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DISSERTATION ABSTRACT

Ben Dyer

Doctor of Philosophy

Department of Mathematics

December 2017

Title: NC-Algebroid Thickenings of Moduli Spaces and Bimodule Extensions of
Vector Bundles over NC-Smooth Schemes

We begin by reviewing the theory of NC-schemes and NC-smoothness, as

introduced by Kapranov in [11] and developed further by Polishchuk and Tu in [20].

For a smooth algebraic variety X with a torsion-free connection ∇, we study

modules over the NC-smooth thickening ÕX of X constructed in [20] via NC-

connections. In particular we show that the NC-vector bundle Ẽ∇̄ constructed via

mNC-connections in [20] from a vector bundle (E, ∇̄) with connection additionally

admits a bimodule extension at least to nilpotency degree 3.

Next, in joint work with A. Polishchuk [7], we show that the gap, as first

noticed in [20], in the proof from [11] that certain functors are representable by

NC-smooth thickenings of moduli spaces of vector bundles is unfixable. Although

the functors do not represent NC-smooth thickenings, they lead to a weaker

structure of NC-algebroid thickening, which we define. We also consider a similar

construction for families of quiver representations, in particular upgrading some of

the quasi-NC-structures of [23] to NC-smooth algebroid thickenings.

This thesis includes unpublished co-authored material.
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CHAPTER I

INTRODUCTION

In this chapter we attempt locate the present work in the larger context of

noncommutative geometry, give some intuition for the idea of NC-schemes, and

indicate the main results.

1.1 Noncommutative Algebraic Geometry

In the case of noncommutative differential geometry (cf. [4]) one may take

a noncommutative C*-algebra as the basic object of study, analogy with Gelfand

duality. However, the similar duality in algebraic geometry is only between

commutative rings and affine schemes, with apparently no equally obvious

notion of a noncommutative scheme. The problem with the naive approach is

the following: there are natural noncommutative analogs either for just the affine

schemes, or for all locally ringed spaces, but there is no obvious relation between

them. In particular we lack an embedding of (noncommutative) rings into locally

(noncommutative) ringed spaces.

One approach to noncommutative algebraic geometry then is to try to

associate a space SpecR to a noncommutative ring R. As shown in [21], it is not

possible to do this faithfully functorially in a way which extends classical algebraic

geometry (although see [24]), e.g. any such theory defines SpecM3(C) = ∅ .

Instead one way choose to settle for only a subcategory of all noncommutative

rings, for which the theory of algebraic geometry will have satisfying properties.

This is the approach taken in [25], which defines SpecR for rings with “enough”
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Ore sets. Another option is that of [16], where one defines noncommutative spaces

“virtually” in terms of their categories of sheaves.

Kapranov’s theory [11] of NC-schemes, the subject of this thesis, avoids the

difficulty of producing any new topological spaces or additive categories by taking a

formal approach to noncommutative algebraic geometry.

1.2 NC-Schemes as Formal Noncommutative Neighborhoods

Recall that to a closed embedding of schemes X ⊂ Y there is a formal scheme

X̂Y → Y , called the formal neighborhood of X in Y . This is a locally ringed space

whose underlying space is that of X, but whose sheaf of formal functions ÔX =

lim←ÐOY /I
n
X carries infinitesimal information about the embedding.

In the noncommutative set up, given any ring R one has a natural surjection

πab ∶ R → Rab, with kernel the two-sided ideal generated by commutators of elements

in R. One may imagine this as being dual to some hypothetical closed immersion of

noncommutative spaces:

SpecRab ↪ “SpecR”

Although we don’t know how to define the latter space, all we need in order

to study the formal neighborhood is a new structure sheaf on SpecRab, which

remembers “infinitesimal noncommutative” information about R.

The formal noncommutative neighborhood of this embedding is modeled by

the algebra RJabK, called the NC-completion of R, which is the completion with

respect to a natural filtration IdR. Unlike the commutative formal neighborhoods,

this filtration is not simply the powers of I1R = R[R,R]; it is an important

aspect of the theory that one imposes convergence not only of higher products of
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commutators [x1, y1][x2, y2]⋯[xn, yn], but also of higher nestings of commutators

[x1, [x2, [⋯, xn]⋯]]. This reduces the R-linear structure on gr●
I
(R) to a single Rab-

module (similar to the commutative case), causes many natural localizations to

be of Ore type, and ultimately enables the construction of a locally ringed space

X = SpecR with Γ(X,OX) = R.

In particular, Kapranov’s NC-nilpotent algebras are so-called schematic

algebras, and the theory of NC-schemes fits into the larger picture of

noncommutative algebraic geometry described in [25].

1.2.1 NC-manifolds and quantization

One of the interesting features of Kapranov’s theory is the existence of

a unique NC-smooth algebra thickening a fixed smooth commutative algebra.

Because this structure is not at all canonical, it is an interesting question when a

non-affine variety admits an NC-smooth thickening (e.g. when local NC-smooth

thickenings can glue together).

It is pointed out in [17] that the affine NC-smooth thickenings defined by

Kapranov had already been discovered as certain microlocalizations (cf. [25]). In

some sense the DG-resolutions of NC-smooth thickenings defined in [20] are analogs

of Fedosov’s construction of deformation quantization (cf. [1, 8] and [19]). In the

present work, we show that algebroids, which also first came up in the study of

deformation quantization (cf. [15]) fit naturally into this theory as well.

In particular we find NC-algebroid thickenings of certain moduli spaces.

3



1.3 Summary of Results

In Chapter V we consider a question of [20, Rem. 3.3.10] on bimodule

extendability of NC-vector bundles. It was suggested that for an NC-vector

bundle coming from an mNC-connection, perhaps extendability to a 2-nilpotent

bimodule would imply flatness of the connection. However, we show that an NC-

vector bundle coming from an mNC-connection always admits a 2- and even a 3-

nilpotent bimodule extension. Chapter IV and Sections 2.1,2.2 are necessary for

these computations.

In VI we define a notion of almost NC-schemes, modeled on the category aN

of NC-nilpotent algebras up to inner automorphism, and observe that a functor

which factors through aN cannot represent an NC-smooth scheme. However, we

introduce the weakened notion of an NC-smooth algebroid thickening and prove

that a formally smooth functor which is locally representable in aN determines an

NC-smooth algebroid thickening.

It follows from VI that the natural functors defined by Kapranov [11] and

Toda [23] are not representable by NC-smooth schemes. In VII we define certain

moduli spaces which we call excellent families of vector bundles (correcting the

definition of [11]) and of quiver representations (which have some overlap with

[23]), and construct NC-smooth algebroid thickenings of each using the results of

VI.

Chapters VI and VII are unpublished joint work with A. Polishchuk.
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CHAPTER II

PRELIMINARIES

The purpose of this chapter is to collect some facts an notation which will

be useful for the later chapters. The first two sections are in preparation for the

computations on bimodule extensions of NC-vector bundles, while the sections on

non-abelian (hyper)cohomology are for the NC-algebroid thickenings of moduli

spaces.

2.1 Algebraic de Rham Complex

For affine space An, the operation of contraction with the Euler vector field

E = xi ∂
∂xi

defines an explicit homotopy equivalence of chain complexes Ω●

An ≃ C

between the algebraic de Rham complex and its cohomology. Moreover, the

construction is GLn-equivariant, hence leads to similar contraction for the relative

DGAs of any vector bundle.

2.1.1 Algebraic de Rham complex of affine space An

Definition 2.1.1. Let x1, . . . , xn be coordinates for An. The Euler vector field is

E = x1 ⋅
∂

∂x1

+⋯ + xn
∂

∂xn
,

and for a differential k-form ω(v1, . . . , vk), the operation of contraction with Euler

vector field is denoted ιE and is defined by

ιE(ω)(w1, . . . ,wk−1) = ω(E,w1, . . . ,wk−1).
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What follows are some elementary properties of the operation ιE.

Lemma 2.1.2. The following properties of the contraction ιE hold:

(a.) For any v,w ∈ Ω●, then ιE(v ∧w) = ιE(v) ∧w + (−1)∣v∣ιE(w)

(b.) If ω ∈ Λk(V ) then d ○ ιE(ω) = k ⋅ ω

(c.) If ω ∈ Λi(V ) ⊗ Sj(V ) then ιE ○ d(ω) = j ⋅ ω

Proof. (a) is clear. For (b) k = 0,1 are clear, and the rest follow inductively using

(a) as follows. Consider v ∈ Λ1(V ),w ∈ Λk(V ), then

dιE(v ∧w) = d(ιE(v) ∧w − v ∧ ιE(w))

= dιE(v) ∧w + ιE(v) ∧ dw − dv ∧ ιE(w) + v ∧ dιE(w)

= dιE(v) ∧w + v ∧ dιE(w)

= (k + 1) ⋅ v ∧w

For (c) just note that

ιE(∑
i

∂ifdxi ∧ ω) = ∂if ⋅ xi ⋅ ω = (∑
i

degi(f)) ⋅ f ⋅ ω = deg(f) ⋅ f ⋅ ω

where degi denotes the degree of f with respect to xi. and deg f = ∑i degi is the

total degree.

Definition 2.1.3. The homotopy operator hE ∶ Ω●

An → Ω●−1
An is defined to be hE =

⊕hi,j where hi,j ∶ Λi(V ) ⊗ Sj(V ) → Λi−1(V ) ⊗ Sj+1(V ) is given by hi,j = 1
i+j ιE.

Definition 2.1.4. In this thesis, a retraction of a complex B● onto a subcomplex

A●
ι↪ B● is the data of:

6



(i) a map r ∶ B● → A● such that r∣A● = idA● ;

(ii) a homotopy h from r to idB, i.e. such that dBh + hdB = idB − r.

which also satisfy the side conditions, h∣A● = 0 and rh = h2 = 0.

Proposition 2.1.5. The projection Ω●

An → C is a retraction with homotopy operator

hE.

Proof. Let ω ∈ Λi(V ) ⊗ Sj(V ) such that i + j ≥ 1. Then we have:

(hEd + dhE)(ω) =
ιE(dω)

(i + 1) + (j − 1) +
d(ιEω)
i + j

= j ⋅ ω + i ⋅ ω
i + j

= ω.

Similarly, for any variety X there is a relative Euler vector field on An × X,

parallel to An, giving a homotopy equivalence of the relative de Rham complex

Ω●

(An×X)/X

∼Ð→ OX .

Furthermore, the Euler vector field is GLn-invariant, so this works for any vector

bundle V on X to obtain a retraction

Ω●

V/X

∼→ OX .

2.1.2 Relative algebraic de Rham complex of a vector bundle

The following fact is obvious.
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Lemma 2.1.6. There is a natural identification Ω1
V/X

= p∗V∗

Proof. We consider the affine case. Let B = SA(P ∗) for a projective module P .

HomB(Ω1
B/A,M) = DerA(B,M)

= HomA(P ∗,HomB(B,M))

= HomB(P ∗ ⊗A B,M)

Thus Ω1
B/A

= P ∗ ⊗A B by the Yoneda lemma.

In particular Ω1
TX/X

= Ω1
X ⊗OX

S(Ω1
X).

Proposition 2.1.7. For any vector bundle p ∶ V →X, the projection to degree 0

Ω●

V/X

∼→ OX

is a retraction with homotopy hE.

2.2 Free Lie Algebras

In this section we fix notation regarding free Lie algebras used later in the

section on DG-resolutions.

For a vector space V , we denote by TV the tensor algebra, SV the symmetric

algebra, and LV the free Lie algebra. The derived subalgebra of LV is denoted

L+V = [LV,LV ]. The universal enveloping algebra of a Lie algebra L is denoted

UL. When L is a graded Lie algebra, as is the case for LV and L+V , the grading

extends uniquely over the inclusion L ⊂ UL to UL, and we denote UdL ∶= (UL)d,

and U+L = ⊕d>0UdL.
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Example 2.2.1. Under the identification TV = ULV , UdLV corresponds to T dV .

In [11, §3], it is observed that given an ordered basis x1, . . . , xn for V , if one

considers the subspace SordV ⊂ TV of ordered polynomials, then restriction of the

multiplication TV ⊗ TV → TV ,

SordV ⊗UL+V
∼Ð→ TV

is a bijection. The inverse is a rewriting process f = ∑
λ
Jfλ(x1, . . . xn)K ⋅Mλ, where

{Mλ}λ∈Λ is a basis for UL+V , fλ ∈ SV and JfλK is the corresponding ordered

polynomial in TV .

Although this decomposition was convenient in [11] for describing the

multiplication rule via the Feynman-Maslov operator calculus, it is inconvenient

for this thesis as SordV ⊂ TV is not GL(V )-invariant, hence it doesn’t lead to a

similar decomposition for vector bundles.

Instead we use a different rewriting process involving SV ⊂ TV viewed as the

symmetric polynomials.

Proposition 2.2.2. The restriction of the multiplication TV ⊗ TV → TV ,

µ ∶ SV ⊗UL+V Ð→ TV,

is a right UL+V -linear isomorphism of graded GL(V )-representations.

Proof. Follows easily by comparing with the identification of TV ≅ SV ⊗ UL+V via

ordered monomials.

Example 2.2.3. In Kapranov’s set up x2x1 ∈ C⟨x1, x2⟩ gets rewritten as x2x1 =

x1x2 − [x1, x2]. Instead, we rewrite this as x2x1 = 1
2(x1x2 + x2x1) − 1

2[x1, x2].
9



The following projections are useful later in computations of chapter V.

Corollary 2.2.4. There is a natural map of graded GL(V )-representations

Π ∶ TV Ð→ UL+V

with kernel µ(S+V ⊗UL+V ), and corresponding projections Πd ∶ T dV → UdL+V .

2.3 Nonabelian Cohomology

In this section we review nonabelian cohomology (cf. [9, Sec. 3.3-3.4], [18, Sec.

2.6.8]).

Definition 2.3.1. Consider a sheaf of groups G on a topological space X and an

open covering U = (Ui) of X.

(i) The set of 1-cocycles Z1(U ,G) consists of gij ∈ G(Uij), such that gii = 1,

gijgji = 1, and gij ∣Uijk
⋅ gjk∣Uijk

= gik∣Uijk
.

(ii) Two such 1-cocycles (gij) and (g′ij) are cohomologous if for some hi ∈ G(Ui),

g′ij = hi∣Uij
gijh

−1
j ∣Uij

.

for some hi ∈ G(Ui).

(iii) The pointed set of equivalence classes in Z1(U ,G) is denoted H1(U ,G)

Completely analogously to abelian Čech cohomology we define H1(X,G) as

the limit over all covers U , i.e. H1(X,G) = lim←ÐU H
1(U ,G).

Now assume we are given an abelian extension of sheaves of groups

0→ A → G′ p→ G → 1,

10



i.e. A is a sheaf of abelian normal subgroups of G′. Then we have a natural

connecting map

δ0 ∶H0(X,G) →H1(X,A)

such that δ0(g) = 0 if and only if g lifts to a global section of G′.

Definition 2.3.2. The connecting map δ0 is defined in terms of cocycles by lifting

gi ∶= g∣Ui
locally to g̃i ∈ G′(Ui) and forming the element:

δ0(g) = (g̃i)−1g̃j (2.1)

(Note that this differs from the choice made in [18] that δ(g) = g̃j ⋅ g̃−1
i .)

Note that δ0 is not a homomorphism in general. Rather, it satisfies

δ0(g1g2) = g−1
2 (δ0(g1)) + δ0(g2), (2.2)

where we write the group structure in H1(X,A) additively and use the natural

action of H0(X,G) on H1(X,A) induced by the adjoint action of G on A. (This

means that g ↦ δ0(g−1) is a crossed homomorphism.) An equivalent restatement of

(2.2) is that there is a twisted action of H0(X,G) on H1(X,A) given by

g × a = g(a) + δ0(g−1), where g ∈H0(X,G), a ∈H1(X,A). (2.3)

Explicitly, the usual action of g ∈ H0(X,G) on a class of a Cech 1-cocycle (aij) with

values in A is given by g′iaij(g′i)−1, where g′i ∈ G′(Ui) are liftings of g. On the other

hand, the twisted action of g on aij is given by g′iaij(g′j)−1 = g̃iaij g̃−1
i (g̃ig̃−1

j ).

11



Next, starting from a class g ∈H1(X,G) we can construct a class

δ1(g) ∈H2(X,Ag)

such that δ1(g) = 0 if and only if g is in the image of the map H1(X,G′) →

H1(X,G). Here Ag is the sheaf obtained from A by twisting with g. Namely,

if g is represented by a Cech 1-cocycle gij ∈ G(Ui) then we have isomorphisms

ψi ∶ A∣Ui
→ Ag ∣Ui

such that ψj = ψi ○ gij over Uij. To construct δ1(g), for some

covering (Ui), we can choose liftings g′ij ∈ G′(Uij) for a 1-cocycle (gij) representing

g (such that g′ijg
′

ji = 1 and g′ii = 1). Then δ1(g) is the class of the 2-cocycle

(ψi(g′ijg′jkg′ki)) with values in Ag.

Finally, for a given class g ∈ H1(X,G) we need the following description of the

fiber of the map

H1(X,G′) H
1
(p)→ H1(X,G)

over g. Assume that this fiber is nonempty and let us choose an element g′ ∈

H1(X,G′) projecting to g. Then we have an exact sequence of twisted groups

1→ Ag → (G′)g′ → Gg → 1.

Thus, as before we have two actions of the group H0(X,Gg) on H1(X,Ag). Now we

can construct a surjective map

H1(X,Ag) →H1(p)−1(g), (2.4)

such that the fibers of this map are the orbits of the twisted action of H0(X,Gg) on

H1(X,Ag) (see (2.3)). Namely, let (g′ij) be a Cech 1-cocycle representing g′, and let
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aij ∈ A(Uij) be the g-twisted 1-cocycle, so that ψi(aij) is a 1-cocycle with values in

Ag. This means that over Uijk one has

aijAd(gij)(ajk) = aik.

Then our map (2.4) sends (aij) to the class of (aijg′ij).

In the particular case when the (usual) action of H0(X,Gg) on H1(X,Ag) is

trivial, the corresponding connecting map

δ0 ∶H0(X,Gg) →H1(X,Ag)

is a group homomorphism, and the map (2.4) induces an identification of the

cokernel of this homomorphism with H1(p)−1(g). Equivalently, in this case the

map (2.4) corresponds to a transitive action of H1(X,Ag) on H1(p)−1(g), such that

the stabilizer of any element is the image of δ0.

Remark 2.3.3. Later we will consider cases in which A ⊂ G is central, so that the

action is indeed trivial.

2.4 Nonabelian Hypercohomology

We will use below the following simple generalization of nonabelian H1. Let

G be a sheaf of groups over a topological space X, and let E be a sheaf of sets,

equipped with a G-action. We view a pair G ↷ E as a generalization of a length

2 complex.

Definition 2.4.1. For an open covering U = (Ui)i∈I of X, we define

13



(i) The set of 1-cocycles Z1(U ,G ↷ E) over U for the pair G ↷ E to be the

pointed set of (gij, ei) where gij ∈ Z1(U ,G) and ei ∈ E(Ui) such that

ei = gij(ej).

(ii) Two 1-cocycles over U , (gij, ei) and (g̃ij, ẽi) are called cohomologous if for

some collection hi ∈ G(Ui) we have

g̃ij = higijh−1
j , ẽi = hi(ei).

(iii) The nonabelian hypercohomology H1(U ,G ↷ E) with respect to U is the

pointed set of equivalence classes.

Again, passing to the limit over all open coverings U , we get the nonabelian

hypercohomology, H1(X,G ↷ E).

This construction is natural: if we have a homomorphism of sheaves of groups

G1 → G2 and the compatible map of sheaves of set E1 → E2, then we get the induced

map

H1(X,G1 ↷ E1) → H1(X,G2 ↷ E2).

Also, sending (gij, ei) to gij defines a projection to the usual nonabelian H1,

H1(X,G ↷ E) →H1(X,G).

Remark 2.4.2. While H1(X,G) classifies G-torsors, H1(X,G ↷ E) can be identified

with the isomorphism classes of pairs (P, e), where P is a G-torsor, and e is a global

section of the twisted sheaf EP = P ×G E .
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Next, we have the following analog of the connecting homomorphism H1 →

H2. Assume that we have an abelian extension of sheaves of groups

1→ A0 → G′
p→ G → 1

over X, and sheaves of sets E ′ and E , where G′ (resp., G) acts on E ′ (resp., E).

Further, assume that we have a sheaf of abelian groups A1 acting freely on E ′, and

an identifcation E = E ′/A1. We denote this action as a1 + e′, where a1 ∈ A1, e′ ∈ E ′.

We require the following compatibilities between these data. First, the projections

p ∶ E ′ → E and p ∶ G′ → G should be compatible with the actions (of G′ on E ′ and of

G on E). Note that this implies that there is an action of G′ on A1, compatible with

the group structure on A1, such that

g′(a1 + e′) = g′(a1) + g′(e′).

Secondly, we require that the subgroup A0 ⊂ G′ acts trivially on A1, so that there is

an induced action of G on A1, such that the above formula becomes

g′(a1 + e′) = p(g)(a1) + g′(e′).

In particular, for g′ = a0 ∈ A0, we get

a0(a1 + e′) = a1 + a0(e′). (2.5)

For e′ ∈ E ′ and a0 ∈ A0, let us define de′(a0) ∈ A1 from the equation

a0(e′) = de′(a0) + e′

15



(this is possible since a0 acts trivially on E). Furthermore, (2.5) easily implies that

da1+e′(a0) = de′(a0), so we have a well defined map of sheaves

E ×A0 → A1 ∶ (e, a0) ↦ de(a0),

compatible with the group structures in A0 and A1, such that

a0(e′) = dp(e′)(a0) + e′.

In particular, for every section e of E over an open subset U ⊂ X we have a complex

of abelian groups over U , (A●, de). Note that G acts on A0 (via adjoint action

Ad(g)), A1 and E , and we have

g(de(a0)) = dg(e)(Ad(g)a0). (2.6)

Now assume we have a class c ∈ H1(X,G ↷ E) represented by a Cech 1-

cocycle (gij, ei). Let g = (gij) be the induced class in H1(X,G). We have the

corresponding twisted sheaves Ag0, Ag1, and (2.6) implies that the dei ’s glue into a

global differential

de ∶ Ag0 → A
g
1.

We are going to define an obstruction class δ1(c) with values in

H2(X, (Ag
●
, de)),

16



such that it vanishes if and only if (gij, ei) can be lifted to a class in H1(X,G′ ↷

E ′). Namely, by making the covering small enough, we can assume that

gij = p(g′ij), g′ij ∈ G′(Uij), ei = p(e′i), e′i ∈ E ′(Ui).

Then we have well defined elements a0,ijk ∈ A0(Uijk) and a1,ij ∈ A1(Uij), such that

g′ijg
′

jk = a0,ijkg
′

ik,

g′ij(e′j) = a1,ij + e′i.

It is easy to check that (a0,ijk, a1,ij) satisfy the equations

a0,ijk + a0,ikl = Ad(gij)a0,jkl + a0,ijl, a1,ij + gij(a1,jk) = dei(a0,ijk) + a1,ik,

which means that we get a 2-cocycle δ1(gij, ei) with values in (Ag●, de).

One can check that this construction gives a well defined element δ1(c) ∈

H2(X, (Ag●, de)). Namely, a different choice of liftings g′ij ↦ a0,ijg′ij, e
′

i ↦ a1,i + e′i
would lead to adding the coboundary of (a0,ij, a1,i) to the twisted 2-cocycle

(a0,ijk, a1,ij). On the other hand, changing (gij, ei) to (higijh−1
j , hi(ei)) would

lead to a different presentation of the twisted sheaves Ag●, so that the action of hi

glues into isomorphism between two presentations. Our 2-cocycles δ1(gij, ei) and

δ1(higijh−1
j , hi(ei)) correspond to each other under this isomorphism.

Next, let us assume that a class c ∈ H1(X,G ↷ E) is lifted to a class c′ ∈

H1(X,G′ ↷ E ′). (More precisely, we need to fix the corresponding pair (P ′, e′)

where P ′ is G′-torsor and e′ is a global section of E ′P ′ .) Let g ∈ H1(X,G) be the
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image of c. We define the following subgroup in H0(X,Gg):

H0(X,G, c) ∶= {(αi ∈ G(Ui)) ∣ αi = gijαjg−1
ij , αi(ei) = ei},

where (gij, ei) is a Cech representative of c. We have a natural connecting map

(depending on a choice of c′)

δ0 ∶ H0(X,G, c) → H1(X, (Ag
●
, de)),

defined as follows. We can assume (gij, ei) comes from a Cech representative

(g′ij, e′i) for c′. Let α = (αi) be an element in H0(X,G, c). We can assume that

each αi can be lifted to α′i ∈ G′(Ui). Then we have

α′i ⋅ a0,ij = g′ijα′j(g′ij)−1, α′i(a1,i + e′i) = e′i,

for uniquely defined a0,ij ∈ A0(Uij), a1,i ∈ A0(Ui). It is easy to check that the

following equations are satisfied:

a0,ij +Ad(gij)(a0,jk) = a0,ik, dei(a0,ij) = a1,i − gij(a1,j), (2.7)

which mean that (a0,ij, a1,i) define a 1-cocycle with values in (Ag●, de). We set

δ0(αi) to be the class of this 1-cocycle. As in Sec. 2.3, one can check that α ↦

δ0(α−1) is a crossed homomorphism, i.e., equation (2.2) is satisfied.

Next, we have a natural surjective map (depending on c′)

H1(X, (Ag
●
, de)) → Lc, (2.8)
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where Lc ⊂ H1(X,G′ ↷ E ′) is the set of liftings of c. Namely, given a twisted Cech 1-

cocycle with values in (Ag●, de), (a0,ij, a1,i), so that equations (2.7) are satisfied, and

a representative (g′ij, e′i) of c′ we get a new lifting (a0,ijg′ij, a1,i + e′i). Furthermore, as

in Sec. 2.3, we can identify the fibers of (2.8) with the orbits of the twisted action

of H0(X,G, c) on H1(X, (Ag●, de)), which is defined similarly to (2.3). In particular,

in the case when the usual action of H0(X,G, c) on H1(X, (Ag●, de)) is trivial (or

equivalently, δ0 is a group homomorphism), these orbits are simply the cosets for

the image of δ0.
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CHAPTER III

BASIC THEORY OF NC-SCHEMES

3.1 NC-Nilpotent and NC-Complete Algebras

We recall the category N of NC-nilpotent algebras. They are naturally

described as those algebras for which any expression involving sufficiently many

commutator brackets vanishes. It is convenient to associate to a given algebra A a

degree of NC-nilpotency, a measure of how many brackets a non-zero expression in

A may have, in other words to define subcategories Nd,

Com = N0 ⊂ N1 ⊂ N2 ⊂ ⋯ ⊂ ⋃Nd = N

consisting of algebras which are NC-nilpotent of degree d, or d-nilpotent algebras.

The notion of degree of NC-nilpotency depends on a choice of NC-filtration.

Originally in [11] the commutator filtration F dR was used for this purpose, and

it has many pleasant features, but the filtration IdR introduced in [20] turns out

to be more convenient for the study of NC-smoothness via DG-resolutions. In this

thesis, we will always work with the filtration IdR of [20], which we call the NC-

filtration.

3.1.1 The NC-filtration & NC-nilpotent algebras

For a Lie algebra L the lower central series Li is the decreasing filtration

L ⊃ [L,L] ⊃ [L, [L,L]] ⊃ ⋯,
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the convention for its indexing being to start with L1 = L and then Ln = [L,Ln−1]

for n ≥ 2. Any ring R may also be considered as a Lie algebra RLie equipped with

its commutator bracket [a, b] = ab − ba, and there is a corresponding associative

lower central series R(i) where R(i) = R ⋅RLie
i is the two-sided ideal generated by the

lower central series of RLie.

Definition 3.1.1. For any ring R, define the NC-filtration I●R to be the smallest

decreasing filtration of R by two-sided ideals

I0R ⊃ I1R ⊃ I2R ⊃ ⋯

having I0R = R and I1R = R[R,R], such that RLie
d ⊂ IdR for d ≥ 2, and which is an

algebra filtration, i.e. (ImR) ⋅ (InR) ⊂ Im+nR for m,n ≥ 0.

This means that for d ≥ 2 we have IdR = R ⋅RLie
d + ∑i+j=d(I iR) ⋅ (IjR), so the

first few terms of the NC-filtration are:

I0R = R

I1R = I2R = R[R,R]

I3R = R[R, [R,R]] +R[R,R]2

I4R = R[R,R]2 +R[R, [R, [R,R]]]

⋮

This is the same as the definition in [20]:

IdR = ∑
i1≥2,...,im≥2,i1+⋯+im≥d

R ⋅RLie
i1 ⋅R⋯R ⋅RLie

im ⋅R.
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Example 3.1.2. From the decomposition TV = SV ⊗ UL+V , it is obvious that

IdTV = SV ⊗U≥dL+V and grd
I
(TV ) = UdL+V .

Remark 3.1.3. The commutator filtration F dR of [11] is defined analogously to

IdR but with a shift: that is, one takes R ⋅RLie
d+1 ⊂ F dR instead of R ⋅RLie

d ⊂ IdR for

d ≥ 2.

Definition 3.1.4. An algebra R is called NC-nilpotent if InR = 0 for some n, and

NC-nilpotent of degree d, or d-nilpotent, if Id+2R = 0. The category of NC-nilpotent

algebras (resp. of degree ≤ d) is denoted N (resp. Nd).

In particular note that N0 = Com, and N1 consists of the central extensions

of commutative algebras, which we define in the next section. One of the most

pleasant aspects of NC-nilpotent rings is their behavior with respect to localization:

Proposition 3.1.5 ([11, (2.1.5)]). Let R be NC-nilpotent, and S ⊂ Rab any proper

multiplicative set with preimage S̃ = π−1
ab (S). Then S̃ is a (two-sided) Ore set. In

particular there exists a localized ring S̃−1R, flat over R, satisfying the universal

property.

3.1.2 Central extensions

Definition 3.1.6. An R-bimodule M is called central if rm = mr for all r ∈ R,m ∈

M .

It is easy to see a central R-bimodule M is equivalent data to an Rab-module:

(r1r2).m = r1.(r2.m) = r1.(m.r2) = (m.r2).r1 =m.(r2r1) = (r2r1).m
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Definition 3.1.7. A central extension R′ of R by I is an exact sequence of

algebras I → R′ → R such that I2 = 0 and I is a central bimodule.

An algebra extension R′ ∈ Exal(R, I) = H2(R, I) includes I in the center

Z(R′) if and only if I is a central R-bimodule.

Central extensions enter the story in the following way:

Example 3.1.8. Let R′ ∈ Nd+1 and R ∈ Nd be the truncation R = R′/Id+2R′. Then

Id+2R′ → R′ → R is a central extension.

Proposition 3.1.9. The associated graded algebra gr●
I
(R) is a central R-bimodule.

Proof. That [R,IdR] ⊂ Id+1R follows easily by induction using that IdR is an

algebra filtration, so that [R, (I iR) ⋅ (IjR)] = [R,I iR] + [R,IjR].

Corollary 3.1.10. Any (d + 1)-nilpotent algebra R is a central extension of a

d-nilpotent algebra. The category N of NC-nilpotent algebras is the same as the

iterated central extensions of commutative algebras.

We now record some useful facts about central extensions. The following

proposition is a rephrasing of [11, 1.2.5(a), 1.2.6, and 1.2.7]

Proposition 3.1.11. Let I
ιÐ→ R′

pÐ→ R be a central extension, and f ∶ S → R be a

homomorphism.

(a.) The set of homomorphisms f ′ ∶ S → R′ lifting f (such that pf ′ = f) is a

pseudo-torsor for Der(S, I) = Der(Sab, I).

(b.) The set of endomorphisms ψ of R′ such that pψ = p and ψ∣I = idI is a group

under composition, naturally isomorphic to Der(R, I) = Der(Rab, I).
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(c.) If R′

ab = Rab then any endomorphism ψ of R′ for which pψ = p also satisfies

ψ∣I = idI . In particular it is an automorphism.

Proof. (a) is familiar from classical deformation theory (see e.g. [? , II.6.2(a)]) and

only requires I2 = 0, not centrality of I. Given two lifts f ′, f ′′ then their difference

δ ∶ S → I is a derivation:

δ(s1s2) = f ′(s1s2) − f ′′(s1s2)

= f ′(s1)f ′(s2) + (f ′(s1)f ′′(s2) − f ′(s1)f ′′(s2)) − f ′′(s1)f ′′(s2)

= f ′(s1) ⋅ δ(s2) + δ(s1) ⋅ f ′′(s2)

= f(s1).δ(s2) + δ(s1).f(s2).

Note that Der(S, I) = Der(Sab, I) whenever I is a central S-bimodule because

of δ([s1, s2]) = [δs1, s2] + [s1, δs2].

For (b), denote by End(p) the set of endomorphisms, and End(p, ι) the

endomorphisms restricting to identity on I. Although End(p) is only a monoid,

End(p, ι) is a group by the 5-lemma. There is a commutative diagram with

horizontal bijections:

Der(R, I) End(p, ι)

Der(R′, I) End(p)!

However, the lower horizontal arrow “!” is not structure-preserving. The extra

condition in End(p, ι) insures the horizontal map is a homomorphism as it implies

δ1 ○ δ2 = 0, so that (1 + δ1) ○ (1 + δ2) = 1 + (δ1 + δ2).

For (c) simply note that in this case we have

Der(R′, I) = Der(R′

ab, I) = Der(Rab, I) = Der(R, I)
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so that the diagram from (ii) identifies End(p, ι) = End(p).

The following is also familiar from deformation theory (cf. [22, (2.16)]) and is

crucial for representability theorems later.

Proposition 3.1.12. [11, 1.2.5(b)] Let I → R′ → R be a central extension. There is

an isomorphism of rings,

R′ ×R R′ ≅ R′ ×Rab
Rab[I]

sending (x, y) ↦ (x, yab + (y − x)).

3.1.3 NC-complete algebras

Definition 3.1.13. For any algebra R, the NC-completion RJabK is the limit

RJabK Ð→ (⋯⋯ Ð→ R/I3R Ð→ R/I2R Ð→ Rab),

i.e. the completion with respect to the NC-filtration, RJabK = lim←ÐR/IdR.

If the natural map R Ð→ RJabK is an isomorphism then R is called NC-

complete, but in general this map is neither injective nor surjective.

Example 3.1.14. Let L be a Lie algebra. Then U(L)JabK is just the completion

with respect to the PBW filtration. If L is nilpotent, then U(L) = U(L)JabK is NC-

nilpotent.

Example 3.1.15. Here are some elementary examples that show how in general

the NC-completion may be quite un-interesting.

1. Let L be the non-abelian 2-dimensional Lie algebra with basis x, y such that

[x, y] = x. Then x ∈ IdU(L) for all d ≥ 1 so U(L)JabK = U(L)ab = C[y].
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2. Let R = Mn(C) for n ≥ 2 (or consider R = Mn(R′) for any ring R′). Then

[R,R] = sln(C) contains a unit (such as a permutation matrix), so I1R = R.

This implies RJabK = Rab = 0.

Example 3.1.16. For a free algebra we have TV = ULV . By the PBW theorem

there is an isomorphism of vector spaces ULV ≅ SV ⊗ UL+V , and hence T̂ V ≅

ŜV ⊗̂ÛL+V . The NC-completion is the subalgebra TVJabK ⊂ T̂ V ,

TVJabK ≅ SV ⊗̂ÛL+V.

(The right hand side means the vector space lim←Ð(SV ⊗U≤dL+V ).)

Localization doesn’t work as well for general NC-complete algebras (in

particular, localization does not commute with completion).

Definition 3.1.17 ([11, Def. (2.1.8)]). Let R be an NC-complete algebra and let

T ∈ Rab be a multiplicative subset. We set

RJT −1K ∶= lim←Ð(R/IdR)[T −1
d ],

where Td ⊂ R/IdR is the preimage of T . In the case when T = {fn ∣ n ≥ 0}, for some

element f ∈ Rab, we denote the above algebra simply as RJf−1K.

Proposition 3.1.18. [11, 2.1.1] For a central extension R′ → R, the natural map

GLn(R′) → GLn(R) is surjective.

In particular the case n = 1 ensures that the NC-schemes defined in the next

section are locally ringed spaces:

Corollary 3.1.19. [11, 2.1.2] A central extension of a local ring is again a local

ring.
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3.2 NC-Schemes

3.2.1 The spectrum of an NC-nilpotent ring

We are now going to define affine NC-schemes by constructing for any NC-

complete ring R a locally ringed space X = SpecR whose underlying space is simply

SpecRab.

Proposition 3.2.1. [11, 2.2.1] For an NC-nilpotent algebra R and f ∈ Rab, let

S = {f, f 2, f 3, . . .} and S̃ = π−1
ab (S). There is a unique structure OX of locally ringed

space on SpecRab such that

Γ(D(f),OX) = S̃−1R

for all f ∈ Rab and such that the maps are the corresponding localizations.

There is also a locally ringed space associated to NC-complete algebras.

Definition 3.2.2. The spectrum SpecR of an NC-complete algebra R is the locally

ringed space

SpecR = lim←Ð(SpecR/IdR).

3.2.2 NC-schemes

In this section we define general (non-affine) NC-schemes.

Definition 3.2.3. An affine NC-scheme is a locally ringed space isomorphic

to Spec Λ for an NC-complete ring Λ. An NC-scheme is a locally ringed space

(X,OX) with a covering by open sets Ui such that (Ui,OX ∣Ui
) are affine NC-

schemes.
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Definition 3.2.4. An NC-scheme X is of finite type if Xab is of finite type and

grd
I
(OX) is a coherent sheaf on Xab for all d.

Definition 3.2.5. For NC-schemes X,Y we denote X×̂Y the categorical product

in NC-schemes, whose structure sheaf is OX ∗̂OY = (OX ∗ OY )JabK. Denote by X × Y

the NC-scheme for which OX×Y = OX ⊗C OY .

Example 3.2.6. Let X be any scheme, there is an NC-scheme X̃(1) with structure

sheaf ÕX = OX ⊕Ω2
X and product structure given by (f1, ω1)(f2, ω2) = (f1f2, f1ω2 +

f2ω1 + df1 ∧ df2). Then X̃(1) is an NC-scheme which is NC-nilpotent of degree 1,

called the standard 1-smooth thickening of X.

3.3 NC-Smooth Algebras

3.3.1 NC-smooth algebras

Definition 3.3.1. An NC-nilpotent algebra of degree d (resp. NC-complete

algebra) is called d-smooth (resp. NC-smooth) if for any square-zero extension

I → Λ′ → Λ in Nd (resp. N ) and any morphism A → Λ, there exists a lift as in

the diagram:

Λ′

A Λ
f

f ′

Example 3.3.2. The NC-completion TVJabK of a free algebra is NC-smooth (it’s

free as an NC-complete algebra).

Example 3.3.3. More generally, it is easy to see if A is quasi-free (cf. [6]), then

AJabK is NC-smooth. Besides free algebras, these include path algebras of quivers

and coordinate rings of curves, both of which have commutative NC-completions.
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Note that if R is d-smooth, then for any k ≤ d, the truncation R/Ik+1R is

k-smooth. In particular if R is NC-smooth then Rab is formally smooth. The most

important fact about NC-smooth algebras is the existence and uniqueness (up to

non-canonical isomorphism) for any formally smooth commutative algebra R of an

NC-smooth algebra R′ such that R′

ab ≅ R.

Theorem 3.3.4 ([11], [20]). There is a unique (up to noncanonical isomorphism)

d-smooth thickening of any (d − 1)-smooth algebra.

Uniqueness follows easily from Proposition 2.1.8(iii), whereas the proof of

existence is constructive.

Remark 3.3.5. Working with the commutator filtration, Kapranov constructed the

NC-smooth thickening R of a formally smooth algebra Rab as the limit R = lim←ÐRd,

where R0 = Rab and Rd+1 is a universal central extension of Rd by H2(Rd,Rab). This

may then be truncated to obtain d-smooth thickenings with respect to our NC-

filtration. However, this is not very explicit as the relevant Hochschild cohomology

groups have not been computed. Originally in [11] there was a proposed solution

of this problem in terms of certain polynomial functors Qd on the category of Rab-

modules such that H2(Rd,Rab) = Qd(Ω1
Rab

), however a gap was noticed in [5] and

has not been resolved except in the case of Rab a local ring.

The purpose of the NC-filtration IdR introduced in [20] is that the

corresponding polynomial functors are easily identified. In [20], starting from the

initial data of a torsion-free connection on Ω1
A, d-smooth thickenings of all orders

are constructed as certain subalgebras of T ≤d
O

(Ω1
A).
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3.4 NC-Smooth Schemes

3.4.1 NC-smooth schemes

Definition 3.4.1. An NC-scheme X is called NC-smooth if for any central

extension Λ′ → Λ of NC-nilpotent algebras, and any map f ∶ Spec Λ → X, there

exists a lift f ′ as in the diagram:

Spec Λ X

Spec Λ′

f

f ′

Equivalently, the natural map Hom(Spec Λ′,X) Ð→ Hom(Spec Λ,X) is surjective.

Any NC-scheme X has an abelianization Xab, which is an ordinary scheme

whose structure sheaf is OXab
= (OX)ab. In this case we call X an NC-thickening of

Xab, and if X is NC-smooth, an NC-smooth thickening.

NC-smoothness is a local condition; the proof of following proposition

illustrates the usefulness of central extensions in this theory.

Proposition 3.4.2. [20, 2.1.4] An NC-scheme is NC-smooth if and only if it has a

cover by open NC-subschemes which are NC-smooth.

Example 3.4.3. Recall the transition functions for Pn in distinguished charts with

coordinate algebra C[x(i)
0 , . . . , x

(i)
n ] and glued on localizations by the relations

x
(i)
α = x(j)

α ⋅ (x(j)
i )−1
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which in particular for α = j says that x
(i)
j = (x(j)

i )−1. That these glue compatibly is

a cocycle relation:

x
(i)
α = x(j)

α ⋅ (x(j)
i )−1

= (x(k)
α ⋅ (x(k)

j )−1) ⋅ (x(j)
i )−1

= x(k)
α ⋅ (x(j)

k ⋅ (x(j)
i )−1)

= x(k)
α ⋅ (x(j)

i ⋅ (x(j)
k )−1)

−1

= x(k)
α ⋅ (x(k)

i )−1

Note that this just uses the one relation above, and not commutativity of

the variables. This means that one gets a cocycle relation for free algebras

C⟨x(i)
0 , . . . , x

(i)
n ⟩, and passing to the NC-completions determines an NC-smooth

thickening of Pn. If one instead writes all the inverses on the left, as in x
(i)
α =

⋅(x(j)
i )−1 ⋅ x(j)

α , one similarly obtains an NC-smooth thickening. These are in fact

not isomorphic as NC-schemes, even at the 1-nilpotent level [20].

More generally any time one has a variety, locally isomorphic to An, such that

checking the cocycle condition doesn’t necessitate commuting any of the variables,

one obtains an NC-smooth thickening. The following example is new to this thesis.

Example 3.4.4. Let Hq = P(O⊕O(q)) be a Hirzebruch surface. Then it has a cover

by four open sets Vi ≅ A2 glued together as implicit by the choice of coordinates:

V1 = C[z1, z2], V2 = C[z−1
1 , z2], V3 = C[z−q2 z−1

1 , z−1
2 ], V4 = C[z1z

q
2, z

−1
2 ], see e.g. [2, Ex.

3.8]. It is easy to see the cocycle condition does not require the commutativity of

the variables, so this lifts to an NC-smooth thickening of Hq.

One of the interesting questions in this area is:
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Question 3.4.5. Which varieties admit NC-smooth thickenings?

The question is trivial in dimension 1 — smooth curves are already NC-

smooth (they are quasi-free). The present state of knowledge is that they exist for

curves, flag varieties, affine varieties, and abelian varieties, and products of these (if

X and Y are NC-smooth, then so is X×̂Y ). All of these examples can be found in

[11] or [20].

Remark 3.4.6. On the other hand, nothing is known about which varieties don’t

admit NC-smooth thickenings, although an obstruction theory is outlined in [11,

§4]. For example, it is possible to show that the standard 1-smooth thickening of

a K3 surface does not extend to a 2-smooth thickening. However, the space of all

1-smooth thickenings is 20-dimensional (identified with H1(X,T ⊗Ω2) ≅H1(X,Ω1))

and the obstruction depends on this class. Furthermore, later in this thesis a

weaker (but perhaps more natural) structure of NC-smooth algebroid thickening

is introduced, and perhaps the question 3.4.5 should be modified accordingly.

3.5 NC-Functor of Points

For any NC-scheme X there is the corresponding representable functor hX ∶

N op → Sets sending Λ ↦ Hom(Spec Λ,X). In the case that X = SpecA this is the

same as the functor hA ∶ N → Sets sending Λ↦ Hom(A,Λ).

Proposition 3.5.1 ([11]). The category N op is equivalent to the affine nilpotent

NC-schemes. NC-schemes is a full subcategory of Fun(N op, Sets).

This point of view is useful in the study of NC-smooth thickenings of smooth

variety M , because of the following representability criterion of [11]. We consider
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pairs of central extensions, which we denote for i = 1,2

Ii Ð→ Λi
piÐ→ Λ (3.1)

and the natural map

j ∶ h(Λ1 ×Λ Λ2) Ð→ h(Λ1) ×h(Λ) h(Λ2). (3.2)

Proposition 3.5.2. ([11, 2.3.5]) Let M be a smooth algebraic variety and h ∶ Nd →

Sets a formally smooth functor such that h∣Com = hM . Then h∣Nd
is representable

by a d-smooth NC-scheme if and only if for any pair of central extensions in Nd the

natural map

h(Λ1 ×Λ Λ2) → h(Λ1) ×h(Λ) h(Λ2)

is an isomorphism. Moreover, it suffices to check the cases when

(a) Λ is commutative and Λ1 = Λ⊕ I1,

(b) Λ1 = Λ2 and p1 = p2.

The NC-smooth thickenings of Pn described above in 3.4.3 have nice

descriptions in terms of their NC-functors of points.

Example 3.5.3. For Λ ∈ N define h(Λ) to be the set of rank 1 projective left

submodules of Λn. Clearly h∣Com = hPn , and formal smoothness comes from lifting

idempotents. To see j is a bijection, one constructs an inverse sending Pi → P for

i = 1,2 to P1 ×P P2.
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This example more and more generally leads to NC-smooth thickenings of

the Grassmannians, and of flag varieties, by considering (flags of) left projective

submodules in Λn of the appropriate rank(s).

3.6 Associated Graded & Center of an NC-Smooth Thickening

We end this section with the observation that any NC-smooth thickening ÕX

of an ordinary scheme X has a pre-determined associated graded algebra, functorial

in X, as shown in [20]. Additionally, if ÕX is properly noncommutative (i.e. if

dimX ≥ 2) then ÕX has trivial center.

Both of these results use the theory of DG-resolutions, which we don’t discuss

until the next chapter. The NC-smooth thickening RNC of a smooth commutative

algebra R is embedded as RNC ↪ T̂R(Ω1
R) in such a way that if f̃ ∈ RNC lifts f ∈ R,

then f̃ = f − df modulo T ≥2.

Theorem 3.6.1. [20, 2.1.6, 2.3.15] For any NC-thickening Õ of a smooth variety

X, there is a natural surjective homomorphism of graded algebras,

ξ ∶ UL+Ω1
X ↠ gr●

I
(Õ)

determined by ξ([df,ω]) = [f̃ , ξ(ω)] where f̃ab = f . It is an isomorphism if and only

if Õ is NC-smooth.

Proposition 3.6.2. Let R be a d-smooth algebra for some d ≥ 1, such that

dimRab ≥ 2 and Rab is connected. Then the center of R is C + Id+1R.

Proof. (i) In the case d = 1, R is the standard 1-smooth thickening. If f̃ , g̃ ∈ R then

[f̃ , g̃] = df ∧ dg where f = f̃ab. The map Ω1 → T ⊗Ω2 sending df ↦ [dg ↦ df ∧ dg] is

injective for dimX ≥ 2, so if f̃ is central then df = 0 and f ∈ C.
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Now let d ≥ 2, and let R′ = R/Id+1R denote the truncation of R. If Z(R′) =

C + IdR′, then since an element f̃ ∈ Z(R) also has central truncation f̃ ′ ∈ Z(R′),

we know already that Z(R) ⊂ C + IdR. By d-nilpotency [IdR,I1R] ⊂ Id+2R = 0, so

whether or not f̃ ∈ IdR is central is determined completely by the map IdR ×Rab →

Id+1R sending (f̃ , g) ↦ [f̃ , g̃] = [f̃ , g − dg] = [f̃ ,−dg].

This is equivalent to the commutator pairing UdL+Ω1
Rab

× Ω1
Rab
→ Ud+1L+Ω1

Rab

restricted from T (Ω1
Rab

) × T (Ω1
Rab

) → T (Ω1
Rab

). Since the center of T (ΩRab
)1 is

trivial, the reuslt follows.

This easily implies:

Corollary 3.6.3. Let ONCX be an NC-smooth thickening of a smooth scheme X,

where dimX ≥ 2. Then the center of ONCX is the constant sheaf CX .
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CHAPTER IV

NC-SMOOTHNESS VIA DG-RESOLUTIONS

In this chapter we review the construction of DG-resolutions of NC-smooth

thickenings via algebraic NC-connections developed in [20], which we use in the

following chapter to study bimodule extensions.

4.1 Relative NC-de Rham Complex

Definition 4.1.1. For a smooth variety X define the relative NC-de Rham complex

of X to be the DG-algebra (Ā●X , τ) with Ā●X = Ω●

X ⊗O T̂O(Ω1
X), graded by the de

Rham degree in Ω●

X , and with graded differential τ determined by the rule τ(1 ⊗

α) = α⊗ 1 for α ∈ T 1Ω1
X .

It follows from τ(1⊗ α) = α⊗ 1 and τ 2 = 0 that τ ∣Ω●
X
= 0.

Remark 4.1.2. Geometrically, this is a noncommutative version of the relative

de Rham complex of the projection p ∶ TX → X, which is identified with

Ω●

TX/X
= (Ω●

X ⊗ S(Ω1
X), dr). Or perhaps even more appropriately, the projection

p(∞) ∶ X(∞)

TX → X from the formal neighborhood of the zero section, functions on

which are Ŝ(Ω1
X).)

Proposition 4.1.3. There exist right ÛL+(Ω1)-linear homotopy operators

h ∶ Ωi
X ⊗O T j(Ω1) Ð→ Ωi−1

X ⊗O T j+1(Ω1)

such that hτ + τh = id for i ≥ 1, and h2 = 0.
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Proof. As a right UL+Ω1-module we may identify Ω●

X⊗T (Ω1) = Ω●

X⊗S(Ω1)⊗UL+Ω1.

It is easy to see that τ vanishes on UL+Ω1 (see [20]). So we can identify τ = drel ⊗ 1

where drel is the relative de Rham differential on Ω●

TX/X
. Thus we set h = hE⊗1.

This allows us to compute the cohomology of Ā●X .

Corollary 4.1.4 ([20]). The projection π ∶ Ā●X ↠ ÛL+Ω1
X is a retraction. In

particular the cohomology of Ā●X is ÛL+Ω1
X (in degree 0).

It is significant that Ā●X is a DG-resolution of ÛL+Ω1
X as this has associated

graded gr●
Ftot

(ÛL+Ω1
X) = UL+Ω1

X . For an NC-complete algebra ÕNCX the condition

gr●
I
(ÕNC) = UL+Ω1

X is equivalent to NC-smoothness.

The main idea of [20, §2] is to consider another dga (A●X ,D) with the same

underlying graded algebra as Ā●X , but with higher terms added to perturb the

differential D = τ + D1 + D2 + ⋯, until I●(ker(D)) = F●

tot(ker(D)). Since adding

higher terms does not change the associated graded with respect to F●

tot, in this

way we obtain an NC-smooth thickening.

Before moving on, it is convenient to also introduce a few filtrations on Ā●X .

Definition 4.1.5. Ā●X has filtrations FdT ,Fdtot,IdT , given by:

FdT (Ā●X) = Ω●

X⊗T ≥dΩ1
X , Fdtot(Ā●X) = ∑

i

Ω≥d−i
X ⊗T ≥iΩ1

X , IdT (Ā●X) = Ω●

X⊗Id(T̂Ω1
X)

Intersecting with Ā0
X = T̂ (Ω1

X) one obtains two filtrations — the filtration

by degree FdT̂ (Ω1
X) = T̂ ≥dΩ1

X and the NC-filtration IdT̂ (Ω1
X). Note that IdA0

X ⊂

FdtotA0
X .
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4.2 Algebraic NC-Connections

Since τ preserves the total degree, any derivation on Ā●X obtained from τ by

adding higher terms in T̂ (Ω1
X) will preserve F●

tot. Any derivation D of Ā●X which

preserves the filtration by total degree Ftot can be written as a formal sum D =

D0 +D1 +D2 +⋯, where Dk is the term which raises the total degree by k.

The following notion was introduced in [20, Def. 1.2.1]:

Definition 4.2.1 ([20]). Let X be a smooth variety. An (algebraic) NC-connection

on X is a degree one graded derivation D of the graded algebra A●X = Ω●

X ⊗O

T̂O(Ω1
X) extending the de Rham differential on Ω●

X , such that D2 = 0 and D0 = τ .

Note that each Di is determined just by its value on α ∈ T 1(Ω1), so we denote

by ∇i ∶ Ω1 → Ω1 ⊗O T i(Ω1) the restriction Di∣T 1Ω1 . For f ∈ O and s ∈ Ω1 we have the

equation

D(1⊗ fs) =D(f ⊗ s) = df ⊗ s + f ⋅D(1⊗ s)

thus ∇1 is a usual algebraic connection, whereas for i = 0,2,3, . . . the ∇i are O-

linear.

Lemma 4.2.2 ([20, Cor. 2.3.9]). For any NC-connection D, there is a C-linear

isomorphism (A●X ,D) ΨDÐ→ (Ā●X , τ) of complexes given by ΨD = (1 + hD≥1).

Thus there is a corresponding homotopy operator hD for A●X , given by hD =

Ψ−1
D ○ h ○ ΨD, such that hDD + DhD = 1 for ● > 0. Note that since our choice of

homotopy satisfies h2 = 0 then we have the simplification hD = Ψ−1
D h.

It immediately follows that the associated graded of the cohomology is the

same as before. In fact we have:
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Theorem 4.2.3 ([20]). For any NC-connection D, the two filtrations coincide:

Id(ker0(D)) = Fd(ker0(D)).

In particular, ker0(D) is NC-complete and has gr●
I
(ker0(D)) = UL+Ω1

X , so ÕX =

ker0(D) is an NC-smooth thickening of X.

It is useful in the computations that follow to be able to lift elements of

truncated NC-thickenings Õ≤d to higher NC-thickenings Õ≤d+k. We have the

following:

Proposition 4.2.4. There is a retraction Σ ∶ A●X → ker(D) given by Σ = (1 − hDD).

Proof. Let x ∈ A●X . Then Dx ∈ A≥1
X so that we may use hDD+DhD = 1 and D2 = 0 to

get D(x−hDDx) =Dx− (1−hDD)Dx = hDD2x = 0. Hence Σ(x) ∈ ker(D) = ÕX .

Since we have a natural O-linear inclusion ιd ∶ Õ≤d
X ⊂ A●X we obtain a section

σ ∶ Õ≤d → Õ≤d+k (4.1)

by including Õ≤d ⊂ T ≤d(Ω1) into A0
X as terms of degree ≤ d, then applying Σ, then

projecting to terms of degree ≤ d + k. We omit d, k from the notation for brevity —

it should always be clear from context the meaning. In particular we will use the

formula for k = 1, denoting by (x0, . . . , xn) a local section of Õ≤n
X ⊂ T ≤n(Ω1

X),

σ(x0, . . . , xn) = (x0, . . . , xn,−hD1xn − hD2xn−1 −⋯ − hDnx0). (4.2)

The existence of an NC-connection D on X is equivalent to the existence of a

usual torsion-free connection ∇ (on the cotangent bundle).
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Proposition 4.2.5 ([20]). For any torsion-free connection ∇ on X there exists an

NC-connection D such that D1 = ∇.

Moreover, the isomorphism type of the NC-smooth thickening obtained as

ker(D) is independent of the choice of connection.

Proposition 4.2.6 ([20]). Let D and D′ be two NC-connections on X. There

exists an algebra automorphism Ψ0 of T̂ (Ω1
X) such that Ψ = id ⊗Ψ0 is isomorphism

(A●X ,D) ΨÐ→ (A●X ,D′) of chain complexes.

Remark 4.2.7. The DG-resolutions considered here fit into the general picture of

homotopy perturbation theory (cf. [26, Sec. 2]).
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CHAPTER V

BIMODULE EXTENSIONS OF NC-VECTOR BUNDLES

In this chapter we make frequent use of the section σ from (4.1).

5.1 NC-vector bundles

5.1.1 NC-Vector Bundles

Definition 5.1.1. Let X̃ be a d-smooth or NC-smooth thickening of X. An NC-

vector bundle on X̃ is a locally free right ÕX-module Ẽ. We say that Ẽ extends an

ordinary vector bundle E on Xab if Ẽab ≅ E.

Right modules have endomorphisms given by matrices with coefficients in ÕX ,

so that an NC-vector bundle of rank r on X̃ is equivalent to the data of a 1-cocycle

g̃ij ∈ Ȟ1(X,GLrÕX).

In [20, Sec. 3] it shown how to construct via mNC-connections (similar to the

construction of NC-connections) an NC-vector bundle extending an ordinary vector

bundle E, ∇̄ with connection, on a smooth thickening coming from a connection.

Proposition 5.1.2 ([20]). Let X̃ be an NC-thickening of X from a connection

∇. Let (E, ∇̄) be a vector bundle with connection on X. Then there is a natural

extension of E an NC-vector bundle Ẽ∇̄ on X̃.

5.1.2 Cocycle description of Ẽ∇̄

We compute a formula for the cocycle representing the NC-vector bundle

coming from an mNC-connection.
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We pick trivializations ϕi ∶ O⊕n∣Ui
→ E∣Ui

, with transition functions gij =

ϕ−1
i ϕj. We have matrices of 1-forms Bi = ϕ−1

i ○ ∇̄ ○ ϕi − d on O⊕n∣Ui
.

Proposition 5.1.3. The cocycle g̃ij ∈ Ȟ1(X,GLrÕX) given by g̃ij = Φ−1
i ○(gij⊗1)○Φj

represents the NC-vector bundle Ẽ∇̄.

Proof. One uses [20, Thm. 3.1.1] to construct maps as in the diagram:

(O⊕n
Uij

⊗A●Uij
,DdR)

(O⊕n
Uij

⊗A●Uij
,D(i)) (O⊕n

Uij
⊗AUij

,D(j))

(E∣Uij
⊗AUij

, D̃)

Φi Φj

ϕi⊗id ϕj⊗id

Here D(i) is the mNC-connection on the trivial bundle extending the connection d +

Bi, DdR is the mNC-connection extending d, and D̃ the mNC-connection extending

∇̄.

We use this to compute the first few terms of the cocycle.

Proposition 5.1.4. The truncated cocycle g̃≤3
ij (up to degree 3) given below

represents the NC-vector bundle (Ẽ∇̄)≤3.

g̃≤3
ij = gij + [gijθj1 − θi1gij] + [gijθj2 + ((θi1)2 − θi2)gij − θi1gijθj1]

+ [(θi2θi1 − (θi1)3 − θi3)gij + gijθj3 + ((θi1)2 − θi2)gijθj1 − θi1gijθ
j
2]

(5.1)
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Proof. The maps Φj and Φ−1
i are determined step by step according to the

algorithm in [20]:

Φj = (1 + θj1)(1 + θ
j
2)(1 + θ

j
3)⋯

= 1 + θj1 + θ
j
2 + (θj1θ

j
2 + θ

j
3) +⋯

Φ−1
i = ⋯(1 + θj3)−1(1 + θj2)−1(1 + θi1)−1

= ⋯(1 − θi3 +⋯)(1 − θi2 +⋯)(1 − θi1 + (θi1)2 − (θi1)3 +⋯)

= 1 − θi1 + [(θi1)2 − θi2] + [θi2θi1 − (θi1)3 − θi3] + ⋯

Now collect terms of degree ≤ 3.

Remark 5.1.5. As a check, note that according to this formula we should have

− dgij = [g̃ij]1 = gijθj1 − θi1gij. (5.2)

This is true since θi1 = h(DdR −D(i)) = h(d − (d +Bi)) = −Bi and because

−dgij = ϕ−1
i αijϕj = Bigij − gijBj.

5.2 Bimodule Extendability of NC-Vector Bundles

5.2.1 NC-bimodule extensions

The following notion is introduced in [20, Sec. 3].

Definition 5.2.1. A bimodule extension of an NC-vector bundle Ẽ is the structure

of a left module given by a homomorphism Õ → End(Ẽ) whose abelianization is the

diagonal embedding O → End(E).
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The latter condition ensures that if we abelianize Ẽ either as a left or right

module we get the same E. Concretely in terms of trivializations, a bimodule

structure is determined by homomorphisms Ai ∶ Õ∣Ui
→MrÕ∣Ui

such that on Uij,

Ai ⋅ g̃ij = g̃ij ⋅Aj. (5.3)

We also have the completely analogous notion for a d-nilpotent NC-vector bundle

Ẽ≤d of a d-nilpotent bimodule extension, given by A≤d
i such that A≤d

i g̃
≤d
ij = g̃≤dij A≤d

j .

The maps A≤d
i automatically send the center Z(Õ≤d) = CX ⊕ UdL+Ω1

X to

diagonal matrices:

Lemma 5.2.2. Let A≤d ∶ Õ≤d →MrÕ≤d be a bimodule extension. Then for f̃ ∈ Õ≤d,

A≤d(f̃≤d) = A≤d(σf̃≤d−1) + (f̃≤d − σf̃≤d−1)I.

In other words A≤d+1∣
Id+1 is the diagonal embedding.

Proof. By 3.6.1 there is a natural identification IdÕd = UdL+Ω1
X . Thus we may

assume z ∈ IdÕ≤d ⊂ T dΩ1
X is a sum of products Fn1⋯Fnk

of elements of the form

Fn = f0[df1[df2[⋯, dfn]⋯]] such that d = ∑k
i=1 ni. It is easy to see that modulo Id+1,

Fn1⋯Fnk
= F̃n1⋯F̃nk

where F̃n = σ(f0)[σ(f1)[σ(f2)[⋯, σ(fn)]⋯]]. Indeed, since

these expressions have arity d, and because degree 0 is central, working modulo

T ≥d+1 it suffices to replace σ(fi) by −dfi for i > 0.

Then since F̃i are commutators of elements in Õ≤d
X , it follows that Ai(F̃i) =

f0[Ai(σ(f1))[Ai(σ(f2))[⋯,Ai(σ(fn))],⋯]] = f0[−df1I[−df2I[⋯,−dfnI]⋯]]. (This is

all analogous to “by considering commutators” in the proof of [20, 3.3.3(ii)].)
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Because of the previous lemma, and because A≤1(f̃) = f − df , it makes sense to

define the following:

Definition 5.2.3. Define Ā≤d
i ∶ Õ≤d−1 →MrÕ≤d by the equation

A≤d
i (f̃≤d) = f̃≤d + Ā≤d

i (f̃≤d−1).

Next we study when there exists a bimodule extension A≤d+1
i extending A≤d

i .

Definition 5.2.4. For a bimodule extension A≤d+1
i extending A≤d

i . Define the maps

η
(d+1)
i ∶ Õ≤d →Mr(Ud+1L+Ω1) by

A≤d+1
i (σf̃≤d) = σA≤d

i (f̃≤d) + η(d+1)
i (f̃≤d) (5.4)

and η̄
(d+1)
i ∶ Õ≤d →MrT ≤d+1(Ω1) by

A≤d+1
i (f̃≤d) = A≤d

i (f̃≤d−1) + η̄(d+1)
i (f̃≤d) (5.5)

Note that

Ā≤d+1
i (f̃≤d) = σĀ≤d

i (f̃≤d−1) + η(d+1)
i (f̃≤d) (5.6)

because σf̃≤d + Ā≤d+1
i (f̃≤d) = A≤d+1

i (σf̃≤d) = σ(f̃≤d + Ā≤d
i (f̃≤d)) + η(d+1)

i (f̃≤d).

The data of such A≤d+1 is equivalent to η(d+1) satisfying certain conditions.

Proposition 5.2.5. A≤d+1
i (f̃≤d+1) = f̃≤d+1 + σdĀ≤d

i (f̃≤d−1) + η(d+1)
i (f̃≤d) defines a

homomorphism if and only if

δ(η(d+1)
i ) = −δ(σĀ≤d

i ) = −Πd+1(f̃ ⋅ σĀ≤d
i (g̃) + σĀ≤d

i (f̃) ⋅ g̃) (5.7)
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Proof. First note that A≤d+1
i is a homomorphism if and only if δ(Ā≤d+1

i ) = 0:

A≤d+1
i (f̃)A≤d+1

i (g̃) −A≤d+1
i (f̃ g̃) = (f̃ + Ā≤d+1

i (f̃))(g̃ + Ā≤d+1
i (g̃)) − (f̃ g̃ + Ā≤d+1

i (f̃ g̃))

= f̃ ⋅ Ā≤d+1
i (g̃) + Ā≤d+1

i (f̃) ⋅ g̃ − Ā≤d+1
i (f̃ g̃)

= δ(Ā≤d+1
i )(f̃ , g̃).

Because of 5.6, δ(Ā≤d+1
i )(f̃ , g̃) = 0 is equivalent to δ(η(d+1)

i ) = −δ(σĀ≤d
i ).

The expression A≤d+1
i (f̃)A≤d+1

i (g̃) − A≤d+1
i (f̃ g̃) takes values in Mr(Ud+1L+Ω1)

because its truncation A≤d
i we assume satisfies 5.3. So both δ(Ā≤d+1

i ) and δ(η(d+1)
i )

have coefficients in Ud+1L+Ω1, hence so does δ(σĀ≤d
i ). This means that

δ(σĀ≤d
i )(f̃ , g̃) = Πd+1(δ(σĀ≤d

i )(f̃ , g̃)))

= Πd+1(f̃ ⋅ σĀ≤d
i (g̃) + σĀ≤d

i (f̃) ⋅ g̃ − σĀ≤d
i (f̃ g̃))

= Πd+1(f̃ ⋅ σĀ≤d
i (g̃) + σĀ≤d

i (f̃) ⋅ g̃).

Remark 5.2.6. Note that for d = 1 we have Ā≤1
i = 0, hence the condition is that

δ(η(2)i ) = 0, e.g. η
(2)
i is a derivation, as stated in [20, 3.3.3(ii)]. However, for d ≥ 2

the solutions are only a (pseudo)torsor over derivations.

Proposition 5.2.7. If A≤d
i is a degree d bimodule structure, then there is an

extension to a degree (d + 1)-bimodule A≤d+1
i if and only if there exist C-linear maps

η
(d+1)
i ∶ Õ≤d →Mr(Ud+1L+Ω1

X) such that for all f̃ ∈ Õ≤d,

A≤d
i (f̃≤d) ⋅ g̃≤dij − g̃≤dij ⋅A≤d

j (f̃≤d) = gij η̄
(d+1)
j (f̃≤d) − η̄

(d+1)
i (f̃≤d)gij (5.8)
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or

Πd+1(A≤d
i (f̃≤d) ⋅ g̃≤dij − g̃≤dij ⋅A≤d

j (f̃≤d)) = gijη
(d+1)
j (f̃≤d) − η

(d+1)
i (f̃≤d)gij (5.9)

where η
(d+1)
i + (σ − 1)A≤d

i = η̄(d+1)
i , and which have the Hochschild coboundary from

above.

Proof. Extendability to a (d + 1)-nilpotent bimodule is determined by the equation

A≤d+1
i (f̃≤d+1)g̃≤d+1

ij = g̃≤d+1
ij A≤d+1

j (f̃≤d+1) in Mr(T ≤d+1Ω1). Because A0
i (f̃) = fI is

diagonal with central coefficients, this reduces to A≤d+1
i (f̃≤d)g̃≤dij = g̃≤dij A

≤d+1
j (f̃≤d).

From 5.2.2, we also know A≤d+1
i ∣

Id+1 is diagonal with central coefficients, thus we

only need to consider 5.3 for f̃≤d+1 = σf̃≤d. In this case we may use 5.5 to write

A≤d+1
i (σf̃≤d) = A≤d

i (f̃≤d) + η̄(d+1)
i (f̃≤d), thus reducing to 5.8. This is equivalent to 5.9

because (σ − 1)A≤d
i is in the kernel of Πd+1.

5.2.2 Bimodule extendability to degree 2

First we recall from [20, Prop. 3.3.3(iii)] that any vector bundle E with a

connection admits a 1-nilpotent bimodule extension. We reproduce the proof here

in our current notation.

Proposition 5.2.8. The C-linear map η
(2)
i ∶ O →MrÕ≤2 given by

η
(2)
i (f) = [θi1, df] (5.10)

determines a central bimodule structure A≤2
i (f̃) = f̃ ⋅ I + η(2)i (f).
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Proof. From 5.8, finding suitable homomorphisms A≤2
i is equivalent to finding C-

linear maps η̄
(2)
i satisfying:

[A≤1
i (f̃)g̃≤1

ij − g̃≤1
ij A

≤1
j (f̃)]

2

= gij η̄(2)j − η̄(2)i gij

Since A≤1
i (f̃) = f − df and −dgij = gijθj1 − θi1gij, we have

[A≤1
i g̃

≤1
ij − g̃≤1

ij A
≤1
j ]

2

= [df, dgij]

= [df, θi1gij − gijθj1]

= [df, θi1]gij − gij[df, θj1]

In the last line we have used that θi1[df, gij] = 0 because the coefficients of gij are

central and dfI is diagonal. Thus we arrive at a solution η
(2)
i (f) = η̄(2)i (f) = [θi1, df].

By 5.2.5, the condition that A≤2
i is a homomorphism is just that η

(2)
i is a

derivation.

Remark 5.2.9. By 5.2.5, any other 1-nilpotent bimodule extension differs from

this one by a global derivation η
(2)
Γ such that [η(2)Γ , gij] = 0.

5.3 Bimodule Extendability in Degree 3

Now we extend the Õ≤2
X -bimodule structure on (Ẽ∇̄)≤2 of the previous section

to an Õ≤3
X -bimodule structure on (Ẽ∇̄)≤3. In this section f̃ denotes an element of

Õ≤3
X and f = f̃0 = f̃ab.
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Proposition 5.3.1. The C-linear map η
(3)
i ∶ Õ≤2 →Mr(U3L+Ω1

X) given by

η
(3)
i (f̃≤2) = [f̃2, θ

i
1] − [df, θi2] + θi1[df, θi1] + (σ − 1)A≤2

i (f̃) (5.11)

or

η
(3)
i (f̃≤2) = Π3([f̃2, θ

i
1] − [df, θi2]) (5.12)

along with the previously defined η
(2)
i determine a homomorphism

A≤3
i (f̃) = f̃ I + ση(2)i (f) + η(3)i (f) (5.13)

which satisfies 5.3 extending that of η
(2)
i . Thus A≤3

i is a 2-nilpotent bimodule

extension.

Proof. To obtain the formula 5.11, we consider the equation 5.8 for d = 2:

A≤2
i (f̃≤2)g̃≤2

ij − g̃≤2
ij A

≤2
j (f̃≤2) = gij η̄(3)j − η̄(3)i gij.
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Recall the formulas A≤2
i (f̃≤2) = f̃≤2I + η(2)i (f), and g̃

(2)
ij = (gijθj2 − θi2gij) + θi1 ⋅ dgij from

5.1 and separate terms as follows:

A≤2
i (f̃≤2)g̃≤2

ij − g̃≤2
ij A

≤2
j (f̃≤2) = −[dfI, g̃(2)ij ] + [f̃2, dgij] + dgij ⋅ η(2)j (f) − η(2)i (f) ⋅ dgij

= ([f̃2, dgij] − [df, (gijθj2 − θi2gij)])

− [df, θi1 ⋅ dgij] + dgij[θj1, df] − [θi1, df]dgij

= ([f̃2, dgij] − [df, (gijθj2 − θi2gij)]) − θi1[df, dgij] − dgij[df, θ
j
1]

= ([f̃2, dgij] − [df, (gijθj2 − θi2gij)]) − θi1[df, θi1]gij + gijθ
j
1[df, θ

j
1]

= gij([f̃2, θ
j
1] − [df, θj2] + θ

j
1[df, θ

j
1])

− ([f̃2, θ
i
1] − [df, θi2] + θi1[df, θi1])gij

Thus we may set η̄
(3)
i = [f̃2, θi1] − [df, θi2] + θi1[df, θi1]. This means η

(3)
i = [f̃2, θi1] −

[df, θi2] + θi1[df, θi1] + hD1(η(2)i (f)). We also find the following useful formula:

η
(3)
i (f̃) = Π3(η(3)i (f̃)) = Π3(η̄(3)i (f̃))

= Π3([f̃2, θ
i
1] + θi1[df, θi1] − [df, θi2])

= Π3([f̃2, θ
i
1] − [df, θi2]).
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It remains to check that A≤3
i is a homomorphism, using 5.7. This says that δ(η(3)i )

must be equal to

−Π3(Ā≤2
i (f̃) ⋅ g̃ + f̃ ⋅ Ā≤2

i (g̃)) = −Π3( − df ⋅ η(2)i (g) − η(2)i (f) ⋅ dg)

= Π3(η(2)i (f) ⋅ dg)

= [η(2)i (f), dg].

Using the formula η
(3)
i (f̃) = Π3([f̃2, θi1] − [df, θi2]), the term Π3([df, θi2])) is a

derivation, hence does not contribute to the Hochschild differential. The remaining

terms come from fg̃2 + gf̃2 − (f̃ g̃)2 = f̃1g̃1,

δ(η(3)i )(f̃ , g̃) = −Π3[f̃1g̃1, θ
i
1]

= −Π3(df[dg, θi1] + [df, θi1]dg)

= [dg[df, θi1]].

Since η
(2)
i (f) = [θi1, df], this agrees with the above.

Remark 5.3.2. Again, another bimodule extension differs from this by a global

derivation η
(3)
Γ satisfying [gij, η(3)Γ ] = 0. If we consider extendability of another 1-

nilpotent bimodule η
(2)
i + η(2)Γ , this will just add the term [η(2)Γ ,−dgij] to the left

hand side of 5.8, which is easily rewritten using 5.2 as gij[η(2)Γ , θj1] − [η(2)Γ , θj1]gij, and

η
(3)
i may be modified accordingly. Moreover, because [η(2)Γ , θi1] is a derivation, it

doesn’t contribute to the Hochschild differential.
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5.4 Bimodule Extendability in Degree 4

Proposition 5.4.1. The C-linear map η
(4)
i ∶ Õ≤3 →Mr(U4L+Ω1

X),

η
(4)
i (f̃) = [θi2, [df, θi1]] − θi1[θi1df + f̃2, θ

i
1] − [f̃3, θ

i
1] + [f̃2, θ

i
2]

− hD1( − hD1η
(2)
i (f) + η(3)i (f̃)) − hD2(η(2)i (f))

(5.14)

or,

η
(4)
i (f̃) = Π4([θi2, [df, θi1]] − θi1[θi1df + f̃2, θ

i
1] − [f̃3, θ

i
1] + [f̃2, θ

i
2]) (5.15)

determines a 3-nilpotent bimodule extension,

A≤4
i (f̃≤4) = f̃≤4 + σĀ≤3

i (f̃≤2) + η(4)i (f̃≤3) (5.16)

extending the 2-nilpotent bimodule extension A≤3
i defined in 5.13.

Proof. We will need formulas (5.1), (5.2), (5.10) and (5.11), which we collect below:

g̃ij = gij − dgij + (gijθj2 − θi2gij + θi1 ⋅ dgij) +⋯,

dgij = θi1gij − gijθj1,

η
(2)
i (f) = [θi1, df],

η
(3)
i (f̃) = [f̃2, θ

i
1] − [df, θi2] + θi1[df, θi1] + hD1(η(2)i (f)).
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Calculate η̄
(4)
i as in 5.8 for d = 3.

A≤3
i (f̃≤3)g̃≤3

ij − g̃≤3
ij A

≤3
j (f̃≤3) = [−df, θi2dgij − dgijθj2 − (θi1)2dgij]

+ [f̃2, gijθ
j
2 − θi2gij] + [f̃2, θ

i
1dgij] + [f̃3,−dgij]

− [df, θi1](gijθj2 − θi2gij + θi1dgij)

− (gijθj2 − θi2gij + θi1dgij)(−[df, θ
j
1])

+ hD1(−[df, θi1])dgij − dgijhD1(−[df, θj1])

+ ([f̃2, θ
i
1] − [df, θi2] + θi1[df, θi1] + hD1η

(2)
i (f))(−dgij)

− (−dgij)([f̃2, θ
j
1] − [df, θj2] + θ

j
1[df, θ

j
1] + hD1η

(2)
j (f))

Row by row, there are 3, 4, 3, 3, 2, 4, and 4 terms. We number these terms in order

from 1 to 23.

Combine terms 2, 21, 8 and 9:

[df, dgijθj2] − dgij[df, θ
j
2] − [df, θi1](gijθj2 − θi2gij)

= [df, dgij]θj2 − [df, θi1](gijθj2 − θi2gij)

= [df, θi1gij − gijθj1]θ
j
2 − [df, θi1](gijθj2 − θi2gij)

= [df, θi1]θi2gij − gij[df, θj1]θ
j
2.
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Combine terms 1, 17, 11 and 12:

− [df, θi2dgij] + [df, θi2]dgij + (gijθj2 − θi2gij)[df, θ
j
1]

= ( − θi2[df, dgij] − [df, θi2]dgij) + [df, θi2]dgij + (gijθj2 − θi2gij)[df, θ
j
1]

= −θi2[df, θi1gij − gijθj1] + (gijθj2 − θi2gij)[df, θ
j
1]

= gijθj2[df, θ
j
1] − θi2[df, θi1]gij.

Combine terms 3, 10, 18, 13 and 22:

([df, (θi1)2dgij] − [df, θi1]θi1dgij − θi1[df, θi1]dgij) + θi1dgij[df, θj1] + dgijθ
j
1[df, θ

j
1]

= (θi1)2[df, dgij] + θi1dgij[df, θj1] + dgijθ
j
1[df, θ

j
1]

= (θi1)2[df, (θi1gij − gijθj1)] + θi1(θi1gij − gijθ
j
1)[df, θ

j
1] + (θi1gij − gijθj1)θ

j
1[df, θ

j
1]

= (θi1)2[df, θi1]gij − gij(θj1)2[df, θj1].

Combine terms 6, 16, and 20:

[f̃2, θ
i
1dgij] − [f̃2, θ

i
1]dgij + dgij[f̃2, θ

j
1]

= θi1[f̃2, dgij] + dgij[f̃2, θ
j
1]

= θi1[f̃2, (θi1gij − gijθj1)] + (θi1gij − gijθj1)[f̃2, θ
j
1]

= θi1[f̃2, θ
i
1]gij − gijθj1[f̃2, θ

j
1]

Terms 4, 5, and 7 are easy:

[f̃2, gijθ
j
2 − θi2gij] + [f̃3, dgij]

= ([f̃3, θ
i
1] − [f̃2, θ

i
2])gij − gij([f̃3, θ

j
1] − [f̃2, θ

i
2])
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Terms 14 and 19, and terms 15 and 23 each cancel directly.

Collect all of this:

η̄
(4)
i (f̃) = −[df, θi1]θi2 + θi2[df, θi1] − (θi1)2[df, θi1] − θi1[f̃2, θ

i
1] − [f̃3, θ

i
1]

= [θi2, [df, θi1]] − θi1[θi1df + f̃2, θ
i
1] − [f̃3, θ

i
1] + [f̃2, θ

i
2].

We may set η
(4)
i = Π4(η̄(4)i ):

η
(4)
i (f̃) = Π4[[θi2, [df, θi1]] − θi1[θi1df + f̃2, θ

i
1] − [f̃3, θ

i
1] + [f̃2, θ

i
2]].

Next we must check the map A≤4
i of 5.16 is a homomorphism, using 5.2.5.

The terms involving only “df” are derivations, and dissapear in δ(η(4)i ). We have:

δ(η(4)i )(f̃ , g̃) = Π4(−θi1[dfdg, θi1] + [dfdg, θi2]) +Π4([dfg̃2 + f̃2dg, θ
i
1])

= Π4( − θi1df[dg, θi1] − θi1[df, θi1]dg)

+Π4(df[g̃2, θ
i
1] + [df, θi1]g̃2 + f̃2[dg, θi1] + [f̃2, θ

i
1]dg)

= −[θi1, df][dg, θi1] − [θi1, dg][df, θi1]

+Π4(df[g̃2, θ
i
1] + [df, θi1]g̃2 + f̃2[dg, θi1] + [f̃2, θ

i
1]dg).
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Compare this to Π4(δĀ≤3
i ), using that Ā≤3

i = ση(2)i + η(3)i . Then:

Π4(δ(Ā≤3
i )(f̃ , g̃)) = Π4( − df(η(3)i (g̃) − hD1η

(2)
i (g̃)) + f̃2 ⋅ η(2)i (g̃))

+Π4((η(3)i (f̃) − hD1η
(2)
i (f̃))(−dg) + η(2)i (f̃) ⋅ g̃2)

= Π4( − df([g̃2, θ
i
1] − [dg, θi2] + θi1[dg, θi1]) + f̃2 ⋅ η(2)i (g̃))

+Π4(([f̃2, θ
i
1] − [df, θi2] + θi1[df, θi1])(−dg) + η

(2)
i (f̃) ⋅ g̃2)

= Π4( − dfθi1[dg, θi1] + θi1[df, θi1](−dg))

+Π4( − df[g̃2, θ
i
1] + f̃2η

(2)
i (g̃) + [f̃2, θ

i
1](−dg) + η

(2)
i (f̃)g̃2)

+Π4([dfdg, θi2]))

as desired.
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CHAPTER VI

ALMOST NC-SCHEMES AND NC-ALGEBROIDS

The results of this chapter are all in collaboration with A. Polishchuk, and

appear in our co-written pre-print [7].

In this chapter we introduce weaker notions than NC-smooth thickenings,

which we call almost NC-schemes, or aNC-schemes for short, which sometimes lead

to global objects called NC-algebroids.

The inspiration for this chapter was certain functors studied in [11] and [23]

extending representable functors on Com, but which fail to be representable by

an NC-scheme due to the existence of inner automorphisms in N . We begin by

considering the general situation in which functors can fail to be representable due

to inner automorphisms.

6.1 Almost NC-Schemes

Definition 6.1.1. The category aN has the same objects as N , while the

morphisms in aN are equivalence classes of homomorphisms A → B, where

f1, f2 ∶ A → B are equivalent if there exists b ∈ B∗ such that f2 = bf1b−1. We

denote aNd ⊂ aN the full subcategory of NC-nilpotent algebras of degree d.

Proposition 6.1.2. Let h ∶ N → Sets be a formally smooth functor such that

h∣Com = hM for a smooth variety M of dimension at least 1, and which factors

through aN . Then h∣Nd
is not representable by an NC-nilpotent scheme of degree

d.
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Proof. Let U = SpecA ⊂ X be an affine NC-subscheme corresponding to an open

affine subscheme of B of dimension ≥ 1. Then A is 1-smooth, as is A′ = A∗̂C[z, z−1].

Since z abelianizes to a non-scalar, then z is not central in A′, hence it does not

commute with some element of A ⊂ A′.

6.1.1 The category of affine almost NC schemes

fab ∶ Aab → Bab factors through Aab[S−1], where S ⊂ Aab is the image of S. It

follows that we have a cartesian square of sets

hA[S−1](B) hA(B)

h
Aab[S

−1
]
(Bab) hAab(Bab)

Definition 6.1.3. For an NC-complete algebra R we denote by hR the

corresponding functor on aN : hR(B) is the set of conjugacy classes of algebra

homomorphisms R → B.

Since the images of both horizontal arrows in the above cartesian square are

stable under the action of inner automorphisms of B, we deduce that the similar

square

hRJT−1K(B) hR(B)

hRab[T−1](Bab) hRab(Bab)

(6.1)

is still Cartesian for any B ∈ N .

Let aNC denote the category of NC-complete algebras with morphisms given

by algebra homomorphisms viewed up to conjugation, i.e., up to post-composing

with an inner automorphism. We denote by aNCSis the subcategory in aNC, whose

objects are NC-smooth algebras, with isomorphisms in aNC as morphisms.
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Lemma 6.1.4. The functor

aNCSopis → Funis(aN , Sets) ∶ R ↦ hR

is fully faithful, where Funis is the category of functors and natural isomorphisms

between them.

Proof. Note that for any d ≥ 0, the restriction hR∣aNd
is naturally isomorphic to the

representable functor hR/Id+2R. Thus, for NC-complete algebras R and R′, we have

a natural identification

Isom(hR′ , hR) ≃ lim←Ð
d

IsomaN (R/Id+2R,R′/Id+2R′),

where IsomaN denotes the set of isomorphisms in the category aN . Thus, it

suffices to prove that if R and R′ are NC-smooth then the natural map

IsomaNC(R,R′) → lim←Ð
d

IsomaN (R/Id+2R,R′/Id+2R′) (6.2)

is a bijection. To check surjectivity, assume we are given a collection of algebra

homomorphisms

fd ∶ R/Id+2R → R′/Id+2R′,

which are compatible up to conjugation, i.e., the homomorphism fd+1,d ∶ R/Id+2R →

R′/Id+2R′ induced by fd+1 is equal to θudfd, where θud is the inned automorphism

associated with a unit ud ∈ R′/Id+2R′. Now, starting from d = 0, we can recursively

correct fd+1 by an inner automorphism of R′/Id+3R′, so that the homomorphisms

(fd) become compatible on the nose (not up to an inner automorphism). Since R′

is NC-complete, this defines a unique homomorphism f ∶ R → R′ inducing (fd).
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Furthermore, since R is NC-complete, we see that f is an isomorphism if and only

if all fd are isomorphisms.

It remains to check that (6.2) is injective. Thus, given two isomorphisms

f, f ′ ∶ R → R′ such that the induced isomorphisms fd and f ′d are conjugate for each

d, we have to check that f and f ′ are conjugate. By considering f−1f ′, we reduce

the problem to checking that if we have an automorphism f ∶ R → R such that fd

is an inner automorphism of R/Id+2R for each d, then f is inner. For any algebra

A, let us denote by Inn(A) the group of inner automorphisms of A. Note that we

have an exact sequence of groups

1→ Z(A)∗ → A∗ → Inn(A) → 1.

Applying this to each algebra R/Id+2R, and passing to projective limits, we have an

exact sequence

1→ lim←Ð
d

Z(R/Id+2R)∗ → lim←Ð
d

(R/Id+2R)∗ ρ→ lim←Ð
d

Inn(R/Id+2R).

We claim that the arrow ρ in this sequence is surjective. Indeed, it is enough to

check that the inverse system (Z(R/Id+2R)∗) satisfies the Mittag-Leffler condition.

But by Lemma 3.6.2(i), for d ≥ 1, the image of the projection

Z(R/Id+2R)∗ → Z(R/Id+1R)∗

is equal to C∗, which implies the required stabilization. Thus, the map ρ is

surjective. Note that the source of this map can be identified with R∗. Thus, we
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deduce the surjectivity of the natural map

R∗ → lim←Ð
d

Inn(R/Id+2R).

It follows that in we can compose f with an inner automorphism θu of R, such

that f ′ = θuf induces the identity automorphism of R/Id+2R for each d. It follows

f ′ = id, i.e., f is inner.

6.2 Local Representability Criterion for Almost NC-Schemes

In this section we prove a local analog of Kapranov’s representability criterion

3.5.2 for aNC-schemes. As in the case of NC-schemes the main idea is to study

fibers of the map h(p) ∶ h(Λ′) → h(Λ) for a central extension

0→ I → Λ′
p→ Λ→ 0 (6.3)

For d ≥ 1, let h ∶ aNd → Sets be a functor such that h∣aNd−1
is representable by

A ∈ aNd−1. The key new ingredient we have to use is the following. Given a central

extension (6.3) with Λ′ ∈ Nd, Λ ∈ Nd−1, and a homomorphism f ∶ A→ Λ, we set

U(f) ∶= {u ∈ Λ∗ ∣ uf(a)u−1 = f(a)∀a ∈ A}.

Then we have a natural map

∆f ∶ U(f) → Der(A, I) = Der(Aab, I).
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where

∆f(u) ∶ A→ I ∶ a↦ [u, f(a)]Λ′u−1, (6.4)

where for l1, l2 ∈ Λ, we define [l1, l2]Λ′ ∈ Λ′ by

[l1, l2]Λ′ ∶= [l̃1, l̃2], (6.5)

where l̃i is a lifting of li to Λ′. Note that [u, f(a)]Λ′ ∈ I.

Furthermore, one can check that the image of ∆f depends only on the image

of f in HomaN (A,Λ) = h(Λ). Also, using the fact that I is central we immediately

check that ∆f is a group homomorphism. The next result shows that in the case

when h itself is representable, the cokernel of ∆f maps bijectively to h(p)−1(f).

Lemma 6.2.1. Let A′ be an NC-nilpotent algebra of degree d such that A =

A′/Id+1A′. Then for any central extension (6.3), with Λ′ ∈ Nd and Λ ∈ Nd−1, and

any algebra homomorphism f ∶ A′ → Λ there exists a natural transitive action of the

group Der(A, I) on the fiber hA′(p)−1(f) of the map hA′(p) ∶ hA′(Λ′) → hA′(Λ), such

that the action of Der(A, I) on any element of this fiber induces a bijection

coker (∆f)
∼→ hA′(p)−1(f).

Proof. It is well known that the difference between two homomorphisms A′ → Λ′

lifting f ∶ A′ → Λ is a derivation A′ → I, and that this induces a simply transitive

action of Der(A′, I) = Der(A, I) on the set of such liftings. Now assume that

we have two homomorphisms f ′1, f
′

2 ∶ A → Λ′, such that both p ○ f ′1 and p ○ f ′2
are conjugate to f . Then replacing f ′1 and f ′2 by conjugate homomorphisms we

can assume that p ○ f ′1 = p ○ f ′2 = f . Now It is easy to see that if f ′2 and f ′1 are
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conjugate by u ∈ (Λ′)∗ then u ∈ U(f), and the difference f ′2 − f ′1 is the derivation

a↦ [u, f(a)]Λ′u−1. This establishes the required bijection.

Next, we return to the situation when only h∣aNd−1
is representable. Recall

from 3.1.12 that for any central extension (6.3) there is a natural isomorphism

Λ′ ×Λ Λ′
∼→ Λ′ ×Λab (Λab ⊕ I) ∶ (x, y) ↦ (x, (xab, y − x)), (6.6)

Let us assume in addition that h commutes with pull-backs by commutative

nilpotent extension, so that

h(Λ′ ×Λab (Λab ⊕ I)) ≃ h(Λ′) ×h(Λab) h(Λab ⊕ I).

Combining this with the above isomorphism we get a natural map

h(Λ′) ×h(Λab) h(Λab ⊕ I) ≃ h(Λ′ ×Λ Λ′) → h(Λ′) ×h(Λ) h(Λ′). (6.7)

Now assume Λ′ ∈ Nd, Λ ∈ Nd−1 and we are given an element f ′ ∈ h(Λ′) lifting

f ∈ h(Λ). Since h∣aNd−1
≃ hA we have a natural identification of the fiber of h(Λab ⊕

I) → h(Λab) = Homalg(A,Λab) over fab with Der(A, I). Thus, for any D ∈ Der(A, I)

we can consider a pair (f ′, fab + D) in the left-hand side of (6.7). Let us define

f ′ +D ∈ h(p)−1(f), so that (f ′, f ′ +D) is the image of (f ′, fab +D) under (6.7). In

this way we get a map

δf ′ ∶ Der(A, I) → h(p)−1(f) ∶D ↦ f ′ +D. (6.8)
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It is easy to see (by considering Λ′ ×Λ Λ′ ×Λ Λ′) that in this way we get an action

of the group Der(A, I) on h(p)−1(f). Note that in the case when h is representable

by some A′ ∈ Nd, this operation is exactly the operation of adding a derivation

A′ → A→ I to a homomorphism A′ → Λ′.

Now we can prove the following local aNC version of Proposition 3.5.2.

Proposition 6.2.2. Let A be a (d − 1)-smooth algebra in aNd−1, and let h ∶ aNd →

Sets, be a formally smooth functor such that h∣aNd−1
≃ hA. Then h is representable

by a d-smooth algebra in aNd if and only if the following two conditions hold.

(i) For any nilpotent extension Λ′ → Λ with Λ′ ∈ aNd and Λ ∈ Com, and any

commutative nilpotent extension Λ′′ → Λ, the natural map

h(Λ′ ×Λ Λ′′) → h(Λ′) ×h(Λ) h(Λ′′)

is a bijection.

(ii) For every central extension (6.3), for any f ′ ∈ h(Λ′) extending f ∈ h(Λ), the

map δf ′, which is well defined due to condition (i), induces a bijection

coker (∆f)
∼→ h(p)−1(f).

Proof. Assume first that h is representable by A′ ∈ aNd. To check condition (i) for

h = hA′ we first note that since Λ and Λ′′ are commutative, the set h(Λ′)×h(Λ)h(Λ′′)

can be described as pairs of homomorphisms f ′ ∶ A → Λ′ and f ′′ ∶ A → Λ′′ lifting the

same homomorphism f ∶ A → Λ, up to the equivalence replacing f ′ by a conjugate

homomorphism. Clearly, this is the same as giving a homomorphism A′ → Λ′ ×Λ Λ′′
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up to conjugacy. On the other hand, condition (ii) for hA′ follows from Lemma

6.2.1.

Now assume that conditions (i) and (ii) hold, and let A′ → A be a d-smooth

thickening of A (it exists by [11, Prop. (1.6.2)]). Let e ∈ h(A) be the family

corresponding to the isomorphism h∣aNd−1
≃ hA. Since h is formally smooth, there

exists an element e′ ∈ h(A′) lifting e. Let hA′ → h be the induced morphism of

functors. We already know that it is an isomorphism on aNd−1, and we claim that

it is an isomorphism on aNd. The argument is similar to that of Proposition 7.1.3.

Given Λ′ ∈ Nd, we can fit it into a central extension (6.3) with Λ ∈ Nd−1. Then we

consider the commutative square

hA′(Λ′) hA′(Λ)

h(Λ′) h(Λ)

Since hA′(Λ) ≃ hA(Λ) ≃ h(Λ), we know that the right vertical arrow is

an isomorphism. Also, both horizontal arrows are surjective. Let us fix a

homomorphism f ∈ hA(Λ), and its lifting f ′ ∈ hA′(Λ′). As we have seen in Lemma

6.2.1, the fiber of the top horizontal arrow over f is identified with coker (∆f).

The same is true for the fiber of the bottom horizontal arrow over f , by condition

(ii). It remains to observe that both isomorphism are induced by the operation

(6.8) of adding a derivation in Der(A, I), which is compatible with morphisms

of functors on aNd, extending hA on aNd−1. Thus, the left vertical arrow induces

an isomorphism between the fibers of the horizontal arrows over f . Since f was

arbitrary, we deduce that the left vertical arrow is an isomorphism.

Remark 6.2.3. All fiber products are in Nd. Fiber products of central extensions

usually do not exist in aNd unless one factor is commutative.
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6.3 NC-Algebroids

Definition 6.3.1. A C-algebroid is a C-linear stack on space X, locally non-empty,

and such that any two objects over an open set U are locally isomorphic.

See [15] and [13] for references on algebroids, and [12] for stacks.

Definition 6.3.2. Let X be a smooth scheme. An NC-smooth algebroid thickening

of X is a C-algebroid A over X such that for every object σ ∈ A(U) over an open

subset U ⊂X the sheaf of algebras EndA(σ) is an NC-smooth thickening of U .

For a functor h on aN such that hCom = hX and an open subset U ⊂ X we

define the subfunctor h/U ⊂ h by

h/U(Λ) = h(Λ) ×hX(Λab) hU(Λab),

where we use the identification h(Λab) ≃ hX(Λab).

Lemma 6.3.3. Let h = hR, where R is an NC-complete algebra. Then for any

distinguished affine D(f) ⊂ Spec (Aab) we have an equality of subfunctors h/D(f) =

hAJf−1K.

Proof. This follows immediately from the cartesian square (6.1) with T = {fn ∣ n ≥

0}.

Lemma 6.3.4. Let h be a functor on aN such that h∣Com = hX for some scheme

X. Assume that (Ui) is an affine covering of X, such that for every i we have an

isomorphism h/Ui
≃ hAi

for some Ai ∈ N . Let us denote also by Ai the corresponding

sheaf of algebras over Ui. Then for every open subset V ⊂ Ui ∩ Uj, which is

66



distingushed in both Ui and Uj, we have an isomorphism

αij,V ∶ Ai∣V ≃ Aj ∣V

compatible with the isomorphisms hAi(V ) ≃ h/V ≃ hAj(V ). Furthermore, for another

such open V ′ ⊂ Ui ∩Uj the isomorphisms αij,V ∣V ∩V ′ and αij,V ′ ∣V ∩V ′ differ by an inner

automorphism. Also, for any open V ⊂ Ui ∩ Uj ∩ Uk, distinguished in Ui, Uj and Uk,

we have

αjk∣V ○ αij ∣V = αik∣V ○Ad(uijk)

for some uijk ∈ Ai(V )∗.

Proof. Let us fix an isomorphism h/Ui
≃ hAi

for each i. Suppose V ⊂ Ui ∩ Uj is a

distinguished affine open in both Ui and Uj. Then

hAi,/V ≃ h/V ≃ hAj ,V .

Thus, by Lemmas 6.3.3 and 6.1.4, we have an isomorphism between the

corresponding localizations of Ai and Aj in aN , and hence, an isomorphism

αij ∶ Ai∣V ≃ Aj ∣V , defined uniquely up to an inner automorphism. For V ⊂ Ui∩Uj∩Uk

the compatibility between αij, αjk and αik, up to an inner automorphism, follows

from the compatibility of all of these isomorphisms with the isomorphisms of hAi,/V ,

hAj ,/V and hAk,/V with h/V .

Lemma 6.3.5. (i) Let A and A′ be a pair of NC-smooth algebroids over a smooth

scheme X, and F,G ∶ A → A′ is a pair of equivalences. Assume that for an open

covering (Ui) of X we have an isomorphism F ∣Ui
≃ G∣Ui

. Then there exists an

isomorphism F ≃ G.
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(ii) Let A and A′ be a pair of NC-smooth algebroids over a smooth scheme X.

Assume that for an open covering (Ui) of X we have an equivalence

Fi ∶ A∣Ui
→ A′∣Ui

and that for each pair i, j, we have an isomorphism

Fi∣Uij
≃ Fj ∣Uij

.

Then there exists an equivalence F ∶ A → A′ such that F ∣Ui
≃ Fi.

(iii) Let Ui be an open covering of a smooth scheme X, and for each i let Ai be an

NC-smooth algebroid over Ui. Assume that for every i, j, we have an equivalence

Fij ∶ Ai∣Uij
→ Aj ∣Uij

,

such that for every i, j, k, there is an isomorphism

Fjk∣Uijk
○ Fij ∣Uijk

≃ Fik∣Uijk
,

where Uij = Ui ∩ Uj, Uijk = Ui ∩ Uj ∩ Uk. Then there exists an NC-smooth algebroid

A over X and equivalences Fi ∶ A∣Ui
→ Ai, such that for every i, j, there is an

isomorphism

Fij ○ Fi∣Uij
≃ Fj ∣Uij

.

Proof. Without loss of generality we can assume that X is connected.
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(i) Let us choose for each i an isomorphism φi ∶ F ∣Ui
→ G∣Ui

. Then for each i, j, we

have

φj ∣Uij
= φi∣Uij

○ cij,

where cij is an autoequivalence of Fi∣Uij
. Since Fi is an equivalence, we have

Aut(F ) ≃ Aut(idA). Locally, the sheaf Aut(idA) is given by the center of EndA(σ),

where σ is an object of A. Hence, by Lemma 3.6.2, the natural morphism of

sheaves C∗

X → Aut(idA) is an isomorphism. Thus, cij is a Cech 1-cocycle with

values in C∗

X . Since X is irreducible, the corresponding Cech cohomology is trivial,

so we can multiply φi by appropriate constants in C∗, to make them compatible on

double intersections. The corrected isomorphisms glue into a global isomorphism

F → G.

(ii) Let us choose for each i, j an isomorphism φij ∶ Fi∣Uij
→ Fj ∣Uij

. Then for each

i, j, k, the composition cijk = φkiφjkφij is an autoequivalence of Fi∣Uijk
, where cijk is

a Cech 2-cocycle with values in C∗

X . As above, choosing representation of cijk as a

coboundary allows to correct φij by constants in C∗, so that the isomorphisms φij

are compatible on triple intersections. Hence, we can glue (Fi) into the required

global equivalence F ∶ A → A′.

(iii) For every i, j, k, let us choose an isomorphism

gijk ∶ Fjk∣Uijk
○ Fij ∣Uijk

→ Fik∣Uijk
.

Then for every i, j, k, l, we have over Uijkl,

gikl(Fkl ∗ gijk) = cijklgijl(gjkl ∗ Fij)
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for some cijkl ∈ Aut(Fil)(Uijkl) = C∗. Furthermore, (cijkl) is a Cech 3-cocycle with

values in C∗

X . Hence, we can mulitply gijk with appropriate constants to make them

compatible on quadruple intersections. This allows to glue (Ai) into a global C-

algebroid over X (see [13, Prop. 2.1.13]).

Theorem 6.3.6. Let h be a formally smooth functor on aN such that h∣Com = hX

and h is locally representable, i.e., there exists an open affine covering (Ui) of X,

and isomorphisms

h/Ui
≃ hAi

,

where Ai is an NC-smooth thickening of Ui. Then there exists an NC-smooth

algebroid A over X and equivalences of algebroids

Fi ∶ A∣Ui
→ Ai,

such that for every open subset V ⊂ Ui ∩Uj, distinguished in both Ui and Uj, there is

an isomorphism

gij ○ Fi∣V ≃ Fj ∣V ,

where gij ∶ Ai∣V → Aj ∣V is a representative (up to conjugation) of the isomorphism

hAi∣V
≃ h/V ≃ hAj ∣V

.

Proof. First, we apply Lemma 6.3.4 and obtain isomorphisms

αij,V ∶ Ai∣V → Aj ∣V

for every open V ⊂ Ui ∩ Uj, distinguished in both Ui and Uj, such that these

isomorphisms for V and V ′ and for V ⊂ Ui ∩ Uj ∩ Uk, are compatible up to an inner
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automorphism. Let Ai denote an NC-smooth algebroid over Ui associated with Ai.

Note that Ui∩Uj can be covered by open subsets V , which are distinguished in both

Ui and Uj. Each isomorphism αij,V gives an equivalence

Fij,V ∶ Ai∣V → Aj ∣V .

Since the local autoequivalence of Ai associated with an inner automorphism of

Ai is isomorphic to the identity, we get that Fij,V and Fij,V ′ induce isomorphic

equivalences over V ∩ V ′. By Lemma 6.3.5(ii), we obtain an equivalence defined

over Uij,

Fij ∶ Ai∣Uij
→ Aj ∣Uij

,

such that for every V ⊂ Uij, distinguished in both Ui and Uj, one has Fij ∣V ≃ αij,V .

Furthermore, we claim that over Uijk there is an equivalence

Fjk∣Uijk
○ Fij ∣Uijk

≃ Fik∣Uijk
. (6.9)

Indeed, by Lemma 6.3.4, we have a similar equivalence over V , for every V ⊂

Uijk. Thus, our claim follows immediately from Lemma 6.3.5(i), applied to the

equivalences in both sides of (6.9). Finally, we can apply Lemma 6.3.5(iii) to

conclude the existence of the required NC-smooth algebroid A over X.
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CHAPTER VII

NC-ALGEBROID THICKENINGS OF MODULI SPACES

The results of this chapter are all in collaboration with A. Polishchuk, and

appear in our co-written pre-print [7].

In this section we consider two functors, which are NC-thickenings of of

certain families of either vector bundles or quiver representations. The first is the

same functor as defined in [11] and claimed to be representable, although a gap was

discovered in [20]. The second is similar to those considered by Toda in [23].

In each case the functor factors through aN , so is not representable by an

NC-scheme, but we show it is locally representable in aN . It follows from the

results of the previous chapter that these functors lead to natural NC-smooth

algebroid thickenings of the parameter spaces they thicken.

7.1 Excellent Families of Vector Bundles

Let Z be a projective algebraic variety, B a smooth variety, and let Eab be a

vector bundle over B. We denote by ρ ∶ B ×Z → B the natural projection.

Definition 7.1.1. We say that Eab is an excellent family of bundles on Z if

(a) OB → ρ∗End(Eab) is an isomorphism,

(b) the Kodaira-Spencer map κ ∶ TB → R1ρ∗End(Eab) is an isomorphism,

(c) R2ρ∗End(Eab) = 0,

(d) Rdρ∗End(Eab) is locally free for d ≥ 3.
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Note that our definition is slightly stronger than [11, Def. (5.4.1)] in that we

add condition (d), which is used crucially in the base change calculations. Note also

that condition (a) is satisfied whenever E is a family of stable bundles on Z, cf. [10]

Lemma 4.6.3. For the definition of the Kodaira-Spencer map, refer to [10] section

10.

Following [11] we consider the natural functor on N of noncommutative

families of vector bundles extending E .

7.1.1 The functor of NC-families extending an excellent family

Definition 7.1.2. For an excellent family E over a smooth (commutative) base B,

we define the functor hNCB ∶ N → Sets sending Λ ∈ N to the isomorphism classes

of objects in the following category CΛ. Consider NC-schemes X = Spec (Λ) and

X × Z. Let us denote by X0
ab = Spec (Λab

0 ) the reduced scheme associated with the

abelianization of X. Then the objects of CΛ are the triples (f,EΛ, φ) consisting of

(i) a morphism f ∶X0
ab → B of schemes,

(ii) a locally free sheaf of right OX×Z-modules EΛ,

(iii) an isomorphism φ ∶ OX0
ab
×Z ⊗EΛ

∼→ (f × id)∗E .

A morphism (f1,E1, φ1) → (f2,E2, φ2) exists only if f1 = f2 and is given by an

isomorphism E1 → E2 commuting with the φi. On morphisms hNCB is the usual

pullback.

The following result is stated in [11] (see [11, Prop. (5.4.3)(a)(b)]). However,

we believe our stronger assumptions on the family E , including condition (d), are

needed for it to hold.
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Proposition 7.1.3. The functor hNCB is formally smooth and the natural morphism

of functors hB → hNCB ∣Com is an isomorphism.

Lemma 7.1.4. For any commutative algebra Λ and any (f,EΛ, φ) ∈ hNCB (Λ) the

natural map

Λ→ End(EΛ)

is an isomorphism.

Proof. We prove this by the degree of nilpotency of the nilradical of Λ. Assume

first that Λ is reduced. Then we have EΛ = (f × id)∗E . Hence, by the base change

theorem,

H0(X ×Z, (f × id)∗End(E)) ≃H0(X,RpX,∗(f × id)∗End(E))

≃H0(X,H0(Lf∗Rρ∗End(E))),

where X = Spec (Λ). Since Riρ∗End(E) are locally free for i ≥ 1, we have

H0(Lf∗Rρ∗End(E)) ≃ f∗ρ∗End(E) ≃ OX ,

where in the last isomorphism we used assumption (a). This shows that our

assertion holds for such Λ.

Next, assume we have a central extension 0 → I → Λ′ → Λ → 0 of commutative

algebras, such that I is a module over Λ0, the quotient of Λ by its nilradical.

Assume that Λ → End(EΛ) is an isomorphism for any (f,EΛ, φ) ∈ hNCB (Λ) and

let us prove a similar statement over Λ′. Given (f,EΛ′ , φ′) ∈ hNCB (Λ′), let EΛ be the

induced locally free sheaf over Spec (Λ) × Z. Then we have an exact sequence of
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coherent sheaves on Spec (Λ′) ×Z,

0→ EΛ0 ⊗ p∗1I → EΛ′ → EΛ → 0,

where I is the ideal sheaf on Spec (Λ′) corresponding to I. Taking sheaves of

homomorphisms from EΛ′ we get an exact sequence

0→ End(EΛ0) ⊗ p∗1I → End(EΛ′) → End(EΛ) → 0

Passing to global sections we obtain a morphism of exact sequences

0 I Λ′ Λ 0

0 H0(End(EΛ0) ⊗ p∗1I) End(EΛ′) End(EΛ) 0

(7.1)

Note that EΛ0 ≃ (f × id)∗E , so as before we get

H0(X0 ×Z,End(EΛ0) ⊗ p∗1I) ≃H0(X0,I ⊗H0(Lf∗Rρ∗End(E)))

≃H0(X0,I ⊗ f∗ρ∗End(E))

≃ I,

where X0 = Spec (Λ0). Thus, in the above morphism of exact sequences the

leftmost and the rightmost vertical arrows are isomorphisms. Hence, the middle

vertical arrow is also an isomorphism.

Proof of Proposition 7.1.3. Assume we are given a central extension

0→ I → Λ′ → Λ→ 0 (7.2)
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in N and an element (f,EΛ, φ) ∈ hNCB (Λ), so that EΛ is a locally free sheaf of right

OX×Z-modules of rank r, where X = Spec (Λ). We have to check that it lifts to a

locally free sheaf of right OX′×Z-modules, where X ′ = Spec (Λ′). Furthermore, it

is enough to consider central extensions as above, where the nilradical of Λab acts

trivially on I, so that I is a Λab
0 -module.

We have a natural abelian extension of sheaves of groups on Xab ×Z,

1→Mr(OXab×Z) ⊗ p∗1I → GLr(OX′×Z) → GLr(OX×Z) → 1 (7.3)

where I is the coherent sheaf on Xab corrresponding to I. The isomorphism

class of EΛ corresponds to an element of the nonabelian cohomology H1(Xab ×

Z,GLr(OX×Z)). By the standard formalism (see Sec. 2.3) the obstruction to lifting

this class to a class in H1(Xab×Z,GLr(OX′×Z)) lies in H2(Xab×Z,End(EΛab
0
)⊗p∗1I),

where EΛab
0

is induced by EΛ. We claim that this group H2 vanishes. Indeed, we

have EΛab
0
≃ (f × id)∗E . Applying the base change theorem we get an isomorphism

RΓ(X0
ab ×Z, (f × id)∗End(E) ⊗ p∗1I) ≃ RΓ(X0

ab,I ⊗Lf∗Rρ∗End(E)).

It remains to observe that by our assumptions (c) and (d), the complex of sheaves

Lf∗Rρ∗End(E) has no cohomology in degrees ≥ 2.

To prove that second assertion we argue by induction on the degree of

nilpotency of the nilradical of a test algebra Λ. Thus, we consider a square zero

extension (7.2) of commutative algebras, where I is a Λab
0 -module, and study the
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corresponding commutative square

hB(Λ′) hB(Λ)

hNCB (Λ′) hNCB (Λ)

(7.4)

We assume that the right vertical arrow is an isomorphism and we would like to

prove the same about the left vertical arrow. We know that both horizontal arrows

are surjective. Furthermore, using the interpretation in terms of nonabelian H1 and

the exact sequence (7.3) we can get a description of the preimage of an element

EΛ ∈ hNCB (Λ) under the bottom arrow. Namely, the corresponding sequence of

twisted sheaves is

0→ End(Eab) ⊗ p∗1I → Aut(EΛ′) → Aut(EΛ) → 1. (7.5)

By Lemma 7.1.4, we have Aut(EΛ) = Λ∗, and it is easy to see that this group acts

trivially on H1(Xab ×Z,End(EΛab)⊗p∗1I)) (since Λ′ is in the center of Aut(EΛ′)). It

follows that the preimage of EΛ in hNCB (Λ′) is the principal homogeneous space for

the abelian group

coker (Aut(EΛ)
δ0→H1(Xab ×Z,End(EΛab) ⊗ p∗1I)),

where δ0 is the connecting homomorphism associated with (7.5). However, by

Lemma 7.1.4, fixing a lifting EΛ′ ∈ hNCB (Λ′), we get that the previous map in the

long exact sequence, Aut(EΛ′) → Aut(EΛ) is just the projection (Λ′)∗ → Λ∗, so it is

surjective. This implies that the preimage of EΛ is the principal homogeneous space
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for

H1(Xab ×Z,End(EΛab
0
) ⊗ p∗1I) ≃H0(X0

ab,I ⊗H1(Lf∗Rρ∗End(E))).

By our assumptions (c) and (d), we have

H1(Lf∗Rρ∗End(E)) ≃ f∗R1ρ∗End(E),

thus, the above group is H0(X0
ab, I ⊗ f∗R1ρ∗End(E)).

On the other hand, different extensions of Spec (Λ) → B to Spec (Λ′) → B

correspond to H0(B,f∗I ⊗ TB). It is easy to check that the map hB(Λ′) → hNCB (Λ′)

is compatible with the Kodaira-Spencer map

H0(B,f∗I ⊗ TB) ≃H0(X0
ab,I ⊗ f∗TB) →H0(X0

ab,I ⊗ f∗R1ρ∗End(E)),

which is an isomorphism by assumption (b). It follows that the map hB(Λ′) →

hNCB (Λ′) is an isomorphism.

We have the following simple observation.

Proposition 7.1.5. The functor hNCB ∶ N → Sets factors through aN .

Proof. Suppose we have two homomorphims f1, f2 ∶ Λ′ → Λ in N such that they are

conjugate, i.e., f2 = θf1, where θ = θu is an inner automorphism of Λ: θu(x) = uxu−1

for some unit u in Λ. We have to check that f1 and f2 induce the same map

h(Λ′) → h(Λ). Equivalently, we have to check that the map h(θ) ∶ h(Λ) → h(Λ)

is equal to the identity. Note that θu induces an automorphism of the NC-scheme

X = Spec (Λ), which we still denote by θ, and the map h(θ) sends a right OX×Z-

module EΛ to (θ × idZ)∗EΛ. Now we observe that the automorphism θ × id of

X × Z acts trivially on the underlying topological space and is given by the inner
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automorphism θu of the structure sheaf O = OX×Z , associated with u which we view

as a global section of O∗. Thus, the operation (θ×idZ)∗ is given by tensoring on the

right with O − O bimodule O
θu

(which is the structure sheaf with the left O-action

twisted by θu).

Now we use the general fact that twisting by an inner automorphism does not

change an isomorphism class of a bimodule. Namely, if M is an R − S-bimodule

and θu is the inner automorphism of R associated with u ∈ R∗, then we have an

isomorphism of (R,S)-bimodules,

M
∼→
θu
M ∶m↦ um.

This construction also works for bimodules over sheaves of rings and an inner

automorphism associated with a global unit. This implies that in our situation

the functor (θ × idZ)∗ is isomorphic to identity, and our claim follows

Remark 7.1.6. In fact, our proof of Proposition 7.1.5 shows a little more. We can

enhance hNCB to a functor with values in groupoids, by considering the category of

the data as in Definition 7.1.2 and isomorphisms between them. On the other hand,

we can consider a 2-category of algebras in N with the usual 1-morphisms and with

2-morphisms between f1, f2 ∶ Λ′ → Λ given by u ∈ Λ∗ such that f2 = θuf1. Then the

functor hNCB lifts to a 2-functor from this 2-category to the 2-category of groupoids.

7.1.2 Local representability in aN

By Proposition 7.1.5, we can view hNCB as a functor on the category aN , our

main goal is to prove the local representability of the corresponding functor hNCB ∣aNd

by a d-smooth NC-algebra.
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Theorem 7.1.7. Assume that the base B of an excellent family is affine. Then for

every d ≥ 0 the functor hNCB ∣aNd
is representable in aNd by a d-smooth thickening of

B. Hence the functor hNCB is representable in aN by a NC-smooth thickening of B.

The proof will proceed by induction on d. We need two technical lemmas (the

second of which is a noncommutative extension of Lemma 7.1.4).

Lemma 7.1.8. Assume that hNCB ∣aNd−1
is representable by A ∈ Nd−1. Then for any

central extension (6.3) with Λ ∈ aNd−1, Λ′ ∈ aNd, and any homomorphism f ∶ A → Λ,

there is a commutative square

U(f) Der(Aab, I)

Aut(EΛ) H1(Spec (Λab) ×Z,End(Eab) ⊗ I)

∆f

−KS

δ0

(7.6)

Here ∆f is given by (6.4); EΛ = Ef is the family in hNCB (Λ) induced by f ;

the map KS is induced by the Kodaira-Spencer map; and the homomorphism

U(f) → Aut(Ef) associates with u ∈ Λ∗ an automorphism of Ef induced by the

left multiplication by u on Λ. The map δ0 is the connecting map associated with the

exact sequence of sheaves (7.5), where EΛ′ is a vector bundle over Spec (Λ′) × Z

lifting EΛ. In particular, in this situation δ0 is a group homomorphism.

Proof. We are going to compute the maps in the square (7.6) using local

trivializations. Let us denote by Eab the original family over B ×Z, and let E be the

family over Spec (A) × Z corresponding to the element idA ∈ hA(A) ≃ hNCB (A). We

denote by fab the homomorphism Aab → Λab induced by f and the corresponding

morphism of affine schemes Spec (Λab) → Spec (Aab) = B. Note that by Proposition

7.1.3, we have an isomorphism Eab = (fab × id)∗Eab.

Step 1. Computation of δ0 ∶ Aut(Ef) →H1(Spec (Λab) ×Z,End(Eab) ⊗ p∗1I).
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Let us fix an open affine covering (Ui) of Spec (Λab)×Z such that Ef ′ is trivial

over Ui. Then, given an automorphism α ∈ Aut(Ef), over Ui we can lift α to an

automorphism αi of EΛ′ . Now over Ui ∩ Uj the endomorphism α−1
i αj − id of EΛ′

factors through the kernel of the projection Ef ′ → Ef , i.e., Eab ⊗ p∗1I. This gives the

Cech 1-cocycle with values in End(Eab) ⊗ p∗1I, representing the class δ0(α).

Step 2. Computation of the KS-map

Der(Aab, I) →H1(Spec (Λab) ×Z,End(Eab) ⊗ p∗1I). (7.7)

Note that we have an identification

Der(Aab, I) ≃H0(B,TB ⊗ fab∗ I).

Let us fix trivializations ϕabi ∶ On → Eab over an affine open covering (Ui) of B × Z,

and let gabij = (ϕabi )−1ϕabj ∈Mn(O(Ui ∩Uj)) be the corresponding transition functions.

Then to a vector field v on B with values in fab
∗
I the KS-map associates the Cech

1-cocycle ϕabi v(gabij )(gabij )−1(ϕabi )−1 on B ×Z with values in End(Eab) ⊗ p∗1fab∗ I.

We also need to calculate the image of this class under the isomorphism

induced by the projection formula

H1(B ×Z,End(Eab) ⊗ p∗1f∗I)
∼→H1(B ×Z, (f × id)∗((f × id)∗End(Eab) ⊗ p∗1I)) ≃

H1(Spec (Λab) ×Z,End(Eab) ⊗ p∗1I).

To this end we note that the morphism fab × id ∶ Spec (Λab) × Z → B × Z is affine,

and so Ũi ∶= (fab × id)−1(Ui) is an affine open covering of Spec (Λab) × Z, over which

we have the induced trivializations of Eab = (fab × id)∗Eab, which we still denote by
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ϕabi . Now it is easy to see that the corresponding Cech 1-cocycle on Spec (Λab) × Z

with values in End(Eab) ⊗ I is given by

ϕabi v(gabij )fab(gabij )−1(ϕabi )−1,

where we denote still by fab ∶ O(Ui ∩ Uj) → O(Ũi ∩ Ũi) the homomorphism induced

by fab, and also extend v to a derivation O(Ui ∩Uj) → p∗1I(Ũi ∩ Ũj).

Step 3. Now we can check the commutativity of the square (7.6)

We start by choosing an affine open covering (Ui) of B × Z and trivializations

of Eab over Ui. Then we can lift these trivializations to some trivializations ϕi ∶

On
Spec (A)×Z

∣Ui
→ E . We denote by gij the corresponding transition functions in

GLn(OSpec (A)×Z(Ui ∩Uj)).

By definition, ∆f(u) is the derivation

v(a) = [u, f(a)]Λ′u−1 = [ũ, f̃(a)]ũ−1,

where ũ, f̃(a) ∈ Λ′ are some lifts of u and f(a) (note that Der(A, I) = Der(Aab, I)).

Hence, KS(∆f(u)) is represented by the 1-cocycle

ϕi[ũ, f̃(gij)]Λ′ũ−1f̃(gij)
−1
ϕ−1
i = ϕi(ũf̃(gij)ũ−1f̃(gij)

−1
− id)ϕ−1

i . (7.8)

As in Step 2, we have the induced affine open covering Ũi of Spec (Λab) ×

Z, and the induced trivializations ψi of Ef over Ũi. Let us choose a lifting EΛ′ of

Ef to a vector bundle over Spec (Λ′) × Z (it exists by formal smoothness of hNCB ),

and liftings ψ′i of ψi to trivializations of EΛ′ over Ũi. Note that we have ψ−1
i ψj =

f(gij), and hence (ψ′i)−1ψ′j provide liftings f̃(gij) ∈ Λ′ of f(gij). The image of u ∈
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U(f) in Aut(Ef) can be represented over Ũi as ψiuψ−1
i , where we view u as the

corresponding operator of the left multiplication by u (note that these operators

are compatible on intersections because u ⋅ f(gij) = f(gij) ⋅ u, due to the inclusion

u ∈ U(f)). Using the lifting ũ ∈ Λ′ of u we get local automorphisms of Ef ′ over Ũi,

αi = ψ′iũ(ψ′i)−1. Then

δ0(α) = α−1
i αj − id = (ψ′iũ−1(ψ′i)−1)(ψ′jũψ̃−1

j ) − id = ψ′i(ũ−1f̃(gij)ũf̃(gij)
−1
− id)(ψ′i)−1.

Comparing this with (7.8) we see that

δ0(α) =KS(∆f(u−1)) =KS(−∆f(u)) = −KS(∆f(u)).

Lemma 7.1.9. Assume that hNCB ∣aNd
is representable by A ∈ aNd, so hNCB ∣aNd

≃ hA.

Then for every d-nilpotent algebra Λ and every homomorphism f ∶ A → Λ, the

induced homomorphism U(f) → Aut(Ef) is an isomorphism. Here Ef represents

the family in hNCB (Λ) induced by f .

Proof. We will prove the assertion by induction on d′ ≤ d such that Λ is d′-

nilpotent. For d′ = 0, i.e., when Λ is commutative, we have U(f) = Λ∗ and the

assertion follows from Lemma 7.1.4.

Next, we have to see that both groups fit into the same exact sequences, when

Λ′ is a central extension of Λ by I. Namely, if f ′ ∶ A→ Λ′ is a homomorphism lifting

f , then by Lemma 7.1.8, we have a morphism of exact sequences
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1 + I U(f ′) U(f) Der(Aab, I)

1 + I Aut(Ef ′) Aut(Ef) H1(End(Eab) ⊗ p∗1I)

id

∆f

−KS

δ0

(7.9)

Note that the map KS is an isomorphism. Since the map U(f) → Aut(Ef) is

an isomorphism by the induction assumption, we deduce that U(f ′) → Aut(Ef ′) is

also an isomorphism.

Proof of Theorem 7.1.7. By Proposition 7.1.3, we know that the assertion is true

for d = 0. Now, assuming that the functor hNCB ∣aNd−1
is representable, we will

apply Proposition 6.2.2 to prove that hNCB ∣aNd
is representable. It suffices to check

conditions (i) and (ii) of this Proposition. To prove condition (i) assume that

Λ′ → Λ and Λ′′ → Λ and nilpotent extensions with Λ,Λ′′ ∈ Com. To see that the

map

h(Λ′ ×Λ Λ′′) → h(Λ′) ×h(Λ) h(Λ′′)

is a bijection, we construct (as in [11, Lem. (5.4.4)]) the inverse map as follows.

Starting with families EΛ′ and EΛ′′ over Λ′ and Λ′′, and choosing an arbitrary

isomorphism of the induced families over Λ, we define the family over Λ′ ×Λ Λ′′ as

the fibered product EΛ′×EΛEΛ′′ . One has to check that the result does not depend on

a choice of isomorphism of families over Λ (this may fail in general, but works for

commutative Λ′′). Note that different choices differ by an automorphism of EΛ, so it

is enough to see that any such automorphism can be lifted to an automorphism of

EΛ′′ . But this follows immediately from Lemma 7.1.4.

Next, let us check condition (ii). Given a central extension (6.3) with Λ′ ∈ Nd,

Λ ∈ Nd−1, and a family (fab,EΛ, φ) in hNCB (Λ), then choosing a lifting EΛ′ to a
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family over Λ′, from the corresponding exact sequence of sheaves of groups (7.5) we

get a connecting map

δ0 ∶ Aut(EΛ) →H1(Xab ×Z,End(EΛab) ⊗ p∗1I).

Furthermore, by Lemma 7.1.8, δ0 is actually a group homomorphism (and the

source of this map acts trivially on the target). Thus, from the formalism of

nonabelian cohomology applied to the abelian extension of sheaves of groups

(7.3) we get that different liftings of EΛ to a family over Λ′ form a principal

homogeneous space over coker (δ0) (see Sec.2.3). Note that by Lemma (7.1.9), we

have an isomorphism U(f) ≃ Aut(EΛ), where f ∶ A → Λ is the homomorphism

giving EΛ. Thus, by Lemma 7.1.8, we can identify coker (δ0) with coker (∆f).

Thus, to prove condition (ii), it remains to check that the two actions of Der(A, I)

on the set of liftings of EΛ are the same (the one coming from the formalism of

non-abelian cohomology, and the other one given by the map (6.8)).

To this end we use the computation of the Kodaira-Spencer map (7.7) using

local trivializations. Namely, we choose trivializations of the universal bundle

E over an open covering of Spec (A) × Z, and denote by gij the corresponding

transition functions, so that f(gij) are the transition functions for EΛ. Then, in

the notation of Lemma 7.1.8, a derivation v ∈ Der(A, I) = Der(Aab, I) gives rise to

the Cech 1-cocycle

ϕiv(gij)f(gij)−1ϕ−1
i

on Spec (Λab)×Z with values in End(Eab)⊗p∗1I. The corresponding f(gij)-twisted 1-

cocycle with values in Mr(O)⊗p∗1I is (v(gij)f(gij)−1). Now by definition, the action

of v on the set of liftings of f(gij) to a 1-cocycle with values in GLr(OSpec (Λ′)×Z)
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sends (g̃ij) to

((1 + v(gij)f(gij)−1) ⋅ g̃ij = (g̃ij + v(gij)). (7.10)

On the other hand, from v we get a homomorphism fab + v ∶ A → Λab ⊕ I, and

hence, the 1-cocycle (fab+v)(gij) with values in GLr(OSpec (Λab⊕I)×Z) lifting fab(gij).

Hence, a lifting g̃ij of f(gij) together with v defines a 1-cocycle

(g̃ij, (fab + v)(gij))

with values in GLr(OSpec (Λ′×
Λab(Λab⊕I))×Z). It remains to observe that under the

isomorphism (6.6) it corresponds to the 1-cocycle

(g̃ij, g̃ij + v(gij))

with values in GLr(OSpec (Λ′×ΛΛ′)×Z), which has (7.10) as the same second

component.

7.2 Excellent Families of Quiver Representations

Let Q be a finite quiver with the set of vertices Q0 and the set of arrows Q1.

We denote by h, t ∶ Q1 → Q0 the maps associating with an arrow its head and tail.

As in [23], we can consider representations of Q over an NC-scheme X.

Definition 7.2.1. A representation of Q over an NC-scheme X is a collection of

vector bundles (Vv)v∈Q0 over X, and a collection of morphisms ea ∶ Vt(a) → Vh(a), for

each a ∈ Q1.

86



In order to impose conditions on a family of quiver representation analogous

to Kapranov’s functor for vector bundles, we first need the analog of the Kodaira-

Spencer map.

7.2.1 Kodaira-Spencer map for quiver representations

With a collection V = (Vv)v∈Q0 of vector bundles over X we associate a triple

of sheaves of groups on the underlying topological space of X,

G(V) ∶= ∏
v

Aut(Vv), E0(V) ∶= ∏
v

End(Vv), E1(V) ∶= ∏
a

Hom(Vt(a),Vh(a)).

Note that there is a natural action of G(V) on E1(V) given by

(gv) ⋅ (φa) = (gh(a)φag−1
t(a)).

In the case of trivial bundles Vv = Onv , for a dimension vector n●, we denote these

sheaves as G(n●), E0(n●) and E1(n●). When we want to stress the dependence on

the NC-scheme X we write G(n●,X), etc.

A structure of a representation of Q on V is given by a global section e = (ea)

of E1(V). For such a structure e we can build a 2-term complex

E●(V , e) ∶ E0(V)
df→ E1(V),

where the differential is given by de(φv) = φh(a)ea − eaφt(a). Note that H0E●(V , e) is

precisely the sheaf of endomorphisms of (V , e) as a representation of Q.

Let (V , e) be a representation of Q over X. Over some open affine covering

U = (Ui) of X we can choose a trivialization ϕi = (ϕv,i) ∶ ⊕vOnv

Ui
→ ⊕v Vv ∣Ui

. Then
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over each Ui we have morphisms

ea,i ∶= ϕ−1
h(a),ieaϕt(a),i ∈Mnt(a)×nh(a)(O(Ui)) = E1(n●)(Ui),

and over intersections Ui ∩Uj we have transition functions

gij = (gv,ij) = ϕ−1
i ϕj ∈ ∏

v

GLnv(O(Ui ∩Uj)) = G(n●)(Ui ∩Uj).

One immediately checks that (gij, ea,i) defines a Cech 1-cocycle with values

in the pair G(n●) ↷ E1(n●) (see Sec. 2.4). Furthermore, a different choice of

trivializations (ϕi) leads to a cohomologous cocycle, so we have a well defined

element of H1(X,G(n●) ↷ E1(n●)). One can easily check that in this way we get

a bijection between the latter nonabelian hypercohomology group and the set of

isomorphism classes of representations (V , e) of Q, such that the underlying vector

bundle has dimension vector n●.

For a central extension (6.3) we have an abelian extension of sheaves of

groups

1→ E0(n●,OXab
) ⊗ I → G(n●,OX′) → G(n●,OX) → 1 (7.11)

where X = Spec (Λ), X ′ = Spec (Λ′), I ⊂ OX′ is the ideal sheaf associated with I,

and an exact sequence of abelian groups

0→ E1(n●) ⊗ I → E1(n●,X ′) → E1(n●,X) → 0,

compatible with the actions of the groups from (7.11). From Sec. 2.4 we get that

the obstacle to lifting a representation (V , e) of Q over Spec (Λ) to a representation

of Q over Spec (Λ′) is an element of the hypercohomology H2(Xab,E●(V , e) ⊗ I).
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But the latter group H2 fits into the exact sequence

. . .→H1(Xab,E1(V) ⊗ I) → H2 →H2(Xab,E0(V) ⊗ I) → . . .

Since Xab is an affine scheme, we deduce that our H2 vanishes. Thus, the functor of

families of Q-representations on N is formally smooth.

Definition 7.2.2. With a representation (V , e) of Q over a commutative scheme B

we associate the KS-map, which is a morphism of coherent sheaves on B,

KS ∶ TB →H1E●(V , e), (7.12)

defined as follows. Locally we can choose trivializations ϕ ∶ ⊕vOnv → ⊕v Vv and set

for a local derivation v of OB,

KS(v) ∶= ϕv(ϕ−1eaϕ)ϕ−1 mod im(de) ∈ E1(V , f))/im(de).

It is easy to check that a change of a local trivialization leads to an addition of a

term in im(de), so the map KS is well defined.

Remark 7.2.3. This definition is motivated by the fact that in the case when B =

Spec (k) is the point and (V, e) is a Q-representation over k, the space H1E●(V, e) is

isomorphic to Ext1((V, e), (V, e)) (see [3, Cor. 1.4.2]), which is the tangent space to

deformations of (V, e) as a Q-representation.

7.2.2 Excellent families of quiver representations

Now let us fix a family (Vab, eab) of representations of Q over a smooth

commutative base scheme B. We have the following analog of Definition 7.1.1.
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Definition 7.2.4. We say that (Vab, eab) is an excellent family of representations of

Q if

(a) the natural map OB → End(Vab, eab) = H0E●(Vab, eab) is an isomorphism;

(b) the Kodaira-Spencer map KS ∶ TB →H1E●(Vab, eab) is an isomorphism.

For example, these conditions are satisfied for the moduli spaces of stable

quiver representations corresponding to an indivisible dimension vector (see [14,

5.3]).

Let us point out some consequences of the assumptions (a) and (b). Given

f ∶ S → B (where S is a commutative scheme), for (V, e) = (f∗Vab, f∗e) we have

End(V, e) = H0E●(V, e) = H0Lf∗E●(Vab, eab) ≃ f∗H0E●(Vab, eab) ≃ f∗OB ≃ OS,

where we used the fact that H1E●(Vab, eab) ≃ TB is locally free. Also, if S is affine,

then for any coherent sheaf F on S we have

H1(E●(V, e) ⊗ F) ≃ H1E●(V, e) ⊗ F ≃ f∗TB ⊗F .

Now we consider the following analog of Definition 7.1.2 for quiver

representations.

7.2.3 Functor of NC-families extending an excellent family of representations

Definition 7.2.5. For an excellent family (Vab, eab) of representations of Q over

a smooth (commutative) base B, we define the functor hNCB ∶ N → Sets by

letting hNCB to be the set of isomorphism classes of the following data (f, VΛ, φ).

Let X = Spec (Λ) and let X0
ab be the reduced scheme of the abelianization of X.
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Then f ∶ X0
ab → B is a morphism, (VΛ, eΛ) is a representation of Q over X, and

φ ∶ (EΛ, eΛ)∣X0
ab
≃ (f∗Vab, f∗eab) is an isomorphism of representations of Q.

We have the following analog of Theorem 7.1.7 (and Propositions 7.1.5).

Theorem 7.2.6. The functor hNCB is formally smooth and factors through the

category aN . If the base B is affine then for every d ≥ 0 the functor hNCB ∣aNd
is

representable by a d-smooth thickening of B.

Proof. The proof follows the same steps as in the case of families of vector bundles.

We already shown before that hNCB is formally smooth. The fact that hNCB factors

through aN is proved similarly to Proposition 7.1.5.

The key technical computation is the analog of Lemma 7.1.8, which in our

case claims commutativity of the diagram

U(f) Der(Aab, I)

Aut(VΛ, eΛ) H0(Xab,H1E●(Vab, eab) ⊗ I)

∆f

−KS

δ0

(7.13)

associated with a central extension (6.3) and a representation (VΛ′ , eΛ′) of Q over

X ′ = Spec (Λ′). Here we assume that hNCB ∣aNd−1
is represented by A ∈ Nd−1, and

that Λ ∈ aNd−1 and (VΛ, eΛ) is a Q-representation over X = Spec (Λ) corresponding

to a homomorphism f ∶ A → Λ. Also, (VΛ′ , eΛ′) is a Q-representation over X ′,

extending (VΛ, eΛ). The right vertical arrow in (7.13) is induced by the KS-map

(7.12), and the bottom arrow is the connecting map defined in Sec. 2.4. More

precisely, we use here the identification for any quiver representation (V , e) over

X of the automorphism group Aut(V , e) with the group H0(X,G(n●), c), where

c ∈ H1(X,G(n●) ↷ E1(n●)) is the class of (V , e). Also, we use the natural
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isomorphism

H1(X,E●(Vab, eab) ⊗ I)
∼→H0(X,H1E●(Vab, eab) ⊗ I) (7.14)

induced by the projection E1(Vab) → H1E●(Vab, eab).

We assume that there is an open covering (Ui) of B and trivializations ϕabi

of Vab∣Ui
and the compatible trivializations ψi of VΛ and VΛ′ over the covering Ũi =

q−1Ui. Let (gij, ei) be the Cech 1-cocycle corresponding to the universal family over

Spec (A), so that the corresponding cocycle for (VΛ, eΛ) is (f(gij), f(ei)).

By definition of δ0 (see Sec. 2.4), starting from an automorphism α of

Aut(VΛ, eΛ) we can lift it over Ũi to an automorphism α′i of (VΛ′ , eΛ′) and then

define δ0(α) is the class of the Cech 1-cocycle with values in E●(Vab, eab) ⊗ I, given

by

a0,ij = (α′i)−1α′j − id, a1,i = (α′i)−1ei,Λ′ − ei,Λ′ .

Calculating as in the proof of Lemma 7.1.8, and recalling that the action of G0(n●)

on E1(n●) is given by conjugation, we get

a0,ij = ψi([ũ−1, f̃(gij)] − id)ψ−1
i = ψi∆f(u−1)(f(gij))f(gij)−1ψ−1

i ,

a1,i = ψi(ũ−1ei,Λ′ũ − eΛ′)ψ−1
i = ψi∆f(u−1)(ei)ψ−1

i ,

where we extend the derivation ∆f ∶ A → I to matrices with entries in A. Now

we note that the image of the class of this Cech 1-cocycle under the isomorphism

(7.14) is simply the global section of H1E●(Vab, eab) ⊗ I given by

(a1,i mod im(de)) =KS(∆f(u−1)) = −KS(∆f(u)).
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