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DISSERTATION ABSTRACT

Paul Herstedt

Doctor of Philosophy

Department of Mathematics

June 2020

Title: AT-algebras from zero-dimensional dynamical systems

We outline a particular type of zero-dimensional system (which we call ”fiberwise essentially mini-

mal”), which, together with the condition of all points being aperiodic, guarantee that the associated

crossed product C*-algebra is an AT-algebra. Since AT-algebras of real rank zero are classifiable

by K-theory, this is a large step towards a classification theorem for fiberwise essentially minimal

zero-dimensional systems.

iv



CIRRICULUM VITAE

NAME OF AUTHOR: Paul Herstedt

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene

Portland State University, Portland

Oregon State University, Corvallis

DEGREES AWARDED:

Doctor of Philosophy, Mathematics, 2020, University of Oregon

Bachelor of Science, Mathematics, 2013, Portland State University

Bachelor of Science, Physics, 2013, Portland State University

AREAS OF SPECIAL INTEREST:

Operator algebras

Dynamical systems

v



ACKNOWLEDGMENTS

I have an enormous amount of gratitude to my advisor N. Christopher Phillips for his intense and

careful work in preparing this manuscript. He has been incredible in getting my understanding of

operator algebras to where it is today.

vi



TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. THEOREMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

4. PROOF OF THEOREM 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5. PROOF OF THEOREM 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vii



I INTRODUCTION

A C∗-algebra is a ∗-closed norm-closed subalgebra of the bounded operators on a Hilbert space. 
More abstractly, these are complex Banach algebras with an involution operation that satisfies certain 
properties. These mathematical objects began to be studied in detail due to their use in quantum 
mechanics modeling observables with self-adjoint operators; C∗-algebras are the abstract objects one 
can use to study these operators. For a solid introduction to C∗-algebras, see [7].

An important example of a C∗-algebra (particularly in this paper) is the C∗-algebra of continuous

functions from a compact Hausdorff space X to the complex numbers C (with pointwise operations),

which we will denote by C(X). There are numerous ways of constructing C∗-algebras from other

C∗-algebras or from other mathematical objects. We outline the ones relevant to this paper below.

Afterwards, we outline the motivation for this paper.

Given a sequence of C∗-algebras (An) and a sequence of maps (ϕn) from An to An+1, we call

(An, ϕn) a direct system. To this direct system we can associate a C∗-algebra A that encodes the

information of the direct system; it contains each An as a subalgebra and contains the connection

between An and An+1 via the map ϕn (for a more detailed account of this construction, see [10]).

The important cases for this paper are AF-algebras, which are the direct limits of systems in which

An is finite dimensional for all n, and AT-algebras, which are the direct limits of systems in which

An is the direct sum of matrix algebras and matrix algebras over C(S1) (where S1 denotes the circle;

note that T also denotes the circle, having two notations for the circle is an unfortunate but standard

practice in C∗-algebras).

Let X be a compact Hausdorff space and let h : X → X be a homeomorphism of X. We call (X,h)

a dynamical system. There is a way of associating a C∗-algebra to a dynamical system that encodes

the information of the dynamical system; we denote this associated C∗-algebra by C∗(Z, X, h). This

C∗-algebra is generated by C(X) and a unitary u that satisfies (ufu∗)(x) = f(h−1(x)). One can see

that C(X) encodes the information of X and u encodes the information of h. This is an example of

a crossed product C∗-algebra; for more on this subject see [12].

The underlying goal of a lot of research in the field of C∗-algebras in the last few decades is

K-theoretic classification, which is the goal of showing that, for various nice classes of C∗-algebras,

isomorphism at the level of K-theory implies isomorphism of the C∗-algebras. This work was pioneered

by George Elliott in the 70’s (see [3] for his groundbreaking work classifying the simple AF-algebras

introduced by Bratteli in [1]). This work was expanded by himself, Marius Dadarlat, and Guihua Gong

in the 90’s (see [4], [5], and [2]), where the classification result was expanded all the way up to real

rank zero AH-algebras of slow dimension growth. In particular, this classification result includes AT-

algebras of real rank zero, which is precisely the type of C∗-algebra that results from the construction

in this paper.

This paper proves that crossed product C∗-algebras associated to certain zero-dimensional dynam-

ical systems are AT-algebras with real rank zero (the real rank zero result is not in this current version,

but will be included in the near future and is certainly true), and are hence classifiable by the results

described in the paragraph above. This work is motivated by Putnam’s work in the minimal Cantor
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system case (see [9]), where he proves that crossed products associated to minimal zero-dimensional

systems are AT-algebras with real rank zero. The goal of this paper is to find a more general condi-

tion for which the techinque of the proof of Theorem 2.1 of [9] can be applied (see Definition 2.6 and

Definition 2.19 in the paper below).
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II PRELIMINARIES

Let X be a totally disconnected compact metrizable space and let h : X → X be a homeomorphism 
of X. We call (X, h) a zero-dimensional system. Let α be the automorphism of C(X) induced by h; 
that is, α is defined by α(f)(x) = f(h−1(x)) for all f ∈ C(X) and all x ∈ X. Then we denote the 
crossed product of C(X) by α by C∗(Z, X, h) (or, less commonly, C∗(Z, C(X), α)). We denote the 
“standard unitary” of C∗(Z, X, h) by u, so that ufu∗ = α(f) for all f ∈ C(X).

Definition 2.1. Let X be a totally disconnected compact metrizable space. We define a partition P 
of X to be a finite set of mutually disjoint compact open subsets of X whose union is X. We denote 
by C(P) the subset of C(X) consisting of functions that are constant on elements of P.

For ease of notation, we will often denote a sequence (xn)n
∞
=1 just by (xn). That such an object is 

a sequence will be clear from context.

Definition 2.2. We say that a sequence (Pn) of partitions of X is a generating sequence of partitions 
of X if Pn+1 is finer than Pn for all n ∈ Z>0, and if for every x ∈ X, there is a sequence (Vn) such

that Vn ∈ Pn for all n ∈ Z>0 and
⋂∞
n=1 Vn = {x}.

The terminology “generating sequence” comes from the fact that this sequence generates the

topology of X.

Notation 2.3. Let x ∈ X. We say that x is a periodic point if there is a nonzero integer n such

that hn(x) = x; otherwise, we say that x is an aperiodic point. We denote the orbit of x by orb(x) =

{hn(x)
∣∣n ∈ Z}. Similarly, we denote the forward and backward orbits of x by orb+(x) = {hn(x)

∣∣n ∈
Z≥0} and orb−(x) = {hn(x)

∣∣n ∈ Z≤0}.

We say that a closed subset Y of X is a minimal set if it is h-invariant and has no nonempty

h-invariant proper closed subsets. By Zorn’s lemma, minimal sets exist for every zero-dimensional

system. We use the following definition from [6].

Definition 2.4. We say that a dynamical system (X,h) is an essentially minimal system if it has a

unique minimal set.

We say that (X,h) is a minimal system if the unique minimal set is X. Note that essentially

minimal systems have no nontrivial compact open h-invariant subsets, since such a set and its com-

plement would contain disjoint minimal sets. Also note that we do not assume that all points must be

aperiodic, so Z/nZ with the shift homemorphism is an example of a minimal zero-dimensional system.

We will use the disjoint union symbol
⊔

to denote unions of disjoint sets. We will not always say

explicitly that the sets in this union are disjoint, as this will be implied by the notation.

Notation 2.5. Let (X,h) be a zero-dimensional system and let U ⊂ X. We define the map λU : U →
Z>0 ∪ {∞} by λU (x) = inf{n ∈ Z>0

∣∣hn(x) ∈ U} if this infimum exists, and λU (x) = ∞ otherwise.

We call this map the first return time map of U .
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Definition 2.6. Let (X,h) be a zero-dimensional system and let P be a partition of X. We define a

system of finite first return time maps subordinate to P to be a tuple

S = (T, (Xt)t=1,...,T , (Kt)t=1,...,T , (Yk,t)t=1,...,T ;k=1,...,Kt
, (Jk,t)t=1,...,T ;k=1,...,Kt

)

such that:

(a) We have T ∈ Z>0.

(b) For each t ∈ {1, . . . , T}, Xt is a compact open subset of X. That S is subordinate to P means

that, for each t ∈ {1, . . . , T}, Xt is contained in an element of P.

(c) For each t ∈ {1, . . . , T}, Kt ∈ Z>0.

(d) For each t ∈ {1, . . . , T} and each k ∈ {1, . . . ,Kt}, Yt,k is a compact open subset of Xt. Moreover,

for each t ∈ {1, . . . , T}, {Yt,1, . . . , Yt,Kt
} is a partition of Xt; that is,

Kt⊔
k=1

Yt,k = Xt.

(e) For each t ∈ {1, . . . , T} and each k ∈ {1, . . . ,Kt}, Jt,k ∈ Z>0. Using the Notation 2.5, {Jt,k} =

λXt(Yt,k). Moreover, for each t ∈ {1, . . . , T}, {hJt,1(Yt,1), . . . , hJt,Kt (Yt,Kt)} is a partition of Xt;

that is,
Kt⊔
k=1

hJt,k(Yt,k) = Xt.

(f) The set

P1(S) =
{
hj(Yt,k)

∣∣ t ∈ {1, . . . , T}, k ∈ {1, . . . ,Kt}, and j ∈ {0, . . . , Jt,k − 1}
}

is a partition of X. Note that this combined with condition (e) also implies

P2(S) =
{
hj(Yt,k)

∣∣ t ∈ {1, . . . , T}, k ∈ {1, . . . ,Kt}, and j ∈ {1, . . . , Jt,k}
}

is a partition of X.

Remark 2.7. We make some comments about what the objects in Definition 2.6 mean and where the

name of the system comes from. Adopt the notation of Definition 2.6. Then for each t ∈ {1, . . . , T},
each k ∈ {1, . . . ,Kt}, and each x ∈ Yt,k, we have λXt(x) = Jt,k. So Jt,k is the “first return time” of

each element of Yt,k to Xt. We enumerate some more points below.

(a) The number of “bases” (see (b) below) of S is T .

(b) The “bases” of S are (Xt)
T
t=1. These are the domains of the first return time maps above.

(c) For each t ∈ {1, . . . , T}, Kt is the size of the partition of Xt into sets with constant first return

time to Xt.
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(d) For each t ∈ {1, . . . , T} and each k ∈ {1, . . . ,Kt}, Yt,k is a piece of Xt that has constant first

return time to Xt.

(e) For each t ∈ {1, . . . , T} and each k ∈ {1, . . . ,Kt}, Jt,k is the first return time of Yt,k to Xt.

Examples 2.8. If (X,h) is a minimal zero-dimensional system, then for any partition P of X, (X,h)

admits a system of finite first return time maps subordinate to P. It is shown in the proof of Theorem

2.1 of [9] that we can take T = 1, and X1 can be any compact open subset of X that is contained in

an element of P.

In the comments preceding Theorem 8.3 of [6], it is implicitly stated that if (X,h) is an essentially

minimal zero-dimensional system with no periodic points, then for any partition P of X, (X,h) admits

a system of finite first return time maps subordinate to P. This can be shown using the same technique

of that of the proof of Theorem 2.1 of [9] by taking T = 1 and taking X1 to be any compact open

subset of X that intersects the unique minimal set of (X,h) and is contained in an element of P.

Let (X,h) be a zero-dimesional system. Theorem 3.1 gives an equivalent characterization of when,

given any partition P of X, (X,h) admits a system of finite first return time maps subordinate to P.

This equivalent characterization makes it easy to construct examples of such systems.

Proposition 2.9. Let (X,h) be a zero-dimensional system, let P be a partition of X, and let S =

(T, (Xt)t=1,...,T , . . .) be a system of finite first return time maps subordinate to P. Then:

(a) For every t ∈ {1, . . . , T},
⋃
j∈Z h

j(Xt) is a compact open subset of X.

(b)
⊔T
t=1

⋃
j∈Z h

j(Xt) = X.

Proof. We claim that
Kt⊔
k=1

Jt,k−1⊔
j=0

hj(Yt,k) =
⋃
j∈Z

hj(Xt).

Part (a) follows from this claim since the left-hand side of the above equation is clearly compact and

open, as it is the disjoint union of finitely many compact open sets. Part (b) follows from this claim

since
⊔T
t=1

⊔Kt

k=1

⊔Jt,k−1
j=0 hj(Yt,k) = X. To prove the claim, fix t ∈ {1, . . . , T} and set

Wt =

Kt⊔
k=1

Jt,k−1⊔
j=0

hj(Yt,k).

Note that condition (e) of Definition 2.6 tells us that
⊔Kt

k=1 h
Jt,k(Yt,k) = Xt. Thus, Wt is an h-invariant

set that contains Xt, meaning that it must contain
⋃
j∈Z h

j(Xt). To see that Wt contains nothing

more, note that Wt ⊂
⋃
j∈Z

⊔Kt

k=1 h
j(Yt,k) =

⋃
j∈Z h

j(Xt). This proves the claim, and by the argument

above, proves the proposition.

Proposition 2.10. Let (X,h) be a zero-dimensional system, let P and P ′ be partitions of X, and

let S = (T, (Xt)t=1,...,T , . . .) be a system of finite first return time maps subordinate to P. Then there

is a system of finite first return time maps subordinate to P, denoted by S ′ = (T ′, (X ′t)t=1,...,T ′ , . . .),

such that
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(a) T ′ = T and, for all t ∈ {1, . . . , T}, Xt = X ′t.

(b) Using the notation of Definition 2.6, P1(S ′) and P2(S ′) are finer than P ′.

Proof. Write P ′ = {U1, . . . , UR}. Let t ∈ {1, . . . , T} and let k ∈ {1, . . . ,Kt}. Define the following set:

At,k =
{
Yt,k ∩ h−j(Ur)

∣∣ r ∈ {1, . . . , R}, j ∈ {0, . . . , Jt,k}, and Yt,k ∩ h−j(Ur) 6= ∅
}
.

We claim that the union of the elements of At,k is Yt,k. First, notice that every element is a subset of

Yt,k. Next, notice that since P ′ is a partition of X,
⊔R
r=1(Yt,k ∩ Ur) = Yt,k. Thus, the claim follows.

We can therefore let Pt,k be a partition of Yt,k such that, for every U ∈ Pt,k and every V ∈ At,k, we

either have U ⊂ V or U ∩ V = ∅. Write Pt,k = {Yt,k(1), . . . , Yt,k(Mt,k)}.
Set T ′ = T . For each t ∈ {1, . . . , T ′}, define X ′t = Xt and K ′t =

∑Kt

k=1Mt,k. For each

t ∈ {1, . . . , T ′} and each k′ ∈ {1, . . . ,K ′t}, let k ∈ {1, . . . ,Kt} and m ∈ {1, . . . ,Mt,k} satisfy

k′ =
∑k−1
l=1 Mt,l + m, and define a compact open set Y ′t,k′ ⊂ Xt by Y ′t,k′ = Yt,k(m) and define

Jt,k′ = Jt,k.

We now show that S ′ = (T ′, (X ′t)t=1,...,T ′ , . . .) is a system of finite first return time maps subordi-

nate to P by checking the conditions of Definition 2.6. It is clear that (a), (b), and (c) are satisfied.

Observe that for each t ∈ {1, . . . , T ′}, we have

K′t⊔
k=1

Y ′t,k =

Kt⊔
k=1

Mt,k⊔
m=1

Yt,k(m)

=

Kt⊔
k=1

Yt,k

= Xt

= X ′t.

Thus, condition (d) is satisfied. Similarly, for each t ∈ {1, . . . , T ′}, we have

K′t⊔
k=1

hJ
′
t,k(Y ′t,k) =

Kt⊔
k=1

Mt,k⊔
m=1

hJ
′
t,k(Yt,k(m))

=

Kt⊔
k=1

Mt,k⊔
m=1

hJt,k(Yt,k(m))

=

Kt⊔
k=1

hJt,k(Yt,k)

= Xt

= X ′t.

Thus, condition (e) is satisfied. Let x ∈ X. There are precisely one t ∈ {1, . . . , T}, one k ∈ {1, . . . ,Kt},
and one j ∈ {0, . . . , Jt,k − 1} such that x ∈ hj(Yt,k). Since Pt,k is a partition of Yt,k, there is
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precisely one m ∈ {1, . . . ,Mt,k} such that h−j(x) ∈ Yt,k(m). Set k′ =
∑k−1
l=1 Ml,k + m, so that

Yt,k(m) = Y ′t,k. Then since J ′t,k′ = Jt,k, we have precisely one t ∈ {1, . . . , T ′}, one k′ ∈ {1, . . . ,K ′t},
and one j ∈ {0, . . . , J ′t,k′ − 1} such that x ∈ hj(Y ′t,k′). Thus, condition (f) is met.

We now verify the conditions of the proposition. Clearly (a) is satisfied. For (b), let t ∈ {1, . . . T ′},
let k′ ∈ {1, . . . ,K ′t}, and let j ∈ {0, . . . , J ′t,k − 1}. By definition, there is some k ∈ {1, . . . ,Kt} and

some m ∈ {1, . . . ,Mt,k} such that Y ′t,k′ = Yt,k(m). Since P ′ is a partition of X, it is also clear that

P ′j =
{
h−j(Ur)

∣∣ r ∈ {1, . . . , R}}
is a partition of X. Thus, there is some r ∈ {1, . . . , R} such that h−j(Ur)∩Yt,k intersects Yt,k(m). By

the definition of Pt,k, this means that Yt,k(m) ⊂ h−j(Ur)∩Yt,k. But then hj(Y ′t,k′) = hj(Yt,k(m)) ⊂ Ur.
This proves that P1(S ′) and P2(S ′) are finer than P ′. This proves the proposition.

Lemma 2.11. Let (X,h) be a zero-dimensional system, let P be a partition of X, and let S =

(T, (Xt)t=1,...,T , . . .) be a system of finite first return time maps subordinate to P. Let P1(S) and

P2(S) be as in Definition 2.6 and let S(1) = (T (1), (X
(1)
t )t=1,...,T (1) , . . .) be a system of finite first

return time maps subordinate to P1(S). Then there is a system S ′ = (T ′, (X ′t)t=1,...,T ′ , . . .) of finite

first return time maps subordinate to P and a system S(1)′ = (T (1)′, (X
(1)′
t )t=1,...,T (1)′ , . . .) of finite

first return time maps subordinate to P1(S) such that:

(a) We have T ′ = T , and for all t ∈ {1, . . . , T ′}, we have Xt = X ′t.

(b) The partition P1(S ′) is finer than P1(S) and the partition P2(S ′) is finer than P2(S).

(c) For each s ∈ {1, . . . , T (1)′}, there is a ts ∈ {1, . . . , T} and a ks ∈ {1, . . . ,Kts} such that X
(1)′
t =

Y ′ts,ks .

Proof. For each s ∈ {1, . . . , T (1)}, there is some ts ∈ {1, . . . , T}, some ks ∈ {1, . . . ,Kts}, and some

js ∈ {0, . . . , Jts,ks − 1} such that X
(1)
s ⊂ hjs(Yts,ks). Set T (1)′ = T (1), set X

(1)′
s = h−js(X

(1)
s ) and

set K
(1)′
s = K

(1)
s for all s ∈ {1, . . . , T (1)′}, and set Y

(1)′
s,k = h−js(Y

(1)
s,k ) and set J

(1)′
s,k = J

(1)
s,k for all

s ∈ {1, . . . , T (1)′} and k ∈ {1, . . . ,K(1)′
t }.

We now check that S(1)′ = (T (1)′, (X
(1)′
t )t=1,...,T (1)′ , . . .) is a system of finite first return time

maps subordinate to P1(S) by checking each of the conditions of Definition 2.6. Conditions (a)

and (c) are clearly met. By construction, for each s ∈ {1, . . . , T (1)′}, there are ts ∈ {1, . . . , T}
and ks ∈ {1, . . . ,Kts} such that X

(1)′
s ⊂ Yts,ks ∈ P1(S). Thus, condition (b) is met. Since for all

s ∈ {1, . . . , T (1)} we have
⊔Ks

k=1 Y
(1)
s,k = X

(1)
s , for all s ∈ {1, . . . , T (1)′} we have

K(1)′
s⊔
k=1

Y
(1)′
s,k =

K(1)
s⊔

k=1

h−js(Y
(1)
t,k )

= h−js(X(1)
s )

= X(1)′
s .
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Thus, condition (d) is satisfied. For condition (e), clearly Js,k ∈ Z>0 for all s ∈ {1, . . . , T (1)′} and all

k ∈ {1, . . . ,K(1)′
s }. For each s ∈ {1, . . . , T (1)′}, we also have

K(1)′
s⊔
k=1

hJ
(1)′
s,k (Y

(1)′
s,k ) =

K(1)
s⊔

k=1

hJ
(1)
s,k−js(Y

(1)
s,k )

= h−js

K(1)
s⊔

k=1

hJ
(1)′
s,k (Y

(1)
s,k )


= h−js(X(1)

s )

= X(1)′
s .

Thus, condition (e) holds. Finally, let x ∈ X. Since S(1) is a system of finite first return time

maps subordinate to P1(S), there are precisely one s ∈ {1, . . . , T (1)}, one k ∈ {1, . . . ,K(1)
s }, and one

j ∈ {0, . . . , J (1)
s,k − 1} such that x ∈ hj−js(Y

(1)
s,k ) = hj(Y

(1)′
s,k ). This is all that was needed to show that

P1(S(1)′) is a partition of X. Thus, condition (f) is satisfied, proving that S(1)′ is a system of finite

first return time maps subordinate to P1(S).

Now, for each t ∈ {1, . . . , T}, let At = {a(t, 1), . . . , a(t,Mt)} denote the set of all s ∈ {1, . . . , T (1)′}
such that ts = t and X

(1)′
s 6= Yts,ks , and let Bt = {b(t, 1), . . . , b(t,Nt)} be the set of all k ∈ {1, . . . ,Kt}

such that
(⊔T (1)′

s=1 X
(1)′
s

)
∩Yt,k = ∅ or such that X

(1)′
s = Yts,ks . Set T ′ = T , X ′t = Xt and K ′t = Kt+Mt

for all t ∈ {1, . . . , T ′}, and

Y ′t,k =


X

(1)′
s if s ∈ At and k = ks,

Yt,ks \X
(1)′
s if k = Kt +m for some m ∈ {1, . . . ,Mt}, and s = a(t,m),

Yt,k otherwise

and

J ′t,k =

Jt,ks if k = Kt +m for some m ∈ {1, . . . ,Mt}, and s = a(t,m),

Jt,k otherwise

for all t ∈ {1, . . . , T ′} and k ∈ {1, . . . ,K ′t}. We now check that S ′ = (T ′, (X ′t)t=1,...,T ′ , . . .) is a

system of finite first return time maps subordinate to P by checking the conditions of Definition 2.6.

Conditions (a), (b), and (c) are clearly met. For each t ∈ {1, . . . , T ′}, we have the following, where

we shorten ka(t,m) to k(t,m):

K′t⊔
k=1

Y ′t,k =

(
Mt⊔
m=1

X
(1)′
a(t,m)

)
t

(
Mt⊔
m=1

Yt,k(t,m) \X
(1)′
a(t,m)

)
t

(
Nt⊔
n=1

Yt,b(t,n)

)

=

(
Mt⊔
m=1

Yt,k(t,m)

)
t

(
Nt⊔
n=1

Yt,b(t,n)

)
= Xt

= X ′t.
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Thus, condition (d) is met. Similarly, for each t ∈ {1, . . . , T ′}, we have the following, where we again

shorten ka(t,m) to k(t,m):

K′t⊔
k=1

hJ
′
t,k(Y ′t,k) =

(
Mt⊔
m=1

hJt,k(t,m)(X
(1)′
a(t,m))

)
t

(
Mt⊔
m=1

hJt,k(t,m)(Yt,k(t,m) \X
(1)′
a(t,m))

)

t

(
Nt⊔
n=1

hJt,b(t,n)(Yt,b(t,n))

)

=

(
Mt⊔
m=1

hJt,k(t,m)(Yt,k(t,m))

)
t

(
Nt⊔
n=1

hJt,b(t,n)(Yt,b(t,n))

)
= Xt

= X ′t.

Thus, condition (e) is met. Finally, for each x ∈ X, there are precisely one t ∈ {1, . . . , T}, one

k ∈ {1, . . . ,Kt}, and one j ∈ {0, . . . , Jt,k − 1} such that x ∈ hj(Yt,k). If Yt,k = Y ′t,k, then Jt,k = J ′t,k,

and so x ∈ hj(Y ′t,k) for precisely one t ∈ {1, . . . , T ′}, one k ∈ {1, . . . ,K ′t} and one j ∈ {0, . . . , J ′t,k−1}.
Otherwise, there is some s ∈ At such that X

(1)′
s ⊂ Yt,k. There are now two possible cases. First, if x ∈

hj(X
(1)′
s ), then Jt,k = J ′t,k, and so x ∈ hj(Y ′t,k) for precisely one t ∈ {1, . . . , T ′}, one k ∈ {1, . . . ,K ′t}

and one j ∈ {0, . . . , J ′t,k − 1}. Otherwise, if x ∈ hj(Yt,k \ X(1)′
s ), then x ∈ hj(Y ′t,Kt+m

) where m is

such that s = a(t,m). In this case, we also have Jt,k = J ′t,Kt+m
, and so x ∈ hj(Y ′t,k′) for precisely one

t ∈ {1, . . . , T ′}, one k′ ∈ {1, . . . ,K ′t} and one j ∈ {0, . . . , J ′t,k′ − 1} (specifically, k′ = Kt +m) . Thus,

condition (f) holds, and so S ′ is indeed a system of finite first return time maps subordinate to P.

We now check that the conditions in the lemma are satisfied. Clearly (a) is satisfied. It is clear

that (b) is satisfied by construction as well, since for all t′ ∈ {1, . . . , T ′} and all k′ ∈ {1, . . .K ′t′}, there

are t ∈ {1, . . . , T} and k ∈ {1, . . . ,Kt} such that Y ′t′,k′ ⊂ Yt,k. Finally, condition (c) is also clearly

met by the way we defined the elements of S ′.

Lemma 2.12. Let (X,h) be a zero-dimensional system, let P be a partition of X, and let S =

(T, (Xt)t=1,...,T , . . .) be a system of finite first return time maps subordinate to P. Let P1(S) and

P2(S) be as in Definition 2.6 and let S(2) = (T (2), (X
(2)
t )t=1,...,T (2) , . . .) be a system of finite first

return time maps subordinate to P2(S). Then there is a system S ′ = (T ′, (X ′t)t=1,...,T ′ , . . .) of finite

first return time maps subordinate to P and a system S(2)′ = (T (2)′, (X
(2)′
t )t=1,...,T (2)′ , . . .) of finite

first return time maps subordinate to P2(S) such that:

(a) We have T ′ = T , and for all t ∈ {1, . . . , T ′}, we have Xt = X ′t.

(b) The partition P1(S ′) is finer than P1(S) and the partition P2(S ′) is finer than P2(S).

(c) For each s ∈ {1, . . . , T (2)′}, there is a ts ∈ {1, . . . , T} and a ks ∈ {1, . . . ,Kts} such that X
(2)′
t =

hJ
′
ts,ks (Y ′ts,ks).

Proof. For each s ∈ {1, . . . , T (2)}, there is some ts ∈ {1, . . . , T}, some ks ∈ {1, . . . ,Kts}, and some

js ∈ {1, . . . , Jts,ks} such that X
(2)
s ⊂ hjs(Yts,ks). For convenience of notation, set Js = Jts,ks . Set
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T (2)′ = T (2), set X
(2)′
s = hJs−js(X

(2)
s ) and set K

(2)′
s = K

(2)
s for all s ∈ {1, . . . , T (2)′}, and set

Y
(2)′
s,k = hJs−js(Y

(2)
s,k ) and set J

(2)′
s,k = J

(2)
s,k for all s ∈ {1, . . . , T (2)′} and k ∈ {1, . . . ,K(2)′

t }.
We now check that S(1)′ = (T (1)′, (X

(1)′
t )t=1,...,T (1)′ , . . .) is a system of finite first return time

maps subordinate to P2(S) by checking each of the conditions of Definition 2.6. Conditions (a)

and (c) are clearly met. By construction, for each s ∈ {1, . . . , T (2)′}, there are ts ∈ {1, . . . , T} and

ks ∈ {1, . . . ,Kts} such that X
(2)′
s ⊂ hJs(Yts,ks) ∈ P2(S). Thus, condition (b) is met. Since for all

s ∈ {1, . . . , T (2)} we have
⊔Ks

k=1 Y
(2)
s,k = X

(2)
s , for all s ∈ {1, . . . , T (2)′} we have

K(2)′
s⊔
k=1

Y
(2)′
s,k =

K(2)
s⊔

k=1

hjs(Y
(2)
t,k )

= hjs

K(2)
s⊔

k=1

Y
(2)
t,k


= hjs(X(2)

s )

= X(2)′
s .

Thus, condition (d) is satisfied. For condition (e), clearly Js,k ∈ Z>0 for all s ∈ {1, . . . , T (2)′} and all

k ∈ {1, . . . ,K(2)′
s }. For each s ∈ {1, . . . , T (2)′}, we also have

K(2)′
s⊔
k=1

hJ
(2)′
s,k (Y

(2)′
s,k ) =

K(2)
s⊔

k=1

hJ
(2)
s,k+Js−js(Y

(2)
s,k )

= hJs−js

K(2)
s⊔

k=1

hJ
(2)′
s,k (Y

(2)
s,k )


= hJs−js(X(2)

s )

= X(2)′
s .

Thus, condition (e) holds. Finally, let x ∈ X. Since S(2) is a system of finite first return time

maps subordinate to P2(S), there is precisely one s ∈ {1, . . . , T (2)}, one k ∈ {1, . . . ,K(2)
s }, and one

j ∈ {0, . . . , J (2)
s,k − 1} such that hjs−Js(x) ∈ hj(Y (2)

s,k ), and hence x ∈ hj+Js−js(Y
(2)
s,k ) = hj(Y

(2)′
s,k ). This

is all that was needed to show that P1(S(2)′) is a partition of X. Thus, condition (f) is satisfied,

proving that S(2)′ is a system of finite first return time maps subordinate to P2(S).

Now, for each t ∈ {1, . . . , T}, let At = {a(t, 1), . . . , a(t,Mt)} denote the set of all s ∈ {1, . . . , T (2)′}
such that ts = t and X

(2)′
s 6= hJs(Yts,ks), and let Bt = {b(t, 1), . . . , b(t,Nt)} be the set of all k ∈

{1, . . . ,Kt} such that
(⊔T (2)′

s=1 X
(2)′
s

)
∩ Yt,k = ∅ or such that there is a s ∈ {1, . . . , T (2)′} such that
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X
(2)′
s = Yt,k. Set T ′ = T , set X ′s = Xs and K ′s = Ks +Ms for all t ∈ {1, . . . , T ′}, and set

Y ′t,k =


h−Js(X

(2)′
s ) if s ∈ At and k = ks,

Yt,ks \ h−Js(X
(2)′
s ) if k = Kt +m for some m ∈ {1, . . . ,Mt}, and s = a(t,m),

Yt,k otherwise

and

J ′t,k =

Jt,ks if k = Kt +m for some m ∈ {1, . . . ,Mt}, and s = a(t,m),

Jt,k otherwise

for all t ∈ {1, . . . , T ′} and k ∈ {1, . . . ,K ′t}. We now check that S ′ = (T ′, (X ′t)t=1,...,T ′ , . . .) is a

system of finite first return time maps subordinate to P by checking the conditions of Definition 2.6.

Conditions (a), (b), and (c) are clearly met. For each t ∈ {1, . . . , T ′}, we have the following, where

we shorten ka(t,m) to k(t,m).

K′t⊔
k=1

Y ′t,k =

(
Mt⊔
m=1

h−Ja(t,m)(X
(2)′
a(t,m))

)
t

(
Mt⊔
m=1

Yt,k(t,m) \ h−Ja(t,m)(X
(2)′
a(t,m))

)
t

(
Nt⊔
n=1

Yt,b(t,n)

)

=

(
Mt⊔
m=1

Yt,k(t,m)

)
t

(
Nt⊔
n=1

Yt,b(t,n)

)
= Xt

= X ′t,

Thus, condition (d) is met. Similarly, for each t ∈ {1, . . . , T ′}, we have the following, where we again

shorten ka(t,m) to k(t,m).

K′t⊔
k=1

hJ
′
t,k(Y ′t,k) =

(
Mt⊔
m=1

hJt,k(t,m)

(
h−Ja(t,m)(X

(2)′
a(t,m))

))
t

(
Mt⊔
m=1

hJt,k(t,m)

(
Yt,k(t,m) \ h−Ja(t,m)(X

(2)′
a(t,m))

))

t

(
Nt⊔
n=1

hJt,b(t,n)(Yt,b(t,n))

)

=

(
Mt⊔
m=1

hJt,k(t,m)(Yt,k(t,m))

)
t

(
Nt⊔
n=1

hJt,b(t,n)(Yt,b(t,n))

)
= Xt

= X ′t,

Thus, condition (e) is met. Finally, for each x ∈ X, there are t ∈ {1, . . . , T}, k ∈ {1, . . . ,Kt}, and

j ∈ {0, . . . , Jt,k − 1} such that x ∈ hj(Yt,k). If Yt,k = Y ′t,k, then Jt,k = J ′t,k, and so x ∈ hj(Y ′t,k) for

precisely one t ∈ {1, . . . , T ′}, one k ∈ {1, . . . ,K ′t} and one j ∈ {0, . . . , J ′t,k − 1}. Otherwise, there is

some s ∈ At such that h−Js(X
(2)′
s ) ⊂ Yt,k. There are now two possible cases. First, if x ∈ hj−Js(X

(2)′
s ),

then Jt,k = J ′t,k, and so x ∈ hj(Y ′t,k) for precisely one t ∈ {1, . . . , T ′}, one k ∈ {1, . . . ,K ′t} and one
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j ∈ {0, . . . , J ′t,k − 1}. Otherwise, if x ∈ hj(Yt,k \ h−Js(X
(2)′
s )), then x ∈ hj(Y ′t,Kt+m

) where m is such

that s = a(t,m). In this case, we also have Jt,k = J ′t,Kt+m
, and so x ∈ hj(Y ′t,k′) for precisely one

t ∈ {1, . . . , T ′}, one k′ ∈ {1, . . . ,K ′t} and one j ∈ {0, . . . , J ′t,k′ − 1} (specifically, k′ = Kt +m). Thus,

condition (f) holds, and so S ′ is indeed a system of finite first return time maps subordinate to P.

We now check that the conditions in the lemma are satisfied. Clearly (a) is satisfied. It is clear

that (b) is satisfied by construction as well, since for all s′ ∈ {1, . . . , T ′} and all k′ ∈ {1, . . .K ′s′}, there

are s ∈ {1, . . . , T} and k ∈ {1, . . . ,Ks} such that Y ′s′,k′ ⊂ Ys,k. Finally, condition (c) is also clearly

met by the way we defined the elements of S ′.

Lemma 2.13. Let (X,h) be a zero-dimensional system such that, for any partition R of X, (X,h)

admits a system of finite first return time maps subordinate to R. Let P and P ′ be partitions of X,

and let S = (T, (Xt)t=1,...,T , . . .) be a system of finite first return time maps subordinate to P. Then

there is a system S ′ = (T ′, (X ′t)t=1,...,T ′ , . . .) of finite first return time maps subordinate to P ′ such

that, for each t′ ∈ {1, . . . , T ′}, there is a t ∈ {1, . . . , T} such that X ′t′ ⊂ Xt.

Proof. By Proposition 2.10, there is a system

S(0) = (T (0), (X
(0)
t )t=1,...,T (0) , . . .)

of finite first return time maps subordinate to P such that T (0) = T , P1(S(0)) is finer than P ′, and

for all t ∈ {1, . . . , T}, X(0)
t = Xt.

Now, by Lemma 2.11, there is some system

S ′ = (T ′, (X ′t)t=1,...,T ′ , . . .)

of finite first return time maps subordinate to P1(S(0)) such that for all t′ ∈ {1, . . . , T ′}, there is some

t ∈ {1, . . . , T} such that X ′t′ ⊂ Xt. Since S ′ is subordinate to P1(S(0)) and since P1(S(0)) is finer than

P ′, the conclusion follows.

Lemma 2.14. Let (X,h) be a zero-dimensional system and let (Pn) be a generating sequence of

partitions of X. Let (P ′n) be a sequence of partitions such that, for every n ∈ Z>0, P ′n+1 is finer than

P ′n, and for every n ∈ Z>0, there is some mn ∈ Z>0 such that P ′mn
is finer than Pn. Then (P ′n) is a

generating sequence of partitions of X.

Proof. Let x ∈ X and let (Vn) be a sequence such that Vn ∈ Pn for all n ∈ Z>0 and
⋂∞
n=1 Vn = {x}.

We inductively construct a sequence (Um) such that Um ∈ P ′m for all m ∈ Z>0 and
⋂∞
m=1 Um = {x}.

First, by assumption, there is an m1 ∈ Z>0 such that P ′m1
is finer than P1. We can therefore choose

U1, . . . , Um1
such that U1 ⊃ · · · ⊃ Um1

, Um1
⊂ V1, and x ∈ Um ∈ Pm for all m ∈ {1, . . . ,m1}.

Next, there is an m2 ∈ Z>0 such that P ′m2
is finer than P2. Since P ′m+1 is finer than P ′m for all

m ∈ Z>0, we are free to assume that m2 > m1. We can therefore choose Um1+1, . . . , Um2 such that

Um1+1 ⊃ · · · ⊃ Um2 , Um2 ⊂ V2, and x ∈ Um ∈ Pm for all m ∈ {m1 + 1, . . . ,m2}. Repeating this

process yields (Um), proving the lemma.
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Construction 2.15. Let (X,h) be a zero-dimensional system such that, for any partition P of X,

(X,h) admits a system of finite first return time maps subordinate to P. Let (P(n)) be a generating se-

quence of partitions ofX. Using Proposition 2.10, we choose a system S(1) = (T (1), (X
(1)
t )t=1,...,T (1) , . . .)

of finite first return time maps subordinate to P(1) such that P1(S(1)) is finer than P(2).

We construct a sequence of systems of finite first return time maps inductively. Let n be an

integer such that n ≥ 2 and use Lemma 2.13 with S(n−1) in place of S, P(n−1) in place of P, and

P(n) in place of P ′ to get a system S(n)′ of finite first return time maps subordinate to P(n) such

that, for every t′ ∈ {1, . . . , T (n)′}, there is a t ∈ {1, . . . , T (n−1)} such that X
(n)′
t′ ⊂ X

(n)
t . Then apply

Proposition 2.10 with P(n) in place of both P and P ′ and with S(n)′ in place of S to get a system

S(n) = (T (n), (X
(n)
t )t=1,...,T (n) , . . .) such that T (n) = T (n)′, X

(n)
t = X

(n)′
t for all t ∈ {1, . . . , T (n)}, and

P1(S(n)) is finer than P(n). By Lemma 2.14, (P1(S(n))) is a generating sequence of partitions, since,

for all n ∈ Z>0, P1(S(n)) is finer than P(n+1).

Let x1, x2 ∈ X. We say that x1 ∼ x2 if and only if there exists a sequence (tn) where tn ∈
{1, . . . , T (n)} for all n ∈ Z>0 such that x1, x2 ∈

⋂∞
n=1

⋃
j∈Z h

j(X
(n)
tn ). Define a set Z ⊂ X by

Z =
⋂∞
n=1

⊔T (n)

t=1 X
(n)
t .

Remark 2.16. Adopt the notation of Construction 2.15. We remark that, for most choices of (tn),

the set
⋂∞
n=1

⋃
j∈Z h

j(X
(n)
tn ) will be empty. In fact, it is nonempty if and only if, for every positive

integer n with n ≥ 2, we have X
(n)
tn ⊂ X

(n−1)
tn−1

; if X
(n)
tn 6⊂ X

(n−1)
tn−1

, then by construction, we have

X
(n)
tn ∩X

(n−1)
tn−1

= ∅. Another thing to notice is that since for every n ∈ Z>0 the sets X
(n)
1 , . . . , X

(n)

T (n)

are pairwise disjoint, the sequence (tn) correponding to an equivalence class is unique. Finally, we

can see that z is in Z if and only if there is a sequence (tn) such that z ∈
⋂
nX

(n)
tn .

Lemma 2.17. The relation ∼ from Construction 2.15 is an equivalence relation.

Proof. The only thing that is nonobvious about whether or not this is an equivalence relation is

whether or not all elements of X have an equivalence class. But by Proposition 2.9, for every n ∈ Z>0,

there is some t ∈ {1, . . . , T (n)} such that x ∈
⋃
j∈Z h

j(X
(n)
t ). Thus, ∼ is indeed an equivalence relation

on X.

The above equivalence relation will be referenced later, and is important for the proof of Theorem

3.1.

Lemma 2.18. The set Z in Construction 2.15 is a closed subset of X that contains exactly one

element from each equivalence class of ∼.

Proof. It is clear that Z is a closed subset of X, as it is defined to be the intersection of closed subsets

of X.

We now show that Z contains precisely one element from each equivalence class. To see this, first

let (tn) be a sequence such that, for all n ∈ Z>0b, we have tn ∈ {1, . . . , T (n)} and X
(n+1)
tn+1

⊂ X
(n)
tn .

Then (X
(n)
tn ) is a decreasing sequence of nonempty compact open subsets of X, and since the union

of (P(n)) generates the topology of X,
⋂∞
n=1X

(n)
tn contains exactly one element, which is certainly in

Z. If x′ ∈ X is another element in the same equivalence class as x, then x′ ∈
⋂∞
n=1

⋃
j∈Z h

j(X
(n)
tn ). If
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we also have x′ ∈ Z, then x′ ∈
⋂∞
n=1X

(n)
tn , so x′ = x. Thus, Z indeed contains precisely one element

from each equivalence class.

The above set Z will be referenced often throughout this paper and is important to the struc-

tural properties of (X,h). As with the equivalence relation defined earlier in this construction, Z is

important for the proof of Theorem 3.1.

Definition 2.19. Let (X,h) be a zero-dimensional system. We say that (X,h) is fiberwise essentially

minimal if there is a closed subset Z ⊂ X and a continuous map ψ : X → Z such that

(a) ψ|Z : Z → Z is the identity map.

(b) ψ ◦ h = ψ.

(c) For each z ∈ Z, (ψ−1(z), h|ψ−1(z)) is an essentially minimal system and z is in its minimal set.

Example 2.20. We provide some examples of fiberwise essentially minimal zero-dimensional systems.

(i) Any essentially minimal zero-dimensional system is a fiberwise essentially minimal zero-dimensional

system. We can take Z to be {z} for any z in the minimal set of X and then ψ : X → Z is the

map x 7→ z.

(ii) Let Z be a compact metrizable totally disconnected space and let (Y, h) be an essentially minimal

zero-dimensional system. Let X = Y × Z and let h′ = id × h. Then (X,h′) is an essentially

minimal system, where we take ψ : X → Z to be the map (y, z) 7→ z.

(iii) Let Z = Z ∪ {∞}, let (Y, h) be an essentially minimal zero-dimensional system. Let X =

(Y × Z)/(Y × {∞}) and let h′ : X → X be the image of id× h under the quotient map. Then

(X,h′) is an essentially minimal system where ψ is the image of (y, z) 7→ (h(y), z) under the

quotient map.
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III THEOREMS

We now introduce the main theorems of the paper. These theorems will take significant work to prove, 
and their proofs will be located in the following sections of the paper.

Theorem 3.1. Let (X, h) be a zero-dimensional system. Then (X, h) is fiberwise essentially minimal 
if and only if for any partition P of X, (X, h) admits a system of finite first return time maps 
subordinate to P.

The idea for Definition 2.6 came from an attempt to decipher what elements of minimality are 
used in the proof of Theorem 2.1 of [9], which states that the C∗-algebras associated to minimal

zero-dimensional systems are AT-algebras. As we will soon see, for a zero dimensional system (X, h), 
the condition that given any partition P of X, (X, h) admits a system of finite first return time maps

subordinate to P, can be used to prove that C∗(Z, X, h) is an AT-algebra. Without Theorem 3.1, it 
is difficult to construct or visualize zero-dimensional systems that satisfy this condition. However, it 
is not too hard to construct examples of fiberwise essentially minimal zero-dimensional systems, as 
Example 2.20 illustrates.

Theorem 3.2. Let (X, h) be a fiberwise essentially minimal zero-dimensional system with no periodic

points. Then C∗(Z, X, h) is an AT-algebra.

Note that a later version of this paper will also prove that C∗(Z, X, h) has real rank zero, and is 
hence classifiable by [2].
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∣

IV PROOF OF THEOREM 3.1

Proposition 4.1. Let (X, h) be a zero-dimensional system, let U be a compact open subset of X, 
and let λU be as in Notation 2.5. Then λU is continuous.

Proof. Let x0 ∈ U satisfy λU (x0) = m for some m ∈ Z>0. We show that λU is continuous at x0. 
We claim that since U is open, λU is upper semi-continuous at x0. Since hm(x0) ∈ U , we have 
x0 ∈ h−m(U). Then, since h−m is continuous, h−m(U) is an open set in X, and so is h−m(U) ∩ U . 
For all x ∈ h−m(U) ∩ U , we have hm(x) ∈ U , and so λU (x) ≤ m = λU (x0). Thus, λU is upper 
semicontinuous at x0. We claim that since U is closed, λU is lower semi-continuous at x0. Suppose 
that λU is not lower semi-continuous at x0. This means that there is a sequence (yn) in U such that 
yn → x0 and λU (yn) < λU (x0) for all n ∈ Z>0. So, since {λU (yn) ∣ n ∈ Z>0} ⊂ {1, . . . , λU (x0) − 1}, 
which is a finite set, there is a subsequence (xnk ) of (xn) such that (λU (xnk )) is a constant sequence. 
Say that λU (xnk ) = m for all k ∈ Z>0. But then (xnk ) is a sequence in h−m(U), which is closed 
since h−m is continuous. Since xnk → x0, we conclude that x0 ∈ h−m(U). This is a contradiction to 
λU (xn) < λU (x0) for all n ∈ Z>0. Thus, λU is lower semi-continuous at x0, and therefore continuous 
at x0.

Now let x0 ∈ U satisfy λU (x0) = ∞. We now show that λU is continuous at x0. Suppose not; that 
is, suppose there is a sequence (xn) in U converging to x0 such that that limn→∞ λU (xn) 6= ∞. By 
passing to a subsequence, we may assume that (λU (xn)) is bounded, and then by passing to another 
subsequence, we may assume that (λU (xn)) is constant, say equal to k. This means that hk(xn) ∈ U 
for all n ∈ Z>0. But then since hk is continuous, limn→∞ h

k(xn) = hk(x0). Since U is closed, 
limn→∞ h

k(xn) ∈ U . Thus, hk(x0) ∈ U , a contradiction to λU (x∞) = ∞. Thus, λU is continuous at 
x0.

Altogether, we see that λU is continuous.

The following proposition is contained in Theorem 1.1 of [6].

Proposition 4.2. Let (X,h) be an essentially minimal zero-dimensional system, let Y be its unique

minimal set, let y ∈ Y , let U be a compact open neighborhood of y, and let λU be as in Notation 2.5.

Then we have the following:

(a)
⋃
j∈Z h

j(U) = X.

(b) ran(λU ) is a finite subset of Z>0.

(c) U = {hλU (x)(x)
∣∣x ∈ U}.

(d)
⋃
j∈Z>0

hj(U) =
⋃
j∈Z<0

hj(U) = X.

Proof. Part (a) is contained in Theorem 1.1 of [6], but we include the proof for the convenience of the

reader. First, note that
⋃
j∈Z h

j(U) is an h-invariant open set in X, which means X \
⋃
j∈Z h

j(U) is

an h-invariant closed set. Since this h-invariant closed set must contain a minimal set, and y is not
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in this set, we conclude that (X,h) would not have a unique minimal set unless X \
⋃
j∈Z h

j(U) was

empty.

For part (b), let x ∈ U . Theorem 1.1 of [6] implies that there is some j ∈ Z>0 such that hj(x) ∈ U .

Thus, the range of λU is contained in Z>0. By Proposition 4.1, λU is continuous, and since U is

compact, λU therefore has finite range.

For part (c), define a map λ̃U : U → Z<0 ∩ {−∞} by λ̃U (x) = sup{n ∈ Z<0

∣∣hn(x) ∈ U} if

this supremum exists, and λ̃U (x) = −∞ otherwise. By Theorem 1.1 of [6], for each x ∈ U , there

is some j ∈ Z<0 such that hj(x) ∈ U . Thus, the range of λ̃U is contained in Z<0. To see that λ̃U

is continuous, we apply Proposition 4.1 with h−1 in place of h. Thus, λ̃U has finite range. Write

ran(λ̃U ) = {J1, . . . , JK} and let k ∈ {1, . . . ,K}. If x ∈ λ̃−1U (Jk), then it is easy to see that we must

have λU (x) = −Jk . Thus, ran(λU ) = {−J1, . . . ,−JK}, and so we get

{hλU (x)
∣∣x ∈ U} =

K⋃
k=1

h−Jk(λ−1U (−Jk)) =

K⋃
k=1

λ̃−1U (Jk) = U.

Part (d) is an immediate consequence of (a) and (c).

Proof of Theorem 3.1. (⇒). Let Z and ψ be as in Definition 2.19. Let P be a partition of X. Let

X ′1, . . . , X
′
T be the elements of P with nontrivial intersection with Z. For each t ∈ {1, . . . , T}, set

Xt = ψ−1(X ′t ∩ Z) ∩X ′t. Since X ′1, . . . , X
′
T are pairwise disjoint, it follows that X1, . . . , XT are also

pairwise disjoint.

Fix t ∈ {1, . . . , T}. Let λXt
: Xt → Z>0 be as in Notation 2.5 and set Zt = Xt∩Z. Let z ∈ Zt and

set Vz = Xt ∩ ψ−1(z). Note that Vz is a compact open neighborhood of z in ψ−1(z). Since h|ψ−1(z)

is essentially minimal and Vz contains an element from the minimal set of (ψ−1(z), h|ψ−1(z)), λXt |Vz

is a finite subset of Z>0 by Proposition 4.2(b). Since this holds for all z ∈ Zt, we see that ran(λXt) is

a subset of Z>0. Since Xt is a compact open subset of X and since λXt
is continuous by Proposition

4.1, it follows that ran(λXt
) is a finite set; thus, we can write ran(λXt

) = {Jt,1, . . . , Jt,Kt
}. For each

k ∈ {1, . . . ,Kt}, define Yt,k = λ−1Xt
(Jt,Kt).

We now check that what was defined above satisfies the conditions of Definition 2.6. Conditions

(a) and (c) are clearly met. For each t ∈ {1, . . . , T}, note that cince X ′t ∩ Z is compact and open in

Z and since ψ is continuous, ψ−1(X ′t ∩ Z) is compact and open, and hence Xt is compact and open.

Furthermore, since Xt ⊂ X ′t, and X ′t is an element of P, it follows that Xt is contained in an element

of P. Thus, (b) holds. For each t ∈ {1, . . . , T}, since ran(λXt) = {Jt,1, . . . , Jt,Kt}, we also have

Kt⊔
k=1

Yt,k =

Kt⊔
k=1

λ−1Xt
(Jt,k)

= Xt.

Thus, (d) holds. Recall that for each z ∈ Z, (ψ−1(z), h|ψ−1(z)) is an essentially minimal system and

z is in its minimal set, and so since Vz is a compact open neighborhood of z, Proposition 4.2(c) tells
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us that {hλVz (x)
∣∣x ∈ Vz} = Vz. Thus, for each t ∈ {1, . . . , T}, we have

Kt⊔
k=1

hJt,k(Yt,k) = {hλXt (x)(x)
∣∣x ∈ Xt}

=
⊔
z∈Zt

{hλVz (x)(x)
∣∣x ∈ Vz}.

Since
⊔
z∈Zt

Vz = Xt, this proves that (e) indeed holds. Next, let x ∈ X. There is precisely one

z ∈ Z such that x ∈ ψ−1(z), and precisely one t ∈ {1, . . . , T} such that z ∈ Zt. Let j ∈ Z≥0 be the

smallest nonnegative integer such that h−j(x) ∈ Vz ⊂ Xt. This integer exists by applying Proposition

4.2(a), which applies since(ψ−1(z), h|ψ−1(z)) is an essentially minimal system, z is in its minimal set,

and Vz is a compact open neighborhood of z. It is clear that there is precisely one k ∈ {1, . . . ,Kt}
such that h−j(x) ∈ Yt,k. Then note that j ∈ {0, . . . , Jt,k − 1} since either j = 0 or hk(x) /∈ Xt for all

k ∈ {−j, . . . ,−1}. Thus, this proves that (f) holds as well. Altogether, we see that (X,h) admits a

system of finite first return time maps subordinate to P.

(⇐). Let (P(n)) be a generating sequence of partitions of X. Use Construction 2.15 to construct

a sequence (S(n)) of finite first return time maps and adopt the notation of the construction. Define

a map ψ : X → Z by ψ(x) = z if z ∈ Z and x ∼ z. Recall that by Lemma 2.17, ∼ is an equivalence

relation, and by Lemma 2.18, ψ is a well-defined map.

We claim that ψ and Z satisfy the conditions of Definition 2.19. To see that ψ is continuous, let

x ∈ X and let V be an open neighborhood of ψ(x) in Z. Since x ∼ ψ(x), there is a sequence (tn)

such that tn ∈ Z>0 for all n ∈ Z>0 and x, ψ(x) ∈
⋂∞
n=1

⋃
j∈Z h

j(X
(n)
tn ). Since ψ(x) ∈ Z, we have

ψ(x) ∈
⋂∞
n=1X

(n)
tn ; because of this and because (P(n)) is a generating sequence of partitions, there

is some n ∈ Z>0 such that X
(n)
tn ⊂ ψ−1(V ), and so ψ(X

(n)
tn ) ⊂ V . Set U =

⋃
j∈Z h

j(X
(n)
tn ), which

contains x. Notice that since the equivalence classes of elements in U are the same as the equivalence

classes of elements in X
(n)
tn , we have ψ(U) = ψ(X

(n)
tn ) ⊂ V . Since x ∈ U , U is a neighborhood of x

such that ψ(U) ⊂ V , which proves that ψ is continuous.

It is obvious that ψ|Z is the identity. To see that ψ ◦ h = ψ, let x ∈ X and let (tn) be a sequence

such that tn ∈ Z>0 and x ∈
⋃
j∈Z h

j(X
(n)
tn ) for all n ∈ Z>0. Then clearly h(x) ∈

⋃
j∈Z h

j(X
(n)
tn ) for all

n ∈ Z>0, so x ∼ h(x). Thus, ψ ◦ h = ψ.

Let z ∈ Z. It is left to show that (ψ−1(z), h|ψ−1(z)) is an essentially minimal system and z is in its

minimal set. By Theorem 1.1 of [6], it suffices to show that, for every neighborhood V of z in ψ−1(z),

we have
⋃
j∈Z h

j(V ) = ψ−1(z). So let V be a neighborhood of z in ψ−1(z), let V ′ be a neighborhood

of z in X such that V ′ ∩ ψ−1(z) = V , and let (tn) be a sequence such that tn ∈ Z>0 for all n ∈ Z>0

and z ∈
⋂∞
n=1X

(n)
tn . Since (P(n)) is a generating sequence of partitions, there is some n ∈ Z>0 such

that X
(n)
tn ⊂ V ′. Let x ∈ ψ−1(z), so x ∼ z. This means that in particular, we have x ∈ X(n)

tn . This

tells us that
⋃
j∈Z h

j(X
(n)
tn ∩ ψ

−1(z)) = ψ−1(z), and since X
(n)
tn ∩ ψ

−1(z) ⊂ V ′ ∩ ψ−1(z) = V , this

shows us that
⋃
j∈Z h

j(V ) = ψ−1(z), as desired.
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V PROOF OF THEOREM 3.2

The following two propositions are well-known (see [8]).

Proposition 5.1. Let (X, h) be a zero-dimensional system. Then there is an isomorphism ϕ : 
K0(C(X)) → C(X, Z) that sends [χE ] (where E is a compact open subset of X) to χE ∈ C(X, Z).

A particular consequence of the above proposition is that if E1 and E2 are compact open subset 
of X such that E1 6= E2, then [χE1 ] 6= [χE2 ].

Let T denote the Toeplitz algebra, the universal C∗-algebra generated by a single isometry s. Let 
A be a unital C∗-algebra and let α be an automorphism of A, and let u be the standard unitary 
of C∗(Z, A, α). We denote by T (A, α) the Toeplitz extension of A by α, which is the subalgebra of 
C∗(Z, A, α) ⊗ T generated by A ⊗ 1 and u ⊗ s. The ideal generated by A ⊗ (1 − ss∗) is isomorphic to 
A ⊗ K, and the quotient by this ideal is isomorphic to C∗(Z, A, α).

Proposition 5.2. Let (X, h) be a zero-dimensional system. Let α be the automorphism of C(X) 
induced by h; that is, α is defined by α(f)(x) = f(h−1(x)) for all f ∈ C(X) and all x ∈ X. Let δ be 
the connecting map obtained from the exact sequence

0 C(X)⊗K T (C(X), α) C∗(Z, A, α) 0,ι π

where K0(C(X) ⊗ K) is identified with K0(C(X)) in the standard way. Let i : C(X) → C∗(Z, X, h)

be the natural inclusion. Then there is an exact sequence

0 K1(C∗(Z, X, h)) K0(C(X)) K0(C(X)) K0(C∗(Z, X, h)) 0.δ id−α∗ i∗

Proof. Since K1(C(X)) = 0, this follows immediately from Theorem 2.4 of [8].

Lemma 5.3. Let (X,h) be a zero-dimensional system and let E ⊂ X be a compact open h-invariant

subset ofX. Set p = χE . Then δ([pup+(1−p)]) = [p]. Moreover, if E is nonempty, then [pup+(1−p)] 6=
0.

Proof. We use the exact sequence in Proposition 5.2 and the definition of the connecting map as in

Definition 8.1.1 of [11]. Let p1 be the matrix ( 1 0
0 0 ) and let

w =

(
up⊗ s+ (1− p)⊗ 1 p⊗ (1− ss∗)

0 pu∗ ⊗ s∗ + (1− p)⊗ 1

)
∈M2(T (A,α)).

It is straightfoward to check that

π(w) =

(
up+ (1− p) 0

0 (up+ (1− p))∗

)
.

We also have

w∗p1w =

(
1 0

0 p⊗ (1− ss∗)

)
.
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Thus, δ([up+ (1− p)]) = [p] as desired.

If E is nonempty, by Proposition 5.1, [p] 6= 0. Since δ is injective, this means that [up+ (1− p)] 6=
0.

Lemma 5.4. Let (X,h) be a zero-dimensional system and let E be an h-invariant compact open

subset of X. Set p = χE . Then K1(pC∗(Z, X, h)p) is torsion-free.

Proof. Set A = C∗(Z, X, h) for convenience of notation. By Proposition 5.1, K0(C(X)) is torsion-

free. By Proposition 5.2, since K1(A) embeds into K0(C(X)), K1(A) must be torsion-free as well.

Since p is a central projection, we have A ∼= pAp ⊕ (1 − p)A(1 − p). This means that we have

K1(A) ∼= K1(pAp)⊕K1((1− p)A(1− p)). Since K1(pAp) is a direct summand in a torsion-free group,

it itself is torsion-free.

Lemma 5.5. Let A be a unital C∗-algebra, let p be a projection in A, and let v be a unitary in pAp.

Then if [v + (1− p)] 6= 0 in K1(A), we have [v] 6= 0 in K1(pAp).

Proof. Suppose that [v] = 0 in K1(pAp). This means that there is an n ∈ Z>0 such that v⊕p⊕ · · · ⊕ p︸ ︷︷ ︸
n−1 times

is homotopic to p⊕ · · · ⊕ p︸ ︷︷ ︸
n times

in the unitary group of Mn(pAp). Let (xt)t∈[0,1] be this homotopy. Define

a homotopy (yt)t∈[0,1] in Mn(A) by yt = xt + (1− p)⊕ · · · ⊕ (1− p)︸ ︷︷ ︸
n times

for all t ∈ [0, 1]. Then y0 =

(v + (1− p))⊕ 1⊕ · · · ⊕ 1︸ ︷︷ ︸
n−1 times

and y1 = 1⊕ · · · ⊕ 1︸ ︷︷ ︸
n times

, which shows that [v + (1− p)] = 0 in K1(A).

Proposition 5.6. Let (X,h) be a zero-dimensional system such that, for any partition P of X, (X,h)

admits a system of finite first return time maps subordinate to P. Then (X,h) has no periodic points

if and only if for every partition P and every N ∈ Z>0, there is a system S = (T, (Xt)t=1,...,T , . . .)

of finite first return time maps subordinate to P such that Jt,k ≥ N for all t ∈ {1, . . . , T} and all

k ∈ {1, . . . ,Kt}.

Proof. (⇒). Let N ∈ Z>0 and let P be a partition of X. Since all points are aperiodic, for each x ∈ X,

there is a compact open neighborhood Ux such that Ux, h(Ux), . . . , hN−1(Ux) are pairwise disjoint.

Then (Ux)x∈X is a compact open cover of X, and hence has a finite compact open refinement. By

taking appropriate intersections, this refinement can be taken to be a partition P ′ of X. Let P ′′ be

a partition of X finer than both P and P ′ and let S = (T, (Xt)t=1,...,T , . . .) be a system of finite first

return time maps subordinate to P ′′. Since P ′′ is finer than P, this S is also subordinate to P. Since

the first N − 1 iterates of any element of this partition are pairwise disjoint, we must have Jt,k ≥ N

for all t ∈ {1, . . . , T} and all k ∈ {1, . . . ,Kt}.
(⇐). Suppose that x ∈ X is a periodic point of (X,h), let M ∈ Z>0 satisfy hM (x) = x, let

N ∈ Z>0 be larger than M , and let P be a partition of X. Let S = (T, (Xt)t=1,...,T , . . .) be a system

of finite first return time maps subordinate to P and let P1(S) be as in Definition 2.6. Since P1(S)

is a partition of X, there are t ∈ {1, . . . , T}, k ∈ {1, . . . ,Kt}, and j ∈ {0, . . . , Jt,k − 1} such that

x ∈ hj(Yt,k). It is clear that h−j(x) ∈ Yt,k and h−j(x) ∈ hM (Yt,k), and so Jt,k ≤M < N .
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Lemma 5.7. Let (X,h) be a fiberwise essentially minimal zero-dimensional system, let P be a

partition of X, let Z and ψ be as in Definition 2.19, and let X1, . . . , XT be compact open subsets of

X, each of which is contained in an element of P. Then there is a system S = (T, (Xt)t=1,...,T , . . .) of

finite first return time maps subordinate to P (where X1, . . . , XT are as in the first sentence) if and

only if for all z ∈ Z, there is precisely one t ∈ {1, . . . , T} such that Xt intersects ψ−1(z), and this

intersection intersects the minimal set of (ψ−1(z), h|ψ−1(z)).

Proof. (⇒). Suppose there is some z ∈ Z such that, for all t ∈ {1, . . . , T}, Xt does not intersect the

minimal set of (ψ−1(z), h|ψ−1(z)). Since
⋃
n∈Z h

n(Xt) is an h-invariant open set that doesn’t contain

z, it hence doesn’t contain orb(z). Since this is true for all t ∈ {1, . . . , T}, this contradicts Proposition

2.9(b).

(⇐). Let z ∈ Z and let t ∈ {1, . . . , T} satisfy Xt ∩ ψ−1(z) 6= ∅. By our assumptions, Xt ∩ ψ−1(z)

is a compact open subset of ψ−1(z) intersecting the minimal set of (ψ−1(z), h|ψ−1(z)). By Proposition

4.2, λXt∩ψ−1(z)(x) < ∞ for all x ∈ Xt ∩ ψ−1(z). Since this holds for all z ∈ Z ∩ Xt, it follows that

λXt
(x) <∞ for all x ∈ Xt. By Proposition 4.1, λXt

is continuous, and so ran(λXt
) is a finite subset

of Z>0. Write ran(λXt
) = {Jt,1, . . . Jt,Kt

} and, for each k ∈ {1, . . . ,Kt}, define Yt,k = λ−1Xt
(Jt,k).

We now claim that S = (T, (Xt)t=1,...,T , . . .) is a system of finite first return time maps subordinate

to P by checking the conditions of Definition 2.6. That (a), (b), and (c) are satisfied is clear. Condition

(d) is satisfied due to the continuity of λXt
for each t ∈ {1, . . . , T}. Condition (e) is satisfied due to

Proposition 4.2(c). Now, let x ∈ X. By assumption, there is precisely one t ∈ {1, . . . T} such that

Xt ∩ ψ−1(ψ(x)) 6= ∅. By Proposition 4.2(d), x ∈
⋃
n∈Z>0

hn(Xt ∩ ψ−1(ψ(x))). Let j ∈ Z>0 be the

smallest nonzero positive integer such that x ∈ hj(Xt). Let k ∈ {1, . . . ,Kt} satisfy x ∈ hj(Yt,k).

Then since j was chosen to be minimal, x /∈ hl(Xt) for all l ∈ {0, . . . , j − 1}, and so we must have

j ∈ {0, . . . , Jt,k − 1}. Suppose k′ ∈ {1, . . . ,Kt} and j′ ∈ {0, . . . , Jt,k′ − 1} are such that x ∈ hj′(Yt,k′).
We have h−j(x) ∈ Xt, h

Jt,k−j(x) ∈ Xt, and h−j+l(x) /∈ Xt for all l ∈ {1, . . . , Jt,k − 1}, and so

this means j′ = j and hence k′ = k. Thus, condition (f) is satisfied. This proves the claim and

consequently proves the lemma.

Lemma 5.8. Let (X,h) be a fiberwise essentially minimal zero-dimensional system, let N ∈ Z>0,

let P be a partition of X, and let Z and ψ be as in Definition 2.19. Then there is a system S =

(T, (Xt)t=1,...,T , . . .) of finite first return time maps subordinate to P such that:

(a) We have Z ∩
⊔T
t=1Xt = Z.

(b) For all t ∈ {1, . . . , T}, Xt ∩ Z 6= ∅.

(c) For all t ∈ {1, . . . , T} and for all n ∈ {0, . . . , N − 1}, hn(Xt) is contained in an element of P.

Proof. Let X ′1, . . . , X
′
T ′ be the elements of P that have nonempty intersection with Z. Let t ∈

{1, . . . , T ′} and write P = {U1, . . . , UR}. We claim that

P̃t =

{
N−1⋂
n=1

(X ′t ∩ h−n(Urn))

∣∣∣∣∣ rn ∈ {1, . . . , R} for n ∈ {1, . . . , N − 1};
N−1⋂
n=1

(X ′t ∩ h−n(Urn)) 6= ∅

}
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is a partition of X ′t. Clearly P̃t is a finite set and all elements of P̃t are compact open subsets of X.

Each element of P̃t is also contained in X ′t since X ′t ∩ h−n(Ur) ⊂ X ′t for all n ∈ {1, . . . , N − 1} and all

r ∈ {1, . . . , R}.
What is left to show is that each element of X ′t is in an element of P̃t and that the elements of

P̃t are pairwise disjoint. Let x ∈ X ′t. For each n ∈ {1, . . . , N − 1}, choose rn ∈ {1, . . . , R} such that

hn(x) ∈ Urn . Then

x ∈
N−1⋂
n=1

(Xt ∩ h−n(Urn)).

So Xt is the union of all elements of P̃t. Now, for each n ∈ {1, . . . , N − 1}, choose r′n ∈ {1, . . . , R}. If

x ∈
N−1⋂
n=1

(Xt ∩ h−n(Ur′n)),

then it must be the case that h(x) ∈ Ur1 and h(x) ∈ Ur′1 , but since P is a partition of X, this must

mean that r1 = r′1. We can repeat this process for h2(x), . . . , hN−1(x), showing that rn = r′n for all

n ∈ {1, . . . , N − 1}. Thus, elements of P̃t are pairwise disjoint, so P̃t is indeed a partition of Xt.

Let P̃ be a partition of X that contains all elements of P̃t for all t ∈ {1, . . . , T} and is finer than P.

Let X ′′1 , . . . , X
′′
T be the elements of P̃ that have nonempty intersection with Z. For each t ∈ {1, . . . , T},

define Xt = X ′′t ∩ ψ−1(X ′′t ∩ Z). Then X1, . . . , XT satisfy conclusions (a) and (b) of this lemma, and

by construction satisfy the hypotheses of Lemma 5.7. Thus, there is a system S = (T, (Xt)t=1,...,T , . . .)

of finite first return time maps subordinate to P. To see that conclusion (c) of the lemma is satisfied,

for each t ∈ {1, . . . , T}, there exists s ∈ {1, . . . , T ′} such that Xt is contained in an element of P̃s, and

therefore for every n ∈ {0, . . . , N}, hn(Xt) is contained in an element of P.

Lemma 5.9. Let A be a unital C∗-algebra, let N ∈ Z>0 and let v ∈ A be a unitary with finite

spectrum. Then there is a unitary w ∈ C∗(v), such that ‖w − 1‖ ≤ π/N and wN = v.

Proof. Write sp(v) = {λ1, . . . , λK} ⊂ S1. Since sp(v) 6= S1, by functional calculus there is a self-

adjoint element b ∈ A such that exp(b) = v and such that sp(b) ⊂ [−π, π]. Setting c = (1/N)b, we

have sp(c) ⊂ [−π/N, π/N ]. Set w = exp(c), a unitary in A. Clearly wN = exp(Nc) = exp(b) = v. We

compute

‖w − 1‖ = ‖ exp(c)− 1‖

≤ max
λ∈sp(c)

| exp(λ)− 1|

≤ max
λ∈sp(c)

|λ− 0|

≤ π/N,

finishing the proof.

Lemma 5.10. Let A be a C∗-algebra, let L ∈ Z>0, and let a, a1, . . . , am be positive elements in A such

that a =
∑M
m=1 am and am ⊥ am′ for m,m′ ∈ {1, . . . ,M} with m 6= m′. Then ‖a‖ = max1≤l≤M ‖am‖.
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Proof. Let H be a Hilbert space and let π : A → B(H) be a faithful representation. Then from the

operator norm on B(H), we know ‖π(a)‖ = max1≤l≤L ‖π(al)‖. Since the representation is faithful,

the conclusion follows.

Lemma 5.11. Let A be a unital C∗-algebra, let a ∈ A, let ε > 0, let M ∈ Z>0, and let p1, . . . , pM

and q1, . . . , qM be projections in A such that
∑M
m=1 pm =

∑M
m=1 qm = 1. Then pmaqn = 0 for all

m,n ∈ {1, . . . ,M} with m 6= n implies ‖a‖ ≤ maxm ‖pmaqm‖.

Proof. Set ε = maxm ‖pmaqm‖. The hypotheses imply that

a =

(
M∑
m=1

pm

)
a

(
M∑
m=1

qm

)
=

M∑
m=1

pmaqm.

Now consider

a∗a =

(
M∑
m=1

qma
∗pm

)(
M∑
m=1

pmaqm

)

=

M∑
m=1

qma
∗pmaqm

=

M∑
m=1

(pmaqm)∗(pmaqm).

We can apply Lemma 5.10 with a replaced by a∗a and am replaced by (pmaqm)∗(pmaqm) for all

m ∈ {1, . . . ,M}. To check the hypotheses of the lemma, note for all m,m′ ∈ {1, . . . ,M} with m 6= m′,

we have qm ⊥ qm′ , and so (pmaqm)∗(pmaqm) ⊥ (pm′aqm′)
∗(pm′aqm′). Now, for all m ∈ {1, . . . ,M},

we have ‖pmaqm‖ ≤ ε, and so ‖(pmaqm)∗(pmaqm)‖ = ‖pmaqm‖∗ ≤ ε2. Thus, Lemma 5.10 tells us

that ‖a∗a‖ ≤ ε∗, and hence ‖a‖ ≤ ε as desired.

Lemma 5.12. Let A be a unital C∗-algebra, let n ∈ Z>0, let (ei,j)1≤i,j≤n be matrix units for a

unital copy of Mn inside A (call this B0), and let u ∈ A be a unitary. Let B be the C∗-subalgebra

of A generated by B0 and u. Suppose that u commutes with ei,j for all i, j ∈ {1, . . . , n} and that

sp(u) = S1. Then B ∼= C(S1)⊗Mn.

Proof. Recall that C(S1)⊗Mn is the universal C∗-algebra generated by (fi,j)1≤i,j≤n and v satisfying

the relations

(a) fi,jfi′,j′ = δj,i′fi,j′ for all i, j, i′, j′ ∈ {1, . . . , n},

(b)
∑n
i=1 fi,i = 1,

(c) vv∗ = v∗v = 1,

(d) fi,jv = vfi,j for all i, j ∈ {1, . . . , n}.

Identify v with z ⊗ 1, where z ∈ C(S1) is the identity map. Let (gi,j)1≤i,j≤n be the standard

matrix units for Mn and identify fi,j with 1 ⊗ gi,j for all i, j ∈ {1, . . . , n}. Since (ei,j)1≤i,j≤n and u
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satisfy the relations (a)–(d) as well, by the universal property there is a surjective ∗-homomorphism

ϕ : C(S1)⊗Mn → B such that ϕ(z ⊗ 1) = u and ϕ(1⊗ gi,j) = ei,j for all i, j ∈ {1, . . . , n}.
For each i, j ∈ {1, . . . , n}, let Ni,j and Mi,j be integers such that Mi,j ≤ Ni,j . For each i, j ∈

{1, . . . , n} and each k ∈ {Mi,j , . . . , Ni,j}, let λi,j,k be a complex number. Then define

x =

n∑
i,j=1

 Ni,j∑
k=Mi,j

λi,j,kz
k

⊗ gi,j ∈ C(S1)⊗Mn.

Note that elements of the above form are dense in C(S1)⊗Mn. It is clear that

ϕ(x) =

n∑
i,j=1

 Ni,j∑
k=Mi,j

λi,j,ku
k

 ei,j .

For each i, j ∈ {1, . . . , n}, since sp(u) = S1, we have C∗(u) ∼= C(S1), and so
∑Ni,j

k=Mi,j
λi,j,ku

k = 0 if

and only if λi,j,k = 0 for all k ∈ {Ni,j , . . . ,Mi,j}. But this means that ϕ(x) = 0 implies that x = 0,

meaning that ker(ϕ) is trivial. Thus, ϕ is an isomorphism.

Lemma 5.13. Let (X,h) be a zero-dimensional system, let P be a partition of X, and let S =

(T, (Xt)t=1,...,T , . . .) and S ′ = (T ′, (X ′t)t=1,...,T ′ , . . .) be systems of finite first return time maps subor-

dinate to P such that
⊔T
t=1Xt =

⊔T ′
t=1X

′
t. Then P1(S ′) is finer than P1(S) if and only if P2(S ′) is

finer than P2(S).

Proof. (⇒). Set X̂ =
⊔T
t=1Xt and set X̂ ′ =

⊔T ′
t=1X

′
t (note that X̂ = X̂ ′, but the distinction will be

important in our reasoning later). Let t ∈ {1, . . . , T} and let k ∈ {1, . . . ,Kt}. By assumption, there

are s(1), . . . , s(M) ∈ {1, . . . , T ′} and there are l(m, 1), . . . , l(m,Nm) ∈ {1, . . . ,K ′s(m)} for each m ∈
{1, . . . ,M} such that

⊔N
m=1

⊔Nm

n=1 Y
′
s(m),l(m,n) = Yt,k. Then clearly

⊔N
m=1

⊔Nm

n=1 h
Jt,k(Y ′s(m),l(m,n)) =

hJt,k(Yt,k). Now, for each x ∈ Yt,k, we have λX̂(x) = λXt
(x) = Jt,k. But then for all m ∈

{1, . . . ,M}, we have λX′
s(m)

(x) = λX̂′(x) = λX̂(x) = Jt,k. Thus, for each m ∈ {1, . . . ,M} and

each n ∈ {1, . . . , Nm}, we have Jt,k = J ′s(m),l(m,n), and so hJt,k(Ys(m),l(m,n)) is an element of P2(S ′).
Thus, P2(S ′) is finer than P2(S). The proof of (⇐) is analogous to this.

Lemma 5.14. Let (X,h) be a zero-dimensional system, let P be a partition of X, and let S =

(T, (Xt)t=1,...,T , . . .) and S ′ = (T ′, (X ′t)t=1,...,T ′ , . . .) be systems of finite first return time maps sub-

ordinate to P such that
⊔T
t=1Xt =

⊔T ′
t=1X

′
t. Then P1(S ′) is finer than P1(S) if and only if for each

s ∈ {1, . . . , T ′} and each l ∈ {1, . . . ,K ′s}, there is a t ∈ {1, . . . , T} and a k ∈ {1, . . . ,Kt} such that

Y ′s,l ⊂ Yt,k.

Proof. (⇒). Let s ∈ {1, . . . , T ′} and let l ∈ {1, . . . ,K ′s}. Since P1(S ′) is finer than P1(S), there is

a t ∈ {1, . . . , T}, a k ∈ {1, . . . ,Kt}, and a j ∈ {0, . . . , Jt,k − 1} such that Y ′s,l ⊂ hj(Yt,k). But by

assumption, there is t′ ∈ {1, . . . , T} such that Y ′s,l ⊂ Xt′ . Then since P1(S) is a partition of X, we

must have t′ = t, and hence we must have j = 0.

(⇐). Let t ∈ {1, . . . , T}, let k ∈ {1, . . . ,Kt}, and let j ∈ {0, . . . , Jt,k − 1}. Let s ∈ {1, . . . , T ′},
l ∈ {1, . . . ,K ′s}, and i ∈ {0, . . . , Js,l − 1} satisfy hi(Y ′s,l) ∩ hj(Yt,k) 6= ∅. Now, note that, for all
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x ∈ hi(Y ′s,l) ∩ hj(Yt,k), we have h−1(x), . . . , h−j+1(x) /∈
⊔T
t=1Xt and h−j(x) ∈

⊔T
t=1Xt. Similarly, we

have h−1(x), . . . , h−i+1(x) /∈
⊔T
t=1Xt and h−i(x) ∈

⊔T
t=1X

′
t. Since

⊔T
t=1X

′
t =

⊔T
t=1Xt, this means

that i = j, so Y ′s,l ∩ Yt,k 6= ∅. But by assumption this means we must have Y ′s,l ⊂ Yt,k, and therefore

hi(Y ′s,l) ⊂ hj(Yt,k). This proves that P1(S ′) is finer than P1(S).

Lemma 5.15. Let (X,h) be a fiberwise essentially minimal zero-dimensional system, let P be a

partition of X, and let Z be as in Definition 2.19. Then there is a system S = (T, (Xt)t=1,...,T , . . .) of

finite first return time maps subordinate to P such that:

(a) We have
⊔T
t=1Xt ∩ Z = Z.

(b) For each t ∈ {1, . . . , T}, Xt ∩ Z 6= ∅.

Proof. Apply the construction in the proof of (⇒) of Theorem 3.1.

Lemma 5.16. Let (X,h) be a fiberwise essentially minimal zero-dimensional system, let P be a

partition of X, and let Z and ψ be as in Definition 2.19. Apply Lemma 5.15 to get a system

S = (T, (Xt)t=1,...,T , . . .) satisfying the conclusions of the lemma. Then there is a system S ′ =

(T ′, (X ′t)t=1,...,T ′ , . . .) such that:

(a) We have
⊔T ′
t=1X

′
t =

⊔T
t=1Xt.

(b) The partition P1(S ′) is finer than P1(S) and P2(S ′) is finer than P2(S).

(c) For each t ∈ {1, . . . T ′}, Y ′t,1 ∩ Z 6= ∅ and Y ′t,k ∩ Z = ∅ for all k ∈ {2, . . . ,K ′t}.

Proof. For each t ∈ {1, . . . , T}, let At = {a(t, 1), . . . , a(t,Nt)} be the set of all k ∈ {1, . . . ,Kt} such

that Yt,k ∩ Z 6= ∅. Set T ′ =
∑T
t=1Nt.

Let s ∈ {1, . . . , T ′}. There is some t ∈ {1, . . . , T} and some n ∈ {1, . . . , Nt} such that s =∑t−1
r=1Nr + n. Define X ′s = ψ−1(Yt,a(t,n) ∩ Z) ∩ Xt. Let Bs = {b(s, 1), . . . , b(s,K ′s)} be the set of

all k ∈ {1, . . . ,Kt} such that Yt,k ∩ X ′s 6= ∅, taking b(s, 1) = a(t, n). For each k ∈ {1, . . . ,K ′s}, set

Y ′s,k = Yt,b(s,k) ∩X ′s and set J ′s,k = Jt,b(s,k).

We now show that S ′ = (T ′, (X ′t)t=1,...,T ′ , . . .) is a system of finite first return time maps subor-

dinate to P by verifying the conditions of Definition 2.6. It is clear that conditions (a) and (c) are

satisfied. Let s ∈ {1, . . . , T ′} and let t ∈ {1, . . . , T} and n ∈ {1, . . . , Nt} satisfy s =
∑t−1
r=1Nr + n.

Notice that Yt,a(t,n) ∩Z is compact and open in Z, and so by the continuity of ψ, ψ−1(Yt,a(t,n) ∩Z) is

compact and open in X. Thus, X ′s is compact and open. Since Xt is contained in an element of P, so

is X ′s. Thus, condition (b) is satisfied. For each k ∈ {1, . . . ,K ′s}, it is clear that Y ′s,k is a compact open

subset of X ′s, since it is the intersection of two compact open subsets of X. Moreover, it is nonempty

by construction. Now, notice that if k ∈ {1, . . . ,Kt} \Bs, we have Yt,k ∩X ′s = ∅, and using this fact

at the second step below, we have

K′s⊔
k=1

Y ′s,k =

K′s⊔
k=1

Yt,b(s,k) ∩X ′s
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=

Kt⊔
k=1

Yt,k ∩X ′s

= Xt ∩X ′s
= X ′s.

Thus, condition (d) holds. For all k ∈ {1, . . . ,Kt} \ Bs, since ψ−1(Yt,a(t,n) ∩ Z) is h-invariant and

Yt,k ∩ ψ−1(Yt,a(t,n) ∩ Z) = ∅, we have hJt,k(Yt,k) ∩X ′s = ∅. Thus, using this fact at the second step

below, we have

K′s⊔
k=1

hJ
′
s,k(Y ′s,k) =

K′s⊔
k=1

hJt,b(s,k)(Yt,b(s,k)) ∩X ′s

=

Kt⊔
k=1

hJt,k(Yt,k) ∩X ′s

= Xt ∩X ′s
= X ′s.

Thus, condition (e) holds.

It still remains to verify that condition (f) holds. Let x ∈ X. There is precisely one t ∈ {1, . . . , T},
one k ∈ {1, . . . ,Kt}, and one j ∈ {0, . . . , Jt,k − 1} such that x ∈ hj(Yt,k). Observe that

T⊔
r=1

Nr⊔
m=1

Yr,a(r,m) ∩ Z = Z. (1)

Thus, there is exactly one n ∈ {1, . . . , Nt} such that x ∈ ψ−1(Yt,a(t,n) ∩ Z). Let s =
∑t−1
r=1Nr + n.

We can now see that there is exactly one k ∈ Bs such that h−j(x) ∈ Y ′s,k. Since J ′s,k = Jt,a(t,n), we

have j ∈ {0, . . . , J ′s,k − 1}. Thus, condition (f) holds.

We now show that S ′ satisfies the conclusions of the lemma. It is clear that
⊔T ′
t=1X

′
t ⊂

⊔T
t=1Xt.

Since
⊔T
t=1

⊔Nt

n=1 Yt,a(t,n) ∩ Z = Z, we have
⊔T
t=1

⊔Nt

n=1 ψ
−1(Yt,a(t,n) ∩ Z) = X. Hence,

⊔T ′
t=1X

′
t =⊔T

t=1Xt. Thus, conclusion (a) of the lemma is satisfied. Now, note that by construction, for every

s ∈ {1, . . . , T ′} and every l ∈ {1, . . . ,K ′s}, there is a t ∈ {1, . . . , T} and a k ∈ {1, . . . ,Kt} such that

Y ′s,l ⊂ Yt,k. Thus, by Lemma 5.14, we see P1(S ′) is finer than P1(S), and by Lemma 5.14, we see that

P2(S ′) is finer than P2(S). Thus, conclusion (b) of the lemma is satisfied. Now, let s ∈ {1, . . . , T ′} and

let t ∈ {1, . . . , T} and n ∈ {1, . . . , Nt} satisfy s =
∑t−1
r=1Nr + n. Since Y ′s,1 = Yt,a(t,n) ∩X ′s, it follows

that Y ′s,1∩Z 6= ∅. Let k ∈ {2, . . . ,K ′s}. Then there is no n ∈ {1, . . . , Nt} such that Yt,b(s,k) = Yt,a(t,n).

Thus, by (1), we have Y ′s,k ∩ Z = ∅. Thus, condition (c) of the lemma is satisfied.

Lemma 5.17. Let (X,h) be a fiberwise essentially minimal zero-dimensional system, let P be a

partition of X, let N ∈ Z>0 and let Z and ψ be as in Definition 2.19. Apply Lemma 5.15 to get

a system S = (T, (Xt)t=1,...,T , . . .) satisfying the conclusions of the lemma. Then there is a system

S ′ = (T ′, (X ′t)t=1,...,T ′ , . . .) of finite first return time maps subordinate to P such that:
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(a) The partition P1(S ′) is finer than P1(S) and P2(S ′) is finer than P2(S).

(b) For all t ∈ {1, . . . , T ′} and all k ∈ {2, . . . ,K ′s}, we have Jt,k > N .

(c) For each t ∈ {1, . . . , T ′}, Yt,1 ∩ Z 6= ∅ and Yt,k ∩ Z = ∅ for all k ∈ {2, . . . ,K ′t}.

(d) We have
⊔T
t=1Xt ∩ Z = Z.

Proof. We now prove this lemma by induction, with the base case N = 0 proved by Lemma 5.16. So

suppose that S satisfies the conclusions of the lemma with N − 1 in place of N . Let t ∈ {1, . . . , T}
and let Bt be the set of all k ∈ {2, . . . ,Kt} such that Jt,k = N . Define X ′′t = Xt \

⊔
k∈Bt

Yt,k.

Let z ∈ Z. Since S satisfies conclusion (c) of this lemma, there is a t ∈ {1, . . . , T} such that

z ∈ Yt,1. Thus, z ∈ X ′′t . Let s ∈ {1, . . . , T} satisfy s 6= t. Then ψ−1(z) ∩ Xs = ∅, and so since

X ′′s ⊂ Xs, we conclude that ψ−1(z)∩X ′′s = ∅. Thus, by Lemma 5.7, setting T = T ′′, there is a system

S ′′ = (T ′′, (X ′′t )t=1,...,T ′′ , . . .) of finite first return time maps subordinate to P.

By applying Proposition 2.10 with S ′′ in place of S and where P ′ is a partition finer than both

P1(S) and P2(S), we may assume that P1(S ′′) is finer than P1(S) and P2(S ′′) is finer than P2(S).

By applying Lemma 5.16 with S ′′ in place of S, we may additionally assume that
⊔T ′′
t=1 Y

′′
t,1 ∩ Z = Z.

For each t ∈ {1, . . . , T ′′}, let Ct be the set of all k ∈ {1, . . . ,K ′′t } such that J ′′t,k = N . Let D1 =

{a(1), . . . , a(L1)} be the set of all t ∈ {1, . . . , T ′′} such that Ct = ∅. Let D2 = {a(L1 + 1), . . . , a(L2)}
be the set of all t ∈ {1, . . . , T ′′} such that 1 ∈ Ct. Let D3 = {a(L2 + 1), . . . , a(L3)} be the set of all

t ∈ {1, . . . , T ′′} such that Ct 6= ∅ but 1 /∈ Ct.
Let t ∈ {1, . . . , L1}. Set X ′t = X ′′a(t) and K ′t = K ′′a(t), and for each k ∈ {1, . . . ,K ′t}, we set

Y ′t,k = Y ′′a(t),k (2)

and J ′t,k = J ′′a(t),k. It is clear that for all k ∈ {1, . . . ,K ′t}, we have Jt,k > N .

Let t ∈ {L1 + 1, . . . , L2}. Set X ′t = X ′′a(t). Define

Y ′t,1 =
⊔

k∈Ca(t)

Y ′′a(t),k (3)

and set J ′t,1 = J ′′a(t),1. Write {1, . . . ,K ′′a(t)} \ Ca(t) = {b(t, 2), . . . , b(t,K ′t)} = Cca(t). For each k ∈
{2, . . . ,K ′t}, define

Y ′t,k = Y ′′a(t),b(t,k) (4)

and J ′t,k = J ′′a(t),b(t,k). By construction, it is clear that for all k ∈ {2, . . . ,K ′t}, we have Jt,k > N .

Let t ∈ {L2 + 1, . . . , L3}. Then set X̃ ′t = X ′′a(t) \
⊔
k∈Ca(t)

Y ′′a(t),k. Now, apply Lemma 5.7 with

(ψ−1(X ′′a(t) ∩ Z), h|ψ−1(X′′
a(t)
∩Z)) in place of (X,h), T = 1, X̃ ′t in place of X1, and

P(t) = {U ∩ ψ−1(X ′′a(t) ∩ Z)
∣∣U ∈ P and U ∩ ψ−1(X ′′a(t) ∩ Z) 6= ∅}

in place of P. We then get a system S(t) = {T (t), (X
(t)
s )s=1,...,T (t) , . . .} of finite first return time maps
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subordinate to P(t), and by using Proposition 2.10, we are free to assume that P1(S(t)) is finer than

{U ∩ ψ−1(X ′′a(t) ∩ Z)
∣∣U ∈ P1(S ′′) and U ∩ ψ−1(X ′′a(t) ∩ Z) 6= ∅} (5)

and P2(S(t)) is finer than

{U ∩ ψ−1(X ′′a(t) ∩ Z)
∣∣U ∈ P2(S ′′) and U ∩ ψ−1(X ′′a(t) ∩ Z) 6= ∅}.

Using Lemma 5.16, we may assume that S(t) satisfies the conclusions of the lemma with Z ∩ Xt in

place of Z. Let s ∈ {1, . . . , T (t)}. Set u = L2 + s+
∑t−1
l=L2+1 T

(l), set X ′u = X
(t)
s , set K ′u = K

(t)
s , and

for each k ∈ {1, . . . ,K ′u}, set Y ′u,k = Y
(t)
s,k and set J ′u,k = J

(t)
s,k. Let k ∈ {1, . . . ,K ′t}. By (5), there is

some l ∈ ({1, . . . ,K ′′a(t)} \ Ca(t)) such that Y ′u,k ⊂ Y ′′a(t),l. But since J ′′a(t),l > N and since X ′u ⊂ X ′′a(t),
we have J ′u,k > N .

Finally, set T ′ = L2 +
∑L3

l=L2+1 T
(l). We now show that S ′ = (T ′, (X ′t)t=1,...,T ′ , . . .) is indeed a

system of finite first return time maps subordinate to P by verifying the conditions of Definition 2.6.

That conditions (a) and (c) hold is clear. For condition (b), let t ∈ {1, . . . , T ′}. It is clear that X ′t is

a compact open subset of X. For t ∈ {1, . . . , L2}, we have X ′t ⊂ X ′′a(t); for t ∈ {L2 + 1, . . . , T ′}, let

L ∈ {L2 + 1, . . . , L3} and let s ∈ {1, . . . , T (L)} satisfy t = L2 +
∑L−1
l=L2+1 T

(l) + s, and then we have

X ′t ⊂ X ′′a(L). Thus, in both cases, X ′t is contained in an element of P. This verifies condition (b). For

conditions (d) and (e), let t ∈ {1, . . . , L1}. We then have

X ′t = X ′′a(t)

=

K′′a(t)⊔
k=1

Y ′′a(t),k

=

K′t⊔
k=1

Y ′t,k

and

X ′t = X ′′a(t)

=

K′′a(t)⊔
k=1

hJ
′′
a(t),k(Y ′′a(t),k)

=

K′t⊔
k=1

hJ
′
t,k(Y ′t,k).

Now, let t ∈ {L1 + 1, . . . , L2}. We then have

X ′t = X ′′a(t)
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=

K′′a(t)⊔
k=1

Y ′′a(t),k

=

 ⊔
k∈Ca(t)

Y ′′a(t),k

 t
 K′t⊔
k=2

Y ′′a(t),b(t,k)


= Y ′t,1 t

 K′t⊔
k=2

Y ′t,k


=

K′t⊔
k=1

Y ′t,k

and

X ′t = X ′′a(t)

=

K′′a(t)⊔
k=1

hJ
′′
a(t),k(Y ′′a(t),k)

=

 ⊔
k∈Ca(t)

hJ
′′
a(t),k(Y ′′a(t),k)

 t
 K′t⊔
k=2

hJ
′′
a(t),k(Y ′′a(t),b(t,k))


= hJ

′
t,1(Y ′t,1) t

 K′t⊔
k=2

hJ
′
t,k(Y ′t,k)


=

K′t⊔
k=1

hJ
′
t,k(Y ′t,k).

Finally, let u ∈ {L2 + 1, . . . , T ′}. Let t ∈ {L2 + 1, . . . , L3} and s ∈ {1, . . . , T (t)} such that u =

L2 + s+
∑t−1
l=L2

T (l). Then since S(t) is a system of finite first return time maps, we get

X ′u = X(t)
s

=

K(t)
s⊔

k=1

Y
(t)
s,k

=

K′u⊔
k=1

Y ′u,k

and

X ′u = X(t)
s

=

K(t)
s⊔

k=1

hJ
(t)
s,k(Y

(t)
s,k )
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=

K′u⊔
k=1

hJ
′
u,k(Y ′u,k).

Thus, conditions (d) and (e) are verified. For condition (f), we have

⊔
t∈D1

K′′t⊔
k=1

J′′t,k−1⊔
j=0

hj(Y ′′t,k) =

L1⊔
t=1

K′t⊔
k=1

J′t,k−1⊔
j=0

hj(Y ′t,k),

⊔
t∈D2

K′′t⊔
k=1

J′′t,1−1⊔
j=0

hj(Y ′′t,k) =

 ⊔
t∈D2

⊔
k∈Ct

J′′t,k−1⊔
j=0

hj(Y ′′t,k)

 t
 ⊔
t∈D2

⊔
k∈Cc

t

J′′t,k−1⊔
j=0

hj(Y ′′t,k)


=

 L2⊔
t=L1+1

J′t,1−1⊔
j=0

hj(Y ′t,1)

 t
 L2⊔
t=L1+1

K′t⊔
k=2

J′t,k−1⊔
j=0

hj(Y ′t,k)


=

L2⊔
t=L1+1

K′t⊔
k=1

J′t,k−1⊔
j=0

hj(Y ′t,k),

and

⊔
t∈D3

K′′t⊔
k=1

J′′t,k−1⊔
j=0

hj(Y ′′t,k) =
⊔
t∈D3

ψ−1(ψ(X ′′t ))

=
⊔
t∈D3

T (t)⊔
s=1

K
(t)
t⊔

k=1

J
(t)
s,k−1⊔
j=0

hj(Y
(t)
s,k )

=

T ′⊔
t=L2+1

K′t⊔
k=1

J′t,k−1⊔
j=0

hj(Y ′t,k).

Thus, we have

T ′⊔
t=1

K′t⊔
k=1

J′t,k−1⊔
j=0

hj(Y ′t,k) =

 L1⊔
t=1

K′t⊔
k=1

J′t,k−1⊔
j=0

hj(Y ′t,k)

 t
 L2⊔
t=L1+1

K′t⊔
k=1

J′t,k−1⊔
j=0

hj(Y ′t,k)


t

 L3⊔
t=L2+1

K′t⊔
k=1

J′t,k−1⊔
j=0

hj(Y ′t,k)


=

 ⊔
t∈D1

K′′t⊔
k=1

J′′t,k−1⊔
j=0

hj(Y ′′t,k)

 t
 ⊔
t∈D2

K′′t⊔
k=1

J′′t,k−1⊔
j=0

hj(Y ′′t,k)


t

 ⊔
t∈D3

K′′t⊔
k=1

J′′t,k−1⊔
j=0

hj(Y ′′t,k)
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=

T ′′⊔
t=1

K′′t⊔
k=1

J′t,k−1⊔
j=0

hj(Y ′′t,k)

= X.

Thus, condition (f) is satisfied.

We now show that S ′ satisfies the conclusions of the lemma. The fact that S ′ satisfies conclusion

(a) of the lemma follows from (2), (3), (4), and (5), along with the fact that P1(S ′′) is finer than

P1(S). Our construction also showed that conclusions (b), (c), and (d) are satisfied. This proves the

lemma.

Lemma 5.18. Let (X,h) be a fiberwise essentially minimal zero-dimensional system, let P be a

partition of X, let N ∈ Z>0, and let S = (T, (Xt)t=1,...,T , . . .) be a system of finite first return time

maps subordinate to P. Then there is a system S ′ = (T ′, (X ′t)t=1,...,T ′ , . . .) of finite first return time

maps subordinate to P such that, setting X̂t = Xt \ (Y ′t,1 ∩ hJ
′
t,1(Y ′t,1)) for each t ∈ {1, . . . , T ′}, we

have:

(a) The partition P1(S ′) is finer than P1(S) and P2(S ′) is finer than P2(S).

(b) For each t ∈ {1, . . . , T ′}, there is an s ∈ {1, . . . , T} such that X ′t ⊂ Xs.

(c) For each t ∈ {1, . . . , T ′} and each z ∈ ψ(Xt), Y
′
t,1 intersects the minimal set of (ψ−1(z), h|ψ−1(z)).

(d) For all t ∈ {1, . . . , T ′} and all k ∈ {2, . . . ,K ′s}, we have Jt,k > N .

(e) The sets X̂t, h(X̂t), . . . , h
N (X̂t) are pairwise disjoint.

Proof. By applying Lemma 5.17, we may assume that S satisfies the conclusions of the lemma. Let

t ∈ {1, . . . , T}. Define

Bt = hJt,1(Yt,1) ∩

(
Kt⊔
k=2

Yt,k

)
and for each n ∈ {1, . . . , N} define

Ct,n = Bt ∩

(
Kt⋃
k=2

hn(Yt,1 ∩ hJt,k(Yt,k))

)
.

Set T ′ = T and define

X ′′t = Xt \

(
N⋃
n=1

n⋃
m=1

h−m(Ct,n) ∩Xt

)
.

Let z ∈ Z. Since S satisfies the conclusions of Lemma 5.17, there is precisely one t ∈ {1, . . . , T}
such that z ∈ Xt. If z ∈ X ′′t , then clearly Xt intersects the minimal set of (ψ−1(z), h|ψ−1(z)). Suppose

z /∈ X ′′t . Then there is some n ∈ {1, . . . , N} such that z ∈
⋃n
m=1 h

−m(Ct,n) ∩Xt, which means that

there is some m ∈ {1, . . . , n} such that

hm(z) ∈ X ′′t . (6)
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Since hm(z) is in the minimal set of (ψ−1(z), h|ψ−1(z)), we see X ′′t intersects the minimal set of

(ψ−1(z), h|ψ−1(z)). By Lemma 5.7, there is a system S ′′ = (T ′′, (X ′′t )t=1,...,T ′′ , . . .) of finite first return

time maps subordinate to P. By using Proposition 2.10, we are free to assume that P1(S ′′) is finer

than P1(S) and that P2(S ′′) is finer than P2(S).

Let t ∈ {1, . . . , T}, suppose that Jt,1 ≤ N , and suppose that
{
x ∈ X ′′t

∣∣λX′′t (x) = Jt,1
}

is nonempty.

We claim that {
x ∈ X ′′t

∣∣λX′′t (x) = Jt,1
}

= Yt,1 ∩X ′′t .

Let x ∈ X ′′t and suppose λX′′t (x) = Jt,1. Then since X ′′t ⊂ Xt, we have λXt
(x) ≤ Jt,k. Thus, by

(b) of Lemma 5.17, we have x ∈ Yt,1. Thus,
{
x ∈ X ′′t

∣∣λX′′t (x) = Jt,1
}
⊂ Yt,1 ∩ X ′′t . So suppose

x ∈ X ′′t ∩ Yt,1 and suppose hJt,1(x) /∈ X ′′t . This means that there is some n ∈ {1, . . . , N} and

some m ∈ {1, . . . , n} such that hJt,1(x) ∈ h−m(Ct,n). But then notice that hj(hJt,1(x)) /∈ X ′′t

for all j ∈ {0, . . . , n − m}, and so since x ∈ X ′′t , this must mean that n − m ≤ Jt,1. But since

hJt,1+m(x) ∈ Ct,n, we have hJt,1+m−n(x) ∈ h−n(Ct,n) ⊂ Xt, a contradiction to λXt
(x) = Jt,1. Thus,{

x ∈ X ′′t
∣∣λX′′t (x) = Jt,1

}
= Yt,1 ∩X ′′t , and so we are free to assume that

{
x ∈ X ′′t

∣∣λX′′t (x) = Jt,1
}

= Y ′′t,1,

by combining all Y ′′t,k with J ′′t,k = Jt,1, since this assumption does not contradict the fact that P1(S ′′)
is finer than P1(S) and the fact that P2(S ′′) is finer than P2(S), since we have J ′′t,1 = Jt,1 and

hj(Y ′′t,1) ⊂ hj(Yt,1) for all j ∈ {0, . . . , Jt,1}. Moreover, for all k ∈ {2, . . . ,K ′′t }, we have Y ′′t,k ⊂
⊔Kt

l=2 Yt,k,

and so J ′′t,k > N .

Now, note that by (6), we see that

Z ⊂
0⋃

j=−N

T ′′⊔
t=1

hj(X ′′t ). (7)

Also, observe that if t ∈ {1, . . . , T ′′}, k ∈ {1, . . . ,K ′′t }, and z ∈ Z∩
⋃0
j=−N h

j(Y ′′t,k), then Y ′′t,k intersects

the minimal set of (ψ−1(z), h|ψ−1(z)).

Let {a(1), . . . , a(L)} be the set of all t ∈ {1, . . . , T ′′} such that Z ∩
⋃0
j=−N h

j(Y ′′t,1) 6= ∅. For each

l ∈ {1, . . . , L}, define

X ′l = X ′′a(l) ∩ ψ
−1

Z ∩ 0⋃
j=−N

hj(Y ′′a(l),1)

 .

Let {b(l, 1), . . . , b(l,K ′l)} be the set of all k ∈ {1, . . . ,K ′′a(t)} such that Y ′′a(l),k ∩ X
′
l 6= ∅, making the

choice b(l, 1) = 1. For each k ∈ {1, . . . ,K ′l}, define Y ′l,k = Y ′′a(l),b(l,k) ∩X
′
l and define J ′l,k = J ′′a(l),b(l,k).

Set

X̃ = X \

 L⊔
l=1

K′l⊔
k=1

J′t,l−1⊔
j=0

hj(Y ′l,k)

 . (8)

If X̃ is empty, set T ′ = L. Otherwise, set Z̃ = Z ∩ X̃ and set ψ̃ = ψ|X̃ . Notice that if x ∈ X̃, then

ψ(x) /∈
⊔L
l=1

⋃0
j=−N h

j(Y ′′a(l),1), and therefore ψ(x) ∈ Z̃. Thus, (X̃, h|X̃) is an essentially minimal
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zero-dimensional system where ψ̃ : X̃ → Z̃ satisfies the requirements of Definition 2.19. Notice that

for each z ∈ Z̃, there is a t ∈ {1, . . . , T ′′} and a k ∈ {2, . . . ,K ′′t } such that

z ∈

X̃ ∩ 0⋃
j=−N

hj(Y ′′t,k)

 . (9)

Let {a′(1), . . . , a′(T̃ )} be the set of all t ∈ {1, . . . , T ′′} such that Z̃ ∩
⋃0
j=−N h

j(X ′′t ) 6= ∅. For each

t ∈ {1, . . . , T̃}, set X̃t = X̃ ∩
(
X ′′a′(t) \ Y

′′
a′(t),1

)
. Then from (9), we see that for every z ∈ Z̃, there is

a t ∈ {1, . . . , T̃} such that X̃t intersects the minimal set of (ψ̃−1(z), h|ψ̃−1(z)). Thus, by Lemma 5.7,

there is a system

S̃ = (T̃ , (X̃t)t=1,...,T̃ . . .)

of finite first return time map subordinate to

P̃ =
{
U ∩ X̃

∣∣U ∈ P and U ∩ X̃ 6= ∅
}
.

For each t ∈ {1, . . . , T̃}, let {c(t, 1), . . . , c(t,Nt)} be the set of all k ∈ {1, . . . , K̃t} such that Z̃ ∩⋃0
j=−N h

j(Ỹt,k) 6= ∅.

Let t ∈ {1, . . . , T̃}, let n ∈ {1, . . . , Nt} and set s = L+ n+
∑t−1
r=1Nr. Define

X ′s = X̃t ∩ ψ−1
Z̃ ∩ 0⋃

j=−N
hj(Ỹt,c(t,n))

 .

Let {d(s, 1), . . . , d(s,K ′s)} be the set of all k ∈ {1, . . . , K̃t} such that Ỹt,k ∩X ′s 6= ∅, where we make

the choice d(s, 1) = c(t, n). For each l ∈ {1, . . . ,K ′s}, set Y ′s,l = X ′s ∩ Ỹt,d(s,l) and set J ′s,l = J̃t,d(s,l).

Set T ′ = L +
∑T̃
r=1Nr. We now check that, for (X,h), S ′ = (T ′, (X ′t)t=1,...,T ′ , . . .) is a system

of finite first return time maps subordinate to P by verifying the conditions of Definition 2.6. That

conditions (a) and (c) hold is clear. Let t ∈ {1, . . . , L}. Then
⋃0
j=−N h

j(Y ′′t,1) is compact and open

in X, and so Z ∩
⋃0
j=−N h

j(Y ′′a(t),1) is compact and open in Z, and by the continuity of ψ, ψ−1(Z ∩⋃0
j=−N h

j(Y ′′a(t),1)) is compact and open in X, and so X ′t is therefore compact and open in X. It is

also clear by construction that X ′t is nonempty. Moreover, since X ′t ⊂ X ′′a(t), and X ′′a(t) is contained

in an element of P, so is X ′t. Now, let t ∈ {L + 1, . . . , T ′}. By the exact same reasoning, X ′t is a

nonempty compact open subset of X. Since S̃ is subordinate to P̃, and since every element of P̃ is

contained in an element of P, we see that X ′t is contained in an element of P. Thus, condition (b)

holds. Now, let t ∈ {1, . . . , L}. Observe that

K′t⊔
k=1

Y ′t,k =

K′t⊔
k=1

Y ′′a(t),b(t,k) ∩X
′
t

=

K′′t⊔
k=1

Y ′′a(t),k ∩X
′
t
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= X ′′a(t) ∩X
′
t

= X ′t

and

K′t⊔
k=1

hJ
′
t,k(Y ′t,k) =

K′t⊔
k=1

hJ
′
a(t),b(t,k)(Y ′′a(t),b(t,k)) ∩X

′
t

=

K′′t⊔
k=1

hJa(t),b(t,k)(Y ′′a(t),k) ∩X ′t

= X ′′a(t) ∩X
′
t

= X ′t.

Now, let t ∈ {L1, . . . , T
′}, and let s ∈ {1, . . . , T ′′} and n ∈ {1, . . . , Ns} satisfy t = L+ n+

∑s−1
r=1Nr.

Then we have

K′t⊔
k=1

Y ′t,k =

K′t⊔
k=1

Ỹs,d(t,k) ∩X ′s

=

K̃s⊔
k=1

Ỹs,k ∩X ′s

= X̃s ∩X ′t
= X ′t

and

K′t⊔
k=1

hJ
′
t,k(Y ′t,k) =

K′t⊔
k=1

hJ̃s,d(t,k)(Ỹs,d(t,k)) ∩X ′s

=

K̃s⊔
k=1

hJ̃s,d(t,k)(Ỹs,k) ∩X ′s

= X̃s ∩X ′t
= X ′t.

Thus, conditions (d) and (e) hold. For condition (f), for each t ∈ {1, . . . , T̃}, set N ′t = L +
∑t
r=1Nr

and observe that

X̃t = X̃t ∩
Nt⊔
n=1

−1

Z̃ ∩ 0⋃
j=−N

hj(Ỹt,c(t,n))


=

Nt⊔
n=1

X̃t ∩ −1

Z̃ ∩ 0⋃
j=−N

hj(Ỹt,c(t,n))
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=

N ′t⊔
s=N ′t−1+1

K′s⊔
k=1

X̃t ∩ −1

Z̃ ∩ 0⋃
j=−N

hj(Ỹt,d(s,k))


=

N ′t⊔
s=N ′t−1+1

X ′s

In particular, we see that for each k ∈ {1, . . . , K̃t}, we have Ỹt,k ⊂
⊔Nt

s=Nt−1+1X
′
s. With this in mind,

we have

X̃ =
T̃⊔
t=1

K̃t⊔
k=1

Jt,k−1⊔
j=0

hj(Ỹt,k)

=
T̃⊔
t=1

K̃t⊔
k=1

Jt,k−1⊔
j=0

hj

 N ′t⊔
s=N ′t−1+1

Xs ∩ Ỹt,k


=

T̃⊔
t=1

N ′t⊔
s=N ′t−1

K′s⊔
k=1

J̃t,d(s,k)−1⊔
j=0

hj
(
Xs ∩ Ỹt,d(s,k)

)

=

T ′⊔
t=L+1

K′s⊔
k=1

Jt,k−1⊔
j=0

hj(Y ′s,k).

Thus, this combined with (8) gives us

T ′⊔
t=1

K′s⊔
k=1

Jt,k−1⊔
j=0

hj(Yt,k) = X.

This proves that condition (f) holds.

We now show that S ′ satisfies the conclusions of the lemma. That (a) is satisfied follows from

the fact that all elements of P1(S ′′) and all elements of P1(S̃) are contained in elements of P1(S),

and all elements of P2(S ′′) and all elements of P2(S̃) are contained in elements of P2(S). From the

choices we made in our construction, (b) and (c) are satisfied. To see that (d) is satisfied, first note

that for all t ∈ {1, . . . , L} and for all k ∈ {2, . . . ,K ′t}, we earlier showed that Jt,k > N . Next notice

that for all t ∈ {1, . . . , T ′′} and all x ∈
⊔K′′t
k=2 Y

′′
t,k, we have λX′′t (x) > N . Thus, for all t ∈ {1, . . . , T̃}

and all x ∈ X̃t, we have λX̃t
(x) > N . Thus, for all t ∈ {L + 1, . . . , T ′} and all k ∈ {1, . . . ,K ′t}, we

have J ′t,k > N . For (e), notice that if t ∈ {L+ 1, . . . , T ′}, then Y ′t,k > N for all k ∈ {1, . . . ,K ′t}, and

so X̂t, h(X̂t), . . . , h
N (X̂t) are clearly pairwise disjoint. So let t ∈ {1, . . . , L}, let x ∈ X̂t, and suppose

there is some n ∈ {1, . . . , N} such that hn(x) ∈ X̂t. This means that λX′t(x) ≤ N , and, from our

work above, we know that means x ∈ Ya(t),1. By definition of X̂t, this means that there is some

k ∈ {2, . . . ,K ′a(t)} such that x ∈ Ya(t),1 ∩ hJa(t),k(Ya(t),k). We now have two cases. First, suppose

that hn(x) ∈ Ba(t). But since x ∈ Ya(t),1 ∩ hJa(t),k(Ya(t),k), this would mean that hn(x) ∈ Ct,n, which

means that x /∈ X ′′t , a contradiction. The second possibility is that hn(x) ∈ Ya(t),1 ∩ hJa(t),l(Ya(t),l)

for some l ∈ {2, . . . ,Ka(t)}. But then since Ja(t),l > n, we would have x = h−n(hn(x)) /∈ Xa(t), a
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X
contradiction. Thus, ̂t ∩ hn(X̂t) = ∅. This proves that S ′ satisfies the conclusions of the lemma and 
therefore proves the lemma.

Lemma 5.19. Let (X, h) be a fiberwise essentially minimal system, let P be a partition of X, let N ∈
Z>0, let S = (T, (Xt)t=1,...,T , . . .) be a system of finite first return time maps subordinate to P, and let S
′ = (T ′, (Xt

′)t=1,...,T ′ , . . .) satisfy the conclusions of Lemma 5.18. Let D be the set of all t ∈ {1, . . . , T ′} 
such that Jt,1 < N . Make the following definitions.

(a) Set T ′′ = T ′.

(b) For each t ∈ D, set X ′′t = X ′t \
⊔N
n=0 h

n
(
Y ′t,1 ∩

(⊔K′t
k=2 h

J′t,k(Y ′t,k)
))

.

(c) For each t ∈ {1, . . . , T ′} \D, set X ′′t = X ′t.

(d) Let t ∈ D. Let Et = {a(1), . . . , a(Lt)} be the set of all k ∈ {1, . . . ,K ′t} such that

hJ
′
t,k(Y ′t,k ∩X ′′t ) ∩ Y ′t,1 6= ∅.

Let E′t = {a(Lt + 1), . . . , a(K ′′t )} be the set of all k ∈ {1, . . . ,K ′t} such that

hJ
′
t,k(Y ′t,k ∩X ′′t ) ∩

K′l⊔
l=2

Y ′t,l

 6= ∅.

For all k ∈ {1, . . . , Lt} such that a(k) 6= 1, set Y ′′t,k = Y ′t,a(k) ∩ h
−J′t,a(k)(Y ′t,1) ∩ X ′′t and set

J ′′t,k = J ′t,a(k) + mtJ
′
t,1 where mt is the integer such that N = mtJ

′
t,l −m′t for 0 < m′t ≤ J ′t,1. If

a(k) = 1, then set Y ′′t,k = Y ′t,1 ∩h−J
′
t,1(Y ′t,1)∩X ′′t and set J ′′t,k = J ′t,1. For all k ∈ {Lt + 1, . . . ,K ′′t },

set Y ′′t,k = Y ′t,a(k) ∩ h
−Jt,a(k)

(⊔K′t
l=2 Y

′
t,l

)
∩X ′′t and set J ′′t,k = J ′t,a(k).

(e) Let t ∈ {1, . . . , T ′}\D. Set K ′′t = K ′t. For each k ∈ {1, . . . ,K ′t}, set Y ′′t,k = Y ′t,k and set J ′′t,k = J ′t,k.

Then S ′′ = (T ′′, (X ′′t )t=1,...,T ′′ , . . .) is a system of finite first return time maps subordinate to P.

Moreover, the partition P1(S ′′) is finer than P1(S) and the partition P2(S ′′) is finer than P2(S).

Proof. We check that S ′′ = (T ′′, (X ′′t )t=1,...,T ′′ , . . .) is a system of finite first return time maps sub-

ordinate to P by verifying the conditions of Definition 2.6. It is clear that (a) holds. Moreover, for

t ∈ {1, . . . , T ′′} \ D, it is clear that conditions (b) – (e) hold, so we check conditions (b) – (e) for

t ∈ D.

For each t ∈ D, we have X ′′t ⊂ X ′t, so since X ′t is contained in an element of P, so is X ′′t . It is also

clear that X ′′t is a compact open subset of X. Thus, condition (b) holds.

For each t ∈ D and each k ∈ {1, . . . ,K ′t}, we must have hJ
′
t,k(Y ′t,k) ∩ Y ′t,l for some l ∈ {1, . . . ,K ′t},

and so either k ∈ Et or k ∈ E′t (or both). In particular, at least one of Et and E′t is nonempty, and

so K ′′t > 0. Thus, condition (c) holds.

36



Let t ∈ D. For each k ∈ {1, . . . ,K ′′t }, it is clear that Y ′′t,k is a compact open subset of X. Now, for

each k ∈ {1, . . . ,K ′t}, notice that

(
hJ
′
t,k(Y ′t,k) ∩ Y ′t,1

)
t

hJ′t,k(Y ′t,k) ∩

K′t⊔
l=2

Y ′t,l

 = hJ
′
t,k(Y ′t,k).

Thus,

X ′t =

K′t⊔
k=1

hJ
′
t,k(Y ′t,k)

=

K′t⊔
k=1

(hJ′t,k(Y ′t,k) ∩ Y ′t,1
)
t

hJ′t,k(Y ′t,k) ∩

K′t⊔
l=2

Y ′t,l

 .

And so we have

X ′′t = X ′t ∩X ′′t

= X ′′t ∩
K′t⊔
k=1

(hJ′t,k(Y ′t,k) ∩ Y ′t,1
)
t

hJ′t,k(Y ′t,k) ∩

K′t⊔
l=2

Y ′t,l


=

K′t⊔
k=1

(hJ′t,k(Y ′t,k) ∩ Y ′t,1 ∩X ′′t
)
t

hJ′t,k(Y ′t,k) ∩

K′t⊔
l=2

Y ′t,l

 ∩X ′′t


=

(
Lt⊔
k=1

Y ′′t,k

)
t

 K′′t⊔
k=Lt+1

Y ′′t,k


=

K′′t⊔
k=1

Yt,k.

Thus, condition (d) holds.

Let t ∈ D. Let X̂t be as in the statement of Lemma 5.18. We claim that for all k ∈ {1, . . . ,K ′′t },
we have hJ

′′
t,k(Y ′′t,k) ⊂ X ′′t . First, suppose k ∈ {1, . . . , Lt} and a(k) 6= 1. Then

hJ
′
t,a(k)(Y ′′t,k) ⊂ Y ′t,1 ∩ h

J′t,a(k)(Y ′t,a(k)) ⊂ X̂t.

We claim that (
N⊔
n=0

hn(Y ′t,1 ∩ h
J′t,a(k)(Y ′t,a(k)))

)
∩X ′t ⊂ Y ′t,1 (10)

Otherwise, there is some integer p such that 0 ≤ pJ ′t,1 ≤ N and

hmJ
′
t,1(Y ′t,1 ∩ h

J′t,a(k)(Y ′t,a(k))) ⊂ Y
′
t,l ∩ hJ

′
t,1(Y ′t,1)

But then hmJ
′
t,1(X̂t) ∩ X̂t 6= ∅, a contradiction to the fact that S ′ satisfies (e) of Lemma 5.18. Thus,
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(10) holds. So since (mt − 1)J ′t,1 ≤ N , we have

h(mt−1)J′t,1(Y ′t,1 ∩ h
J′t,a(k)(Y ′t,a(k))) ⊂ Y

′
t,1

and so therefore

hJ
′′
t,k(Y ′′t,k) = hJ

′
t,a(k)+mtJ

′
t,1(Y ′′t,k)

= hmtJ
′
t,1(Y ′t,1 ∩ h

J′t,a(k)(Y ′t,a(k)))

⊂ hJ
′
t,1(Y ′t,1)

⊂ X ′t

We claim that

hJ
′′
t,k(Y ′′t,k) ∩

(
N⊔
n=0

hn

(
Y ′t,1 ∩

(
Kt⊔
l=2

hJ
′
t,l(Y ′t,l)

)))
6= ∅. (11)

Suppose not. Then there is some n ∈ {0, . . . , N} and some l ∈ {2, . . . ,K ′t} such that

hJ
′′
t,k−n(Y ′′t,k) ∩ Y ′t,1 ∩ hJ

′
t,l(Y ′t,l) 6= ∅.

But notice that

hJ
′′
t,k−mtJ

′
t,1(Yt,k) = Jt,a(k)(Y

′′
t,k) ∩ Y ′t,1

and so since mtJ
′
t,1 − n < J ′t,1 + J ′t,l, it must be the case that

hJ
′′
t,k−n(Y ′′t,k) = hmtJ

′
t,1−n(hJt,a(k)(Yt,a(k)) ∩ Y ′t,1)

is disjoint from hJt,l(Yt,l), which is a contradiction. Thus, (11) holds. Putting (10) and (11) together,

we see hJ
′′
t,k(Y ′′t,k) ⊂ X ′′t . Next, suppose k ∈ {1, . . . , Lt} and a(k) = 1.

Now, let k ∈ {Lt + 1, . . . ,K ′′t }. Then hJ
′′
t,k(Y ′′t,k) = hJ

′
t,a(k)(Y ′t,a(k))∩

⊔K′t
l=2(Yt,l), and so by (10), we

have hJ
′′
t,k(Y ′′t,k) ⊂ X ′′t . Altogether, we see that for all k ∈ {1, . . . ,K ′′t }, we have

hJ
′′
t,k(Y ′′t,k) ⊂ X ′′t . (12)

Next, we claim that

X ′′t ⊂
K′′t⊔
k=1

hJ
′′
t,k(Y ′′t,k) (13)

Let x ∈ X ′′t . Since X ′′t ⊂ X ′t, there is some l ∈ {1, . . . ,Kt} such that x ∈ hJ
′
t,l(Y ′t,l). Suppose first that

l 6= 1. Notice that by definition of X ′′t , we have x /∈ Y ′t,1. By (10), we have h−J
′
t,l(x) ∈ X ′′t . This means

that h−J
′
t,l(x) ∈ Y ′t,l∩h−Jt,l

(⊔Kt

m=2 Y
′
t,m

)
∩X ′t, and so h−J

′
t,l(x) ∈ Y ′′t,k where k ∈ {Lt+1, . . . ,K ′′t } and

a(k) = l. Since we have J ′′t,k = J ′t,l, it follows that x ∈ hJ
′′
t,k(Y ′′t,k). Now suppose that x ∈ hJ

′
t,1(Y ′t,1)

and h−J
′
t,1(x) ∈ X ′′t . Then since λX′′t (x) ≥ λX′t(x), we must have λX′′t (h−J

′
t,1(x)) = J ′t,1, and so we

must have x ∈ hJ
′′
t,k(Y ′′t,k) where k ∈ {1, . . . , Lt} is such that a(k) = 1.
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Finally, suppose that x ∈ hJ
′
t,1(Y ′t,1) and hJ

′
t,1(x) /∈ X ′′t . Then there is some l ∈ {1, . . . ,K ′t}

such that h−mtJ
′
t,1(x) ∈ hJ

′
t,l(Y ′t,l) ∩ Y ′t,1, and so it is clear by definition that x ∈ hJ

′′
t,k(Y ′′t,k) where

k ∈ {L1 + 1, . . . ,K ′′t } is such that a(k) = l. Finally, notice that for k, l ∈ {1, . . . ,K ′′t } with k 6= l, we

have

hJ
′
t,a(k)(Yt,a(k)) ∩ hJt,a(l)(Yt,a(l)) = ∅,

so

hJ
′
t,a(k)+mtJ

′
t,1(Yt,a(k)) ∩ hJt,a(l)+mtJ

′
t,1(Yt,a(l)) = ∅,

and therefore

hJ
′′
t,k(Y ′′t,k) ∩ hJ

′′
t,l(Y ′′t,l) = ∅. (14)

From (12), (13), and (14), we see that condition (e) holds.

Notice that since T ′ = T ′′ and since X ′′t ⊂ X ′t for all t ∈ {1, . . . , T ′}, it is clear that

∞⋃
i=0

hi(X ′t) =

∞⋃
i=0

hi(X ′′t ) (15)

for all t ∈ {1, . . . , T ′}. Now, let t ∈ D and let k ∈ {1, . . . , Lt}. Then by (10), we have

J′′t,k−1⊔
j=0

hj(Y ′′t,k) ⊂

Jt,a(k)−1⊔
j=0

hj(Y ′t,a(k))

 ∪
J′t,1−1⊔

j=0

hj(Y ′t,1)

 . (16)

Let x ∈ X. Then there is exactly one t ∈ {1, . . . , T ′}, exactly one k ∈ {1, . . . ,K ′t}, and exactly one

j ∈ {0, . . . , J ′t,k − 1} such that x ∈ hj(Y ′t,k). We keep x, t, k, and j until we finish verifying condition

(f).

Suppose t /∈ D. By (15) and by the fact that hi(Y ′′t,l) = hi(Y ′t,l) for all l ∈ {1, . . . ,K ′t} and all

i ∈ {0, . . . , J ′t,l − 1}, it follows that t is the unique element of {1, . . . , T ′′}, k is the unique element of

{1, . . . ,K ′′t }, and j is the unique element of {0, . . . , J ′′t,k − 1} such that x ∈ hj(Y ′′t,k).

Now, suppose t ∈ D, suppose k > 1, and suppose hJ
′
t,k−j(x) ∈ Y ′t,1. Then by definition, h−j(x) ∈

Y ′′t,l where l ∈ {1, . . . , Lt} is such that a(l) = k. Then this, combined with (15), (16), and the fact that

J ′′t,l > J ′t,k tells us that t is the unique element of {1, . . . , T ′′}, l is the unique element of {1, . . . ,K ′′t },
and j is the unique element of {0, . . . , J ′′t,l − 1} such that x ∈ hj(Y ′′t,l).

Next, suppose t ∈ D, suppose k > 1, and suppose hJ
′
t,k−j(x) /∈ Y ′t,1. Then by definition, h−j(x) ∈

Y ′′t,l where l ∈ {Lt + 1, . . . ,K ′′t } and a(l) = k. Then this, combined with (15), (16), and the fact that

J ′′t,l = J ′t,k tells us that t is the unique element of {1, . . . , T ′′}, l is the unique element of {1, . . . ,K ′′t },
and j is the unique element of {0, . . . , J ′′t,l − 1} such that x ∈ hj(Y ′′t,l).

Suppose t ∈ D, suppose k = 1, and suppose h−j(x) ∈
⊔N
n=0 h

n(X̂t). There there is exactly one

n ∈ {0, . . . , N + J ′t,1 − 1} and exactly one l ∈ {2, . . . ,K ′t} such that h−n(x) ∈ hJ
′
t,l(Y ′t,l) ∩ Y ′t,1. Set

i = J ′t,l +n let m be the unique element of {1, . . . , L1} such that a(m) = l. Then this, combined with

(15), (16), and the fact that J ′′t,l = J ′t,k tells us that t is the unique element of {1, . . . , T ′′}, m is the

unique element of {1, . . . ,K ′′t }, and i is the unique element of {0, . . . , J ′′t,m−1} such that x ∈ hi(Y ′′t,m).
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Finally, suppose t ∈ D, suppose k = 1, and suppose h−j(x) /∈
⊔N
n=0 h

n(X̂t). Then h−j(x) ∈ X ′′t ,

and so by

Lemma 5.20. Let (X,h) be a fiberwise essentially minimal zero-dimensional system with no pe-

riodic points and let N ∈ Z>0. Then there is a partition P of X such that, for every system

S = (T, (Xt)t=1,...,T , . . .) of finite first return time maps subordinate to P, we have Jt,k > N for all

t ∈ {1, . . . , T} and all k ∈ {1, . . . ,Kt}.

Proof. For each x ∈ X, since x is aperiodic, there is a compact open neighborhood Ux such that

Ux, h(Ux), . . . , hN (Ux) are pairwise disjoint. Then (Ux)x∈X is a compact open cover of X, and hence

has a finite compact open refinement. By taking appropriate intersections, this refinement can be

taken to be a partition P of X.

Now let S = (T, (Xt)t=1,...,T , . . .) be a system of finite first return time maps subordinate to P.

By the above, for each t ∈ {1, . . . , T}, we have Xt, h(Xt), . . . , h
N (Xt) are pairwise disjoint. Thus, it

is clear that for each t ∈ {1, . . . , T} and each k ∈ {1, . . . ,Kt}, we have Jt,k > N .

Proof of Theorem 3.2. Let ε > 0, let N ∈ Z>0 satisfy π/N < ε, and let P be a partition of X.

By possibly passing to a finer partition, we may assume that P satisfies the conclusion of Lemma

5.20. Following the proof of Theorem 2.1 of [9], we will show that there is a C∗-subalgebra A of

C∗(Z, X, h) which is isomorphic to a direct sum of matrix algebras and matrix algebras over C(S1)

such that C(P) ⊂ A and such that A contains a unitary u′ such that ‖u′ − u‖ < ε. By using the

semiprojectivity of circle algebras to construct a direct system, this will imply that C∗(Z, X, h) is an

AT-algebra.

Let Z and ψ be as in Definition 2.19. Use Lemma 5.8 to find a system S ′′ = (T ′′, (X ′′t )t=1,...,T ′′ , . . .)

of finite first return time maps satisfying the conclusions of the lemma. By applying Proposition 2.10,

we are free to assume that both P1(S ′′) and P2(S ′′) are finer than P. By applying Lemma 5.18 with S ′′

in place of S, we get a system S = (T, (Xt)t=1,...,T , . . .) of finite first return time maps subordinate to P
satisfying the conclusions of the lemma. By conclusion (b) of Lemma 5.18, S ′′ still satisfies conclusion

(c) of Lemma 5.8. Now, notice the conclusion (c) of Lemma 5.18 says that for each t ∈ {1, . . . , T} and

each z ∈ ψ(Xt), Y
′
t,1 intersects the minimal set of (ψ−1(z), h|ψ−1(z)), and hence, hJt,1(Yt,1) intersects

the minimal set of (ψ−1(z), h|ψ−1(z)). Since by Proposition 4.2(b) we have
⊔T
t=1

⋃
j∈Z h

j(Xt) = X,

it follows that for every z ∈ Z, there is a t ∈ {1, . . . , T} such that hJt,1(Yt,1) intersects the minimal

set of (ψ−1(z), h|ψ−1(z)). Thus, we can apply Lemma 5.7 with hJ1,1(Y1,1), . . . , hJT,1(YT,1) in place of

X1, . . . , XT to get a system S ′ = (T ′, (X ′t)t=1,...,T ′ , . . .) of finite first return time maps subordinate to

P where T ′ = T and X ′t = hJt,1(Yt,1) for all t ∈ {1, . . . , T ′}. By applying Proposition 2.10, we may

assume that P1(S ′) is finer than both P1(S) and P2(S).

For each t ∈ {1, . . . , T}, each k ∈ {1, . . . ,Kt}, and each i, j ∈ {0, . . . , Jt,k − 1}, define

e
(t,k)
i,j = χhi(Yt,k)u

i−jχhj(Yt,k).

We claim that these elements are matrix units for a finite dimensional C∗-subalgebra of C∗(Z, X, h)

(which we will denote by A1) isomorphic to
⊕T

t=1

⊕Kt

k=1MJt,k . To see this, let t, t′ ∈ {1, . . . , T},
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k ∈ {1, . . . ,Kt}, k′ ∈ {1, . . . ,Kt′}, i, j ∈ {0, . . . , Jt,k − 1}, and i′, j′ ∈ {0, . . . , Jt′,k′ − 1}, and observe

the following:

e
(t,k)
i,j e

(t′,k′)
i′,j′ = χhi(Yt,k)u

i−jχhj(Yt,k)χhi′ (Yt′,k′ )
ui
′−j′χhj′ (Yt′,k′ )

.

Note that χhj(Yt,k)χhi′ (Yt′,k′ )
, and hence e

(t,k)
i,j e

(t′,k′)
i′,j′ , is 0 unless t = t′, k = k′, and j = i′, as P1(S) is

a partition of X. In the case where we do have these equalities, we have

e
(t,k)
i,j e

(t,k)
j,j′ = χhi(Yt,k)u

i−jχhj(Yt,k)χhj(Yt,k)u
j−j′χhj′ (Yt,k)

= χhi(Yt,k)u
i−jχhj(Yt,k)u

j−j′χhj′ (Yt,k)

= χhi(Yt,k)u
i−j′χhj′ (Yt,k)

= e
(t,k)
i,j′ .

Thus, we indeed do have a system of matrix units for a C∗-subalgebra of C∗(Z, X, h), which we will

call A1, that is isomorphic to
⊕T

t=1

⊕Kt

k=1MJt,k . Notice that C(P1(S)) is equal to the set of diagonal

matrices in A1. Since by P1(S) is finer than P, we have C(P) ⊂ C(P1(S)), and so it follows that

C(P) ⊂ A1. (17)

Define an element v1 ∈ A1 by

v1 =

T∑
t=1

Kt∑
k=1

χYt,k
u1−Jt,kχhJt,k−1(Yt,k)

+

Jt,k−2∑
j=0

χhj+1(Yt,k)uχhj(Yt,k)

 .

To see what v1 does, let t ∈ {1, . . . , T} and let k ∈ {1, . . . ,Kt}, and observe that for j ∈ {0, . . . , Jt,k−2}
we have

v1χhj(Yt,k)v
∗
1 = χhj+1(Yt,k)uχhj(Yt,k)u

∗χhj+1(Yt,k)

= χhj+1(Yt,k). (18)

We also have

v1χhJt,k−1(Yt,k)
v∗1 = χYt,k

u1−Jt,kχhJt,k−1(Yt,k)
uJt,k−1χYt,k

= χYt,k
. (19)

Define u1 = v∗1u. To see what u1 does, let t ∈ {1, . . . , T} and let k ∈ {1, . . . ,Kt}, and observe that

for j ∈ {0, . . . , Jt,k − 2} we have

u1χhj(Yt,k)u
∗
1 = v∗1uχhj(Yt,k)u

∗v1

= v∗1χhj+1(Yt,k)v1

= χhj(Yt,k), (20)
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where the step line is justified by (18). We also have

u1χh−1(Yt,k)u
∗
1 = v∗1uχh−1(Yt,k)u

∗v1

= v∗1χYt,k
v1

= χhJt,k−1(Yt,k)
, (21)

where the step line is justified by (19).

Using S ′, we can similarly construct A2, v2, and u2 in analogy with the above. To be specific, A2

is the finite dimensional C∗-algebra generated by the matrix units

e
(t,k)′
i,j = χhi(Y ′t,k)

ui−jχhj(Y ′t,k)

for t ∈ {1, . . . , T ′}, k ∈ {1, . . . ,K ′t}, and j ∈ {0, . . . , J ′t,k}. Moreover, we define

v2 =

T ′∑
t=1

K′t∑
k=1

χY ′t,ku1−J′t,kχhJ′
t,k
−1

(Y ′t,k)
+

J′t,k−2∑
j=0

χhj+1(Y ′t,k)
uχhj(Y ′t,k)

 ,

and we define u2 = v∗2u.

Let t ∈ {1, . . . , T ′} and let k ∈ {1, . . . ,K ′t}. To see what v2 does, observe that for j ∈ {0, . . . , J ′t,k−
2} we have

v2χhj(Y ′t,k)
v∗2 = χhj+1(Y ′t,k)

uχhj(Y ′t,k)
u∗χhj+1(Y ′t,k)

= χhj+1(Y ′t,k)
. (22)

We also have

v2χ
h
J′
t,k
−1

(Y ′t,k)
v∗2 = χY ′t,ku

1−J′t,kχ
h
J′
t,k
−1

(Y ′t,k)
uJ
′
t,k−1χY ′t,k

= χY ′t,k . (23)

To see what u2 does, for j ∈ {0, . . . , J ′t,k − 2}, we have

u2χhj(Y ′t,k)
u∗2 = v∗2uχhj(Y ′t,k)

u∗v2

= v∗2χhj+1(Y ′t,k)
v2

= χhj(Y ′t,k)
, (24)

where the last step is justified by (22). We also have

u2χh−1(Y ′t,k)
u∗2 = v∗2uχh−1(Y ′t,k)

u∗v2

= v∗2χY ′t,kv2
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= χ
h
J′
t,k
−1

(Y ′t,k)
, (25)

where the last step is justified by (23).

Since P1(S ′) is finer than P1(S) and since X ′t ⊂ Xt for all t ∈ {1, . . . , T ′}, we have A1 ⊂ A2. Now

consider the unitary v2v
∗
1 , which is in A2. Before our computations, first note that if U ⊂ X is a

compact open set with U ∩
⊔T ′
t=1 h

−1(X ′t) = ∅, then

v2χUv
∗
2 = χh(U). (26)

Let t ∈ {1, . . . , T}. We have

v2v
∗
1χYt,1

v1v
∗
2 = v2χhJt,1−1(Yt,1)

v∗2 by (19)

= v2χh−1(X′t)
v∗2

=

K′t∑
k=1

(v2χ
h
J′
t,k
−1

(Y ′t,k)
v∗2)

=

K′t∑
k=1

χY ′t,k (27)

= χX′t

= χhJt,1 (Yt,1)
. (28)

Now let k ∈ {2, . . . ,K ′t}. Since P1(S ′) is finer than P1(S) and since hJt,1(Yt,1) = X ′t =
⊔K′t
l=1 Y

′
t,l, there

is a set

Ft,k ⊂
{

(s, l, j)
∣∣ s ∈ {1, . . . , T ′}, l ∈ {1, . . . ,K ′s}, and j ∈ {1, . . . , J ′s,l − 1}

}
such that

hJt,k(Yt,k) =
⊔

(s,l,j)∈Ft,k

hj(Y ′s,l).

v2v
∗
1χYt,k

v1v
∗
2 = v2χhJt,k−1(Yt,k)

v∗2

=
∑

(s,l,j)∈Ft,k

v2χhj−1(Y ′s,l)
v∗2

=
∑

(s,l,j)∈Ft,k

χhj(Y ′s,l)
by (26)

= χhJt,k (Yt,k)
. (29)

In particular, by (28) and (29), we see that

v2v
∗
1χXtv1v

∗
2 = χXt . (30)
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Set

Y =

T⊔
t=1

Xt

Recall that A1 ⊂ A2, and so χY and v1 are elements of A2. Thus, (30) tells us that χY v2v
∗
1χY is a

unitary in χYA2χY .

Set v = χY v2v
∗
1χY . Since χYA2χY is a finite dimensional C∗-algebra, v has finite spectrum. By

Lemma 5.9, there is a unitary w in χYAχY with wN = v and ‖w − χY ‖ ≤ π/N < ε.

Define

z =

N−1∑
j=0

χhj(Y )u
jwN−ju−jχhj(Y ) + χX\

⊔N−1
j=0 hj(Y ).

It is easy to see that z is a unitary, since z =
∑N
j=0 zj for unitaries zj ∈ χhj(Y )C

∗(Z, X, h)χhj(Y ) for

j ∈ {0, . . . , N − 1} and a unitary zN = χX\
⊔N−1

j=0 hj(Y ). We claim that A, the C∗-algebra generated by

zA1z
∗ and u2, has the desired properties. Specifically, we claim that

A ∼=
T⊕
t=1

((
C(S1)⊗MJt,1

)
⊕

(
Kt⊕
k=2

MJt,k

))
,

A contains C(P), and A contains a unitary u′ such that ‖u′ − u‖ < ε.

First, we want C(P) ⊂ A. Because P1(S) is finer than P, we have C(P) ⊂ A1, so all that is left

to show is that z commutes with C(P). To see this, let U ∈ P. Since for all t ∈ {1, . . . , T} and for

all n ∈ {0, . . . , N − 1}, hn(Xt) is contained in an element of P, we can write U =
⊔R
r=0 Ur where

U0 ⊂ X \
⊔N−1
j=0 hj(Y ) and for all r ∈ {1, . . . , R}, there are qr ∈ {1, . . . , T} and mr ∈ {0, . . . , N − 1}

such that Ur = hmr (Xqr ). By (30) and (28), we know that v commutes with χh−mr (Ur) for every

r ∈ {1, . . . , R}. So by Lemma 5.9, w commutes with χh−mr (Ur) for all r ∈ {1, . . . , R} as well. We now

have:

χUz = χU

N−1∑
j=0

χhj(Y )u
jwN−ju−jχhj(Y ) + χX\

⊔N−1
j=0 hj(Y )


= χU

N−1∑
j=0

χhj(Y )u
jwN−jχY u

−j + χX\
⊔N−1

j=0 hj(Y )


= χU

N−1∑
j=0

χhj(Y )u
jχY w

N−ju−j + χX\
⊔N−1

j=0 hj(Y )


= χU

N−1∑
j=0

χhj(Y )u
jwN−ju−j + χX\

⊔N−1
j=0 hj(Y )


=

(
R∑
r=0

χUr

)N−1∑
j=0

T∑
t=1

χhj(Y )u
jwN−ju−jχhj(Y ) + χX\

⊔N−1
j=0 hj(Y )
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=

R∑
r=1

χUr
umrwN−mru−mrχhmr (Y ) + χU0

=

R∑
r=1

χUru
mrχh−mr (Ur)w

N−mru−mrχhmr (Y ) + χU0

=

R∑
r=1

χUr
umrwN−mrχh−mr (Ur)u

−mrχhmr (Y ) + χU0

=

R∑
r=1

χUru
mrwN−mru−mrχUr

+ χU0
.

A similar computation yields the same thing for zχU . Thus, z commutes with χU for all U ∈ P, which

shows that z commutes with C(P).

Now, we define u′ = zv1z
∗u2, a unitary in A. We still must show that ‖u′ − u‖ < ε. We have

‖u′ − u‖ = ‖zv1z∗u2 − u‖

= ‖zv1z∗u2 − v2u2‖

= ‖zv1z∗ − v2‖

= ‖zv1z∗ − v2zz∗‖

= ‖zv1 − v2z‖. (31)

We will now show that ‖zv1 − v2z‖ < ε.

Now, notice that for each t ∈ {1, . . . , T} and each k ∈ {1, . . . ,Kt}, we have n < Jt,k − 1 by (??).

Thus, we have

v1χhn(Y ) =

 T∑
t=1

Kt∑
k=1

χYt,k
u1−Jt,kχhJt,k−1(Yt,k)

+

Jt,k−2∑
j=0

χhj+1(Yt,k)uχhj(Yt,k)

( T∑
t=1

Kt∑
k=1

χhn(Yt,k)

)

=

 T∑
t=1

Kt∑
k=1

Jt,k−2∑
j=0

χhj+1(Yt,k)uχhj(Yt,k)

( T∑
t=1

Kt∑
k=1

χhn(Yt,k)

)

=

T∑
t=1

Kt∑
k=1

χhn+1(Yt,k)uχhn(Yt,k)

=

T∑
t=1

Kt∑
k=1

uχhn(Yt,k)

= uχhn(Y ). (32)

Now, since P1(S ′) is finer than P1(S), so hn(Y ) is the union of some of the members of P1(S ′). Also,

if t ∈ {1, . . . , T ′}, k ∈ {1, . . . ,K ′t}, and j ∈ {0, . . . , J ′t,k − 1} are such that hj(Y ′t,k) ⊂ hn(Y ), then

actually we have j 6= J ′t,k − 1, since

hJ
′
t,k−1(Y ′t,k) ⊂ h−1(X ′t)
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= hJts,ks−1(Yts,ks)

⊂ h−1(Xts),

and h−1(Xt) trivially intersects hn(Xt) since Jt,k > N for all k ∈ {1, . . . ,Kt}. This means that there

is a set

Fn ⊂
{

(t, k, j)
∣∣ t ∈ {1, . . . , T ′}, k ∈ {1, . . . ,K ′t}, and j ∈ {0, . . . , J ′t,k − 2}

}
,

such that

hn(Y ) =
⊔

(t,k,j)∈Fn

hj(Y ′t,k).

Thus, we have the following:

v2χhn(Y ) =

 T ′∑
t=1

K′t∑
k=1

χY ′t,ku1−J′t,kχhJ′
t,k
−1

(Y ′t,k)
+

J′t,k−2∑
j=0

χhj+1(Y ′t,k)
uχhj(Y ′t,k)

 ∑
(t,k,j)∈Fn

χhj(Y ′t,k)


=

∑
(t,k,j)∈Fn

χhj+1(Y ′t,k)
uχhj(Y ′t,k)

=
∑

(t,k,j)∈Fn

uχhj(Y ′t,k)

= uχhn(Y ). (33)

If n ∈ {0, . . . , N − 2}, we have

χhn+1(Y )(zv1 − v2z)χhn(Y ) = χhn+1(Y )(zv1χhn(Y ) − v2zχhn(Y ))

= χhn+1(Y )(zuχhn(Y ) − v2zχhn(Y )) by (32)

= χhn+1(Y )(zuχhn(Y ) − v2χhn(Y )z)

= χhn+1(Y )(zuχhn(Y ) − uχhn(Y )z) by (33)

= χhn+1(Y )u
n+1wN−(n+1)(χY − w)u−nχhn(Y ). (34)

We also have

χhN (Y )(zv1 − v2z)χhN−1(Y ) = χhN (Y )(zv1χhN−1(Y ) − v2zχhN−1(Y ))

= χhN (Y )(zuχhN−1Y ) − v2zχhN−1(Y )) by (32)

= χhN (Y )(zuχhN−1(Y ) − v2χhN−1(Y )z)

= χhN (Y )(zuχhN−1(Y ) − uχhN−1(Y )z) by (33)

= χhN (Y )uχhN−1(Y ) − χhN (Y )uχhN−1(Y )z

= χhN (Y )uχhN−1(Y ) − χhN (Y )uχhN−1(Y )u
N−1wu−(N−1)χhN−1(Y )

= χhN (Y )uχhN−1(Y ) − χhN (Y )u
Nwu−(N−1)χhN−1(Y )

= χhN (Y )u
NχY u

−(N−1)χhN−1(Y ) − χhN (Y )u
Nwu−(N−1)χhN−1(Y )
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= χhN (Y )u
N (χY − w)u−(N−1)χhN−1(Y ) (35)

So since ‖w − χY ‖ < ε, (34) and (35) give us

‖χhn+1(Y )(zv1 − v2z)χhn(Y )‖ < ε. (36)

Now, let p be any projection orthogonal to χhn+1(Y ). We have

pzv1χhn(Y ) = pzuχhn(Y ) by (32)

= pχhn+1(Y )zu

= 0. (37)

Similarly, we have

pv2zχhn(Y ) = pv2χhn(Y )z

= puχhn(Y )z by (33)

= pχhn+1(Y )u

= 0. (38)

Thus, (37) and (38) yield

p(zv1 − v2z)χhn(Y ) = 0. (39)

Let E ⊂ X be any compact open set such that E ⊂ X \
⊔N−1
j=0 hj(Y ). We then have

zχE =

N−1∑
j=0

χhj(Y )u
jwN−ju−jχhj(Y ) + χX\

⊔N−1
j=0 hj(Y )

χE

= χX\
⊔N−1

j=0 hj(Y )χE

= χE . (40)

Similarly,

χEz = χE . (41)

Now, let t ∈ {1, . . . , T} and let k ∈ {1, . . . ,Kt}. Note that hJt,k−1(Yt,k) ⊂ X \
⊔N−1
j=0 hj(Y ) by

condition (a) above. Also, since hJt,k(Yt,k) ⊂ Y , we have

zχhJt,k (Yt,k)
=

N−1∑
j=0

χhj(Y )u
jwN−ju−jχhj(Y ) + χX\

⊔N−1
j=0 hj(Y )

χhJt,k (Yt,k)

= χY w
NχhJt,k (Yt,k)

= χY v2v
∗
1χhJt,k (Yt,k)
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= v2χh−1(Y )v
∗
1χhJt,k (Yt,k)

= v2v
∗
1χh(Y )χhJt,k (Yt,k)

= v2v
∗
1χhJt,k (Yt,k)

. (42)

We therefore have

(zv1 − v2z)χhJt,k−1(Yt,k)
= zv1χhJt,k−1(Yt,k)

− v2zχhJt,k−1(Yt,k)

= zχYt,k
v1 − v2zχhJt,k−1(Yt,k)

= zχYt,k
v1 − v2χhJt,k−1(Yt,k)

by (40)

= v2v
∗
1χYt,k

v1 − v2χhJt,k−1(Yt,k)
by (42)

= v2χhJt,k−1(Yt,k)
− v2χhJt,k−1(Yt,k)

= 0. (43)

Thus,

(zv1 − v2z)χh−1(Y ) = 0. (44)

Set

Ŷ = X \
N⊔

j=−1
hj(Y ).

We have zχŶ = χŶ by (40) since Ŷ ⊂ X \
⊔N−1
j=0 hj(Y ). Since P1(S ′) is finer than P1(S), there is a

set

G ⊂ {(t, k, j)
∣∣ t ∈ {1, . . . , T ′}; k ∈ {1, . . . ,K ′t}; j ∈ {1, . . . , J ′t,k − 2}}

such that

Ŷ =
⊔

(t,k,j)∈G

hj(Y ′t,k).

Note that if (t, k, j) ∈ G, then j 6= J ′t,k − 1, since hJ
′
t,k−1(Y ′t,k) ⊂ h−1(Y ), which is disjoint from Ŷ .

Using (40) at the first step, we therefore have

v2zχŶ = v2χŶ

=

 T ′∑
t=1

K′t∑
k=1

χY ′t,ku1−J′t,kχhJ′
t,k
−1

(Y ′t,k)
+

J′t,k−2∑
j=0

χhj+1(Y ′t,k)
uχhj(Y ′t,k)

 ∑
(t,k,j)∈G

hj(Y ′t,k)


=

 T ′∑
t=1

K′t∑
k=1

J′t,k−2∑
j=0

χhj+1(Y ′t,k)
uχhj(Y ′t,k)

 ∑
(t,k,j)∈G

hj(Y ′t,k)


=

∑
(t,k,j)∈G

χhj+1(Y ′t,k)
uχhj(Y ′t,k)

= uχŶ . (45)
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We also have

zv1χŶ = z

 T∑
t=1

Kt∑
k=1

χYt,k
u1−Jt,kχhJt,k−1(Yt,k)

+

Jt,k−2∑
j=0

χhj+1(Yt,k)uχhj(Yt,k)

χŶ

= z

 T∑
t=1

Kt∑
k=1

Jt,k−2∑
j=N

χhj+1(Yt,k)uχhj(Yt,k)


=

N−1∑
j=0

χhj(Y )u
jwN−ju−jχhj(Y ) + χX\

⊔N−1
j=0 hj(Y )

 T∑
t=1

Kt∑
k=1

Jt,k−2∑
j=N

χhj+1(Yt,k)uχhj(Yt,k)


=
(
χX\

⊔N−1
j=0 hj(Y )

) T∑
t=1

Kt∑
k=1

Jt,k−2∑
j=N

χhj+1(Yt,k)uχhj(Yt,k)


=

 T∑
t=1

Kt∑
k=1

Jt,k−2∑
j=N

χhj+1(Yt,k)uχhj(Yt,k)


= uχŶ . (46)

Putting our recent work together, we get

(zv1 − v2z)χŶ = zv1χŶ − v2zχŶ
= zv1χŶ − uχŶ by (45)

= uχŶ − uχŶ by (46)

= 0. (47)

Precisely the same argument shows that

(zv1 − v2z)χhN (Y ) = 0. (48)

We now apply Lemma 5.11 with M = N + 3, a = zv1 − v2z, pn = χhn(Y ) for all n ∈ {1, . . . , N},
qn = χhn−1(Y ) for all n ∈ {1, . . . , N + 1}, pN+1 = χY , pN+2 = qN+2 = χh−1(Y ), and pN+3 = qN+3 =

χŶ1
. By (36), we have ‖pnaqn‖ < ε for all n ∈ {1, . . . , N}. By (39), for n ∈ {1, . . . , N} with n 6= m,

we have qmapn = 0 for all m ∈ {1, . . . ,M} such that m 6= n. By (48), we have pmaqN+1 = 0 for

all m ∈ {1, . . . ,M}. By (44), we have pmaqN+2 = 0 for all m ∈ {1, . . . ,M}. By (47), we have

pmaqN+3 = 0 for all m ∈ {1, . . . ,M}. Thus, Lemma 5.11 applies to give us ‖zv1 − v2z‖ < ε. Thus,

by (31), we have ‖u′ − u‖ < ε.

We will now show that

A ∼=
T⊕
t=1

((
C(S1)⊗MJt,1

)
⊕

(
Kt⊕
k=2

MJt,k

))
,
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To do this, we first claim that u2 and z commute. First note our formula for u2:

u2 = v∗2u

=

 T ′∑
t=1

K′t∑
k=1

χY ′t,ku1−J′t,kχhJ′
t,k
−1

(Y ′t,k)
+

J′t,k−2∑
j=0

χhj+1(Y ′t,k)
uχhj(Y ′t,k)

∗ u
=

 T ′∑
t=1

K′t∑
k=1

χ
h
J′
t,k
−1

(Y ′t,k)
uJ
′
t,k−1χY ′t,k +

J′t,k−2∑
j=0

χhj(Y ′t,k)
u∗χhj+1(Y ′t,k)

u

=

 T ′∑
t=1

K′t∑
k=1

χ
h
J′
t,k
−1

(Y ′t,k)
uJ
′
t,k−1 +

J′t,k−2∑
j=0

χhj(Y ′t,k)
u∗

u

=

T ′∑
t=1

K′t∑
k=1

χ
h
J′
t,k
−1

(Y ′t,k)
uJ
′
t,kχh−1(Y ′t,k)

+

J′t,k−2∑
j=0

χhj(Y ′t,k)

 . (49)

Let t ∈ {1, . . . , T ′} and let k ∈ {1, . . . ,K ′t}. Since

h−1(Y ′t,k) ⊂ h−1(Y ) ⊂ X \
N−1⊔
j=0

hj(Y ),

by (40), we have

zχh−1(Y ′t,k)
= χh−1(Y ′t,k)

.

By (41), we have

χh−1(Y ′t,k)
z = χh−1(Y ′t,k)

.

Thus, we have

zχh−1(Y ′t,k)
= χh−1(Y ′t,k)

z. (50)

Since

hJ
′
t,k−1(Y ′t,k) ⊂ h−1(Y ) ⊂ X \

N−1⊔
j=0

hj(Y ),

by a process similar to the above, we have

zχ
h
J′
t,k
−1

(Y ′t,k)
= χ

h
J′
t,k
−1

(Y ′t,k)
z. (51)

Since
N−1⊔
j=0

hj(Y ) ⊂
T ′⊔
t=1

K′t⊔
k=1

J′k,t−2⊔
j=0

hj(Y ′k,t),
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we haveN−1∑
j=0

χhj(Y )u
jwN−ju−jχhj(Y )

 T ′∑
t=1

K′t∑
k=1

J′k,t−2∑
j=0

χhj(Y ′k,t)

 =

N−1∑
j=0

χhj(Y )u
jwN−ju−jχhj(Y ) (52)

and T ′∑
t=1

K′t∑
k=1

J′k,t−2∑
j=0

χhj(Y ′k,t)

N−1∑
j=0

χhj(Y )u
jwN−ju−jχhj(Y )

 =

N−1∑
j=0

χhj(Y )u
jwN−ju−jχhj(Y ). (53)

It is also clear that if E is any subset of X \
⊔N−1
j=0 hj(Y ), then

zχE = χEz (54)

Again, since w is obtained via functional calculus at v2v
∗
1 , wN−j commutes with u as well. Therefore,

we have

uz = uχhj(Y )u
jwN−ju−jχhj(Y )

= χhj+1(Y )u
juwN−ju−jχhj(Y )

= χhj+1(Y )u
jwN−juu−jχhj(Y )

= χhj+1(Y )u
jwN−ju−jχhj+1(Y )u

= zu. (55)

We have

zu2 = z

 T ′∑
t=1

K′t∑
k=1

χ
h
J′
t,k
−1

(Y ′t,k)
uJ
′
t,kχh−1(Y ′t,k)

+

J′t,k−2∑
j=0

χhj(Y ′t,k)


=

T ′∑
t=1

K′t∑
k=1

zχ
h
J′
t,k
−1

(Y ′t,k)
uJ
′
t,kχh−1(Y ′t,k)

+

J′t,k−2∑
j=0

zχhj(Y ′t,k)


=

T ′∑
t=1

K′t∑
k=1

χ
h
J′
t,k
−1

(Y ′t,k)
zuJ

′
t,kχh−1(Y ′t,k)

+

J′t,k−2∑
j=0

zχhj(Y ′t,k)


=

T ′∑
t=1

K′t∑
k=1

χ
h
J′
t,k
−1

(Y ′t,k)
uJ
′
t,kzχh−1(Y ′t,k)

+

J′t,k−2∑
j=0

zχhj(Y ′t,k)

 by (55)

=

T ′∑
t=1

K′t∑
k=1

χ
h
J′
t,k
−1

(Y ′t,k)
uJ
′
t,kχh−1(Y ′t,k)

z +

J′t,k−2∑
j=0

zχhj(Y ′t,k)


=

T ′∑
t=1

K′t∑
k=1

χ
h
J′
t,k
−1

(Y ′t,k)
uJ
′
t,kχh−1(Y ′t,k)

z +

J′t,k−2∑
j=0

χhj(Y ′t,k)
z

 by (54)
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= u2z.

Thus, we see z and u2 indeed commute.

Since z and u2 commute, the C∗-algebra Â generated by A1 and u2 is unitarily equivalent to A

(via z). Thus, A ∼= Â, and we will therefore work with Â for the remainder of the proof. Recall that

for each t ∈ {1, . . . , T ′}, we have X ′t = hJt,1(Yt,1). For convenience of notation during the rest of the

proof, set

p̂ = χ
X\

⊔T ′
t=1

⊔Jt,1−1

j=0 hj(Yt,1)
.

Let

û =

T ′∑
t=1

Jt,1−1∑
j=0

e
(t,1)
j,Jt,1−1u2e

(t,1)
Jt,1−1,j + p̂.

We claim û is a unitary in Â. First, for s ∈ {1, . . . , T ′}, and j ∈ {0, . . . , Jt,1 − 1}, observe that

u2e
(t,1)
Jt,1−1,je

(t,1)
j,Jt,1−1u

∗
2 = u2e

(t,1)
Jt,1−1,Jt,1−1u

∗
2

= u2χhJt,1−1(Yt,1)
u∗2

= u2χh−1(X′t)
u∗2

= v∗2uχh−1(X′s)
u∗v2

= v∗2χX′tv2

=

K′t∑
k=1

v∗2χY ′t,kv2

=

K′t∑
k=1

χ
h
J′
t,k
−1

(Y ′t,k)

= χh−1(X′t)

= χhJt,1−1(Yt,1)
. (56)

Now, observe that

ûû∗ =

 T ′∑
t=1

Jt,1−1∑
j=0

e
(t,1)
j,Jt,1−1u2e

(t,1)
Jt,1−1,j + p̂

 T ′∑
t=1

Jt,1−1∑
j=0

e
(t,1)
j,Jt,1−1u

∗
2e

(t,1)
Jt,1−1,j + p̂


=

T ′∑
t=1

Jt,1−1∑
j=0

e
(t,1)
j,Jt,1−1

(
u2e

(t,1)
Jt,1−1,je

(t,1)
j,Jt,1−1u

∗
2

)
e
(t,1)
Jt,1−1,j + p̂

=

T ′∑
t=1

Jt,1−1∑
j=0

e
(t,1)
j,Jt,1−1χhJt,1−1(Yt,1)

e
(t,1)
Jt,1−1,j + p̂ by (56)

=

T ′∑
t=1

Jt,1−1∑
j=0

e
(t,1)
j,Jt,1−1e

(t,1)
Jt,1−1,Jt,1−1e

(t,1)
Jt,1−1,j + p̂
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=

T ′∑
t=1

Jt,1−1∑
j=0

e
(t,1)
j,j + p̂

=

T ′∑
t=1

Jt,1−1∑
j=0

χhj(Yt,1) + p̂

= 1.

A similar computation shows û∗û = 1. Thus, û is a unitary.

We claim that A1 and û commute. To see this, it is clear that we only need to check commutativity

with matrix units of the form e
(t,1)
i,j for s ∈ {1, . . . , T ′}. But with this in mind, we have

ûe
(t,1)
i,j û∗ = e

(t,1)
i,Jt,1−1u2e

(t,1)
Jt,1−1,ie

(t,1)
i,j ej,Jt,1−1u

∗
2e

(t,1)
Jt,1−1,j

= e
(t,1)
i,Jt,1−1u2e

(t,1)
Jt,1−1,Jt,1−1u

∗
2e

(t,1)
Jt,1−1,j

= e
(t,1)
i,Jt,1−1e

(t,1)
Jt,1−1,Jt,1−1e

(t,1)
Jt,1−1,j by (56)

= e
(t,1)
i,j .

Thus, A1 and û commute.

We claim that A1 and û generate Â. To see this, notice that T ′∑
t=1

e
(t,1)
Jt,1−1,0

 û

 T ′∑
t=1

e
(t,1)
0,Jt,1−1

 =

T ′∑
t=1

e
(t,1)
Jt,1−1,Jt,1−1u2e

(t,1)
Jt,1−1,Jt,1−1,

which, when added to χ
X\

⊔T ′
t=1 h

Jt,1−1(Yt,1)
= χ

X\
⊔T ′

t=1 h
−1(X′t)

, yields u2.

Let t ∈ {1, . . . , T}, let k ∈ {2, . . . ,Kt}, and let i, j ∈ {0, . . . , Jt,k − 1}. We have

e
(t,k)
i,j û = χhi(Yt,k)u

j−iχhj(Yt,k)p̂

= χhi(Yt,k)u
j−iχhj(Yt,k)

= e
(t,k)
i,j

and similarly ûe
(t,k)
i,j = e

(t,k)
i,j . Thus, setting pt,k =

∑Jt,k−1
i=0 e

(t,k)
i,i , we have

pt,kÂpt,k ∼= MJt,k . (57)

Fix t ∈ {1, . . . , T ′} and set pt =
∑Jt,1−1
j=0 χhj(Yt,1) =

∑Jt,1−1
j=0 e

(t,1)
j,j . We now claim that ptu2pt and

ptûpt are unitaries in ptC
∗(Z, X, h)pt. To show this, we show that pt commutes with u2 and û.

It is obvious that pt commutes with û, since û commutes with A1. So to show that pt commutes

with u2, we first claim that, for each j ∈ {−Jt,1, . . . ,−2}, we have

hj(X ′t) ⊂
K′t⊔
k=1

J′t,k−2⊔
j′=0

hj
′
(Y ′t,k). (58)
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To see this, note that

K′s⊔
k=1

J′t,k−2⊔
j′=0

hj
′
(Y ′t,k) =

K′s⊔
k=1

J′t,k−1⊔
j′=0

hj
′
(Y ′t,k) \ h−1(X ′t) =

⋃
j′∈Z

hj(X ′t) \ h−1(X ′t),

and then note that Yt,1 = h−Jt,1(X ′t), and so since Yt,1, h(Yt,1), . . . , hJt,1−1(Yt,1) are pairwise disjoint,

it follows that hj(X ′t) ∩ h−1(X ′t) = ∅ for all j ∈ {−Jt,1, . . . ,−2}. Thus, the claim follows. Now,

u2pt =

 T ′∑
s=1

K′t∑
k=1

χ
h
J′
s,k
−1

(Y ′s,k)
uJ
′
s,kχh−1(Y ′s,k)

+

J′s,k−2∑
j=0

χhj(Y ′s,k)

Jt,1−1∑
j=0

χhj(Yt,1)


=

 T ′∑
s=1

K′s∑
k=1

χ
h
J′
s,k
−1

(Y ′s,k)
uJ
′
s,kχh−1(Y ′s,k)

+

J′s,k−2∑
j=0

χhj(Y ′s,k)

 −1∑
j=−Jt,1

χhj(X′t)


=

 K′t∑
k=1

χ
h
J′
t,k
−1

(Y ′t,k)
uJ
′
t,kχh−1(Y ′t,k)

χh−1(X′s)
+

−2∑
j=−Jt,1

χhj(X′t)
by (58)

=

 K′t∑
k=1

χ
h
J′
t,k
−1

(Y ′t,k)
uJ
′
t,kχh−1(Y ′t,k)

 K′t∑
k=1

χh−1(Y ′t,k)
+

−2∑
j=−Jt,1

χhj(X′t)

=

K′t∑
k=1

χ
h
J′
t,k
−1

(Y ′t,k)
uJ
′
t,kχh−1(Y ′t,k)

+

−2∑
j=−Jt,1

χhj(X′t)
.

Similarly,

ptu2 =

Jt,1−1∑
j=0

χhj(Yt,1)

 T ′∑
s=1

K′s∑
k=1

χ
h
J′
s,k
−1

(Y ′s,k)
uJ
′
s,kχh−1(Y ′s,k)

+

J′s,k−2∑
j=0

χhj(Y ′s,k)


=

 −1∑
j=−Jt,1

χhj(X′t)

 T ′∑
s=1

K′s∑
k=1

χ
h
J′
s,k
−1

(Y ′s,k)
uJ
′
s,kχh−1(Y ′s,k)

+

J′s,k−2∑
j=0

χhj(Y ′s,k)


= χh−1(X′t)

 K′t∑
k=1

χ
h
J′
s,k
−1

(Y ′s,k)
uJ
′
s,kχh−1(Y ′s,k)

+

−2∑
j=−Jt,1

χhj(X′s)
by (58)

=

K′s∑
k=1

χ
h
J′
s,k
−1

(Y ′s,k)

K′s∑
k=1

χ
h
J′
s,k
−1

(Y ′s,k)
uJ
′
s,kχh−1(Y ′s,k)

+

−2∑
j=−Jt,1

χhj(X′s)

=

K′s∑
k=1

χ
h
J′
s,k
−1

(Y ′s,k)
uJ
′
s,kχh−1(Y ′s,k)

+

−2∑
j=−Jt,1

χhj(X′s)
.

Thus, pt commutes with ut, and so ptu2pt is a unitary in ptC
∗(Z, X, h)pt.

Set X̂ ′t =
⋃
j∈Z h

j(X ′t) =
⊔K′t
k=1

⊔J′t,k−1
j=0 hj(Y ′t,k), an h-invariant compact open subset of X. Set

rt = χX̂′t
, a projection that therefore commutes with u, which means that it is central in C∗(Z, X, h).

We claim that [rtûrt] = Jt,1[rtu2rt] in K1(rtC
∗(Z, X, h)rt). For each j ∈ {0, . . . , Jt,1 − 1}, set Dj =
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{0, . . . , Jt,1 − 1} \ {j} and set

wj = e
(t,1)
j,Jt,1−1u2e

(t,1)
Jt,1−1,j +

∑
i∈Dj

ei,i + (rt − pt).

Note that wJt,1−1 = rtu2rt . We have

Jt,1−1∏
j=0

wj =

Jt,1−1∏
j=0

e(t,1)j,Jt,1−1u2e
(t,1)
Jt,1−1,j +

∑
i∈Dj

e
(t,1)
i,i + (rs − ps)


=

Jt,1−1∑
j=0

e
(t,1)
j,Jt,1−1u2e

(t,1)
Jt,1−1,j + (rt − pt)

= rtûrt. (59)

Let j ∈ {0, . . . , Jt,1 − 2}. Define D′j = {0, . . . , Jt,1 − 2} \ {j},

p̂j =
∑
i∈D′j

e
(t,1)
i,i + (rt − pt),

and

w′j = e
(t,1)
j,Jt,1−1 + e

(t,1)
Jt,1−1,j + p̂j .

We have

w′jrtu2rt =
(
e
(t,1)
j,Jt,1−1 + e

(t,1)
Jt,1−1,j + p̂j

) K′t∑
k=1

χ
h
J′
t,k
−1

(Y ′t,k)
uJ
′
t,kχh−1(Y ′t,k)

+

J′t,k−2∑
j=0

χhj(Y ′t,k)

 .

We break the right hand side of this computation into steps. First, recall that h−1(X ′t) = hJt,1−1(Yt,1).

With this in mind, we have

e
(t,1)
j,Jt,1−1rtu2rt =

(
χhj(Yt,1)u

j−(Jt,1−1)χhJt,1−1(Yt,1)

) K′t∑
k=1

χ
h
J′
t,k
−1

(Y ′t,k)
uJ
′
t,kχh−1(Y ′t,k)


=

K′t∑
k=1

χhj(Yt,1)u
j−(Jt,1−1)χh−1(X′t)

χ
h
J′
t,k
−1

(Y ′t,k)
uJ
′
t,kχh−1(Y ′t,k)

=

K′t∑
k=1

χhj(Yt,1)u
j−(Jt,1−1)χ

h
J′
t,k
−1

(Y ′t,k)
uJ
′
t,kχh−1(Y ′t,k)

=

K′t∑
k=1

χhj(Yt,1)u
j−(Jt,1−1)+J′t,kχh−1(Y ′t,k)

=

K′t∑
k=1

χhj−Jt,1 (X′t)
uj−(Jt,1−1)+J

′
t,kχh−1(Y ′t,k)
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=

K′t∑
k=1

χ
h
j−Jt,1+J′

t,k (Y ′t,k)
uj−(Jt,1−1)+J

′
t,kχh−1(Y ′t,k)

. (60)

Since

hj(Yt,1) ⊂
K′t⊔
k=1

J′t,k−2⊔
j′=0

hj
′
(Y ′t,k),

we have

e
(t,1)
Jt,1−1,jrtu2rt = χhJt,1−1(Yt,1)

uJt,1−1−jχhj(Yt,1)

 K′t∑
k=1

J′t,k−2∑
j=0

χhj(Y ′t,k)


= χhJt,1−1(Yt,1)

uJt,1−1−jχhj(Yt,1)

= e
(t,1)
Jt,1−1,j . (61)

Note that p̂j = χÊj
where

Êj =

 ⊔
i∈D′j

hi(Yt,1)

 t
 K′t⊔

k=1

J′t,k−1⊔
i=0

hi(Y ′t,k)

 \
Jt,1−1⊔

j=0

hj(Yt,1)


=

 K′t⊔
k=1

J′t,k−1⊔
i=0

hi(Y ′t,k)

 \ (hJt,1−1(Yt,1) t hj(Yt,1)
)

=

 K′t⊔
k=1

J′t,k−1⊔
i=0

hi(Y ′t,k)

 \ (h−1(X ′t) t hj(Yt,1)
)

=

 K′t⊔
k=1

J′t,k−2⊔
i=0

hi(Y ′t,k)

 \ hj(Yt,1). (62)

Thus, Êj ⊂
⊔K′t
k=1

⊔J′t,k−2
j=0 hj(Y ′t,k), and so we have

p̂jrtu2rt = p̂j

 K′t∑
k=1

J′t,k−2∑
j=0

χhj(Y ′t,k)


= p̂j . (63)

From (60), (61), and (63), we have

w′jrtu2rt =

K′t∑
k=1

χ
h
j−Jt,1+J′

t,k (Y ′t,k)
uj−(Jt,1−1)+J

′
t,kχh−1(Y ′t,k)

+ e
(t,1)
Jt,1−1,j + p̂j .
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Now, simplify w′jrtu2rtw
′
j , which rewritten is K′t∑

k=1

χ
h
j−Jt,1+J′

t,k (Y ′t,k)
uj−(Jt,1−1)+J

′
t,kχh−1(Y ′t,k)

+ e
(t,1)
Jt,1−1,j + p̂j

(e(t,1)j,Jt,1−1 + e
(t,1)
Jt,1−1,j + p̂j

)

From (62), it is clear that

p̂je
(t,1)
j,Jt,1−1 = 0.

Since j 6= Jt,1 − 1, we have hj(Yt,1) ∩ h−1(X ′t) = ∅, so

K′t∑
k=1

χ
h
j−Jt,1+J′

t,k (Y ′t,k)
uj−(Jt,1−1)+J

′
t,kχh−1(Y ′t,k)

e
(t,1)
j,Jt,1−1 = 0.

Thus, we have

w′jrtu2rte
(t,1)
j,Jt,1−1 = e

(t,1)
Jt,1−1,je

(t,1)
j,Jt,1−1

= ej,j . (64)

Since Jt,1 − 1 /∈ Dj , and from (62), we can easily see that(
e
(t,1)
Jt,1−1,j + p̂j

)
e
(t,1)
Jt,1−1,j = 0.

Thus, we have

w′jrtu2rte
(t,1)
Jt,1−1,j =

K′s∑
k=1

χ
h
j−Jt,1+J′

t,k (Y ′t,k)
uj−(Jt,1−1)+J

′
t,kχh−1(Y ′t,k)

χhJt,1−1(Yt,1)
uJt,1−1−jχhj(Yt,1)

=

K′s∑
k=1

χ
h
j−Jt,1+J′

t,k (Y ′t,k)
uj−(Jt,1−1)+J

′
t,kχh−1(Y ′t,k)

χh−1(X′s)
uJt,1−1−jχhj(Yt,1)

=

K′s∑
k=1

χ
h
j−Jt,1+J′

t,k (Y ′t,k)
uj−(Jt,1−1)+J

′
t,kχh−1(Y ′t,k)

uJt,1−1−jχhj(Yt,1)

=

K′s∑
k=1

χ
h
j−Jt,1+J′

t,k (Y ′t,k)
uj−(Jt,1−1)+J

′
t,kχh−1(Y ′t,k)

uJt,1−1−jχhj−Jt,1 (Y ′t,k)

=

K′s∑
k=1

χ
h
j−Jt,1+J′

t,k (Y ′t,k)
uJ
′
t,kχhj−Jt,1 (Y ′t,k)

.

But then notice that

e
(t,1)
j,Jt,1−1u2e

(t,1)
Jt,1−1,j = χhj(Yt,1)u

Jt,1−1−jχhJt,1−1(Yt,1)
u2χhJt,1−1(Yt,1)

uj−(Jt,1−1)χhj(Yt,1)

=

K′s∑
k=1

χ
h
j−Jt,1+J′

t,k (Y ′t,k)
uJt,1−1−jχ

h
J′
t,k
−1

(Y ′t,k)
uJ
′
t,kχh−1(Y ′t,k)

uj−(Jt,1−1)χhj−Jt,1 (Y ′t,k)
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=

K′s∑
k=1

χ
h
j−Jt,1+J′

t,k (Y ′t,k)
uj−(Jt,1−1)+J

′
t,kχhj−Jt,1 (Y ′t,k)

.

Thus,

w′jrtu2rte
(t,1)
Jt,1−1,j = e

(t,1)
j,Jt,1−1u2e

(t,1)
Jt,1−1,j . (65)

Finally, it is immediately clear that

w′jrtu2rtp̂j = p̂j p̂j

= p̂j . (66)

So by (64), (65), and (66), we see

w′jrtu2rtw
′
j = e

(t,1)
j,j +

K′s∑
k=1

χ
h
j−Jt,1+J′

t,k (Y ′t,k)
uJ
′
t,kχhj−Jt,1 (Y ′t,k)

+ p̂j

=

K′s∑
k=1

χ
h
j−Jt,1+J′

t,k (Y ′t,k)
uJ
′
t,kχhj−Jt,1 (Y ′t,k)

+
∑
i∈Dj

e
(t,1)
i,i + (rt − pt)

= ej,Jt,1−1u2eJt,1−1,j +
∑
i∈Dj

e
(t,1)
i,i + (rt − pt)

= wj .

Now note that w′j is a unitary in rtA2rt, and since rtA2rt is a finite-dimensional C∗-subalgebra of

rtC
∗(Z, X, h)rt, w

′
j has trivial K1-class. Thus, in K1(rtC

∗(Z, X, h)rt), we have [wj ] = [rtu2rt], so by

(59), we have

[rtûrt] = Jt,1[rtu2rt]. (67)

We now show that [rtu2rt] 6= 0. First note that rtv2rt ∈ rtA2rt, and since rtA2rt is finite-

dimensional, we have [rtv2r2] = 0. From Lemma 5.3, we have [rturt] 6= 0. Thus,

[rtu2rt] = [rtv
∗
2urt]

= −[rtv2rt] + [rturt]

6= 0. (68)

By Lemma 5.4, rtC
∗(Z, X, h)rt has torsion-free K1, so (67) and (68) give us

[rtûrt] 6= 0. (69)

A very straightforward computation shows

rtûrt = ptûpt + (rt − pt)
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This fact combined with (69) and Lemma 5.5 gives us [ptûpt] 6= 0 in K1(ptC
∗(Z, X, h)pt). Thus,

sp(ptûpt) = S1. So because of this, because ptûpt commutes with e
(t,1)
i,j for all i, j ∈ {0, . . . , Jt,1 − 1},

and because ptûpt and (e
(t,1)
i,j )0≤i,j≤Jt,1−1 generate ptÂpt, by Lemma 5.12, we have

ptÂpt ∼= C(S1)⊗MJt,1 . (70)

Altogether, from (57) and (70), we get

Â ∼=
T⊕
t=1

((
C(S1)⊗MJt,1

)
⊕

(
Kt⊕
k=2

MJt,k

))
,

finishing the proof of the theorem.
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