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DISSERTATION ABSTRACT

Adam P. Welly

Doctor of Philosophy

Department of Mathematics

June 2016

Title: The Geometry of quasi-Sasaki Manifolds

Let (M, g) be a quasi-Sasaki manifold with Reeb vector field ξ. Our goal is to

understand the structure of M when g is an Einstein metric. Assuming that the S1

action induced by ξ is locally free or assuming a certain non-negativity condition on

the transverse curvature, we prove some rigidity results on the structure of (M, g).

Naturally associated to a quasi-Sasaki metric g is a transverse Kähler metric gT .

The transverse Kähler-Ricci flow of gT is the normalized Ricci flow of the transverse

metric. Exploiting the transverse Kähler geometry of (M, g), we can extend results

in Kähler-Ricci flow to our transverse version. In particular, we show that a deep and

beautiful theorem due to Perleman has its counterpart in the quasi-Sasaki setting.

We also consider evolving a Sasaki metric g by Ricci flow. Unfortunately, if

g(0) is Sasaki then g(t) is not Sasaki for t > 0. However, in some instances g(t) is

quasi-Sasaki. We examine this and give some qualitative results and examples in the

special case that the initial metric is η-Einstein.
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CHAPTER I

INTRODUCTION

1.1. Overview

This dissertation is an exploration into the geometry of quasi-Sasaki manifolds.

As the name suggests, a quasi-Sasaki structure is similar to a Sasaki one, but is

more flexible than the latter. Indeed, Sasaki manifolds form a subset of the quasi-

Sasaki manifolds, but in general the two can have quite different features. For

example, cosymplectic manifolds are also quasi-Sasaki. A cosymplectic manifold has

an integrable contact bundle whereas the contact bundle of a Sasaki manifold is as far

from being integrable as possible. But like a Sasaki manifold, a quasi-Sasaki manifold

(M, g) comes equipped with a one-dimensional Riemannian foliation, Fξ, determined

by a nowhere vanishing vector field ξ. The space transverse to this foliation carries a

Kähler structure. Dual to the vector field ξ (via the metric g) is a 1-form η. The kernel

of η is called the contact bundle. Perhaps the most significant difference between a

quasi-Sasaki and a true Sasaki structure has to do with the rank of the 2-form dη.

For a Sasaki structure, η ∧ (dη)n is a volume form and the transverse Kähler metric

ω = dη. If a quasi-Sasaki manifold has (dη)n = 0, then it lacks a contact structure

and, even when (dη)n 6= 0, there may be no clear relationship between the transverse

Kähler metric and the 2-form dη. In the next sections we will recall all of the necessary

definitions and elementary facts concerning quasi-Sasaki manifolds that will be used

throughout the remainder of this dissertation.

The pioneering work on quasi-Sasaki manifolds was iniated by Blair in [3] during

the late 1960’s. However, his work was not without errors. These errors were later
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recognized by Tanno who then gave complete and correct revisions of Blair’s results in

[37]. The main results of these papers describe a splitting of quasi-Sasaki manifolds

by assuming the integrability of a certain almost product structure TM = P ⊕ Q

and positive definiteness of dη(·,Φ·) when restricted to P . These assumptions are

somewhat unnatural and unmotivated and we do not make them here. Rather, we

want to prove a splitting result like their’s, but under the assumption that the metric g

is Einstein. In fact, one of our motivating reasons for studying quasi-Sasaki manifolds

is the search for “new” Einstein metrics. A Riemannian metric g is called Einstein

if its Ricci tensor is proportional to g. That is, if there is a constant λ ∈ R such

that Ricg = λg. Differential geometers are interested in Einstein metrics for a wide

variety of reasons. Entire books have been written on the subject; the book by Besse

is a classic. Often times Einstein metrics are somehow the “best” or most desirable

metrics. They appear as critical points of certain geometrically defined functionals.

Physicists are interested in Einstein metrics for their role in the theory of general

relativity. Thus we are curious about the rigidity of quasi-Sasaki-Einstein metrics.

For example, we can create quasi-Sasaki-Einstein metrics by taking products of

Sasaki-Einstein and Kähler-Einstein metrics, but we don’t consider these to be “new”

Einstein metrics. So the question is, are all quasi-Sasaki-Einstein metrics of this form

or are there more “interesting” examples possible? We investigate this in chapter II.

By assuming some regularity on the orbits of the Reeb vector field ξ, we can give a

precise description of the possible Einstein metrics. We define a transverse version

of non-negative quadratic orthogonal bisectional curvature (NQOBC) and show that

a quasi-Sasaki-Einstein metric satisfying this curvature conditions is rigid. We show

that M is locally the product of a Kähler-Einstein manifold M0 and a full rank

quasi-Sasaki-Einstein manifold M1. Furthermore, the transverse Kähler metric of M1
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is a product of Kähler-Einstein metrics. If it happens that the second basic Betti

number bB2 (M1) = 1, then the metric on M1 is simply a scaling of a Sasaki-Einstein

metric. Note that Sasaki metrics are not preserved by homotheties, but quasi-Sasaki

metrics are. Under the stronger assumption of positive or non-negative transverse

holomorphic bisectional curvature, we conjecture that something like the Frankel

and the generalized Frankel conjectures (which are actually no longer conjectures) in

Sasaki geometry ought to be true. See [20] and [21].

As we will see later in this chapter, a quasi-Sasaki manifold (M, g) has naturally

associated to it a transverse Kähler metric gT . It is known by the work of Cao in [7]

that if the first Chern class of a Kähler manifold is negative or null, then the Kähler-

Ricci flow will converge to a Kähler-Einstein metric. This gives us some motivation

to consider the transverse Kähler-Ricci flow (TKRF). By exploiting the transverse

Kähler geometry of (M, g), we can extend deep results in Kähler-Ricci flow to our

transverse version. In particular, if the basic first Chern class is negative or null, we

can reproduce the results of Cao in [7] in our transverse setting. If M is compact and

the basic first Chern class is positive, then defining functionals which are monotonic

along the TKRF, we can mimic the work of Perleman in [34] and prove uniform

bounds on the diameter and scalar curvature along the flow. We also show that,

analogous to [2] and [29], positivity of transverse holomorphic bisectional curvature

is preserved along the TKRF. All of this and more is carried out in chapter III.

In chapter IV we start to explore Hamilton’s Ricci flow on a Sasaki manifold

(M, g). That is, we let the Sasaki metric g itself evolve by the Ricci flow:

∂g

∂t
= −2Ricg.
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It is well-known that evolving a Kähler metric by Ricci flow preserves the Kähler

condition, but the Ricci flow does not preserve the Sasaki condition. However, we

will show that in the special case where the initial Sasaki metric is η-Einstein, that

there is a quasi-Sasaki structure associated to the evolving metric. The geometry of

an η-Einstein manifold is special enough that the Ricci flow equation can be reduced

to a system of two ordinary differential equations. The qualitative behavior of the

flow is discussed in each of the three cases determined by the transverse Kähler-

Einstein structure. We then exhibit concrete examples of η-Einstein metrics where

the transverse metric gT satisfies RicTg = λgT for λ = −1, 0, 4. We mention in passing

the classification theorem of three-dimensional Sasaki manifolds due to Geiges and

the uniformization theorem due to Belgun and how our examples tie in. We raise

some questions about the general case of evolving an arbitrary Sasaki metric by the

Ricci flow.

1.2. Preliminaries

In this section we will review the (Riemannian) basics of quasi-Sasaki geometry.

Throughout, M = M2n+1 will denote a smooth, oriented, connected, Riemannian

manifold of real dimension 2n + 1 for n ≥ 1. The metric will be denoted by g and

∇ will denote the Levi-Civita connection of g. We begin by defining a quasi-Sasaki

structure as a certain type of almost contact structure. This is the definition that

Blair gave in [3] and the one that we shall work with here.

Definition 1.2.1. An almost contact structure on M2n+1 is a triple (ξ, η,Φ) where ξ

is a nowhere vanishing vector field (called the Reeb vector field), η is a 1-form with

η(ξ) = 1 and Φ is a (1,1)-tensor satisfying Φ2 = −I + ξ ⊗ η.
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We let Lξ ⊂ TM denote the line bundle generated by ξ. The contact bundle

D ⊂ TM is defined to be the kernel of η. We have the direct sum decomposition

TM = Lξ ⊕D.

The following theorem will be used frequently.

Theorem 1.2.2. Suppose M2n+1 has an almost contact structure (ξ, η,Φ). Then

Φξ = 0, the endomorphism Φ has rank 2n and η ◦ Φ = 0.

Proof. Since Φ2 = −I on D, we see that the rank of Φ is at least 2n. Now Φ2ξ = 0

implies that Φξ 6∈ D \ {0}. Thus Φξ = fξ for some f ∈ C∞(M). But we have that

0 = Φ2ξ = fΦξ = f 2ξ. Since ξ is nowhere vanishing, f = 0. Thus Φξ = 0 and this

implies that the rank of Φ is exactly 2n. For any vector field X ∈ TM , we now have

η(ΦX)ξ = Φ2ΦX + ΦX

= Φ(Φ2X +X)

= η(X)Φξ

= 0.

Therefore η ◦ Φ = 0.

Definition 1.2.3. An almost contact metric structure on M2n+1 is a quadruple

(ξ, η,Φ, g) where (ξ, η,Φ) is an almost contact structure and g is a Riemannian metric

on M that is compatible with Φ in the sense that Φ∗g = g − η ⊗ η.

If (ξ, η,Φ, g) is an almost contact metric structure, the metric compatibility with

Φ and Φξ = 0 implies that η = g(ξ, ·). Hence η and ξ are dual to each other via the

metric g. Given an almost contact structure, a compatible metric always exists.
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Proposition 1.2.4. Given an almost contact structure (ξ, η,Φ) on M , there is a

Riemannian metric g such that (ξ, η,Φ, g) is an almost contact metric structure.

Proof. Let g̃ be any Riemannian metric on M . First define a metric g′ by

g′(X, Y ) := g̃
(
Φ2X,Φ2Y

)
+ η(X)η(Y ).

Then we have g′(X, ξ) = η(X) for all X ∈ TM . Now define a metric g by

g(X, Y ) :=
1

2
(g′(X, Y ) + g′(ΦX,ΦY ) + η(X)η(Y ))

and check that g(ΦX,ΦY ) = g(X, Y )− η(X)η(Y ) for all X, Y ∈ TM.

Let M2n+1 be equipped with an almost contact structure. Consider the manifold

M × R with the almost complex structure J : T (M × R)→ T (M × R), defined by

J
(
f1X + f2

d

dt

)
= f1ΦX − f2ξ + f1η(X)

d

dt
. (1.1)

Here X ∈ TM , f1, f2 ∈ C∞(M × R) and
d

dt
spans the tangent space to R. It is

straightforward to verify that J2 = −I.

Definition 1.2.5. An almost contact structure on M is called normal if the almost

complex structure J , defined by (1.1), is integrable.

Recall that an almost complex structure is called integrable if it is induced by

an actual complex structure. The celebrated theorem of Newlander and Nirenberg

asserts that an almost complex structure J is integrable if and only if the Nijenhuis

torsion tensor NJ ≡ 0. For a (1,1)-tensor T , the Nijenhuis torsion tensor NT is the
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(1,2)-tensor defined by

NT (X, Y ) := T 2[X, Y ] + [TX, TY ]− T [TX, Y ]− T [X,TY ]. (1.2)

So if our almost product structure is normal, then NJ ≡ 0 and this implies that

for any vector fields X, Y ∈ TM ,

N (1)(X, Y ) := NΦ(X, Y ) + 2dη(X, Y )ξ = 0,

N (2)(X, Y ) := (LΦXη)(Y )− (LΦY η)(X) = 0,

N (3)(X) := (LξΦ)(X) = 0,

N (4)(X) := (Lξη)(X) = 0.

Conversely, the vanishing of these four tensor fields implies that NJ ≡ 0. In fact, the

vanishing of NJ is equivalent to the vanishing of N (1). A proof of these facts and the

following proposition can be found in chapter 6 of [4].

Proposition 1.2.6. If N (1) vanishes then so do N (2), N (3) and N (4). Therefore, an

almost contact structure is normal if and only if N (1) ≡ 0.

An equation that we will use frequently, and one that holds for any 1-form η is

2dη(X, Y ) = Xη(Y )− Y η(X)− η([X, Y ]). (1.3)

The normality condition has some interesting consequences. We record a few of these

in the following lemma.
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Lemma 1.2.7. Let (ξ, η,Φ) be a normal, almost contact structure on M . Then

dη(ξ, ·) = 0 and Φ∗dη = dη. Moreover, if g is a compatible metric then the integral

curves of ξ are geodesics.

Proof. Since N (4)(X) = (Lξη)(X) = 0 for any X ∈ TM , we have

2dη(ξ,X) = ξ(η(X))−X(η(ξ))− η([ξ,X])

= ξ(η(X))− η([ξ,X])

= (Lξη)(X) = 0.

Thus dη(ξ, ·) = 0. Cartan’s magic formula says that LΦXη = dιΦXη + ιΦXdη. Since

η ◦ Φ = 0, we get

(LΦXη)(Y ) = dη(ΦX, Y ).

From N (2)(X, Y ) = 0 and the above, we have dη(ΦX, Y ) = dη(ΦY,X). Now replacing

Y with ΦY and using dη(ξ, ·) = 0, we see that dη(ΦX,ΦY ) = −dη(Y,X) = dη(X, Y ).

For the last claim, notice that g(∇Xξ, ξ) = 1
2
Xg(ξ, ξ) = 0. Again using N (4)(X) = 0,

we compute that for any X ∈ TM

g(X,∇ξξ) = ξg(X, ξ)− g(∇ξX, ξ) + g(∇Xξ, ξ)

= ξ(η(X))− η([ξ,X])

= (Lξη)(X) = 0.

Thus ∇ξξ = 0. Hence the integral curves of ξ are geodesics.
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The fundamental 2-form associated to an almost contact metric structure

(ξ, η,Φ, g) is the 2-form ω defined for all X, Y ∈ TM by

ω(X, Y ) := g(X,ΦY ). (1.4)

From Φ∗g = g − η ⊗ η and η ◦ Φ = 0, it follows that Φ∗ω = ω. Note also that

ω(ξ, ·) = 0. Now we are ready to give the definition of a quasi-Sasaki structure.

Definition 1.2.8. A quasi-Sasaki structure is a normal, almost contact metric

structure whose fundamental 2-form is closed (i.e. dω = 0).

A smooth manifold equipped with a quasi-Sasaki structure is called a quasi-

Sasaki manifold. A fundamental difference between a Sasaki and a quasi-Sasaki

structure has to do with whether or not dη is non-degenerate on D. We can categorize

quasi-Sasaki structures according to their rank, which indicates how degenerate dη

is. The following definition was introduced in [3].

Definition 1.2.9. The rank of a quasi-Sasaki structure is 2p when (dη)p 6= 0 and

η ∧ (dη)p = 0. The rank is 2p+ 1 when η ∧ (dη)p 6= 0 and (dη)p+1 = 0.

A quasi-Sasaki structure of rank 1 is commonly called a cosymplectic structure.

In this case we have dη = 0. A quasi-Sasaki structure of rank 2n + 1 with ω = dη is

Sasaki. The next proposition follows easily from lemma 1.2.7.

Proposition 1.2.10. There are no quasi-Sasaki structures of even rank.

Proof. Since dη(ξ, ·) = 0, if (dη)p 6= 0 there are vector fieldsX1, . . . , X2p ∈ D such that

(dη)p(X1, . . . , X2p) 6= 0. Thus η∧(dη)p(ξ,X1, . . . , X2p) = (dη)p(X1, . . . , X2p) 6= 0.
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Some facts about the geometry of a quasi-Sasaki manifold are contained in the

next lemma. Important is the fact that ξ is a Killing vector field (i.e. Lξg = 0). This

means that moving along the integral curves of ξ is an isometry of the metric.

Lemma 1.2.11. Let (ξ, η,Φ, g) be a quasi-Sasaki structure on M . Then Lξg = 0,

g(∇Xξ, Y ) = dη(X, Y ) and ∇ξΦ = 0.

Proof. Since N (3)(Y ) = (LξΦ)(Y ) = 0, we have Φ[ξ, Y ] = [ξ,ΦY ]. Thus we see that

(Lξω)(X, Y ) = (Lξg)(X,ΦY ).

The Lie derivative Lξω = dιξω + ιξdω = 0. Hence we have (Lξg)(X,ΦY ) = 0. Next,

using N (4)(X) = (Lξη)(X) = 0 and ∇ξξ = 0, one computes that

(Lξg)(X, η(Y )ξ) = 0.

The above shows that (Lξg)(X, (Φ + ξ ⊗ η)Y ) = 0. Since the map Φ + ξ ⊗ η is

non-singular, it follows that Lξg = 0. Therefore, ξ is a Klling vector field.

For a vector field Z, let θZ be the 1-form defined by θZ(Y ) := g(Y, Z). It is then

straightforward to verify that

(LZg)(X, Y ) + 2dθZ(X, Y ) = 2g(∇XZ, Y ).

Taking Z = ξ and using that ξ is a Killing vector field gives g(∇Xξ, Y ) = dη(X, Y ).

With this and the vanishing of tensors N (2) and N (3), a straightforward

computation, using that ∇ is Riemannian and torsion free, reveals that ∇ξΦ = 0.

Remark 1.2.12. The condition that ξ is a Killing vector field is equivalent to the

condition g(∇Xξ, Y ) + g(X,∇Y ξ) = 0 for all X, Y ∈ TM. Also, one can actually
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show more than just ∇ξΦ = 0. In particular, lemma 6.1 of [4] shows that

g((∇XΦ)Y, Z) = dη(ΦY,X)η(Z)− dη(ΦZ,X)η(Y ). (1.5)

We end this section with some results which characterize cosymplectic manifolds

(those with dη = 0) among quasi-Sasak manifolds.

Lemma 1.2.13. A quasi-Sasaki manifold is cosymplectic if and only if ∇Φ = 0 if

and only if ∇ω = 0.

Proof. If ∇Φ = 0 then NΦ ≡ 0. By normality, 2dη(X, Y )ξ = −NΦ(X, Y ) = 0 for

all X, Y ∈ TM . Hence dη = 0. Conversely, if dη = 0 then from equation (1.5)

we conclude that ∇Φ = 0. The second if and only if statement follows easily from

ω = g(·,Φ·) and ∇g = 0.

Lemma 1.2.14. A quasi-Sasaki manifold is cosymplectic if and only if ∇η = 0.

Proof. Since ξ is a Killing vector field and η = g(ξ, ·), we compute that

(∇Xη)(Y ) = g(∇Xξ, Y ) = −g(∇Y ξ,X) = −(∇Y η)(X).

We can write equation (1.3) as

2dη(X, Y ) = (∇Xη)(Y )− (∇Y η)(X).

Combining these equations we have dη(X, Y ) = (∇Xη)(Y ) and the result follows.

Remark 1.2.15. The cosymplectic case is the only one where the contact subbundle

D is integrable. Indeed, it follows from equation (1.3) that a subbundle defined as

the kernel of a closed 1-form is involutive, hence integrable (see definition 5.0.2 and
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theorem 5.0.3). Furthermore, from ∇η = 0 we see that D is a parallel distribution.

As TM = Lξ ⊕D and both Lξ and D are integrable in this case, it follows that M is

locally the product of a 1-dimensional manifold (line or circle) and a Kähler manifold.

1.3. Transverse Kähler Geometry

In this section we discuss the basics of Riemannian foliations and the associated

transverse geometry, as it applies to our study of quasi-Sasaki manifolds. For a more

thorough treatment of foliations, the interested reader should see [30] and/or [39].

Let (M, ξ, η,Φ, g) be a quasi-Sasaki manifold. Recall that Lξ is the line bundle

generated by ξ and D = ker(η). From Φ∗g = g − η ⊗ η and Φξ = 0 we see that the

decomposition TM = Lξ ⊕ D is orthogonal with respect to g. Hence D = L⊥ξ . The

integral submanifolds of Lξ, which are the integral curves of ξ, define the leaves of a

1-dimensional foliation of M , which we denote by Fξ. We let ν(Fξ) := TM/Lξ denote

the normal bundle of the foliation. Then we have the short exact sequence

0→ Lξ → TM → ν(Fξ)→ 0.

The metric provides a splitting σ : ν(Fξ)→ D of this short exact sequence. Explicitly,

for X̄ ∈ ν(Fξ) we have X̄ = X + Lξ for some X ∈ TM . Then σ(X̄) = X − g(X, ξ)ξ.

Clearly σ(X̄) ∈ D and it is straightforward to check that σ is a well-defined bijection.

Thus we may identify D and ν(Fξ). A transverse metric is a Riemannian metric on

the quotient bundle ν(Fξ). Since D ' ν(Fξ), we define the transverse metric gT by

gT := g|D.
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The orthogonal projection πD : TM → D is given by πD(X) = X − η(X)ξ. Observe:

gT (X, Y ) = g(πD(X), πD(Y ))

= g(X, Y )− η(X)η(Y )

= Φ∗g(X, Y ).

Thus the transverse metric is related to the quasi-Sasaki metric via g = η⊗η+gT . We

want to know, under what conditions does the transverse metric reflect the geometry

of the leaf space M/Fξ? To answer this question, we need the next definition.

Definition 1.3.1. A vector field X ∈ TM is called foliate with respect to Fξ if

[X, ξ] ∈ Lξ. A Riemannian metric g is called bundle-like with respect to Fξ if for any

foliate vector fields X and Y which are orthogonal to Lξ, we have ξg(X, Y ) = 0.

Bundle-like metrics are important in the theory of foliations because they provide

globally defined transverse metrics which are locally the pull-back of a metric on the

local Riemannian quotient. The following is proposition 2.5.7 in [5].

Proposition 1.3.2. If g is bundle-like with respect to Fξ, then Fξ is a Riemannian

foliation. Conversely, if Fξ is a Riemannian foliation with transverse metric gT , then

there is a bundle-like metric g whose associated transverse metric is gT .

Thus we see that the transverse metric is locally the pull-back of a metric on

the local Riemannian quotient if and only if g is bundle-like. In this way, bundle-like

metrics reflect the geometry of the leaf space M/Fξ. The next lemma is immediate.

Lemma 1.3.3. Quasi-Sasaki metrics are bundle-like with respect to Fξ.

Proof. This follows easily from definition 1.3.1 and the fact that Lξg = 0.
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The following definition is used to describe the behavior of the orbits of ξ.

Definition 1.3.4. The foliation Fξ is quasi-regular if each x ∈M has a neighborhood

Ux such that any leaf of Fξ passes through Ux at most mx ∈ Z+ times. If mx = 1 for

all x ∈ M , then Fξ is called regular. If for some point, no such m exists, then Fξ is

called irregular.

If all of the orbits of ξ are compact then Fξ is quasi-regular. In this case, ξ

generates an S1 action on M . If this action is free, then Fξ is regular. If the S1

action is only locally free, then Fξ is strictly quasi-regular. Assuming M is compact,

quasi-regularity implies that the orbits of ξ are all compact. Thus, if ξ has a non-

compact orbit, then Fξ is irregular. We will often say that M is regular (quasi-regular,

irregular) to mean that Fξ is regular (quasi-regular, irregular).

Example 1.3.5. A good example to keep in mind is the weighted Sasaki structure

on S3 = {(z0, z1) ∈ C2 : |z0|2 + |z1|2 = 1}. Pick real numbers a0, a1 > 0 and consider

the vector field

ξ =
√
−1
∑
j

aj

(
zj

∂

∂zj
− z̄j

∂

∂z̄j

)
.

Restricting to S3, ξ is everywhere tangent to S3 and nowhere vanishing. The 1-form

η = −
√
−1

2

∑
j

1

aj

(
z̄jdz

j − zjdz̄j
)

is a contact form with η(ξ) = 1. On D ⊂ TS3, we let Φ be the restriction of the

standard complex structure on C2 and extend it trivially in the ξ direction. Then

g = η ⊗ η + dη(Φ·, ·) defines a Sasaki-metric on S3. The integral curve of ξ through

the point (z0, z1) ∈ S3 is given by

(z0, z1) 7→ (e2πia0tz0, e
2πia1tz1).
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Choosing a0 = a1 = 1 gives the standard Sasaki structure on S3. If a0 and a1

are chosen to be relatively prime integers, then Fξ is regular. If a0 and a1 are not

coprime or a0, a1 ∈ Q \ Z, then Fξ is quasi-regular. Suppose that a0

a1
is irrational.

Orbits through points of the form (z0, 0) are circles as they return to (z0, 0) at time

t = a−1
0 . Similarly, orbits through (0, z1) are circles that return in time t = a−1

1 .

However, the orbits through points (z0, z1) where z0z1 6= 0 are not compact. Since

a0

a1
is irrational, there is no time t such that both a0t and a1t are integers. Thus the

integral curve never returns to (z0, z1). The closure of these orbits is the torus T 2.

This example easily generalizes to higher odd dimensional spheres.

Adapting theorem 6.3.8 of [5] to the special case of a quasi-Sasaki manifold, we

get the following structure theorem. This important theorem will be used frequently

in the sequel. See chapter 4.3 of [5] for the definition of the orbifold cohomology. If the

orbifold is in fact a manifold, then the orbifold cohomology is the usual cohomology.

Theorem 1.3.6. Let (M, ξ, η,Φ, g) be a quasi-Sasaki manifold of rank 2p + 1 such

that the leaves of Fξ are all compact. Then

1. The leaf space M/Fξ is a Kähler orbifold such that the canonical projection

π : M → M/Fξ is an orbifold Riemannian submersion. The fibers are totally

geodesic submanifolds of M diffeomorphic to S1.

2. M is the total space of a principal S1-orbibundle over M/Fξ with connection

1-form η. The curvature form dη = π∗Ω where Ω is a closed (1,1)-form of rank

p on M/Fξ such that 1
2π

[Ω] ∈ H2
orb(M/Fξ,Z).

3. If Fξ is regular, then M is the total space of a principal S1-bundle over the

Kähler manifold M/Fξ.
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Now we will show that the transverse geometry of a quasi-Sasaki manifold has

a Kähler structure. From Φ2 = −I + ξ ⊗ η, we have (Φ|D)2 = −I. Hence Φ|D is

an almost complex structure on D. We consider the complexified contact bundle

DC := D ⊗R C. Then Φ|D extends C-linearly to an almost complex structure on

DC, which we continue to call Φ. Let D1,0 and D0,1 denote the
√
−1 and −

√
−1

eigenspaces of Φ. Then DC = D1,0 ⊕ D0,1. Complex conjugation is an R-linear

isomorphism between D1,0 and D0,1.

As the transverse metric is Φ-invariant (i.e. Φ∗gT = gT ), it defines a Hermitian

metric on D1,0. Explicitly, we C-linearly extend gT in both entries to a symmetric,

complex bilinear form on DC, which we continue to call gT . Then for any U, V ∈ D1,0,

we define the Hermitian metric h by

h(U, V ) := gT (U, V̄ ).

The map σ : D → D1,0 that sends X 7→ 1
2

(
X −

√
−1ΦX

)
is an isomorphism

of complex vector bundles (D,Φ) ' (D1,0,
√
−1). Under this isomorphism, a

straightforward computation reveals that

σ∗h =
1

2

(
gT +

√
−1ω

)
.

It is well-known that the holomorphic tangent bundle of an almost complex

manifold is involutive if and only if the almost complex structure is integrable. In the

almost contact setting, we have a similar theorem.

Theorem 1.3.7. An almost contact structure is normal if and only if [D1,0, Lξ] ⊂ D1,0

and [D1,0,D1,0] ⊂ D1,0.
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Proof. By proposition 1.2.6, normality is equivalent to NΦ + 2dη ⊗ ξ ≡ 0. Now let

X, Y ∈ D1,0. Using equation (1.3) and Φ2 = −I + ξ ⊗ η, we compute that

NΦ(X, Y ) + 2dη(X, Y )ξ = −2[X, Y ]− 2
√
−1Φ[X, Y ],

NΦ(X, Ȳ ) + 2dη(X, Ȳ )ξ = 0,

NΦ(X, ξ) + 2dη(X, ξ)ξ = −[X, ξ]−
√
−1Φ[X, ξ].

So NΦ+2dη⊗ξ ≡ 0 if and only if Φ[X, Y ] =
√
−1[X, Y ] and Φ[X, ξ] =

√
−1[X, ξ].

Corollary 1.3.8. An almost contact structure is normal if and only if the Nijenhuis

torsion tensor NΦ vanishes on D1,0 ⊕ Lξ.

Proof. Since Φ∗dη = dη, we have dη(X, Y ) = 0 for X, Y ∈ D1,0. By lemma 1.2.7,

dη(X, ξ) = 0. The corollary now follows from the computation in theorem 1.3.7.

So for a quasi-Sasaki structure, the contact bundle D is endowed with a complex

structure Φ and a Hermitian metric whose Kähler form is closed. Thus the data

(D,Φ, ω) gives M a transverse Kähler structure. We define a connection ∇T on D by

∇T
XY := πD (∇XY ) , X ∈ D,

∇T
ξ Y := πD [ξ, Y ] .

One can check that ∇T is the unique, torsion-free connection on D with ∇TgT = 0.

For this reason we call ∇T the transverse Levi-Civita connection. We define the

transverse curvature operator for X, Y ∈ D by

RT (X, Y ) := ∇T
X∇T

Y −∇T
Y∇T

X −∇T
[X,Y ].
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With this we can then define the transverse Riemannian curvature tensor, the

transverse Ricci curvature and the transverse scalar curvature in the obvious way.

When computing transverse curvatures, we have all of the familiar formulas from

Kähler geometry. Next we briefly mention the transverse de Rham cohomology and

its associated Hodge theory. For a detailed discussion, see [15] and [24].

Definition 1.3.9. A function f ∈ C∞(M) is called basic if df(ξ) = 0. A p-form

θ ∈ Ωp(M) is called basic if ιξθ = 0 and Lξθ = 0.

We let Λp
B(Fξ) be the sheaf of germs of basic p-forms and Ωp

B(Fξ) the set of

global sections of Λp
B(Fξ). Observe that if θ is basic then so is dθ. This follows from

Lξθ = ιξdθ + dιξθ and Lξdθ = dLξθ. We set dB := d|ΩpB . Then dB : Ωp
B → Ωp+1

B is

well-defined, dB ◦ dB = 0 and we have a subcomplex of the de Rham complex:

0→ C∞B → Ω1
B → · · · → Ω2n

B → 0.

We denote the cohomology ring by H∗B(Fξ) and call it the basic cohomology ring.

There is a transverse Hodge theory for the basic cohomology ring and in many ways

it resembles the de Rham-Hodge theory of a Kähler manifold. The transverse Hodge

star, ∗B, is defined in terms of the usual Hodge star by ∗Bα := ∗(η ∧ α). The adjoint

operator δB : Ωp
B → Ωp−1

B of dB is defined by

δB := − ∗B ◦dB ◦ ∗B.

We define the basic Hodge Laplacian (with respect to dB) by 4B := dBδB + δBdB.

We say that θ ∈ Ωp
B is harmonic if 4Bθ = 0. The transverse Hodge theorem of [14]

states that every basic cohomology class has a unique harmonic representative. We

define the transverse tensor Laplacian by ∆T := ∇T∇T . For a basic function f , one
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can check that

4Bf = −∆Tf = −gij̄∂i∂j̄f.

The transverse complex structure Φ induces a natural decomposition of the basic

p-forms into basic (i, j)-forms where i+ j = p:

Ωp
B ⊗R C = ⊕i+j=pΩi,j

B

and the exterior derivative splits as dB = ∂B + ∂̄B where

∂B : Ωi,j
B → Ωi+1,j

B and ∂̄B : Ωi,j
B → Ωi,j+1

B .

From d2
B = 0 we get ∂2

B = ∂̄2
B = 0 and ∂B∂̄B + ∂̄B∂B = 0. As we did above, we can

define the basic Hodge Laplacians with respect to ∂B and ∂̄B. We can also define

a transverse Lefschetz operator L : θ 7→ θ ∧ ω. One can then recover the expected

transverse Kähler identities. We set

dcB :=

√
−1

2
(∂̄B − ∂B).

Then we have dBd
c
B =

√
−1∂B∂̄B and dcB ◦ dcB = 0. The transverse Ricci form ρT is

the basic 2-form defined by

ρT := RicT (·,Φ·).

Just as in the Kähler setting, one can show that

ρT = −
√
−1∂B∂̄B log(det(gT )).
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Thus ρT is a dB closed (1,1)-form and so defines a basic cohomology class. The class

[ρT ] ∈ H2
B(Fξ) is independent of the choice of transverse Kähler metric and, as in the

Kähler setting, 2πc1
B = [ρT ], where c1

B is the basic first Chern class.

1.4. Transverse Distance and Preferred Coordinates

First we introduce the transverse distance function that will be important for

us in chapter III. Let (M, g) be quasi-Sasaki and assume that M is compact and

quasi-regular. For a point x ∈M , let γx denote the orbit of ξ through x. Since γx is

compact for all x ∈M , we can make the following definition:

Definition 1.4.1. The transverse distance function dT is defined on M by

dT (x, y) := d(γx, γy)

where d is the geodesic distance function on M , determined by g. The transverse ball

of radius r > 0 about a point x ∈M is defined as

BT (x, r) := {y ∈M : dT (x, y) < r}.

The transverse diameter of M is the number ΘT defined as

ΘT := max
x,y∈M

dT (x, y).

The transverse distance function defines a metric on the leaf space M/Fξ. It

turns out to be the same as the geodesic distance function on M/Fξ, determined by

gT . In order to prove that dT is a metric, we need to show that it satisfies the triangle

inequality. To do so, we make use of the following proposition:
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Proposition 1.4.2. For x, y ∈ M and p ∈ γx, there is q ∈ γy such that dT (x, y) =

d(p, q).

Proof. Since the curves γx and γy are compact, there are points x1 ∈ γx and y1 ∈ γy

such that dT (x, y) = d(x1, y1). Now let σ : [0, 1] → M be the length minimizing

geodesic with σ(0) = x1 and σ(1) = y1. Flowing along γx is an isometry of M . As γx

is compact, it is diffeomorphic to S1. Thus there is ζ ∈ S1 such that ζ(x1) = p. Let

q := ζ(y1) and σ̃ = ζ ◦ σ. Then σ̃ is a geodesic connecting p and q whose length is

the same as σ. Therefore, dT (x, y) = d(x1, y1) = d(p, q).

Corollary 1.4.3. The transverse distance function satisfies the triangle inequality.

For fixed x0 ∈M , r(x) := dT (x, x0) is a basic Lipschitz function.

Proof. Pick points x, y, z ∈M . By the previous proposition, there are points p ∈ γx,

q ∈ γy and s ∈ γz such that dT (x, y) = d(p, q) and dT (y, z) = d(q, s). Thus

dT (x, z) ≤ d(p, s) ≤ d(p, q) + d(q, s) = dT (x, y) + dT (y, z).

Let r be as above. By the triangle inequality, |r(x)−r(y)| ≤ dT (x, y) ≤ d(x, y). Thus

r is Lipschitz continuous with Lipschitz constant 1. Hence r is differentiable almost

everywhere and |∇r| ≤ 1 at any point of differentiability. Since r is constant along

the orbits of ξ, dr(ξ) = 0. Therefore, r is basic.

We conclude this chapter by introducing the local coordinates and local frame

that we will use in our computations in chapter II, III and IV. By normality, the

almost complex structure J , defined by (1.1), on M × R is integrable; hence it is

induced by a complex structure. This means that there are (real) local coordinates

(x0, y0, . . . , xn, yn) on M × R such that J∂xj = ∂yj and J∂yj = −∂xj .
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We will identify M as a submanifold of M × R via M ' M × {0}. Let t be the

coordinate on R. Then the tangent bundle T (M×R) = TM⊕R[ d
dt

] = Lξ⊕D⊕R[ d
dt

].

Observe that Jξ = d
dt

and J d
dt

= −ξ. Thus, Lξ ⊕ R[ d
dt

] forms an involutive, complex

subbundle of T (M ×R). By the complex version of the Frobenius theorem, there are

local coordinates as above with ∂x0 = ξ and ∂y0 = d
dt

. Thus y0 = t.

Now consider the complexification T (M × R) ⊗R C and C-linearly extend J .

For j = 0, . . . , n, put zj = 1
2
(xj −

√
−1yj). Then (z0, . . . , zn, z̄0, . . . , z̄n) are local

coordinates on M × R with J∂zj =
√
−1∂zj and J∂z̄j = −

√
−1∂z̄j . We know that

∂z0 = 1
2
(ξ −

√
−1 d

dt
). For j ≥ 1, we can write ∂zj = Zj + fj

d
dt

for some vector field

Zj ∈ TM ⊗R C and some complex-valued function fj. By the definition of J ,

J∂zj = ΦZj − fjξ + η(Zj)
d

dt
.

But from J∂zj =
√
−1∂zj , we have

J∂zj =
√
−1

(
Zj + fj

d

dt

)
.

Equating the two expression for J∂zj , we find that fj = −
√
−1η(Zj) and

ΦZj =
√
−1(Zj − η(Zj)ξ).

Setting t = 0, the local coordinates (z0, . . . , zn, z̄0, . . . , z̄n) on M ×R induce local

coordinates on M . Since t = y0, we get the local coordinates (x, z1, . . . , zn, z̄1, . . . , z̄n)

where x = x0. The coordinate vectors satisfy ∂x = ξ and Φ∂zj =
√
−1(∂zj − η(∂zj)ξ).

We call these preferred local coordinates.
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Since η is a real 1-form and dη is a basic (1,1)-form, in a small coordinate

neighborhood U we can write

η = dx−
√
−1(hjdz

j − hj̄dz̄j)

where h : U → R is a (local) real basic function (i.e. ξh = ∂xh = 0). We use the

notation hj̄ = ∂z̄jh = ∂h
∂z̄j

= ∂h
∂zj

= ∂zjh = hj. Then, defining dηij̄ := hij̄, we have

dη =
√
−1dηij̄dz

i ∧ dz̄j.

Now, for j = 1, . . . , n, define vector fields

Xj := ∂zj +
√
−1hjξ and Xj̄ := X̄j = ∂z̄j −

√
−1hj̄ξ.

Notice that η(Xj) = η(X̄j) = 0, while ΦXj =
√
−1Xj and ΦX̄j = −

√
−1X̄j. Thus,

D1,0 = span{Xj} andD0,1 = span{X̄j}. We call the frame (ξ,X1, . . . , Xn, X̄1, . . . , X̄n)

a preferred local frame. Since dη(·, ξ) = 0, we see that

dη(Xi, X̄j) = dη(∂zi , ∂z̄j) =
√
−1dηij̄.

Since the hj are basic functions, we compute that

[Xi, Xj] = [X̄i, X̄j] = [ξ,Xi] = [ξ, X̄j] = 0

and

[Xi, X̄j] = −2
√
−1dηij̄ξ.
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From the compatibility of Φ with g, in preferred local coordinates we can write

g = η ⊗ η + gTij̄dz
i ⊗ dz̄j

where gTij̄ = gT
jī

= gTj̄i. Since Lξg = Lξη = 0, the functions gTij̄ are basic. The transverse

metric and Kähler form are, respectively,

gT = gTij̄dz
i ⊗ dz̄j and ω =

√
−1gTij̄dz

i ∧ dz̄j.

Hence

gT (Xi, X̄j) = gT (∂zi , ∂z̄j) = gTij̄

and

ω(Xi, X̄j) = ω(∂zi , ∂z̄j) =
√
−1gTij̄.

The transverse metric defines a pointwise norm on basic forms. If α = αidz
i and

β = βj̄dz̄
j are basic (1,0) and (0,1)-forms, respectively, then we define |α|2gT = gij̄αiαj

and |β|2gT = gij̄βj̄βī. We can then extend this to basic forms of type (p, q). For

example, the norm of a (1, 1)-form θ = θij̄dz
i ∧ dz̄j is given by |θ|2gT = gij̄gkl̄θil̄θjk̄.

At a point where gij̄ = δij, we see that |θ|2gT =
∑

i,k θik̄θik̄ =
∑

i,k |θik̄|2, as we would

expect. For any basic form θ, the norm with respect to the quasi-Sasaki metric g is

twice that of the norm with respect to the transverse metric gT ; |θ|2g = 2|θ|2gT .
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CHAPTER II

RIGIDITY OF QUASI-SASAKI-EINSTEIN METRICS

2.1. The Ricci tensor and Einstein equation

A Sasaki metric g and dη are intimately related by g = η ⊗ η + dη(Φ·, ·). It is

not so clear, a priori, how a quasi-Sasaki metric and dη are related. In this section

we compute the Ricci tensor of a quasi-Sasaki metric. To better understand the

relationship between the metric and dη, we want to know how the Ricci tensor depends

on dη. Given that a quasi-Sasaki structure has a Riemannian foliation associated to

it, one could compute the Ricci tensor of g using curvature formulas involving the

O’Neill tensors A and T (see theorems 2.5.16 and 2.5.18 of [5]). However, these

curvature formulas will not give us what we want directly and to use them requires a

sufficiently large amount of computation anyway. Thus, we will present a barehanded

computation of the Ricci tensor and we will see the role that dη plays in the curvature.

We shall compute the Ricci tensor with respect to a preferred local frame {ξ,Xi, X̄i}.

Recall that {Xi} is a local frame for D1,0, gT (Xi, X̄j) = gTij̄ and [ξ,Xi] = [ξ, X̄i] = 0.

In lemma 1.2.7 we showed that ∇ξξ = 0. Now we observe that

∇Xiξ =
√
−1gkj̄dηij̄Xk and ∇X̄iξ = ∇Xiξ = −

√
−1gjk̄dηjīX̄k. (2.1)

To see this, write∇Xiξ = αξ+βjXj+γ
kX̄k and use g(∇Xξ, Y ) = dη(X, Y ), keeping in

mind that dη is a basic (1,1)-form. Let πLξ : TM → Lξ be the orthogonal projection

onto Lξ. Proposition 2.5.14 in [5] asserts that for X, Y ∈ D,

πLξ (∇XY ) =
1

2
πLξ ([X, Y ]) . (2.2)
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Writing [X, Y ] = αξ+βiXi +γiX̄i and applying η to both sides yields α = η([X, Y ]).

Hence πLξ([X, Y ]) = η([X, Y ])ξ. By equation (1.3), for X, Y ∈ D, we have

η([X, Y ]) = −2dη(X, Y ). Therefore, by (2.2) and the above,

πLξ (∇XY ) = −dη(X, Y )ξ. (2.3)

Now, as ∇XY = ∇T
XY + πLξ (∇XY ) for X, Y ∈ D, equation (2.3) yields

∇XY = ∇T
XY − dη(X, Y )ξ. (2.4)

Since the transverse metric is Kähler and dη is a (1,1)-form, it follows from (2.4) that

∇XiXj = ∇T
Xi
Xj and ∇XiX̄j = −

√
−1dηij̄ξ. (2.5)

Equations (2.1) and (2.5) along with ∇ξξ = 0 allow us to compute the curvature

tensor of a quasi-Sasaki structure with respect to our preferred frame. For notational

convenience, we will drop the superscript T from the transverse metric gT .

First we compute

R(Xi, ξ)ξ = ∇Xi∇ξξ −∇ξ∇Xiξ −∇[Xi,ξ]ξ

= 0−
√
−1gkj̄dηij̄∇ξXk − 0

= gkj̄gmp̄dηij̄dηkp̄Xm.

Hence we have g(R(Xi, ξ)ξ,Xl̄) = gkj̄dηij̄dηkl̄ = gkj̄dηij̄dηlk̄ and therefore,

Ric(ξ, ξ) = 2gil̄g(R(Xi, ξ)ξ,Xl̄) = 2gil̄gkj̄dηij̄dηlk̄ = |dη|2g ≥ 0.
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Next we will compute Ric(Xj, ξ). We start with

R(X̄i, ξ)Xj = ∇X̄i∇ξXj −∇ξ∇X̄iXj −∇[X̄i,ξ]Xj

=
√
−1gkp̄∇X̄idηjp̄Xk −

√
−1∇ξ(dηjīξ)− 0

=
√
−1gkp̄

(
X̄idηjp̄Xk + dηjp̄∇X̄iXk

)
− 0

=
√
−1gkp̄

(
X̄idηjp̄Xk +

√
−1dηjp̄dηkīξ

)
.

From equation (2.5) we have [Xi, Xj̄] = −2
√
−1dηij̄ξ. Using this we compute that

R(X̄i, Xj)ξ = ∇X̄i∇Xjξ −∇Xj∇X̄iξ −∇[X̄i,Xj ]ξ

=
√
−1gkp̄

(
∇X̄idηjp̄Xk

)
+
√
−1gmq̄

(
∇XjdηmīXq̄

)
− 2
√
−1dηjī∇ξξ

=
√
−1gkp̄

(
X̄idηjp̄Xk + dηjp̄∇X̄iXk

)
+
√
−1gmq̄

(
XjdηmīXq̄ + dηmī∇XjXq̄

)
− 0

=
√
−1gkp̄

(
X̄idηjp̄Xk +

√
−1dηjp̄dηkīξ

)
+
√
−1gmq̄

(
XjdηmīXq̄ −

√
−1dηmīdηjq̄ξ

)
.

Now we can compute the Ricci curvature

Ric(Xj, ξ) = g l̄i
(
g(R(Xl, Xj)ξ, X̄i) + g(R(X̄i, Xj)ξ,Xl)

)
= g l̄i

(
g(R(X̄i, ξ)Xj, Xl) + g(R(X̄i, Xj)ξ,Xl)

)
= 0 +

√
−1g l̄i(∇Xjg

mq̄dηmī)glq̄

=
√
−1∇Xjg

mīdηmī

= ∇XjtrgT (dη)

where trgT denotes the trace by the transverse metric gT . For basic forms, trgT = 1
2
trg.
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Lastly we want to compute Ric(X̄j, Xk). We start by computing R(Xi, X̄j)Xk.

Since we will eventually pair this with Xl̄, we will neglect any terms in the ξ direction.

R(Xi, X̄j)Xk = ∇Xi∇X̄jXk −∇X̄j∇XiXk −∇[Xi,X̄j ]Xk

= ∇Xi(
√
−1dηkj̄ξ +∇T

X̄j
Xk)−∇X̄j(∇

T
Xi
Xk) + 2

√
−1dηij̄∇ξXk

=
√
−1dηkj̄∇Xiξ +∇Xi∇T

X̄j
Xk −∇X̄j∇

T
Xi
Xk − 2gmp̄dηij̄dηkp̄Xm

= −gmp̄dηkj̄dηip̄Xm +∇T
Xi
∇T
X̄j
Xk −∇T

X̄j
∇T
Xi
Xk − 2gmp̄dηij̄dηkp̄Xm.

As [ξ,Xk] = 0, ∇T
ξXk = πD([ξ,Xk]) = 0. Since [Xi, X̄j] = −2

√
−1dηij̄ξ, it follows

that ∇T
[Xi,X̄j ]

Xk = 0. Thus the above can be written as

R(Xi, X̄j)Xk = RT (Xi, X̄j)Xk − gmp̄
(
dηkj̄dηip̄ + 2dηij̄dηkp̄

)
Xm.

By a computation similar to the one above, modulo the terms in the ξ direction,

R(X̄l, X̄j)Xk = RT (X̄l, X̄j)Xk + gmp̄
(
dηkj̄dηml̄ − dηkl̄dηmj̄

)
X̄p.

Now we are ready to compute the Ricci curvature. Using the above we find

Ric(X̄j, Xk) = gil̄
(
g(R(Xi, X̄j)Xk, Xl̄) + g(R(X̄l, X̄j)Xk, Xi)

)
+ g(R(ξ, X̄j)Xk, ξ)

= RicT (X̄j, Xk)− 2gil̄dηij̄dηkl̄.

The above computations prove our next proposition.
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Proposition 2.1.1. With respect to a preferred frame, the Ricci tensor of a quasi-

Sasaki structure (ξ, η,Φ, g) satisfies

Ric(ξ, ξ) = 2gil̄gkj̄dηij̄dηkl̄ = |dη|2g, (2.6)

Ric(Xk, ξ) =
√
−1∇Xkg

ij̄dηij̄ = ∇XktrgT (dη), (2.7)

Ric(Xi, X̄l) = RicT (Xi, X̄l)− 2gkj̄dηij̄dηkl̄. (2.8)

If our quasi-Sasaki structure is actually Sasaki, then the above equations should

yield the well-known formulae for the Ricci tensor of a Sasaki metric. In the Sasaki

setting, one has dηij̄ = gij̄. Substituting this into the above equations we get

Ric(ξ, ξ) = 2n,

Ric(Xk, ξ) = 0,

Ric(Xi, X̄l) = RicT (Xi, X̄l)− 2g(Xi, X̄l),

which is indeed correct.

Recall that an Einstein metric g is one where Ricg = λg for some constant

λ ∈ R. Proposition 2.1.1 gives us more information about the nature of a quasi-

Sasaki-Einstein metric. Since ξ has unit length, Lξ ⊥ D and g(Xi, X̄j) = gT (Xi, X̄j),

proposition 2.1.1 gives us our next result.

Proposition 2.1.2. A quasi-Sasaki metric is Einstein with Ricg = λg if and only if

|dη|2g = λ, (2.9)

∇XktrgT (dη) = 0, (2.10)

RicT (Xi, X̄l)− 2gkj̄dηij̄dηkl̄ = λgT (Xi, X̄l). (2.11)
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Remark 2.1.3. The above proposition lends us some useful information. First we see

that λ ≥ 0 and that the norm of dη is constant over M . If λ > 0 (i.e. dη 6= 0),

then by Myers’s theorem M is compact. Since dη is basic, the second equation tells

us that the trace of dη is constant. Since dη is an exact (1,1)-form, this implies that

δ(dη) = 0 and therefore dη is harmonic. Finally, the trace of the third equation by

the transverse metric yields RT = λ(n+ 1) ≥ 0. Thus the transverse scalar curvature

is constant. This implies that the transverse Ricci form ρT is harmonic.

Proposition 2.1.4. If a Kähler metric has constant scalar curvature then the Ricci

form is harmonic.

Proof. Let g = gαβ̄dz
α ⊗ dzβ̄ be a Kähler metric and ρ =

√
−1Rαβ̄dz

α ∧ dzβ̄ the

Ricci form. Recall that ρ is a closed (1,1)-form and Rαβ̄ = −∂α∂β̄ log det(g). Using

δ = −gklι∂k∇∂l we compute that

δρ =
√
−1gλµ̄

(
Rαµ̄/λdz

α −Rλβ̄/µ̄dz
β̄
)

=
√
−1gλµ̄

(
Rλµ̄/αdz

α −Rλµ̄/β̄dz
β̄
)

=
√
−1

(
∂R

∂zα
dzα − ∂R

∂zβ̄
dzβ̄
)
.

So if the scalar curvature R is constant, then δρ = dρ = 0. Hence ρ is harmonic.

Remark 2.1.5. If the manifold is compact, then the converse to the above is true. That

is, a compact Kähler metric with harmonic Ricci form has constant scalar curvature.

To see this, let Λ denote the dual Lefschetz operator and recall that Λρ = R and Λ

commutes with the Hodge Laplacian 4 = dδ + δd. So if ρ is harmonic then so is R.

Harmonic functions on compact manifolds are constant. Hence R is constant.
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2.2. The Regular Case

Let (M, ξ, η,Φ, g) be a quasi-Sasaki manifold. In this section we assume that

the orbits of ξ are compact and the induced S1 action is free. Hence Fξ is regular.

By theorem 1.3.6, M is the total space of a principal circle bundle over the Kähler

manifold B := M/Fξ. The transverse geometry of M is the Kähler geometry of

(B, gT ). For a manifold B (not necessarily Kähler), we let P(B, S1) denote the

collection of all principal circle bundles π : P → B. We will quickly review some facts

about P(B, S1). For a reference to these facts, see chapter two of [4].

Theorem 2.2.1. There is a binary operation on P(B, S1) giving it the structure of

a group isomorphic to H2(B,Z).

For any integer m 6= 0, the cyclic group Zm := Z/mZ is a subgroup of S1. Thus,

for any P ∈ P(B, S1) there is a Zm action on P and P/Zm is a principal S1/Zm

bundle over B. Since S1/Zm ' S1, we can consider P/Zm ∈ P(B, S1).

Theorem 2.2.2. For P ∈ P(B, S1) and an integer m 6= 0, P/Zm ' mP. This implies

that if P is simply connected and |m| > 1, then P 6= mP ′ for any P ′ ∈ P(B, S1).

We let V := ker(π∗) ⊂ TP and call it the vertical distribution. For θ ∈ S1,

we define θ̂ : P → P by p 7→ θ · p. A connection on P ∈ P(B, S1) is a smooth

distribution H ⊂ TP such that TP = H ⊕ V and θ̂∗(H) = H for all θ ∈ S1. We call

H the horizontal distribution. A point p ∈ P induces a map p̂ : S1 → P by θ 7→ θ · p.

The image of p̂ is the orbit through p. It is diffeomorphic to π−1(π(p)) ' S1. At

1 ∈ S1, the differential of p̂ is a map p̂∗ : R → TpP. The image of p̂∗ is Vp. The

connection form of H is the S1 invariant 1-form η on P such that for X ∈ TpP ,

η(X) = t where p̂∗(t) is the vertical part of X. Note that H = ker(η). For a principal

S1 bundle, the curvature form of the connection H is dη.
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Lemma 2.2.3. Given a connection form η on P ∈ P(B, S1), there exists a unique,

closed 2-form Ω on B such that 1
2π

[Ω] ∈ H2(B,Z) and dη = π∗Ω. The cohomology

class of Ω is independent of the choice of connection form.

The cohomology class 1
2π

[Ω] is called the characteristic class of the principal

circle bundle P . Theorem 2.2.1 shows that P(B, S1) is in bijection with H2(B,Z).

The above lemma and the following theorem due to Kobayashi in [28] show that

specifying a connection form η on P corresponds to choosing a representative of the

characteristic class. Principal circle bundles are classified by their characteristic class.

Theorem 2.2.4. Let Ω be a closed 2-form on B with 1
2π

[Ω] ∈ H2(B,Z). Then there

is P ∈ P(B, S1) and a connection form η on P such that dη = π∗Ω.

If g is Einstein with Ricg = λg, the first equation in proposition 2.1.2 shows that

λ ≥ 0. If λ = 0 then dη = 0 and by (2.11), RicgT = 0. Therefore, M is cosymplectic

and B is Calabi-Yau. We know already that M is locally the product of a circle and a

Kähler manifold (see remark 1.2.15), but in this case we can say more. Since dη = 0,

the characteristic class 1
2π

[Ω] = 0. This means that M is the trivial circle bundle over

B. Therefore, M = S1 ×B. This proves our next theorem.

Theorem 2.2.5. If (M, g) is a quasi-Sasaki manifold with Ricg = 0 and Fξ is regular

with compact leaves, then M = S1 ×B where B is a Calabi-Yau manifold and g is a

product metric.

Now we assume that g is Einstein with Ricg = λg for λ > 0. Then by Myers’s

theorem M is compact, in which case the regularity of Fξ is equivalent to the

assumption that the orbits of ξ are compact and the S1 action is free. The (1,1)-

tensor θ associated to dη is defined implicitly by

g(θ(X), Y ) = dη(X, Y ).
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If we write θ(Xi) = θkiXk, then θki =
√
−1gkj̄dηij̄. With this and proposition 2.1.2,

the condition that g is Einstein with Ricg = λg is equivalent to

|dη|2g = λ,

4Bdη = 0,

RicgT (X, Y ) = λgT (X, Y ) + 2gT (θ(X), θ(Y )).

From the third equation above we see that RicgT > 0. By theorem 1 of [27], B is

simply connected. Up to a factor of 2π, the Ricci form of gT is a representative of

the first Chern class of B. Thus c1(B) > 0. Before we give the main theorem of

this section, we will prove the existence of quasi-Sasaki-Einstein metrics on certain

principal circle bundles. These examples illustrate the general case.

Let (Bni
i , gi), i = 1, . . . , k, be Kähler-Einstein manifolds with complex dimension

ni and c1(Bi) > 0. We can write c1(Bi) = qiαi where qi ∈ Z+ and αi ∈ H2(Bi,Z)

is an indivisible class. By scaling the metrics appropriately, we can assume that

Ricgi = qigi. Then we have 2πc1(Bi) = [ρi] = qi[ωi] and, hence, 1
2π

[ωi] = αi is an

indivisible, integral class. Let B = B1 × · · · × Bk and πi : B → Bi the projections.

Pick integers bi, not all zero, and set

Ω = b1π
∗
1ω1 + · · ·+ bkπ

∗
kωk.

Then 0 6= 1
2π

[Ω] ∈ H2(B,Z), so by theorem 2.2.4 there is a nontrivial principal circle

bundle π : M → B and a connection form η on M such that dη = π∗Ω.

Theorem 2.2.6. There exists a quasi-Sasaki-Einstein metric of positive scalar

curvature on the principal circle bundle described above.
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The proof of the theorem is mostly the same as the proof of theorem 1.4 in [41].

We use the construction due to Wang and Ziller in [41] to produce the Einstein metrics

and then we show that they are in fact quasi-Sasaki. For the sake of completeness,

we include the construction here.

Proof. We consider a metric on M of the form g = a2η ⊗ η + π∗h where

h = a1π
∗
1g1 + · · ·+ akπ

∗
kgk

for constants a 6= 0 and ai > 0. The choice of a is inconsequential. We will show

that we can choose the ai so that g is Einstein, but first let us verify that this indeed

defines a quasi-Sasaki metric.

The 1-form ηa = aη determines the contact bundle D = ker(ηa) = ker(η). Since

it is the horizontal distribution of the connection, it is invariant under the S1 action

and TM = D ⊕ Lξ where Lξ = ker(π∗) is the vertical distribution and ξ is a vector

field on M with η(ξ) = 1. Let ξa = a−1ξ. Let J be the complex structure on B.

Define an endomorphism Φ : TM → TM by Φ := π̃ ◦ J ◦ π∗, where π̃ denotes the

unique horizontal (with respect to η) lift of a vector field on B. Then Φξ = 0 and for

horizontal vector fields X ∈ D, we have Φ2X = −X. Therefore Φ2 = −I + ξa ⊗ ηa.

As h is invariant under J , it is easy to show that π∗h(ΦX,ΦY ) = π∗h(X, Y ). Hence

g(ΦX,ΦY ) = g(X, Y )− ηa(X)ηa(Y ).

Thus (ξa, ηa,Φ, g) is an almost contact metric structure on M . Since the base manifold

B is complex, a computation shows that the structure is normal. The fundamental

2-form ω := g(·,Φ·) = π∗h(·,Φ·) = π∗(a1π
∗
1ω1 + · · ·+ akπ

∗
kωk), where ωi is the Kähler
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form of gi. Since each ωi is closed, it follows that dω = 0. Therefore, (ξa, ηa,Φ, g) is

quasi-Sasaki. Note that it is Sasaki precisely when ai = abi > 0 for all i = 1, . . . , k.

If the metric g is to satisfy Ricg = λg, then by proposition 2.1.2, we must have

λ = |dη|2g = 2a2

k∑
i=1

ni

(
bi
ai

)2

> 0. (2.12)

Since the Kähler forms ωi are harmonic, we have that dη is harmonic. Thus equation

(2.10) is satisfied. The contact bundle has a natural splitting D = D1 ⊕ · · · ⊕ Dk

where π∗Di = TBi. On Di we have dη = biπ
∗
i ω1. So to satisfy equation (2.11), for

i = 1, . . . , k, we need

qi
ai

= λ+ 2a2

(
bi
ai

)2

. (2.13)

Combining equations (2.12) and (2.13), for each j = 1, . . . , k, we have

(
k∑
i=1

ni

(
bi
ai

)2
)(

qj
aj
− λ
)

= λ

(
bj
aj

)2

. (2.14)

Introducing the new variables sj :=
qj
λaj

, equation (2.14) becomes

(
k∑
i=1

ni

(
bi
qi

)2

s2
i

)
(sj − 1) =

(
bj
qj

)2

s2
j . (2.15)

Since not all bj = 0, this shows that sj ≥ 1 with equality if and only if bj = 0. We

can rearrange (2.15) to get

(
1 +

1

nj
− sj

) k∑
i=1

ni

(
bi
qi

)2

s2
i =

1

nj

∑
i 6=j

ni

(
bi
qi

)2

s2
i . (2.16)
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This shows that sj ≤ 1 + 1
nj

with equality if and only if bi = 0 for all i 6= j.

Let us assume that all bj 6= 0; we will comment on the general case later. Then

1 < sj < 1 + 1
nj
≤ 2. If we multiply equation (2.15) by nj and then sum on j, we get

k∑
j=1

nj(sj − 1) = 1. (2.17)

Thus, solving the system (2.15) is equivalent to solving

(
bj
qj

)2 s2
j

sj − 1
= c, (2.18)

for each j = 1, . . . , k and some constant c > 0, subject to the constraint (2.17).

On the interval (1, 2], the function f(s) = s2

s−1
decreases monotonically with

f(s) → ∞ as s → 1+ and f(2) = 4. So we start by choosing c large enough that

c > 4
(
bj
qj

)2

for all j. Then there is a unique solution to (2.18) with 1 < sj < 2.

If c is extremely large, then all sj must be very close to 1. But then we will have∑k
j=1 nj(sj − 1) < 1. As c decreases, the sj increase monotonically. So we decrease

c until the largest sj = 2. Then we will have
∑k

j=1 nj(sj − 1) > 1 since nj ≥ 1.

Thus there is a unique value of c for which (2.18) has a solution with 1 < sj < 2 and∑k
j=1 nj(sj − 1) = 1. With the values of the sj in hand, we return to equation (2.12)

and solve for λ. Once we know sj and λ, we have aj and we are done.

Remark 2.2.7. If one of the bi, say b1 = 0, then on D1 we have dη = 0 and the bundle

over B1 is trivial so M splits as M ′×B1. Here π′ : M ′ → B2× · · · ×Bk is a principal

S1 bundle with connection form η′ such that dη′ = π′∗Ω. See section 2.5. We should

also note that if any of the bi = 0, then the quasi-Sasaki structure has rank < 2n+ 1.
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Example 2.2.8. Suppose the base B = Bn
1 consists of a single Kähler-Einstein

manifold and consider the principal circle bundle π : M → B with dη = bπ∗ω1, b 6= 0.

By theorem 2.2.6,

g = η ⊗ η +
2b2(n+ 1)

q
π∗g1

is quasi-Sasaki-Einstein with

Ricg =
nq2

2b2(n+ 1)2
g.

The quasi-Sasaki structure has full rank 2n + 1. If we set a = q
2b(n+1)

and ηa = aη,

then a2g = ηa ⊗ ηa + abπ∗1g. Since dηa = abπ∗ω1, we see that a2g is Sasaki-Einstein.

Example 2.2.9. Recall that CP n with the Fubini-Study metric ωFS is Kähler-

Einstein with ρ = (n + 1)ωFS. It is well known that H2(CP n,Z) ' Z and that

α = 1
2π

[ωFS] is a generator. Thus c1(CP n) = (n + 1)α and every principal circle

bundle π : P → CP n has characteristic class 1
2π

[Ω] = bα for some integer b. A classic

example is the Hopf fibration π : S2n+1 → CP n. Since the total space S2n+1 is simply

connected, by theorem 2.2.2, b = ±1. We choose an orientation so that b = 1.

Let Bi = CP ni , i = 1, . . . , k, and B = B1 × · · · × Bk. Then H2(B,Z) ' ⊕ki=1Z

with generators αi ∈ H2(Bi,Z). Thus every principal circle bundle π : P → B has

characteristic class 1
2π

[Ω] =
∑k

i=1 biαi for some integers bi. The total space P is

simply connected if and only if the characteristic class is indivisible if and only if

gcd(b1, . . . , bk) = 1.

For a concrete example, take ni = 1 for i = 1, 2, 3, b1 = 1, b2 = −1 and b3 = 0.

Then qi = 2 and it is not too hard to solve the equations from theorem 2.2.6. Working

through them, we find that a1 = a2 = 3 and a3 = 9
2
. Thus the fundamental 2-form
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ω = π∗(3π∗1ωFS + 3π∗2ωFS + 9
2
π∗3ωFS) and the metric g = η ⊗ η + ω(Φ·, ·) is quasi-

Sasaki-Einstein with Ricg = 4
9
g.

This example illustrates some interesting features of quasi-Sasaki-Einstein

metrics. First, the rank of this quasi-Sasaki structure is 5, whereas full rank is 7.

Thus this quasi-Sasaki structure is not a deformation of a Sasaki structure. However,

since b3 = 0, the total space P splits as P ′×B3 where π′ : P ′ → B1×B2 is a principal

circle bundle with connection form η′ such that dη′ = π′∗Ω. Thus g′ = η⊗η+ω′(Φ·, ·),

where ω′ = π′∗(3π∗1ωFS + 3π∗2ωFS), is a quasi-Sasaki-Einstein metric on P ′ with

Ric′g = 4
9
g′. This quasi-Sasaki structure does indeed have full rank, but still it cannot

be a deformation of a Sasaki structure because dη′(Φ·, ·) is not positive definite; it is

negative definite over B2.

Now we will present the main theorem of this section. It is a consequence of

theorem 1 in [40].

Theorem 2.2.10. If (M, ξ, η,Φ, g) is a regular, quasi-Sasaki-Einstein manifold with

positive scalar curvature, then M is a principal circle bundle over a compact Kähler

manifold B, where B is a product of Kähler-Einstein manifolds and the metric g is

among those constructed in theorem 2.2.6.

Proof. Since g is Einstein with positive scalar curvature, M is compact. Then the

regularity of Fξ implies that the orbits of ξ are compact, so by theorem 1.3.6 M is a

principal circle bundle over a compact Kähler manifold B with η as the connection

form. By lemma 1.2.7, dη(Φ·,Φ·) = dη. Thus the curvature form of the circle bundle

is of type (1,1). Now by theorem 1 in [40], B is a product of Kähler-Einstein manifolds

and (M, g) is among those constructed in theorem 2.2.6.
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Theorems 2.2.5 and 2.2.10 give us a clear picture of the possible quasi-Sasaki-

Einstein metrics in the regular case. As we have seen, they are very rigid and do not

offer us “new” Einstein metrics that we didn’t already know about.

2.3. The quasi-Regular Case

In this section we assume, more generally, that the orbits of ξ are compact and

the induced S1 action is locally free. Then Fξ is quasi-regular. By theorem 1.3.6, M is

the total space of a principal S1-orbibundle over the Kähler orbifold B := M/Fξ with

connection form η and curvature form dη = π∗Ω. Here Ω is a closed (1,1)-form with

1
2π

[Ω] ∈ H2
orb(B,Z). The treatment here closely follows that of the previous section.

We will not dive too deeply into the general theory of orbifolds and orbibundles, but

only reference pertinent information. For definitions and fundamental results, see [5]

and [26] and the references therein.

Many facts about principal circle bundles have an orbibundle counterpart. For

instance, theorem 4.3.15 of [5] says that the (isomorphism classes of) principal S1-

orbibundles over an orbifold B are in one-to-one correspondence with the elements of

H2
orb(B,Z) and the bijection is given by the orbifold first Chern class. In particular,

the trivial orbibundle corresponds to the trivial orbifold cohomology class. Also, it is

not hard to produce orbibundle versions of lemma 2.2.3 and theorem 2.2.4. The same

argument as in the previous section gives us the orbifold version of theorem 2.2.5.

Theorem 2.3.1. If (M, g) is a quasi-Sasaki manifold with Ricg = 0 and Fξ has

compact leaves, then M = S1 × |B| where |B| is the underlying topological space of a

Calabi-Yau orbifold B.

Remark 2.3.2. Since M is a manifold, |B| must be a manifold too.
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The orbifolds given by theorem 1.3.6 (i.e. those coming from the leaf space of a

quasi-regular quasi-Sasaki structure) are locally cyclic, meaning that all of the local

uniformizing groups are cyclic groups. Furthermore, given an orbifold B, theorem

4.3.15 of [5] also states that the total space of an S1-orbibundle over B is a smooth

manifold when all of the local uniformizing groups of B inject into S1. For these

reasons, we will only concern ourselves with locally cyclic orbifolds. As a sort of

converse to theorem 1.3.6, we have the following:

Proposition 2.3.3. Given a locally cyclic Kähler orbifold B with 1
2π

[Ω] ∈ H2
orb(B,Z),

there is a quasi-Sasaki structure on the principal S1-orbibundle π : M → B

corresponding to 1
2π

[Ω] with connection form η such that dη = π∗Ω.

Proof. Let ξ be the unit vector field along the fibers and consider the metric on M

given by g = η ⊗ η + π∗gB where gB is a Kähler metric on B. Define Φ = π̃ ◦ J ◦ π∗

where J is the complex structure on B and π̃ is the horizontal lift with respect to η.

Then Φ2 = −I + ξ ⊗ η and Φ∗g = g − η ⊗ η. It follows that M is quasi-Sasaki.

We also have the orbi-analogue of theorem 2.2.6. Since the equations we must

solve are the same, the proof follows mutatis mutandis, and so we omit it.

Theorem 2.3.4. Let (Bni
i , ωi), i = 1, . . . , k, be locally cyclic Kähler-Einstein orbifolds

with c1
orb(Bi) > 0. We can assume that the metrics have been normalized so that

1
2π

[ωi] is an indivisible, integral class and c1
orb(Bi) = qi

1
2π

[ωi] for some qi ∈ Z+. Let

B = B1 × · · · × Bk and πi : B → Bi the projections. Pick integers bi, not all zero,

and set

Ω = b1π
∗
1ω1 + · · ·+ bkπ

∗
kωk.
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Then there is a quasi-Sasaki-Einstein metric with positive scalar curvature on the

principal S1-orbibundle π : M → B corresponding to 1
2π

[Ω] with connection form η

such that dη = π∗Ω.

We conclude this section with the orbi-analogue of the rigidity theorem 2.2.10.

We will show that theorem 1 in [40] can be carried over to the orbifold setting and,

as in the previous section, it implies our theorem.

Theorem 2.3.5. If (M, g) is a quasi-regular, quasi-Sasaki-Einstein manifold with

positive scalar curvature, then M is a principal circle orbibundle over a compact

Kähler orbifold B, where B is a product of Kähler-Einstein orbifolds and the metric

g is among those constructed in theorem 2.3.4.

Proof. Since (M, g) is compact, quasi-regularity of Fξ implies that the orbits of ξ

are compact. By the structure theorem 1.3.6, M is a principal S1-orbibundle over

a compact Kähler orbifold (B, gT ) with connection form η. By lemma 1.2.7, the

curvature form dη is of type (1,1). The conditions on dη and ρT imposed by the

Einstein equations are the same as the conditions on the curvature form and Ricci

form in [40]. Proposition 1 in [40] is proved by local computations, exploiting these

conditions. Thus we would have the same proposition in orbifold setting.

Proposition 2.3.6. Under the assumptions of the theorem, there is a global,

orthogonal decomposition TB = E1 ⊕ · · · ⊕ Er where the Ei are the eigenspaces of

the Ricci curvature. The eigenvalues are constant and any sum of the eigenspaces is

integrable and invariant under the complex structure.

The leaves of the foliation TB = E1⊕· · ·⊕Er have an induced Kähler structure

and the Einstein equations for g show that they have positive Ricci curvature. Thus

the leaves are compact and simply connected by Myers’s theorem and Kobayashi’s
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theorem in orbifold setting, respectively. By the same argument as in step 3 of

proposition 2 of [40] (using the local stability theorem of foliations with compact

leaves), we can find a local frame for E1 consisting of vector fields which are foliate

with respect to E⊥1 . Then we can perform the same local computation as in [40] to

show that both E1 and E⊥1 are totally geodesic. Then it follows that E1 and E⊥1

are parallel. Iterating this argument we find that each Ei is parallel. Then, since B

is compact (hence complete) and simply connected, by the de Rham decomposition

theorem for orbifolds (see [26]) B splits isometrically as a product of Kähler orbifolds

B = B1 × · · · × Br according to the decomposition of TB. Hence B is a product of

Kähler-Einstein orbifolds with c1
orb(Bi) > 0. Then since the curvature form is of type

(1,1), it follows that the characteristic class of the S1-orbibundle must be of the form

in theorem 2.3.4.

2.4. Transverse Curvature Conditions

In the previous two sections we assumed that all of the orbits of ξ were compact.

We want to make no assumptions on the orbits of the Reeb field, but the irregular

case, where M is compact and ξ has noncompact orbits, is inherently more difficult

to deal with. The difficulty comes from the potential unruliness of the leaf space

M/Fξ. It may not have a tractable structure; for instance, it may not even be a

Hausdorff space! Since we are unable to work with the irregular case directly, to get

a handle on it we will assume that the transverse curvature satisfies a certain non-

negativity condition. In this section, we introduce the curvature conditions that we

will work with and mention a few of their topological implications. We first consider a

curvature condition known as non-negative quadratic orthogonal bisectional curvature

(NQOBC).

42



Definition 2.4.1. A Kähler manifold of complex dimension n has NQOBC at a point

x ∈M if for any unitary frame {e1, . . . , en} of T 1,0
x M and any real numbers α1, . . . , αn,

n∑
i,j=1

Rīijj̄(αi − αj)2 ≥ 0.

We say that the manifold has NQOBC if it does so at every point x ∈M .

For more information about Kähler manifolds with NQOBC, see the paper [8].

The primary reason why we are interested in this curvature condition is for the

following theorem:

Theorem 2.4.2. If a closed (compact with no boundary) Kähler manifold M has

NQOBC, then every harmonic (1,1)-form is parallel.

Proof. The Bochner formula for (1,1)-forms on a Kähler manifold is

4αij̄ = −∆αij̄ − 2Rij̄kl̄αlk̄ +Rik̄αkj̄ +Rkj̄αik̄.

Here 4 = dδ + δd is the Hodge laplacian and ∆ = tr(∇2) is the tensor laplacian. If

4α = 0, then the Bochner formula yields

αij̄∆αij̄ = −2Rij̄kl̄αlk̄αij̄ +Rik̄αkj̄αij̄ +Rkj̄αik̄αij̄. (2.19)

Since α is a (1,1)-form, A := α(J ·, ·) is a symmetric bilinear form that is invariant

under the complex structure J . Hence A defines a Hermitian form and thus there

is a local unitary frame {ei, ei} that diagonalizes A. So with respect to this frame,
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αīi := α(ei, ei) are the only nonzero components of α and equation (2.19) becomes

αīi∆αīi = −2Rīikk̄αkk̄αīi +Rīiα
2
īi +Rkk̄α

2
kk̄

= Rīikk̄(αīi − αkk̄)2. (2.20)

Integrating equation (2.20) and using integration by parts, we get

∫
M

−|∇α|2 dV =

∫
M

Rīikk̄(αīi − αkk̄)2 dV.

From this, the assumption of NQOBC implies that ∇α = 0.

If we assume that the transverse Kähler metric of a quasi-Sasaki structure has

non-negative quadratic orthogonal transverse bisectional curvature, then the following

corollary is immediate.

Corollary 2.4.3. If the transverse Kähler metric of a closed quasi-Sasaki manifold

has NQOBC, then every basic, harmonic (1,1)-form is transversely parallel. That is,

if α is a basic (1,1)-form and 4Bα = 0, then ∇Tα = 0.

The other curvature condition that we will consider is transverse holomorphic

bisectional curvature (THBC). This is just the holomorphic bisectional curvature of

the transverse Kähler metric.

Definition 2.4.4. Let σ be a plane in Dp ⊂ TpM . We say that σ is Φ-invariant if

Φσ = σ. It follows that σ = span{Xp,ΦXp} for some 0 6= Xp ∈ Dp.

Definition 2.4.5. Let σ1 and σ2 be Φ-invariant planes in Dp ⊂ TpM . The transverse

holomorphic bisectional curvature (THBC) HT (σ1, σ2) is defined by

HT (σ1, σ2) := 〈RT (X,ΦX)ΦY, Y 〉,
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where X ∈ σ1, Y ∈ σ2 and |X| = |Y | = 1.

It is a straightforward exercise to check that HT (σ1, σ2) is well-defined. That

is, HT (σ1, σ2) depends only on σ1 and σ2, not on the choice of X and Y . We say

that HT ≥ 0 at a point p ∈ M if HT (σ1, σ2) ≥ 0 for any two Φ-invariant planes

σ1, σ2 ⊂ Dp. We say that M has non-negative transverse holomorphic bisectional

curvature if HT ≥ 0 for all p ∈M .

Let σu = span{u,Φu} and σv = span{v,Φv} for some unit vectors u, v ∈ D.

Writing u = U+Ū and v = V +V̄ where U = 1
2
(u−
√
−1Φu) and V = 1

2
(v−
√
−1Φv),

we have HT (σu, σv) = 4〈RT (U, Ū)V, V̄ 〉. So HT ≥ 0 if and only if 〈RT (U, Ū)V, V̄ 〉 ≥ 0

for all U, V ∈ D1,0.

In the Kähler setting, positive and non-negative holomorphic bisectional

curvature has been studied extensively. For example, see any of [2], [18], [22], [29],

[35] or [42]. Positive and non-negative THBC has been studied in the Sasaki setting

in [20] and [21]. The following is a corollary of theorem 4 in [18]. Since the proof

would follow in exactly the same way, we shall omit it.

Corollary 2.4.6. If M is a compact, connected quasi-Sasaki manifold with positive

transverse bisectional curvature, then the second basic Betti number b2
B = 1.

Note that NQOBC is a strictly weaker condition than non-negative holomorphic

bisectional curvature. Clearly NHBC implies NQOBC and indeed there are examples

of Kähler manifolds with NQOBC that do not admit any Kähler metrics with NHBC.

2.5. Splitting the Contact Bundle

In this section we show that the presence of transversely parallel (1,1)-forms

induces a splitting of the contact bundle of a quasi-Sasaki manifold. We begin with

a definition.
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Definition 2.5.1. A subbundle D1 ⊂ D is called invariant or transversely parallel

if for all Y ∈ D1, ∇T
XY ∈ D1 for any X ∈ TM . The contact bundle D is reducible

(with respect to gT ) if there are invariant subbundles D1 and D2 and an orthogonal

decomposition D = D1 ⊕ D2. We say that gT is (irreducible) reducible if D is (not)

reducible with respect to gT .

Let (M, g) be a quasi-Sasaki manifold. The fundamental 2-form ω (i.e. the

Kähler form of the transverse metric gT ) is transversely parallel (i.e. ∇Tω = 0).

Suppose that α is another basic, transversely parallel (1,1)-form. Then for X, Y ∈ D,

define the (1,1)-tensor S by the equation

α(X, Y ) = ω(S(X), Y ). (2.21)

Notice that S is self-adjoint with respect to ω. Indeed,

ω(S(X), Y ) = α(X, Y ) = −α(Y,X) = −ω(S(Y ), X) = ω(X,S(Y )).

Hence S is a diagonalizable linear map on each contact space Dp ⊂ TpM . Since both

α and ω are transversely parallel, it follows from (2.21) that S is transversely parallel.

Therefore, the linear map Sp : Dp → Dp has the same set of eigenvalues for every

point p ∈ M . Let {c0, . . . , cr} be the distinct eigenvalues of S. As S is self-adjoint,

the eigenvalues ci ∈ R. If α is not a multiple of ω, then S is not a multiple of the

identity and thus r ≥ 1.

Let Di ⊂ D be the eigenbundle corresponding to the eigenvalue ci of S. Then

D = D0 ⊕ · · · ⊕ Dr (2.22)
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and the distribution p 7→ Di(p) is transversely parallel. Indeed, let Y ∈ Di(p) and

X ∈ TpM . Since ∇TS = 0, we have S(∇T
XY ) = ∇T

XS(Y ) = ci∇T
XY. Therefore

∇T
XY ∈ Di(p) and Di is invariant in the sense of definition 2.5.1. The splitting (2.22)

is orthogonal with respect to ω. Indeed, if X ∈ Di and Y ∈ Dj and i 6= j, then

ciω(X, Y ) = ω(S(X), Y ) = ω(X,S(Y )) = cjω(X, Y ).

Since ci 6= cj, this shows that ω(X, Y ) = 0. Since ci is real, Di is closed under complex

conjugation (i.e. Di = Di). Since both α and ω are (1,1)-forms, they are Φ-invariant.

As S is self-adjoint, we get that

ω(X,S(ΦY )) = ω(S(X),ΦY ) = α(X,ΦY )

= −α(ΦX, Y )

= −ω(S(ΦX), Y ) = −ω(ΦX,S(Y )) = ω(X,ΦS(Y )).

Since ω is non-degenerate on D, this implies that S ◦Φ = Φ◦S. Hence, Di is invariant

under Φ (i.e. ΦDi = Di). With this we see that the splitting of D in (2.22) is

orthogonal with respect to gT and therefore, if α and ω are not proportional to each

other, D is reducible. Corresponding to this splitting, we write ω = ω0 ⊕ · · · ⊕ ωr,

α = α0 ⊕ · · · ⊕ αr and Φ = Φ0 ⊕ · · · ⊕ Φr, where

Φi(X) =


Φ(X) if X ∈ Di,

0 otherwise

.

On Di we have αi = ciωi. Since Di has a Käher structure, Di has even real dimension.

Therefore, Di has a local frame {X1, . . . , Xpi , X̄1, . . . , X̄pi} where Xj ∈ D1,0.
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Lemma 2.5.2. Let M be a compact quasi-Sasaki manifold with transverse NQOBC.

Then D is reducible if and only if b1,1
B > 1.

Proof. If b1,1
B > 1 then by the transverse Hodge theorem, we have at least two

distinct, basic, harmonic (1,1)-forms. With the assumption of transverse NQOBC,

these harmonic forms are transversely parallel (corollary 2.4.3) and as we just saw

above, this implies that D is reducible.

Conversely, suppose D = D1 ⊕ D2 and the Di are invariant with respect to gT .

Let ωi = ω|Di . Then ω = ω1 ⊕ ω2 and 0 6= [ωi]B ∈ H1,1
B (M,Fξ). Furthermore, since

ωn = (ω1 ⊕ ω2)n 6= 0, [ω1]B and [ω2]B are independent. Thus b1,1
B > 1.

2.6. The General Case with a Curvature Condition

In this section we assume that the quasi-Sasaki manifold (M, g) is Einstein with

Ricg = λg. Then dη is harmonic and, as we saw in remark 2.1.3, the transverse

scalar curvature RT = λ(n + 1) is constant. Proposition 2.1.4 then implies that the

transverse Ricci form ρT is harmonic. We also assume further that (M, g) satisfies a

transverse curvature condition at least as strong as NQOBC. Then by corollary 2.4.3,

dη and ρT are transversely parallel. Thus we can split the contact bundle as in the

previous section.

Let’s split the contact bundle with respect to dη. Let c0, . . . , cr, be the distinct

eigenvalues of S (the (1,1)-tensor form of dη). Then we have an orthogonal splitting

of D into transversely parallel distributions, D = D0⊕ · · · ⊕Dr. On each Di we have

dηi = ciωi. If we write ρT = ⊕ρTi according to this decomposition, then equation

(2.11) shows that ρTi = (λ + 2c2
i )ωi ≥ 0. This implies that the splitting of D with

respect to ρT is the same as the splitting of D with respect to dη.
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If our quasi-Sasaki structure has rank 2p + 1 for p < n, then ci = 0 for some

i. Reindexing if neccessary, we may assume that c0 = 0 and hence dη0 = 0. That

Di is transversely parallel implies that for any X, Y ∈ Di we have πD([X, Y ]) ∈ Di.

Since πLξ([X, Y ]) = −2dη(X, Y )ξ, we see that D0 and Lξ ⊕ Di are involutive, hence

integrable. Again using that the Di are transversely parallel, it is not hard to see that

Lξ ⊕ D1 ⊕ · · · ⊕ Dr is also integrable and thus M is locally a product manifold. In

fact, (M, g) is locally a Riemannian product, as we will see next.

Since gT and dη are both transversely parallel and we have the relations

cig
T (X,ΦiY ) = dηi(X, Y ), it follows that ∇TΦi = 0. We will show that Φ0, in

particular, is parallel with respect to the metric g. That is, ∇Φ0 = 0. Note that this

need not be the case for the other Φi. Remember that by lemma 1.2.13, ∇Φ = 0 if

and only if M is cosymplectic. First we prove the following useful proposition.

Proposition 2.6.1. If D = D0 ⊕ · · · ⊕ Dr admits a splitting such that dηi = ciωi,

then for Y ∈ D, ∇Y ξ = −
∑

i ciΦiY . In particular, if Y ∈ Di then ∇Y ξ = −ciΦY .

Proof. By lemma 1.2.11 we have dη(X, Y ) = −g(X,∇Y ξ). Since dη =
∑

i dηi and

dηi(X, Y ) = cig(X,ΦiY ), the above equation gives

∑
i

g(X, ciΦiY ) = −g(X,∇Y ξ).

Since X was arbitrary, the result follows.

Now we will show that ∇Φ0 = 0. Recall that the transverse Levi-Civita

connection ∇T is defined by

∇T
XY := πD (∇XY ) , X ∈ D,

∇T
ξ Y := πD [ξ, Y ] .
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Lemma 2.6.2. The (1,1)-tensor Φ0 is parallel with respect to the metric g.

Proof. As Φ : TM → D and Φξ = 0, for X, Y ∈ D we have

0 = (∇T
XΦ0)(Y ) = πD ((∇XΦ0)(Y )) = πD(∇XΦ0(Y )− Φ0(∇XY )).

This says that (∇XΦ0)(Y ) has no part in D. Does it have any part in Lξ? Well,

Φ0 : D0 → D0 and the term ∇XΦ0(Y ) ∈ D because the ξ part is dη(X,Φ0(Y ))ξ = 0

since dη = 0 on D0. Thus, for X, Y ∈ D, we have (∇XΦ0)(Y ) = 0. By proposition

2.6.1 and Φi ◦ Φj = 0 for i 6= j we compute that

(∇XΦ0)(ξ) = ∇XΦ0(ξ)− Φ0(∇Xξ)

=
∑
i

ciΦ0(ΦiX)

= 0.

Thus ∇XΦ0 = 0 for X ∈ D. By lemma 1.2.11, ∇ξΦ = 0 which implies that ∇ξΦ0 = 0

(we could also show this by direct computation). Therefore ∇Φ0 = 0.

Now let Φ̃ :=
∑r

i=1 Φi and D̃ :=
∑r

i=1Di. The map P := −Φ̃2 + ξ ⊗ η is

projection onto Lξ ⊕ D̃ and Q := −Φ2
0 is projection onto D0. Thus P 2 = P , Q2 = Q

and PQ = QP = 0. As in section ??, F := P − Q defines an almost product

structure. Since Φ = Φ0 + Φ̃ and Φ2 = −I + ξ ⊗ η, we have F = I + 2Φ2
0. By

proposition 2.6.2, ∇Φ0 = 0 and this clearly implies that ∇Φ2
0 = 0. Hence ∇F = 0.

So by proposition 5.0.7, (M, g) is a locally decomposable Riemannian manifold. Thus,

locally, (M, g) is the Riemannian product of manifolds (M0, g0) and (M1, g1) whose

tangent spaces are (isomorphic to) D0 and Lξ ⊕ D̃ respectively. We will show that

(M0, g0) is Kähler-Einstein and (M1, g1) is quasi-Sasaki-Einstein.
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Pick a point x ∈ M and let M0 be a maximal integral submanifold of D0

containing the point x. Then dimR(M0) = 2(n − p). Define 2-forms ω0 and ω̃ by

ω0(X, Y ) = g(X,Φ0Y ) and ω̃(X, Y ) = g(X, Φ̃Y ). Then ω0 = ω− ω̃. Since ω is closed

and ω̃ =
∑r

i=1 c
−1
i dηi is proportional to dη, we have dω0 = 0. Because Φ0 has rank

2(n − p), ω0|D0 is non-degenerate. We have (Φ0|D0)2 = −I, ∇Φ0 = 0 and g|D0 is

compatible with Φ0. Therefore, (M0,Φ0|D0 , g|D0) is Kähler. To see that the metric

on M0 is Einstein we refer back to equations (2.8) and (2.11). Since dη = 0 on D0,

these equations say precisely that g|D0 is an Einstein metric on M0

Let M1 be a maximal integral submanifold of Lξ ⊕ D̃ containing x. Then

dimR(M1) = 2p + 1. Since η ∧ (dη)p 6= 0 on Lξ ⊕ D̃, restricting η to Lξ ⊕ D̃ gives

M1 a contact structure. As Φ and Φ̃ agree on D̃ and both are zero on Lξ, it is easily

verified that the restriction of (ξ, η, Φ̃, g) to Lξ⊕D̃ gives M1 an almost contact metric

structure. Now we check the normality condition.

Recall that NΦ + ξ ⊗ 2dη = 0 and since ∇Φ0 = 0, we have NΦ0 = 0. Take

X, Y ∈ Lξ ⊕ D̃. Since Φ̃ = Φ− Φ0 and Φ0X = Φ0Y = 0, we compute that

NΦ̃(X, Y ) + 2dη(X, Y )ξ = Φ0[X,ΦY ] + Φ0[ΦX, Y ]−ΦΦ0[X, Y ]−Φ0Φ[X, Y ]. (2.23)

As the distribution Lξ ⊕ D̃ is integrable, it is involutive. Hence, each of the

bracket terms in (2.23) are in Lξ ⊕ D̃. Since Φ0 annihilates Lξ ⊕ D̃, it follows that

NΦ̃(X, Y ) + 2dη(X, Y )ξ = 0. Therefore, M1 has a normal almost contact metric

structure. Clearly, the fundamental 2-form ω̃ associated to this almost contact metric

structure is closed. Hence (ξ, η, Φ̃, g) restricted to Lξ ⊕ D̃ gives M1 a full rank quasi-

Sasaki structure. Moreover, the metric is Einstein. Summarizing, we have proved:

51



Theorem 2.6.3. Let M2n+1 be a quasi-Sasaki-Einstein manifold of rank 2p + 1 for

p < n with transverse NQOBC. Then (M, g) is locally the Riemannian product of

a Kähler-Einstein manifold (M0, g0) with dimR(M0) = 2(n − p) and quasi-Sasaki-

Einstein manifold (M1, g1) of rank 2p+ 1. Moreover, the transverse Kähler metric of

g1 is a product of transverse Kähler-Einstein metrics.

Remark 2.6.4. That M is locally a product manifold does not require the transverse

curvature assumption. The Einstein equations alone are enough to get this and the

proof can go along the same lines as the proof of proposition 1 in [40]. However,

to get a local Riemannian product, the almost product structure must be parallel

(proposition 5.0.7). At this time, we don’t know if this can be proved solely on the

strength of the Einstein equations in the irregular case.

For the remainder of this section we may assume that our quasi-Sasaki structures

have full rank and if D is reducible, then none of the Di are integrable on their own.

If D is irreducible, then the transversely parallel forms ω, dη and ρT must all be

proportional to each other. That is, dη = cω and ρT = µω for some constants c and

µ. Since c 6= 0, our quasi-Sasaki structure is simply a scaling of a Sasaki-Einstein

structure. By replacing η with cη, replacing ξ with c−1ξ and scaling the transverse

metric by c2 we get a Sasaki-Einstein structure.

Combining corollaries 2.4.3, 2.4.6 and lemma 2.5.2 we get:

Theorem 2.6.5. A quasi-Sasaki-Einstein manifold with positive transverse holomorphic

bisectional curvature is, up to homothey, a Sasaki-Einstein manifold.

Now by [21] we get that
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Corollary 2.6.6. A quasi-Sasaki-Einstein manifold with positive transverse

holomorphic bisectional curvature is diffeomorphic to S2n+1 and the metric can be

deformed to the round metric.

Lemma 2.6.7. A reducible quasi-Sasaki manifold with positive Ricci curvature is

quasi-regular.

Proof. Suppose that M is quasi-Sasaki with positive Ricci curvature and D = D1⊕D2

is reducible. Then the Di are transversely parallel and this implies that Lξ ⊕ Di is

an integrable subbundle of TM . Since the Di are Φ-invariant, using proposition 2.6.1

and equation (2.4), it is not hard to show that the leaves of Lξ ⊕ Di are totally

geodesic submanifolds of M . Hence the induced metric on them is complete. By

assumption, D1 and D2 have positive Ricci curvature. So by Myers’s theorem, the

leaves of Lξ ⊕ Di are compact. An integral curve of ξ is a transversal intersection

of a leaf from Lξ ⊕ D1 and a leaf from Lξ ⊕ D2. Thus the ξ orbits are compact and

therefore Fξ is quasi-regular.

From this lemma we see that an irregular quasi-Sasaki-Einstein manifold with

positive scalar curvature is irreducible. Hence we have the following corollary:

Corollary 2.6.8. An irregular quasi-Sasaki-Einstein manifold with positive scalar

curvature and transverse NQOBC is a scaling of a Sasaki-Einstein manifold.
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CHAPTER III

TRANSVERSE KÄHLER-RICCI FLOW

The aim of this chapter is to extend results in Kähler-Ricci flow to quasi-Sasaki

manifolds. The transverse Kähler-Ricci flow is the normalized Kähler-Ricci flow of the

quasi-Sasaki manifold’s transverse Kähler metric. We give a proof of its short-time

existence. The long-time existence follows from the work in [36]. In comparison with

[7], we can show that when the basic first Chern class c1
B ≤ 0, the flow converges to a

transverse Kähler-Einstein metric. This can be done just as in [36], but we choose not

to pursue it here. Rather, we are interested in the case that c1
B > 0. In [31], Perelman

introduced hisW functional. TheW functional is monotone increasing along the Ricci

flow and this property has many important applications. In particular, for a Kähler

manifold with positive first Chern class, the monotonicity of the W functional can

be used to prove uniform bounds on the scalar curvature and the diameter of the

manifold along the flow. This was first presented in [34].

We have two primary goals in this chapter. The first is to establish uniform

bounds on the transverse scalar curvature and the transverse diameter along the

transverse Kähler-Ricci flow when c1
B > 0. This will imply uniform bounds on the

scalar curvature and the diameter of the manifold along the flow. We first define

the WT functional, which is the analogue of the W functional for the quasi-Sasaki

setting. We show that it is monotonic along the flow and then we proceed in a way

similar to [34]. A subtle difference in our situation is that the WT functional is

only involved with basic functions. That is, functions which are constant in the ξ

direction. This poses some problems as the distance function on the manifold is not

basic. To deal with this, we utilize the transverse distance function from chapter I.
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This approach was taken in [12] and [19], where these results were, independently,

established for Sasaki manifolds. The essential ingredient is really the transverse

Kähler structure of the manifold. The additional contact structure afforded by Sasaki

manifolds is not required. Thus we can prove these results in the quasi-Sasaki setting

as well. On a compact Kähler manifold, it is known that if the initial metric has

nonnegative bisectional curvature, then this property is preserved along the Kähler-

Ricci flow. The second goal of this chapter is to show that nonnegativity of the

transverse (holomorphic) bisectional curvature, as defined in 2.4.5, is preserved along

the transverse Kähler-Ricci flow.

This chapter is organized as follows: First we define the transverse Kähler-

Ricci flow and prove its short-time existence. Next we give an evolving quasi-

Sasaki structure, compatible with the evolving transverse metric, and provide some

commentary on how the rank of this structure may change along the flow. Next

we define the WT and µT functionals and prove their monotonicity. After that we

show that the transverse scalar curvature and Ricci potential are bounded along the

flow by the diameter of the manifold. Then we prove a uniform upper bound on the

transverse diameter of the manifold along the flow. This implies a uniform bound on

the diameter of the manifold, and hence on the scalar curvature and Ricci potential.

The presentation in sections 3 and 4 is much like that in [34], but here we provide

more details for the arguments and computations. The last section is devoted to

studying the transverse Kähler-Ricci flow when the initial metric has non-negative

(positive) transverse bisectional curvature. Some of the technical lemmas that get

used in this chapter are collected in the appendix.
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3.1. Transverse Kähler-Ricci Flow

Following the introduction of Hamilton’s Ricci flow, similar evolution equations

were considered on Kähler manifolds. Since the 1980’s, Kähler-Ricci flow (KRF) has

been a very fruitful area of mathematics. Many deep and beautiful results are known

and KRF is still an active area of research today. It is well-known in Kähler geometry

via the Chern-Weil theory, that the first Chern class, c1, of a Kähler manifold is

represented by a multiple of the Ricci form and that the de Rham cohomology class

of the Ricci form is independent of the Kähler metric. Thus a necessary condition

for the existence of a Kähler-Einstein metric ω is that c1 = λ[ω]. Hence c1 must be

positive definite, negative definite or null depending on whether λ is positive, negative

or zero respectively. The existence of Kähler-Einstein metrics in the cases c1 < 0 and

c1 = 0 was proved independently by Aubin in [1] and Yau in [43]. In [7], Cao showed

that the normalized KRF converges to a Kähler-Einstein metric when c1 ≤ 0. When

c1 > 0, things are more complicated and there are obstructions to the existence of

Kähler-Einstein metrics, see [16]. However, in certain cases, it is known that the KRF

converges to a Kähler-Ricci soliton when c1 > 0. See [33] and [38].

In [36], Smoczyk, Wang and Zhang defined the Sasaki-Ricci flow (SRF) as the

KRF of the underlying transverse Kähler metric associated with a Sasaki structure.

They proved results analogous to those in [7]. The work in [36] on the SRF does

not rely heavily on the contact structure of a Sasaki manifold and many of their

results can be carried over to the quasi-Sasaki setting. Collins in [12] and He in [19],

independently, extended a remarkable result of Perelman in KRF with c1 > 0 (see

[34]) to the SRF with c1
B > 0. In this chapter, we will do the same in the quasi-Sasaki

setting. In this section we define the flow and then prove its short time existence.
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Definition 3.1.1. Let (ξ, η0,Φ0, g0) be a quasi-Sasaki structure with 2πc1
B = κ[ω0]

for some constant κ. The transverse Kähler-Ricci flow (TKRF) is given by

∂

∂t
gT = κgT − RicTg , gT (0) = gT0 . (3.1)

Let ρT := RicT (·,Φ·) be the transverse Ricci form. Recall that ρT is independent

of the transverse Kähler metric and that the class [ρT ] = 2πc1
B. As ω = gT (·,Φ·),

equation (3.1) is equivalent to

∂

∂t
ω = κω − ρT , ω(0) = ω0. (3.2)

A transverse homothety, also called a D-homothety, is a deformation of a quasi-

Sasaki structure that scales the transverse metric. Given a quasi-Sasaki structure

(ξ, η,Φ, g) and λ > 0, we set

ξλ := λ−1ξ, ηλ := λη and gλ := λ(λ− 1)η ⊗ η + λg.

Then (ξλ, ηλ,Φ, gλ) is a quasi-Sasaki structure and the transverse metric gTλ = λgT .

So if 2πc1
B = κ[ω], then by a D-homothety we may assume that κ = −1, 0 or 1,

depending on the sign of κ.

3.11. Short-Time Existence

To prove the short-time existence of a solution to equation (3.2), we reduce it

to a parabolic Monge-Ampére equation. Having done this, the standard theory of

parabolic equations guarantees the existence of a solution for at least a short time.

We will prove the case c1
B > 0 since we shall assume this in the sequel. The cases
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c1
B = 0 and c1

B < 0 can be proved similarly. We also note, although we don’t prove it

here, that equation (3.1) has a short-time solution even with no assumption on c1
B.

We assume that [ω0] = 2πc1
B and we know that 2πc1

B = [ρT0 ]. Thus, by the

transverse ∂∂̄-lemma of [15], there is a basic function f such that ω0 = ρT0 +
√
−1∂∂̄f .

Recall that ρT0 = −
√
−1∂∂̄ log(det(ω0)) Thus

ω0 = −
√
−1∂∂̄ log(det(ω0)) +

√
−1∂∂̄f

= −
√
−1∂∂̄ log(e−f det(ω0))

= −
√
−1∂∂̄ log(det(e−f/nω0)).

We let Ω := det(e−f/nω0) so that we can write ω0 = −
√
−1∂∂̄ log(Ω).

Next we consider the equation

∂φ

∂t
= log

det(ω0 +
√
−1∂∂̄φ)

Ω
+ φ+ c(t), φ(0) ≡ 1, (3.3)

defined for all t ≥ 0 such that ω0 +
√
−1∂∂̄φ > 0. Here c(t) is a time-dependent

constant. If φ solves (3.3), then it is easy to check that the metric ω := ω0 +
√
−1∂∂̄φ

solves (3.2). Conversely, given a solution to (3.2), its basic cohomology class must

evolve as

∂

∂t
[ω] = [ω]− 2πc1

B, [ω](0) = [ω0].

Solving this ODE, we find that [ω] = 2πc1
B+et([ω0]−2πc1

B). Since we assume that

[ω0] = 2πc1
B, we have [ω(t)] = [ω0]. By the transverse ∂∂̄-lemma, there is φ ∈ C∞B (M)

such that

ω = ω0 +
√
−1∂∂̄φ. (3.4)
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Since ω(0) = ω0, we have that ∂∂̄φ(0) = 0. Differentiating the above, we get

ω − ρT =
√
−1∂∂̄

∂φ

∂t
. (3.5)

Putting (3.4) into (3.5) and writing ρT = −
√
−1∂∂̄ log(det(ω)), we then have

√
−1∂∂̄

∂φ

∂t
=
√
−1∂∂̄

(
log

det(ω)

Ω
+ φ

)
. (3.6)

Thus there is a time-dependent constant c(t) such that

∂φ

∂t
= log

det(ω)

Ω
+ φ+ c(t).

Hence φ solves (3.3). Therefore, equations (3.2) and (3.3) are equivalent.

Now consider the parabolic Monge-Ampére equation, given by

∂φ

∂t
= log

det(ω0ij̄ + φ,ij̄)

Ω
+ ξ2φ+ φ. (3.7)

Here φ is not assumed to be basic and the indices after the comma denote covariant

derivatives.

Lemma 3.1.2. Equation (3.7) preserves the property ξφ = 0.

Proof. The proof of this lemma is by a maximum principal argument and is the same

as the proof of Lemma 5.2 in [36]. See [36] for the details.

With this we can prove the short time existence of our flow.

Proposition 3.1.3. For some T > 0, equation (3.2) has a solution for t ∈ [0, T ).
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Proof. Equation (3.7) is parabolic whenever we have

det(ω0ij̄ + φ,ij̄) > 0. (3.8)

By the standard parabolic theory, for any initial function φ(0) satisfying (3.8), there

is T > 0 and a solution, φ : M × [0, T )→ R, to (3.7) with det(ω0ij̄ + φ,ij̄) > 0 for all

t ∈ [0, T ).

Take φ(0) ≡ 1. Then (3.8) is satisfied and since ξφ(0) = 0, the solution φ is a

basic function by lemma 3.1.2. Recall that

φ,ij̄ := ∇2φ(Xi, Xj̄) = ∇dφ(Xi, Xj̄) = XiXj̄φ− dφ(∇XiXj̄).

By (2.5) we have ∇XiXj̄ = −dη(Xi, Xj̄)ξ. So when φ is basic we have φ,ij̄ = φij̄. Thus

our solution to (3.7) also solves (3.3) (with c(t) = 0). Hence, we have a solution to

(3.2) on [0, T ).

3.12. Long-Time Existence

The main theorem in [7] implies that for a compact Kähler manifold (M, g0) with

c1 = κ[ω0], the Kähler-Ricci flow

∂

∂t
g = κg − Ricg, g(0) = g0,

has a unique solution defined for all t ≥ 0 and when κ ≤ 0 the flow g(t) converges to

the unique Kähler-Einstein metric in c1. Using this result, it is shown in [36] that for
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a compact Sasaki manifold (M, η0, g0) with with c1
B = κ[dη0], the Sasaki-Ricci flow

∂

∂t
gT = κgT − RicTg , gT (0) = gT0 ,

has a unique solution for t ∈ [0,∞) and when κ ≤ 0 the flow gT (t) converges to a

transverse Kähler-Einstein metric.

In the Sasaki setting, dη is non-degenerate on D and it is the transverse Kähler

form of the Sasaki metric. So the Sasaki-Ricci flow is really just our TKRF where

the initial structure is Sasaki (rank 2n + 1 quasi-Sasaki with ω = dη). To prove

the long-time existence of the flow, one needs uniform Ck-estimates for the metric

potential function φ. The estimates obtained in [36] do not rely on the fact that the

initial structure is Sasaki and thus can be carried over to the setting of our TKRF.

Therefore, the long-time existence of the TKRF follows from the work in [36], which,

in turn, follows from the work in [7]. We record this as a corollary.

Corollary 3.1.4. Let (M, ξ, η0,Φ, g0) be a compact quasi-Sasaki manifold with c1
B =

κ[ω0]. Then the transverse Kähler-Ricci flow

∂

∂t
gT = κgT − RicTg , gT (0) = gT0 ,

has a unique solution that exists for all t ≥ 0. When κ ≤ 0, the flow gT (t) converges

to a transverse Kähler-Einstein metric.

3.13. The Evolving quasi-Sasaki Structure

Now that we have an evolving transverse Kähler metric ωt = ω0 +
√
−1∂∂̄φ(t)

that satisfies (3.2), we need an associated evolving quasi-Sasaki structure. We define
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the evolving structure (ξ, ηt,Φt, gt) by

ηt := η0 + dcBφ,

Φt := Φ0 − ξ ⊗ dcBφ ◦ Φ0,

gt := ηt ⊗ ηt + ωt(Φt·, ·).

As dcBφ is basic, it is clear that ηt(ξ) = η0(ξ) = 1. It is not hard to check that the

relations Φ2
t = −I + ξ ⊗ ηt and gt(Φt·,Φt·) = gt − ηt ⊗ ηt hold for this evolving

structure. Hence, for each t ≥ 0, we have a quasi-Sasaki structure (ξ, ηt,Φt, gt) where

the transverse metric gTt evolves by TKRF.

It is natural to ask what happens to the rank of the quasi-Sasaki structure as

it evolves under the TKRF. If the initial structure is Sasaki (rank 2n + 1), then

dηt = ωt and thus the evolving structure remains Sasaki. However, the rank need

not be constant along the flow. If the initial structure is co-symplectic (rank 1),

then dη0 = 0. If the rank stays constant then dηt =
√
−1∂∂̄φ = 0 for all t. This

implies that ω0 is a constant solution to (3.2). Hence ω0 is a transverse Kähler-

Einstein metric. So if the initial structure is rank 1 and ω0 is not Einstein, then the

rank cannot remain constant. To construct such a manifold, simply take a compact

Kähler manifold (M̃, J, g̃) with c1 > 0 which is not Einstein (these exist) and let

M = S1 × M̃ and g = dθ ⊗ dθ + g̃. Then {M,∂θ, dθ, J, g} is co-symplectic and ω is

not transverse Kähler-Einstein.

If the initial structure has rank 2p + 1 with p < n, we would like to know what

happens to the rank of the evolving structure. If the initial structure is rank 1, then

the rank can only increase along the flow, but is this what happens in general?
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We end this section with a few words on the volume form naturally associated to

a quasi-Sasaki manifold. Given a quasi-Sasaki structure on M , the top form η ∧ (ω)n

defines a volume form. If ωt = ω0 +
√
−1∂∂̄φ evolves by transverse Kähler-Ricci flow,

then as we noted above, ηt = η0 + dcBφ is the evolving (almost) contact form. Since

dcBφ is basic,

dcBφ ∧ (ωt)
n = 0,

because it is a basic form of degree 2n+ 1. In a preferred coordinate chart we have

gt = ηt ⊗ ηt + (gTij̄ + φij̄)dz
i ⊗ dz̄j.

It follows that

(ωt)
n = c(n) det(gTij̄ + φij̄)dz

1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n,

where the constant

c(n) = n!
(
√
−1)n

2n
.

Therefore, the evolving volume form

ηt ∧ (ωt)
n = η0 ∧ (ωt)

n

= c(n) det(gTij̄ + φij̄)dx ∧ dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

= n!dVgt .

where dVgt is the Riemmanian volume form associated to gt.
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3.2. Perelman’s entropy functional on quasi-Sasaki manifolds

In this section we develop the analog of Perelman’s W functional in the quasi-

Sasaki setting. Our transverse entropy functional WT can be viewed as the entropy

functionalW for the transverse Kähler structure. We will show thatWT is monotonic

along the transverse Kähler-Ricci flow. This will allow us, in the next section, to prove

a non-collapsing result which can then be used to prove bounds on the scalar curvature

and the diameter of the manifold along the TKRF, as in [34].

3.21. The transverse entropy functional

Let M be a quasi-Sasaki manifold. The WT functional is defined in terms of the

quasi-Sasaki metric g, but it really only depends on the induced transverse metric.

We make the following definition:

Definition 3.2.1. For a quasi-Sasaki manifold (M, ξ, η,Φ, g), a basic function f ∈

C∞B (M) and a real number τ > 0, the transverse entropy functionalWT is defined by

WT (g, f, τ) :=

∫
M

(τ(RT + |∇f |2) + f)e−fτ−n dV, (3.9)

where dV = η ∧ (ω)n.

Even though the WT functional is defined in terms of the metric g, it really

only depends on the induced transverse metric gT . For this reason we may write

WT (gT , ·, ·) to mean WT (ḡ, ·, ·) where ḡ is any bundle-like metric inducing gT .

Since the function f in (3.9) is basic, the integrand of the WT functional only

involves the transverse Kähler structure. Thus, when we compute the first variation

of WT we are essentially just computing as we would in the Kähler setting, with all

of the familiar integration by parts formulas from Kähler geometry at our disposal.
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Proposition 5.0.10 and corollary 5.0.11 help make this precise. As noted in [17],

corollary 5.0.11 implies a general principle that will aid us greatly in our computations.

The principle is that if a result for a compact Kähler manifold can be proved using

only Stokes theorem and integration by parts, then the same result holds for compact

quasi-Sasaki manifolds and the proof can go as in the Kähler setting by inserting a

“∧η” in each line of the proof. See also proposition 4.6 in [19].

We consider a variation of the quasi-Sasaki structure that fixes ξ and the

transverse holomorphic structure. Let vij̄ = δgTij̄, v = (gT )ij̄vij̄, δf = h ∈ C∞B (M)

and δτ = σ. We assume that, at least locally, there is a basic function ψ such that

vij̄ = ∂i∂j̄ψ. Then we have vij̄,i = v,i.

Proposition 3.2.2. The first variation of WT on compact quasi-Sasaki manifolds is

given by

δWT (vij̄, h, σ) =

∫
M

(
σ(RT + ∆Tf)− τ〈vij̄, RT

ij̄ + fij̄〉+ h
)
τ−ne−f dV

+

∫
M

(v − h− nστ−1)(τ(2∆Tf − |∇Tf |2 +RT ) + f)τ−ne−f dV.

Before we prove the proposition, a few comments and observations are in order.

First, the Christoffel symbols of the transverse Levi-Civita connection in the ξ

direction, as well as those with mixed barred and unbarred indices, are all zero.

The others are given by the usual formula from Kähler geometry,

Γkij = (gT )kl̄
∂gT

il̄

∂zj
and Γk̄īj̄ = Γkij.
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For a function f on M , we will use the notation fi := ∂f
∂zi

= ∂if and fij̄ := ∂2f
∂zi∂z̄j

=

∂i∂j̄f . Next, if f is a basic function, then

|∇f |2 = |∇Tf |2 = (gT )ij̄fifj̄

and

∆f = ∆Tf = (gT )ij̄∇i∇j̄f = (gT )ij̄fij̄.

Finally, for symmetric (0,2)-tensors Sij̄ and Tij̄, we have an inner product given by

〈Sij̄, Tij̄〉 := (gT )il̄(gT )kj̄Sij̄Tkl̄,

and we write |Sij̄|2 = 〈Sij̄, Sij̄〉. To ease notation, we will drop the superscript T

from the transverse connection, Laplacian and metric in what follows. As all of the

functions involved are basic, this should not cause any confusion. The presence of one

barred index and one unbarred index in the metric indicates that we are considering

the transverse Kähler metric. Now for the proof:

Proof. From the relation gil̄gkl̄ = δki , we find that δgij̄ = −gil̄vkl̄gkj̄. Now the variation

of the transverse scalar curvature is

δRT = δ(gij̄RT
ij̄)

= −δ(gij̄∂i∂j̄ log(det(gTij̄)))

= −〈vij̄, RT
ij̄〉 −∆v.
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Next we compute

δ|∇f |2 = δ(gij̄fifj̄)

= −〈vij̄, fifj̄〉+ gij̄(hifj̄ + fihj̄)

= −〈vij̄, fifj̄〉+ 2gT (∇f,∇h).

Recall that dV = η ∧ (ω)n = c(n) det(gTij̄)dx ∧ dz
1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n. Hence

δdV = vdV and it follows that

δ(τ−ne−fdV ) = (v − h− nστ−1)τ−ne−fdV.

Putting these all together, we have

δWT (vij, h, σ) =

∫
M

(σ(RT + |∇f |2) + h)τ−ne−fdV

+

∫
M

τ(−〈vij̄, RT
ij̄ + fifj̄〉 −∆v + 2gT (∇f,∇h))τ−ne−fdV

+

∫
M

(τ(RT + |∇f |2) + f)(v − h− nστ−1)τ−ne−fdV.

Observe that ∆e−f = (|∇f |2−∆f)e−f . So, since M is closed, by Stokes’ theorem

we have ∫
M

(|∇f |2 −∆f)e−fdV = 0. (3.10)
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Since f, h, v ∈ C∞B (M), we have the following integration by parts formulas:

∫
M

e−f∆v dV =

∫
M

v(|∇f |2 −∆f)e−f dV, (3.11)∫
M

〈vij̄, fifj̄〉e−fdV =

∫
M

(〈vij̄, fij̄〉 − v(∆f − |∇f |2))e−f dV, (3.12)∫
M

gT (∇f,∇h)e−fdV =

∫
M

h(|∇f |2 −∆f)e−f dV. (3.13)

Equations (3.11) and (3.13) are straightforward to verify. For a proof of (3.12),

see proposition 4.3 in [19]. Now, using equations (3.10)-(3.13) in our above expression

for δWT we get

δWT (vij̄, h, σ) =

∫
M

(
σ(RT + ∆f)− τ〈vij̄, RT

ij̄ + fij̄〉+ h
)
τ−ne−f dV

+

∫
M

(v − h− nστ−1)(τ(2∆f − |∇f |2 +RT ) + f)τ−ne−f dV.

If we choose h = v − nστ−1, then the second integral in the expression for

δWT vanishes. Now let vij̄ = gij̄ − RT
ij̄ − fij̄. Then v = n − RT − ∆f and h =

n− RT −∆f − nστ−1. Putting these choices of vij̄ and h into the above and noting

that 〈gij̄, RT
ij̄ + fij̄〉 = RT + ∆f , we find that

δWT (vij̄, h, σ) =

∫
M

(
τ |Rij̄ + fij̄|2 − (τ − σ + 1)(R + ∆f) + n− nστ−1

)
τ−ne−f dV.
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Now setting σ = τ − 1, this becomes

δWT (vij̄, h, σ) =

∫
M

(
τ |Rij̄ + fij̄|2 − 2(R + ∆f) + nτ−1

)
τ−ne−f dV

=

∫
M

|Rij̄ + fij̄ − τ−1gij̄|2τ−n+1e−f dV ≥ 0. (3.14)

The next goal is to show that WT is monotonically increasing along the TKRF.

Let us outline one way to accomplish this.

(i) First show that for a diffeomorphism ϕ : M →M we have

WT (g, f, τ) =WT (ϕ∗g, ϕ∗f, τ). (3.15)

This is relatively straightforward.

(ii) Next find a smooth basic function f = f(t) satisfying

∂f

∂t
= nτ−1 −RT −∆f + |∇f |2.

This is a backward heat equation and for any time T > 0, if f(T ) ∈ C∞B (M),

then there is a unique basic solution on [0, T ]. To prove this, one can argue as

follows:

Proof (sketch). Pick T > 0 and consider the equation

∂w

∂s
= ∆w − (RT − nτ−1)w. (3.16)

This is a linear parabolic equation as long as gT remains positive definite. Since

gT is positive definite for all time along the TKRF, by the standard parabolic
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theory, given an initial condition, a unique solution exists for s ∈ [0, T ]. If w(0)

is basic, then the solution remains basic. Indeed, as RT is basic, ξw satisfies

∂

∂s
(ξw) = ξ

∂w

∂s
= ξ∆w − ξ(RT + nτ−1)w = ∆(ξw)− (RT + nτ−1)(ξw).

So if ξw(0) = 0, then by the uniqueness of the solution, we must have ξw ≡ 0.

If w(0) ≥ 0, then w(s) ≥ 0. Furthermore, if w(0) is positive at some point

p ∈ M , then w(s) > 0. By the standard regularity theory for linear parabolic

equations, if we have w(0) ∈ W 1,2(M) then w(s) ∈ C∞(M). See proposition

4.9 in [19].

We can solve equation (3.16) with w(0) > 0 a basic function. Then we can

write w(s) = e−f(s) for some smooth function f . As w is basic for all s, so is f .

Let t = T − s. Then for t ∈ [0, T ], it’s not hard to check that f(t) solves the

backward heat equation

∂f

∂t
= nτ−1 −RT −∆Bf + |∇f |2.

(iii) Now consider the time-dependent diffeomorphisms ϕ(t, ·) : M →M having

∂

∂t
ϕ(t, p) = −∇f(t)|ϕ(t,p), ϕ(0, ·) = I.

That these diffeomorphisms exist is somewhat standard and a proof can be

found, for example, in lemma 3.15 of [10]. Next, direct computation shows that

if g evolves by TKRF, then g̃ := ϕ∗g induces a transverse metric which evolves
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by

∂

∂t
g̃Tij = g̃ij̄ − R̃T

ij̄ − f̃ij̄,

where R̃T
ij̄ is the transverse Ricci tensor of g̃ and f̃ = ϕ∗f is a basic function

satisfing

∂f̃

∂t
= nτ−1 − R̃T −∆f̃ .

(iv) Finally, letting τ evolve by

∂τ

∂t
= τ − 1,

the computations in (3.14) and (3.15) then imply that ∂WT

∂t
≥ 0 along the

TKRF.

This outline is similar to the approach in [25] for the Ricci flow and the one taken

in [12] for the Sasaki-Ricci flow. We can also make this outline work for us, but there

are some technical difficulties involved. One difficulty encountered with this approach

is that the diffeomorphisms ϕ may not preserve the transverse holomorphic structure.

The pulled back metrics ϕ∗g may not be quasi-Sasaki as the induced transverse metric

may not even by Hermitian. This is not a terrible difficulty to overcome though. One

must simply define WT on a larger class of metrics. In particular, the class M of

Riemannian metrics on M for which ξ is a unit-length Killing vector field will suffice.

The metrics in M are bundle-like with respect to Fξ and thus induce transverse

metrics. But now one must check that WT has the same variational formula when

the metrics vary inM rather than as quasi-Sasaki metrics. This can be done and the

proof is the same as in the Riemannian setting. Then one must show that if g ∈ M

then ϕ∗g ∈ M, that ϕ∗ξ = ξ and that if f is basic then ϕ∗f is basic too. All of this

can be done but we will choose not to pursue it any further.
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Another approach is to show by direct computation that ∂WT

∂t
≥ 0 under the

coupled transverse Kähler-Ricci flow



∂gT

∂t
= gT − RicTg

∂f

∂t
= nτ−1 −RT −∆f + |∇f |2

∂τ

∂t
= τ − 1

(3.17)

This approach takes advantage of the transverse Kähler structure and we can remain

in the category of quasi-Sasaki metrics. We can prove the following proposition, which

is the same as proposition 4.4 in [19]:

Proposition 3.2.3. Under the coupled transverse Kähler-Ricci flow (3.17), the WT

functional on quasi-Sasaki manifolds satisfies

∂WT

∂t
=

∫
M

|Rij̄ + fij̄ − τ−1gij̄|2τ−n+1e−f dV +

∫
M

|fij|2τ−n+1e−f dV ≥ 0. (3.18)

Moreover, WT is strictly increasing unless RT
ij̄ + fij̄ − τ−1gTij̄ = 0 and fij = 0. In this

case, ∇f is a real holomorphic vector field and gT is a transverse (gradient-shrinking)

Kähler-Ricci soliton.

The proof involves a careful computation with several uses of integration by

parts. Some of the integration by parts formulas are not obvious. As the proof is the

same as in [19], we do not reproduce it here. Next we discuss the analog of Perelman’s

µ functional.
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3.22. The transverse µ-functional

In the last subsection, we saw that if g evolves as ∂tgij̄ = gij̄ − RT
ij̄ − fij̄, f

evolves as ∂tf = nτ−1 −RT −∆Bf and τ evolves as ∂tτ = τ − 1, then WT (g, f, τ) is

non-decreasing with t and gij̄∂tgij̄ − ∂tf − n
τ
∂tτ = 0. Hence

∂

∂t
(τ−ne−fdV ) = 0.

This implies that
∫
M
τ−ne−fdV is constant and motivates our next definition.

Definition 3.2.4. The transverse µ-functional, µT , is defined by

µT (g, τ) := inf
f∈C∞B (M)

{WT (g, f, τ) :

∫
M

τ−ne−fdV = 1}.

As it is the case with the WT -functional, it is not surprising that the µT -

functional is also monotonically non-decreasing along the TKRF when ∂tτ = τ − 1.

We prove this next.

Proposition 3.2.5. If g(t) evolves by TKRF and τ satisfies ∂tτ = τ − 1, then

µT (g(t), τ(t)) is monotone non-decreasing in t. In particular, µT (g(t), 1) is non-

decreasing along the transverse Kähler-Ricci flow.

Proof. Fix a time t1 > 0 and let ft1 ∈ C∞B (M) be normalized by
∫
M
τ−ne−ft1dV = 1.

Then solve the backward heat equation

∂f

∂t
= nτ−1 −RT −∆Bf + |∇f |2

73



for t ∈ [0, t1] with f(t1) = ft1 . We know that the solution f(t) remains basic. When

g evolves by TKRF and ∂tτ = τ − 1, we can compute that

∂

∂t
(τ−ne−fdV ) = (∆f − |∇f |2)τ−ne−fdV = −τ−n∆e−fdV.

Thus,

∂

∂t

∫
M

τ−ne−f dV = −
∫
M

τ−n∆e−f dV = 0.

This implies that
∫
M
τ−ne−f(t) dV = 1 for all t ∈ [0, t1]. Now chose 0 ≤ t0 < t1. By

the definition of µT and the monotonicity of WT , we get

µT (g(t0), τ(t0)) ≤ WT (g(t0), f(t0), τ(t0)) ≤ WT (g(t1), f(t1), τ(t1)).

Since ft1 = f(t1) was chosen arbitrarily, we conclude that

µT (g(t0), τ(t0)) ≤ inf
f(t1)
WT (g(t1), f(t1), τ(t1)) = µT (g(t1), τ(t1)).

3.3. Bounds on Scalar Curvature and the Transverse Ricci Potential

We assume there is a transverse Kähler metric ω such that [ω] = 2πc1
B. Then by

the transverse ∂∂̄-lemma, there is smooth function u(x, t) such that gTij̄−R
T
ij̄ = ∂i∂j̄u.

We call u a transverse Ricci potential. We may assume that u is normalized so that∫
M
e−u dV = 1. If φ is a solution to (3.3), then

∂i∂j̄
∂φ

∂t
=
∂gTij̄
∂t

= gTij̄ −R
T
ij̄ = ∂i∂j̄u.

74



So we can take u = ∂tφ. As RT
ij̄ = −∂i∂j̄ log(det(gT )), we compute that

∂i∂j̄
∂u

∂t
=

∂

∂t
(gTij̄ −R

T
ij̄)

= gTij̄ −R
T
ij̄ + ∂i∂j̄g

ij̄
∂gTij̄
∂t

= ∂i∂j̄(u+ gij̄∂i∂j̄u)

= ∂i∂j̄(u+ ∆Tu).

Thus, there is time-dependent constant A(t) such that

∂u

∂t
= u+ ∆Tu+ A(t). (3.19)

As ∂tdV = ∆Tu dV , differentiating
∫
M
e−u dV = 1 with respect to t, we find that

A(t) = −
∫
M

ue−u dV.

We can use the monotonicity of the µT -functional to show that A is uniformly

bounded. Recall from proposition 3.2.5 that µT (g(t), 1) is non-decreasing in t.

Lemma 3.3.1. The function A(t) is uniformly bounded.

Proof. It is a routine calculus exercise to show that f(t) = te−t is bounded above by

e−1. From ∂tdV = ∆Tu dV , we see that the volume of the manifold is constant along

the TKRF. For simplicity, let us assume that Vol(M) =
∫
M
dV = 1. Then

A(t) = −
∫
M

ue−u dV ≥ −e−1

∫
M

dV = −e−1.

75



Tracing gTij̄ −R
T
ij̄ = ∂i∂j̄u, we have ∆Tu = n−RT . Thus

WT (g(t), u(t), 1) =

∫
M

(n−∆Tu+ |∇u|2 + u)e−u dV

=

∫
M

∆T e−u dV +

∫
M

(n+ u)e−u dV = n− A(t).

Therefore,

A(t) = n−WT (g(t), u(t), 1) ≤ n− µT (g(t), 1) ≤ n− µT (g(0), 1).

Next we will see how the transverse scalar curvature evolves along the TKRF,

but first we recall a useful lemma. The proof is a standard calculus argument.

Lemma 3.3.2. If f = f(x, t) is a smooth function on M × [0, T ] for some T > 0

and f achieves its minimum (maximum) at (x0, t0), then either t0 = 0 or at the point

(x0, t0)

∂f

∂t
≤ 0 (≥ 0), ∇f = 0 and ∆f ≥ 0 (≤ 0).

Lemma 3.3.3. Along the TKRF, the transverse scalar curvature evolves by

∂RT

∂t
= −RT + |RicT |2 + ∆TRT

and is uniformly bounded from below.

Proof. Because of the transverse Kähler structure, the Ricci tensor RT
ij̄ =

−∂i∂j̄ log(det(gij̄)). Thus we can write the scalar curvature as

RT = −gij̄∂i∂j̄ log(det(gij̄)).
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From gil̄gkl̄ = δik, we compute ∂tg
ij̄ = −gil̄(∂tgkl̄)gkj̄. Therefore,

∂RT

∂t
= gil̄(∂tgkl̄)g

kj̄∂i∂j̄ log(det(gij̄))− gij̄∂i∂j̄gij̄∂tgij̄

= −gil̄(gkl̄ −RT
kl̄)g

kj̄RT
ij̄ − g

ij̄∂i∂j̄g
ij̄(gij̄ −RT

ij̄)

= −δikgkj̄RT
ij̄ + gil̄gkj̄RT

kl̄R
T
ij̄ − g

ij̄∂i∂j̄(n) + gij̄∂i∂j̄g
ij̄RT

ij̄

= −RT + |RicT |2 + ∆TRT .

Now fix a time T > 0 and suppose that RT (x, t) on M × [0, T ] takes its minimum at

(x0, t0). If t0 = 0, then we have

inf
M×[0,T ]

RT (x, t) ≥ inf
M
RT (x, 0).

Since RT is basic, ∆TRT = ∆RT . So if t0 6= 0, then by the above lemma, at (x0, t0),

0 ≥ ∂RT

∂t
−∆TRT = −RT + |RicT |2 ≥ −RT .

So either way, as T > 0 was arbitrary, we have RT ≥ min{0, infM RT (x, 0)}.

Lemma 3.3.4. The function u(x, t) is uniformly bounded from below.

Proof. Fix T > 0. By lemmas 3.3.1 and 3.3.3, A(t)−RT is uniformly bounded above.

Set

C = max{0, sup
x∈M,t∈[0,T ]

n−RT + A(t)} <∞.

Suppose that u(x, t) is not uniformly bounded below. Then there is a point (x0, t0)

where u(x0, t0) +C < 0. Since u is smooth in x, there is a neighborhood U of x0 such

that

u(x, t0) + C < 0
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for all x ∈ U . Recall that ∂tu = u+ ∆Tu+A(t) and ∆Tu = n−RT . Thus, for x ∈ U ,

∂u

∂t
|(x,t0) = u(x, t0) + n−RT (x, t0) + A(t0) < 0.

Since u is smooth in t, u(x, t) ≤ u(x, t0) for x ∈ U and t ≥ t0. From ∂tu < u+ C we

get

u(x, t) < (C + u(x, t0))et−t0 ≤ −C1e
t (3.20)

for x ∈ U , t ≥ t0 and some constant C1 > 0 that depends on t0.

Recall that ∂tφ = u. Integrating equation (3.20) from t0 to t gives

φ(x, t) ≤ φ(x, t0)− C1(et − et0) ≤ −C2e
t (3.21)

for x ∈ U , t ≥ t0 sufficiently large and C2 > 0. As u is normalized so that
∫
M
e−u dV =

1, −u cannot be very large. Thus there is a constant C3 > 0 such that

u(xt, t) := max
x∈M

u(x, t) ≥ −C3.

From ∂t(u− φ) = n−RT + A(t) ≤ C we get

u(xt, t)− φ(xt, t) ≤ max
x∈M

(u(x, 0)− φ(x, 0)) + Ct.

This implies there is a constant C4 so that

φ(x′t, t) := max
x∈M

φ(x, t) ≥ −C4 − Ct. (3.22)
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Tracing gTij̄(t) = gij̄(0) + ∂i∂j̄φ, with the metric g(0) gives n + ∆g(0)φ =

gij̄(0)gTij̄(t) > 0. Recall that the volume of the manifold is constant along the TKRF

and we are assuming that vol(M) = 1. Let G0 be the Green’s function for ∆g(0). The

function φ−
∫
M
φ dV0 integrates to zero with respect to dV0, so we may apply Green’s

formula to write

φ(x′t, t) =

∫
M

φ(y, t) dV0 −
∫
M

∆g(0)φ(y, t)G0(x′t, y) dV0. (3.23)

By (3.21), φ(x, t) ≤ −C2e
t on U × [t0,∞). Since −∆g(0)φ < n and G0(x, y) is

integrable, from (3.23) we get that for t ≥ t0

φ(x′t, t) ≤ vol(M \ U)φ(x′t, t)− vol(U)C2e
t + C̃.

Note that vol(M \ U) < 1. So for large enough t ≥ t0,

φ(x′t, t) ≤ −C5e
t + C6. (3.24)

Combining (3.22) and (3.24), we have

−C4 − Ct ≤ φ(x′t, t) ≤ −C5e
t + C6.

This is a contradiction for sufficiently large t as all of the constants involved are

independent of t > t0. Therefore, u(x, t) is uniformly bounded from below.

Lemma 3.3.5. There is a uniform constant C > 0 such that |∇u|2 ≤ C(u+ C).

Before we begin the proof, we need one new bit of notation. For a Kähler

metric g, we define ∇f to be the vector field dual to ∂̄f . We define ∇̄f to be the

79



vector field dual to ∂f . In local coordinates, ∇f = gij̄fj̄dz
i, ∇̄f = gij̄fidz̄

j and

g(∇f, ∇̄f) = gij̄fifj̄ = |∇f |2. We make the analogous definition for a basic function

and the transverse Kähler metric of a quasi-Sasaki structure.

Proof. Define the parabolic operator � := ∂t − ∆ and denote g(·, ·) = 〈·, ·〉. One

computes

�

(
f

h

)
=

�f
h
− f�h

h2
+

2<〈∇f, ∇̄h〉
h2

− 2f |∇h|2

h3
,

where < denotes the real part of a complex number. From (3.19) we have

�u = u+ A(t).

A local coordinate computation gives

∂t|∇u|2 = |∇u|2 + 〈Rij̄, uiuj̄〉+ 2<〈∇u, ∇̄∆u〉,

and the Bochner-Kodaira formula gives

∆|∇u|2 = |∇∇u|2 + |∇∇̄u|2 + 〈Rij̄, uiuj̄〉+ 2<〈∇u, ∇̄∆u〉.

Therefore

�|∇u|2 = |∇u|2 − |∇∇u|2 − |∇∇̄u|2.
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By lemma 3.3.4, there is a constant B > 0 such that u(x, t) + B > 0 for all

x ∈M and all t ∈ [0,∞). Now let H := |∇u|2/(u+ 2B). Then

�H =
�|∇u|2

u+ 2B
− |∇u|

2�u
(u+ 2B)2

+
2<〈∇|∇u|2, ∇̄u〉

(u+ 2B)2
− 2|∇u|2|∇u|2

(u+ 2B)3

=
|∇u|2 − |∇∇u|2 − |∇∇̄u|2

u+ 2B
− |∇u|

2(u+ A)

(u+ 2B)2
+

2<〈∇|∇u|2, ∇̄u〉
(u+ 2B)2

− 2|∇u|4

(u+ 2B)3

=
−|∇∇u|2 − |∇∇̄u|2

u+ 2B
+
|∇u|2(2B − A)

(u+ 2B)2
+

2<〈∇|∇u|2, ∇̄u〉
(u+ 2B)2

− 2|∇u|4

(u+ 2B)3
.

(3.25)

By the definition of H,

∇H =
∇|∇u|2

u+ 2B
− |∇u|

2∇u
(u+ 2B)2

.

Hence

<〈∇H, ∇̄u〉
u+ 2B

=
<〈∇|∇u|2, ∇̄u〉

(u+ 2B)2
− |∇u|4

(u+ 2B)3
. (3.26)

Next we observe that

|〈∇|∇u|2, ∇̄u〉|
(u+ 2B)2

≤ |∇u|
2(|∇∇u|+ |∇∇̄u|)

(u+ 2B)3/2(u+ 2B)1/2

≤ |∇u|4

2(u+ 2B)3
+
|∇∇u|2 + |∇∇̄u|2

u+ 2B
. (3.27)

Choosing 0 < ε < 1/4 and combining (3.25), (3.26) and (3.27), yields

�H ≤ |∇u|
2(2B − A)

(u+ 2B)2
+

(2− ε)<〈∇H, ∇̄u〉
u+ 2B

− ε|∇u|4

2(u+ 2B)3
. (3.28)
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If H is unbounded from above, then there is a time t0 such that

max
M×[0,t0]

H >
2B − A
ε/2

.

At the point where H achieves its maximum, ∇H = 0 and �H ≥ 0. At this point,

(3.28) gives

0 ≤ �H ≤ |∇u|2

(u+ 2B)2

(
2B − A− ε

2
H
)
< 0.

This is a contradiction and therefore H is bounded from above. Thus there is a

constant C > 0 such that |∇u|2 ≤ C(u+ C).

Lemma 3.3.6. There is a uniform constant C > 0 such that RT ≤ C(u+ C).

Proof. From ∂i∂j̄u = gTij̄ −R
T
ij̄, ∆u = n−RT and ∂tR

T = −RT + |RicT |2 + ∆TRT , we

compute

�(∆u) = −�RT

= RT − |RicT |2

= n−∆u− 〈gTij̄ − uij̄, g
T
ij̄ − uij̄〉

= n−∆u− (n− 2∆u+ |uij̄|2)

= ∆u− |uij̄|2.

Let K := −∆u/(u+ 2B) where B > 0 is as in the previous lemma. We compute

�K =
−�∆u

u+ 2B
+

∆u�u
(u+ 2B)2

− 2<〈∇∆u, ∇̄u〉
(u+ 2B)2

+
2∆u|∇u|2

(u+ 2B)3

=
−∆u+ |uij̄|2

u+ 2B
+

∆u(u+ A)

(u+ 2B)2
− 2<〈∇∆u, ∇̄u〉

(u+ 2B)2
+

2∆u|∇u|2

(u+ 2B)3

=
|uij̄|2

u+ 2B
+

∆u(A− 2B)

(u+ 2B)2
− 2<〈∇∆u, ∇̄u〉

(u+ 2B)2
+

2∆u|∇u|2

(u+ 2B)3
. (3.29)
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By the definition of K,

∇K =
−∇∆u

u+ 2B
+

∆u∇u
(u+ 2B)2

.

Hence

<〈∇K, ∇̄u〉
u+ 2B

= −<〈∇∆u, ∇̄u〉
(u+ 2B)2

+
∆u|∇u|2

(u+ 2B)3
.

Combining this with (3.29) yields

�K =
|uij̄|2

u+ 2B
+

∆u(A− 2B)

(u+ 2B)2
+

2<〈∇K, ∇̄u〉
u+ 2B

. (3.30)

Let H be as in the previous lemma. There we computed that

�H =
−|uij|2 − |uij̄|2

u+ 2B
+
|∇u|2(2B − A)

(u+ 2B)2
+

2<〈∇H, ∇̄u〉
u+ 2B

.

Now let G := 2H +K. Then by (3.30) and the above, we have

�G =
−2|uij|2 − |uij̄|2

u+ 2B
+

(2|∇u|2 −∆u)(2B − A)

(u+ 2B)2
+

2<〈∇G, ∇̄u〉
u+ 2B

. (3.31)

At the point where G achieves its maximum, ∇G = 0 and �G ≥ 0. So at this

point, equation (3.31) yields

0 ≤ �G ≤
−|uij̄|2

u+ 2B
+

2|∇u|2(2B − A)

(u+ 2B)2
− ∆u(2B − A)

(u+ 2B)2
. (3.32)

In normal coordinates at the point where G is at a maximum, by Cauchy-Schwarz

(∆u)2 =
(∑

i

uīi

)2

≤ n
∑
i

u2
īi = n|uij̄|2.
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So by (3.32) we get

0 ≤ �G ≤ 2|∇u|2(2B − A)

(u+ 2B)2
− ∆u

u+ 2B

(
∆u

n
+

2B − A
u+ 2B

)
. (3.33)

Since inf u+ 2B > 0 and A(t) is uniformly bounded, (2B−A)/(u+ 2B) is uniformly

bounded from above. By the bound on |∇u|2 from the previous lemma, the first term

on the right hand side of (3.33) is uniformly bounded from above.

So if −∆u/(u+2B) becomes arbitrarily large, then ∆u� −(u+2B) < 0 and the

right hand side of (3.33) goes negative. This is a contradiction. Thus −∆u/(u+ 2B)

is bounded from above. Hence there is a constant C > 0 such that −∆u ≤ C(u+C).

Since RT = n−∆u, the proof is complete.

Proposition 3.3.7. Let xt ∈M be such that u(xt, t) = miny∈M u(y, t). Then there is

a uniform constant C > 0 such that

u(y, t) ≤ C(d2
t (xt, y) + 1),

|∇u| ≤ C(dt(xt, y) + 1),

RT (y, t) ≤ C(d2
t (xt, y) + 1),

where dt is the distance function for the metric g(t).

We prove the bound on u. The bounds on |∇u| and RT then follow from lemmas

3.3.5 and 3.3.6 respectively. By lemma 3.3.4, u is uniformly bounded below. Thus

we may assume that u > 0. If not, then we just consider the function ũ := u + C

where C > 0 is a constant. Then ũ is a transverse Ricci potential and choosing C

large enough makes ũ > 0.
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Proof. The bound on |∇u|2 from lemma 3.3.5 implies that |∇
√
u| ≤ C0. So all of

the first derivatives of
√
u are uniformly bounded (recall that u is basic). Thus

√
u

is uniformly Lipschitz. Hence

|
√
u(y, t)−

√
u(z, t)| ≤ C0dt(y, z).

Now if u(xt, t) ≥ C(t) and C(t)→∞ as t→∞, then by the normalization of u

and the fact that the volume of the manifold is constant along the flow, we get

1 =

∫
M

e−u dV ≤ vol(M)e−C(t) → 0.

Contradiction. Thus u(xt, t) ≤ C1 for some constant C1 > 0. Therefore,

√
u(y, t) ≤ C0dt(y, xt) +

√
u(xt, t)

≤ C0dt(y, xt) +
√
C1.

This implies that u(y, t) ≤ Cd2
t (y, xt) + C for some constant C > 0.

We see from this proposition that if we can bound the diameter of the manifold

along the TKRF, then we will have uniform bounds on the transverse Ricci potential

u and the transverse scalar curvature RT . We take this up in the next section.

3.4. Upper Bound on Diameter

In this section we will prove a uniform upper bound on the diameter of a quasi-

Sasaki manifold along the TKRF. This along with proposition 3.3.7 will provide

uniform bounds on u, ∇u and RT . We take an approach analogous to that of Sesum

and Tian in [34], but we must make some adjustments. The W T functional only
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involves basic functions, but the distance function of a quasi-Sasaki manifold is not

basic. To deal with this, we work with the transverse distance function from definition

1.4.1.

We begin with a non-collapsing theorem. Since RT is bounded from below along

the TKRF (lemma 3.3.3), there is r0 > 0 small enough so that RT (x, t) ≥ −r−2
0 for

all x and t.

Theorem 3.4.1. Let M be a quasi-Sasaki manifold whose ξ orbits are compact. Let

g(t) be a solution to the TKRF. Then there is a constant C > 0 such that for every

x ∈M , if RT ≤ Cr−2 on BT
g(t)(x, r) for r ∈ (0, r0], then Vol(BT

g(t)(x, r)) ≥ Cr2n.

Proof. We give a proof by contradiction. Suppose that the theorem is false. Then

there is a sequence of points and times (pk, tk) ∈M × [0,∞) with tk →∞ such that

RT ≤ Cr−2
k on Bk := BT

g(tk)(pk, rk) but r−2n
k Vol(Bk)→ 0 as k →∞.

Let ψ : [0,∞)→ R be a plateau function such that ψ = 1 on [0, 1
2
], is decreasing

on [1
2
, 1] with bounded derivative and ψ = 0 on [1,∞). Let τk := r2

k and define

wk(x) := eCkψ
(
r−1
k dTg(tk)(pk, x)

)
=: eCkψk(x),

where the constant Ck is chosen so that
∫
M
w2
kτ
−n
k dVk = 1. Here dVk = ηtk ∧ (ωtk)

n

is the volume form at time tk. Note that the support of wk is contained in Bk. Thus

1 =

∫
M

w2
kτ
−n
k dVk = e2Ckr−2n

k

∫
M

ψ2
(
r−1
k dTk (pk, x)

)
dVk ≤ e2Ckr−2n

k vol(Bk).

Since 1 ≤ e2Ckr−2n
k Vol(Bk) and r−2n

k Vol(Bk)→ 0, it must be that Ck →∞ as k →∞.

Recall, WT (g, f, τ) = τ−n
∫
M
τ(RTw2 + 4|∇w|2) − w2 log(w2) dV, where w = e−f/2.
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Now

WT (g(tk), wk, τk) = τ−nk

∫
M

r2
k(R

Tw2
k + 4|∇wk|2)− w2

k log(w2
k) dVk

≤ e2Ckτ−nk

∫
M

4|ψ′k|2 − ψ2
k log(ψ2

k) dVk + r2
k max

Bk
RT − 2Ck,

Here we have used that dTg(tk) is Lipschitz continuous, hence differentiable almost

everywhere, with Lipschitz constant 1. Let Vk(r) := Vol(Bk(r)).

Notice that for t ∈ R, limt→0 t
2 log(t2) = 0 and for t ∈ (0, 1], t2 log(t2) ≥ −1.

Since ψk takes its values in [0, 1] and ψ′k is bounded with support in [1
2
, 1], there is

some constant C ′ > 0 such that

∫
M

4|ψ′k|2 − ψ2
k log(ψ2

k) dVk ≤ C ′(Vk(rk)− Vk(rk/2)).

By lemma 5.0.13, we may assume that Vk(rk) ≤ 5nVk(rk/2). Hence,

∫
M

4|ψ′k|2 − ψ2
k log(ψ2

k) dV gk ≤ C̃Vk(rk/2)

≤ C̃

∫
M

ψ2
k dVk.

Combining this with the above, we find that

µT (g(tk), τk) ≤ WT (g(tk), wk, τk)

≤ C̃

∫
M

w2
kτ
−n
k dVk + r2

k max
Bk

RT − 2Ck

≤ C̃ + C − 2Ck → −∞.

By proposition 3.2.5, µ(g(t), 1 + (τ0 − 1)et) is non-decreasing in t. Now for each k,

set τ k0 := 1− (1− τk)e−tk . Then µ(g(0), τ k0 ) ≤ µ(g(tk), τk)→ −∞ as k → −∞. This
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is a contradiction because µ(g(0), τ) is a continuous function of τ and τ k0 → 1 as

k →∞.

Let u be a transverse Ricci potential. Recall that u is a basic function. By

lemma 3.3.4, u is uniformly bounded from below. Let xt ∈M be such that u(xt, t) =

minx∈M u(x, t) and let dTt (y) = dTg(t)(xt, y). For k1 ≤ k2, we define the transverse

annulus

Bξ(k1, k2) := {y ∈M : 2k1 ≤ dTt (y) ≤ 2k2}.

Now we can prove the diameter bound.

Theorem 3.4.2. Let M be a quasi-Sasaki manifold whose ξ orbits are compact. Let

g(t) be a solution to the TKRF. Then there is a uniform constant C such that the

transverse diameter ΘT
g(t) < C. This implies the diameter of M is uniformly bounded

along the flow.

Proof. Suppose that the transverse diameters are not uniformly bounded. Then there

is a sequence of times ti → ∞ such that ΘT
g(ti)
→ ∞. Let εi > 0 be a sequence such

that εi → 0. By lemma 5.0.14, there are sequences ki1, ki2, ri1, ri2 and a uniform

constant C such that

1. Vi(k
i
1, k

i
2) := Volg(ti)(Bξ(k

i
1, k

i
2)) < εi

2. Vi(k
i
1, k

i
2) ≤ 210nVi(k

i
1 + 2, ki2 − 2)

3. ri1 ∈ [ki1, k
i
1 + 1], ri2 ∈ [ki2 − 1, ki2] and

∫
Bξ(r

i
1,r

i
2)
RT dVti ≤ CVi(k

i
1, k

i
2).

Now let ψi be a cut-off function such that ψi(t) = 1 for t ∈ [2k
i
1+2, 2k

i
2−2], ψi(t) = 0

for t ∈ (−∞, 2ri1 ] ∪ [2r
i
2 ,∞) and |ψ′(t)| < 2. Define functions wi(y) := eCiψi(d

T
ti

(y))
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where the constant Ci is chosen so that
∫
M
w2
i dVti = 1. Then we have

1 = e2Ci

∫
M

ψ2
i dVti ≤ e2CiV1(ki1, k

i
2) < e2Ciεi.

Since εi → 0, it must be that Ci →∞.

Now we compute

WT (g(ti), wi, 1) =

∫
M

RTw2
i + 4|∇wi|2 − w2

i log(w2
i ) dVti

= e2Ci

∫
M

RTψ2
i + 4|ψ′i|2 − ψ2

i log(ψi)
2 − 2Ciψ

2
i dVti

= e2Ci

∫
M

RTψ2
i + 4|ψ′i|2 − ψ2

i log(ψ2
i ) dVti − 2Ci. (3.34)

By lemma 5.0.14, we can estimate the first term in the integrand of (3.34) as

e2Ci

∫
M

RTψ2
i ≤ e2Ci

∫
Bξ(r

i
1,r

i
2)

RT dVti

≤ e2CiCVi(k
i
1, k

i
2)

≤ e2CiC210nVi(k
i
1 + 2, ki2 − 2)

≤ C210n

∫
m

w2
i dVti

= C210n

Since 0 ≤ ψi ≤ 1 and ψ′i is uniformly bounded, there is a uniform constant C such that

4|∇ψi|2 − ψ2
i log(ψ2

i ) ≤ C. Using lemma 5.0.14 again we can estimate the remaining
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terms in (3.34). Note that Bξ(r
i
1, r

i
2) ⊆ Bξ(k

i
1, k

i
2).

e2Ci

∫
M

4|ψ′i|2 − ψ2
i log(ψ2

i ) dVg(ti) ≤ e2CiCVi(k
i
1, k

i
2)

≤ e2CiC210nVi(k
i
1 + 2, ki2 − 2)

≤ C210n

∫
M

w2
i dVti

= C210n

Therefore

µT (g(0), 1) ≤ µT (g(ti), 1) ≤ WT (g(ti), wi, 1) ≤ C210n − 2Ci → −∞.

This contradicts lemma 5.0.12. Thus the transverse diameter is uniformly bounded

along the TKRF.

3.5. Transverse Holomorphic Bisectional Curvature

Recall the transverse holomorphic bisectional curvature defined in section 2.4.

In this section we will prove

Theorem 3.5.1. Let gT (t) be a solution to the TKRF. If the initial metric gT (0) has

nonnegative transverse holomorphic bisectional curvature then so does gT (t) for t ≥ 0.

If the initial metric has positive transverse holomorphic bisectional curvature at some

point x ∈M , then gT (t) has positive transverse holomorphic bisectional curvature for

t > 0.

To prove theorem 3.5.1, we need to compute the evolution of the transverse

holomorphic bisectional curvature along the TKRF. By standard computations in
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Kähler-Ricci flow,

∂

∂t
Rīijj̄ = ∆Rīijj̄ + F (Rm)īijj̄ +Rīijj̄,

where, for a tensor S with the same type as the curvature tensor,

F (S)īijj̄ =
∑
k,l

(
|Sik̄lj̄|2 − |Sik̄jl̄|2 + Sīilk̄Skl̄jj̄

)
−
∑
k

<
(
Sik̄Skījj̄ + Sjk̄Sīikj̄

)
.

See proposition 2.79 and corollary 2.82 in [9] for the computations in the Kähler

setting. We can easily mimic these computations and derive a similar formula in the

quasi-Sasaki setting. We let HT = HT
ij := RT

īijj̄. Then we have

∂

∂t
HT = ∆THT + F (HT ) +HT .

Using Hamilton’s maximum principle for tensors, Bando (n ≤ 3) in [2] and Mok

(n ≥ 4) in [29] proved the analog of theorem 3.5.1 for the Kähler-Ricci flow. To

apply this maximum principle, one must show that F has the null vector property.

That is, if there are nonzero X, Y ∈ TpM such that Sp(X, X̄, Y, Ȳ ) = 0, then

F (S)p(X, X̄, Y, Ȳ ) ≥ 0. We have the following:

Proposition 3.5.2. If S ≥ 0 and there exists X, Y ∈ D1,0, both non-zero, such that

Sp(X, X̄, Y, Ȳ ) = 0, then F (S)p(X, X̄, Y, Ȳ ) ≥ 0.

Proof. This is a local problem, so we choose a coordinate patch π : U ⊂M → V ⊂ Cn

with p ∈ U . Then the transverse metric gT on U induces a Kähler metric gV on V

which is evolving by Kähler-Ricci flow. So F (RT ) restricted to V is the same as in the

Kähler case. The result now follows from the analogous result in the Kähler setting.

See [2], [29] or page 107 of [9].

Now we can prove theorem 3.5.1:
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Proof. It suffices to prove the theorem for short time, say for t ∈ [0, t0] for some

t0 > 0. Then all metrics involved have bounded geometry. We define an auxiliary

tensor S in local coordinates by

Sij̄kl̄ :=
1

2

(
gTij̄g

T
kl̄ + gTil̄g

T
kj̄

)
.

Note that S has the same type as the curvature tensor, S > 0 at all points of M and

S is parallel, hence ∆S = 0. Then there is a constant C1 > 0 such that

−C1S ≤
∂S

∂t
≤ C1S.

Since F is smooth and S > 0, there is a constant C2 > 0 such that

F (HT )− F (HT + fS) ≥ −C2|f |S

for f ∈ R with |f | ≤ 1. When f is a basic function, fS has the same type as the

transverse curvature tensor. Let f = f(t, x) be a basic function for all t and choose

ε > 0 small enough so that ε|f(t, x)| ≤ 1 for all (t, x). Then we compute

∂

∂t
(HT + εfS) = ∆HT + F (HT ) +HT + ε

∂f

∂t
S + εf

∂S

∂t

= F (HT )− F (HT + εfS) + F (HT + εfS) +HT + εfS

+ ∆(HT + εfS) + εS

(
∂f

∂t
−∆f

)
+ εf

(
∂S

∂t
− S

)
≥ F (HT + εfS) + ∆(HT + εfS) +HT + εfS

+ εS

(
∂f

∂t
−∆f − (C1 + 1 + C2)|f |

)
.
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Now let f satisfy

∂f

∂t
−∆f − (C1 + 1 + C2)f = 1

with initial condition f(·, 0) ≡ 1. In local coordinates, ∆f = ξ2f + gij̄∂i∂j̄f . Since

ξgij̄ = 0, we have ξ(∆f) = ∆(ξf). Hence

∂(ξf)

∂t
= ∆(ξf) + (C1 + 1 + C2)ξf.

Since ξf(0) = 0, it follows from the uniqueness of the solution that ξf ≡ 0. Thus

f(·, t) is basic. By the maximum principle, f > 0 for t > 0. Therefore

∂

∂t
(HT + εfS) ≥ F (HT + εfS) + ∆(HT + εfS) +HT + εfS + εS. (3.35)

Since HT ≥ 0 at t = 0, we have HT + εfS > 0 at t = 0. In fact, HT + εfS > 0 for

all t. We give a proof by contradiction.

If not, then there is a first time t0 > 0, a point p ∈M and unit vectorsX, Y ∈ D1,0
p

such that (HT + εfS)(X, X̄, Y, Ȳ ) = 0 at (t0, p). By proposition 3.5.2, at (t0, p),

F (HT + εfS)(X, X̄, Y, Ȳ ) ≥ 0.

Now choose a coordinate patch U about p ∈ M . Then π : U → V ⊂ Cn is a

Riemannian submersion. Let XV = π∗X, YV = π∗Y . Extend XV and YV to a

normal neighborhood of (π(p), t0) by parallel translation along radial geodesics such

that ∇XV = ∇YV = 0 at (π(p), t0). Then extend XV and YV around t0 such that

93



∂tXV = ∂tYV = 0 at (π(p), t0). Using (3.35) at (p, t0) we have

0 ≥ ∂

∂t

(
HT + εfS

)
(XV , X̄V , YV , ȲV )

=

(
∂

∂t
(HT + εfS)

)
(XV , X̄V , YV , ȲV )

≥
(
∆(HT + εfS)

)
(XV , X̄V , YV , ȲV ) + εS(XV , X̄V , YV , ȲV )

= ∆
(
(HT + εfS)(XV , X̄V , YV , ȲV )

)
+ εS(XV , X̄V , YV , ȲV )

> 0.

Contradiction. Thus HT + εfS > 0 for all t. Letting ε → 0, we have HT ≥ 0

for all t. Now suppose that HT > 0 at some point in M when t = 0. Define

f0(p) := minHT
p (X, X̄, Y, Ȳ ) for X, Y ∈ D1,0

p with |X| = |Y | = 1. Then f0 ≥ 0

everywhere and f0 > 0 somewhere. As ξ acts on g isometrically, f0 is constant along

the orbits of ξ. Hence ξf0 = 0. As before, we compute that

∂

∂t
(HT − fS) ≥ F (HT − fS) + ∆(HT − fS) + S

(
−∂f
∂t

+ ∆f − (C1 + C2)|f |
)
.

Now let f satisfy

∂f

∂t
= ∆f − (C1 + C2)f

with initial condition f(·, 0) = f0. Again, since ξf0 = 0 we have ξf ≡ 0. If we let

f̃ = e(C1+C2)tf , then f̃ solves the heat equation

∂f̃

∂t
= ∆f̃ .
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It is well known that a function f̃ satisfying the heat equation with nonnegative initial

condition is positive for t > 0, see [32]. Thus f > 0 for t > 0 and

∂

∂t
(HT − fS) ≥ F (HT − fS) + ∆(HT − fS).

By the definition of f0, we have HT − fS ≥ 0 when t = 0. Arguing as above, we can

show that HT −fS ≥ 0 for t > 0. Since S > 0 and f > 0, it follows that HT > 0.
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CHAPTER IV

THE RICCI FLOW OF A SASAKI METRIC

In this chapter we want to investigate the behavior of the Ricci flow when the

initial metric is Sasaki. We are not talking about the Sasaki-Ricci flow as in [12], [19]

or [36], which is just the transverse Kähler-Ricci flow of a Sasaki manifold, but rather

the Ricci flow of the actual Sasaki metric. The Ricci flow of a Kähler metric preserves

the Kähler condition and this has been an extremely fruitful area of mathematical

research since the 1980s. Since Sasaki geometry is closely related to Kähler geometry,

it seems reasonable to suspect that the Ricci flow of a Sasaki metric should be a

tractable subject, but one quickly runs into trouble; the Ricci flow need not preserve

the Sasaki condition. For example, consider a Sasaki-Einstein metric g0 with Einstein

constant λ. The Ricci flow
∂g

∂t
= −2Ricg with g(0) = g0 is given by g(t) = (1−2λt)g0.

Since Sasaki metrics are not preserved by homothety, g(t) is not Sasaki for t > 0.

However, a scaling of a Sasaki metric is a quasi-Sasaki metric. This gives us hope that

the Ricci flow does preserve some sort of structure related to the Sasaki geometry.

We begin with the following useful observation: Given a Sasaki structure

(ξ, η,Φ, g), we can create a two-parameter family of quasi-Sasaki structures. Given

A,B > 0, let ξB = 1√
B
ξ, ηB =

√
Bη and gA,B = ηB ⊗ ηB + AgT . Using the same

(1,1)-tensor Φ, it is easy to see that the (almost) contact structure is preserved.

A straighforward computation shows that the metric compatibility and normality

conditions are also preserved. However, gA,B(X,ΦY ) 6= dηB(X, Y ). Rather we have

gA,B(X,ΦY ) = A√
B
dηB(X, Y ). Since Kähler metrics are preserved by homothety, the

transverse metric gTA,B = AgT is Kähler and thus (ξB, ηB,Φ, gA,B) defines a quasi-

Sasaki structure.
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Definition 4.0.3. A quasi-Sasaki structure obtained via the above construction will

be called an (A,B)-deformation of a Sasaki structure.

By choosing A =
√
B, the deformed structure remains Sasaki. These type

of deformations are known in the literature as transverse or D-homotheties. Note

also that an (A,A)-deformation results in an honest scaling of the metric, but does

not preserve the Sasaki structure unless A = 1. From proposition 2.1.1 we get the

following corollary.

Corollary 4.0.4. If (ξ, η,Φ, g) is an (A,B)-deformation of a Sasaki structure, then

for X, Y ∈ D the Ricci tensor of g satisfies

Ric(ξ, ξ) = 2n
B

A2

Ric(X, ξ) = 0

Ric(X, Y ) = RicT (X, Y )− 2
B

A2
gT (X, Y ).

4.1. η-Einstein metrics

It is difficult (as far as the author can tell) to say much about the Ricci flow of

an arbitrary Sasaki metric. However, for a special class of Sasaki metrics known as

η-Einstein, we can actually say quite a lot. It is these metrics whose Ricci flow we

shall investigate.

Definition 4.1.1. A Sasaki metric g is η-Einstein if there are real numbers µ and ν

such that Ricci tensor of g satisfies

Ricg = µg + νη ⊗ η. (4.1)
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Recall that for a Sasaki structure (ξ, η,Φ, g), η ∧ (dη)n is a volume form,

g(X,ΦY ) = dη(X, Y ) for all X, Y ∈ TM and for X, Y ∈ D the Ricci tensor satisfies

Ric(ξ, ξ) = 2n, (4.2)

Ric(X, ξ) = 0, (4.3)

Ric(X, Y ) = RicT (X, Y )− 2gT (X, Y ), (4.4)

From equations (4.1) and (4.2) we see that µ+ν = 2n. From equations (4.3) and

(4.4) we see that a Sasaki manifold is η-Einstein if and only if the transverse metric

is Kähler-Einstein. Indeed, if RicT = λgT then Ric = (λ − 2)g + (2n + 2 − λ)η ⊗ η.

Conversely, if Ric = µg + νη ⊗ η then RicT = (µ + 2)gT . We should also note that

an η-Einstein manifold has constant scalar curvature. Tracing equation (4.1) we see

that the scalar curvature R = (2n + 1)µ + ν = 2n(µ + 1). An excellent reference for

the geometry of η-Einstein manifolds is the paper [6].

Let (ξ0, η0,Φ, g0) be η-Einstein. Then we can write g0 = η0 ⊗ η0 + gT0 where gT0

is transverse Kähler-Einstein with RicT0 = λgT0 . Now consider an (A,B)-deformation

of this Sasaki structure. By corollary 4.0.4, for X, Y ∈ D, the Ricci tensor of the

deformed metric satisfies

Ric(ξ0, ξ0) = 2n
B2

A2
,

Ric(X, ξ0) = 0,

Ric(X, Y ) =

(
λ− 2

B

A

)
gT0 (X, Y ).
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Therefore, by the above equations, a metric of the form

g(t) := A(t)gT0 +B(t)η0 ⊗ η0 (4.5)

is the solution to the Ricci flow equation

∂g

∂t
= −2Ricg, g(0) = g0, (4.6)

with g0 an η-Einstein metric, if and only if A(t), B(t) > 0 satisfy

dA

dt
= 4

B

A
− 2λ, A(0) = 1, (4.7)

dB

dt
= −4n

B2

A2
, B(0) = 1. (4.8)

By standard existence and uniqueness theory for ODEs (e.g. the Picard-Lindelöf

theorem), the system (4.7), (4.8) has a unique solution that exists for at least a short

time. Note that if we try to impose the additional restriction that A =
√
B, then

the system has no solution. Hence the metric cannot evolve by Sasaki metrics in this

way. But, as we mentioned before, the metrics in (4.5) are quasi-Sasaki.

For our qualitative analysis of these differential equations, we will make use of

the conserved quantity

Λ :=

(
λ

2(n+ 1)
− B

A

)
B−

n+1
n . (4.9)

Indeed, a straightforward computation reveals that d
dt

Λ = 0. From the requirement

that A(0) = B(0) = 1, we find that Λ = λ
2(n+1)

− 1.
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Since a Sasaki metric is η-Einstein if and only if the transverse metric is Kähler-

Einstein, we naturally have three cases to consider. In the following sections we

investigate the Ricci flow equations (4.7) and (4.8) when the transverse Einstein

constant λ is zero, positive and negative, respectively. We want to understand the

behavior of the functions A and B in each case. Knowing their behavior, we can

determine how the curvature is changing along the Ricci flow. Computing as in

chapter II, the sectional curvature of a plane spanned by ξ and X ∈ D is

κ(X, ξ) =
B

A2
κ0(X, ξ), (4.10)

where κ0 denotes the sectional curvature with respect to the initial metric g0. The

sectional curvature of a plane spanned by X, Y ∈ D is

κ(X, Y ) =
1

A
κT0 (X, Y ) +O

(
B

A2

)
. (4.11)

4.2. Transverse Calabi-Yau Structure

When λ = 0 we have c1
B = 0 and the transverse structure is Calabi-Yau. In this

case we can solve the Ricci flow equations explicitly. We compute

d

dt

(
B

A2

)
= −4(n+ 2)

(
B

A2

)2

. (4.12)

We solve this to get

B

A2
=

1

1 + 4(n+ 2)t
. (4.13)

Now we have

dB

dt
= −4n

(
B

A2

)
B =

−4n

1 + 4(n+ 2)t
B.
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This yields

B(t) = (1 + 4(n+ 2)t)
−n
n+2 .

Then from equation (4.13) we get

A(t) = (1 + 4(n+ 2)t)
1

n+2 .

Therefore, the flow exists for all t ∈ [0,∞) and A(t)→∞ while B(t)→ 0 as t→∞.

In the limit, all sectional curvatures tend to zero and the metric degenerates to a flat

metric on the transverse space.

Example 4.2.1. For an example of an η-Einstein metric with transverse Calabi-Yau

structure, we consider the Heisenberg group H = H(3,R). It is a nilpotent Lie group

that can be identified algebraically as

H =




1 x z

0 1 y

0 0 1

 : x, y, z ∈ R

 .

We identify this Lie group topologically with R3 in the obvious way. We consider

the group action to be from the right. Hence, the action of right multiplication by

(a, b, c) is (x, y, z) 7→ (x + a, y + b, z + c + bx). The Lie algebra is generated by the

right invariant vector fields ξ = 2 ∂
∂z

, Y = 2 ∂
∂y

and X = 2( ∂
∂x

+ y ∂
∂z

) which satisfy the

bracket relations [ξ, Y ] = [ξ,X] = 0 and [Y,X] = 2ξ.

Define a 1-form η := 1
2
(dz − ydx). Note that η is invariant under the group

action. As η ∧ dη = 1
4
dx ∧ dy ∧ dz, we see that η is a contact form. We have

D := ker(η) = {X, Y }. The complex structure J : D → D defined by JX = Y and
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JY = −X gives (D, dη, J) a Kähler structure. This is just the standard, flat, Kähler

structure on R2 = C.

Define a metric g0 := η ⊗ η + 1
4
(dx⊗ dx + dy ⊗ dy). Then g0 is invariant under

the group action, {ξ, Y,X} is an orthonormal frame and (ξ, η,Φ, g0) gives H a Sasaki

structure. Here Φ is just the extension of J such that Φξ = 0. Explicitly we have

Φ = ∂
∂y
⊗ dx − ( ∂

∂x
+ y ∂

∂z
) ⊗ dy. The nonzero components of the Ricci tensor of g0

are Ric(ξ, ξ) = 2 and Ric(Y, Y ) = Ric(X,X) = −2. Therefore Ricg0 = −2g0 + 4η⊗ η.

Hence g0 is an η-Einstein metric. Under the Ricci flow, the curvature tends to zero

and the metric degenerates to a flat metric on R2.

Now define the compact quotient manifold N := H(3,R)/H(3,Z) where H(3,Z)

denotes matrices of the above form with x, y, z ∈ Z. Then N is a non-trivial circle

bundle over a complex torus and the Sasaki structure on H descends to a Sasaki

structure on N . The S1 fiber corresponds to the integral curves of the Reeb vector

field ξ = 2 ∂
∂z

. The Ricci flow on N behaves the same as the Ricci flow on H. Under

the flow, the S1 fiber shrinks to a point and we have convergence to a flat torus.

Remark 4.2.2. The behavior of the Ricci flow seen in this example is precisely the

behavior of the Ricci flow on any Nil 3-manifold with an invariant metric. See, for

example, chapter 1.6 of [11].

4.3. Transverse Fano Structure

When λ > 0 we have c1
B > 0 and the transverse structure is Fano. In general,

the flow only exists for finite time t ∈ [0, T ), T < ∞, and both A(t), B(t) → 0 as

t→ T . We will consider three cases:
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1. If λ > 2(n+ 1) then, from equation (4.9), Λ > 0. In this case we have

B

A
=

λ

2(n+ 1)
− ΛB

n+1
n <

λ

2(n+ 1)
.

Then

dA

dt
= 4

B

A
− 2λ <

2λ

n+ 1
− 2λ < 0.

This shows that A(t)→ 0 in finite time. Since 0 < B < λ
2(n+1)

A, it follows that

B(t)→ 0 in finite time as well.

2. If λ = 2(n+ 1), then Λ = 0 and the solution is given by A(t) = B(t) = 1− 4nt,

as is easily checked. In this case the initial metric is Sasaki-Einstein. Notice

that the flow only exists for t ∈
[
0, 1

4n

)
and both A(t), B(t)→ 0 as t→ 1

4n
.

3. If 0 < λ < 2(n+ 1), then Λ < 0. In this case we have

B

A
=

λ

2(n+ 1)
− ΛB

n+1
n >

λ

2(n+ 1)
.

Then

dB

dt
= −4n

(
B

A

)2

<
−nλ2

(n+ 1)2
< 0.

This implies that B(t) → 0 in finite time. Since 0 < A < 2(n+1)
λ

B, it follows

that A(t)→ 0 in finite time as well.

In this transverse Fano case, we see that all the sectionals curvatures tend to infinity

as we approach the terminal time. This is to be expected (at least in one direction)

of a Ricci flow with a finite-time singularity. It would be interesting to determine the

terminal time explicitly in terms of λ and n in cases 1 and 3 above.
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Example 4.3.1. The canonical example of an η-Einstein manifold with transverse

Fano structure is the classical Hopf fibration. This gives S3 the structure of a principle

circle bundle over CP 1 and the standard Sasaki structure on S3 (compare with

example 1.3.5). Writing S3 = {(w, z) ∈ C2 : |w|2 + |z|2 = 1}, the Hopf fibration

S1 ↪→ S3 → CP 1 is induced by the map π : S3 → CP 1, where (w, z) 7→ [w : z].

Here [w : z] denotes the homogenous coordinates on CP 1. As [w : z] = [λw : λz] for

λ ∈ C∗, it is clear that the fibers of π are circles S1 = {λ ∈ C : |λ| = 1}.

As we saw in chapter II, the collection of principal circle bundles over CP 1 has a

group structure isomorphic to H2(CP 1,Z) ' Z with generator 1
2π

[ωFS]. The Fubini-

Study metric has constant holomorphic sectional curvature equal to 4. As in the

proof of theorem 2.2.6, there is a contact form η on S3 such that 1
2
dη = π∗ωFS and

g := η ⊗ η + π∗ωFS(J ·, ·)

defines a Sasaki metric. The metric g is in fact the round metric of constant sectional

curvature 1. So g is an Einstein (hence η-Einstein) metric with Ric = 2g. The Ricci

flow on S3 with initial metric g is g(t) := (1− 4t)g. The flow exists for t ∈
[
0, 1

4

)
and

S3 shrinks to a point at the terminal time T = 1
4
. As t→ T the sectional curvatures

blows up.

Now fix ε ∈ (0, 1) and define a Sasaki metric gε via a D-homothetic deformation

of g. That is, gε := εg + (ε2 − ε)η ⊗ η. Then ḡ := ε−1gε = εη ⊗ η + π∗ωFS(J ·, ·)

and (S3, ḡ) is the classical ε-collapsed Berger sphere. Let ḡ(t) be the Ricci flow with

initial metric ḡ. This flow is well-understood (see chapter 1.5 of [11]). The flow exists

on a maximal finite time interval [0, T ) and the metric becomes asymptotically round

as t → T . Thus, gε(ε
−1t) = εḡ(ε−1t) is the Ricci flow on [0, εT ) with intitial metric

gε and it behaves the same as the flow ḡ(t).
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4.4. Transverse Canonical Structure

When λ < 0 we have c1
B < 0 and we say that the transverse structure is canonical.

In this case the flow exists for all t ≥ 0, A(t) → ∞ as t → ∞ and B(t) tends to a

constant c(n, λ) ∈ (0, 1) as t→∞.

Since dB
dt

= −4nB
2

A2 < 0 and B(0) = 1, we have 0 < B(t) ≤ 1. From (4.8) and

(4.9),

dB

dt
= −4n

(
λ

2(n+ 1)
− ΛB

n+1
n

)2

. (4.14)

Thus dB
dt

is uniformly bounded. Hence, the right hand side of (4.14) and its first

derivative are uniformly bounded. By a standard result in ODEs (see [23]), this

implies that (4.14) with the initial condition B(0) = 1 has a unique solution defined

for all t ≥ 0. Then it follows from (4.9) that equation (4.7) has a unique solution

defined for all t ≥ 0.

Since we must have A,B > 0, right away we see that dA
dt

= 4B
A
− 2λ ≥ −2λ > 0.

Thus

A(t) ≥ 1− 2λt.

Hence A(t)→∞ as t→∞. Now, from equation (4.9) we have

B

A
=

λ

2(n+ 1)
− ΛB

n+1
n ,

and it follows that

lim
t→∞

B(t) =

(
λ

2Λ(n+ 1)

) n
n+1

=

(
λ

λ− 2(n+ 1)

) n
n+1

.

As in the λ = 0 case, as t → ∞ all of the sectional curvatures tend to zero and the

metric degenerates to a flat metric on the transverse space.
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Example 4.4.1. For an example of an η-Einstein metric with transvere canonical

structure, we consider M = B × R where B = {z ∈ C : |z| < 1}. Let ω be the

Bergman metric on B. We take

ω = 2i∂∂̄ log(1− |z|2) = 2i
dz ∧ dz̄

(1− |z|2)2
.

Then (B,ω, J) is Kähler with constant, negative, holomorphic sectional curvature.

Here J is the usual complex structure on C. Since ω is a real, closed 2-form on B,

there is some real 1-form α such that ω = dα. In particular,

α = i
zdz̄ − z̄dz
(1− |z|2)

.

Let π : M → B be the projection. Let t be the coordinate on R and define

1
2
η := π∗α + dt. Then 1

2
dη = π∗ω and we see that η is a contact form. The Reeb

vector field ξ = 1
2
∂
∂t
. We take Φ = π̃ ◦ J ◦ π∗. Now define a metric

g0 := π∗ω(·, J ·) + η ⊗ η =
1

2
dη(·,Φ·) + η ⊗ η.

Then (ξ, η,Φ, g0) is a Sasaki structure on M .

In real coordinates (x, y), we have

α = 2
xdy − ydx
1− x2 − y2

and ω = 4
dx ∧ dy

(1− x2 − y2)2
.

Define vector fields

X :=
1− x2 − y2

2

(
∂

∂x
− η

(
∂

∂x

)
ξ

)
and Y :=

1− x2 − y2

2

(
∂

∂y
− η

(
∂

∂y

)
ξ

)
.
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Then D = span{X, Y } and {ξ,X, Y } is an orthonormal frame for g. Working with

this frame, we compute the nonzero components of the Ricci tensor to be Ric(ξ, ξ) = 2

and Ric(X,X) = Ric(Y, Y ) = −3. Thus Ric = −3g + 5η ⊗ η. Hence, g is η-Einstein.

If we consider a metric of the form g = Aπ∗ω(·, J ·) + Bη ⊗ η, then we compute

that, with respect to the frame {ξ,X, Y }, the nonzero components of the Ricci tensor

of g are Ric(ξ, ξ) = 2B
2

A2 and Ric(X,X) = Ric(Y, Y ) = −1 − 2B
A
. Thus, we will have

the Ricci flow with inital metric g0 if we can solve

dA

dt
= 2 + 4

B

A
, A(0) = 1,

dB

dt
= −4

B2

A2
, B(0) = 1.

From the above we know that the solution exists for all t ≥ 0 and as t → ∞,

A(t)→∞, B(t)→
√

5
5

and the sectional curvatures all tend to zero.

Remark 4.4.2. There is a classification of 3-dimensional Sasaki manifolds due to

Geiges. The three examples we have presented in this chapter are the universal covers

of the geometries given in the classification. Our examples easily generalize to higher

dimensions, but in higher dimensions there is no such classification. In dimension 3,

the basic first Chern class is always signed or null. As one might expect, there is a

correspondence between the type of Sasaki structure (positive, negative or null c1
B)

and the three geometries given in Geiges’ classification. A well-known theorem of

Belgun makes this precise. See [6] for more information about this.
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4.5. Rigidity

To have a Ricci flow of the form (4.5), the initial Sasaki metric g0 must have

very special geometry. Indeed, we can prove the following:

Proposition 4.5.1. Let (ξ, η0,Φ, g0) be a Sasaki structure. Suppose that the Ricci

flow with initial metric g0 is given by g(t) = A(t)gT0 + B(t)η0 ⊗ η0. Then g0 is an

η-Einstein metric.

Proof. As we saw before, the metric g(t) provides a quasi-Sasaki structure and we

have Rict(ξ, ξ) = 2nB
2

A2 , Rict|D = RicTt − 2B
A
gT0 and Rict(X, ξ) = 0 for all X ∈ D.

Since gT (t) = A(t)gT0 is just a scaling of gT0 , we have RicTt = RicT0 . Hence, A satisfies

dA

dt
gT0 (X, Y ) = 4

B

A
gT0 (X, Y )− 2RicT0 (X, Y )

for all X, Y ∈ D. Rewrite the above as

2RicT0 (X, Y ) =

(
4
B

A
− dA

dt

)
gT0 (X, Y ).

Since the left-hand side is independent of time, 4B
A
− dA

dt
must be a constant, call

it 2δ. Then RicT0 = δgT0 . Thus, the initial transverse metric gT0 is Kähler-Einstein.

Therefore, the initial Sasaki metric is η-Einstein.

4.6. Questions and Directions for Future Research

We have merely scratched the surface of the investigation into the Ricci flow of

a Sasaki metric and there are many questions still to be answered. We list just a few

of them below.
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1. The Ricci flow with an initial Sasaki metric is not Sasaki for t > 0, but is it

quasi-Sasaki in general?

2. The author can show that, in general, the length of ξ with respect to the evolving

metric is decreasing. If the Ricci flow has a finite time singularity, does the

length of ξ going to zero characterize the singular time?

3. Is there a relationship between the Ricci flow of a Sasaki metric and the

transverse Kähler-Ricci flow of a Sasaki metric?
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CHAPTER V

APPENDIX

In chapter II we proved that under certain conditions a quasi-Sasaki-Einstein

manifold has a local Riemannian product structure. The proof of theorem 2.6.3 made

use of an integrable, in fact parallel, almost product structure. We decided to include

this short section here to review the necessary terminology and some criteria for

integrability.

Definition 5.0.1. An almost product structure on a smooth manifold M is a

(1,1)-tensor F (i.e. an endomorphism of the tangent bundle) such that F 2 = I.

If we let P = 1
2

(I + F ) and Q = 1
2

(I − F ), then

P 2 = P, Q2 = Q and PQ = QP = 0. (5.1)

Conversely, given (1,1)-tensors P and Q satisfying (5.1), setting F = P − Q

gives an almost product structure. The images of P and Q define complementary

distributions P and Q of TM . We will assume that P and Q have constant rank

p and q, respectively. That is, the dimension of the corresponding distribution is

constant for all x ∈ M . On the other hand, given two distributions P and Q such

that TM = P ⊕Q, setting P and Q to be their respective projections, we see that P

and Q satisfy (5.1).

Definition 5.0.2. Let D be a k-dimensional distribution on a smooth m-dimensional

manifold M . We say that D is involutive if for any X, Y ∈ D, the Lie bracket

[X, Y ] ∈ D.
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We say that D is integrable if for each point x ∈ M there is a k-dimensional

submanifold N containing x such that TxN = Dx. We call N an integral submanifold

of D (through x).

We say that D is completely integrable if for each point x ∈ M , there is a

coordinate neighborhood (U, x1, . . . , xm) of x such that {∂x1 , . . . , ∂xk} is a local frame

for D. Setting xi = ci for i = k + 1, . . . ,m, and some constants ci gives an integral

submanifold of D.

The famous theorem of Frobenius says that these three notions are equivalent.

Theorem 5.0.3 (Frobenius). A distribution is involutive if and only if it is integrable

if and only if it is completely integrable.

Definition 5.0.4. An almost product structure F on M is integrable if the

distributions induced by P and Q are integrable in the sense of Frobenius. In this

case we say that M is a locally product manifold.

So if F = P − Q is an integrable almost product structure on M , then by

the Frobenius theorem, for each point x ∈ M , there is a coordinate neighborhood

(U, x1, . . . , xm) such that {∂x1 , . . . , ∂xp} is a local frame for P and {∂xp+1 , . . . , ∂xm} is

a local frame for Q. Setting xp+1, . . . , xm constant gives an integral submanifold of P

and setting x1, . . . , xp constant gives an integral submanifold of Q. Thus M is locally

the product of two manifolds whose tangent spaces are (isomorphic to) P and Q.

By proposition 3.1.4 in [13], the integrability of the almost product structure F is

equivalent to the vanishing of the Nijenhuis tensor NF defined by (1.2). Furthermore,

since NI = 0, one can check that NF = 2NP = −2NQ. Therefore:

Proposition 5.0.5. An almost product structure F = P −Q is integrable if and only

if NF = 0 if and only if NP = 0 if and only if NQ = 0.
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Now let g be a Riemannian metric and ∇ the Levi-Civita connection of g. Recall

that ∇g = 0 and ∇XY −∇YX = [X, Y ]. If T is a parallel (1,1)-tensor (i.e. ∇T = 0),

then it is straightforward to check that the Nijenhuis tensor NT = 0. It is also easy

to check that the image of a parallel (1,1)-tensor is an involutive distribution. Since

∇F = 2∇P = −2∇Q, we see that if any of F , P or Q is parallel then the almost

product structure is integrable, but in this case even more is true.

Definition 5.0.6. Let (M, g) be a locally product manifold with TM = P ⊕ Q

an orthogonal decomposition. We say that (M, g) is a locally decomposable

Riemannian manifold if for any U, V ∈ P and X, Y ∈ Q we have Xg(U, V ) = 0

and Ug(X, Y ) = 0.

In this case the metric splits as an honest product metric corresponding to the

locally product structure. It is known by work of Yano that a necessary and sufficient

condition for a locally product manifold to be a locally decomposable Riemannian

manifold is ∇F = 0. Therefore we have the following:

Proposition 5.0.7. Let F = P −Q be an almost product structure on (M, g). Then

(M, g) is a locally decomposable Riemannian manifold if and only if ∇F = 0 if and

only if ∇P = 0 if and only if ∇Q = 0 if and only if P and Q are parallel distributions.

Remark 5.0.8. We remark that if F is an integrable almost product structure,

then there exists a torsion-free, affine connection (not necessarily the Levi-Civita

connection) with respect to which F is parallel. See the book [13] for reference.

In this section we have collected the technical lemmas and propositions used in

chapter III. We begin with
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Lemma 5.0.9. Let x ∈M and V (r) := Vol(BT (x, r)). If Fξ is quasi-regular, then

lim
r→0

V (r)

V (r/2)
= 4n.

Proof. Recall that π : M → Z is a principle S1-orbibundle over the orbifold Z =

M/Fξ. Pick a point x ∈ M and choose r > 0 small enough so that BT (x, r) is a

trivial S1 bundle over the geodesic ball π(BT (x, r)) ⊂ Z. Since the set of orbifold

singularities in Z has measure zero, it does not contribute anything when we compute

volumes. Thus we may assume that π(BT (x, r)) contains only smooth points. For

smooth points in Z, all S1 fibers have the same length, call it `. On BT (x, r) the

metric and volume form can be written as

g = η ⊗ η + π∗h,

dV = η ∧ (π∗ωh)
n,

where h is a Kähler metric on π(BT (x, r)) and ωh is the Kähler form. Hence

V (r) =

∫
BTg (x,r)

dV =

∫
S1×π(BTg (x,r))

η ∧ (π∗ωh)
n = ` · Vol(π(BT

g (x, r)).

The result follows from this and the fact that for any geodesic ball B(r) ⊂ Z of radius

r,

lim
r→0

Vol(B(r))

Vol(B(r/2))
= 22n = 4n.
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Proposition 5.0.10. Let M2n+1 be a compact quasi-Sasaki manifold without

boundary. Let α and β be basic forms with deg(α) + deg(β) = 2n− 1. Then

∫
M

dα ∧ β ∧ η + (−1)deg(α)

∫
M

α ∧ dβ ∧ η = 0.

Proof. We compute that

d(α ∧ β ∧ η) = dα ∧ β ∧ η + (−1)deg(α)α ∧ dβ ∧ η − α ∧ β ∧ dη.

The form α ∧ β ∧ dη is basic and of degree 2n + 1, thus α ∧ β ∧ dη = 0. The result

now follows from Stokes’ theorem.

Corollary 5.0.11. Let α be a basic (2n− 1)-form on a closed quasi-Sasaki manifold

M2n+1. Then ∫
M

dBα ∧ η = 0.

Proof. Take β = 1 in the above proposition.

Lemma 5.0.12. For any bundle-like metric g and τ > 0, we have µT (g, τ) > −∞.

Proof. Letting w := τ−n/2e−f/2, we can write the WT -functional as

WT (g, f, τ) =

∫
M

τ(RTw2 + 4|∇w|2)− 2(log(w) + n log(τ))w2 dV.

For a constant c > 0, it is not hard to see that WT (cgT , f, cτ) =WT (gT , f, τ). Hence

we may assume without loss of generality that τ = 1. Thus we need to show that

there is a constant C = C(g) such that

∫
M

RTw2 + 4|∇w|2 − 2w2 log(w) dV ≥ C.
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Since infx∈M RT > −∞ and
∫
M
w2 dV = 1, we only have to show that

∫
M

4|∇w|2 − 2w2 log(w) dV ≥ C.

This follows from the log Sobolev inequality (see, for example, lemma 6.36 in [9]).

Lemma 5.0.13. Suppose there is a sequence rk > 0 and a sequence of points and

times (pk, tk) ∈M × [0,∞) with tk →∞ such that r−2n
k Vk(rk)→ 0 as k →∞, where

Vk(rk) = Vol(BT
g(tk)(pk, rk)).

Then we may assume that Vk(rk) ≤ 5nVk(rk/2)

Proof. If it is not the case that Vk(rk) ≤ 5nVk(rk/2), then let rik = 2−irk for integers

i > 0. By lemma 5.0.9, we can choose i0 to be the least integer such that Vk(r
i0
k ) ≤

5nVk(r
i0
k /2). So for i < i0 we have Vk(r

i
k) > 5nVk(r

i
k/2) = 5nVk(r

i+1
k ). Iterating this

inequality, we get

Vk(r
i0
k ) < 5−i0nVk(rk).

Therefore, as k →∞,

(ri0k )−2nVk(r
i0
k ) <

(
4

5

)i0n
r−2n
k Vk(rk)→ 0.

Thus we can replace rk with ri0k and we have Vk(r
i0
k ) ≤ 5nVk(r

i0
k /2).

Lemma 5.0.14. For any ε > 0 there are k1 < k2 such that if the transverse diameter

is sufficiently large then

1. Vol(Bξ(k1, k2)) < ε

2. Vol(Bξ(k1, k2)) ≤ 210nVol(Bξ(k1 + 2, k2 − 2))
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3. There exists r1 ∈ [k1, k1 + 1], r2 ∈ [k2 − 1, k2] and a uniform constant C such

that ∫
Bξ(r1,r2)

RT dV ≤ CVol(Bξ(k1, k2)).

Proof. Let ε > 0 be given. As the manifold M is closed and ∂tdVt = ∆Tu dVt =

∆u dVt, the volume of M is constant along the flow. So if the transverse diameter

becomes sufficiently large, then there is K big enough so that for all k2 > k1 ≥ K we

have Vol(Bξ(k1, k2)) < ε.

Take k2 > k1 ≥ K. If (2) holds then we are done. Suppose that (2) does not

hold. We then consider the annulus Bξ(k1 + 2, k2 − 2) and check to see if (2) holds

now. If it does then we are done, otherwise we repeat this step. Suppose that after

repeating this step m times, we are still unable to find k1 and k2 so that (1) and (2)

hold. Then we would have

Vol(Bξ(k1, k2)) > 210nmVol(Bξ(k1 + 2m, k2 − 2m)).

We can assume that k2−k1−4m is very close to 1. Then 2m is close to 1
2
(k2−k1−1).

If we choose k � 1 and set k1 = k/2 and k2 = 3k/2, then m is close to k/4, k1 + 2m

is close to k and k2 − 2m is close to k + 1.

The length of ξ is constant along the flow. Hence, the lengths of the integral

curves of ξ (which are closed geodesics) are constant along the flow. Thus they are

uniformly bounded above by some ` > 0. So for any p, q ∈ M we have dg(t)(p, q) ≤

dTg(t)(p, q) + `. This, along with proposition 3.3.7, gives RT ≤ C22k on Bξ(k, k + 1)

for some uniform constant C. The annulus Bξ(k, k + 1) contains at least 22k disjoint
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transverse balls of radius 2−k. Then by theorem 3.4.1 we have

Vol(Bξ(k, k + 1)) ≥
22k∑
i=1

Vol(BT
g(t)(2

−k)) ≥ C22k2−2kn.

Combining this with the above we find that

ε > Vol(Bξ(k1, k2)) > 210nmVol(Bξ(k, k + 1)) ≥ C210nm22k2−2kn.

If k is large enough, then 10m > 2k and the above is a contradiction. Therefore (1)

and (2) hold.

To prove (3) we first define the transverse sphere STg (x, r) := {y ∈M : dTg (x, y) =

r}. Then d
dr

Vol(BT
g (x, r)) = Vol(STg (x, r)). Given k1 � k2 such that (1) and (2) hold,

there is r1 ∈ [k1, k1 + 1] such that

Vol(STg(t)(x, 2
r1)) ≤ Vol(Bξ(k1, k2))

2k1−1
.

If not, then we would have

Vol(Bξ(k1, k1 + 1)) =

∫ 2k1+1

2k1

Vol(ST (x, r)) dr > 2Vol(Bξ(k1, k2)).

This is a contradiction since k1 � k2. Similarly we can prove there is r2 ∈ [k2− 1, k2]

such that

Vol(STg(t)(x, 2
r2)) ≤ Vol(Bξ(k1, k2))

2k2−1
.
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Using these volume estimates for the spheres and proposition 3.3.7, we have

∫
Bξ(r1,r2)

RT − n dV =

∫
Bξ(r1,r2)

−∆u dV

=

∫
ST (x,2r1 )

|∇u| dV +

∫
ST (x,2r2 )

|∇u| dV

≤ Vol(Bξ(k1, k2))

2k1−1
C2k1+1 +

Vol(Bξ(k1, k2))

2k2−1
C2k2

= CVol(Bξ(k1, k2)).
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