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CHAPTER I

INTRODUCTION

1.1. Distributions and Hardy Spaces

In this section we begin by introducing the Schwartz class and the space of

tempered distributions. These will be needed to define the Hardy spaces Hp(Rn),

whose elements are tempered distributions, as was done by Fefferman and Stein

in [FS72]. We will also introduce the equivalent atomic definition for Hp with

p ≤ 1, which came later. This later characterization gives a dense subspace of

Hp consisting of functions, which can be easier to work with.

The Schwartz class, S = S(Rn), is the space of functions in C∞(Rn) such that

each of the seminorms

‖f‖α,β = sup
x∈Rn
|xα∂βf(x)|

is finite for any multi-indices α, β in Nn
0 . The dual space of S is the space of

tempered distributions, which is denoted S ′. It is well known that the Fourier

transform, which we will define by

Ff(ξ) = f̂ =

∫
Rn
f(x)e−2πix·ξdx,

is a continuous bijection on the Schwartz class. It follows from this that the Fourier

transform extends by duality to a continuous bijection on S ′ given by f̂(g) = f(ĝ)

for f ∈ S ′ and g ∈ S. In particular, this extension coincides with the usual

definition of the Fourier transform for integrable functions, and more generally, for

Lp functions with 1 ≤ p ≤ 2. It is also possible to define convolution between
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a tempered distribution and a Schwartz function. If f ∈ S ′ and ϕ ∈ S, then

f ∗ ϕ defines an element of S ′ by ψ 7→ f(ϕ ∗ ψ̃) where ψ̃ is the reflection of ψ

through the origin. This distribution coincides with the function x 7→ f(τxϕ̃) where

τxϕ(y) = ϕ(y − x). There is a close relationship between bounded linear operators

from Lp to Lq that commute with translations and certain tempered distributions.

In particular, if p, q ∈ [1,∞), then we have the following well known result which

can be obtained from Theorems 1.1 and 1.2 of [Hör60].

Theorem 1. Suppose T : Lp(Rn) → Lq(Rn) is a bounded linear operator, where

p, q ∈ [1,∞), that commutes with translations. Then there exists a unique tempered

distribution f such that the restriction of T to S coincides with the map ϕ 7→ f ∗ ϕ.

Conversely, if f is a tempered distribution and C > 0 is a constant such that

‖f ∗ ϕ‖q ≤ C ‖ϕ‖p holds for all ϕ in the Schwartz class, then T (ϕ) = f ∗ ϕ

extends to a bounded linear operator from Lp to Lq that commutes with translations.

Moreover, in the case where q < p, there are no non-trivial bounded linear operators

that commute with translations.

In the case where p = q = 2 it can be shown that the tempered distribution

f must satisfy the condition f̂ ∈ L∞. Additionally, by a duality argument using the

Marcinkiewicz interpolation theorem, it can be shown that if convolution with f

extends to a bounded linear operator on Lp for some p satisfying 1 ≤ p < ∞, then

it must also be bounded on L2. In particular, a linear operator T which commutes

with translations can be bounded on an Lp space only if there exists a function

m ∈ L∞ such that T̂ f = mf̂ for every function f ∈ S.

We now move to the topic of Hardy spaces, beginning with their definition on

the upper half plane, and then stating the more modern definition of the real Hardy

spaces due to Fefferman and Stein in [FS72].
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Definition 2. Suppose F is a holomorphic function in the upper half plane R2
+.

We define the Hardy space Hp(R2
+) for p ∈ (0,∞), by saying F ∈ Hp(R2

+) if and

only if

‖F‖Hp = sup
t>0

(∫
R
|F (x+ it)|pdx

)1/p

<∞.

The use of holomorphic functions can be replaced by harmonic functions, as

shown in [BGS71], using a more general version of the following result.

Theorem 3. A harmonic function u on the upper half plane is the real part of an

element f ∈ Hp(R2
+) if and only if the non-tangential maximal function

u∗(x) = sup
|x−y|<t

|u(y, t)|

is in Lp(R). Furthermore, the Lp norm of u∗ is equivalent to the Hp(R2
+) norm of

f .

One generalization of Theorem 3 to higher dimensions was accomplished

by Stein and Weiss using generalized Cauchy-Riemann equations which still

requires reference to harmonic functions. A different generalization, which has

several equivalent definitions and which removes the use of harmonicity, is due to

Fefferman and Stein [FS72].

Definition 4. Let f be a tempered distribution on Rn and let ϕ be a Schwartz

function with non-zero integral. Let ϕt(x) = t−nϕ(x/t) and define the nontangential

maximal function of f with respect to ϕ by

Mϕ(f)(x) = sup
|x−y|<t

|(f ∗ ϕt)(y)|

For 0 < p <∞ we say f ∈ Hp(Rn) if ‖f‖Hp = ‖Mϕf‖p is finite.
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It is important to note that it does not matter which Schwartz function ϕ is

chosen as long as it has non-zero integral. If ϕ, ψ are two such functions, then there

exists a constant c > 0 such that

(1/c) ‖Mϕf‖p ≤ ‖Mψf‖p ≤ c ‖Mϕf‖p

for all tempered distributions f.

An equivalent definition can also be obtained using the Poisson kernel to

define a maximal function in a very similar manner. If we set

P (x) =
cn

(1 + |x|2)(n+1)/2
and cn =

Γ(n+1
2

)

π(n+1)/2
,

then Pt(x) = t−nP (x/t) defines the Poisson kernel. The definition of maximal

function will make use of the convolution f ∗ Pt. However, this expression does not

make sense for arbitrary tempered distributions f. It will be defined if we restrict

ourselves to the case where f is a bounded distribution. That is, f ∗ ϕ ∈ L∞ for

every ϕ ∈ S. For such distributions it can be shown that u(x, t) = f ∗ Pt(x) is a

well-defined harmonic function in the upper half space Rn × R+. This leads to the

following theorem, which is also in [FS72].

Theorem 5. Let f be a bounded distribution. Then f is in Hp(Rn) if and only if

the non-tangential maximal function

u∗(x) = sup
|x−y|<t

|u(y, t)|
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is in Lp. Moreover, there exists a constant c > 0 such that

(1/c) ‖f‖Hp ≤ ‖u∗‖p ≤ c ‖f‖Hp .

In the case where n = 1, this theorem describes the same harmonic

functions in the upper half space as those appearing in the result of Burkholder,

Gundy, and Silverstein [BGS71]. Thus the Hardy spaces defined in Definition

4 extend Definition 2 from one dimension to n dimensions without appealing to

holomorphicity or harmonicity. While not immediately obvious, the spaces Hp(Rn)

are isomorphic to Lp(Rn) for 1 < p < ∞. As such we will focus on values of p

between zero and one. We will also mention one more method of defining the space

Hp(Rn) for 0 < p ≤ 1. We begin by giving the definition of an atom.

Definition 6. Let p ∈ (0, 1]. Let |B| be the Lebesgue measure of the set B. An

Hp(Rn) atom is a function a such that

The support of a is contained in a ball B, (1.1)

|a| ≤ |B|−1/p almost everywhere, (1.2)∫
xβa(x)dx = 0 for all β such that |β| ≤ n(p−1 − 1) (1.3)

The following theorem gives the atomic decomposition of Hp for 0 < p ≤ 1,

originally due to Coifman [Coi74] in the one dimensional case.

Theorem 7. Let p ∈ (0, 1] and let f ∈ Hp(Rn). Then there exists a sequence of Hp

atoms {an} and a sequence of complex numbers {λn} such that

k∑
n=1

λnan → f as k →∞
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in Hp. Such a pair of sequences is called an atomic decomposition of f . Also, there

exists a constant c > 0 depending only on p such that

∑
n

|λn|p ≤ c ‖f‖pHp .

Conversely, there exists a constant c > 0 such that if {λn} is a sequence of complex

numbers such that
∑
|λn|p is finite and if {an} is sequence of Hp atoms, then there

exists an element of f ∈ Hp such that

k∑
n=1

λnan → f as k →∞

and

‖f‖pHp ≤ c
∑
n

|λn|p.

Moreover, defining ‖f‖Hatom to be the infimum of

(∑
n

|λn|p
)1/p

over all atomic decompositions of f gives a norm equivalent to the one in Definition

4.

1.2. Anisotropy on Rn

In this section we introduce both the continuous and discrete concepts of

anisotropy relevant in defining the anisotropic Hardy spaces in Section 1.3. We

begin with the continuous setting. In [SW78] Stein and Wainger considered dilation
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structures (δt)t>0 on Rn of the form

δtx = elog(t)Px

where P is a real matrix whose eigenvalues have positive real part. Some

straightforward properties of dilations of this form are as follows:

δtx→ 0 as t→ 0, (1.4)

|δtx| → ∞ as t→∞ for x 6= 0, (1.5)

δ−1
t = δt−1 , (1.6)

δts = δtδs. (1.7)

It follows from the assumption on P that there exist numbers c1, . . . , c4, α+, α− > 0

such that if |x| = 1 then

c1t
α− < |δtx| < c2t

α+ if t ≥ 1, (1.8)

c3t
α+ < |δtx| < c4t

α− if t < 1 (1.9)

It is important to note that |δtx| is not necessarily strictly increasing. As an

example, take

P =

 1 10

0 1

 .
Then we have

δt =

 t 10t log(t)

0 t
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so, starting with x = (0, 1), we have

|δtx| = |(10t log(t), t)| = t

√
10 log2(t) + 1,

which is not monotone. In fact, the trajectory defined by (10t log(t), t) intersects

the unit circle three times. Stein and Wainger construct a quasinorm ρ which is

adapted to the dilation structure in the sense that ρ(δtx) = tρ(x). To that end they

establish the following result.

Theorem 8. Let δt = elog(t)P where each eigenvalue of P has positive real part.

Then the matrix

B =

∫ ∞
0

e−tP
∗
e−tPdt

has the property that

t 7→ 〈δtx〉 = 〈Bδtx, δtx〉1/2

is increasing as a function of t.

In particular, the function ρ can be defined by setting ρ(x) to be the

reciprocal of the unique t > 0 such that 〈δtx〉 = 1 for x 6= 0 and letting ρ(0) = 0.

The construction also means that the set of points ω such that ρ(ω) = 1 defines an

ellipsoid

∆ = {ω ∈ Rn : ρ(ω) = 1} = {ω : 〈Bω, ω〉 = 1} .
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With this definition Stein and Wainger show there are constants Cq ≥ 1 and

d1, . . . , d4 > 0 such that

ρ(δtx) = tρ(x), (1.10)

ρ(x+ y) ≤ Cq(ρ(x) + ρ(y)), (1.11)

ρ is continuous on Rn and smooth on Rn \ {0} , (1.12)

d1 |x|1/α+ < ρ(x) < d2 |x|1/α− if ρ(x) ≥ 1, (1.13)

d3 |x|1/α− < ρ(x) < d4 |x|1/α+ if ρ(x) < 1, (1.14)

dx = ρtr(P )−1dωdρ where tr(P ) is the trace of P, ω ∈ ∆ and ρ ∈ (0,∞)

satisfy x = δρω, and dω is a smooth measure on ∆.

(1.15)

In Section 2 of [Bow03] Bownik established similar results for discrete dilation

structures arising from dilation matrices before using them to define anisotropic

Hardy spaces, which will be discussed in the next section. An expansive dilation

matrix is a matrix A whose eigenvalues all have norm greater than one. For such a

matrix, one can define a set of dilations by taking integer powers of A. Then there

exists an ellipsoid E and r > 1 such that

E ⊂ rE ⊂ AE .

We may also assume the Lebesgue measure of E is one by rescaling. It follows

that the measure of Bk = AkE is bk = |detA|k. As with the continuous case,

there is also a quasinorm ρ such that ρ(Ax) = bρ(x). In fact, there are many

such quasinorms associated with the matrix A, though they can be shown to be

equivalent. Additionally, they satisfy conditions similar to (1.13), (1.14), (1.4), and

9



(1.5). The step quasinorm is given by

ρ(x) =

 bj if x ∈ Bj+1 \Bj,

0 if x = 0.

1.3. Anisotropic Hardy Spaces

Now that the concept of anisotropy has been defined in both the continuous

and discrete contexts we move to defining the anisotropic Hardy spaces. We begin

by noting the contribution of Calderón and Torchinsky in [CT75] and [CT77]

leading to the parabolic Hardy spaces. The dilation structures considered there

were more restricted than those in [Bow03], which lead to the anisotropic Hardy

spaces. We also discuss the connection between the Hardy spaces obtained by

looking at the discrete and continuous cases as established in [BW].

In [CT75] and [CT77] Calderón and Torchinsky consider continuous dilations

structures of the form δt = elog(t)P such that

tα |x| ≤ |δtx| ≤ tβ |x| (1.16)

for some 1 ≤ α ≤ β and for any t ≥ 1. Consequently, the quasinorm ρ they

construct satisfies

ρ(x) ≤ 1 if and only if |x| ≤ 1,

which is the equivalent of forcing the ellipsoids where ρ(x) = 1 in the cases

described in Section 1.2 to be the unit sphere. In [CT75] Calderón and Torchinsky

define a maximal function for each a > 0 and each complex valued function F on
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Rn × R+ by

Ma(x, F ) = sup
ρ(x−y)≤at

|F (y, t)|.

Definition 9. Let P be a matrix such that δt = elog(t)P satisfies (1.16). Let ϕ be a

Schwartz function with nonzero integral, and let a > 0. A tempered distribution f is

in the parabolic Hardy space Hp
P (Rn) with 0 < p <∞ if Ma(x, F ) is in Lp where

F (x, t) = (f ∗ ϕt)(x) and ϕt(x) = t− tr(P )ϕ(δ−1
t x).

We set ‖f‖Hp
P

= ‖Ma(x, F )‖p . This definition is independent of a and ϕ in the

sense that different choices yield equivalent norms.

For values of p > 1 we have, as with the isotropic Hardy spaces, that Hp
P is,

up to an equivalent norm, Lp. Note also that Definition 9 extends immediately to

the dilations discussed in Section 1.2.

We now turn to the anisotropic Hardy spaces found in [Bow03]. As in Section

1.2, we will use A to represent a fixed dilation matrix such that all its eigenvalues

have norm greater than one, and denote the determinant of A by b. The function

ρ will be the associated step quasinorm. We consider a modified version of the

Schwartz class, denoted by SA, which turns out to be identical to the usual one. In

particular, a C∞ function ϕ is in SA if for every multi-index α and positive integer

m we have

‖ϕ‖α,m = sup
x∈Rn

ρ(x)m|∂αϕ(x)| <∞.

If ϕ is in SA and k ∈ Z, then we define

ϕk(x) = b−kϕ(A−kx).
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For N ∈ N we set

SN =
{
ϕ ∈ SA : ‖ϕ‖α,m ≤ 1 for |α| ≤ N,m ≤ N

}
.

With this, we can define several maximal functions.

Definition 10. Let ϕ ∈ SA and let f ∈ S ′. The nontangential maximal function of

f is

Mϕf(x) = sup {|f ∗ ϕk(y)| : x− y ∈ Bk, k ∈ Z} .

The radial maximal function of f is

M0
ϕf(x) = sup

k∈Z
|f ∗ ϕk(x)|.

If N ∈ N, then the nontangential grand maximal function of f is

MNf(x) = sup
ϕ∈SN

Mϕf(x).

The radial grand maximal function of f is

M0
Nf(x) = sup

ϕ∈SN
M0

ϕf(x).

In Definition 3.3 of [Bow03] Bownik gives the following definition of

anisotropic Hardy spaces, where λ− satisfies

1 < λ− < min {|λ| : λ is an eigenvalue of A} .

12



Definition 11. For 0 < p <∞ set

Np =

 b(1/p− 1) log(b)/ log(λ−) + 2c 0 < p ≤ 1,

2 p > 1.

For N ≥ Np define the anisotropic Hardy space by

Hp = Hp
A = {f ∈ S ′ : MNf ∈ Lp}

with ‖f‖Hp = ‖MNf‖Lp .

It follows from Theorems 4.2 and 6.4 in [Bow03] that using different values of

N gives spaces with equivalent norms so that we may justify the absence of N in

the notation Hp. In fact, in Theorem 7.1 of [Bow03] Bownik shows that any of the

four maximal functions above can be used to define the Hardy spaces in a similar

fashion. As with the isotropic case, for p > 1 the Hardy space Hp is just the space

Lp. As with the isotropic Hardy spaces, there is an atomic decomposition giving an

equivalent definition for the anisotropic Hardy spaces.

Definition 12. Let p ∈ (0, 1] and let q ∈ [1,∞], and let s be a positive

integer. Then (p, q, s) is admissible with respect to A if p < q and s ≥

b(1/p− 1) log(b)/ log(λ−)c. A (p, q, s) atom is a function a such that:

supp a ⊂ Bj + x0 for some j ∈ Z, x0 ∈ Rn,

‖a‖q ≤ |Bj|1/q−1/p,∫
Rn
a(x)xαdx = 0 for |α| ≤ s.
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For an admissible triplet (p, q, s) the atomic anisotropic Hardy space Hp
q,s is

the space of all f ∈ S ′ such that there exist {λi} ∈ `p(N) and atoms {ai} such that

f =
∑∞

i=1 λiai in S ′.

We now turn to the dual spaces of the anisotropic Hardy spaces. Define B =

{x+Bk : x ∈ Rn, k ∈ Z}. Let l ≥ 0, and q ∈ [1,∞], and s ∈ N0. Then we have the

following definition, where Ps is the space of all n variable polynomials of degree at

most s.

Definition 13. The Campanto space C l
q,s is the space of all locally Lq functions

such that, for q <∞ and q =∞ respectively,

‖g‖Clq,s = sup
B∈B

inf
P∈Ps

|B|−l
(

1

|B|

∫
B

|g(x)− P (x)|qdx
)1/q

<∞

‖g‖Clq,s = sup
B∈B

inf
P∈Ps

|B|−l esssupx∈B |g(x)− P (x)| <∞.

The space C l
q,s/Ps is a Banach space. Moreover, as shown in Theorem 8.3

of [Bow03], C
1/p−1
q,s /Ps is the dual space of Hp as long as (p, q, s) is an admissible

triplet. In particular, the space C0
1,0 is the space BMO of functions with bounded

mean oscillation, well known to be the dual space of H1. In analogy with this, we

will denote the dual space of H1
A by BMOA or simply BMO.

We now turn to the issue of classifying the anisotropic Hardy spaces. That

is, we wish to consider which dilation matrices give the same Hardy spaces. For

example, it is reasonable to expect A = 2I and B = 3I will give the same

Hardy spaces. We begin by defining the concept of equivalence up to a linear

transformation.

Definition 14. For two dilation matrices A1 and A2 we say that Hp
A1

and Hp
A2

are equivalent up to a linear transformation if there exists an invertible matrix P

14



such that the map DP defined by 〈DPf, ϕ〉 = | detP |1/p−1〈f, ϕ(P−1·)〉, defines

an isomorphism between Hp
A1

and Hp
A2
. Two quasinorms ρ1 and ρ2 are said to be

equivalent up to a linear transformation if there exists an invertible P and constant

c > 0 such that

(1/c)ρ1(x) ≤ ρ2(Px) ≤ cρ1(x).

With this definition we have the following, which is Theorem 10.10 of

[Bow03].

Theorem 15. Let A1 and A2 be two dilation matrices. Then the following are

equivalent if we define ε = log | detA1|/ log | detA2|.

1. The quasinorms associated to A1 and A2 are equivalent up to a linear

transformation.

2. For all r > 1 and m ∈ N we have

∑
|λ|=rε

dim ker(A1 − λI)m =
∑
|λ|=r

dim ker(A2 − λI)m.

3. Hp
A1

and Hp
A2

are equivalent up to a linear transformation for all p ∈ (0, 1].

4. Hp
A1

and Hp
A2

are equivalent up to a linear transformation for some p ∈ (0, 1].

Thus, we can classify anisotropic Hardy spaces up to linear transformation by

classifying dilation matrices according to the second condition above.

The discrete dilation structures discussed above are more general than

the continuous ones. One can simply restrict a continuous family to, say,{
t : t = 2k, k ∈ Z

}
and obtain a discrete dilation structure. Consequently, one may

ask how much more is gained by studying this more general structure. We have the

following two results from [BW].
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Theorem 16. Let A be a dilation matrix. Then there exists a unique one-

parameter group of dilations (δt)t>0 given by δt = elog(t)P such that

1. Every eigenvalue of the generator P is positive and the trace of P is 1.

2. A is equivalent to δt for all t > 1.

Theorem 17. Let A be a dilation matrix and let P be the generator of the dilation

group defined in the previous theorem. Then the Hardy spaces Hp
A, as defined in

Definition 11, and Hp
P , as defined in Definition 9, coincide.

As a consequence of Theorem 17 we see that the continuous and discrete

dilation structures give the same collection of Hardy spaces.

1.4. Multipliers and Calderón-Zygmund Operators

In this section we begin by defining multiplier operators before describing

certain types of Calderón-Zygmund singular integral operators. We then discuss the

boundedness of the Calderón-Zygmund operators on Lp and Hp spaces. Finally, we

will see a connection between certain homogeneous multipliers and singular integral

operators which will be extended to a more general setting in Chapter 2.

Definition 18. Let m ∈ L∞(Rn). Then the operator Tm : L2(Rn)→ L2(Rn) defined

by

T̂mf(ξ) = m(ξ)f̂(ξ)

is called a multiplier operator.

It follows immediately from the Plancherel Theorem that this operator is

bounded on L2. Moreover, it commutes with translations and so by Theorem 1

in Section 1.1 we know that there exists a unique tempered distribution K such
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that the restriction of Tm to the Schwartz class coincides with ϕ 7→ K ∗ ϕ.

Moreover, the function m is the Fourier transform of the distribution K. Perhaps

the simplest non-trivial example of this is the Hilbert Transform whose multiplier is

m(ξ) = −isgn(ξ). The corresponding distribution is given by P.V
1

πx
, which is the

distribution defined by

P.V
1

πx
(ϕ) = lim

ε→0

∫
|x|>ε

ϕ(x)

πx
dx.

It can be shown that this operator is bounded on every Lp spaces for 1 < p <

∞ and that it is weakly bounded on L1. It turns out that there are fairly simple

conditions on the distribution K so that these boundedness results still hold. The

following result, which is essentially due to Hörmander [Hör60], can be found in the

form below in Theorem 5.1 of [Duo01] along with similar results.

Theorem 19. Suppose K is a tempered distribution which coincides with a locally

integrable function on Rn \ {0} . Suppose also that there is a constant A > 0 such

that

K̂ ∈ L∞, (1.17)∫
|x|>2|y|

|K(x− y)−K(x)|dx ≤ A for all y ∈ Rn. (1.18)

Then convolution with K defines a bounded linear operator on Lp for 1 < p < ∞.

Moreover, it is weakly bounded on L1.

While the operators above fail to be bounded on L1, they are bounded from

H1 to L1, and in fact from H1 to itself. The following result can be found in [Ste93]

as Theorem 4 of Section 3.3.
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Theorem 20. Let γ > 0 and suppose K satisfies the conditions of the previous

theorem with the condition (1.18) replaced with the stricter conditions that K ∈

Cbγc(Rn \ {0}) and

|∂βK(x)| ≤ A|x|−n−β for |β| ≤ bγc,

and

|∂βK(x− y)− ∂βK(x)| ≤ A
|y|γ−bγc

|x|n+γ
, for |β| = bγc, |x| ≥ 2|y|.

Then, if 0 < p ≤ 1 and γ > n(1/p − 1), the operator defined by convolution with K

is bounded on Hp(Rn).

It is worth noting that the expression n(1/p − 1) also appears in the moment

condition in Definition 6 where Hp atoms are defined. Similar results for more

general Calderón-Zygmund operators on anisotropic Hardy spaces can be found

in Section 9 of [Bow03].

The following result, which is Theorem 2 of [FR67], establishes a relationship

between certain classes of homogeneous multipliers and singular kernels in the

continuous anisotropic setting where the generator matrix P is diagonal.

Theorem 21. Let P be the diagonal matrix diag(a1, . . . , an), where a1, . . . , an > 0.

Fix a non-negative function χ ∈ C∞0 (−∞,∞) that is equal to 1 in a neighborhood of

zero. Define K to be the set of functions K satisfying

K(δtx) = t−tr(P )K(x, )

K ∈ C∞(Rn \ {0}),∫
{ω:ρ(ω)=1}

K(ω)dω = 0.
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Let H be the set of all function H satisfying

H(δtξ) = H(ξ),

H ∈ C∞(Rn \ {0}),∫
Rn
H(ξ)χ̂ ◦ ρ(ξ)dξ = 0.

Then if K ∈ K there exists H ∈ H such that P̂.V.K = H, where for ϕ in the

Schwartz class

P.V.K(ϕ) = lim
ε→0

∫
ρ(x)>ε

K(x)ϕ(x)dx.

Conversely, if H ∈H then there exists K ∈ K such that P̂.V.K = H.

This result will be extended to remove the assumption that P is diagonal in

Chapter 2.

1.5. A Characterization of H1 by Multipliers

The Hilbert transform defined in Section 1.4 generalizes to Rn as the Riesz

transforms {Rj}0≤j≤n where R0 = I and for 1 ≤ j ≤ n and f ∈ L2 we have

R̂jf(ξ) = −i ξj
|ξ|
f̂(ξ). It is well known that the Riesz transforms characterize

H1(Rn) in the sense that there exists a constant c > 0 such that

(1/c) ‖f‖H1 ≤
n∑
i=0

‖Rjf‖L1 ≤ c ‖f‖H1 (1.19)

Fefferman [Ash76] made the following conjecture related to the above.

Conjecture 22. Let n ∈ N, let f ∈ L2(Rn), and let K1, . . . , Km be a collection

of singular integral kernels which are homogeneous of degree −n, smooth away from
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the origin, and which have integral zero over the unit sphere. If the kernels are

never simultaneously zero and Kjf ∈ L1 for every f ∈ L1 then f ∈ H1.

This conjecture was proven false by Garcia-Cuerva [Ash76] with singular

kernels K1(x, y) =
x2

1 − x2
2

|x|4
and K2(x, y) =

−2x1x2

|x|4
. Note that in polar coordinates

these are simply K1 = cos(2θ)/r2 and K2 = sin(2θ)/r2 while the Riesz transforms

can be expressed, up to a constant, as cos(θ)/r2 and sin(θ)/r2.

The correct version of the conjecture above, and its converse, are as follows.

Theorem 23. Let θ1, . . . θm ⊂ C∞(Rn \ {0}) be a family of functions which are

homogeneous of degree zero. Then

rank

 θ1(ξ) · · · θm(ξ)

θ1(−ξ) · · · θm(−ξ)

 = 2 for every ξ ∈ Sn−1

if and only if there exists a constant c > 0 such that

(1/c) ‖f‖H1 ≤
m∑
j=1

∥∥mθjf
∥∥
L1 ≤ c ‖f‖H1

The necessity of the rank condition was established by Janson [Jan77]

using a fairly short argument. The sufficiency of the rank condition was proved

by Uchiyama [Uch82] and he gives proofs of both directions in Theorem 25.2

of [Uch01]. An analogous question can be asked in the anisotropic setting. We

must change our concept of homogeneity to match the anisotropic dilation, but

as we shall see in Chapter 2, the rank condition is still sufficient in this setting. It

remains an open problem whether or not the condition is necessary.
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CHAPTER II

SUFFICIENCY OF THE RANK CONDITION

2.1. The Main Result

In this chapter we prove Theorem 24 which generalizes the forward direction

of Theorem 23 due to Uchiyama [Uch82] to the anisotropic setting. The proof

below follows the argument of Uchiyama given in [Uch01]. The general structure

of the proof there is modified here to fit the anisotropic case as necessary.

Throughout this chapter n is a positive integer and P is an n× n matrix with

tr(P ) = 1 and whose eigenvalues have positive real part. As defined in Section

1.2, δt = elog(t)P , ρ is the corresponding quasinorm satisfying (1.10 − 1.15), and

∆ = {ω : ρ(ω) = 1}. We will use δ∗t , ρ
∗,∆∗ to denote the corresponding objects

coming from P ∗. For simplicity, we will denote H1
P (Rn,Ck) by H1(Rn,Ck) and we

will use BMO(Rn,Ck), or simply BMO, to denote the dual of this space.

Our main result is Theorem 24 below, which is one direction of Theorem 25.2

in [Uch01].

Theorem 24. Let θ1, . . . , θm ∈ C∞(∆∗,C) be such that

rank

 θ1(ξ) · · · θm(ξ)

θ1(−ξ) · · · θm(−ξ)

 = 2 for every ξ ∈ ∆∗. (2.1)

Then

sup

 ‖f‖H1(Rn,C)∑m
j=1

∥∥∥mθj
f
∥∥∥

1

: f ∈ H1(Rn,C) \ {0}

 <∞
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and

BMO(Rn,C) =
m∑
j=1

m̃θjL
∞(Rn,C)

where m̂θjf(ξ) = θj(δ
∗−1
ρ∗(ξ)ξ)f̂(ξ) and m̃θj is defined by 〈m̃θjf1, f2〉 = 〈f1,mθj

f2〉

Theorem 24 follows from several results which appear in second and third

sections of this chapter. We will make use of the following definition.

Definition 25. Let S be a subspace of H1(Rn,Rk). Then

S⊥ =
{
g ∈ BMO(Rn,Rk) : 〈g, f〉 = 0 for all f ∈ S

}
In Section 2 we will establish the following lemmas, which are essentially

Theorem 21.2 and Corollary 21.5 in [Uch01], but adapted to the anisotropic setting.

Lemma 26. Let θ1, . . . , θm ∈ C∞(∆∗,C) and set

S =
{

(mθj
f)mj=1 : f ∈ H1(Rn,C)

}
⊂ H1(Rn,Cm) (2.2)

so that

S⊥ =

{
g = (gj) ∈ BMO(Rn,Cm) :

m∑
j=1

m̃θjgj = 0 ∈ BMO(Rn,C)

}
.
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Suppose
∑m

j=1 |θj(ξ)| 6= 0 for any ξ ∈ ∆∗. Then the following are equivalent:

sup

 ‖f‖H1(Rn,C)∑m
j=1

∥∥∥mθj
f
∥∥∥

1

: f ∈ H1(Rn,C) \ {0}

 <∞, (2.3)

sup

 inf
{∥∥∥~g − ~h∥∥∥

∞
: h ∈ S⊥

}
‖~g‖BMO

: ~g ∈ BMO(Rn,Cm) \ {0}

 <∞, (2.4)

BMO(Rn,C) =
m∑
j=1

m̃θjL
∞(Rn,C). (2.5)

Lemma 27. Let k be a positive integer and let S be a subspace of H1(Rn,Rk).

Then there exists a constant C > 0 such that

sup

 inf
{∥∥∥~g − ~h∥∥∥

∞
: ~h ∈ S⊥

}
‖~g‖BMO

: ~g ∈ BMO(Rn,Rk) \ {0}


≤ C sup

 inf
{∥∥∥~g − ~h∥∥∥

∞
: ~h ∈ S⊥

}
‖~g‖BMO

: ~g ∈ D(Rn,Rk) \ {0}

 .

(2.6)

In Section 3 we will show the following lemma, which is an anisotropic version

of Theorem 22.1 of [Uch01]. and is proved using an argument adjusted to work in

that setting.

Lemma 28. Let θ1, . . . , θm ∈ C∞(∆∗,C) be such that (2.1) holds, let α− be as in

(1.8), and let S be as in (2.2). Then there exists a constant C > 0 depending on

θ1, . . . , θm such that if ~g ∈ BMO(Rn,Cm) satisfies supp~g ⊂ B(0, 1), then there

exists ~h ∈ S⊥ satisfying

|~g(x)− ~h(x)| ≤ C ‖~g‖BMO

(1 + ρ(x))1+α−
, (2.7)

With these results we can establish Theorem 24.

23



Proof of Theorem 24. Under the hypotheses of Theorem 24 we can use Lemma 26

to see that the conclusion of Theorem 24 is equivalent to showing

sup

 inf
{∥∥∥~g − ~h∥∥∥

∞
: ~h ∈ S⊥

}
‖~g‖BMO

: ~g ∈ BMO(Rn,Cm) \ {0}


is finite. By Lemma 27 the expression above controlled by

sup

 inf
{∥∥∥~g − ~h∥∥∥

∞
: ~h ∈ S⊥

}
‖~g‖BMO

: g ∈ D(Rn,R2m) \ {0}


where we have identified Cm with R2m. The expression above is unchanged if the

restriction that the support of g is contained in the unit ball is added. This is

because both the BMO and L∞ norms are unaffected by applying the dilation

operator defined by Dt(f)(x) = f(δtx). In particular, since D is contained in BMO,

we can use Lemma 28 to obtain

sup

 inf
{∥∥∥~g − ~h∥∥∥

∞
: ~h ∈ S⊥

}
‖~g‖BMO

: g ∈ D(Rn,R2m) \ {0}

 <∞,

from which the result follows.

2.2. The Proofs of Lemma 26 and Lemma 27

In this section we prove Lemma 26 and Lemma 27, which will leave only

Lemma 28 to be proven. In proving Lemma 26 we will need to know the relevant

multiplier operators are bounded on the space H1. The following theorem, which

generalizes Theorem 21 to the anisotropic setting, provides the means to do so in

Corollary 31.
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Theorem 29. Let χ ∈ C∞c (R) be such that χ(x) = 1 for −1 ≤ x ≤ 1. Let K be the

set of functions K such that

K ∈ C∞(Rn \ {0}) (2.8)

K(δtx) =
1

t
K(x) (2.9)∫

∆

K(ω)dω = 0. (2.10)

Let H be the set of functions H such that

H ∈ C∞(Rn \ {0}) (2.11)

H(δ∗t ξ) = H(ξ) (2.12)∫
Rn

H(ξ)χ̂ ◦ ρ(ξ)dξ = 0. (2.13)

Recall that P.V.K is the tempered distribution defined for ϕ in the Schwartz class by

P.V.K(ϕ) = lim
ε→0

∫
ρ(x)>ε

K(x)ϕ(x)dx.

If H ∈ H , then there exists K ∈ K such that H = P̂.V.K. Conversely, if K ∈

K , then there exists H ∈ H such that H = P̂.V.K. We will refer to functions

satisfying (2.11) and (2.12) as smooth homogeneous multipliers.
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Proof. Let ψ ∈ C∞c (0,∞) be such that

∫ ∞
0

ψ(t)

t
dt = 1. Suppose H ∈ H . Set

g(ξ) = H(ξ)ψ(ρ∗(ξ)). Then we have g ∈ S and

∞∫
0

g(δ∗t ξ)

t
dt =

∞∫
0

H(δ∗t ξ)
ψ(ρ∗(δ∗t ξ))

t
dt

= H(ξ)

∞∫
0

ψ(tρ∗(ξ))

t
dt

= H(ξ)

∞∫
0

ψ(y)

y
dy

= H(ξ).

Since g ∈ S, there exist constants C > 0 and C ′ > 0 such that

∞∫
0

|qg(δtx)| dt ≤ C + C ′
∞∫

1

1

ρ(δtx)2
dt ≤ C +

C ′

ρ(x)2

∞∫
1

1

t2
dt

which is finite for all non zero x. Set K(x) =

∞∫
0

qg(δtx)dt. Then for s > 0 we have

K(δsx) =

∞∫
0

qg(δtsx)dt =
1

s

∞∫
0

qg(δrx)dr =
1

s
K(x).

By the chain rule

∣∣∣∣ ∂∂xi [qg ◦ δt] (x)

∣∣∣∣ =

∣∣∣∣∣
n∑
j=1

qgxj(δtx) (δt)ji

∣∣∣∣∣ ≤
n∑
j=1

∣∣
qgxj(δtx)

∣∣ ∣∣∣(δt)ji∣∣∣ .
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For t ≥ 1 we have,

∣∣∣(δt)ji∣∣∣ ≤ ‖δt‖ =

∥∥∥∥∥
∞∑
k=0

(P log(t))k

k!

∥∥∥∥∥ ≤
∞∑
k=0

(‖P‖ log(t))k

k!
= t‖P‖.

For t ≤ 1 there exists a constant C > 0 such that
∣∣∣(δt)ji∣∣∣ ≤ C, since the

norm of δt goes to zero as t does. Thus, since qgxj is in the Schwartz class for every

natural number l there are constants Cj and Cj,l such that for ρ(x) ≥ 1,

n∑
j=1

∣∣
qgxj(δtx)

∣∣ ∣∣∣(δt)ji∣∣∣ ≤ Cχ[0,1)(t)
n∑
j=1

Cj + t‖P‖−lχ[1,∞)(t)
n∑
j=1

Cj,l.

If l > ‖P‖ + 1 then the right hand side is an integrable function of t which is

independent of x and which bounds

∣∣∣∣ ∂∂xi [qg ◦ δt] (x)

∣∣∣∣
from above. It follows from this that the first order partial derivatives of K exist

for ρ(x) > 1 and that they are given by

∂K

∂xi
(x) =

∞∫
0

∂

∂xi
[qg ◦ δt] (x)dt (2.14)

Moreover, because of the homogeneity of K this holds for all nonzero x. This

argument can be repeated to show the same equation holds with higher order

derivatives, so K ∈ C∞(Rn \ {0}). Additionally, using (1.15) we have

∫
∆

K(ω)dω =

∫
∆

∞∫
0

qg(δtω)dtdω =

∫
Rn

qg(x)dx = 0
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with the last equality coming from g(0) = 0. Thus, K ∈ K .

We will now show P̂.V.K = H. Let ϕ ∈ S. Then

P.V.K(ϕ) = lim
ε→0

∫
ρ(x)>ε

K(x)ϕ(x)dx = lim
ε→0

∫
ρ(x)>ε

K(x) [ϕ(x)− ϕ(0)χ(ρ(x))] dx

where the last equality holds since for ε > 0 we have

∫
ρ(x)>ε

K(x)χ(ρ(x))dx =

∞∫
ε

∫
∆

K(δtω)χ(ρ(δtω))dωdt =

∞∫
ε

χ(t)

t

∫
∆

K(ω)dωdt = 0.

Also, from the definition of K and the fact that qg ∈ S, if γ ∈ (1, 1 + α−) then there

exist constants C > 0 and C ′ > 0 such that

∫
ρ(x)>ε

|K(x) [ϕ(x)− ϕ(0)χ(ρ(x))]| dx ≤
∫
Rn

∞∫
0

|qg(δtx) [ϕ(x)− ϕ(0)χ(ρ(x))] |dtdx

≤
∫
Rn

1∫
0

C|ϕ(x)− ϕ(0)χ(ρ(x))|dtdx+

∫
Rn

∞∫
1

C ′|ϕ(x)− ϕ(0)χ(ρ(x))|
(tρ(x))γ

dtdx

≤ C

∫
Rn

|ϕ(x)− ϕ(0)χ(ρ(x))|dx+ C ′
∫
Rn

|ϕ(x)− ϕ(0)χ(ρ(x))|
ρ(x)γ

dx.

Because ϕ and χ ◦ ρ are in the Schwartz class,

C

∫
Rn

|ϕ(x)− ϕ(0)χ(ρ(x))|dx+ C ′
∫

ρ(x)≥1

|ϕ(x)− ϕ(0)χ(ρ(x))|
ρ(x)γ

dx

is finite. Since χ(x) = 1 for ρ(x) ≤ 1, we have, for some constant C ′′ > 0,

C ′
∫

ρ(x)≤1

|ϕ(x)− ϕ(0)χ(ρ(x))|
ρ(x)γ

dx = C ′
∫

ρ(x)≤1

|ϕ(x)− ϕ(0)|
ρ(x)γ

dx ≤
∫
∆

1∫
0

C ′′

ργ−α−
dρdω,
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which is finite. It follows from this that

P.V.K(ϕ) =

∞∫
0

∫
Rn

qg(δtx) [ϕ(x)− ϕ(0)χ(ρ(x))] dxdt.

For fixed t the functions qg ◦ δt and χ ◦ ρ are in L2 and so

∫
Rn

qg(δtx)χ(ρ(x))dx =

∫
Rn

t−1g(δ∗t ξ)χ̂ ◦ ρ(ξ)dξ.

There exists a constant C > 0 such that

∫
Rn

∞∫
0

t−1|g(δ∗t ξ)||χ̂ ◦ ρ(ξ)|dtdξ

≤ C

∫
Rn

ρ∗(ξ)−1∫
0

t−1|δ∗t ξ||χ̂ ◦ ρ(ξ)|dtdξ + C

∫
Rn

∞∫
ρ∗(ξ)−1

|χ̂ ◦ ρ(ξ)|
t2ρ∗(ξ)

dtdξ.

The two integrals on the right side above are finite because for 0 ≤ t ≤ ρ∗(ξ)−1 we

have |δ∗t ξ| ≤ C(tρ∗(ξ))1/α+ and because χ̂ ◦ ρ ∈ S. So,

∞∫
0

∫
Rn

qg(δtx)χ ◦ ρ(x)dxdt =

∞∫
0

∫
Rn

t−1g(δ∗t ξ)χ̂ ◦ ρ(ξ)dξdt

=

∫
Rn

∞∫
0

t−1g(δ∗t ξ)χ̂ ◦ ρ(ξ)dtdξ

=

∫
Rn

χ̂ ◦ ρ(ξ)H(ξ)dξ

= 0,
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with the last equality holding since H ∈H . Thus,

P.V.K(ϕ) =

∞∫
0

∫
Rn

qg(δtx)ϕ(x)dxdt.

By the same argument just given, this integral is the same as

∫
Rn

qϕ(ξ)H(ξ)dξ = H(qϕ).

For the other direction, suppose K ∈ K and set g(x) = K(x)ψ(ρ(x)). Then

∞∫
0

g(δtx)dt = K(x)

∞∫
0

t−1ψ(tρ(x))dt = K(x).

Note that since g ∈ S and ĝ(0) = 0 we have, for some constant C > 0,

∞∫
0

t−1|ĝ(δ∗t ξ)|dt ≤
1∫

0

Ct−1|δ∗t ξ|dt+

∞∫
1

C

t2ρ∗(ξ)
dt,

which is finite. Set

H(ξ) =

∞∫
0

t−1ĝ(δ∗t ξ)dt.

Then

H(δsξ) =

∞∫
0

t−1ĝ(δ∗tsξ)dt = H(ξ)

and H ∈ C∞(Rn \ {0}) by the same argument used with K above.

Now consider

∫
Rn

H(ξ)χ̂ ◦ ρ(ξ)dξ =

∫
Rn

∞∫
0

χ̂ ◦ ρ(ξ)t−1ĝ(δ∗t ξ)dtdξ.
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By the same argument given at the end of the last part, we can change the order of

integration. Applying Plancherel’s theorem and expanding the definition of g then

gives

∫
Rn

H(ξ)χ̂ ◦ ρ(ξ)dξ =

∞∫
0

∫
Rn

χ̂ ◦ ρ(ξ)t−1ĝ(δ∗t ξ)dξdt

=

∞∫
0

∫
Rn

χ(ρ(x))K(δtx)ψ(ρ(δtx))dxdt.

If the support of ψ is contained in, say, γ1 ≤ ρ(x) ≤ γ2, then the inner integral on

the right is

∫
γ1/t≤ρ(x)≤γ2/t

χ(ρ(x))K(x)ψ(tρ(x))

t
dx =

γ2/t∫
γ1/t

χ(ρ)ψ(tρ)

tρ

∫
∆

K(ω)dωdρ = 0.

So, H ∈ H . Using the same argument as before, it can be shown that H = P̂.V.K.

Corollary 30. Let χ be as in Theorem 29. Let H ∈ C∞(Rn \ {0}) satisfy H(δ∗t ξ) =

H(ξ) for all ξ ∈ Rn \ {0} and for all t > 0. Then there exist a ∈ C and K ∈ K

such that for f ∈ S,

TH(f)(x) = af(x) + (P.V.K ∗ f) (x),

where TH is the operator defined by T̂H(f)(ξ) = H(ξ)f̂(ξ).

Proof. It follows from the assumptions on H and χ that the integrals

∫
Rn
H(ξ)χ̂ ◦ ρ(ξ)dξ
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and ∫
Rn
χ̂ ◦ ρ(ξ)dξ

are both finite. By subtracting an appropriate constant a from H, we obtain a

function H1 in H . By Theorem 29, there exists a K ∈ K such that

T̂H(f)(ξ) = H(ξ)f̂(ξ) = H1(ξ)f̂(ξ) + af̂(ξ) = ̂(P.V.K ∗ f)(ξ) + af̂(ξ).

The result follows from taking the inverse Fourier transform.

Corollary 31. Let H ∈ C∞(Rn \ {0}) satisfy H(δ∗t ξ) = H(ξ) for all ξ ∈ Rn \ {0}

and all t > 0. Then TH is bounded on Hp(Rn).

Proof. By [BW] Theorem 2.12 it is enough to establish that TH is bounded on the

discrete anisotropic Hardy spaces corresponding to, say, {δ2k}k∈Z. The boundedness

of TH on these spaces follows from Theorem 9.8 of [Bow03], and Corollary 30, and

Theorem 29 above.

Corollary 32. Let p ∈ (0, 1] . Let θ1, . . . , θm ∈ C∞(∆∗,C) be such that

inf
ξ∈∆

m∑
j=1

|θj(ξ)| > 0.

Then there exists a constant C > 0 such that for all f ∈ L2(Rn,C) we have

‖f‖Hp ≤ C

m∑
j=1

∥∥mθjf
∥∥
Hp .

Proof. Set

θ∗j (ξ) =
θj(ξ)∑m

k=1 |θk(ξ)|2
.
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Then the sum of all θ∗jθj is 1 so

‖f‖Hp =

∥∥∥∥∥
m∑
j=1

mθ∗j
mθjf

∥∥∥∥∥
Hp

≤
m∑
j=1

∥∥∥mθ∗j
mθjf

∥∥∥
Hp
.

Because mθ∗j
is bounded on Hp for each j by Corollary 31, we have for some

constant C > 0

‖f‖Hp ≤ C

m∑
j=1

∥∥mθjf
∥∥
Hp .

Before moving to the proofs of Lemma 26 and Lemma 27 we will need one

more theorem and a corollary.

Theorem 33. Let S be a subspace of H1(Rn,Rk). Then

sup


∥∥∥~f∥∥∥

H1∥∥∥~f∥∥∥
1

: f ∈ S \ {0}

 (2.15)

= sup

 inf
{∥∥∥~g − ~h∥∥∥

∞
: ~h ∈ S⊥

}
‖~g‖BMO

: ~g ∈ BMO(Rn,Rk) \ {0}

 (2.16)

Proof. Let T⊥ =
{
~g ∈ L∞(Rn,Rk) : 〈g, f〉 = 0 for all f ∈ S

}
. Then, considering S

as a subspace of H1, its dual space is S ′H1 = BMO/S⊥. Alternatively, considering

S a subspace of L1, its dual space is S ′L1 = L∞/T⊥. The latter is isomorphic,

through the inclusion of L∞ into BMO, to
(
L∞ + S⊥

)
/S⊥ with the norm given

by ‖~g‖ = inf
{∥∥∥~g − ~h∥∥∥

∞
: ~h ∈ S⊥

}
.
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Thus, the linear mapping

M : S ⊂ L1 → S ⊂ H1, f 7→ f

is bounded if and only if its adjoint,

BMO/S⊥ →
(
L∞ + S⊥

)
/S⊥, ~g + S⊥ 7→ ~g + S⊥

defines a bounded linear operator, and the operator norms agree. Note that the

adjoint map only makes sense if BMO = L∞ + S⊥ and that if this is not the case

then the expressions in both (2.15) and (2.16) are infinite. Otherwise, note that the

operator norm of the first map is, by definition, (2.15) while the second map has

norm given by

sup

 inf
{∥∥∥~g − ~h∥∥∥

∞
: ~h ∈ S⊥

}
inf
{∥∥∥~g − ~h∥∥∥

BMO
: ~h ∈ S⊥

} : g ∈ BMO(Rn,Rk) \ S⊥
 . (2.17)

To see that this coincides with (2.16), note that (2.16) can be rewritten as

sup

 inf
{∥∥∥~g − ~h∥∥∥

∞
: ~h ∈ S⊥

}
∥∥∥~g − ~h′

∥∥∥
BMO

: ~g ∈ BMO(Rn,Rk) \
{
S⊥
}

and ~h′ ∈ S⊥
 ,

which is equivalent to (2.17).
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Corollary 34. If S is a subspace of H1(Rn,Rk) then the following are equivalent:

sup


∥∥∥~f∥∥∥

H1∥∥∥~f∥∥∥
1

: f ∈ S \ {0}

 <∞, (2.18)

sup

 inf
{∥∥∥~g − ~h∥∥∥

∞
: h ∈ S⊥

}
‖~g‖BMO

: ~g ∈ BMO(Rn,Rk) \ {0}

 <∞, (2.19)

BMO = L∞ + S⊥. (2.20)

Proof. From Theorem 33 and its proof, (2.18) and (2.19) are equivalent to each

other and (2.19) implies BMO = L∞ + S⊥.

Conversely, if BMO = L∞ + S⊥ then the map

(
L∞ + S⊥

)
/S⊥ → BMO/S⊥, ~g + S⊥ 7→ ~g + S⊥

must be bijective. We already know this map defines a bounded linear operator

since it is the adjoint, up to the isomorphism of S ′H1 and
(
L∞ + S⊥

)
/S⊥, of the

inclusion of S ⊂ H1 into S ⊂ L1.

Thus, by the inverse mapping theorem,

BMO/S⊥ →
(
L∞ + S⊥

)
/S⊥, ~g + S⊥ 7→ ~g + S⊥

defines a bounded linear operator so (2.19) holds.

We can now prove Lemma 26 as a corollary of the above.
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Proof of Lemma 26. By Corollaries 31 and 32 we know that

‖f‖H1 ≈
m∑
j=1

∥∥∥mθj
f
∥∥∥
H1
.

We also have
m∑
j=1

∥∥∥mθj
f
∥∥∥
H1
≈
∥∥∥~f∥∥∥

H1

where ~f = (mθ1
f, . . . ,mθm

f), so the equivalence of (2.3) and (2.4) follows from

Corollary 34. Moreover, they are equivalent to BMO = L∞ + S⊥ which we will

show coincides with (2.5). Viewing elements of BMO(Rn,R2m) as being of the form

~g = (Re(g1), Im(g1), . . . ,Re(gm), Im(gm)), with

g1, . . . , gm ∈ BMO(Rn,C), we can consider the map

BMO(Rn,R2m)→
m∑
j=1

m̃θjBMO(Rn,C), ~g 7→
m∑
j=1

m̃θjgj.

Since the kernel of this map is exactly S⊥ it follows that BMO = L∞ + S⊥ is

equivalent to

m∑
j=1

m̃θjBMO(Rn,C) =
m∑
j=1

m̃θjL
∞(Rn,C).

To see that this is equivalent to (2.5), we need to show

BMO(Rn,C) =
m∑
j=1

m̃θjBMO(Rn,C).
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To see this, set θ∗j =
θj∑m

k=1 |θk|2
. Then we have

BMO(Rn,C) ⊃
m∑
j=1

m̃θjBMO(Rn,C) ⊃
m∑
j=1

m̃θjm̃θ∗j
BMO(Rn,C) = BMO(Rn,C),

from which the result follows.

We now prove Lemma 27, which also makes use of Theorem 33.

Proof of Lemma 27. If ~g ∈ BMO(Rn,Rk) and r > 0 then we define the truncation

of ~g at height r by

tr(~g, r)(x) =
~g(x)

max {1, |~g(x)|/r}
.

It is clear that | tr(~g, r)(x)| ≤ r and so tr(~g, r) ∈ L∞. Moreover, because for any

h ∈ BMO(Rn,R) and c ∈ R we have the inequality

| tr(h, r)(x)− tr(c, r)(x)| ≤ |h(x)− c|,

we have

‖tr(~g, r)(x)‖BMO ≤ ‖~g‖BMO

Also, for any ~f ∈ H1(Rn,Rk) and ~g ∈ BMO(Rn,Rk) we have

lim
r→∞

∫
~f(x) · tr(~g, r)(x)dx = 〈~g, ~f〉BMO,
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which follows by taking an L∞ atomic decomposition of f. With this in hand we

have the following, first making use of Theorem 33,

sup

 inf
{∥∥∥~g − ~h∥∥∥

∞
: ~h ∈ S⊥

}
‖~g‖BMO

: ~g ∈ BMO(Rn,Rk) \ {0}


= sup

 |〈~g, ~f〉BMO|

‖~g‖BMO

∥∥∥~f∥∥∥
1

: ~f ∈ S \ {0} , ~g ∈ BMO(Rn,Rk) \ {0}


= sup

 |〈~g, ~f〉BMO|

‖~g‖BMO

∥∥∥~f∥∥∥
1

: ~f ∈ S \ {0} , ~g ∈ L∞(Rn,Rk) \ {0}

 .

We now wish to restrict to ~g with compact support. To that end, we let ~g ∈ L∞,

and f ∈ H1, and take ϕ ∈ D(Rn,R) such that ϕ(x) = 1 for |x| ≤ 1. Let B(0, r) =

δr∆ and ~gB(0,r) = 1
|B(0,r)|

∫
B(0,r)

~g(x)dx. Then for r > 0, using the fact that ~f has

zero average,

∫
~f ·
{
ϕ(δ−1

r x)(~g(x)− ~gB(0,r))
}
dx

=

∫
ϕ(δ−1

r x)~f(x) · ~g(x)dx+ ~gB(0,r) ·
∫

(1− ϕ(δ−1
r x))~f(x)dx,

As r →∞ this tends to

∫
~f(x) · ~g(x)dx

Additionally, for some constant C(ϕ) > 0

∥∥ϕ(δ−1
r ·)(~g(·)− ~gB(0,r))

∥∥
BMO

≤ C(ϕ) ‖~g‖BMO .
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Consequently,

sup

 |〈~g, ~f〉BMO|

‖~g‖BMO

∥∥∥~f∥∥∥
1

: ~f ∈ S \ {0} , ~g ∈ L∞(Rn,Rk) \ {0}


= C sup

 |〈~g, ~f〉BMO|

‖~g‖BMO

∥∥∥~f∥∥∥
1

: ~f ∈ S \ {0} , ~g ∈ L∞(Rn,Rk) \ {0} supp~g is compact

 .

To obtain the desired result it remains to reduce to the case where ~g is smooth.

This can be done by mollifying ~g. In fact we can reduce to g supported in B(0, 1).

2.3. Smooth Atoms

The following lemma, which is a generalization of Lemma 22.3 of [Uch01],

shows multipliers map smooth atoms into smooth molecules. Recall that ∆ is the

ellipsoid corresponding to the dilation structure arising from P .

Lemma 35. Let θ ∈ C∞(∆,C). Let I = δl ([0, 1)n + k) where k ∈ Zn, and l > 0,

and let xI = δlk. Let b ∈ C2(Rn,R) satisfy

supp b ⊂ I, (2.21)∣∣∇2 [b ◦ δl]
∣∣
L∞
≤ 1, (2.22)∫

Rn
b(x)dx = 0. (2.23)
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Recall α− and α+ from equations (1.8) and (1.9). Set p = mθb. Then, for some

constant C(θ) > 0 depending only on θ, we have

p ∈ C1(Rn,C), (2.24)

|p(x)|+ |∇ [p ◦ δl] (δl−1x)| ≤ C(θ)

(1 + ρ(δl−1(x− xI)))1+α−
, (2.25)∫

Rn
p(x)dx = 0. (2.26)

Proof. In this proof we will use C,C ′ to denote positive constants. Different

instances of C and C ′ do not necessarily denote the same constant. We first assume

l = 1 and k = 0, so I is the unit cube. Let S0 be the set of functions in the

Schwartz class whose Fourier transform is compactly supported away from the

origin. Let ψ ∈ S0 satisfy

∫ ∞
0

ψ̂(δ∗t ξ)
dt

t
= 1 for ξ 6= 0

and define η by η̂(ξ) = ψ̂(ξ)θ
(
δ∗ρ−1(ξ)ξ

)
. Note that η̂ ∈ S so η ∈ S as well. We will

now show

p̂

∫ 1/ε

ε

ψ̂(δ∗t ·)dt
t

→ p̂

in L2 as ε → 0. Fix δ > 0 such that supp ψ̂ ⊆ {ξ ∈ Rn | 1/δ ≤ ρ∗(ξ) ≤ δ} and let ε

satisfy δ > ε > 0. If R = δ/ε and ξ satisfies 1/R ≤ ρ∗(ξ) ≤ R then we have

∫ 1/ε

ε

ψ̂(δ∗t ξ)dt

t
= 1.
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It follows that

p̂(ξ)− p̂(ξ)
∫ 1/ε

ε

ψ̂(δtξ)dt

t

is supported on the set SR = {ξ ∈ Rn|ρ∗(ξ) ≤ 1/R or ρ∗(ξ) ≥ R} . Moreover, since

there exists a constant C > 0 with

∫ ∞
0

|ψ̂(δtξ)|dt
t

≤ C

we can conclude the L2(Rn) norm of

p̂(ξ)− p̂(ξ)
∫ 1/ε

ε

ψ̂(δtξ)dt

t

is bounded above, independently of R, by a multiple of the L2(SR) norm of p̂. Since

p̂ is in L2(Rn) the L2(SR) norm will converge to zero as R → ∞ and so since R →

∞ as ε→ 0 we conclude

p̂(ξ)

∫ 1/ε

ε

ψ̂(δtξ)dt

t

converges to p̂ in L2 as ε→ 0.

We next establish

∣∣∣∣∣
∫ 1/ε

ε

ηδt ∗ b(x)
dt

t

∣∣∣∣∣ ≤ C(θ)

(1 + ρ(x− xI))1+α−

where ηδt(x) = t−1η(δ−1
t x). Let ε be such that 1 > ε > 0 and x be such that

ρ(x − z) ≥ 1 for all z ∈ I. Then by using the support, (2.21), and mean, (2.23),
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conditions on b we have

∣∣∣∣∣
∫ 1/ε

ε

ηδt ∗ b(x)
dt

t

∣∣∣∣∣ =

∣∣∣∣∣
∫ 1/ε

ε

dt

t

∫
I

[ηδt(x− y)− ηδt(x− xI)] b(y)dy

∣∣∣∣∣
The integral in t can be split up into t < 1 and t > 1. Applying the mean value

theorem, the chain rule, and the fact that η ∈ S gives the existence of z ∈ I, and a

constant C > 0

t−1 |ηδt(x− y)− ηδt(x− xI)| ≤ t−2|∇η(δt−1(x− z))| ‖δt−1‖

≤ t−(2+α+) C

(1 + ρ(δt−1(x− z)))2+α+

≤ C

(t+ ρ((x− z)))2+α+
.

Using the quasi triangle inequality for ρ we have, recalling that Cq is the constant

appearing in (1.11),

t+ ρ(x− xI) ≤ t+ cq(ρ(x− z) + ρ(z − xI))

≤ t+ C ′ + cqρ(x− z)

≤ C ′(t+ ρ(x− z))

so

1

(t+ ρ(x− z))2+α+
≤ C ′

(t+ ρ(x− xI))2+α+
.
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Thus,

∣∣∣∣∫ 1

ε

dt

t

∫
I

[ηδt(x− y)− ηδt(x− xI)] b(y)dy

∣∣∣∣ ≤ ∫ 1

ε

dt

∫
I

C

(t+ ρ(x− xI))2+α+
|b(y)|dy

≤ C

∫ 1

0

dt

(t+ ρ(x− xI))2+α+

≤ C

ρ(x− xI)1+α+

≤ C

ρ(x− xI)1+α−

≤ C

(1 + ρ(x− xI))1+α−
.

For t ≥ 1 we use the same bounds as above except using α− in place of α+. In

particular, we make use of the bound

t−1 |ηδt(x− y)− ηδt(x− xI)| ≤
C

(t+ ρ(x− z))2+α−
≤ C

(t+ ρ(x− xI))2+α−
.

We then obtain

∣∣∣∣∣
∫ 1/ε

1

dt

t

∫
I

[ηδt(x− y)− ηδt(x− xI)] b(y)dy

∣∣∣∣∣
≤
∫ 1/ε

1

dt

∫
I

C

(t+ ρ(x− xI))2+α−
|b(y)|dy

≤ C

∫ ∞
1

dt

(t+ ρ(x− xI))2+α−

≤ C

(1 + ρ(x− xI))1+α−
.

Thus the claim holds for x with ρ(x− xI) ≥ 1.

It remains to look at the case where ρ(x − xI) ≤ 1 where we no longer need

to establish any decay estimates, but merely boundedness. As above we will split
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the integral in t into pieces with t < 1 and t > 1. We have, making use of the fact

that η has zero mean along with the fact that η ∈ S, and applying the mean value

theorem to b,

∣∣∣∣∫ 1

ε

ηδt ∗ b(x)
dt

t

∣∣∣∣ ≤ ∫ 1

ε

∫
I

|ηδt(x− y)| |b(y)− b(x)| dydt
t

≤
∫ 1

ε

∫
I

C |x− y| dtdy
t2 (1 + ρ(δt−1(x− y)))2 .

Substituting z = δt−1(y − x) we can get an upper bound on the last integral of

∫ 1

ε

∫
Rn

C |δtz| dzdt
t (1 + ρ(z))2 ≤

∫ 1

0

∫
Rn

C|z|dzdt
t1−α+ (1 + ρ(z))2 ≤ C.

For t ≥ 1, we simply have

∣∣∣∣∣
∫ 1/ε

1

ηδt ∗ b(x)
dt

t

∣∣∣∣∣ ≤
∫ 1/ε

1

‖ηδt‖∞ ‖b‖1

dt

t

≤
∫ ∞

1

Cdt

t2

≤ C.

We have now established

∣∣∣∣∣
∫ 1/ε

ε

ηδt ∗ b(x)
dt

t

∣∣∣∣∣ ≤ C

(1 + ρ(x− xI))1+α−
.

Next, we establish

∣∣∣∣∣∇
∫ 1/ε

ε

ηδt ∗ b(x)
dt

t

∣∣∣∣∣ ≤ C

(1 + ρ(x− xI))1+α−
.
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Let ε satisfy 1 > ε > 0. We will again look first at x such that ρ(x − xI) ≥ 1 and

split the integral into pieces where t ≤ 1 and t ≥ 1.

For t ≤ 1 we have, by the chain rule and η ∈ S,

t−1 |∇ηδt(x− y)| ≤ C

(t+ ρ(x− y))2+α+

so

∣∣∣∣∇ ∫ 1

ε

ηδt ∗ b(x)
dt

t

∣∣∣∣ ≤ ∫ 1

ε

dt

t

∫
I

|∇ηδt(x− y)| |b(y)| dy

≤
∫ 1

ε

∫
I

C|b(y)|
(t+ ρ(x− y))2+α+

dydt

≤
∫ 1

ε

∫
I

C|b(y)|
(t+ ρ(x− xI))2+α+

dydt

≤
∫ 1

ε

C

(t+ ρ(x− xI))2+α+
dt

≤ C

ρ(x− xI)1+α+

≤ C

(1 + ρ(x− xI))1+α−
,

where the last inequality makes use of ρ(x− xI) ≥ 1.
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For t ≥ 1 we obtain, by replacing α+ with α− in the bound for ∇η,

∣∣∣∣∣∇
∫ 1/ε

1

ηδt ∗ b(x)
dt

t

∣∣∣∣∣ ≤
∫ 1/ε

1

dt

t

∫
I

|∇ηδt(x− y)| |b(y)| dy

≤
∫ 1/ε

1

∫
I

C|b(y)|
(t+ ρ(x− y))2+α−

dydt

≤
∫ 1/ε

1

∫
I

C|b(y)|
(t+ ρ(x− xI))2+α−

dydt

≤
∫ 1/ε

1

C

(t+ ρ(x− xI))2+α−
dt

≤ C

(1 + ρ(x− xI))1+α−
.

We now turn to the case where ρ(x − xI) ≤ 1. Once more, we split the relevant

integral into two parts depending on the size of t. For t ≤ 1 we have,

∣∣∣∣∇ ∫ 1

ε

ηδt ∗ b(x)
dt

t

∣∣∣∣ ≤ ∫ 1

ε

∫
I

|ηδt(x− y)| |∇b(y)−∇b(x)| dydt
t

≤
∫ 1

ε

∫
I

C |x− y| dtdy
t2 (1 + ρ(δt−1(x− y)))2 .

Substituting z = δt−1(y − x), we can get an upper bound on the last integral of

∫ 1

ε

∫
Rn

C |δtz| dzdt
t (1 + ρ(z))2 ≤

∫ 1

0

∫
Rn

C|z|dzdt
t1−α+ (1 + ρ(z))2 ≤ C.

For t ≥ 1 we have,

∣∣∣∣∣∇
∫ 1/ε

1

ηδt ∗ b(x)
dt

t

∣∣∣∣∣ ≤
∫ 1/ε

1

‖∇ηδt‖∞ ‖b‖1

dt

t

≤
∫ ∞

1

Cdt

t2+α−

≤ C.
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We have now established

∣∣∣∣∣∇
∫ 1/ε

ε

ηδt ∗ b(x)
dt

t

∣∣∣∣∣ ≤ C

(1 + ρ(x− xI))1+α−
.

Furthermore, by examining the integrals involved in the estimates above we see

that the convergence is uniform in x as ε→ 0.

Set

Fε(x) =

∫ 1/ε

ε

ηδt ∗ b(x)
dt

t
.

Then we have shown Fε satisfies

|Fε(x)|+ |∇Fε(x)| ≤ C

(1 + ρ((x− xI)))1+α−
.

We now show p has properties (2.24)–(2.26). Taking the Fourier transform of

Fε we obtain

F̂ε(ξ) =

∫ 1/ε

ε

η̂(δ∗t ξ)̂b(ξ)
dt

t
= p̂(ξ)

∫ 1/ε

ε

ψ(δ∗ξ)dt

t
,

which we have already shown converges to p̂ in L2. Because of the uniform

convergence of {Fε}1>ε.0 and {∇Fε}1>ε>0 , for any compact set K in Rn there

exists a C1 function, g, satisfying (2.24) and (2.25), to which {Fε}1>ε>0 converges

uniformly and also in L2 norm. Since we also know the family converges to p in L2

norm it follows that p = g in L2(K). It follows that (2.24) and (2.25) hold for p. For

(2.26) note that p̂(0) = 0 since b̂(0) = 0.

It remains to show the result for general dilated cubes of the form I =

δl ([0, 1]n + k) . To that end, suppose b satisfies (2.21)–(2.23) for the cube I and
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consider the function B defined by

B(x) = b(δl(x+ k)).

Then B is supported in the unit cube, it has mean zero, and it satisfies the

condition |∇2B(x)| ≤ 1. So if q = mθB, then P satisfies (2.24)–(2.26) with l = 1

and k = 0. Taking the Fourier transform of p we find

p̂(ξ) = le−2πik·δ∗l ξ q̂(δ∗l ξ)

from which it follows that

p(x) = q(δl−1x− k).

Now (2.24)–(2.26) can be seen to hold for p using the fact that they hold for q.

2.4. Smooth Molecules

This section deals with molecules of the form resulting from the conclusion

of Lemma 35. In particular, Lemma 37 will establish control on certain norms

corresponding to families of such molecules indexed by dilated cubes. We will

construct such a family later from a corresponding family of functions satisfying

the hypotheses of Lemma 35. The following lemma will be useful in proving that

result. The results in this section are generalizations of Lemmas 22.4 and 22.5 in

[Uch01].
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Lemma 36. Suppose I = δ2l([0, 1)n + k), and J = δ2p([0, 1)n + q), and |I| ≥ |J |.

Suppose also that pI , pJ ∈ C1(Rn,C) and let xI = δ2lk and xJ = δ2pq.

|pI(x)|+ |∇ [pI ◦ δ2l ] (δ2−lx)| ≤ 1

(1 + ρ(δ2−l(x− xI)))1+α− , (2.27)

|pJ(x)|+ |∇ [pJ ◦ δ2p ] (δ2−px)| ≤ 1

(1 + ρ(δ2−l(x− xJ)))1+α− , (2.28)∫
pI(x)dx =

∫
pJ(x)dx = 0, . (2.29)

Then there exists a constant C > 0 such that

∣∣∣∣∫
Rn
pI(x)pJ(x)dx

∣∣∣∣ ≤ C|I||J |1+α−/2

(|I|+ ρ(xI − xJ))1+α−/2 . (2.30)

Proof. This follows from Lemma 5.1 of [BH06].

Lemma 37. Let {λI}I be an indexed set of non-negative real numbers and let {pI}I

be an indexed set of C1(Rn,C) functions where the index I runs over all dilated

cubes of the form I = δ2l([0, 1)n + k) with l ∈ Z and k ∈ Zn. Suppose

∑
I

λ2
I |I| ≤ ∞, (2.31)

and that for all I

|pI(x)|+ |∇ [pI ◦ δ2l ] (δ2−lx)| ≤ 1

(1 + ρ(δ2−l(x− xI)))1+α− , (2.32)∫
pI(x)dx = 0. (2.33)
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Then there exists a constant C > 0 such that

∥∥∥∥∥∑
I

λIpI

∥∥∥∥∥
2

2

≤ C
∑
I

λ2
I |I| (2.34)∥∥∥∥∥∑

I

λIpI

∥∥∥∥∥
2

BMO

≤ C ‖Λ‖C = sup
B∈B

Λ(B × (0, |B|))
|B|

(2.35)

where B is the set of all shifted dilates of the unit ball. Λ =
∑

I λ
2
I |I|δ(xI ,|I|) and

δ(xI ,|I|) is the Dirac measure at the point (xI , |I|) in Rn × R+.

Proof. In this proof C is used to denote a positive constant. Separate instances of

C do not necessarily denote the same constant. We start by establishing (2.34). By

(2.32) and (2.33) we can apply Lemma 36 which, in conjunction with the Cauchy-

Schwartz inequality, gives

∥∥∥∥∥∑
I

λIpI

∥∥∥∥∥
4

2

≤

2
∑
I

∑
J :|J |≤|I|

λIλJ

∣∣∣∣∫ pI(x)pJ(x)dx

∣∣∣∣
2

≤ C

(∑∑ λIλJ |I||J |1+α−/2

(|I|+ ρ(xI − xJ))1+α−/2

)2

≤ C

(∑∑ λ2
I |I||J |1+α−/2

(|I|+ ρ(xI − xJ))1+α−/2

)
·
(∑∑ λ2

J |I||J |1+α−/2

(|I|+ ρ(xI − xJ))1+α−/2

)
.

Since |J | ≤ |I| we have, using the quasi triangle inequality for ρ,

∫
J

dy

(|I|+ ρ(xI − y))1+α−/2
≥ C|J |

(|I|+ ρ(xI − xJ))1+α−/2
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so that for a dilated cube I we have

∑
J :|J |≤|I|

|J |1+α−/2

(|I|+ ρ(xI − xJ))1+α−/2
≤ C

∑
l:2l≤|I|

∑
J :|J |=2l

|J |1+α−/2

(|I|+ ρ(xI − xJ))1+α−/2

≤ C
∑
l:2l≤|I|

2lα−/2
∫
Rn

dy

(|I|+ ρ(xI − y))1+α−/2

= C
(2|I|)α−/2

2α−/2 − 1

∫
Rn

|I|−α−/2dy
(1 + ρ(y))1+α−/2

= C.

Similarly,

∫
I

dy

(|I|+ ρ(y − xJ))1+α−/2
≥ C|I|

(|I|+ ρ(xI − xJ))1+α−/2

so that for a dilated cube J we have

∑
I:|I|≥|J |

|I||J |α−/2

(|I|+ ρ(xI − xJ))1+α−/2
≤ C

∑
l:2l≥|J |

|J |α−/2
∫
Rn

dy

(2l + ρ(y − xJ))1+α−/2

≤ C
∑

l:2l≥|J |

|J |α−/22−lα−/2
∫
Rn

dy

(1 + ρ(y))1+α−/2

≤ C.

Consequently we obtain

∥∥∥∑λIpI

∥∥∥4

2
≤ C

(∑∑ λ2
I |I||J |1+α−/2

(|I|+ ρ(xI − xJ))1+α−/2

)
·
(∑∑ λ2

J |I||J |1+α−/2

(|I|+ ρ(xI − xJ))1+α−/2

)
≤ C

(∑
λ2
I |I|
)(∑

λ2
J |J |

)
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as desired.

We now show

∥∥∥∥∥∑
I

λIpI

∥∥∥∥∥
2

BMO

≤ C ‖Λ‖C ,

which will complete the proof. By rescaling we may assume

‖Λ‖C = 1. (2.36)

Define z = supx∈[0,1]n ρ(x). Let B = B(xB, rB) and write

∑
I

λIpI =
∑

I:xI∈δ2zCqB,

|I|≤rB

λIpI +
∑

I:xI /∈δ2zCqB,

|I|≤rB

λIpI +
∑

I:|I|>rB

λIpI = q1 + q2 + q3.

Note that because

1

|B|

∫
B

∣∣∣∣∣∑
I

λIpI(x)− q3(xB)

∣∣∣∣∣ dx ≤ ‖q1‖L1(B)

|B|
+
‖q2‖L1(B)

|B|
+
‖q3 − q3(xB)‖L1(B)

|B|

it is enough to show that each of
‖q1‖L1(B)

|B|
,
‖q2‖L1(B)

|B|
, and

‖q3 − q3(xB)‖L1(B)

|B|
is

bounded above by a constant.
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Starting with the q1 term we have, making use of (2.36) for the last inequality,

‖q1‖L1(B)

|B|
≤
‖q1‖L2(Rn)

|B|1/2

≤

C

 ∑
xI∈δ2zCqB,

|I|≤rB

λ2
I |I|


1/2

|B|1/2

≤ C.

Similarly, for the q2 term we have,

‖q2‖L1(B)

|B|
≤ C

log2(rB)∑
l=−∞

∑
I:xI /∈δ2zCqB

|I|=2l

∫
B

|pI(x)| dx
|B|

≤ C
∑∑ 1

(1 + ρ(xB − xI)/2l)1+α−

≤ C

log2(rB)∑
l=−∞

2−l
∫
B(xB ,c′rB)c

dy

(1 + ρ(xB − y)/2l)1+α−

≤ C
∑

2lα−
∫
B(0,c′rB)

dy

ρ(y)1+α−

≤ C.
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Lastly, we have

‖q3(x)− q3(xB)‖L1(B) ≤
∞∑

l=log2(rB)+1

∑
I:|I|=2l

λI

∫
B

|pI(x)− pI(xB)| dx

≤ C
∑
l

∑
I

∫
B

|[pI ◦ δ2l ] (δ2−lx)− [pI ◦ δ2l ] (δ2−lxB)| dx

≤ C|B|
∑
l

∑
I

sup
x∈B
|∇ [pI ◦ δ2l ] (δ2−lx)| sup

x∈B(0,rB)

|δ2−lx|

≤
∑
l

∑
I

(rB2−l)α+
C|B|

(1 + ρ(xB − xI)/2l)1+α−

≤ C|B|
∑
l

2−l(rB2−l)α+

∫
Rn

dy

(1 + ρ(xB − y)/2l)1+α−

≤ C|B|
∑
l

(rB2−l)α+

≤ C|B|,

from which the result follows.

2.5. Multipliers and BMO

In this section we begin with a family of multipliers satisfying the hypotheses

of Theorem 24 and construct a second family in Lemma 38. This second family

is used in Lemma 39 to construct, starting from certain BMO functions, an

element of S⊥, where S⊥ is as in Lemma 26. This will be our means of constructing

the desired function ~h ∈ S⊥ for Lemma 28. Recall that ∆∗ is the ellipsoid

corresponding to the dilation structure arising from P ∗. The results in this sections

are generalizations of 24.2′ and 24.3′ in [Uch01].
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Lemma 38. Let θ1, . . . , θm ∈ C∞(∆∗,C) be such that

rank

 θ1(ξ) · · · θm(ξ)

θ1(−ξ) · · · θm(−ξ)

 = 2.

Let ~v ∈ S2m−1. Then there exist Θ1, . . . ,Θm ∈ C∞(∆∗,C) and a constant C > 0

such that

m∑
j=1

θj(ξ)Θj(ξ) = 1, (2.37)

m∑
j=1

{v2j−1 Re(Θj(ξ) + Θj(−ξ)) + v2j Im(Θj(ξ) + Θj(−ξ))} = 0, (2.38)

m∑
j=1

{v2j−1 Im(Θj(ξ)−Θj(−ξ))− v2j Re(Θj(ξ)−Θj(−ξ))} = 0, (2.39)

|∇Θj| ≤ C(θ1, . . . , θm, P ). (2.40)

Proof. Because ∆∗ is compact and because the function θj is smooth on ∆∗ for all j

we can construct, for 1 ≤ j, k ≤ m, smooth functions ψj,k ∈ C∞(∆∗,C) such that

ψj,k = ψk,j,

ψj,k(ξ) = ψj,k(−ξ),

rank

 θj(ξ) θk(ξ)

θj(−ξ) θk(−ξ)

 = 2 if ξ ∈ supp(ψj,k),

∑
ψj,k(ξ) = 1 for all ξ ∈ ∆∗.
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For z ∈ C define

R(z) =

 Re(z) − Im(z)

Im(z) Re(z)

 and S(z) =

 Re(z) Im(z)

Im(z) −Re(z)

 .
Suppose 1 ≤ j < k ≤ m and suppose ξ ∈ ∆∗ and µ = (µ1, . . . , µ4) ∈ S3.

Define

Bj,k(ξ, µ) =


R(θj(ξ)) R(θk(ξ)) R(0) R(0)

R(0) R(0) R(θj(−ξ)) R(θk(−ξ))

R(µ1 − iµ2) R(µ3 − iµ4) S(µ1 + iµ2) S(µ3 + iµ4)

 .

Then Bj,k(ξ, µ) has full rank as long as ξ ∈ suppψj,k. Fix (ξ, µ) ∈ ∆∗ × S3 in the

support of ψj,k. Then since Bj,k(ξ, µ) has rank 6 we can find 6 of its columns which

are linearly independent. Call the other two columns the ith and lth columns.

Define ei = (0, . . . , 1, . . . , 0) and el = (0, . . . , 1, . . . , 0) where the 1 appears in the

ith and jth position respectively. Define Cj,k(ξ, µ) to be the 8 × 8 matrix which

consists of the matrix Bj,k(ξ, µ) with the rows ei and ej appended. Then Cj,k(ξ, µ)

is invertible and so

Cj,k(ξ, µ)−1ψj,k(ξ)



1

0

1

0

0

0

0

0
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is a well defined element of R8. Moreover, there exists an open set U ⊂ ∆∗ × S3

consisting of points (ξ, µ) such that the same 6 columns are linearly independent for

each (ζ, ν) ∈ U and such that U does not intersect

U∗ =
{

(ζ, ν) ∈ ∆∗ × S3 : (−ζ, ν) ∈ U
}
.

So, we can define a smooth function G : U → R8 such that for (ζ, ν) ∈ U we have

Bj,k(ζ, ν)G(ζ, ν) = ψj,k(ζ)



1

0

1

0

0

0


(2.41)

Note that for (ξ, µ) /∈ supp ψj,k we may simply take U small enough so that

G ≡ ~0 satisfies the equation above. We now define complex valued functions

Θj,k,U ,Θk,j,U ∈ C∞(∆∗ × S3) by



Re Θj,k,U(ξ, µ)

Im Θj,k,U(ξ, µ)

Re Θk,j,U(ξ, µ)

Im Θk,j,U(ξ, µ)

Re Θj,k,U(−ξ, µ)

Im Θj,k,U(−ξ, µ)

Re Θk,j,U(−ξ, µ)

Im Θk,j,U(−ξ, µ)



= G(ξ, µ).
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That this gives smooth and well-defined functions follows from the facts that G is

smooth and that U and U∗ do not intersect. Combining this definition with (2.41)

leads to the following system of equations for each (ξ, µ) ∈ U ∪ U∗.

θj(ξ)Θj,k,U(ξ, µ) + θk(ξ, µ)Θk,j,U(ξ, µ) = ψj,k(ξ), (2.42)

µ1 Re (Θj,k,U(ξ, µ) + Θj,k,U(−ξ, µ))

+ µ2 Im (Θj,k,U(ξ, µ) + Θj,k,U(−ξ, µ))

+ µ3 Re (Θk,j,U(ξ, µ) + Θk,j,U(−ξ, µ))

+ µ4 Im (Θk,j,U(ξ, µ) + Θk,j,U(−ξ, µ)) = 0,

(2.43)

µ1 Im (Θj,k,U(ξ, µ)−Θj,k,U(−ξ, µ))

− µ2 Re (Θj,k,U(ξ, µ)−Θj,k,U(−ξ, µ))

+ µ3 Im (Θk,j,U(ξ, µ)−Θk,j,U(−ξ, µ))

− µ4 Re (Θk,j,U(ξ, µ)−Θk,j,U(−ξ, µ)) = 0.

(2.44)

Since we have a neighborhood, U, as above for each point (ξ, µ) ∈ ∆∗ × S3 and

since ∆∗ × S3 is compact, we know there exist a natural number N and points

ζ1, . . . , ζN ∈ ∆∗ × S3 such that the corresponding sets U1, . . . , UN cover ∆∗ × S3.

Since ∆∗ × S3 is compact, and since Ui ∩ U∗i is empty for each i there exist smooth

real valued functions ψ1, . . . , ψN defined on ∆∗ × S3 satisfying

N∑
l=1

ψl(ξ, µ) = 1 (2.45)
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and such that for i ∈ {1, . . . , N} we have

suppψi ⊂ Ui ∪ U∗i , (2.46)

ψi(ξ, µ) = ψi(−ξ, µ). (2.47)

Fix (ξ, µ) ∈ ∆∗ × S3. Define Θj,k and Θk,j by

Θj,k(ξ, µ) =
N∑
l=1

ψl(ξ, µ)Θj,k,Ul(ξ, µ), Θk,j(ξ, µ) =
N∑
l=1

ψl(ξ, µ)Θk,j,Ul(ξ, µ)

with ψl(ξ, µ)Θj,k,Ul(ξ, µ) taken to be zero if (ξ, µ) /∈ Ul. From this definition and

(2.42)–(2.44) we obtain

θj(ξ)Θj,k(ξ, µ) + θk(ξ, µ)Θk,j(ξ, µ) = ψj,k(ξ), (2.48)

µ1 Re (Θj,k(ξ, µ) + Θj,k(−ξ, µ))

+ µ2 Im (Θj,k(ξ, µ) + Θj,k(−ξ, µ))

+ µ3 Re (Θk,j(ξ, µ) + Θk,j(−ξ, µ))

+ µ4 Im (Θk,j(ξ, µ) + Θk,j(−ξ, µ)) = 0,

(2.49)

µ1 Im (Θj,k(ξ, µ)−Θj,k(−ξ, µ))

− µ2 Re (Θj,k(ξ, µ)−Θj,k(−ξ, µ))

+ µ3 Im (Θk,j(ξ, µ)−Θk,j(−ξ, µ))

− µ4 Re (Θk,j(ξ, µ)−Θk,j(−ξ, µ)) = 0.

(2.50)
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If r > 0, define Θj,k(ξ, rµ) = Θj,k(ξ, µ) and Θk,j(ξ, rµ) = Θk,j(ξ, µ). Additionally,

define

Θj,k(ξ, (0, 0, 0, 0)) =


θj(ξ)ψj,k(ξ)

|θj(ξ)|2 + |θk(ξ)|2
ξ ∈ suppψj,k,

0 otherwise

and

Θk,j(ξ, (0, 0, 0, 0)) =


θk(ξ)ψj,k(ξ)

|θj(ξ)|2 + |θk(ξ)|2
ξ ∈ suppψj,k,

0 otherwise.

This extends the definition of Θj,k and Θk,j to ∆∗ × R4 such that the corresponding

versions of (2.48)–(2.50) still hold.

We can now define our desired functions Θj. Set vj,k = (v2j−1, v2j, v2k−1, v2k).

Let j ∈ {1, . . . ,m} and let ξ ∈ ∆∗ and let ~v ∈ S2m−1. Then define

Θj(ξ) =

j−1∑
l=1

Θj,l(ξ, vl,j) +
m∑

l=j+1

Θj,l(ξ, vj,l).

We first check that (2.37) holds. We have,

m∑
j=1

θj(ξ)Θj(ξ) =
m∑
j=1

j−1∑
k=1

θj(ξ)Θj,k(ξ, vk,j)

+
m∑
j=1

m∑
k=j+1

θj(ξ)Θj,k(ξ, vj,k)

=
m∑
j=1

m∑
k=j+1

(θk(ξ)Θk,j(ξ, vj,k) + θj(ξ)Θj,k(ξ, vj,k))

=
∑∑

ψj,k(ξ)

= 1.

This is (2.37).
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Next we prove (2.38). We have

m∑
j=1

v2j−1 Re(Θj(ξ) + Θj(−ξ)) + v2j Im(Θj(ξ) + Θj(−ξ))

=
m∑
j=1

j−1∑
k=1

v2j−1 Re(Θj,k(ξ, vk,j) + Θj,k(−ξ, vk,j))

+ v2j Im(Θj,k(ξ, vk,j) + Θj,k(−ξ, vk,j))

+
m∑
j=1

m∑
k=j+1

v2j−1 Re(Θj,k(ξ, vj,k) + Θj,k(−ξ, vj,k))

+ v2j Im(Θj,k(ξ, vj,k) + Θj,k(−ξ, vj,k))

=
m∑
j=1

m∑
k=j+1

v2k−1 Re(Θk,j(ξ, vj,k) + Θk,j(−ξ, vj,k))

+ v2k Im(Θk,j(ξ, vj,k) + Θk,j(−ξ, vj,k))

+ v2j−1 Re(Θj,k(ξ, vj,k) + Θj,k(ξ, vj,k))

+ v2j Im(Θj,k(ξ, vj,k) + Θj,k(−ξ, vj,k))

=
∑∑

0

= 0.

The proof of (2.39) is similar to the proof of (2.38) and is omitted.

It remains to show (2.40). Note that by construction,

sup
{
|∇ξΘj,k(ξ, µ)| : ξ ∈ ∆∗, µ ∈ R4

}
= sup

{
|∇ξΘj,k(ξ, µ)| : ξ ∈ ∆∗, µ ∈ S3 ∪ {0, 0, 0, 0}

}
.
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Since ∆ is compact, and since Θj,k(·, (0, 0, 0, 0)) ∈ C∞(∆∗) and since Θj,k(·, ·) ∈

C∞(∆∗ × S3) it follows that

sup
{
|∇ξΘj,k(ξ, µ)| : ξ ∈ ∆∗, µ ∈ S3 ∪ {0, 0, 0, 0}

}
<∞.

This completes the proof of Lemma 38.

Lemma 39. Let ~v ∈ S2m−1. Let θ1, . . . , θm, and Θ1, . . . ,Θm be as in Lemma 38.

Let S⊥ be as in Lemma 26. Let b ∈ L2(Rn,R) ∩BMO(Rn,R). Set

~v′ = (−v2, v1, · · · ,−v2m, v2m−1)

and let Θ′1, . . . ,Θ
′
m be the family of functions constructed in Lemma 38 using ~v′ in

place of ~v. Let

b′ =
m∑
j=1

mθj((v2j−1 + iv2jb))

and

~p =


(v1 + iv2)b−mΘ1(Re b′)− imΘ′1

(Im b′)

...

(v2m−1 + iv2m)b−mΘm(Re b′)− imΘ′m(Im b′)

 .
Then

~p ∈ S⊥ (2.51)

~p(x) · ~v = b(x). (2.52)
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Proof. We first establish (2.51). Note that by (2.37) we have

m∑
j=1

mθj

(
(v2j−1 + iv2j)b−mΘj(Re b′)− imΘ′j

(Im b′)
)

= b′ − Re b′ − i Im b′

= 0.

For (2.52) we note that if f ∈ L2(Rn,R) then we have

Re(mΘjf) =
mΘjf +mΘjf

2

=
mΘjf +m

Θ̃j
f

2

=
F−1

[(
Re(Θj + Θ̃j) + i Im(Θj − Θ̃j)

)
f̂
]

2
.

Similarly,

Im(mΘjf) =
F−1

[(
Im(Θj + Θ̃j)− iRe(Θj − Θ̃j)

)
f̂
]

2
.

Consequently,

(mΘ1f, . . . ,mΘmf) · ~v =
m∑
j=1

v2j−1 Re(mΘjf) + v2j Im(mΘjf) = 0,

where the last equality follows from (2.38) and (2.39). Then

(imΘ′1
f, . . . , imΘ′mf) · ~v = −(mΘ′1

f, . . . ,mΘ′mf) · ~v′.
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It then follows from the definition of ~p that

~p · ~v =
m∑
j=1

(v2
2j−1 + v2

2j)b = b,

as desired.

2.6. Averaging Operators

In this section we define several averaging operators. They will serve as

auxiliary functions allowing us to bridge the gap between inequalities later on. The

result of this section is a generalization of Lemma 22.7 of [Uch01].

Definition 40. Suppose {λI}I is an indexed set of non-negative real numbers where

I is taken over all dilated cubes in Rn. For each j ∈ Z define

η
(1)
j (x) =

∑
I:|I|=2j

λI
(1 + ρ(x− xI)/2j)1+α−/2

,

η
(2)
j (x) =

∞∑
k=j

(
99

100

)(k−j)α−
η

(1)
k (x),

η
(3)
j (x) =

 ∑
I:|I|=2j

λ2
I

(1 + ρ(x− xI)/2j)1+α−/2

1/2

,

η
(4)
j (x) =

(
∞∑
k=j

(
99

100

)(k−j)α−
η

(3)
k (x)2

)1/2

,

η
(0)
j (x, y) =


η

(2)
j (x) |δ2−j(x− y)| if ρ(x− y) < 2j,

log2 ρ(x−y)∑
k=j

(
η

(2)
k (x) + η

(2)
k (y)

)
if ρ(x− y) ≥ 2j.

Lemma 41. Let {λI}I be as in Definition 40. Let fj : R → Rn × R+ be defined

by fj(x) = (x, 2j). Then the measure δt=2j is defined by setting δt=2j(S) to be the
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Lebesgue measure of f−1
j (S). There exists a constant C > 0 such that

η
(1)
j (x) ≤ Cη

(1)
j (y) if ρ(x− y) ≤ 2j, (2.53)

η
(4)
j (x) ≤ Cη

(4)
j (y) if ρ(x− y) ≤ 2j, (2.54)

∞∑
k=j

(
9

10

)(k−j)α−
η

(4)
k (x)2 ≤ Cη

(4)
j (x)2, (2.55)

2−j
∫

η
(4)
j (y)2dy

(1 + ρ(x− y)/2j)1+α−/2
≤ Cη

(4)
j (x)2, (2.56)

η
(1)
j (x) ≤ η

(2)
j (x) ≤ Cη

(4)
j (x) ≤ C ‖Λ‖1/2

C , (2.57)

η
(0)
j (x, y) ≤ C ‖Λ‖1/2

C log2(2 + ρ(x− y)/2j), (2.58)∑
I:|I|=2j

λIη
(0)
j+1(x, xI)

(1 + ρ(x− xI)/2j)1+α−
≤ C min

{
η

(4)
j (x)2, ‖Λ‖1/2

C η
(1)
j (x)

}
(2.59)∥∥∥∥∥

∞∑
j=−∞

η
(4)
j (x)2δt=2j

∥∥∥∥∥
C

≤ C ‖Λ‖C . (2.60)

Proof. In this proof C denotes a positive constant. Different instances of C do not

necessarily denote the same constant. For (2.53) we have

η
(1)
j (y) =

∑
I:|I|=2j

λI

(1 + ρ(y − xI)/2j)1+α−/2

≥
∑

I:|I|=2j

λI

(1 + Cqρ(x− y)/2j + Cqρ(x− xI)/2j)1+α−/2

≥
∑

I:|I|=2j

λI

((1 + Cq)(1 + ρ(x− xI)/2j))1+α−/2

= Cη
(1)
j (x).
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Similarly, for (2.54) we have

η
(4)
j (y)2 =

∞∑
k=j

(
99

100

)(k−j)α− ∑
I:|I|=2j

λ2
I

(1 + ρ(y − xI)/2k)1+α−/2

≥ C

∞∑
k=j

(
99

100

)(k−j)α− ∑
I:|I|=2j

λ2
I

(1 + ρ(x− xI)/2k)1+α−/2

= Cη
(4)
j (x)2.

For (2.55),

∞∑
k=j

(
9

10

)(k−j)α−
η

(4)
k (x)2

=
∞∑
k=j

(
9

10

)(k−j)α− ∞∑
l=k

(
99

100

)(l−k)α− ∑
I:|I|=2j

λ2
I

(1 + ρ(x− xI)/2l)1+α−/2

≤
∞∑
k=j

(
9

10

)(k−j)α− ( 99

100

)(j−k)α− ∞∑
l=j

(
99

100

)(l−j)α− ∑
I:|I|=2j

λ2
I

(1 + ρ(x− xI)/2l)1+α−/2

= η
(4)
j (x)2

∞∑
k=j

(
10

11

)(k−j)α−

= Cη
(4)
j (x)2.

In order to prove (2.56) we need the following inequality, which holds for k ≥ j.

2−j
∫

dy

(1 + ρ(z − y)/2k)1+α−/2 (1 + ρ(x− y)/2j)1+α−/2

≤ C

(1 + ρ(z − x)/2k)1+α−/2
.

(2.61)
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To see this, we split the integral up into two pieces defined by the ball B =

B(x, r) = {y ∈ Rn : ρ(x− y) ≤ r} and its complement where

r = 2k−1/
[
Cq(1 + ρ(z − x)/2k)

]
and obtain

2−j
∫

dy

(1 + ρ(z − y)/2k)1+α−/2 (1 + ρ(x− y)/2j)1+α−/2

≤ 2−j sup
y∈B

1

(1 + ρ(z − y)/2k)1+α−/2

∥∥∥∥∥ 1

(1 + ρ(x− ·)/2j)1+α−/2

∥∥∥∥∥
1

+ 2−j

∥∥∥∥∥ 1

(1 + ρ(z − ·)/2k)1+α−/2

∥∥∥∥∥
1

sup
y∈Bc

1

(1 + ρ(x− y)/2j)1+α−/2

≤ C

(
sup
y∈B

1

(1 + ρ(z − y)/2k)1+α−/2
+ 2k−j sup

y∈Bc

1

(1 + ρ(x− y)/2j)1+α−/2

)
.

For y ∈ B we have

1 + ρ(z − x)/2k ≤ 1 + Cqρ(z − y)/2k + Cqρ(x− y)/2k

≤ Cq(1 + ρ(z − y)/2k) + 2−1(1 + ρ(z − x)/2k),

so

1 + ρ(z − x)/2k ≤ 2Cq(1 + ρ(z − y)/2k)

and

sup
y∈B

1

(1 + ρ(z − y)/2k)1+α−/2
≤ C

(1 + ρ(z − x)/2k)1+α−/2
.

For y ∈ Bc we have

1 + ρ(x− y)/2j ≥ 1 + C−1
q 2k−j−1(1 + ρ(z − x)/2k)
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so

Cq2
j+1−k(1 + ρ(x− y)/2j) ≥ Cq2

j+1−k + 1 + ρ(z − x)/2k

≥ (1 + 2cq)(1 + ρ(z − x)/2k),

from which we obtain

1

(1 + ρ(x− y)/2j)1+α−/2
≤ C2j−k

(1 + ρ(z − x)/2k)1+α−/2

from which (2.61) follows. Returning to proving (2.56) we have

2−j
∫

η
(4)
j (y)dy

(1 + ρ(x− y)/2j)1+α−/2

= 2−j
∫ ∞∑

k=j

(
99

100

)(k−j)α− ∑
I:|I|=2k

λ2
Idy

(1 + ρ(y − xI)/2k)1+α−/2 (1 + ρ(x− y)/2j)1+α−/2

≤
∞∑
k=j

(
99

100

)(k−j)α− ∑
I:|I|=2k

Cλ2
I

(1 + ρ(x− xI)/2k)1+α−/2

= Cη
(4)
j (x)2.

The first inequality of (2.57) is immediate since the first term of the expression

for η
(2)
j (x) is exactly η

(1)
j (x). For the second inequality in (2.57) we have, using the
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Cauchy-Schwarz inequality twice,

η
(2)
j (x) =

∞∑
k=j

(
99

100

)(k−j)α− ∑
I:|I|=2k

λI

(1 + ρ(x− xI)/2k)1+α−/2

≤
∞∑
k=j

(
99

100

)(k−j)α−
 ∑
I:|I|=2k

λ2
I

(1 + ρ(x− xI)/2k)1+α−/2

1/2

·

 ∑
I:|I|=2k

1

(1 + ρ(x− xI)/2k)1+α−/2

1/2

≤

 ∞∑
k=j

(
99

100

)(k−j)α− ∑
I:|I|=2k

λ2
I

(1 + ρ(x− xI)/2k)1+α−/2

1/2

·

 ∞∑
k=j

(
99

100

)(k−j)α− ∑
I:|I|=2k

1

(1 + ρ(x− xI)/2k)1+α−/2

1/2

= η
(4)
j (x)

 ∞∑
k=j

(
99

100

)(k−j)α− ∑
I:|I|=2k

1

(1 + ρ(x− xI)/2k)1+α−/2

1/2

.

Thus, we need to show

 ∞∑
k=j

(
99

100

)(k−j)α− ∑
I:|I|=2k

1

(1 + ρ(x− xI)/2k)1+α−/2

1/2

≤ C.

Note that

∫
I

dy

(1 + ρ(x− y)/2k)1+α−/2
≥
∫
I

dy

(1 + Cqρ(x− y)/2k + Cqρ(xI − y)/2k)1+α−/2

≥
∫
I

Cdy

(1 + ρ(x− xI)/2k)1+α−/2

=
C2k

(1 + ρ(x− xI)/2k)1+α−/2
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so

∑
I:|I|=2k

1

(1 + ρ(x− xI)/2k)1+α−/2
≤ C

∑
I:|I|=2k

2−k
∫
I

dy

(1 + ρ(x− y)/2k)1+α−/2

= C2−k
∫
Rn

dy

(1 + ρ(x− y)/2k)1+α−/2

= C.

Thus, we have

 ∞∑
k=j

(
99

100

)(k−j)α− ∑
I:|I|=2k

1

(1 + ρ(x− xI)/2k)1+α−/2

1/2

≤ C.

For the third inequality in (2.57),

η
(4)
j (x) ≤ C ‖Λ‖1/2

C ,

we need only recall that

λI ≤ C ‖Λ‖1/2
C

so that

η
(4)
j (x)2 =

∞∑
k=j

(
99

100

)(k−j)α− ∑
I:|I|=2k

λ2
I

(1 + ρ(x− xI)/2k)1+α−/2

≤ C ‖Λ‖C
∞∑
k=j

(
99

100

)(k−j)α− ∑
I:|I|=2k

1

(1 + ρ(x− xI)/2k)1+α−/2

≤ C ‖Λ‖C .

This completes the proof of (2.57).
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The proof of (2.58) is straightforward from (2.57). First, if ρ(x− y) < 2j then

η
(0)
j (x, y) =η

(2)
j (x)|A2−j(x− y)|

≤ C ‖Λ‖C

≤ C ‖Λ‖1/2
C log2(2 + ρ(x− y)/2j).

For ρ(x− y) ≥ 2j, we have

η
(0)
j (x, y) =

log2 ρ(x−y)∑
k=j

(
η

(2)
j (x) + η

(2)
j (y)

)
≤ C ‖Λ‖1/2

C (log2 ρ(x− y)− j + 1)

≤ C ‖Λ‖1/2
C log2(2 + ρ(x− y)/2j).

We move on to establishing (2.59). Using (2.58) we have

∑
I:|I|=2j

λIη
(0)
j+1(x, xI)

(1 + ρ(x− xI)/2j)1+α−

≤ C ‖Λ‖1/2
C

∑
I:|I|=2j

λI log2(2 + ρ(x− xI)/2j+1))

(1 + ρ(x− xI)/2j)1+α−

≤ C ‖Λ‖1/2
C

∑
I:|I|=2j

λI

(1 + ρ(x− xI)/2j)1+α−/2

log2(2 + ρ(x− xI)/2j+1))

(1 + ρ(x− xI)/2j)α−/2

≤ C ‖Λ‖1/2
C η

(1)
j (x).
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Also,

∑
I:|I|=2j

λIη
(0)
j+1(x, xI)

(1 + ρ(x− xI)/2j)1+α−

≤ C
∑

I:|I|=2j

λI

(1 + ρ(x− xI)/2j)1+α−

log2(2j+1+ρ(x−xI))∑
k=j+1

(
η

(2)
k (x) + η

(2)
k (xI)

)

≤ C
∑
k>j

∑
I:|I|=2j

xI /∈B(x,2k−2j+1)

λI

(
η

(2)
k (x) + η

(2)
k (xI)

)
(1 + ρ(x− xI)/2j)1+α−

≤ C

(∑∑ λ2
I

(1 + ρ(x− xI)/2j)1+α−

)1/2

·

∑∑ (
η

(2)
k (x) + η

(2)
k (xI)

)2

(1 + ρ(x− xI)/2j)1+α−


1/2

,

where the last inequality follows from Cauchy-Schwarz. Since xI /∈ B(x, 2k − 2j+1)

we have

1

1 + ρ(x− xI)/2j
≤ 1

1 + 2k−j − 2
≤ 2j−k

so that

1

(1 + ρ(x− xI)/2j)α−/2
≤ 2(j−k)α−/2.

Additionally, using that ρ(x− xI) ≥ 2k − 2j+1, we have

1

(1 + ρ(x− xI)/2j)1+α−
≤ C2(j−k)(1+α−)

(1 + ρ(x− xI)/2k)1+α−
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so that

(∑∑ λ2
I

(1 + ρ(x− xI)/2j)1+α−

)1/2

∑∑ (
η

(2)
k (x) + η

(2)
k (xI)

)2

(1 + ρ(x− xI)/2j)1+α−


1/2

≤ C

(∑∑ 2(j−k)α−/2λ2
I

(1 + ρ(x− xI)/2j)1+α−/2

)1/2

·

∑∑(
η

(2)
k (x)2 + η

(2)
k (xI)

2
)

2(j−k)(1+α−)

(1 + ρ(x− xI)/2k)1+α−

1/2

.

From here we make use of (2.54) and (2.57) followed by (2.56) and then finally

(2.55) to obtain

(∑∑ 2(j−k)α−/2λ2
I

(1 + ρ(x− xI)/2j)1+α−/2

)1/2

·

∑∑(
η

(2)
k (x)2 + η

(2)
k (xI)

2
)

2(j−k)(1+α−)

(1 + ρ(x− xI)/2j)1+α−

1/2

≤ C

(∑
k>j

2(j−k)α−/2η
(3)
j (x)2

)1/2(∑
k>j

2(j−k)α−

∫
Rn

η
(4)
k (x)2 + η

(4)
k (y)2

2k (1 + ρ(x− y)/2k)1+α−
dy

)1/2

≤ Cη
(3)
j (x)

(∑
k>j

2(j−k)α−η
(4)
k (x)2

)1/2

≤ Cη
(4)
j (x),

and the result follows.
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Finally, we prove (2.60). Let B = B(xB, rB). Then we have

∫
B

log2(rB)∑
j=−∞

η
(3)
j (x)2dx =

log2(rB)∑
j=−∞

∑
I:|I|=2j

λ2
I

∫
B

dx

(1 + ρ(x− xI)/2j)1+α−/2

≤ C
∑∑

λ2
I min

{
|I|, |B| (dist(xI , B)/|I|)1+α−/2

}
.

If |I| ≤ |B| (dist(xI , B)/|I|)1+α−/2 then by rearranging we obtain

dist(xI , B) ≤ (|B||I|α−/2)1/(1+α−/2) ≤ CrB.

Thus,

1 +
ρ(xI − xB)

rB
≤ 1 + Cq

dist(xB, B) + rB
rB

≤ C,

from which it follows that

|I| ≤ C|I|
(1 + ρ(xI − xB))1+α−/2

.

If |B| (dist(xI , B)/|I|)1+α−/2 ≤ |I| then by rearranging we obtain

(dist(xI , B)/|I|)1+α−/2 ≥ |B||I|α−/2.

This gives

1 + ρ(xI − xB)/rB
dist(xI , B)

≤ 1 + Cq
dist(xI , B)

+
Cq
rB
≤ C

|B|1/(1+α−/2)|I|α−/(2(1+α−/2))
,

from which it follows that

|B| (dist(xI , B)/|I|)1+α−/2 ≤ C|I|
(1 + ρ(xI − xB)/rB)1+α−/2

.
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Thus, we have

∫
B

log2(rB)∑
j=−∞

η
(3)
j (x)2dx ≤ C

∑∑ λ2
I |I|

(1 + ρ(xI − xB)/rB)1+α−/2

≤ C ‖Λ‖C |B|.

Hence, for any m ∈ N we have

∫ ∫
Q(B)

∞∑
j=−∞

η
(3)
j+m(x)2δt=2j

=

log2(rB)+m∑
j=−∞

∫
B

η
(3)
j (x)2dx

=

log2(rB)∑
j=−∞

∫
B

η
(3)
j (x)2dx+

log2(rB)+m∑
j=log2(rB)+1

∫
B

η
(3)
j (x)2dx

≤ C(1 +m) ‖Λ‖C |B|.

So

∥∥∥∥∥
∞∑

j=−∞

η
(3)
j+m(x)2δt=2j

∥∥∥∥∥
C

≤ C(1 +m) ‖Λ‖C

and

∥∥∥∥∥
∞∑

j=−∞

η
(4)
j (x)2δt=2j

∥∥∥∥∥
C

≤
∞∑
m=0

.99mα−

∥∥∥∥∥
∞∑

j=−∞

η
(3)
j+m(x)2δt=2j

∥∥∥∥∥
C

≤ C
∞∑
m=0

.99mα−(1 +m) ‖Λ‖C

≤ C ‖Λ‖C .
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2.7. Proof of Lemma 28

Before getting to the proof of Lemma 28 we need a few more lemmas. The

first will give an approximate decomposition of elements ~g in BMO with support

in B(0, 1) in terms of smooth atoms. Note that each component of these atoms

satisfies the relevant conditions of Lemma 35. Moreover, each component satisfies

the relevant condition of Lemma 39. The following lemma is a generalization of

Lemma 22.6 of [Uch01].

Lemma 42. Let ~g ∈ BMO(Rn,Rd) and let supp~g ⊂ B(0, 1). Define z =

supx∈[0,1]n ρ(x). Then there exists a constant C > 0, independent of ~g, such

that there exist indexed sets {λI}I and {~bI}I of non-negative real numbers and

functions in D(Rn,Rd) respectively, where the index runs over all I of the form

I = δ2l ([0, 1)n + k) for l ∈ Z and k ∈ Zn, such that

λI = 0 and ~bI ≡ 0 unless I ⊂ B(0, C2
q + 1),

and l ≤ − log2(C2
q (1 + z)) = j′

(2.62)

‖Λ‖C ≤ C ‖~g‖2
BMO (2.63)

supp~bI ⊂ B(0, |I|) + I (2.64)∫
~bIdx = ~0 (2.65)∣∣∣∇2
[
~bI ◦ δ2l

]∣∣∣ ≤ 1 (2.66)

supp

(
~g −

∑
I

λI~bI

)
⊂ B(0, C3

q + 2Cq) (2.67)∥∥∥∥∥~g −∑
I

λI~bI

∥∥∥∥∥
L∞

≤ C ‖~g‖BMO (2.68)

where ∇2 ~f is the vector consisting of all second partial derivatives of ~f .
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Proof. In this proof C is used to denote a positive constant. Different instances of

C do not necessarily denote the same constant. Let ϕ ∈ D(Rn,R) satisfy suppϕ ⊂

B(0, 1) and
∫
Rn ϕ = 0, and

∫ ∞
0

ϕ̂(δ∗t ξ)
2dt

t
= 1 if ξ 6= 0.

For a cube Il,k = I let T (I) = I × (|I|/2, |I|] and define

λ′Il,k =


(
|I|−1/2

∫ ∫
T (I)
|~g ∗ ϕδt(y)|2 dydt

t

)1/2

l ≤ − log2(C2
q (1 + z)),

0 otherwise

~b′Il,k(x) =


∫ ∫

T (I)
~g ∗ ϕδt(y)ϕδt(x− y) dydt

tλ′Il,k
λ′Ij,k 6= 0

0 otherwise

First we show
∣∣∣∇2

[
~b′Il,k ◦ δ2l

]
(x)
∣∣∣ ≤ C. If λ′Il,k = 0, then this is clear. If not, then

since 1 ≤ 2l/t ≤ 2 holds for 2l−1 ≤ t ≤ 2l, we have for 1 ≤ i, j ≤ n.

|∂i∂j [ϕ ◦ δ2lt−1 ] (x− δ2−ly)| ≤C
∣∣∣∣ sup
1≤a,b≤n

∂a∂bϕ(δ2lt−1x− δt−1y)

∣∣∣∣ ‖δ2lt−1‖2

≤ C ′.
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It then follows from the above and Hölder’s inequality that for 1 ≤ r ≤ d,

∣∣∣∂i∂j [~b′l,k ◦ δ2l

]
r

(x)
∣∣∣

=

∣∣∣∣∣
∫ ∫

T (I)

~gr ∗ ϕδt(y)∂i∂j [ϕ ◦ δ2lt−1 ] (x− δ2−ly)
dydt

t2λ′Il,k

∣∣∣∣∣
≤ C ′

λ′l,k

(∫ ∫
T (I)

|~gr ∗ ϕδt(y)|2 dydt
t

)1/2

·
(∫ ∫

T (I)

dydt

t3

)1/2

= |I|1/2 · C
′′(ϕ)|I|1/2

|I|

= C ′′(ϕ),

from which the result follows. Set ~bI = ~b′I/(n
2dC ′′(ϕ)) and set λI = n2dC ′′(ϕ)λ′I .

Then (2.66) holds.

For (2.65) we note that
∫
Rn ϕδt(x− y)dx = 0 for all (y, t) ∈ T (I).

Turning to (2.64), since the support of ϕ is B(0, 1), we know that ϕδt(x − y)

is nonzero only if x − y ∈ B(0, t). In particular, if (y, t) ∈ T (I), then ϕδt(x − y) is

nonzero only if x ∈ B(0, |I|) + I.

For (2.62) note that because ϕ is supported in B(0, 1), the function ϕAt is

supported in B(0, |I|) for t ≤ |I|. It follows that the support of ~g ∗ ϕδt is contained

in B(0, 1) + B(0, |I|) for that range of t. If x ∈ supp(~g ∗ ϕδt) ∩ I and y ∈ I then we

have

ρ(y) ≤ Cq (ρ(x− y) + ρ(x))

≤ Cq (|I|z + Cq (1 + |I|))

= C2
q + |I|

(
Cqz + C2

q

)
.
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Thus, if l ≤ − log2(C2
q (1 + z)) then I only intersects with the support of ~g ∗ ϕδ|I| if

I ⊂ B(0, C2
q + 1).

We now show (2.63). By the definition of λI we have

λ2
I |I| = C

∫
T (I)

|~g ∗ ϕδt(y)|2dydt
t

If B = B(xB, r) and SB is the union over all T (I) for dyadic cubes I such that

xI ∈ B and |I| ≤ r then we have

∫
B×[0,r]

Λ =

∫
SB

|~g ∗ ϕδt(y)|2dydt
t

≤
∫
T (B′)

|~g ∗ ϕδt(y)|2dydt
t

,

where B′ = B(xB, rCq(1 + z)), and T (B′) = B × [0, rCq(1 + z)]. Since we are

integrating over T (B′) the support of ϕδt is contained in B(0, rCq(1 + z)) so that if

x ∈ B′ and ϕδt(x− y) is nonzero then

ρ(y − xB) ≤ Cq(ρ(x− xB) + ρ(x− y))

≤ 2C2
q r(1 + z)

= r′′.
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So, letting B′′ = B(xB, r
′′) we then have

∫
T (B′)

|(~g ∗ ϕδt)(y)|2dydt
t

=
d∑
i=1

∫
T (B′)

|(gi − (gi)B′′)χB′′ ∗ ϕδt(y)|2dydt
t

≤
∑∫

Rn+1
+

|(gi − (gi)B′′)χB′′ ∗ ϕδt(y)|2dydt
t

≤ C
∑∫

B′′
|gi(y)− (gi)B′′ |2dy

≤ C
∑
|B′′| ‖gi‖2

BMO ,

where the last inequality is a consequence of Corollary 6.3 in [Hyt10].

It then follows that

1

|B|

∫
B×[0,r]

Λ ≤ C
d∑
i=1

‖gi‖2
BMO

which gives (2.63).

We now consider the support of ~g−
∑

I λI
~bI to establish (2.67). We know from

(2.62) that we only need to consider those cubes I for which |I| ≤ 1/(C2
q (1+z)) and

I ⊂ B(0, C2
q + 1). Combining this with (2.64), each function bI is supported in

B(0, |I|) + I ⊂B
(

0,
1

C2
q (1 + z)

)
+B(0, C2

q + 1)

⊂ B

(
0, Cq

(
1

C2
q (1 + z)

+ C2
q + 1

))
⊂ B

(
0, C3

q + 2Cq
)
.

Since this is a larger set than the support of ~g we obtain

supp

(
~g −

∑
I

λI~bI

)
⊂ B(0, C3

q + 2Cq)
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which is (2.67).

It remains to show (2.68). In fact, this is a straightforward consequence of

~g(x)−
∑

λI~bI(x) =

∫
Rn×(2j′ ,∞)

~g ∗ ϕδt(y)ϕδt(x− y)dydt/t

and

|~g ∗ ϕδt(y)| ≤ C ‖~g‖L1

t
≤ C ‖~g‖BMO

t
.

The following lemma will put together most of the results in the last several

sections. Its conclusion yields the pieces that will enable us to prove Lemma 28.

Lemma 43. Let A > 0 be a sufficiently large constant. Let ~g ∈ BMO satisfy

supp~g ⊂ B(0, 1) and ‖~g‖BMO ≤ A−100. Then there exist {~bI}I , and {λI}I , as in

Lemma 42 and there exist {~pI}I:|I|≤2j′ and { ~ϕj}j≤j′ such that the following hold:

|~pI(x)|+
∣∣∇ [~pI ◦ δ|I|] (δ|I|−1x)

∣∣ ≤ A

(1 + ρ(x− xI)/|I|)1+α−
, (2.69)∫

~pI(x)dx = 0, (2.70)

~pI ∈ S⊥, (2.71)

|~κj(x)| ≤ 1 where ~κj =
∑

I:|I|≥2j

λI(~bI + ~pI)−
∑
k≥j

~ϕk, (2.72)

|~ϕj(x)| ≤ A10 min
{
η

(4)
j (x)2, ‖~g‖BMO η

(1)
j (x)

}
, (2.73)

|∇ [~ϕj ◦ A2j ] (x)| ≤ A10 ‖~g‖BMO η
(1)
j (x), (2.74)

supp~ϕj ⊂

x ∈ Rn :
∑

I:|I|>2j

λI |~bI(x) + ~pI(x)| ≥ 9

10

 . (2.75)
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Proof. In this proof C is used to denote a positive constant. Different instances

of C do not necessarily denote the same constant. For every dilated cube I with

|I| > 2j
′

define ~pI = 0. For every j > j′ define ~ϕj = 0. Note that for j ≥ j′ + 1

each of (2.69)–(2.75) holds since each function involved is zero. We will construct

the desired functions for other values of j inductively. To that end, suppose j ≤ j′

and suppose that we have constructed functions {~pI}|I|≥j and {~ϕk}k≥j such that

(2.69)–(2.75) all hold.

Let ~U(y) = y/ ‖y‖. If I is a dilated cube with |I| = 2j−1 then by applying

Lemma 39 with b(x) = −~bI(x) · ~U(~κj(xI)) and ~ν = ~U(~κj(xI)) gives a C1 function ~pI

in S⊥ such that (
~pI(x) +~bI(x)

)
· U(~κj(xI)) = 0

It follows from Lemma 35 that (2.69)–(2.71) all hold.

Before constructing ~ϕj−1 we first establish

|~κj(x)− ~κj(y)| ≤ A2η
(0)
j (x, y), (2.76)

|∇ [~κj ◦ δ2j ] (δ2−jx)| ≤ A2η
(2)
j (x). (2.77)

We first prove (2.76). Suppose ρ(x− y) ≤ 2k. Then

∣∣∣∣∣∣
∑

I:|I|=2k

λI

(
~bI(x) + ~pI

)
−
∑

I:|I|=2k

λI

(
~bI(x) + ~pI(x)

)∣∣∣∣∣∣
≤
∑

λI

(
|~bI(x)−~bI(y)|+ |~pI(x)− ~pI(y)|

)
≤
∑ CAλI |δ2−k(x− y)|

(1 + ρ(x− xI)/|I|)1+α−

≤ A2η
(1)
k (x)|δ2−k(x− y)|.
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Also we have

|~ϕk(x)− ~ϕk(y)| ≤ CA ‖~g‖BMO η
(1)
k (x)|δ2−k(x− y)|.

Thus, if ρ(x− y) ≤ 2j then, by summing over k ≥ j, we obtain

|~κj(x)− ~κj(y)| ≤ 2A2

∞∑
k=j

|δ2−k(x− y)|η(1)
k (x)

≤ A3|δ2−j(x− y)|η(2)
k (x)

Similarly, if ρ(x− y) ≥ 2k we have

∣∣∣∣∣∣
∑

I:|I|=2k

λI

(
~bI(x) + ~pI

)
−
∑

I:|I|=2k

λI

(
~bI(x) + ~pI(x)

)∣∣∣∣∣∣
≤
∑

λI

(
|~bI(x) + ~pI(x)|+ |~bI(y) + ~pI(y)|

)
≤ CA

(
η

(1)
k (x) + η

(1)
k (y)

)

and

|~ϕk(x)− ~ϕk(y)| ≤ η
(1)
k (x) + η

(1)
k (y).

Summing over k ≥ j we obtain

|~κj(x)− ~κj(y)| ≤
log2(ρ(x−y))∑

k=j

CA
(
η

(1)
k (x) + η

(1)
k (y)

)
+

∞∑
k=log2(ρ(x−y))+1

CAη
(1)
k (x)

≤ A2

log2(ρ(x−y))∑
k=j

(
η

(2)
k (x) + η

(1)
k (y)

)
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This establishes (2.76).

Note that by (2.76) we have, for ρ(x− δ2jy) < 2j,

| [~κj ◦ δ2j ] (δ2−jx)− [~κj ◦ δ2j ] (y)|
|δ2−jx− y|

≤
A2η

(0)
j (x, δ2jy)

|δ2−j(x− δ2jy)|

≤
A2η

(2)
j (x)|δ2−j(x− δ2jy)|
|δ2−j(x− δ2jy)|

= A2η
(2)
j (x),

from which (2.77) follows.

We next construct an auxiliary C1(Rn,R) function ψj such that |ψj(x)| ≤ 1

and

ψj(x) =


1 if |~κj(x)| ≥ 99

100

0 if |~κj(x)| ≤ 9

10

(2.78)

|∇ [ψj ◦ δ2j ] (δ2−kx)| ≤ 1. (2.79)

Note that by (2.77) we know that the function ~κj ◦ δ2j has gradient bounded above

by A2
∥∥∥η(2)

j

∥∥∥
L∞
≤ A−97. Consequently, if ~κj ◦ δ2j(x) ≥ 99

100
and ~κj ◦ δ2j(y) ≤ 9

10
then

we have by the mean value theorem

|x− y| ≥ 9

100A−97
≥ A > 1
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In particular, there exists a C1 function Ψj such that

Ψj(x) =


1 if |~κj ◦ δ2j(x)| ≥ 99

100

0 if |~κj ◦ δ2j(x)| ≤ 9

10

|∇Ψj(x)| ≤ 1.

Setting ψj(x) = Ψj(δ2−jx) gives our desired function.

Define

~ρ(x) =
∑

I:|I|=2j−1

λI

(
~bI(x) + ~pI(x)

)
, (2.80)

~τ(x) = ~κj(x) + ~ρ(x), (2.81)

~ϕj−1(x) = ψj(x) (|~τ(x)| − |~κj(x)|)U(~τ(x)), (2.82)

and

~κj−1(x) = ~τ(x)− ~ϕj−1(x).

We must show (2.72)–(2.75) hold for ~κj−1 and ~ϕj−1.

We first prove (2.72). Note that if ~κj(x) ≥ 99

100
then we have

|~κj−1(x)| = |~τ(x)| − |~τ(x)|+ |~κj(x)| = ~κj(x) ≤ 1.
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If ~κj(x) ≤ 99

100
then we have

|~κj−1(x)| = |(1− ψj(x))|~τ(x)|+ ψj(x)|~κj(x)|

≤ |~κj(x)|+ |~ρ(x)|

≤ .99 + A2η
(1)
j−1(x)

≤ 1.

We next prove (2.75). Note that by construction we have

supp ~ϕj−1 ⊂ supp ~ψj

⊂
{
x ∈ Rn : |~κj(x)| ≥ 9

10

}
⊂
{
x ∈ Rn :

∑
λI |~bI(x) + ~pI(x)|+

∑
|~ϕk(x)| ≥ 9

10

}
.

By the induction hypothesis we know the support of ~ϕj is contained in the region

where
∑
λI |~bI(x) + ~pI(x)| ≥ 9

10
so that the last set above is contained in

{
x ∈ Rn :

∑
λI |~bI(x) + ~pI(x)| ≥ .9

}
.

so that (2.75) holds for ~ϕj−1.

For (2.73) and (2.74) we first rewrite ~ϕj−1 in a more useful form. For

|~κj(x)| > 0 we have

|~τ(x)| − |~κj(x)| =
√
|~κj(x)|2 + 2(〈~κj(x), ~ρ(x)〉) + |~ρ(x)|2 − |~κj(x)|

= |~κj(x)|
(√

1 + 2|~κj(x)|−1(~ρ(x) · U(~κj(x))) + |~κj(x)|−2|~ρ(x)|2 − 1

)
.
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For simplicity we set

v(x) =
√

1 + x− 1

µ(x) = 2|~κj(x)|−1(~ρ(x) · U(~κj(x))) + |~κj(x)|−2|~ρ(x)|2.

So, if |~κj(x)| > 0 then

|~τ(x)| − |~κj(x)| = |~κj(x)|v(µ(x))

and

|~ϕj−1(x)| =

 ψj(x)|~κj(x)|v(µ(x))U(~τ(x)) |~κj(x)| ≥ 9

10
,

0 otherwise.

We next establish that if |~κj(x)| ≥ 9

10
then

|~ρ(x) · U(~κj(x))| ≤ A4 min
{
η

(4)
j−1(x)2, ‖~g‖2

BMO

}
(2.83)

|∇ [~ρ ◦ δ2j−1 · U(~κj ◦ δ2j−1)] (δ2−(j−1)x)| ≤ A4 ‖~g‖2
BMO (2.84)

We first prove (2.83). We have

|~ρ(x) · U(~κj(x))| =

∣∣∣∣∣∣
∑

I:|I|=2j−1

λI

(
~bI(x) + ~pI(x)

)
· U(~κj(x))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

I:|I|=2j−1

λI

(
~bI(x) + ~pI(x)

)
· (U(~κj(x))− U(~κj(xI)))

∣∣∣∣∣∣
≤

∑
I:|I|=2j−1

λI

∣∣∣~bI(x) + ~pI(x)
∣∣∣ |U(~κj(x))− U(~κj(xI))| .
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Note that

|U(x)− U(y)| = |U(x)(1− |x|/|y|) + (x− y)/|y||

≤ |x− y|/|y|+ |1− |x|/|y||

= |x− y|/|y|+ ||y| − |x||/|y|

≤ 2|x− y|/|y|.

With our assumption that |~κj(x)| ≥ 9

10
we obtain

∑
I:|I|=2j−1

λI

∣∣∣~bI(x) + ~pI(x)
∣∣∣ |U(~κj(x))− U(~κj(xI))|

≤
∑

I:|I|=2j−1

λI

∣∣∣~bI(x) + ~pI(x)
∣∣∣ 3 |~κj(x)− ~κj(xI)|

≤
∑

I:|I|=2j−1

6A3λIη
(0)
j (x, xI)

(1 + ρ(x− xI)/2j−1)1+α−

from which (2.83) follows.

The proof of (2.84) is similar:

|∇ [~ρ ◦ δ2j−1 · U(~κj ◦ δ2j−1)] (δ2−(j−1)x)|

≤

∣∣∣∣∣∣
∑

I:|I|=2j−1

λI (U(~κj(x))− U(~κj(xI))∇
(
~bI ◦ δ2j−1 + ~pI ◦ δ2j−1

)
(δ2−(j−1)x)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

I:|I|=2j−1

λI

(
~bI(x) + ~pI(x)

)
∇(U(~κj ◦ δ2j−1))(δ2−(j−1)x)

∣∣∣∣∣∣
≤

∑
I:|I|=2j−1

6A3λIη
(0)
j (x, xI)

(1 + ρ(x− xI)/2j−1)1+α−
+

∑
I:|I|=2j−1

A4λIη
(2)
j (x)

(1 + ρ(x− xI)/2j−1)1+α−

≤ A5 ‖~g‖2
BMO .
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We next show that if |~κj(x)| ≥ 9

10
then

|µ(x)| ≤ A5 min
{
η

(4)
j−1(x)2, ‖~g‖2

BMO

}
(2.85)

|∇ [µ ◦ δ2j−1 ] (δ2−(j−1)x)| ≤ A7 ‖~g‖2
BMO , (2.86)

which will allow us to complete the proof of Lemma 43.

For (2.85) we apply the definition of ~ρ as well as our condition on |~κj(x)| and

(2.83).

For (2.86), we have

|∇ [µ ◦ δ2j−1 ] (δ2−(j−1)x)|

≤ 2|~κj(x)|−2|∇ [~κj ◦ δ2(j−1) ] (δ2−(j−1)x)||~ρ(x)|

+ 2|~κj(x)|−1|∇ [~ρ ◦ δ2j−1 · U(~κj ◦ δ2j−1)] (δ2−(j−1)x)|

+ 2|~κj(x)|−3|∇ [~κj ◦ δ2(j−1) ] (δ2−(j−1)x)||~ρ(x)|2

+ 2|~κj(x)|−2||~ρ(x)||∇ [~ρ ◦ δ2j−1 ] (δ2−(j−1)x)|

≤ 3A4η
(2)
j (x)η

(1)
j−1(x) + 3A4 ‖~g‖2

BMO + 3A4η
(2)
j (x)η

(1)
j−1(x) + 3A4η

(1)
j−1(x)2

≤ A7 ‖~g‖2
BMO .

We prove (2.73). Note that if |~κj(x)| < 9

10
then ~ϕj−1(x) = 0, and that if

|~κj(x)| ≥ 9

10
then we have

|~ϕj−1(x)| ≤ |v(µ(x))| ≤ |µ(x)| ≤ A10 min
{
η

(4)
j (x)2, ‖~g‖BMO η

(1)
j (x)

}
,

as desired.
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Finally, we prove (2.74). We have

|∇ [~ϕj−1 ◦ δ2j−1 ] (δ2−(j−1)x)|

≤ |∇
[
~ψj ◦ δ2j−1

]
(δ2−(j−1)x)|~κj(x)|v(µ(x))|U(~τ(x))|

+ |ψj(x)||∇ [~κj ◦ δ2j−1 ] (δ2−(j−1)x)|v(µ(x))|U(~τ(x))|

+ |ψj(x)||~κj(x)|v′(µ(x))∇ [µ ◦ δ2j−1 ] (δ2−(j−1)x)|U(~τ(x))|

+ |ψj(x)||~κj(x)|v(µ(x))|~τ(x)|−1|∇ [~τ ◦ δ2j−1 ] (δ2−(j−1))|

≤ |µ(x)|+ A2η
(2)
j (x)|µ(x)|+ .5A7 ‖~g‖2

BMO + |µ(x)||~τ(x)|−1|∇ [~τ ◦ δ2j−1 ] (δ2−(j−1))|

≤ A7 ‖~g‖2
BMO + 2A5 ‖~g‖2

BMO

≤ A8 ‖~g‖2
BMO ,

as desired. This completes the proof of Lemma 43.

We now prove our final lemma. Once it is proven we will establish Lemma 28

through an iterative process.

Lemma 44. There exists a positive constants C ′, C ′′, C ′′′ such that if ~g and S⊥ are

as in Lemma 28, then there exist ~h ∈ S⊥ and ~v ∈ BMO satisfying

∥∥∥~h∥∥∥
BMO

≤ C ′ ‖~g‖BMO , (2.87)

‖~v‖BMO ≤ C ′ ‖~g‖2
BMO , (2.88)

supp~v ⊂ B(0, C ′′), (2.89)∣∣∣~g(x)− ~h(x)− ~v(x)
∣∣∣ ≤ 2χB(0,C′′′)(x) + χB(0,C′′′)c(x)ρ(x)−(1+α−). (2.90)

Proof. In the following proof, C denotes a positive constant. Different instances of

C do not necessarily denote the same constant. Note that if we assume ‖~g‖BMO >
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A−100 then the result is straightforward. Take ~h = 0 and ~v = ~g and C ′ ≥ A100. If

‖~g‖BMO, then we can use Lemma (43). If (2.69)–(2.75) hold the we can define

~h = −
∑
I

λI~pI and ~v =
∞∑

k=−∞

~ϕk.

We first check that ~h satisfies (2.87) and is in S⊥. By (2.62) and (2.63) we have

∑
I

λ2
I |I| =

|B(0, C ′′′)|
|B(0, C ′′′)|

∫
B(0,C′′′)

Λ ≤ C ‖Λ‖C ≤ C ‖~g‖2
BMO <∞.

So, since (2.69) and (2.70) also hold we can apply Lemma 37 to establish that

the sum defining ~h converges in L2 and BMO and that (2.34) and (2.35) hold.

Combining (2.35) with (2.63) gives (2.87). The fact that ~h is in S⊥ follows from

the fact that each pI is.

We next look at ~v and show (2.88) and (2.89) hold. First, because of (2.73)

and because ∑∥∥∥η(4)
k

∥∥∥2

2
≤ C

∑
I

λ2
I |I|

we know that the sum defining ~v converges in L1. In particular, it is finite almost

everywhere.

Since supp
∑

I λI
~bI ⊂ B(0, C) we have, for x /∈ B(0, C ′′),

∑
I

λI

(
|~bI(x)|+ |~pI(x)|

)
=
∑
I

λI |~pI(x)|

≤ A ‖~g‖2
BMO ·

A

(1 + ρ(x− xI)/|I|)1+α−

≤ A−97

ρ(x)1+α−

<
9

10
,
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so that by (2.75) we can conclude that ~v is supported in B(0, C ′′) giving (2.89).

Let B = B(xB, rB). Then we have

1

|B|

∫
B

∣∣∣∣∣∣~v(x)−
∞∑

k=log2(rB)+1

~ϕk(xB)

∣∣∣∣∣∣ dx
≤ 1

|B|

∫
B

log2(rB)∑
k=−∞

|~ϕk(x)| dx+
1

|B|

∫
B

∞∑
k=log2(rB)+1

|~ϕk(x)− ~ϕk(xB)| dx.

For the first term we have

1

|B|

∫
B

log2(rB)∑
k=−∞

|~ϕk(x)| dx ≤ 1

|B|

∫
B

log2(rB)∑
k=−∞

A10η
(4)
k (x)2dx

≤ A10
∥∥∥∑ η

(4)
k (x)2δt=2k

∥∥∥
C

≤ A11 ‖~g‖2
BMO .

For the second term we have

1

|B|

∫
B

∞∑
k=log2(rB)+1

|~ϕk(x)− ~ϕk(xB)| dx

≤ 1

|B|

∫
B

∞∑
k=log2(rB)+1

sup
x∈B
|∇[~ϕk ◦ δ2k ](δ2−kx)| sup

x∈B
|δ2−k(x− xB)| dx

≤
∞∑

log2(rB)+1

A10 ‖~g‖BMO

∥∥∥η(1)
k

∥∥∥
∞

(2−krB)α−

≤ CA10 ‖~g‖2
BMO .

Combining the above gives (2.88).
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We now prove that (2.90) holds. Note that by (2.72) for each j we have

∣∣∣∣∣∑
I

λI~bI(x)− ~h(x)− ~v(x)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

I:|I|<2j

λI(~bI(x) + ~pI(x))−
∑
k<j

~ϕk(x) + ~κ(x)

∣∣∣∣∣∣
≤ 1 +

∣∣∣∣∣∣
∑

I:|I|<2j

λI(~bI(x) + ~pI(x))−
∑
k<j

~ϕk(x)

∣∣∣∣∣∣ .
Letting j →∞ we obtain

∣∣∣∣∣∑
I

λI~bI(x)− ~h(x)− ~v(x)

∣∣∣∣∣ ≤ 1.

For x /∈ B(0, C ′′) we have

∣∣∣∣∣∑
I

λI~bI(x)− ~h(x)− ~v(x)

∣∣∣∣∣ =

∣∣∣∣∣∑
I

λI~bI(x)− ~h(x)

∣∣∣∣∣ ≤ A−97

(1 + ρ(x− xI)/|I|)1+α−
.

Combining these gives

∣∣∣∑λI~bI(x)− ~h(x)− ~v(x)
∣∣∣ ≤ χBA(0,C′′′)(x) + χBA(0,C′′′)c(x)ρ(x)−(1+α−).

Using (2.67) and (2.68) we then obtain (2.90).

We can now give a proof of Lemma 28, which completes the proof of Theorem

24.

Proof of Lemma 28. Set Cg = (1 + C ′′′)−2(1+α−). We consider only ‖~g‖BMO = Cg/C
′

since Lemma 28 holds under scaling. Now, we know there exist ~h1 ∈ S⊥ and ~v1 ∈
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BMO satisfying

∥∥∥~h1

∥∥∥
BMO

≤ Cg,

‖~v1‖BMO ≤ C2
g/C

′,

supp~v1 ⊂ B(0, C ′′),

|~g(x)− ~h1(x)− ~v1(x)| ≤ 2χB(0,C′′′)(x) + χB(0,C′′′)c(x)ρ(x)−(1+α−).

We next iterate the above by replacing ~g with C−1
g ~v(δC′′ ·) to obtain functions ~h′2 ∈

S⊥ and ~v′2 ∈ BMO such that the above hold with the proper replacements.

In particular, if we set ~h2(x) = Cg~h′2(δ−1
C′′x) and ~v2(x) = Cg~v′(δ

−1
C′′x) then we

have

∥∥∥~h2

∥∥∥
BMO

≤ C2
g ,

‖~v2‖BMO ≤ C3
g/C

′,

supp~v2 ⊂ B(0, C ′′2),

|~v1(x)− ~h2(x)− ~v2(x)| ≤ 2Cg
(
χB(0,C′′′2)(x) + ρ(δ−1

C′′′x)−(1+α−)χB(0,C′′′2)c(x)
)
.

Repeating this process by rescaling ~vj at each step so that it is contained in B(0, 1)

and has BMO norm bounded above by Cg/C
′, we obtain collections

{
~hj

}
in S⊥ and {~vj} in BMO
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such that for j ≥ 1, and with ~v0 = ~g,

∥∥∥~hj∥∥∥
BMO

≤ Cj
g , (2.91)

‖~vj‖BMO ≤ Cj+1
g /C ′, (2.92)

supp ~vj ⊂ B(0, C ′′j), (2.93)∣∣∣~vj−1(x)− ~hj(x)− ~vj(x)
∣∣∣ ≤ 2Cj−1

g

(
χB(0,C′′′j)(x) + ρ(δ

−(j−1)
C′′′ x)−(1+α−)χB(0,C′′′j)c(x)

)
.

(2.94)

From (2.94) we have

∣∣∣~vj−1(x)− ~hj(x)− ~vj(x)
∣∣∣ ≤ CCj−1

g (1 + C ′′′)(j−1)(1+α−)(1 + ρ(x))−(1+α−).

Thus, by making repeated use of the triangle inequality and recalling that Cg =

(1 + C ′′′)−2(1+α−), we obtain

∣∣∣∣∣~g(x)−
j∑

k=1

~hk(x)− ~vj(x)

∣∣∣∣∣ ≤
j−1∑
k=0

C(1 + C ′′′)−(j−1)(1+α−)(1 + ρ(x))−(1+α−)

≤ C(1 + ρ(x))−(1+α−).

This gives us

|~g(x)−
j∑

k=1

~hk(x)| ≤ C(1 + ρ(x))−(1+α−) + |~vj(x)|.

By (2.92) and (2.93) we have

‖~vj‖1 ≤ CC ′′′jCj
g ≤ C(1 + C ′′′)−j(1+α−)
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which goes to zero as j →∞.

Similarly, we have

∥∥∥~hj∥∥∥
1
≤
∥∥∥~hjχB(0,C′′′j)

∥∥∥
BMO

+
∥∥∥~hjχB(0,C′′′j)c

∥∥∥
1

≤ 2CCj
gC
′′′j +

∥∥∥~hjχB(0,C′′′j)c

∥∥∥
1
.

From (2.93) and (2.94) we have

|~hj(x)| ≤ 2Cj−1
g ρ(δ

−(j−1)
C′′′ x)−(1+α−).

It follows from this that

∥∥∥~hjχB(0,C′′′j)c

∥∥∥
1
≤ CCj−1

g C ′′′−(j−1)(1+α−) ≤ C(1 + C ′′′)−j(1+α−)

so that

∥∥∥~hj∥∥∥
1
≤ C(1 + C ′′′)−j(1+α−).

Note that the right hand side above is summable over j ≥ 1. In particular, this

means that the partial sums

j∑
k=1

~hk

converge in L1 to some ~h. It follows that there is a sequence {ln} such that ~g(x) −∑ln
k=0

~hk(x) converges almost everywhere to ~g(x) − ~h(x). Combining this with the
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fact that ‖~vj‖1 → 0 and

|~g(x)−
j∑

k=1

~hk(x)| ≤ C(1 + ρ(x))−(1+α−) + |~vj(x)|

we conclude

|~g(x)− ~h(x)| ≤ C(1 + ρ(x))−(1+α−).
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