified by

α
(
π(0)L+ 1

)
< α

(
π(1)L+ 1

)
< · · · < α

(
π(N − 1)L+ 1

)
,

where each τn is specified by

α
(
(n− 1)L+ τn(1)

)
< α

(
(n− 1)L+ τn(2)

)
< · · · < α

(
(n− 1)L+ τn(L)

)
,

and where

σ
(
(n− 1)L+ `

)
= α

(
π(n− 1) + τn(`)

)
for 1 ≤ n ≤ N, 1 ≤ ` ≤ L.

Then observe that as L is even, sgn(α) = sgn(τ1 · · · τN)sgn(σ).

Statement of the Main Result

Theorem 11. Suppose L and N are positive integers, and let ω be the L-form

given in 3.1 for any complete NL-family of monic polynomials. That is,

ω(x) =
∑

t:L↗NL

Wr(pt;x)~et ∈∧L
RV

where R = T (H)� and V is a free R-module of rank N . Then the partition function

ZN(β) is given by the following expressions:
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1. if β = L2 is even,

PF

(∫
ω(x) dµ(x)

)
.

2. if β = L2 is odd and N is even,

PF

(∫∫
x<y

ω(x) ∧ ω(y) dµ(x)dµ(y)

)
.

3. if β = L2 is odd and N is odd,

PF

(∫∫
x<y

ω(x) ∧ ω(y) dµ(x)dµ(y) +

∫
ω(x) ∧ ~ei′ dµ(x)

)

where ~ei′ = ~eNL+1 ∧ · · · ∧ ~e(N+1)L.

Method of Proof

For each of the three cases, the proof proceeds along similar lines. We

first use the Laplace expansion of the determinant to express the confluent

Vandermonde as a sum of products of polynomials in several variables, which

is then interpreted as an element of T (H). After this, we apply Lemma 5 to

express the confluent Vandermonde as the hyperpfaffian of a form in ∧RV , where

R = T (H)�. Finally, we apply the linear functional 〈 · 〉 and use Chen’s Lemma

to represent the partition function ZN as the hyperpfaffian of a particular form in

∧RV .

In order to exhibit the method of proof that will be used in the general case,

we first present proofs of the result for when β = 1 and β = 4.
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The Case when β = 4

Using the Laplace expansion to write det V2
p as a sum of N -fold products of

polynomials,

∏
i<j

(xj − xi)4 =V2
p(x)

=
∑
σ∈S2N

ε(σ)pσ(1)(x1)p′σ(2)(x1) · · · pσ(2n−1)(xN)p′σ(2N)(xN). (3.4)

Then by grouping terms in the same variable, we define a collection of functions

{Qij}2N
i,j=1 by Qij(x) = pi(x)p′j(x). Recalling that in the tensor algebra of

function T (V ) the tensor(f ⊗ g) can be viewed as a function of two variables,

(f ⊗ g)(x, y) = f(x)g(y), we can express the sum on the right of 3.4 as the function

F of N variables defined by

F =
∑
σ∈S2N

ε(σ)Qσ(1)σ(2) ⊗ · · · ⊗Qσ(2N−1)σ(2N).

And by Lemma 5, we have

F = PfR (Qij −Qji) ,

and so ∏
i<j

(xj − xi)4 = [PfR (Qij −Qji)] (x1, . . . , xN).

Now, by applying the linear functional 〈·〉 to both sides above, and using Chen’s

Lemma to pass from the Pfaffian over the shuffle algebra R = T (H)� to a Pfaffian
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over R, we have

ZN(4) =

〈∏
i<j

(xj − xi)4

〉
= 〈PfR(Qij −Qji)〉

=Pf (〈Qij −Qji〉)

=Pf

(∫
pi(x)p′j(x)− pj(x)p′i(x) dµ(x)

)
,

as desired.

The Case when β = 1 and N is Even

The β = 1 case proceeds almost analogously to the β = 4 case. However,

because Lemma 5 required that the length L of the multi-index on Q be even, we

instead group polynomial factors together two variables at a time. Ultimately, this

will be the reason for the appearance of double integrals in the Pfaffian formulation

for the partition function for β = 1 (and more generally, β = 2k + 1).

Suppose N = 2M . As above, use the Laplace expansion to express det V1
p as

a sum:

∏
i<j

(xj − xi) = det V1
p(x)

=
∑
σ∈S2M

ε(σ)pσ(1)(x1)pσ(2)(x2) · · · pσ(2M−1)(x2M−1)pσ(2M)(x2M).

Define the collection {Qij}2M
i,j=1 of 2-variable functions by Qij(x, y) = pi(x)pj(y), so

that the right side above can be expressed as a function F of N variables

F =
∑
σ∈S2M

ε(σ)Qσ(1)σ(2) ⊗ · · · ⊗Qσ(2M−1)σ(2M).
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The next step is to apply Lemma 5 to F � 1 in order to obtain a Pfaffian of an

anti-symmetric 2-form. However, since each of Q̃ij is a function of two variables,

we must work over the ring R = T (H2), where H2 is a finite-dimensional subspace

of the Hilbert Space H⊗2 = L2(R2, µ × µ) of square-integrable functions in two

variables. But now, by Lemma 5,

F = PfR (Qij −Qji)

which shows that

∏
i<j

(xj − xi) = [PfR (Qij −Qji)] (x1, . . . , xN)

Hence, upon applying the linear functional 〈·〉 to both sides above, appealing to

Chen’s Lemma, and recalling that each Qij is a function in two variables,

ZN(1) =

〈∏
i<j

(xj − xi)

〉
= 〈PfR(Qij −Qji)〉

=Pf (〈Qij −Qji〉)

=Pf

(∫∫
x<y

pi(x)pj(y)− pj(x)pi(y) dµ(x)dµ(y)

)

The Case when β = 1 and N is Odd

When β = 1 and N is odd, we cannot use the same trick we did previously

to group polynomial factors two variables at a time (since we have an odd number

of polynomial factors). Instead, we will introduce an additional auxillary variable

which ultimately won’t change the value of the partition function. Suppose N =

2M + 1, and let Ñ = N + 1. As before, expand the Vandermonde determinant using
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the Laplace expansion to obtain

∏
i<j

(xj − xi) = det V1
p(x) =

∑
σ∈SN

sgn(σ)pσ(1)(x1) · · · pσ(N)(xN).

Define a collection of single-variable functions {Qi} by Qi(x) = pi(x) (Although

redundant here, the need for such Qi will become apparent in the general case).

Then the right side of the equation above can be expressed as a function F of N

variables as

F =
∑
σ∈SN

sgn(σ)Qσ(1) ⊗ · · · ⊗Qσ(N).

Let 1 denote the constant function 1(x) = 1. Then

F � 1 =
∑
σ∈SN

sgn(σ)1⊗Qσ(1) ⊗ · · · ⊗Qσ(N)

+
∑
σ∈SN

sgn(σ)Qσ(1) ⊗ 1⊗ · · · ⊗Qσ(N)

+ . . .

+
∑
σ∈SN

sgn(σ)Qσ(1) ⊗ · · · ⊗Qσ(N) ⊗ 1

We wish to represent F � 1 in terms of a set of two-variable symbols {Q̃ij}, defined

as follows:

Q̃ij =



Qi ⊗Qj, if 1 ≤ i, j ≤ N,

Qi ⊗ 1, if 1 ≤ i ≤ N, j = Ñ ,

−1⊗Qj, if i = Ñ , 1 ≤ j ≤ N,

0, otherwise.

46



Observe that

F � 1 =
∑
σ∈SN

sgn(σ)(−Q̃Ñ,σ(1))⊗ Q̃σ(2),σ(3) ⊗ · · · ⊗Qσ(N−1),σ(N)

+
∑
σ∈SN

sgn(σ)Q̃σ(1),Ñ ⊗ Q̃σ(2),σ(3) ⊗ · · · ⊗ Q̃σ(N−1),σ(N)

+ . . .

+
∑
σ∈SN

sgn(σ)Q̃σ(1),σ(2) ⊗ · · · ⊗ Q̃σ(N−2),σ(N−1) ⊗ Q̃σ(N),Ñ

=
∑
τ∈S

Ñ

sgn(τ)Q̃τ(1),τ(2) ⊗ · · · ⊗ Q̃τ(N),τ(Ñ),

where the final equality was obtained by noting that each permutation τ ∈ SÑ

corresponds to a choice of 1 ≤ k ≤ Ñ so that τ(k) = Ñ , along with a permutation

σ ∈ SN so that for ` < k, τ(`) = σ(`), for ` > k, τ(`) = σ(` − 1), and so that

sgn(τ) = (−1)ksgn(σ).

The next step is to apply Lemma 5 to F � 1 in order to obtain a Pfaffian of

an anti-symmetric 2-form. As before, take R = T (H2) in Lemma 5, which shows

F � 1 = PfR(Q̃ij − Q̃ji).

Therefore, applying the linear functional 〈 · 〉 to both sides above and using Chen’s

Lemma, along with the observation that as µ is a probability measure, 〈1〉 = 1,
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then

〈∏
i<j

(xj − xi)

〉
=〈F 〉

=〈F � 1〉

=〈PfR(Q̃ij − Q̃ji)〉

=Pf
(
〈Q̃ij − Q̃ji〉

)
.

In particular, we have

〈Q̃ij − Q̃ji〉 =


∫∫

x<y

pi(x)pj(y)− pj(x)pi(y) dµ(x)dµ(y), if 1 ≤ i < j ≤ N,∫∫
x<y

pi(x) + pi(y) dµ(x)dµ(y), if 1 ≤ i ≤ N, j = Ñ .

But by Chen’s Lemma, since pi(x) + pi(y) = pi� 1 in T (H), then

〈pi(x) + pi(y)〉 = 〈pi� 1〉 = 〈pi〉

and so

〈Q̃ij − Q̃ji〉 =


∫∫

x<y

pi(x)pj(y)− pj(x)pi(y) dµ(x)dµ(y), if 1 ≤ i < j ≤ N,∫
pi(x) dµ(x), if 1 ≤ i ≤ N, j = Ñ ,

as desired.

48



The Case when β = L2 is Even

We now proceed to the main results. For each σ ∈ SNL, write σ = σ1 ⊕

· · · ⊕ σN . We begin by again using the Laplace expansion to express the confluent

Vandermonde VL
p(x) as a sum of products

∏
i<j

(xj − xi)β = det VL
p(x) =

∑
σ∈SLN

sgn(σ)
N∏
n=1

[
L∏
`=1

D`−1pσ((n−1)L+`)(xn)

]
.

Now, we define a collection of functions {Qt | t : L → NL} by Qt(x) =∏L
`=1 D

`−1pt(`)(x) and use properties of the tensor algebra of functions to write the

right hand side as the function F of N variables

F =
∑
σ∈SLN

sgn(σ)

[
N⊗
n=1

Qσn

]
.

Then, for each increasing function t : L ↗ NL we define a function At as in the

proof of Lemma 5 by

At =
∑
τ∈SL

sgn(τ)Qt◦τ .

Thus, by Lemma 5,

F = PFR

 ∑
t:L↗NL

At ~et

 ,

But observe that At(x) = Wr(pt(x)), and so

∑
t:L↗NL

At(x)~et = ω(x). (3.5)
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Therefore,

∏
i<j

(xj − xi)β =

PFR

 ∑
t:L↗NL

At ~et

 (x1, . . . , xN) =
[
PFR (ω)

]
(x1, . . . , xN).

Now, by applying the functional 〈·〉 to both sides above, and using Chen’s Lemma,

ZN(β) =

〈∏
i<j

(xj − xi)β
〉

= 〈PFR(ω)〉

=PF (〈ω〉)

=PF

 ∑
t:L↗NL

{∫
Wr(pt(x)) dµ(x)

}
~et

 .

The Case when β = L2 is Odd and N is Even

Suppose N = 2M . Following as an example the β = 1 case, we expand

the confluent Vandermonde determinant as a sum of products, and group factors

together two variables at a time:

∏
i<j

(xj − xi)β = det VL
p(x)

=
∑
σ∈SLN

sgn(σ)
M∏
m=1

[
L∏
`=1

D`−1pσ(2(m−1)L+`)(x2m)

]

·

[
L∏
`=1

D`−1pσ((2(m−1)+1)L+`)(x2m+1)

]

Define a collection of two-variable functions {Qt | t : 2L→ NL} by

Qt(x, y) =
L∏
`=1

D`−1pt(`)(x)D`−1pt(L+`)(y)
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and observe that the right side of the Vandermonde expansion above can be

expressed as an N -variable function F by

F =
∑
σ∈SLN

sgn(σ)

[
M⊗
m=1

Qσm

]
.

As in the β even case, we define functions At for each increasing function t : 2L ↗

NL by

At =
∑
τ∈S2L

sgn(τ)Qt◦τ .

However, since each At is a function of two variables, in order to apply Lemma 5,

we must work over the ring R = T (H2), where H2 is a finite-dimensional subspace

of the Hilbert space H2 = L2(R2, µ × µ) of square integrable functions in two

variables. With this modification, Lemma 5 gives

F = PFR

 ∑
t:2L↗NL

At ~et

 .

But the L-form above can also be expressed in another way as

∑
t:2L↗NL

At(x, y)~et = ω(x) ∧ ω(y). (3.6)

where ω(x) ∧ ω(y) is calculated pointwise in ∧L
RV for each x, y ∈ R (rather than as

ω ∧ ω in ∧L
RV ).

To see this, first observe that for each x, y ∈ R,

ω(x) ∧ ω(y) =
∑

s:L↗NL

∑
u:L↗NL

Wr(ps(x))Wr(pu(y))~es ∧ ~eu
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and use the Laplace expansion of the determinant to write

Wr(ps(x))Wr(pu(y)) =
∑
σ∈SL

∑
τ∈SL

sgn(σ)sgn(τ)
L∏
`=1

D`−1psσ(`)(x)D`−1puτ(`)(y).

On the other hand,

At =
∑
π∈S2L

sgn(π)
L∏
`=1

D`−1ptπ(`)(x)D`−1ptπ(L+`)(y)

Hence, it suffices to show that for any t : 2L ↗ NL and π ∈ S2L, there exists a

unique quartet (s, u, σ, τ) with s, u : L↗ NL and with σ, τ ∈ SL so that ~et = ~es ∧ ~eu

and

tπ(k) =


sσ(k), if 1 ≤ k ≤ L,

uτ(k − L), if L+ 1 ≤ k ≤ 2L.

But this now follows immediately from Lemma 1. Therefore,

∏
i<j

(xj − xi)β =

PFR

 ∑
t:2L↗NL

At ~et

 (x1, . . . , xN) = PFR(ω(x) ∧ ω(y))

Again, note that the multiplication in ω(x) ∧ ω(y) is performed pointwise in ∧RV ,

while the multiplication used to obtained the hyperpfaffian of the resulting form is

performed in ∧RV .
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Now, by applying the functional 〈 · 〉 to both sides above and appealing to

Chen’s Lemma,

ZN(β) =

〈∏
i<j

(xj − xi)β
〉

=
〈
PFR(ω(x) ∧ ω(y))

〉
=PF(〈ω(x) ∧ ω(y)〉)

=PF

 ∑
s:L↗NL

∑
u:L↗NL

{∫∫
x<y

Wr(ps(x))Wr(pu(y)) dµ(x)dµ(y)

}
~es ∧ ~eu


The Case when β = L2 and N are Odd

With some finesse, the final case can be handled much like the others.

Suppose N = 2M + 1, and let Ñ = N + 1. As before, expand the confluent

Vandermonde determinant as a sum of products,

∏
i<j

(xj − xi)β = det VL
p(x) =

∑
σ∈SLN

sgn(σ)
N∏
n=1

[
L∏
`=1

D`−1pσ((n−1)L+`)(xn)

]
.

Define a collection of single-variable functions {Qt | , t : L → NL} by Qt(x) =∏L
`=1 D

`−1pt(`)(x), and use properties of the tensor algebra to express the right side

of the equation above as a function F of N variables,

F =
∑
σ∈SLN

sgn(σ)

[
N⊗
n=1

Qσn

]
.

Unfortunately, since L is not even, we cannot immediately apply Lemma 5.

Moreover, since N also is not even, we cannot apply the same trick we used

previously to group functions two variables at a time. Instead, we will add an
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auxiliary variable xN+1 to the mix in a way that ultimately does not change the

fundamental integral in the partition function, allowing us to express the confluent

Vandermonde in a form similar to the one that appears in the case when L is odd

and N is even.

Let 1 denote the constant function 1(x) = 1 and consider the Ñ -variable

function, F � 1. Importantly, since µ is assumed to be a probability measure, then

〈1〉 = 1 and so by Chen’s Lemma,

〈F 〉 = 〈F 〉〈1〉 = 〈F � 1〉. (3.7)

We wish to extend the collection {Qt} to a collection of two-variable functions

{Q̃t | t : 2L → ÑL} in order to express F � 1 in terms of {Q̃t}. For each t : 2L →

ÑL, let t1 and t2 denote the restriction of t to L and 2L \ L, respectively. We define

{Q̃t} as follows:

Q̃t =



Qt1 ⊗Qt2 , if t ⊂ NL,

Qt1 ⊗ 1, if t1 ⊂ NL, t2 = i′,

−1⊗Qt2 , if t1 = i′, t2 ⊂ NL,

0, otherwise,

where i′ denotes the increasing function on L integers whose image is ÑL \NL. We

claim that

F � 1 =
∑
σ∈S

ÑL

sgn(σ)

Ñ/2⊗
n=1

Q̃σn , (3.8)
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To verify 3.8, observe that for each permutation σ ∈ SNL with σ = (σ1| . . . |σN) and

each integer 1 ≤ k < N , let

T kσ = sgn(σ)

[
k⊗

n=1

Qσn

]
⊗ 1⊗

[
N⊗

n=k+1

Qσn

]

and let

T 0
σ = sgn(σ)1⊗

[
N⊗
n=1

Qσn

]
and TNσ = sgn(σ)

[
N⊗
n=1

Qσn

]
⊗ 1.

Then by the definition of the shuffle product, we have

F � 1 =
∑
σ∈SNL

N∑
k=0

T kσ .

Now, if k is even, then

T kσ = Q̃(σ1|σ2) ⊗ · · · ⊗ Q̃(σk−1|σk) ⊗−Q̃(i′|σk+1) ⊗ · · · ⊗ Q̃(σN−1|σN ),

while if k is odd, then

T kσ = Q̃(σ1|σ2) ⊗ · · · ⊗ Q̃(σk−2|σk−1) ⊗ Q̃(σk|i′) ⊗ · · · ⊗ Q̃(σN−1|σN ),

For each 0 ≤ k ≤ N , let πk ∈ SÑL with πk = (σ1| . . . |σk|i′|σk+1| . . . |σN) and note

that as L is odd and that as each σn is a restriction to L integers, then sgn(πk) =

(−1)N−ksgn(σ). Hence, writing πk = (π1| . . . |πÑ/2), then

T kσ = sgn(πk)Q̃πk1
⊗ · · · ⊗ Q̃πk

Ñ/2
,
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and so

F � 1 =
∑
σ∈SNL

N∑
k=0

sgn(πk)Q̃πk1
⊗ · · · ⊗ Q̃πk

Ñ/2
.

On the other hand, if π ∈ SÑL is not of the form (σ1| . . . |σk|i′|σk+1| . . . |σN) for

some σ ∈ SNL and 0 ≤ k ≤ N , then Q̃πn = 0 for some 1 ≤ n ≤ Ñ/2. It follows that

F � 1 =
∑
σ∈S

ÑL

sgn(σ)

Ñ/2⊗
n=1

Q̃σn ,

as desired.

Now, for each increasing t : 2L↗ ÑL, define At by

At =
∑
τ∈S2L

sgn(τ)Q̃t◦τ .

Let ~ei′ = ~eNL+1∧· · ·∧~eÑL ∈∧L
R(V ⊕RL) and for each x, y ∈ R, define ω̃1(x), ω̃2(y) ∈

∧L
R(V ⊕RL) by

ω̃1(x) = ω(x)− ~ei′ ω̃2(y) = ω(y) + ~ei′ .

We claim ∑
t:2L↗ÑL

At ~et.

To verify this, first observe that At = 0, unless either t ⊂ NL or t = (t1|i′) with

t1 ⊂ NL.

If t ⊂ NL, then for each τ ∈ S2L,

Q̃t◦τ = Qt◦τ1 ⊗Qt◦τ2
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and so

∑
t:2L↗NL

At ~et = ω(x) ∧ ω(y) (3.9)

by equation 3.6.

On the other hand, suppose t = (t1|i′) with t1 ⊂ NL. If τ ∈ S2L with τ =

(τ1|τ2), then Qt◦τ = 0 unless either τ1 is an increasing function with image 2L \ L or

τ2 is the identity function with image 2L \ L. In the former case,

Q̃t◦τ = −1⊗Qt2◦τ2 ,

while in the latter case,

Q̃t◦τ = Qt1◦τ1 ⊗ 1.

Thus, by equation 3.5,

A(t1|i′) = Wr(pt1)⊗ 1 + 1⊗Wr(pt1). (3.10)

Therefore, combining equations 3.9 and 3.10 above, we have

ω̃1(x) ∧ ω̃2(y) = ω(x) ∧ ω(y) + [ω(x) + ω(y)] ∧ ~ei′ =
∑

t:2L↗ÑL

At ~et. (3.11)

As in the previous case when L was odd and N was even, we work over the

ring R = T (H2) of tensors of two-variable functions. By combining equations 3.8
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and 3.11 with Lemma 5,

F � 1 = PFR

 ∑
t:2L↗NL

At ~et

 = PFR
(
ω̃1(x) ∧ ω̃2(y)

)
.

Applying the linear functional 〈 · 〉 to both sides above and appealing to Chen’s

Lemma and equation 3.7, we have

ZN(β) =

〈∏
i<j

(xj − xi)β
〉

=〈F 〉

=〈F � 1〉

=
〈
PFR

(
ω̃1(x) ∧ ω̃2(y)

)〉
=PF (〈ω̃1(x) ∧ ω̃2(y)〉) .

Finally, since

ω(x) + ω(y) = ω� 1

then by Chen’s Lemma,

〈[ω(x) + ω(y)] ∧ ~ei′〉 = 〈(ω� 1) ∧ ~ei′〉 = 〈ω ∧ ~ei′〉,
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which shows

ZN(β) =PF (〈ω̃1(x) ∧ ω̃2(y)〉)

=PF (〈ω(x) ∧ ω(y)〉+ 〈[ω(x) + ω(y)] ∧ ~ei′〉)

=PF (〈ω(x) ∧ ω(y)〉+ 〈ω ∧ ~ei′〉)

=PF

(∫∫
x<y

ω(x) ∧ ω(y) dµ(x)dµ(y) +

∫
ω(x) ∧ ~ei′ dµ(x)

)
,

as desired.
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CHAPTER IV

PFAFFIAN AND HYPERPFAFFIAN IDENTITIES

Bra-Ket Notation

In order to facilitate several calculations using matrices and operators, we

will adopt the following notation inspired by the “Bra-Ket” notation from quantum

physics, first introduction by P. Dirac in [9].

For present purposes, we use the Ket, |v〉, to denote a column vector labeled

by v, and the Bra, 〈w|, to denote a row vector labeled by w. When we need to

discuss coordinates of row or column vectors, we use the indices themselves for the

labels of the vector. For example,

〈v| =
(
v1 . . . vN

)
= v1〈1|+ · · ·+ vN〈N |

We may also multiply a bra and a ket together, and doing so corresponds to

computing the inner product of two vectors:

〈v| |w〉 = 〈v|w〉 =
N∑
i=1

viwi.

The conjugate transpose of a bra is a ket, and vice versa:

〈v|T = |v〉, |v〉T = 〈v|.

Finally, we may also use bra-kets with linear operators. If A is an N ×M matrix,

〈v| is an N -dimensional row vector, and |w〉 is an M -dimensional column vector,

then A|w〉 denotes the matrix product of A and |w〉, and 〈v|A denotes the matrix
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product of 〈v| and A, or

A|w〉 =
N∑
i=1

(
N∑
j=1

Aijwj

)
|i〉 〈v|A =

M∑
j=1

(
N∑
i=1

viAij

)
〈j|.

In this way, 〈n|A|m〉 denotes the (n,m)-entry of the matrix A, while if v, w are

labels of vectors, then 〈v|A|w〉 denotes the pairing of v and w with respect to the

bilinear form given by the matrix A.

Observe, in particular, that if A is an N×L matrix and B is an L×N matrix,

then

〈n|AB|m〉 =
L∑
k=1

〈n|A|k〉〈k|B|m〉

which, if nothing else, evinces the beautiful efficiency of bra-ket notation.

Properties of Pfaffians

The Relationship between Pfaffians and Determinants

The following property can be used to give a coordinate-free definition of the

determinant of a linear transformation.

Theorem 12. Let A be a linear transformation A : V → V of a rank N free

R-module V , and let {~e1, . . . , ~eN} be a basis for V . Then

A~e1 ∧ · · · ∧A~eN = det(A)~e1 ∧ · · · ∧ ~eN .

Suppose t : 2k ↗ 2N and u : 2` ↗ 2N are increasing functions. Let tAu

denote the 2k × 2` minor of A so that

〈m|tAu|n〉 = 〈t(m)|A|u(n)〉.
61



The following theorem generalizes the previous result, and is connected to the

Grassmann embedding in the study of algebraic geometry, as detailed in [15].

Theorem 13. Let V be a rank N free R-module with basis {~v1, . . . , ~vN}, let W be

a rank L free R-module with basis {~w1, . . . , ~wL}, and let C be the matrix of a linear

transformation V → W . Then for any J ≤ N , and increasing function u : J ↗ N ,

C~vu(1) ∧ · · · ∧C~vu(J) =
∑
t:J↗L

det(tCu) ~wt(1) ∧ · · · ∧ ~wt(J).

Proof. We prove the case when u : J ↗ L is the increasing function u(j) = j for

1 ≤ j ≤ J . The general case follows from an analogous argument. Write

C~vi =
L∑
`=1

〈`|C|k〉 ~w`

and observe

C~v1 ∧ · · · ∧C~vJ =
L∑

`1=1

· · ·
L∑

`J=1

〈`1|C|1〉 · · · 〈`J |C|J〉 ~w1 ∧ · · · ∧ ~w`J

=
∑
j:J→L

J∏
j=1

〈j(j)|C|j〉 ~wj(1) ∧ · · · ∧ ~wj(J).

But by Lemma 1, the above sum can be expressed as

∑
t:J↗L

∑
σ∈SN

sgn(σ)
J∏
j=1

〈t ◦ σ(j)|C|j〉 ~wt(1) ∧ · · · ∧ ~wt(J) =
∑
t:J↗L

det(tCu) ~wt(1) ∧ · · · ∧ ~wt(J),

giving the desired result.

Theorem 14. Let A be a 2N × 2N antisymmetric matrix and B be a 2N × 2N

matrix. Then
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1. Pf(BABT ) = Pf(A) det(B).

2. Pf(A)2 = det(A).

Proof. For the first identity, let ω, ν ∈
∧2 V be given by

ω =
∑
i<j

〈i|BABT |j〉~ei ∧ ~ej

and

ν =
∑
i<j

〈i|A|j〉B~ei ∧B~ej

Observe that

〈i|A|j〉B~ei ∧B~ej =〈i|A|j〉

(∑
k

〈k|B|i〉~ek

)
∧

(∑
`

〈`|B|j〉~e`

)

=
∑
k 6=`

〈k|B|i〉〈i|A|j〉〈j|BT |`〉~ek ∧ ~e`.

Then the ~ei ∧ ~ej term in ν is

∑
a<b

〈i|B|a〉〈a|A|b〉〈b|BT |j〉~ei ∧ ~ej +
∑
a<b

〈j|B|a〉〈a|A|b〉〈b|BT |i〉~ej ∧ ~ei

=
∑
a<b

〈i|B|a〉〈a|A|b〉〈b|BT |j〉~ei ∧ ~ej −
∑
a<b

〈a|BT |j〉〈b|AT |a〉〈i|B|b〉~ei ∧ ~ej

=
∑
a<b

〈i|B|a〉〈a|A|b〉〈b|BT |j〉~ei ∧ ~ej +
∑
a<b

〈i|B|b〉〈b|A|a〉〈a|BT |j〉~ei ∧ ~ej

=
∑
a6=b

〈i|B|a〉〈a|A|b〉〈b|BT |j〉~ei ∧ ~ej

On the other hand,

〈i|BABT |j〉~ei ∧ ~ej =
∑
k 6=`

〈i|B|k〉〈k|A|`〉〈`|BT |j〉~ei ∧ ~ej.

63



Hence, ω = ν. Taking the N th exterior power of each two form,

N !Pf(BABT )~evol = ω∧N = ν∧N = N !Pf(A) det(B)~evol,

as desired.

Now, by Theorem 4, there exists an 2N × 2N matrix B so that the 2-form

associated to BABT is

ω =
n∑
i=1

λi~e2i−1 ∧ ~e2i.

Hence,

Pf(A) det(B) = Pf(BABT ) =
∏
i

λi.

Squaring both sides,

Pf(A)2 det(BBT ) =
∏
i

λ2
i .

On the other hand, since BABT is in block diagonal form, then det(BABT ) can be

readily computed, and

∏
i

λ2
i = det(BABT ) = det(A) det(BBT ).

It follows that Pf(A)2 = det(A).

As part of the preceding proof, we also proved the following result:

Corollary 6. Let A be an N ×N antisymmetric matrix, let C be an L×N matrix,

let {~v1, . . . , ~vN} be a basis for a rank N free R-module V , and let {~w1, . . . , ~wL} be a

basis for a rank L free R-module W . If γ ∈∧2
W with

γ =
∑
i<j

〈i|CACT |j〉 ~wi ∧ ~wj
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then

γ =
∑
i<j

〈i|A|j〉 (C~vi) ∧ (C~vj).

The Laplace Formulas

Theorem 15. For any 1 ≤ k ≤ N ,

ω∧k

k!
=

∑
t:2k↗2N

Pf(tAt)~et

Proof. Relabel indices according to t and apply Corollary 2.

For any α ∈∧L
V for L ≥ 1, let exp(α) ∈∧V be given by

exp(α) =
∞∑
k=0

αk

k!

Since V is of finite rank, then α is nilpotent, and so exp(α) is actually a finite sum.

Corollary 7. Suppose ω ∈ ∧2
V and let A be the 2N × 2N antisymmetric matrix

associated with ω. Then

exp(ω) =
N∑
k=0

∑
t:2k↗2N

Pf(tAt)~et

Theorem 16 (Laplace Formula). Suppose A is a 2N × 2N antisymmetric matrix.

For any 1 ≤ m < n ≤ 2N , let τm,n : 2 ↗ 2N denote the increasing function
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1 7→ m, 2 7→ n. Then for any 1 ≤ n ≤ 2N ,

Pf(A) =
n−1∑
m=1

sgn(τm,n)〈m|A|n〉Pf(τ ′m,nAτ
′
m,n)

+
2N∑

m=n+1

sgn(τn,m)〈n|A|m〉Pf(τ ′n,mAτ ′n,m)

In the special case when n = 1, the Laplace expansion reduces to the following

simpler expression:

Pf(A) =
2N∑
m=2

(−1)m〈1|A|m〉Pf(τ ′1,mAτ ′1,m)

Proof. Let ω be the 2-form corresponding to A. Consider ωN

N !
= ω

N
∧ ωN−1

(N−1)!
and

apply the previous theorem.

Theorem 17 (Generalized Laplace Formula). Suppose A is an antisymmetric

2N × 2N matrix, and that K < N . Then

Pf(A) =
1(
N
K

) ∑
t:2K↗2N

sgn(t)Pf(tAt)Pf(t′At′)

Proof. Use the Laplace formula and induct on k.

The Cauchy-Binet Formula

The following theorem (first due to M. Ishikawa and M. Wakayama in [16])

is reminiscent of the Cauchy-Binet Formula for determinants, and sometimes goes

under the name of Minor Summation Formula.

Theorem 18 (The Pfaffian Cauchy-Binet Formula). Suppose L ≤ N and that

L = 2K and N = 2M . Let A be an N × N antisymmetric matrix and let C be an
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L×N matrix. Then

Pf(CACT ) =
∑

t:L↗N

Pf(tAt) det(Ct).

Proof. Suppose V is a rank N free R-module with basis {~v1, . . . , ~vN}, and suppose

W is a rank L free R-module with basis {~w1, . . . , ~wL}. Let α ∈ ∧2
V be the

antisymmetric form associated with A, and let β ∈ ∧2
W be the antisymmetric

form associated with CACT . By Corollary 6,

γ =
∑
i<j

〈i|CACT |j〉 ~wi ∧ ~wj =
∑
i<j

〈i|A|j〉 (C~vi) ∧ (C~vj),

and so by the Theorem 15, along with Theorem 13,

γ∧K

K!
=
∑

t:L↗N

Pf(tAt) (C~vt(1)) ∧ · · · ∧ (C~vt(L)) =
∑

t:L↗N

Pf(tAt) det(Ct) ~w1 ∧ · · · ∧ ~wL

The exterior algebra gives a particularly convenient expression for the Pfaffian

of the sum of two antisymmetric matrices.

Theorem 19 (Pfaffian Summation Formula). Suppose A and B are antisymmetric

2N × 2N matrices. Then

Pf(A + B) =
N∑
k=0

∑
t:2k↗2N

sgn(t)Pf(tAt)Pf(t′Bt′)
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Proof. Let α and β be the 2-forms corresponding to A and B, respectively. By

Theorem 15,

1

N !
(α + β)N =

1

N !

N∑
k=0

(
N

k

)
α∧k ∧ β∧(N−k)

=
N∑
k=0

{
1

k!
α∧k
}
∧
{

1

(N − k)!
β∧(N−k)

}

=
N∑
k=0

 ∑
t:2k↗2N

Pf(tAt)~et

 ∧
 ∑

t:2N−2k↗2N

Pf(tBt)~et


=

N∑
k=0

∑
t:2k↗2N

sgn(t)Pf(tAt)Pf(t′Bt′)~evol

as desired.

The Jacobi Minor Inverse Formula

For general matrices, the Jacobi Minor Inverse formula expresses a

relationship between the determinant of a minor of the matrix, and the determinant

of the complementary minor of the inverse transpose of the matrix. For invertible

antisymmetric matrices, a similar identity can be obtained involving the Pfaffians of

minors of the matrix.

For any 1 ≤ i < j ≤ 2N , let τij : 2 ↗ 2N denote the increasing function

1 7→ i, 2 7→ j, and let τ ′ij denote the complementary index function. We define the

Pfaffian cofactor matrix of an antisymmetric matrix A by

〈m|A|n〉 =



−sgn(τm,n)Pf(τ ′m,nAτ
′
m,n), if m < n

sgn(τn,m)Pf(τ ′n,mAτ ′n,m), if m > n,

0, if m = n
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In particular, the cofactor matrix is the antisymmetric matrix whose (m,n)-entry is

given as the signed Pfaffian of the (2N −2)× (2N −2) minor formed by deleting the

mth and nth rows and columns.

Theorem 20 (The Pfaffian Jacobi Minor Inverse Formula). Let A be the Pfaffian

cofactor matrix of a 2N × 2N antisymmetric matrix A. Then

AA = Pf(A)I2N .

Moreover, if Pf(A) 6= 0, then

A−1 =
1

Pf(A)
A.

Proof. By the Laplace Formula, for any 1 ≤ n ≤ 2N ,

Pf(A) =
n−1∑
m=1

sgn(τm,n)〈m|A|n〉Pf(τ ′m,nAτ
′
m,n)

+
n∑

m=n+1

sgn(τn,m)〈n|A|m〉Pf(τ ′n,mAτ ′n,m)

=
n−1∑
m=1

−〈m|A|n〉〈m|A|n〉+
n∑

m=n+1

〈n|A|m〉〈m|A|n〉

=
2N∑
m=1

〈n|A|m〉〈m|A|n〉

=
2N∑
m=1

〈n|AA|n〉

Hence, the diagonal elements of AA are all equal to Pf(A). All that remains is to

show that the off-diagonal elements vanish.

To do so, consider the matrix B obtained by replacing the nth row of A with

the `th row of A, and then by replacing the nth column of the resulting matrix
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with the `th column of that matrix. Since B has two identical columns, then

det(B) = 0, and hence, Pf(B) = 0.

Note that 〈n|B|`〉 = 0, and that 〈n|B|m〉 = 〈`|B|m〉 and 〈m|B|n〉 = 〈m|A|n〉

for any m 6= `, n. Thus, by the preceding argument,

0 = Pf(B) =
2N∑
m=1

〈n|B|m〉〈m|B|n〉 =
∑
m 6=`,n

〈n|B|m〉〈m|B|n〉 =
∑
m 6=`,n

〈`|A|m〉〈m|A|n〉

as desired.

The Sylvester Identities

The following identities are sometimes referred to as the Schur Formulas for

partitioned matrices.

Theorem 21 (The Determinant Sylvester Identity). Suppose B is an N ×L matrix

and C is an L×N matrix. Then

det(IN + BC) = det(IL + CB)

Proof. Consider the (N + L)× (N + L) block matrix

IL 0

B IN


IL −C

0 IN + BC

 =

IL −C

B IN

 =

IL + CB −C

0 IN


IL 0

B IN

 .
Taking determinants of the left and right side above, and noting that the

determinant of a block triangular matrix is the product of the determinants of the

diagonal blocks, gives the desired result.
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Theorem 22 (The Pfaffian Sylvester Identity). Suppose A is a 2N × 2N

antisymmetric matrix, that Z is a 2K × 2K antisymmetric matrix, and that B is

a 2N × 2K matrix. If A and Z are invertible, then

Pf(Z−1 + BTAB)

Pf(Z−1)
=

Pf(A−1 + BZBT )

Pf(A−1)
.

Proof. Consider the block matrix products

 I2N 0

BTA I2K


A−1 B

−BT Z−1


I2N ATB

0 I2K

 =

A−1 0

0 Z−1 + BTAB


and I2N −BZ

0 I2K


A−1 B

−BT Z−1


 I2N 0

ZBT I2K

 =

A−1 + BZBT 0

0 Z−1


By Theorem 14, the Pfaffian of the left sides of both equations above are equal, and

so the Pfaffians of the right sides of both equations above must be equal as well. By

the Laplace formula,

Pf(A−1)Pf(Z−1 + BTAB) = Pf(A−1 + BZBT )Pf(Z−1)

Dividing both sides above by Pf(A−1) and Pf(Z−1) gives the desired result.
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The Wick Formulas

The Wick Formulas (which are also known as the Isserlis Formulas in

probability literature) provides a combinatorial method for computing higher

order derivatives of multivariate exponential functions. A detailed treatment of

the origin and application of the Wick formulas can be found in [25] and [14]. In

the study of probability and statistics, the Wick formulas are used to calculate the

mixed moments of multivariate Gaussian distributions. The Wick formulas also

find frequent application in particle physics and quantum field theory, where they

are used to express correlations in many-body problems as a sequence of pairwise

interactions. Historically, the Wick formulas take one of two forms (either bosonic

or fermionic), depending on whether the particles in the underling physical system

obey the Pauli exclusion principle, and hence, whether the relevant equations

contain commuting variables, in the bosonic case, or anticommuting variables, in

the fermionic case.

The Bosonic Wick Formula

The Bosonic Wick Formula expresses the moments of a multivariate Gaussian

variable in terms of its covariance matrix. Let X be a centered, multivariate

Gaussian N -vector, with density dµN(x) = C exp
(
−1

2
xTΣ−1

X x
)
dNx on RN (where

ΣX is the covariance matrix for X). For n ∈ N, let f1, . . . , fn be linear forms

in x1, . . . , xN (so that f1 . . . fn is a homogeneous polynomial of degree n). Define

〈f〉 =
∫
fdµ(x). Then

〈f1 · · · fn〉 =


0, if n is odd,

Haf (〈fifj〉) , if n is even.
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Here, the Hafnian, Haf(S), of a symmetric n× n matrix S of even order n = 2N is

Haf(S) =
∑

σ∈Sho(ΛN )

Sσ(1)σ(2) · · ·Sσ(2N−1),σ(2N).

Of course, there is obvious similarity between the Hafnian of a symmetric matrix

and the Pfaffian of an antisymmetric matrix, where the Hafnian is simply the

Pfaffian with the signature of the permutation omitted. Remarkably, this omission

makes the Hafnian, in practice, significantly more difficult to compute!

To see why the Bosonic Wick formula holds, define a random n-vector Y

by Yi = fi(X) and let A be the matrix so that Y = AX. Then 〈f1 · · · fn〉 =

E[Y1 · · ·Yn]. Since X is multivariate Gaussian with covariance matrix KX , then Y

is also multivariate Gaussian, with covariance matrix KY = AKXAT . Thus, the

moment-generating function mY (t) of Y is given by

E [exp (t ·Y)] = exp

(
1

2
t′ΣY t

)
.

Assuming n = 2N , expand the nth order terms of both sides:

E
[

1

n!
(t ·Y)n

]
=

1

2nn!
(t′ΣY t)

n
.

Matching the t1 . . . tn terms gives

E [Y1 . . . Yn] t1 . . . tn =

 ∑
σ∈Sho(ΛN )

E[Yσ(1)Yσ(2)] · · ·E[Yσ(n−1Yσ(n)]

 t1 . . . tn,

as desired
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The Berezin Integral

In the following section, it is best to view the exterior algebra as an

anticommuting analogue of a polynomial algebra R[x1, . . . , xn], rather than as an

extension of an R-module. To emphasize this change in perspective, we adopt the

following notation. Let η = {η1, . . . , ηNL} be an ordered set of NL anticommuting

variables, let R be a commutative ring with unity, and let ∧(η) be the R-algebra

generated by these variables. We can, of course, identify ∧(η) with ∧RV , where V

is a free R-module of rank NL with basis {η1, . . . , ηNL}.

For each i, define ∂/∂ηi to be the left anti-derivation given by

1.
∂

∂ηi
ηk = δik.

2.
∂

∂ηi
1 = 0

3.
∂

∂ηi
(αβ) =

∂α

∂ηi
β + (−1)pα

∂β

∂ηi
, where α ∈∧p

K(η) and β ∈∧n−p
K (η).

Alternatively, ∂/∂ηi acts on a word in the ηj by moving ηi to the leftmost position

(with sign) and deleting it.

The Berezin (or Grassmann) integral of a linear function f of one

anticommuting variable is defined by

∫
f(θ)dθ =

∂

∂θ
f(θ)

And the Berezin integral of a polynomial f in n anticommuting variables

η1, . . . , ηn is defined by

∫
f(η1, . . . , ηn)dη1 . . . dηn =

∂

∂ηn
. . .

∂

∂η1

f(η1, . . . , ηn)
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Let ηT denote the row vector [ η1 ... ηn ]. For any anti-symmetric matrix A, the

associated 2-form ω is given by

ω =
1

2
ηTAη.

And conversely, given any alternating 2-form ω, the associated antisymmetric

matrix A is given by

Aij =

∫
ω dηi dηj.

Like the classic integral, there is a change-of-variables formula for the Berezin

integral. Let B be an invertible N × N matrix and define anticommuting variables

θ = (θ1, . . . , θN) by θ = Bη. Then for any polynomial f in n anti-commuting

variables θ, ∫
f(θ) dθ = det(B)

∫
f(B(η)) dη

which follows from the observation that θi = BTηi and

θ1 · · · θN = (BTη1) · · · (BTηN) = det(B)η1 · · · ηN .

The Fermionic Wick Formula

Now, suppose ω ∈ ∧2
V , and let A be the associated antisymmetric matrix. If

A is invertible, we may define the “fermionic Gaussian probability measure” dµ(η)

by

dµ(η) = C exp

(
1

2
ηTA−1η

)
dη, where C is such that

∫
dµ(η) = 1.

For n ∈ N, let f1, . . . , fn be linear forms in η1, . . . , ηN (so that f1 . . . fn is a

homogeneous polynomial of degree n). Note that if n > N , then f1 · · · fn ≡ 0.
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To emphasize the connection between the Fermionic and Bosonic Wick Formulas,

define the anticommuting ‘expectation’ operator 〈f〉 by

〈f〉 =

∫
f(η) dµ(η).

The fermionic Wick formula can then be stated as

〈f1 . . . fn〉 =


0, if n is odd,

Pf (〈fifj〉) , if n is even.

In the special case when fi = ηt(i) for 1 ≤ i ≤ 2k and an increasing function

t : 2k ↗ 2N , then the Wick formula can be stated as

〈f1 · · · f2k〉 =
1

Pf(A)

∫
ηt exp

(
1

2
ηTA−1η

)
dη =

1

Pf(A)

∫
ηt

(
1

2
ηTA−1η

)N−k
dη.

But this, it turns out, is simply an equivalent formulation for the Jacobi Minor

Inverse Formula in Theorem 20. In fact, each of the other Pfaffian identities in

this section can be expressed using the Berezin integral. The following theorem

summarizes this correspondence, with proofs adapted from those which appear in

[5].

Theorem 23 (Berezin Integral Formula for Pfaffian Identities). Let R be a

commutative ring with unity and let A be a 2N × 2N antisymmetric matrix over

R. Then

1. (The Gaussian Integral)

∫
exp

(
1

2
ηTAη

)
dη = PfA.
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2. (Pfaffian Summation Formula) If A is an invertible 2N × 2N antisymmetric

matrix and λ = [ λ1 ... λ2N ] are anticommuting variables not contained in

∧(η), then

∫
exp

(
1

2
ηTAη + λTη

)
dη = (PfA) exp

(
1

2
λTA−1λ

)
.

3. (The Laplace Formula) For any t : k ↗ 2N we have

∫
ηt exp

(
1

2
ηTAη

)
dη =


0, if k is odd,

sgn(t)Pf(t′At′), if k is even.

4. (The Jacobi Minor Inverse Formula) For any t : k ↗ 2N , if A is invertible,

then

∫
ηt exp

(
1

2
ηTAη

)
dη =


0, if k is odd,

(PfA)Pf
(
tA−T t

)
, if k is even.

5. (The Cauchy-Binet Formula) More generally, for any k × 2N matrix C over

R,

∫
(Cη)1 . . . (Cη)k exp

(
1

2
ηTAη

)
dη

=


0, if k is odd,∑
t:k↗2N

sgn(t) det(tCt)Pf (t′At′) , if k is even.
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and if A is invertible, then

∫
(Cη)1 . . . (Cη)k exp

(
1

2
ηTAη

)
dη =


0, if k is odd,

(PfA) Pf
(
CA−TCT

)
, if k is even.

Proof. For part (1), observe

∫
exp

(
1

2
ηTAη

)
dη =

∂

∂η2N

· · · ∂
∂η1

N∑
k=1

1

k!

(
1

2
ηTAη

)k
=

1

N !

(
1

2
ηTAη

)N
=Pf(A)

For part (2), we make the substitution η = θ + A−1λ and note that as λT θ =

−θTλ and A−T = −A−1, then

ηTAη =(θT + λTA−T )(Aθ + λ)

=θTAθ + χTλ+ λTA−TAθ + λTA−1λ

=θTAθ − 2λT θ − λTA−1λ.

Therefore, since the Berezin integral is translation invariant,

∫
exp

(
1

2
ηTAη + λTη

)
dη =

∫
exp

(1

2

[
θTAχ− 2λT θ − λTA−1λ

]
+
[
λT θ + λTA−1λ

] )
dθ

=

∫
exp

(
1

2
θTAθ

)
exp

(
1

2
λTA−1λ

)
dθ

=Pf(A) exp

(
1

2
λTA−1λ

)
.
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For part (3), compute

∫
ηt exp

(
1

2
ηTAη

)
dη =

∫
ηt exp

(
1

2
ηTt′ (t

′At′)ηt′

)
dη

=sgn(t)

∫
ηt exp

(
1

2
ηTt′ (t

′At′)ηt′

)
dηt dηt′

=sgn(t)(−1)k(2r−k)

(∫
ηt dηt

)(∫
exp

(
1

2
ηTt′ (t

′At′)ηt′

)
dηt′

)
=sgn(t)Pf(t′At′).

For part (4), we first differentiate the result of part (b) with respect to

∂
∂λir

. . . ∂
∂λi1

and then set λ = 0.

∂

∂λir
. . .

∂

∂λi1
Pf(A) exp

(
1

2
λTA−1λ

) ∣∣∣∣
λ=0

=
∂

∂λir
. . .

∂

∂λi1

∫
exp

(
1

2
ηTAη + λTη

)
dη

∣∣∣∣
λ=0

=

∫ (∫
exp

(
1

2
ηTAη + λTη

)
dη

)
dλt

∣∣∣∣
λ=0

=

∫ (∫
exp

(
λTη

)
dλt

∣∣∣∣
λ=0

)
exp

(
1

2
ηTAη

)
dη

=

∫
ηt exp

(
1

2
ηTAη

)
dη
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On the other hand,

∂

∂λir
. . .

∂

∂λi1
Pf(A) exp

(
1

2
λTA−1λ

) ∣∣∣∣
λ=0

= (PfA)

∫
exp

(
1

2
λTA−1λ

)
dλt

∣∣∣∣
λ=0

= (PfA)

∫
exp

(
1

2
λTt (tAt)−1λt

)
dλt

= (PfA) (−1)k(k−1)/2

∫
exp

(
1

2
λTt (tAt)−1λt

)
dλt

= (PfA) (−1)k(k−1)/2Pf
(
tA−1t

)
= (PfA) (−1)k(k−1)/2(−1)k/2Pf

(
tA−T t

)
= (PfA) Pf

(
tA−T t

)

Finally, for part (5), observe

∫
(Cη)1 . . . (Cη)k exp

(
1

2
ηTAη

)
dη =

∑
t:k↗2N

∑
σ∈Sk

sgn(σ)C1,t◦σ(1) · · ·Ck,t◦σ(k)

·
∫
ηt(1) · · · ηt(k) exp

(
1

2
ηTAη

)
dη

=
∑

t:k↗2N

sgn(t) det(tCt)Pf(t′At′)

And when A is invertible,

∫
(Cη)1 . . . (Cη)k exp

(
1

2
ηTAη

)
dη =

∂

∂λi1
· · · ∂

∂λik

∫
exp

(
1

2
ηTAη + λTCη

) ∣∣∣
λ=0

=
∂

∂λi1
· · · ∂

∂λik
Pf(A) exp

(
1

2
λTCA−1CTλ

) ∣∣∣
λ=0

=Pf(A)Pf(CA−TCT )
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Hyperpfaffian Identities

Before presenting the Hyperpfaffian analogues for the fermionic Wick

formulas, it will be useful to define a few important operations on the exterior

algebra, which act as extensions of familiar matrix operations.

Even and Odd Components of ∧(η)

Let ∧even
(η) denote the subalgebra of ∧(η) generated by all homogeneous

forms of even degree, let ∧odd
(η) denote the subalgebra of ∧(η) generated by

all homogeneous forms of odd degree, and let ∧even
>0 (η) denote the subalgebra

of ∧even
(η) generated by all non-constant homogeneous forms of even degree.

Evidently,

∧(η) =∧even
(η)
⊕∧odd

(η) = R
⊕∧even

>0 (η)
⊕∧odd

(η).

Minors of L-Forms

The first task is to extend the notion of matrix minors to arbitrary forms. For

each increasing function t : k ↗ NL with 0 ≤ k ≤ NL, and for each ω ∈ ∧L
(η)

with ω =
∑

tAt ηt, define ωt ∈∧L
(η) by

ωt =
∑

s:L↗t(k)

As ηs.

That is, ωt is the L-form obtained by evaluating ω at ηi = 0 for all i outside the

range of t. Note that in the special case when L = 2, if ω ∈ ∧2
(η) is a 2-form
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with associated antisymmetric matrix A, then ωt is the 2-form associated to the

antisymmetric matrix tAt, as defined previously.

The Exponentiation Map

As before, for any α ∈∧L
(η) with L ≥ 1, we let exp(α) ∈∧(η) be given by

exp(α) =
∞∑
k=1

αk

k!

Now, if α, β ∈ ∧L
(η) with L ≥ 1 even, then αβ = βα, and so we may expand

(α + β)n using the binomial theorem:

(α + β)n =
n∑
k=0

(
n

k

)
αkβn−k.

Hence,

exp(α + β) = exp(α) exp(β). (4.1)

Change-of-Basis

Suppose α ∈∧L
(η) with

α =
∑

t:L↗NL

At ηt

and that C is a K ×NL matrix. We let C · α denote the L-form given by

C · α =
∑

t:L↗NL

At Cηt(1) · · ·Cηt(L)
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By Theorem 13, if K ≥ L, then

C · α =
∑

t:L↗NL

∑
u:L↗K

At det(uCt)ηu. (4.2)

Observe that if α ∈ ∧2
(η) with associated antisymmetric matrix A, then C · α is

the 2-form associated to the antisymmetric matrix CACT , as shown in Corollary 6.

More generally, if λ ∈ ∧(η) is not homogeneous, we may define C · λ first on

the homogeneous components of λ as above, and then extend linearly. We observe

now that for λ ∈∧>0(η), then

exp(C · λ) = C · exp(λ). (4.3)

The Hodge Dual

The discussion of the Hodge dual operator here follows R. W. R. Darling’s

treatment of the topic in [7]. Let 〈 · | · 〉 denote the symmetric inner product on V

which is orthonormal with respect to the basis η, and for each 1 ≤ k ≤ NL, extend

〈 · | · 〉 to a symmetric inner product on ∧(η) by

〈f1f2 · · · fk|g1g2 · · · g`〉 = δk,` det
(
〈fi|gj〉

)k
i,j=1

for f1, . . . , fk, g1, . . . , g` ∈∧1
(η).

Let E = {ηt | t : k ↗ NL, 0 ≤ k ≤ k ≤ NL} denote the basis for ∧(η). The Hodge

dual is the operator first defined on E by

∗ηt = sgn(t)ηt′ where t : k ↗ NL (4.4)
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and then extended linearly to all of ∧(η). Observe that for ηt ∈ E with t : k ↗ NL,

then

∗ ∗ ηt = (−1)k(NL−k)ηt. (4.5)

In particular, this implies that the Hodge star operator is an involution on the

subalgebra ∧even
(η).

Now, using the formula for multiplication in the exterior algebra provided by

Theorem 3, if α, β ∈∧k
(η), we see that the Hodge dual operator satisfies

α ∧ (∗β) = 〈α|β〉 ηvol. (4.6)

In particular,

α ∧ (∗α) = |α|2ηvol.

Suppose α ∈∧k
(η) and β ∈∧NL−k

(η). Then we have

α ∧ β = (−1)k(NL−k)β ∧ α.

Combining equations (4.5) and (4.6) with the observation that 〈· | ·〉 is symmetric,

〈α| ∗ β〉ηvol =α ∧ ∗ ∗ β

=(−1)k(NL−k)α ∧ β

=β ∧ α

=(−1)k(NL−k)〈β| ∗ α〉ηvol

=(−1)k(NL−k)〈∗α|β〉ηvol.
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In particular, this shows that the Hodge star operator is self-adjoint when restricted

to the subalgebra ∧even
(η). That is,

(∗α) ∧ β = α ∧ (∗β) (4.7)

for α, β ∈∧even
(η).

Inverse Forms

For an invertible 2N × 2N antisymmetric matrix A, the Jacobi Minor Inverse

Formula from Theorem 20 states that

A =
1

Pf(A−1)
A−1,

which shows that the entries of A can be expressed in terms of Pfaffians of minors

of A−1. Theorem 23 restates this result in terms of antisymmetric forms:

∫
ηt exp

(
1

2
ηTAη

)
dη = sgn(t)Pf(t′At′) = (PfA)Pf

(
tA−T t

)
t : 2k ↗ 2N.

Alternatively, if ω is the 2-form associated with A and ω′ is the 2-form associated

with A−1, then

∫
ηt exp(ω) dη = sgn(t)Pf(ωt′) = Pf(ω)Pf(ω′t)

In particular, combining Theorem 23 with the definition of the Hodge star operator

in Equation 4.4 shows that

1

Pf(ω)
exp(ω) = ∗ exp(ω′).
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We now extend this notion of an inverse to forms of higher degree. Suppose

α, α′ ∈ ∧L
(η) with PF(α) 6= 0. We say that α′ is an inverse form to α provided

that

1

PF(α)
exp(α) = ∗[exp(α′)]. (4.8)

Just as the minors of the inverse to a matrix can be used to generate the entries

of the original matrix, the powers of the inverse form can be used to generate the

coefficients of the original form. But unlike the case when L = 2, when L > 2, the

condition PF(α) 6= 0 is not sufficient to guarantee the existence of an inverse form,

as the following example shows.

Example. Suppose |η| = 16, and define α, β, γ ∈∧4
(η) by

α = η1η2η3η4 + η5η6η7η8 + η9η10η11η12 + η13η14η15η16

and

β = η1η5η9η13 γ = α + β

Observe that as α, β are even forms, then αβ = βα. Moreover, as β shares a

variable with each term in the expansion of α, then αβ = 0. Finally, as β is a pure

form, then β2 = 0. Hence, for any n > 1, the binomial expansion of γn = (α+ β)n is

given by

γn = (α + β)n =
n∑
k=0

(
n

k

)
αkβn−k = αn,

and so

exp(γ) = exp(α) + β.
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But note that PF(α) = PF(γ) = 1 and that α satisfies

exp(α) = ∗ exp(α).

Thus, if γ′ ∈∧4
(η) satisfies

exp(γ) = ∗ exp(γ′),

then in particular,

α′ =
1

3!
∗ (α3) =

1

3!
∗ (γ3) = γ′

which would imply that

α + β = γ =
1

3!
∗ (γ′)3 =

1

3!
∗ (α′)3 = α,

a contradiction.

Hyperpfaffian Formulas

With the preceding conventions in hand, we now present Hyperpfaffian

analogues for the Laplace, Jacobi Minor Inverse, and Cauchy-Binet Formulas, as

well as the Sylvester Identity.

Theorem 24. Let R be a commutative ring with unity, let η = {η1, · · · , ηNL} be a

collection of NL anticommuting variables, and let α, ζ ∈∧L
(η).

1. (The Laplace Formula)

exp(α) =
N∑
k=1

∑
t:kL↗NL

PF(αt)ηt
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2. (The Jacobi Minor Inverse Formula) If α′ ∈ ∧L
(η) is an inverse form for α,

then

exp(α) =
1

PF(α)

N∑
k=1

∑
t:kL↗NL

sgn(t)PF(α′t′)ηt

3. (The Cauchy-Binet Formula) For any ML × NL matrix C over R with M ≤

N ,

exp(C · α) =
M∑
k=1

∑
t:kL↗NL

∑
u:kL↗ML

PF(αt) det(uCt)ηu

4. (The Sylvester Identity) If L is even, if α′, ζ ′ ∈ ∧L
(η) are inverse forms for

α, ζ, and if C is a NL×NL matrix, then

PF(ζ ′ + C · α)

PF(ζ ′)
=

PF(α′ + CT · ζ)

PF(α′)
.

Proof. Part (1) follows by relabeling indices according to t and applying Corollary

4. Part (2) then follows by combining part (1) with Equations 4.4 and 4.8, while

part (3) follows by combining part (1) with Equations 4.2 and 4.3.

For part (4), observe

exp(ζ ′ + C · α) = exp(ζ ′) exp(C · α)

= exp(CT · ζ ′) exp(α)

=
1

PF(ζ)
[∗ exp(CT · ζ)] exp(α)

=
1

PF(ζ)
exp(CT · ζ)[∗ exp(α)]

=
PF(α)

PF(ζ)
exp(CT · ζ) exp(α′)

=
PF(α)

PF(ζ)
exp(α′ + CT · ζ),
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where the first and sixth equalities follow from 4.1, the second from part (3) of this

theorem, the third and fifth from 4.8, and the fourth from 4.7. The result then

follows by using part (1) of this theorem to express the coefficients on term in the

exponential series as hyperpfaffians.

Hyperpfaffian Wick Formulas

The Berezin integral may also be used to restate the preceding identities in

the guise of Wick Formulas, analogous to Theorem 23.

Theorem 25 (Berezin Integral Formula for Hyperpfaffian Identities). Let R be a

commutative ring with unity, let ηT = [ η1 ··· ηNL ] be a vector of NL anticommuting

variables, and let α ∈∧L
(η). Then

1. (The Gaussian Integral)

∫
exp (α) dη = PF(α).

2. (The Laplace Formula) For any t : k ↗ NL we have

∫
ηt exp (α) dη =


0, if L - k,

sgn(t)PF(αt′), if L | k.
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3. (The Jacobi Minor Inverse Formula) For any t : k ↗ NL, if α has an inverse

form α′, then

∫
ηt exp (α) dη =


0, if L - k,

PF(α)PF (α′t) , if L | k.

4. (The Cauchy-Binet Formula) More generally, for any k × NL matrix C over

R,

∫
(Cη)1 . . . (Cη)k exp (α) dη =


0, if L - k,∑

t:k↗NL sgn(t) det(tCt)PF (αt′) , if L | k.

and if α has a inverse form α′, then

∫
(Cη)1 . . . (Cη)k exp (α) dη =


0, if L - k,

PF(α) PF (C · α′) , if L | k.
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