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CHAPTER I

INTRODUCTION

1.1. Distributions and Hardy Spaces

In this section we begin by introducing the Schwartz class and the space of
tempered distributions. These will be needed to define the Hardy spaces HP(R™),
whose elements are tempered distributions, as was done by Fefferman and Stein
in [FS72]. We will also introduce the equivalent atomic definition for H? with
p < 1, which came later. This later characterization gives a dense subspace of
H? consisting of functions, which can be easier to work with.

The Schwartz class, S = S(R"), is the space of functions in C*°(R™) such that

each of the seminorms

1fllo5 = sup 220" f(x)]
reR™

is finite for any multi-indices «, 8 in Nfj. The dual space of § is the space of
tempered distributions, which is denoted S’. It is well known that the Fourier

transform, which we will define by

Fre)=F= [ e

is a continuous bijection on the Schwartz class. It follows from this that the Fourier
transform extends by duality to a continuous bijection on & given by ]?(g) = f(9)
for f € S’ and g € S. In particular, this extension coincides with the usual

definition of the Fourier transform for integrable functions, and more generally, for

LP functions with 1 < p < 2. It is also possible to define convolution between



a tempered distribution and a Schwartz function. If f € S and ¢ € S, then

f % ¢ defines an element of &’ by ¢ — f(¢ * 1)) where 1) is the reflection of ¢
through the origin. This distribution coincides with the function z +— f(7,%) where
T+p(y) = o(y — x). There is a close relationship between bounded linear operators
from LP to L? that commute with translations and certain tempered distributions.
In particular, if p,q € [1,00), then we have the following well known result which

can be obtained from Theorems 1.1 and 1.2 of [H6r60].

Theorem 1. Suppose T: LP(R™) — L%(R"™) is a bounded linear operator, where
p,q € [1,00), that commutes with translations. Then there exists a unique tempered
distribution f such that the restriction of T to S coincides with the map @ — f * .
Conversely, if f is a tempered distribution and C' > 0 is a constant such that
1f*ell, < Cllgll, holds for all v in the Schwartz class, then T(¢) = f * ¢
extends to a bounded linear operator from LP to LY that commutes with translations.
Moreover, in the case where q < p, there are no non-trivial bounded linear operators

that commute with translations.

In the case where p = ¢ = 2 it can be shown that the tempered distribution
f must satisfy the condition ]/”\6 L. Additionally, by a duality argument using the
Marcinkiewicz interpolation theorem, it can be shown that if convolution with f
extends to a bounded linear operator on L” for some p satisfying 1 < p < oo, then
it must also be bounded on L?. In particular, a linear operator 7" which commutes
with translations can be bounded on an L” space only if there exists a function
m € L* such that ﬂ = m]? for every function f € S.

We now move to the topic of Hardy spaces, beginning with their definition on
the upper half plane, and then stating the more modern definition of the real Hardy

spaces due to Fefferman and Stein in [FS72].
2



Definition 2. Suppose F' is a holomorphic function in the upper half plane R .
We define the Hardy space HP(RZ) for p € (0,00), by saying F' € HP(R2) if and
only if
1/p
| F||;» = sup </ |F(z + it)|pd93) < 0.
>0 \Jr

The use of holomorphic functions can be replaced by harmonic functions, as

shown in [BGST71], using a more general version of the following result.

Theorem 3. A harmonic function u on the upper half plane is the real part of an

element f € HP(R?) if and only if the non-tangential mazimal function

u(z) = sup |u(y,?)|
lz—y|<t

is in LP(R). Furthermore, the LP norm of u* is equivalent to the HP(R?%) norm of

f.

One generalization of Theorem 3 to higher dimensions was accomplished
by Stein and Weiss using generalized Cauchy-Riemann equations which still
requires reference to harmonic functions. A different generalization, which has
several equivalent definitions and which removes the use of harmonicity, is due to

Fefferman and Stein [FS72].

Definition 4. Let f be a tempered distribution on R™ and let ¢ be a Schwartz
function with non-zero integral. Let p,(x) =t "¢(x/t) and define the nontangential

maximal function of f with respect to ¢ by

o(F)(@) = sup |(f * ) ()]

|lz—y|<t

For 0 <p < oo we say f € HY(R") if || fll g» = (| My fl|, 15 finite.
3



It is important to note that it does not matter which Schwartz function ¢ is
chosen as long as it has non-zero integral. If ¢, are two such functions, then there

exists a constant ¢ > 0 such that

(1/e) IMf1l, < [I1Myfll, < c|Mfl,

for all tempered distributions f.
An equivalent definition can also be obtained using the Poisson kernel to

define a maximal function in a very similar manner. If we set

Cn B
P(r) = (1 + |z]2)® /2 and Cn = nr1)/2)

then P(z) = t "P(z/t) defines the Poisson kernel. The definition of maximal
function will make use of the convolution f * P,. However, this expression does not
make sense for arbitrary tempered distributions f. It will be defined if we restrict
ourselves to the case where f is a bounded distribution. That is, f x o € L™ for
every ¢ € S. For such distributions it can be shown that u(x,t) = f % P,(x) is a
well-defined harmonic function in the upper half space R” x R,. This leads to the

following theorem, which is also in [FS72].

Theorem 5. Let f be a bounded distribution. Then f is in HP(R™) if and only if

the non-tangential mazximal function

u(z) = sup |u(y,?)]

lz—y[<t



1s in LP. Moreover, there exists a constant ¢ > 0 such that

/N e < Nl < clf 1l -

In the case where n = 1, this theorem describes the same harmonic
functions in the upper half space as those appearing in the result of Burkholder,
Gundy, and Silverstein [BGS71]. Thus the Hardy spaces defined in Definition
4 extend Definition 2 from one dimension to n dimensions without appealing to
holomorphicity or harmonicity. While not immediately obvious, the spaces H?(R™)
are isomorphic to LP(R") for 1 < p < oo. As such we will focus on values of p
between zero and one. We will also mention one more method of defining the space

HP(R™) for 0 < p < 1. We begin by giving the definition of an atom.

Definition 6. Let p € (0,1]. Let |B| be the Lebesgue measure of the set B. An

HP(R™) atom is a function a such that

The support of a is contained in a ball B, (1.1)
la| < |B|™Y? almost everywhere, (1.2)
/xﬁa(x)dx =0 for all 3 such that |3| < n(p™* —1) (1.3)

The following theorem gives the atomic decomposition of H? for 0 < p < 1,

originally due to Coifman [Coi74] in the one dimensional case.

Theorem 7. Let p € (0,1] and let f € HP(R™). Then there exists a sequence of HP

atoms {a,} and a sequence of complex numbers {\,} such that

k
Z)\nan%f as k — oo
n=1

5



in HP. Such a pair of sequences is called an atomic decomposition of f. Also, there

exists a constant ¢ > 0 depending only on p such that

Dl < el il

Conversely, there exists a constant ¢ > 0 such that if {\,} is a sequence of complex
numbers such that > |\, [P is finite and if {a,} is sequence of HP atoms, then there

exists an element of f € HP such that

k
Z)\nan%f as k — 0o

n=1

and

15 < e 1Al

Moreover, defining || f||y,, ~ to be the infimum of

(=)

over all atomic decompositions of f gives a norm equivalent to the one in Definition

4.
1.2. Anisotropy on R"

In this section we introduce both the continuous and discrete concepts of
anisotropy relevant in defining the anisotropic Hardy spaces in Section 1.3. We

begin with the continuous setting. In [SW78] Stein and Wainger considered dilation



structures (&;),., on R" of the form

log(t)P

hx =e T

where P is a real matrix whose eigenvalues have positive real part. Some

straightforward properties of dilations of this form are as follows:

xr —0ast—0, (1.4)

|0;z| — 00 as t — oo for x # 0, (1.5)

67 =041, (1.6)

5ts - 5,5(58. (17)

It follows from the assumption on P that there exist numbers ¢y, ..., ¢4, a0, - >0
such that if |z| = 1 then

ot < |dx| < et if t > 1, (1.8)

c3t™t < |dx| < eqt*ift < 1 (1.9)

It is important to note that |§;x| is not necessarily strictly increasing. As an

example, take

Then we have

t 10tlog(t)
5,5 =
0 t



so, starting with x = (0, 1), we have

6,2] = |(10tlog(t),t)| = t1/101og?(t) + 1,

which is not monotone. In fact, the trajectory defined by (10¢log(t),t) intersects
the unit circle three times. Stein and Wainger construct a quasinorm p which is
adapted to the dilation structure in the sense that p(d;x) = tp(z). To that end they

establish the following result.

Theorem 8. Let §, = e'°5OF where each eigenvalue of P has positive real part.

Then the matrix

B = / et et gt
0

has the property that

t— <(5tl'> = <B(5t$’, 5t$'>1/2
1s increasing as a function of t.

In particular, the function p can be defined by setting p(x) to be the
reciprocal of the unique ¢ > 0 such that (6;z) = 1 for x # 0 and letting p(0) = 0.
The construction also means that the set of points w such that p(w) = 1 defines an
ellipsoid

A={weR":pw) =1} ={w: (Bw,w) = 1}.



With this definition Stein and Wainger show there are constants C;, > 1 and

di,...,ds4 > 0 such that

p(0ix) = tp(x), (1.10)
p(x+y) < Colp(x) + p(y)), (1.11)
p is continuous on R™ and smooth on R™ \ {0}, (1.12)
dy |z < p(z) < dy |z[V* if pla) > 1, (1.13)
dy |z < p(x) < dy |z|Y if p(z) < 1, (1.14)

dz = p" )~ Ydwdp where tr(P) is the trace of P,w € A and p € (0,00)
(1.15)

satisfy © = d,w, and dw is a smooth measure on A.

In Section 2 of [Bow03] Bownik established similar results for discrete dilation
structures arising from dilation matrices before using them to define anisotropic
Hardy spaces, which will be discussed in the next section. An expansive dilation
matrix is a matrix A whose eigenvalues all have norm greater than one. For such a
matrix, one can define a set of dilations by taking integer powers of A. Then there

exists an ellipsoid £ and r > 1 such that

EcCré cC AE.

We may also assume the Lebesgue measure of £ is one by rescaling. It follows
that the measure of B, = A*E is b* = |detA[*. As with the continuous case,
there is also a quasinorm p such that p(Az) = bp(z). In fact, there are many
such quasinorms associated with the matrix A, though they can be shown to be

equivalent. Additionally, they satisfy conditions similar to (1.13),(1.14), (1.4), and



(1.5). The step quasinorm is given by

plr) =
0 if x =0.

1.3. Anisotropic Hardy Spaces

Now that the concept of anisotropy has been defined in both the continuous
and discrete contexts we move to defining the anisotropic Hardy spaces. We begin
by noting the contribution of Calderén and Torchinsky in [CT75] and [CT77]
leading to the parabolic Hardy spaces. The dilation structures considered there
were more restricted than those in [Bow03], which lead to the anisotropic Hardy
spaces. We also discuss the connection between the Hardy spaces obtained by
looking at the discrete and continuous cases as established in [BW].

In [CT75] and [CT77] Calderén and Torchinsky consider continuous dilations

structures of the form §, = 6" guch that

t || < |0| < 17 |2 (1.16)

for some 1 < a < S and for any ¢t > 1. Consequently, the quasinorm p they
construct satisfies

p(x) < 1if and only if |z| <1,

which is the equivalent of forcing the ellipsoids where p(x) = 1 in the cases
described in Section 1.2 to be the unit sphere. In [CT75] Calderén and Torchinsky

define a maximal function for each a > 0 and each complex valued function F' on

10



R™ x Rt by

M,(x,F)= sup |F(yb)]

plz—y)<at
Definition 9. Let P be a matriz such that §; = e'°*MF satisfies (1.16). Let ¢ be a
Schwartz function with nonzero integral, and let a > 0. A tempered distribution f is

in the parabolic Hardy space HL(R™) with 0 < p < oo if M,(x, F) is in LP where

Fla,t) = (fxe)(@) and @ilx) = " Pp(5 '),

We set HfHHg, = |[[Mu(x, F)|,. This definition is independent of a and ¢ in the

sense that different choices yield equivalent norms.

For values of p > 1 we have, as with the isotropic Hardy spaces, that HY is,
up to an equivalent norm, LP. Note also that Definition 9 extends immediately to
the dilations discussed in Section 1.2.

We now turn to the anisotropic Hardy spaces found in [Bow03]. As in Section
1.2, we will use A to represent a fixed dilation matrix such that all its eigenvalues
have norm greater than one, and denote the determinant of A by b. The function
p will be the associated step quasinorm. We consider a modified version of the
Schwartz class, denoted by Sy, which turns out to be identical to the usual one. In
particular, a C'*° function ¢ is in Sy if for every multi-index o and positive integer

m we have

[#llam = 5UP p(2)"|0asp ()] < 00

If pisin Sy and k € Z, then we define



For N € N we set
Sx={p €8s [pllyp <1fora] < N,m < N}

With this, we can define several maximal functions.

Definition 10. Let ¢ € Sy and let f € §'. The nontangential mazimal function of
f s

My f(z) = sup{|f * ox(y)| : # —y € By, k € Z} .

The radial maximal function of f is

M f(x) = sup | f * @i(x).

keZ

If N € N, then the nontangential grand mazimal function of f is

My f(x) = sup M,f(x).

PESN

The radial grand mazimal function of f s

My f(x) = sup M f(z).

PESN

In Definition 3.3 of [Bow03] Bownik gives the following definition of

anisotropic Hardy spaces, where \_ satisfies

1 < A_ <min{|A| : A is an eigenvalue of A}.

12



Definition 11. For 0 < p < oo set

[(1/p —1)log(b)/log(A-) +2] 0<p<1,

2 p > 1.

N, =

For N > N, define the anisotropic Hardy space by
HY =HY={feS :MxfeLl}

with || fll gp = [[Mn £l o -

It follows from Theorems 4.2 and 6.4 in [Bow03] that using different values of
N gives spaces with equivalent norms so that we may justify the absence of N in
the notation H”. In fact, in Theorem 7.1 of [Bow03] Bownik shows that any of the
four maximal functions above can be used to define the Hardy spaces in a similar
fashion. As with the isotropic case, for p > 1 the Hardy space H? is just the space
LP. As with the isotropic Hardy spaces, there is an atomic decomposition giving an

equivalent definition for the anisotropic Hardy spaces.

Definition 12. Letp € (0,1] and let ¢ € [1,00], and let s be a positive

integer. Then (p,q, s) is admissible with respect to A ifp < q and s >

|(1/p—1)log(b)/log(A_)]|. A (p,q,s) atom is a function a such that:

suppa C Bj +x9  for some j € Z, xo € R",
lall, < 1B;[e=t,

/ a(x)x*dr =0  for|a| <s.

13



For an admissible triplet (p, ¢, s) the atomic anisotropic Hardy space H? _ is
the space of all f € &' such that there exist {\;} € ?(N) and atoms {a;} such that
f=>7 e in S

We now turn to the dual spaces of the anisotropic Hardy spaces. Define B =
{r+Br:xeR" ke€Z} Let ] >0, and g € [1,00], and s € Ny. Then we have the
following definition, where Py is the space of all n variable polynomials of degree at

most s.

Definition 13. The Campanto space Cf],s 1s the space of all locally L functions

such that, for ¢ < oo and q = oo respectively,

1 1/‘1
= sup inf |B|™ —/ x—qud:L’) < 0
oy, = sup jnt 157 (3 [ 1ate) - Pta)

Ioley, = sup inf 1Bl esssup,cp lg(2) ~ P(2)] < oc.

The space C’é,s /Ps is a Banach space. Moreover, as shown in Theorem 8.3
of [Bow03], C;,/SP_I/PS is the dual space of H? as long as (p, q, s) is an admissible
triplet. In particular, the space C’ﬁo is the space BMO of functions with bounded
mean oscillation, well known to be the dual space of H'. In analogy with this, we
will denote the dual space of H} by BMO,4 or simply BMO.

We now turn to the issue of classifying the anisotropic Hardy spaces. That
is, we wish to consider which dilation matrices give the same Hardy spaces. For
example, it is reasonable to expect A = 2] and B = 3 will give the same
Hardy spaces. We begin by defining the concept of equivalence up to a linear

transformation.

Definition 14. For two dilation matrices Ay and Ay we say that HY and HY,

are equivalent up to a linear transformation if there exists an invertible matrixz P
14



such that the map Dp defined by (Dpf,¢) = |det P|YP=1{f, o(P~1.)), defines
an isomorphism between HY and HY . Two quasinorms py and py are said to be
equivalent up to a linear transformation if there exists an invertible P and constant

¢ > 0 such that

(1/e)pi(x) < pa(P) < cpy().

With this definition we have the following, which is Theorem 10.10 of

[Bow03].

Theorem 15. Let A; and Ay be two dilation matrices. Then the following are

equivalent if we define e = log | det A;|/log | det As|.

1. The quasinorms associated to Ay and Ay are equivalent up to a linear

transformation.

2. Forallr >1 and m € N we have

> dim ker(A; — AI)™ = > dim ker(Ay — AI)™.

|Al=re IAl=r

3. HY,

,and HZQ are equivalent up to a linear transformation for all p € (0, 1].

4. HY and HY are equivalent up to a linear transformation for some p € (0, 1].

Thus, we can classify anisotropic Hardy spaces up to linear transformation by
classifying dilation matrices according to the second condition above.

The discrete dilation structures discussed above are more general than
the continuous ones. One can simply restrict a continuous family to, say,
{t t=2F ke Z} and obtain a discrete dilation structure. Consequently, one may
ask how much more is gained by studying this more general structure. We have the

following two results from [BW].
15



Theorem 16. Let A be a dilation matriz. Then there exists a unique one-

parameter group of dilations (0;),., given by & = e8P such that
1. Every eigenvalue of the generator P is positive and the trace of P s 1.
2. A is equivalent to o, for allt > 1.

Theorem 17. Let A be a dilation matriz and let P be the generator of the dilation
group defined in the previous theorem. Then the Hardy spaces HY, as defined in

Definition 11, and H%, as defined in Definition 9, coincide.

As a consequence of Theorem 17 we see that the continuous and discrete

dilation structures give the same collection of Hardy spaces.

1.4. Multipliers and Calderén-Zygmund Operators

In this section we begin by defining multiplier operators before describing
certain types of Calderon-Zygmund singular integral operators. We then discuss the
boundedness of the Calderén-Zygmund operators on LP and H? spaces. Finally, we
will see a connection between certain homogeneous multipliers and singular integral

operators which will be extended to a more general setting in Chapter 2.

Definition 18. Let m € L>®(R"). Then the operator T,, : L*(R") — L*(R") defined

by
T f(€) =m(§)f(E)

18 called a multiplier operator.

It follows immediately from the Plancherel Theorem that this operator is
bounded on L2. Moreover, it commutes with translations and so by Theorem 1

in Section 1.1 we know that there exists a unique tempered distribution K such
16



that the restriction of 7}, to the Schwartz class coincides with ¢ +— K * .
Moreover, the function m is the Fourier transform of the distribution K. Perhaps
the simplest non-trivial example of this is the Hilbert Transform whose multiplier is
m(&) = —isgn(£). The corresponding distribution is given by P.V%, which is the
distribution defined by

P.Vi(gp) = lim Mdm.

X =0 Jjz>e T

It can be shown that this operator is bounded on every LP spaces for 1 < p <

oo and that it is weakly bounded on L!. It turns out that there are fairly simple
conditions on the distribution K so that these boundedness results still hold. The
following result, which is essentially due to Hérmander [Hor60], can be found in the

form below in Theorem 5.1 of [Duo01] along with similar results.

Theorem 19. Suppose K is a tempered distribution which coincides with a locally
integrable function on R™ \ {0} . Suppose also that there is a constant A > 0 such

that

KelL®, (1.17)

/ |K(z —y) — K(z)|de < A for all y € R". (1.18)
|z|>2]y|

Then convolution with K defines a bounded linear operator on LP for 1 < p < oo.

Moreover, it is weakly bounded on L.

While the operators above fail to be bounded on L', they are bounded from
H' to L', and in fact from H! to itself. The following result can be found in [Ste93]

as Theorem 4 of Section 3.3.

17



Theorem 20. Let v > 0 and suppose K satisfies the conditions of the previous
theorem with the condition (1.18) replaced with the stricter conditions that K €
COI(R™\ {0}) and

05K (z)] < Alz|™"=" for |8] < 7],

and

=]
0K (e~ ) - K@) < AW for 81 = )bl > 20

Then, if 0 < p <1 andy > n(1/p — 1), the operator defined by convolution with K
is bounded on HP(R™).

It is worth noting that the expression n(1/p — 1) also appears in the moment
condition in Definition 6 where H? atoms are defined. Similar results for more
general Calderon-Zygmund operators on anisotropic Hardy spaces can be found
in Section 9 of [Bow03].

The following result, which is Theorem 2 of [FR67], establishes a relationship
between certain classes of homogeneous multipliers and singular kernels in the

continuous anisotropic setting where the generator matrix P is diagonal.

Theorem 21. Let P be the diagonal matriz diag(ay, ..., a,), where ay, ..., a, > 0.
Fiz a non-negative function x € C5°(—o00,00) that is equal to 1 in a neighborhood of

zero. Define £ to be the set of functions K satisfying

K(0ux) =t " K ()

K e C*(R"\ {0}),

/ K(w)dw = 0.
{wip(w)=1}

18



Let 7€ be the set of all function H satisfying

H(6:£) = H(E),
H e C=([R"\ {0}),

H (&)X 0 p(&)de = 0.

]Rn

Then if K € J there exists H € ¢ such that PVE = H, where for ¢ in the
Schwartz class

PV.K(p) =lim K(z)p(z)dx.

e—0

Conversely, if H € 7 then there exists K € £ such that PVE = H.

This result will be extended to remove the assumption that P is diagonal in

Chapter 2.

1.5. A Characterization of H' by Multipliers

The Hilbert transform defined in Section 1.4 generalizes to R™ as the Riesz
transforms {Rj}ogjgn where Ry = Tandfor 1 < j < nand f € L? we have

&

E;f (&) = —i==f(§). It is well known that the Riesz transforms characterize

€]

H'(R™) in the sense that there exists a constant ¢ > 0 such that

(LNl < D IR Fll s < el fllpn (1.19)
1=0

Fefferman [Ash76] made the following conjecture related to the above.

Conjecture 22. Letn € N, let f € L*(R"), and let K, ..., K,, be a collection

of singular integral kernels which are homogeneous of degree —n, smooth away from

19



the origin, and which have integral zero over the unit sphere. If the kernels are

never simultaneously zero and K;f € L* for every f € L* then f € H'.

This conjecture was proven false by Garcia-Cuerva [Ash76] with singular

2 2
- —2
kel"nels K1<I7y) = % and K2<x7y) _ |$|Z’L‘2
x x

these are simply K; = cos(260)/r? and Ky = sin(26)/r* while the Riesz transforms

. Note that in polar coordinates
can be expressed, up to a constant, as cos(#)/r? and sin(6)/r?.

The correct version of the conjecture above, and its converse, are as follows.
Theorem 23. Let 0,,...6,, C C®(R"\ {0}) be a family of functions which are
homogeneous of degree zero. Then

0 B,
rank &) © =2 for every £ € S"!

01(=¢) -+ On(=E)

if and only if there exists a constant ¢ > 0 such that

(L) 1f i <D Nfmas £l < el flla
j=1

The necessity of the rank condition was established by Janson [Jan77]
using a fairly short argument. The sufficiency of the rank condition was proved
by Uchiyama [Uch82] and he gives proofs of both directions in Theorem 25.2
of [Uch01]. An analogous question can be asked in the anisotropic setting. We
must change our concept of homogeneity to match the anisotropic dilation, but
as we shall see in Chapter 2, the rank condition is still sufficient in this setting. It

remains an open problem whether or not the condition is necessary.
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CHAPTER II

SUFFICIENCY OF THE RANK CONDITION

2.1. The Main Result

In this chapter we prove Theorem 24 which generalizes the forward direction
of Theorem 23 due to Uchiyama [Uch82] to the anisotropic setting. The proof
below follows the argument of Uchiyama given in [Uch01]. The general structure
of the proof there is modified here to fit the anisotropic case as necessary.

Throughout this chapter n is a positive integer and P is an n X n matrix with
tr(P) = 1 and whose eigenvalues have positive real part. As defined in Section
1.2, 8, = €°¢®P ) is the corresponding quasinorm satisfying (1.10 — 1.15), and
A = {w:p(w) =1}. We will use d;, p*, A* to denote the corresponding objects
coming from P*. For simplicity, we will denote HA(R™, C*) by H*(R",C*) and we
will use BMO(R", C*), or simply BMO, to denote the dual of this space.

Our main result is Theorem 24 below, which is one direction of Theorem 25.2

in [UchO1].

Theorem 24. Let 0y,...,0, € C*°(A* C) be such that

0 B,
rank &) © =2 for every £ € A™. (2.1)

01(=¢) -+ On(=E)

Then
1 11

S |

sup cf € HY(R™,C)\ {0} } <

21



and

BMO(R"™,C ng L=(R",C

— A~

where mg, f(§) = 0;(8" &) F(€) and 1y, is defined by (i, f1, fo) = (f1,mg, f2)

Theorem 24 follows from several results which appear in second and third

sections of this chapter. We will make use of the following definition.

Definition 25. Let S be a subspace of H'(R",R¥). Then
St = {g € BMO(R",R¥) : (g, f) =0 for all f € S}

In Section 2 we will establish the following lemmas, which are essentially

Theorem 21.2 and Corollary 21.5 in [Uch01], but adapted to the anisotropic setting.

Lemma 26. Let 0q,...,0, € C*(A* C) and set
S = {(mgj s fe Hl(R”,C)} c HY(R",C™) (2.2)
so that

Si-{g—(gJ)GBMOR" c™) Z gj—OEBMO(R",C)}_

22



Suppose Z;nzl 6,(€)| # 0 for any & € A*. Then the following are equivalent:

£ 1 1 en )

sup . f € HY(R",C)\ {0} } < oo, (2.3)
Zj:l mgfle
inf{Hg’— EH the SL}
sup o : g€ BMOR",C™)\ {0} » < o0, (2.4)
191 a0
BMO(R",C) = > 11y, L*(R", C). (2.5)
j=1

Lemma 27. Let k be a positive integer and let S be a subspace of H'(R™, R¥).

Then there exists a constant C' > 0 such that

inf {Hﬁ— HHOO he SL}
19l 5aso
inf {Hﬁ— EHOO he Sl}

191l 30

sup

. § € BMO(R"™,R*)\ {0}

< C'sup RS D(Rn>Rk) \ {0}

In Section 3 we will show the following lemma, which is an anisotropic version
of Theorem 22.1 of [Uch01]. and is proved using an argument adjusted to work in

that setting.

Lemma 28. Let 6,,...,0,, € C*°(A* C) be such that (2.1) holds, let a_ be as in
(1.8), and let S be as in (2.2). Then there exists a constant C' > 0 depending on
01,...,0m such that if § € BMO(R", C™) satisfies suppg C B(0,1), then there

exists h € S+ satisfying

ool < C Ml
ite) — ()| < (NS 2.7

With these results we can establish Theorem 24.
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Proof of Theorem 24. Under the hypotheses of Theorem 24 we can use Lemma 26

to see that the conclusion of Theorem 24 is equivalent to showing

inf {Hg— EHOO he SL}

sup : g€ BMOR",C™)\ {0}

191 a0

is finite. By Lemma 27 the expression above controlled by

inf{“ﬁ— HHOO e Si}

sup g € D(R",R*™)\ {0}

191 Baso
where we have identified C™ with R?*™. The expression above is unchanged if the
restriction that the support of g is contained in the unit ball is added. This is
because both the BMO and L* norms are unaffected by applying the dilation
operator defined by D;(f)(z) = f(d:x). In particular, since D is contained in BMO,

we can use Lemma 28 to obtain

inf{Hff— HHOO ‘he Sl}

191l r0

sup g € D(R",R*™)\ {0} < oo,

from which the result follows. O

2.2. The Proofs of Lemma 26 and Lemma 27

In this section we prove Lemma 26 and Lemma 27, which will leave only
Lemma 28 to be proven. In proving Lemma 26 we will need to know the relevant
multiplier operators are bounded on the space H!. The following theorem, which
generalizes Theorem 21 to the anisotropic setting, provides the means to do so in

Corollary 31.
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Theorem 29. Let x € CX(R) be such that x(z) =1 for —1 < x < 1. Let & be the

set of functions K such that

K € C2(®R™\ {0}) (2.8)
K (bur) = %K(x) (2.9)
/ K (w)dew = 0. (2.10)

Let 7 be the set of functions H such that

H e R\ {0}) (2.11)
H(5€) = H(E) (2.12)
[ H@TERE 0. (2.13)

Recall that P.V.K 1is the tempered distribution defined for ¢ in the Schwartz class by

PV.K(p) =lim K(z)p(z)dx.

e—0

If H € 57, then there exists K €  such that H = PVK. Conversely, if K €
A, then there exists H € 7 such that H = PV.K. We will refer to functions

satisfying (2.11) and (2.12) as smooth homogeneous multipliers.
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Proof. Let ¢ € C°(0,00) be such that/ @dt = 1. Suppose H € 7. Set
0
g9(&) = H(E)Y(p*(£)). Then we have g € S and

[ 510 00

Since g € S, there exist constants C' > 0 and C” > 0 such that

o0

T 1 o T

< 2 ~dt
/ (6,2)) dit < C+C/p<5tx)2dt_0+p(m)2/t2
0 1

1

(e 9]

which is finite for all non zero x. Set K(z) = /5(5tx)dt. Then for s > 0 we have

K(b.2) = / F(0r)dt = - / (6)dr = 2K ()
S
0 0
By the chain rule
)
i (8,x) (80), <Z(g$ (02)] |00
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For t > 1 we have,

@),

< Jlall = HZ Ploatt

For ¢t < 1 there exists a constant C' > 0 such that ‘<5t>ji

norm of &; goes to zero as t does. Thus, since g,, is in the Schwartz class for every

natural number [ there are constants C; and C;; such that for p(z) > 1,

Z‘g% 6tx " 5t Ji <CX[01) ZC +t” 1= l ZCJZ

If [ > ||P|| + 1 then the right hand side is an integrable function of ¢ which is

independent of x and which bounds

0
8:@-

g0 6] ()

from above. It follows from this that the first order partial derivatives of K exist

for p(z) > 1 and that they are given by

@:El /axZ g oo (x)dt (2.14)

Moreover, because of the homogeneity of K this holds for all nonzero x. This
argument can be repeated to show the same equation holds with higher order

derivatives, so K € C*°(R"\ {0}). Additionally, using (1.15) we have

A/K(w)dw:/o/ J(ow)dtdw = /g(x)dsz

R
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with the last equality coming from ¢(0) = 0. Thus, K € 7.

We will now show P.V.K = H. Let ¢ € S. Then

e—0 e—0
plz)>e p(x)>e

PV.K(p) = lim K(x)p(r)dr = lim / K(x) [p(z) = 0(0)x(p(x))] dx

where the last equality holds since for ¢ > 0 we have
_ _ [x(® _
K(x)x(p(x))dx = K (6w)x(p(dw))dwdt = = K (w)dwdt = 0.
p(x)>e e A € A

Also, from the definition of K and the fact that g € S, if v € (1,1 + «_) then there

exist constants C' > 0 and C’ > 0 such that

/ K () [o() = oO)x(pla)]| o < / / 3160 [o(2) — OX(p(o))] e
(@)
//Clso |dtdx+//0/|“0 ot i;)))f(p( DI
<c / o) — o(O)x(p(a))|dz + C” /\so )>x<p<x>>|

Because ¢ and x o p are in the Schwartz class,

C/ lo(x) — @(0)x(p(x))|dz + C' / ple) - SO(O)WX(p(x))'dx

: lo(x) — (0)x(p(x)] , ., p(@) = (O)] /
¢ / v dr=¢ / p(x)” ! SA/O



which is finite. It follows from this that

PV.E(p / / (6,2) 0(0)y(p(x))] dzdt.

0 R»

For fixed t the functions § o §; and x o p are in L? and so

/ 3(6)x(pla))dx = / £ g(65:€) T B(E)de.

Rn R™

There exists a constant C' > 0 such that

/ / £ g(0:) IS P(E) e

R® 0
pr(E)!
1) s Xop p
<C tHorE| X o p(€ |dtd§+C’ 2 dtd{.
R* 0

The two integrals on the right side above are finite because for 0 < ¢ < p*(£)™! we

have |67¢] < C(tp*(€))Y/*+ and because Y o p € S. So,

/ / §(6,2)x o p(x)dwdt = / / t71g(57¢)X 0 p(€)dédt

0 Rn 0 Rm»

/ / E (0N PLE)dtde

_ / SO H(E)de

R”

=0,
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with the last equality holding since H € 7. Thus,
PV.K(p) = / / 5(0,2) () dadt.
0 R»
By the same argument just given, this integral is the same as
JEGECIE O]
R”

For the other direction, suppose K € # and set g(z) = K(x)y(p(x)). Then

/ g(Sx)dt = K (x) / N (tp(a))dt = K ().

Note that since g € S and g(0) = 0 we have, for some constant C' > 0,

(%S) 1 [e)

=1 5% —1| g% C
/tM@OWS/btwﬂﬁ+/ER5@

0 0

which is finite. Set

oo

H(E) = / g6 €)dt.

0

Then

o0

H(5,6) = / G0t = H(E)

0

and H € C*(R"\ {0}) by the same argument used with K above.

Now consider

/H@%ﬁmﬁszﬂ%@ﬂ%mm%.

R
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By the same argument given at the end of the last part, we can change the order of
integration. Applying Plancherel’s theorem and expanding the definition of g then

gives

/ (E)Xop(§)de = //XOP (6;&)dedt

0 Rn»

/ / K (8,2)0(p(6,2))dxdt.

0 R7»

If the support of ¢ is contained in, say, 713 < p(x) < 79, then the inner integral on

the right is

Y2/t
[ MKy, [V [ ka0
Y1/t<p() <72/t 1/t A

So, H € 7. Using the same argument as before, it can be shown that H = PVK.

]

Corollary 30. Let x be as in Theorem 29. Let H € C*°(R" \ {0}) satisfy H(6;&) =
H(¢) for all§ € R™\ {0} and for allt > 0. Then there exista € C and K € &
such that for f € S,

Tu(f)(x) = af(x) + (P.V.K * f) (),

~

where Ty is the operator defined by T/H(\f)(f) =H(&)f(&).

Proof. 1t follows from the assumptions on H and y that the integrals

[ O
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and

IR G

are both finite. By subtracting an appropriate constant a from H, we obtain a

function H; in 2. By Theorem 29, there exists a K € J such that

—_— ~ -~ ~

Tu(D(€) = H(E)F(€) = Hi(©)F(€) + af(€) = (PV.E * £)(€) + af ().

The result follows from taking the inverse Fourier transform.

O

Corollary 31. Let H € C*(R™ \ {0}) satisfy H(6;&) = H(E) for all & € R™\ {0}

and allt > 0. Then Ty is bounded on HP(R™).

Proof. By [BW] Theorem 2.12 it is enough to establish that Ty is bounded on the

discrete anisotropic Hardy spaces corresponding to, say, {0ox },.,. The boundedness

of Ty on these spaces follows from Theorem 9.8 of [Bow03], and Corollary 30, and

Theorem 29 above.

Corollary 32. Let p € (0,1]. Let 0y,...,6,, € C®°(A*,C) be such that

£eA £

inf » " 6,(¢)] > 0.
7j=1

Then there exists a constant C' > 0 such that for all f € L*(R",C) we have
||f||HP < CZ HmijHHp :
j=1

Proof. Set

3]
%8 = e @F
32
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Then the sum of all 9;9]- is 1 so

11l eze =

HP

m m
g mgsmg, || < g Hme;mejf’
i=1 i=1

Because mg: is bounded on H? for each j by Corollary 31, we have for some

HP

constant C > 0

£ lle < CD |lmo, f] e
j=1

O
Before moving to the proofs of Lemma 26 and Lemma 27 we will need one
more theorem and a corollary.
Theorem 33. Let S be a subspace of H(R™,R¥). Then
1.,
sup 2 : f €S\ {0} (2.15)
|7
1
inf{Hf]’— EH he SL}
= sup = . § € BMO(R"™,R")\ {0} (2.16)

191 5210

Proof. Let T+ = {§ € L=(R",R¥) : (g, f) = 0 for all f € S}. Then, considering S
as a subspace of H', its dual space is S}, = BMO/S L. Alternatively, considering
S a subspace of L', its dual space is S}, = L*/T*. The latter is isomorphic,

through the inclusion of L* into BMO, to (L* + 5*) /S* with the norm given

by 17| = mf{Hg- EH he SL}.

33



Thus, the linear mapping
M:ScL'—wScH', fref
is bounded if and only if its adjoint,
BMO/St — (L® +5) /S*, G+ St — g+ S+

defines a bounded linear operator, and the operator norms agree. Note that the
adjoint map only makes sense if BMO = L>® + S+ and that if this is not the case
then the expressions in both (2.15) and (2.16) are infinite. Otherwise, note that the
operator norm of the first map is, by definition, (2.15) while the second map has

norm given by

inf{Hgf— HHOO he SL}

o 7]

sup g € BMO(R™ R*)\ S+ 5. (2.17)

:EGSL}

BMO

To see that this coincides with (2.16), note that (2.16) can be rewritten as

inf{Hfj— EHOO ‘he SL}

sup : § € BMO(R",RF)\ {5*} and Woe Sty

g—n

BMO

which is equivalent to (2.17). O
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Corollary 34. If S is a subspace of H*(R™ R¥) then the following are equivalent:

|7

.. fe S\ {0} p < oo, (2.18)

sup

I,

inf @—EH:he&ﬁ
sup Hﬂglo :§ € BMOR",R")\ {0} } < o0, (2.19)
BMO = L™ + S+. (2.20)

Proof. From Theorem 33 and its proof, (2.18) and (2.19) are equivalent to each
other and (2.19) implies BMO = L™ + S*.

Conversely, if BMO = L* + St then the map

(L®+S5+) /St = BMO/S*, G+ 5"+ G+ S*

must be bijective. We already know this map defines a bounded linear operator
since it is the adjoint, up to the isomorphism of S%, and (LOO + SL) /S+, of the
inclusion of S C H' into S C L.

Thus, by the inverse mapping theorem,

BMO/S* — (L™ + S%) /S, G+ 5" — G+ S*

defines a bounded linear operator so (2.19) holds. O

We can now prove Lemma 26 as a corollary of the above.
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Proof of Lemma 26. By Corollaries 31 and 32 we know that

m
1l ~ D || ]
j=1

We also have

m
> ||ma,
=1

~
~
H! H

where f = (mg, f,...,myg f),so the equivalence of (2.3) and (2.4) follows from

Corollary 34. Moreover, they are equivalent to BMO = L™ + S+ which we will

show coincides with (2.5). Viewing elements of BMO(R™, R*™) as being of the form

G = (Re(g1),Im(g1), ..., Re(gm), Im(g,,)), with

g1,y 9m € BMO(R" C), we can consider the map

BMO(R™, R*™) — ng BMO(R",C f:

7=1

Since the kernel of this map is exactly S+ it follows that BMO = L™ + St is

equivalent to

ng BMO(R",C i C).

7j=1

To see that this is equivalent to (2.5), we need to show

BMO(R",C) =Y _1itg, BMO(R",C).

j=1
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0.
To see this, set % = —=—-——. Then we have
! Zkzl |6k|2

BMO(R",C) > ) " 1ig, BMO(R",C) D > 1y, img: BMO(R",C) = BMO(R", C),

j=1 j=1
from which the result follows. ]
We now prove Lemma 27, which also makes use of Theorem 33.

Proof of Lemma 27. If § € BMO(R™, R¥) and 7 > 0 then we define the truncation

of g at height r by

g(x)

) = XL G@

It is clear that | tr(g,r)(z)| < r and so tr(g,r) € L*. Moreover, because for any

h € BMO(R™ R) and ¢ € R we have the inequality

| tr(h, 7)(x) — tr(e, r)(z)] < |h(x) — ¢,

we have

[tr(g, ) (@) paro < 191l o

Also, for any f € H'(R",R*) and § € BMO(R", R¥) we have
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which follows by taking an L atomic decomposition of f. With this in hand we

have the following, first making use of Theorem 33,

inf{Hgf— EHOO he SL}

191 a0

sup g € BMO(R",R¥)\ {0}

= sup ’<f7’f>BM‘3‘ . fe 85\ {0},7€ BMOR",R*)\ {0}

191l paso ||

—sup { LBTowol e g g0y g e e (0}

191l paso ||

1

We now wish to restrict to § with compact support. To that end, we let § € L*°,
and f € H', and take ¢ € D(R™, R) such that p(x) = 1 for |z| < 1. Let B(0,r) =

0;A and gpo,) = |B(Or | fB g(x)dz. Then for r > 0, using the fact that f has

Z€ero average,

- / (6712 () - ) + Gy - / (1 - p(67'2)) fla)de,

As r — oo this tends to

Additionally, for some constant C'(¢) > 0

||S0(6r_1)<§<) - gB(O,r))||BMO < C(g&) ||g||BMO :
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Consequently,

—

sup g frsuol fes\{0},7e LR, R\ {0}

195000 | ]
= C'sup W—BMO|  fe S\ {0},7 e L®(R",R¥)\ {0} supp 7 is compact
195000 | ]

To obtain the desired result it remains to reduce to the case where g is smooth.
This can be done by mollifying §. In fact we can reduce to g supported in B(0, 1).
O

2.3. Smooth Atoms

The following lemma, which is a generalization of Lemma 22.3 of [Uch01],
shows multipliers map smooth atoms into smooth molecules. Recall that A is the

ellipsoid corresponding to the dilation structure arising from P.

Lemma 35. Let § € C°(A,C). Let I = §([0,1)" + k) where k € Z™, and | > 0,

and let x; = & k. Let b € C*(R™,R) satisfy

suppb C I, (2.21)
V2 [bod]|,. <1, (2.22)

/ b(x)dz = 0. (2.23)
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Recall o and oy from equations (1.8) and (1.9). Set p = mgb. Then, for some

constant C(0) > 0 depending only on 6, we have

p€ CYR",C), (2.24)
C(0)
(L + p(0-1(x — 1)) e’

/np(:n)dsn = 0. (2.26)

p(2)| + |V [pod](d-12)] < (2.25)

Proof. In this proof we will use C,C’ to denote positive constants. Different
instances of C' and C” do not necessarily denote the same constant. We first assume
I = land k = 0, so [ is the unit cube. Let Sy be the set of functions in the
Schwartz class whose Fourier transform is compactly supported away from the

origin. Let ¢ € S satisfy
o dt
| o =1 e ro
0

and define n by n(§) = 22(5)9 (5;_1(£)§> . Note that 7 € S son € S as well. We will

now show

Al/e/\é*.dt N
p/ Y(o;)

N
‘ p

in L? as € — 0. Fix § > 0 such that supp ¢ C {£ € R" | 1/§ < p*(£) < 6} and let €

satisfy 0 > e > 0. If R = /e and ¢ satisfies 1/R < p*(§) < R then we have

/Wiwoﬁzl
.t |
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It follows that

ey,
pO -@) [ M

is supported on the set Sp = {£ € R"|p*(§) < 1/R or p*(§) > R} . Moreover, since

there exists a constant C' > 0 with

/°° [Pl _
0 t

we can conclude the L*(R") norm of

1/e 7
po —ie) [ M

€

is bounded above, independently of R, by a multiple of the L?(Sg) norm of p. Since
pis in L*(R™) the L*(Sg) norm will converge to zero as R — oo and so since R —
oo as € — 0 we conclude
V(8,8 dt
p(§) / %

converges to pin L? as € — 0.

We next establish
1/ dt C(o
Ja e -

= ple— o)

where 7;,(r) = t~'n(6; 'x). Let € be such that 1 > ¢ > 0 and x be such that

p(x —z) > 1for all z € I. Then by using the support, (2.21), and mean, (2.23),
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conditions on b we have

1/6 dt
JRROE

1/e

The integral in ¢ can be split up into ¢t < 1 and ¢ > 1. Applying the mean value
theorem, the chain rule, and the fact that n € S gives the existence of z € I, and a

constant C > 0

s, (z = y) — s, (@ = 2p)| S V(01 (2 = 2))] |61
< ¢~ (2Fay) ¢
- (14 p(dg-1(z — 2)))>+e+
< C
= T ol

Using the quasi triangle inequality for p we have, recalling that (), is the constant

appearing in (1.11),

t+plx —xr) <t+ci(p(z —2)+ p(z — x1))
<t+C' +egp(x — 2)

< Ot + pla — 2))

SO

1 < '’
(+ pla =2 = [T+ pla—ap)pees
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Thus,

/61%/1[776,5(55 —y) — s (2 — x1)] b(y)dy‘ < /61 dt/} (TG fa:;))”a* b(y)|dy
<C dt

- /o1 (t+ plx —ar)”™

C
<
= ople —wp)ttes
< C

T (L plz—ap))

For t > 1 we use the same bounds as above except using a_ in place of ay. In

particular, we make use of the bound

C < C
(=2 = o=z

t! ’n&(x_y) _77&(35_951)‘ < (

We then obtain
1/6 dt

R N R
1 1

" ¢ o)
< dt/ +—1b(y)|dy
/1 1 (t+ ple —z)*e-
dt

< (T oo — 2™
C

= pla— o)

Thus the claim holds for z with p(x — x7) > 1.

It remains to look at the case where p(x — ;) < 1 where we no longer need

to establish any decay estimates, but merely boundedness. As above we will split
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the integral in ¢ into pieces with t < 1 and ¢ > 1. We have, making use of the fact
that n has zero mean along with the fact that n € S, and applying the mean value

theorem to b,

/:n‘”*b(@%‘ S/I/Im(fv—y)IIb(y)—b( )|dy@

// Clz — y| dtdy
112 (14 p(61(x —y)))*

Substituting z = §;-1(y — &) we can get an upper bound on the last integral of

/ / C|5tz|dzdt / / C|z|dzdt
n (1 +p(2 w1 (14 p(2))?

For t > 1, we simply have

1/e dt
/ ns, % b($)7
1

1/e dt
<[ sl 0l
1

/°° Cdt
< 2
Lt

<C.

We have now established

1e dt C
[ m@ | <

(14 p(z — zp))He-"

Next, we establish

C
(T pla—an)=

1/e dt
V/ ﬁat*b(x)7 <
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Let € satisfy 1 > ¢ > 0. We will again look first at x such that p(z — z;) > 1 and
split the integral into pieces where ¢t < 1 and ¢t > 1.

For t <1 we have, by the chain rule and n € S,

C
(t+ plz —y))*tor

Vs, (x —y)| <

SO

1 dt
j/mﬁb /‘ /wa—leMy
Clb(y)
S//H—p 2+a+dydt
// szth
(t+ plx —ap))"F

_L)U+Mw—x»“”ﬁ
R O

—ople — @) tres

< C

S (T ple— o)

where the last inequality makes use of p(x — zy) > 1.
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For t > 1 we obtain, by replacing o, with a_ in the bound for Vn,

1/¢ dt e q
v/ — / /IV% )| b(y)] dy
1
1/e C|b y
< dydt
_./1 t/‘t—%p )P Y

1/e C b
/ / 1o S dydt
t+px—x)

dt

- /1 (t+p(ﬂc —ay))*"
C

T (L ple—ap) T

We now turn to the case where p(x — x7) < 1. Once more, we split the relevant

integral into two parts depending on the size of t. For ¢ < 1 we have,

‘V[m*b KE [ [t~ 01190) - vt any

// C' |z —y| dtdy
2 (14 p(0p1(z —y)))*

Substituting z = §;-1(y — x), we can get an upper bound on the last integral of

// C’|<5tz|dzdt // Clz|dzdt
nt (14 p(z w e (L p(2))°

For t > 1 we have,

1/e dt 1/e dt
'v [ s < [ 1o bl 5
1 1

~ Cdt
S | Eres
1 t o—

<C.
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We have now established

e dt C
\Y b(x)—| < :
/E M, * b(x) t| = (1+ plx — ay))ito-

Furthermore, by examining the integrals involved in the estimates above we see
that the convergence is uniform in = as ¢ — 0.

Set

Then we have shown F, satisfies

C

IR+ IVE@)| € Gy

We now show p has properties (2.24)—(2.26). Taking the Fourier transform of

F,. we obtain

~

1/e R 1/e .
Fo= [ asone g = [ U0

F
which we have already shown converges to p in L2. Because of the uniform
convergence of {F.},_ , and {VFE.},_ ., for any compact set K in R™ there
exists a C'! function, g, satisfying (2.24) and (2.25), to which {F.},_ ., converges
uniformly and also in L? norm. Since we also know the family converges to p in L?
norm it follows that p = g in L*(K). It follows that (2.24) and (2.25) hold for p. For
(2.26) note that p(0) = 0 since b(0) = 0.

It remains to show the result for general dilated cubes of the form I =

8, ([0,1]" + k) . To that end, suppose b satisfies (2.21)—(2.23) for the cube I and
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consider the function B defined by

B(x) = b(0;(x + k)).

Then B is supported in the unit cube, it has mean zero, and it satisfies the
condition |V2B(z)| < 1. So if ¢ = myB, then P satisfies (2.24)—(2.26) with [ = 1

and k = 0. Taking the Fourier transform of p we find

p(g) = le *morq(oye)

from which it follows that

p(x) = q(d-1x — k).

Now (2.24)—(2.26) can be seen to hold for p using the fact that they hold for q. O

2.4. Smooth Molecules

This section deals with molecules of the form resulting from the conclusion
of Lemma 35. In particular, Lemma 37 will establish control on certain norms
corresponding to families of such molecules indexed by dilated cubes. We will
construct such a family later from a corresponding family of functions satisfying
the hypotheses of Lemma 35. The following lemma will be useful in proving that
result. The results in this section are generalizations of Lemmas 22.4 and 22.5 in

[UchO1].
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Lemma 36. Suppose I = 0([0,1)" + k), and J = 62 ([0, 1) + q), and |I| > |J|.

Suppose also that pr,p; € CY(R",C) and let x; = dyk and x5 = danq.

1

lpr(x)| + |V [pr o du] (6g-12)| < (1 p(0gr(z — )i (2.27)

1
’pJ($)‘ + ‘V [pJ o 521}] ((52*p-1')| < (1 i ,0((5271@3 _ SL’J)))H'O‘_’ (2.28)
/p[(x)da: = /pJ(:E)d:E =0,. (2.29)

Then there exists a constant C' > 0 such that

C|I||J|* o/
/ pr(z)ps(z)dz| < (1] + p‘(ll"I _’ zy))iHa=/2 (2.30)
Proof. This follows from Lemma 5.1 of [BHO6]. H

Lemma 37. Let {\;}; be an indexed set of non-negative real numbers and let {p;},
be an indexed set of C*(R"™,C) functions where the index I runs over all dilated

cubes of the form I = 05([0,1)" + k) with | € Z and k € Z". Suppose

D NI < o, (2.31)
I

and that for all I

1
(14 p(0a-t(z — wp)))+e

/pl(x)dx = 0. (2.33)

p1(x)] + |V [pr 0 8] (dp-12)] < (2.32)
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Then there exists a constant C' > 0 such that

2
D || <CY NI (2.34)
I 2 I
2
A(B x (0,|B
S| <ClAle = sup X |£(3| 1B]) (2.35)
I BMO

where B is the set of all shifted dilates of the unit ball. A = >, N0z, 11y and

O(zr, 1)) @5 the Dirac measure at the point (xp, |I]) in R* x R,

Proof. In this proof C' is used to denote a positive constant. Separate instances of
C' do not necessarily denote the same constant. We start by establishing (2.34). By
(2.32) and (2.33) we can apply Lemma 36 which, in conjunction with the Cauchy-

Schwartz inequality, gives

Z)\Ipl < QZ Z AN

[ r@mpios
I J:|J|<|]
AN |2
<o (X i Cap)
)\2|]||J|1+0‘ /2
(ZZ (1] 4 p(z — z5)) o= /2)
)\2|]HJ|1+a /2
(ZZ (|1] + plzp — z5)) o= /2)'

I/\

Since |J| < |I| we have, using the quasi triangle inequality for p,

/ dy - C|J|
7 (I 4 plzr — y)He=/2 = (|| 4 p(x — 2 5))tHe-/2
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so that for a dilated cube I we have

| J|1Fe-/2 | J|+a-/2

2 SO >
_ 1+a /2 — — 1Ta_/2
siagn W+ pler = 27)) L2 1] J:| =2 (M + plxr —x,))
dy
<cY o /2/
— 14+a_/2
1:21< 1| n (’[‘ +,O<:U1 y))
peicitllas /2/ 1] /2dy
20=/2 — 1 Jou (1 + p(y))t+e-/2
=C.
Similarly,

/ dy - 1]
1 () + ply —xp)ite=2 = (|I| + p(xr — z5)) He-/2

so that for a dilated cube J we have

5 1]17]2-2 . "
<C Jle=/
(1| + plaf — xz))1to-/2 = Z |/ e (204 py — 25)) Fe /2

L 12]J] 12> J]
dy
<C Z |J|o¢/22—la/2/ -
= +a_/2
1:21>|J] re (14 p(y))
<C.

Consequently we obtain

2 l+a_/2
HZ >\1p1H <C <ZZ 0 ﬁ\;‘ﬂl{’ xj))1/+a/2)
A2|I||J|1+Oé 2
<ZZ (] + plar —zg))tte- /2)
o (Sox) (3o x11)
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as desired.

We now show

2
< ClAfe,
BMO

Z AIPr
T

which will complete the proof. By rescaling we may assume
Al = 1. (2.36)

Define 2z = sup,¢(oq» p(7). Let B = B(zp,rp) and write

Z)\Iplz Z Arpr + Z Arpr + Z AIPr = 1 + @2 + gs.
T

I::/L'IEJQZCQB, I:zI¢§2quB, I:|I‘>T’B
l1|<rp [I|<rp

Note that because

)
1Bl J5

it is enough to show that each of

HQIHLl(B) HQ2||L1(B) llgs — Q3(xB>HL1(B)

dr <
| B |B| | B|

> Aipi(x) — gs(wn)

and g —Q3(1‘B)HL1(B) "
’ | B

g1l sy g2l 1)
Bl " [B|

bounded above by a constant.
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Starting with the ¢; term we have, making use of (2.36) for the last inequality,

||q1||L1(B) ||QI||L2(R”)
Bl -~ |B]?

1/2

cl o> Al

z165QZCqB,
< [I|<rp
— |B|1/2
< C.

Similarly, for the ¢ term we have,

logy (rp)

g2/l 11 (p) Ipr(z)| da
R LD YD /B B

l=—00 Lzr¢éy.c,B
|[7]=2"

logs(rB)

dy
<c /
Z B(xzp,c'rB)° 1—}—/)(%3 - )/21>1+a7

l=—00

< CZQZQ_/ dy

B(0,c'rp) p(y>1+a7

<C.
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Lastly, we have

(o) = asanlinsy < 30 3 M [ lprle) = prlos)] da

I=logy (rp)+1 I:|I|=2!

SC’zl:zI:/B|[p10521](52—z:B)— [p1 © 0a1] (Op-125)| daz

< OB 3 Y sup|Vlps 0] (b)) sup |3y
/A

z€B(0,rB)

- ||
< e a2

_ _ dy
<C|B|Y 27rp2 l)a+/ -
zl: ’ we (1+ pleg —y)/2) "

< CIB| S (rp2 1y
l

< (B,

from which the result follows. O

2.5. Multipliers and BMO

In this section we begin with a family of multipliers satisfying the hypotheses
of Theorem 24 and construct a second family in Lemma 38. This second family
is used in Lemma 39 to construct, starting from certain BMO functions, an
element of S+, where S+ is as in Lemma 26. This will be our means of constructing
the desired function h € St for Lemma 28. Recall that A* is the ellipsoid
corresponding to the dilation structure arising from P*. The results in this sections

are generalizations of 24.2" and 24.3" in [Uch01].
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Lemma 38. Let 0y,...,0,, € C°(A*,C) be such that

0.(&) - ()

rank = 2.

01(=¢) - Om(=E)

Let v € S*"~1. Then there exist ©1,...,0,, € C*(A* C) and a constant C > 0

such that
ie]«s)@m =1, (2.37)
i; {v25-1 Re(0;(€) + ©;(=£)) + vo; Im(6;(€) + ©;(=¢))} = 0, (2.38)
]Zm;{vzj—l Im(6;(€) — 6;(—¢)) — v2; Re(0;(¢) — ©;(—¢))} =0, (2.39)
IVO,| < C(6y,...,0,,P). (2.40)

Proof. Because A* is compact and because the function 6; is smooth on A* for all j

we can construct, for 1 < j,k < m, smooth functions v, € C*(A*, C) such that

Yik = iy,
Vik(&) = ¥e(=E),

0; 0
rank i(6) &) =2if £ € supp(¢Y;),

0;(—¢) Ok(=¢)
Z%‘,k(f) =1 for all £ € A*.
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For z € C define

Re(z) —Im(z Re(z Im(z
p - | R ) | Re@) I

Im(z) Re(z) Im(z) —Re(z)
Suppose 1 < j < k < m and suppose £ € A* and p = (ug, ..., 1) € S3.
Define

R(0;(€))  R(6:(E)) R(0) R(0)
Bjk(&,p) = R(0) £(0) R(0;(=¢))  R(0:(=E))

R(pn —ipe)  R(ps —ipa) S +ipz)  S(us +ipa)

Then B; (&, 1) has full rank as long as & € supp; ;. Fix (£, 1) € A* x S? in the
support of 1, x. Then since B, ;(&, i) has rank 6 we can find 6 of its columns which
are linearly independent. Call the other two columns the ith and lth columns.
Define e; = (0,...,1,...,0) and ¢, = (0,...,1,...,0) where the 1 appears in the
ith and jth position respectively. Define C} (&, pt) to be the 8 x 8 matrix which
consists of the matrix Bj (&, u) with the rows e; and e; appended. Then Cj (&, )

is invertible and so

Cin(& ) i k(€)
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is a well defined element of R®. Moreover, there exists an open set U C A* x S3
consisting of points (&, u) such that the same 6 columns are linearly independent for

each (¢,v) € U and such that U does not intersect

U ={((v)e A" xS (=(v)eU}.

So, we can define a smooth function G: U — R® such that for (¢,v) € U we have

B (¢ v)G(¢v) = ¥(C) (2.41)

Note that for (&, 1) ¢ supp ¢, we may simply take U small enough so that
G = 0 satisfies the equation above. We now define complex valued functions

@j,kﬂa @k;yj?U € COO(A* X 83) by

=G(& 1)




That this gives smooth and well-defined functions follows from the facts that G is
smooth and that U and U* do not intersect. Combining this definition with (2.41)

leads to the following system of equations for each (&, ) € U U U™.

0;(§)O; k(& 1) + 0u(&, 1)On (&, 1) = Vjn(§), (2.42)

M1 Re (@j,k,U(§7 ,U) + @j,k,U<_£a M))

+ poIm (O, 0(&, 1) + Ok (=€, 1))

(2.43)
+ U3 Re (@k,j,U(f’, ,u) + @k,j,U(_ga ,u))
+ paIm (O v (€5 1) + Opjv (=€ 1) = 0,
M1 Im (@jk,[](g, M) - @j,k,U<_§u M))
— U2 Re (@j,k,U<£7 H) - @j,k,U<_£7 M))
(2.44)

+ p3Im (O v (&, 1) — O v (=&, 1))

— paRe (Op,;u(& 1) — Opju (=& 1)) = 0.

Since we have a neighborhood, U, as above for each point (£, ) € A* x S® and
since A* x S? is compact, we know there exist a natural number N and points

(i, ..., (v € A* x S3 such that the corresponding sets U, ..., Uy cover A* x S3.
Since A* x S3 is compact, and since U; N U} is empty for each i there exist smooth

real valued functions 11, ..., ¥y defined on A* x S? satisfying
N
D &) =1 (2.45)
1=1
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and such that for i € {1,..., N} we have

supp¢; C U; UUY, (2.46)

Fix (&, u) € A* x S3. Define ©,, and Oy ; by

k(& 1) = Z?/ngu Ojku (& m),  Ori(&p) = Zl/fzfﬂ@sz(ﬁﬂ)

with (&, 11)©; k.0, (&, 1) taken to be zero if (&, 1) ¢ U,;. From this definition and

(2.42)—(2.44) we obtain

ej (5)@]716(5’ M) + ek (ga M)GkJ (57 N) = ¢j7k(§)7 (248)

M1 Re (@M({, ,LL) + @j,k(_gu :u))

+ 12 Im (0 (&, 1) + O;1(=E, 1))

(2.49)
+ p3 Re (O (&, 1) + O 5 (=, 1))
+ 22 Im (Gk,j(£> N) + Gk,j(_57 H’)) = 07
pa Im (0 1.(8, 1) — O (=&, 1))
— p2 Re (01§, 1) — Oj1(=&, 1))
(2.50)

+ p3 Im (O (&, 1) — O i (—E, 1))

— 4 Re (@k,j (6, ,U> - @k,j(_ga :u)) =
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If r > 0, define ©; 4 (&, ) = O;4(&, 1) and Oy ;(§, i) = O ;(&, ). Additionally,

define (
0;(§)v;x () |
0,4(6.(0.0,0.0)) = 4 THEP + (P & & PPV
0 otherwise
and (
Ok (E)sx(8) |
04(€,(0,0,0,0)) = { 10,(O)2 +16x(&)P? § € supp iy,
0 otherwise.

\

This extends the definition of ©;; and O ; to A* x R? such that the corresponding
versions of (2.48)—(2.50) still hold.

We can now define our desired functions ©,. Set v, = (v9;j_1, Vaj, Vog—1, Vak)-
Let j € {1,...,m} and let £ € A* and let 7 € S*™~!. Then define

7j—1 m

0,u(&v5) + Y 05u(& ).
1

I=j+1

0,(§) =

1=
We first check that (2.37) holds. We have,

-1

.

™
QQD
m
m

I
NE
]

0;(£)0;x(§, vij)

<
Il
—_
<.
Il
-
i
—_

0; (5)@j,k(§a Uj,k)

n
™
NE

<
I
—_
bl
J
+

j+1

NE

<
Il

—
£
Il

(0x(§)Ok5 (&, vin) + 05(§)O; (85 vjk))

1

Y (§)

+

J

- M
(]

This is (2.37).
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Next we prove (2.38). We have

ZUQj—l Re(0;(§) + 0,(—¢)) + vo; Im(60;(&) + 0;(—E))
:Z 21 Re(0; (&, vk j) + Ok (=&, vk j))

+ v9; Im (0 (&, Vkj5) + Ojik(—E, vk 5))

+ Z Z V-1 Re(@j,k(f> Uj,k) + @j,k(—fj Uj,k))

j=1 k=j+1
+ v2; Im(0; 1 (&, v k) + O (=&, v5k))

HMS

Vok— 1f{e @kj 5 U]k) +@kj( §7vj,k‘>>

+ v Im (O j (§, Vi) + O i (=&, Viin))
+ v9;—1 Re(0;1(&, vjk) + ©;%(&,v5k))

+ v9; Im (0 (&, vjk) + Ojk(—E, vjk))
=>.2.0

=0.

The proof of (2.39) is similar to the proof of (2.38) and is omitted

It remains to show (2.40). Note that by construction,

sup {|Ve©,x(& p)| : € € A p € R}

= sup {|V£®],k(§7u)‘ : S € A*mu < Sg U {0707070}} :
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Since A is compact, and since 0;4(+,(0,0,0,0)) € C*(A*) and since O;4(+,-) €

C>(A* x §3) it follows that

sup {|VeO;(& )] : € € A%, e §2U{0,0,0,0}} < oco.

This completes the proof of Lemma 38. m

Lemma 39. Let ¢ € S?*™7'. Letb,,...,0,,, and ©y,...,0,, be as in Lemma 38.

Let St be as in Lemma 26. Let b € L*(R",R) N BMO(R",R). Set

T = (=09, 01, , —Vom, Vam_1)
and let ©},...,0! be the family of functions constructed in Lemma 38 using U’ in
place of U. Let
V= mg,((vaj-1 + ivy;b))
j=1
and
(v1 +ivg)b — me, (Reb') — ime: (Im b')
p=
(Vam—1 + 1Wam)b — me,, (Rel') —ime, (Imb)
Then

pe st (2.51)

plz) - 7= b(z). (2.52)
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Proof. We first establish (2.51). Note that by (2.37) we have

Z me, ((122]-_1 + iv9;)b — me, (Reb’) — imey (Im b'))
=1

=V —Reb —ilm¥

=0.

For (2.52) we note that if f € L*(R™, R) then we have

Mme, | + Me;
Re(me, f) = —ejf 5 o,/
me, f + mg-f
2
F [ (Re(©;+6;) +ilm(0; - 6;)) |
= 2 .
Similarly,
F [(m(@j +0;) —iRe(©, — éj)) f]
Im(m@j f) = 2
Consequently,

(me, f,...,me, f) U= ZUZj—l Re(me, f) + vz Im(me, f) = 0,
=1

where the last equality follows from (2.38) and (2.39). Then

(ime)llf,...,imegnf)-ﬁ‘:—(mgllf,...,mggnf)-ﬁ/.
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It then follows from the definition of p that

m
Z UQ] 1“‘”2] )b =1,

J=1

as desired. O

2.6. Averaging Operators

In this section we define several averaging operators. They will serve as
auxiliary functions allowing us to bridge the gap between inequalities later on. The

result of this section is a generalization of Lemma 22.7 of [UchO01].

Definition 40. Suppose {1}, is an indezed set of non-negative real numbers where

I is taken over all dilated cubes in R™. For each j € 7Z define

1) A1
L P (e Eea

I:|I|=27
00 (k—j)a—
99
(@)= (m) (@),
k=j
1/2
®) Al
R I-”Z—QJ (14 plz — @) /27) el )
o0 (k—j)or 1/2
99
%W@=(§3Qm) ﬁ%mﬁ 7
k=j
0\ (@) 855 (z — )| if plz —y) <2,
(0) — lo (z—y)
7; ([L’,y) - 62 PAT™Y . '
> (Th(f)( )+ (y)> if ple —y) = 2.
k=3

Lemma 41. Let {\;}; be as in Definition 40. Let fj: R — R" x Ry be defined

by fij(z) = (x,27). Then the measure d;—y; is defined by setting ;o (S) to be the
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Lebesgue measure of fj_l(S). There exists a constant C > 0 such that

(@) < O (y) if pla —y) < 2, (2.53)
1Y (@) < Cnt(y) if pla —y) < 2, (2.54)
9\ 4), 2
> 15 m (2)? < Oy (2)?, (2.55)
k=j
(4) /. \2
» ;- (y)’dy 1)
9 / J < o\ (2)?, 2.56
L+ pla —y)j2n) o2 =0 ) (2:50)
1\ (z) <P (x) < o (x) < Ol (2.57)
1 (z,y) < C A logy(2 + plx — y)/27), (2.58)
>\I773('(3r)1 (2, 2r) (4) 1/2 (1)
< Cmin { (@)%, A1 0 (@) (2.59)
; (1+ p(z — 1) /29) { 7 7 }
7 (@), || < CIA. (2.60)
Jj=—00 c

Proof. In this proof C' denotes a positive constant. Different instances of C' do not

necessarily denote the same constant. For (2.53) we have

)= > al

iy (L ply — ) /20)1 02

> A

I:|1|1=2J (1 + qu(a: — y)/?j + qu(:L‘ . $I>/2j)1+a_/2

> o

rirmer (L4 Cg)(1+ p(x — xr))20)) e/

= On\V(x).

v

v
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Similarly, for (2.54) we have

> (b—j)o— 2
(4) 2 99 )\]
n;,(y)” = (—) E ~
’ - e (Lt ply — ap)f28) T

©© (k—j)a— 2

99 A

>C — § I
- , (100> (14 p(z — 33[)/2/@)1%!—/2

k=j I:|I|=27

|1|=27

(k—=j)a— ( 99 )(j—k)a i ( 99 )(l—j)a Z )\%
100 = \100 o (Lt pla — xp)j2) o0

B i (g)(k—j)a 00 (%>(l—k)a Z )\%
— 10 — 100 N (14 p(x — xl)/21>1+a—/2

In order to prove (2.56) we need the following inequality, which holds for £ > j.

_ dy
2 J
/ (]_ + p(Z _ y)/2k)1+a7/2 (1 + ,0(.17 . y)/2j)1+a7/2
< ¢ )
(1 + p(z . .T)/2k)1+a_/2

(2.61)
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To see this, we split the integral up into two pieces defined by the ball B =

B(x,r) ={y € R": p(x —y) < r} and its complement where

r=2""1/[C(1+ p(z — z)/2")]

and obtain

2]’/ dy

(1+p(z—y)/2%) (1+ p(z —y)/27)
< 277 sup :

veB (14 p(z —y) /252 | (1 + pla — ) /20) T/ 1

4 1 1
(1 + p(z — .)/2k)1+a—/2 ) yeBe (1 + p(x _ y)/2j)1+a_/2
1 . 1

< C'|sup + 2 qup '

(wBO+Mz—wmﬂH“” et (L+ plz — y)/2) 7

For y € B we have

L+ p(z —2)/2" <1+ Cyp(z — y) /28 + Cyp(z — y) /2

< Cyl1+p(z = )/2%) +27' (1 + p(z — 2)/2°),

SO

L+ p(z = 2)/28 < 20,1 + p(z — y)/2°)

and

1 C
sup < .
veB (14 p(z — y)/20)' T 7 (14 p(z — ) /2k) 702

For y € B° we have

L+ p(z —y) /2 > 1+ C;712577 (1 + p(z — ) /2%)
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SO

C2 M1+ pz — ) /27) > C27T R 4 14 p(z — ) /28

> (14 2¢,)(1 + p(z — ) /2Y),
from which we obtain

1 _ C*
(L4 plx —y)/2) T2 7 (L4 plz — ) /26) 0/

from which (2.61) follows. Returning to proving (2.56) we have

iy s (y)dy
? /}1+Mx—wmw”““

0o (k—j)o— 2
» 99 Atdy
=2 / 2 (100> 2
k=j

i (L ply — 20) /29)772 (14 p(a — ) /27) 02

IN

°° (%) (k=j)a— O\
& 10 (L5 ol — /207

=Jj I:|I|=2F

I
Q
S

£
—~
8
S~—
r

The first inequality of (2.57) is immediate since the first term of the expression

for 175-2) (x) is exactly 77](-1)(1’). For the second inequality in (2.57) we have, using the
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Cauchy-Schwarz inequality twice,

() i ( o )(M)a 3 Ar
e 100 o
J k=j 100 L2k (1 + p(m — $1)/2k>1+ /2
(=) 1/2
>, 799\ ko= y
< (_) ;
kgj 10 I:ﬂzzgk (1+ p(z — z7)/2F) o=/
1/2
1
I:|1|=2k (1 + p(x — ;pI)/Qk)l-Fa,/z
1/2

_ > (99)“‘“‘3"”— Z A2
A=A Lo (L pla = ap) /2) 702

=J

1/2
[eS) ( 99 )(k—j)a Z 1
k=j 100 I:|I|=2* (1+p(x — 551)/2]€)Ha_/2

(4) (99 B 1 -
=1 (x) kz:; (m) 1:%::2’“ (1+ pla — xl)/Qk)l—i-af/Z
Thus, we need to show
>, /99 | Fe- 1 v
kgj (ﬁ) I:IIZ=2k (14 plx — x7) /28) 72 =¢

Note that

e
1 (L4 plz —y) /262 7 S (L4 Cup(x — y) /2% + Cuplay — y)/28) T2

Cdy
Z/ 1+a-_/2
1 (14 plz—x)/2F) 7%
C2F
(1 + p(ZE . $I)/2k)1+a_/2
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SO

1
D ey L D /1+p

I:|T|=2F I:|T|=2F

/2k>1+a /2

dy

=C27" /
re (14 p(x
=C.

Thus, we have

h)/2) P

1/2

<C.

> 799\ kd)e- 1
2 (W) 2 (1+ plz — 1) /2k) e/

k=j I:|1|=2*

For the third inequality in (2.57),
1/2
ny (@) < ClIAll”,

we need only recall that

Ar < C A2

so that

@y e (99 i
. €T = R —
T/J ( ) Z (100) Z (1 + p(x . x[)/2k)l+a,/2

k=j I:|1|=2F

1

1A i ( 99 ) k—j)o— Z
<C|A 27
C <\ 100 I\ T=a* (]_ + p(x — :L‘I)/Qk)l—s-o_/g

k=j

< ClAl-

This completes the proof of (2.57).
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The proof of (2.58) is straightforward from (2.57). First, if p(x — y) < 27 then

1 (@, y) =07 (2)| Ag-s (z — y)|
< C|Al,

< CIA[ 1ogy (2 + plz — ) /29).

For p(x —y) > 27, we have

logy p(z—y)

ey = Y (P @+ w)

k=j
1/2 .
< C [[A]]Y? (logy pla — y) — j + 1)

< C||A[IY? 10ga(2 + p(z — y) /29).

We move on to establishing (2.59). Using (2.58) we have

Z )‘177]('3—)1($7x1)

(1+ plx —r)/20) "

I:|I|=27

1/2 Arlogy (2 + p(x — ) /271
<o Y Mttt )

I:|1|=27

12 A1 logy(2 + p(z — 27)/27))
<Oal® > — ST P
I:|1|=27 (L4 p(z —x1)/29) (1+p(x —21)/29)

< O A 7 ().
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Also,

Z )\177](‘3-)1 (2, zr)

(14 plx —r)/27) T

I:|I|=27
logy (27T -p(a—x 7))

@ (1) + n®
<C > pr_mmm, > (W@l e)

:|1|=27 k=j+1

A (0 (@) + 0 ()
SCL X e

k>j I:|I|=2J
x1¢B(z,2k—25+1)

=¢ (ZZ 1+ p(x — 9;)/2])1“")1/2

(2@ +nPe) |
1p»3 (1 + p(z —xp)/27)F ’

where the last inequality follows from Cauchy-Schwarz. Since x; ¢ B(x,2F — 27+1)

we have

! - < : < ik
1+plr—xp)/20 = 1427 -2~

so that

1 < 9l-Ra—/2,
(1+ pla —xp)/29)* "

Additionally, using that p(z — z;) > 2F — 2971 we have

1 26—k (1+a-)
<
(14 plz —21)/2)7 7 (L4 pla —ap)/25) 7
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so that

v (1@ P en)” |
=) | ZE 0

(X

1+p

2(3 Yo /2)\2 1/2
<e(xy; )

(14 p(x —x1)/27)

( 2) )+77/E;2)< ))Q(j—k)(H-a,)

Aoy (1+ plz — a7)/28) o~

1/2

From here we make use of (2.54) and (2.57) followed by (2.56) and then finally

(2.55) to obtain

] k) a_/2/\2 1/2
(r3; =

(1+ p(x —xp)/29)

1/2
< (2) x) + 77]572) (.’L'[>2> 2(] k)Y(14+a-)
ZZ 1 +p T _xl)/zj)l—l-a,

1/2 @ N2, (42 1/2
. - + 1 ()
<C 9(i—k)a—/2,)(3) ,\2 o k)a/ N (2) k d
B (Z ) Z n 2k (1 + plz —y)/2k) - /

k>j k>3 R

1/2
<C7] <Z 2U—Rea-p >

k>j

< o (x),

and the result follows.
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Finally, we prove (2.60). Let B = B(xp,rg). Then we have

log,(rB) ) log,(rB) du
3 2 2
Waerda= 3 3 [ —
/B j=—00 ! jZoo I:|I|=27 B (1 —I—p(l‘ - x1>/2j>1+ 2

< CY2 3" Nmin {J11, |B| (dist(ar, B)/|1)" T}
If |1] < |B| (dist(z;, B)/|I|)"™/? then by rearranging we obtain
dist(z;, B) < (|B||I]*~/*)Y*e=/2) < Orp.

Thus,

plx; — xp) <14 quist(:z:B,B) +7rp
B B

1+ <,

from which it follows that

Cl|

1] <
(1+ p(zr — xB))

Tta_/2"
If | B| (dist(x;, B)/|I|)""*/* < |I| then by rearranging we obtain
(dist(zr, B)/|I])" "/ > | BIl1]*/*.

This gives

1+p(x[—x3)/7’3< 1+Cq _'_% C
dist(z;, B)  — dist(z;, B) | rp — |B[Y/(ta-/D|[[a- /@1t /2)’

IN

from which it follows that

| . ol
B (dist(x, B)/|1)+*/* < -
! (1 + pler —2) /) T2
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Thus, we have

logs (rB)

/Z KR O

J=—00

Hence, for any m € N we have

Al]
(14 p(x; —xB)/TB)

1+a_/2

< C|Alle [Bl

[, 55 it

‘]_700

logy(rB)+m

= Z / 77]3) )2dx

logy(rp)
= 3 [ weres

]_700

logs(rB)+m

> [

j=logy(rp)+1

< C(1+m) Al B

So

j_—OO

and

5t 27

>

]_700

Z n]-l—m

) 0iai|| < C(1+m)Alle

C

2
6t 27

< Z ggma-

<C Z 99™= (1 +m) [|A]l,

m=0

Z nJer

]_700

C

< ClIAe -

5



2.7. Proof of Lemma 28

Before getting to the proof of Lemma 28 we need a few more lemmas. The

first will give an approximate decomposition of elements g in BM O with support

in B(0,1) in terms of smooth atoms. Note that each component of these atoms

satisfies the relevant conditions of Lemma 35. Moreover, each component satisfies

the relevant condition of Lemma 39. The following lemma is a generalization of

Lemma 22.6 of [Uch01].

Lemma 42. Let § € BMO(R™ R?) and let suppg C B(0,1). Define 2
SUD,e(0,1]" p(x). Then there exists a constant C' > 0, independent of g, such

that there exist indexed sets {\r}; and {b1}1 of non-negative real numbers and

functions in D(R™ R?) respectively, where the index runs over all I of the form

I=06u([0,1)"+k) forl € Z and k € Z™, such that

A =0 and by = 0 unless I C B(0, CZ+1),
and | < —logy(CZ(1+ 2)) = j'

=12
IMle < Cllgl a0

supp by C B(0,|I]) + I

/g[d$:6

‘V2 [5[ o) 52liH S 1
supp (g’— Z )\]6}) C B(0,C +2C,)
I

F—> b
I

< Clgllsaro
Lo

where V? f is the vector consisting of all second partial derivatives of f
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Proof. In this proof C' is used to denote a positive constant. Different instances of
C' do not necessarily denote the same constant. Let ¢ € D(R", R) satisfy supp ¢ C

B(0,1) and [, ¢ =0, and
o dl ,
| ewer =1 ez
0
For a cube [, = I'let T(I) = I x (|I|/2,|1|] and define

. 1/2
(1772 S iy |0 % s, )P 242) 1<~ logy (31 +2))

Nooo=
Iy — '
0 otherwise
= o\ dydt \ 0

> S Joy T* s @)es(x —y) 53— AL, #

b, (x) = Tk ,

1 1
0 otherwise

First we show ’VQ [g’h L0 52;} (x)‘ < C. If N} = 0, then this is clear. If not, then

since 1 < 2!/t < 2 holds for 271 <t < 2!, we have for 1 <i,j < n.

sup 0,050 (Oarp—1 — 0p19) | [|0arp—1 ||

1<a,b<n

10:9; [ © dgry1] (x = 03-1y)| <C

<.
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It then follows from the above and Holder’s inequality that for 1 < r < d,

iUj [gzk © 52l]r (37)’

5 dydt
- / / Gy * 08,(1)0:0; [ © bpyr] (0 — Byoryy) 22
T(I) t )‘Il %

E([f, o s) (1, 58

C" >’[‘1/2
1|

|I|1/2

=C"(y),

from which the result follows. Set b; = b, /(n%dC"(p)) and set A; = n2dC" (o) N,
Then (2.66) holds.

For (2.65) we note that [, ¢s,(z —y)da = 0 for all (y,t) € T(I).

Turning to (2.64), since the support of ¢ is B(0, 1), we know that s, (x — v)
is nonzero only if x —y € B(0,t). In particular, if (y,t) € T(I), then s, (v — y) is
nonzero only if x € B(0,|I]) + 1.

For (2.62) note that because ¢ is supported in B(0, 1), the function ¢4, is
supported in B(0, |I]) for t < |I]. It follows that the support of § * s, is contained
in B(0,1) + B(0, |I|) for that range of ¢t. If x € supp(g* ¢s,) N and y € I then we

have

p(y) < Cy (plx —y) + p(z))
< Cy ()2 +Cy (1 + 1))

= C2 4 |I] (Cyz + C2).
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Thus, if I < —log,y(C7(1 + 2)) then I only intersects with the support of g * p; if
IC B(0,C2+1).

We now show (2.63). By the definition of A; we have

|7 * @5, (y)[*dydt
ﬁmzo/ ;
T(I)

If B = B(zp,r) and Sg is the union over all T'(I) for dyadic cubes I such that

x; € B and |I| < r then we have

/ A / | * s, (y) [P dydt
Bx[0,7] Sp 2

</ | * s, (y) [Pdydt
= () n )

where B' = B(zp,7Cy(1 + 2)), and T(B’) = B x [0,rC,(1 + z)]. Since we are
integrating over T'(B’) the support of g, is contained in B(0,7C,(1 + z)) so that if

x € B and ps, (x — y) is nonzero then

p(y —zp) < Cy(p(x —xp) + p(T —y))
< 2C%r(1+ z)

"
=T7.
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So, letting B” = B(xpg,r") we then have

/ |(g*905t )|?dydt Z/ (9:)B7)x B * @5, (y)|*dydt
T(B/) B/ t

(9:)B7)XB" * @, (y)|*dydt
<z/m

t

< CZ/ 19:(y) — (9:) 5 *dy

2
<CY 1B gillzao -

where the last inequality is a consequence of Corollary 6.3 in [Hyt10].

It then follows that

d
1 2
& / o AZOY o

=1

which gives (2.63).
We now consider the support of g—>; A /by to establish (2.67). We know from
(2.62) that we only need to consider those cubes I for which |I| < 1/(CZ(142)) and

I € B(0,C2 +1). Combining this with (2.64), each function b; is supported in

1 2
B0, 1))+ 1 CB (0, W) + B(0,C2 + 1)

(OC (ﬁ+0§+1)>

C B(0,C; +2C,).
Since this is a larger set than the support of § we obtain

supp (g— > )\151> C B(0,C3 +2C,)
I
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which is (2.67).

It remains to show (2.68). In fact, this is a straightforward consequence of

§x) = 3" Abi(a) = / G % 08, (4) 0 — y)dydt 1

"X(Qj/,oo>

and

7+ eatn)] < Ll < Cldllawo

The following lemma will put together most of the results in the last several

sections. Its conclusion yields the pieces that will enable us to prove Lemma 28.

Lemma 43. Let A > 0 be a sufficiently large constant. Let § € BMO satisfy
suppg C B(0,1) and ||§||gp0 < A7, Then there exist {b;};, and {Ar};, asin

Lemma 42 and there exist {1}y q<or and {@j}j<j such that the following hold:

A
(1+ ple —zr)/[I)T

/ﬁf(x)d:c =0, (2.70)

pr(2)] + |V [p1 0 d11] (817-12))]

IN

(2.69)

pre s, (2.71)

7j(@)] < 1 where &y = > A(br+51) — > G, (2.72)
I:|1|>2i k>j

()] < A min {0 (@), 1] a0 n (@) } (2.73)

V[ 0 Ag] ()] < A |41l prs0 ns" (), (2.74)

suppp; C L x € R": Z A|br () + pr(z)] > % (2.75)

L|1|>27
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Proof. In this proof C' is used to denote a positive constant. Different instances
of C' do not necessarily denote the same constant. For every dilated cube I with
|I| > 27" define p; = 0. For every j > j' define ¢; = 0. Note that for j > j' + 1
each of (2.69)—(2.75) holds since each function involved is zero. We will construct
the desired functions for other values of j inductively. To that end, suppose j < j
and suppose that we have constructed functions {pr} ;5 and {@x},-; such that
(2.69)—(2.75) all hold.

Let U(y) = y/|ly|l. If I is a dilated cube with |I| = 207! then by applying
Lemma 39 with b(z) = —b;(z) - U(7;(x;)) and 7 = U(&;(x;)) gives a C' function j
in S+ such that

(7il0) +510)) - UGRytrr)) = 0

It follows from Lemma 35 that (2.69)—(2.71) all hold.

Before constructing @;_; we first establish

7(x) = R ()| < AP0 (2, ), (2.76)

IV [Rj 0 0] (8p-2)| < A% (x). (2.77)

We first prove (2.76). Suppose p(z — y) < 2*. Then

S (@ i) = X a (Bi@) + i)
I:|I|=2F I:|I|=2F
<A ([Bi@) = Br(w)| + () — 7))

C AN |0g-1(z — y)|
3 (L+ plx —ar)/ 1))

< A2V (2)|8y-k (z — y)]-
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Also we have

|B(2) — Bu(y)] < CA|Fl paro M ()]0 (z — 1),

Thus, if p(x — y) < 27 then, by summing over k > j, we obtain

|7j(2) — Ri(y)] < 2473 [dy-r (2 — y)n (@)

k=j

< A0y (x — y)n? (x)

Similarly, if p(z — y) > 2% we have

S o (Br@) +am) = D0 ar (i) + (@)

I:|1|=2* I:|I|=2F

< 3 (IBr(a) + pir(a) |+ B (w) + o))

<A (@) + )

and

1Br(z) — W) < 0V (@) + 0 ().

Summing over k > 7 we obtain

10g2 (e’

|75 (@) — Ki(y)| < Z CA( ( )+77k)(y)> + Z CAW;SI)(IE)
' k=log,(p(z—y))+1
logg(p(x—y))

<Ay (nf)( )+n;§1)(y)>

k=j
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This establishes (2.76).

Note that by (2.76) we have, for p(x — dyy) < 27,

| [R; 0 895] (8a3) — [R; 0 0s] ()| _ A" (w833,
|09—iz — | T |09—i ( — do5y)]
A2 ()16, (x — Syry)|
- |09—i (x — do5y)|

= A% (),

from which (2.77) follows.

We next construct an auxiliary C*'(R",R) function ¢; such that |¢;(z)] < 1

and
99
1 if |K; > —
¥(@) = = 140 (2.78)
|V [77/)] o 62]’] (627k$)| S 1. (279)

Note that by (2.77) we know that the function &; o dy; has gradient bounded above

99 9
by A2 < A7, Consequently, if R; 0§y (2) > —— and &; 0 0y (y) < 0 then
LOO

— 100

2
o

we have by the mean value theorem

|z —y| > >A>1

9
= 10047
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In particular, there exists a C' function ¥, such that

99

1 if |Rjodg(x)] > —

U, (x) = o 100
0 if [Fj o dgi(x)] < 10

V()] < 1.

Setting 1;(x) = W;(d9-i ) gives our desired function.
Define

)= > A (Bile) + 7). (2:80)

I:I|=2i-1
T(x) = Kj(x) + plx), (2.81)
Gi—1(z) = ¢;(z) (|7(2)] — |K;(2)]) U(7(2)), (2.82)

and
Ri-1(x) = T(2) — Gj-1(2).
We must show (2.72)-(2.75) hold for £;_; and F;_1.

99
We first prove (2.72). Note that if &;(z) > 100 then we have

|Fj ()] = [7(2)] = [7(2)] + [F;(2)] = &;(z) < 1.

85



99
If £;(x) < 100 then we have

[Fja ()] = [(1 =4 () |7(2)] + () |75 ()]

We next prove (2.75). Note that by construction we have

supp @1 C supp ¢,

c{xew:w )|z%}

By the induction hypothesis we know the support of ; is contained in the region

> 9
where Y Ar|bs(x) + pr(x)| > 6 % that the last set above is contained in

{ee R 3 Albi(@) + Fi(@)] = 9}

so that (2.75) holds for g;_;.

For (2.73) and (2.74) we first rewrite ;_; in a more useful form. For

|R;(z)| > 0 we have

7@)| - [7,(0) = @ + 2R (e), 7)) + ) — 14 (a)
= 5@ (1425 7 U6 + Wl A 1))
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For simplicity we set

v(ir)=vV1+zx-—1

) = 2|r5()| 7 (pla) - U(K5(2))) + [R5 ()] 2| o)

So, if |Kj(x)| > 0 then

[7(@)] = [F; (@) = [ (@)[o(u(x))

and

9
— 10

0 otherwise.

. V()[R (2)|v(p(2)U(7(2) |Rj(x)] > —,
|Pi-1(x)] =

9
We next establish that if |£;(z)| > 10 then

@) UG ()] < Atmin {02, (0)2, 151 Bas0 |

[V (50 0i-1 - U(R; 0 63i-1)] (8-6-n)| < A* (| 000

We first prove (2.83). We have

) U = S A (Brle) + (o)) - U ()

I:|I|=2i-1

I:|I)=2i-1
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Note that

\U(z) = U(y)| = [U(x)(1 — [=|/|y]) + (z —y)/lyl|
<z —yl/lyl + 1 = |=|/|yll
= |z —yl/lyl + Iyl — =/ ]y]

< 2]z —y|/|yl.

9
With our assumption that |&;(x)| > 0 ™ obtain

I:|Ij=27-1
< Y M [B@) + )| 318 (@) - &)
I:|I)=2i-1
SRR
(14 pla — ) /27T

I:|1|=2i-1

from which (2.83) follows.

The proof of (2.84) is similar:

’v [p_'o (52]‘71 . U(E] e} 523'71)] (527(1‘*1%73)'

<| Y NUF@) - UF @)Y (EI 6 8yt + iy © 52j,1> (6561 )

Y (EI(@«)+ﬁ1<x>)V(U@.oagj,1>>(52_<j_1)x)

|1|=2i-1
A4)\177J(-2) ()
Sy (14 ple — ) /271) " > (14 ple — ) /271"

I:|I|=27—1 I:|I|=2i—1

(12
< A° ||9||BMO :
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9
We next show that if |£;(z)| > 10 then

)] < A% min {0, (0)2, 163000 ) (2:85)

IV [0 b3-1] (6-6-02) < AT |Gl 5010 (2.86)

which will allow us to complete the proof of Lemma 43.

For (2.85) we apply the definition of p’ as well as our condition on |<;(z)| and
(2.83).

For (2.86), we have

|V [ 0 0gi-1] (69-Gi-1) )|

< 2[R; ()| IV [R; © 0y5-] (5-6-1 )| o)

T 20R,(2)| |V [Fo 81 - U(E; 0 8311)] (8,-6-12)]

+2|R; ()| |V [Rj 0 856-0] (0~ )| () [*

+2|R; ()| [1p(@)[|V [5 0 83-1] (85--1) )]

< 34 ()Y, () + 34 |Gl 500 + 34D ()0, () + 34, (2)?

)
< A"|Gl 50 -

9
We prove (2.73). Note that if |£;(z)| < 10 then ¢;_1(x) = 0, and that if

9
|Kj(z)| > M then we have

Fa(@) < Jo(p@)] < @) < A min {0 (@)% 19 a0 " (2)

as desired.
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Finally, we prove (2.74). We have

9 [§-1 0 8311 (3y-u-2)|
< IV [0 8] (0a-6-02) Ry (@)lw(p() U (7))
105 (@) IV 7y © 83101] (9y--02) o)) |U (F()|
1 () 17 (@) (2(2)) 9 [0 6] (By-6-2) U (7())]
5 @)1 (@) (@) F@)] IV 170 bt] (85001
< |(@)| + 4% @) ()| + 5A7 |Gl aso + 1@ F@)] IV (7 0 621] (B--n)]
< AT |0 + 247 13010

2
< A° ”g”BMO7

as desired. This completes the proof of Lemma 43. m

We now prove our final lemma. Once it is proven we will establish Lemma 28

through an iterative process.

Lemma 44. There exists a positive constants C',C", C" such that if G and S+ are

as in Lemma 28, then there exist he St and ¥ € BMO satisfying

1A, < C 1m0 (2:87)
17 gar0 < O 13l 3am0 » (2.88)
supp ¥ C B(0,C"), (2.89)
g(x) — h(z) — 7(x)| < 2xBo.0m (@) + XBO.cme (@)p(2) "), (2.90)

Proof. In the following proof, C' denotes a positive constant. Different instances of

C' do not necessarily denote the same constant. Note that if we assume ||g|| 55,0 >
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A719 then the result is straightforward. Take i = 0 and 7 = § and C" > A0, If

191l 52705 then we can use Lemma (43). If (2.69)-(2.75) hold the we can define

Z)\Ipl and U= Z .-

k=—o00

We first check that & satisfies (2.87) and is in S*t. By (2.62) and (2.63) we have

C//l |
> il = 0 G ooy & S €1l € 115000 < o0

So, since (2.69) and (2.70) also hold we can apply Lemma 37 to establish that
the sum defining & converges in L? and BMO and that (2.34) and (2.35) hold.
Combining (2.35) with (2.63) gives (2.87). The fact that & is in S follows from
the fact that each py is.

We next look at ¢ and show (2.88) and (2.89) hold. First, because of (2.73)

and because
2
4
> |} <3

we know that the sum defining ¢ converges in L'. In particular, it is finite almost

everywhere.

Since supp 32, A;b; € B(0,C) we have, for z ¢ B(0,C"),

oA (B + 17 ]) = 3o vli(e)

A
< Al a0 m
PMO (14 pla — @) /1))
A797
<
— ,0(1’)1—"_0(*
<9
10’
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so that by (2.75) we can conclude that v is supported in B(0,C"”) giving (2.89).

Let B = B(zp,rp). Then we have

|B| / 951@@3) dx

k= logQ(rB)

logs(TB)
/ E | Br( Idl’+ |Pr(x) — Pr(zp)| da.
IBI B [B] /5
k= k=log, rB)—l—l

For the first term we have

log,(rB) log,(rB)

|B|/B Z | Bk (x |d$<\B|/ Z ALy (4) 2d;1:
AmHan 0ok

< A3 50 -

For the second term we have

%/B Z |G (7) — Gr(xp)| dx

< Bl Z sup |V[Bx 0 dor|(09-12) | sup |0k (x — xg)| dx
B k=log, (r5)+1 zeB zeB
—| 1 - a_
< Y Al 1| @)
logy (r)+1

12
< CAY HgHBMO :

Combining the above gives (2.88).
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We now prove that (2.90) holds. Note that by (2.72) for each j we have

br(z) — h(zx Z Ar(br(x) + pr(z Z@c
I:|I1<27 k<j
<1+ Z Ar(br(z) + pr(x Z@k
I:|I|<27 k<j

Letting 7 — oo we obtain

Z Arb(z) — h(z) — T(z)

For xz ¢ B(0,C") we have

A—97
(1 +ple —ar) /)T

Z Arby(z) — h(x

Z Aiby(z) — h(z

Combining these gives

)Z A]g](,]?) - ﬁ(l‘) - U("L‘)’ S XBA(ch/”)<Q7) + XBA(O,C”’)C (x)p(x)_(l'i'a*)'

Using (2.67) and (2.68) we then obtain (2.90). O

We can now give a proof of Lemma 28, which completes the proof of Theorem

24.

Proof of Lemma 28. Set C, = (14 C")~20+2=) We consider only ||7|| 5,0 = Cy/C"

since Lemma 28 holds under scaling. Now, we know there exist ﬁl € Stand 7 €
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BMO satistying

al

1510l 510 < Cg/C",

< Cy,
BMO

suppt; C B(0,C"),

—

‘g(x) o hl (x) - 771($)| S 2XB(O,C”’)(.T) + XB(O’C///)C(gj)p(x)f(lJra—).

We next iterate the above by replacing g with C;'@(d¢n-) to obtain functions 5’2 €
S+ and @, € BMO such that the above hold with the proper replacements.
In particular, if we set fy(z) = C’gfpg(éa,l,x) and vh(x) = 095(55,1&) then we

have

sy

| <2,
BMO g

||172||BM0 < C;’/C',

suppi, C B(0,C"),

—

[3(x) = ha() = Ba(@)| < 2C, (XBo.c) (@) + p(6gmz) X0 0m2y. ()

Repeating this process by rescaling U; at each step so that it is contained in B(0,1)

and has BMO norm bounded above by C,/C’, we obtain collections

{EJ} in $* and {%,;} in BMO
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such that for j > 1, and with vy = g,

h; < i
‘ Hemo = 79

”UJHBMO O]H/C,

supp ¥; C B(0,C"7),

From (2.94) we have

i1 (x) = hyj(z) — ()| < CCITH (1 + C"UD0T (1 4 p(a)) =),

Ty (@) = By(@) = 5(@)| <2057 (xmo.0m) (@) + p(0cH V)"0 g cmye

(2.91)

(2.92)

(2.93)

(2)).

(2.94)

Thus, by making repeated use of the triangle inequality and recalling that C;, =

(1+ C")~2(+2-) "we obtain

< O+ ) 0714 pla)) =)

<C(l1+ p(:ﬁ))_(H"“).
This gives us

Z 2)| < C(1+ p(x))~ ) + |7 ().

By (2.92) and (2.93) we have

|5;]l, < CC™CE < C(1+Cymittes)
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which goes to zero as j — oo.

Similarly, we have

—

J

—

thB(O,C”’J')

—

thB(O,C”’j)C .

<
1

+
BMO

<2000 + |

thB(O,C”'j)C

1

From (2.93) and (2.94) we have
()] < 205 p(6p 5 V)~

It follows from this that

—

h’jXB(O,C”/j)C

< C«Cg—lC///—(j—l)(l—i—a,) < C(l + C«///)—j(l—i—oz,)
L= >
so that
hy

Note that the right hand side above is summable over j > 1. In particular, this

< C(1+ ") ires),
<

means that the partial sums
j —
>
k=1

converge in L' to some k. It follows that there is a sequence {l,,} such that §(z) —

i hi(x) converges almost everywhere to §(z) — h(z). Combining this with the
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fact that ||v;||, — 0 and

we conclude
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