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DISSERTATION ABSTRACT
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Title: AT-algebras from zero-dimensional dynamical systems
We outline a particular type of zero-dimensional system (which we call ”fiberwise essentially mini-
mal”), which, together with the condition of all points being aperiodic, guarantee that the associated
crossed product C*-algebra is an AT-algebra. Since AT-algebras of real rank zero are classifiable

by K-theory, this is a large step towards a classification theorem for fiberwise essentially minimal

zero-dimensional systems.



CIRRICULUM VITAE

NAME OF AUTHOR: Paul Herstedt

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene
Portland State University, Portland

Oregon State University, Corvallis

DEGREES AWARDED:

Doctor of Philosophy, Mathematics, 2020, University of Oregon
Bachelor of Science, Mathematics, 2013, Portland State University
Bachelor of Science, Physics, 2013, Portland State University

AREAS OF SPECIAL INTEREST:

Operator algebras

Dynamical systems



ACKNOWLEDGMENTS

I have an enormous amount of gratitude to my advisor N. Christopher Phillips for his intense and
careful work in preparing this manuscript. He has been incredible in getting my understanding of

operator algebras to where it is today.

vi



TABLE OF CONTENTS

Chapter Page
1. INTRODUCGTION .ttt et e e e e e e 1
2. PRELIMIN ARIES ...t e e e e e e e e e e 3
3. THEOREM S .. e e e e e e 15
4. PROOF OF THEOREM 3.1 .. e e 16
5. PROOF OF THEOREM 3.2 ... e 19
REFERENCES CITED ...ttt ettt e e et e e e e 60

vii



I INTRODUCTION

A C*-algebra is a *-closed norm-closed subalgebra of the bounded operators on a Hilbert space.
More abstractly, these are complex Banach algebras with an involution operation that satisfies certain
properties. These mathematical objects began to be studied in detail due to their use in quantum
mechanics modeling observables with self-adjoint operators; C*-algebras are the abstract objects one
can use to study these operators. For a solid introduction to C*-algebras, see [7].

An important example of a C*-algebra (particularly in this paper) is the C*-algebra of continuous
functions from a compact Hausdorff space X to the complex numbers C (with pointwise operations),
which we will denote by C(X). There are numerous ways of constructing C*-algebras from other
C*-algebras or from other mathematical objects. We outline the ones relevant to this paper below.
Afterwards, we outline the motivation for this paper.

Given a sequence of C*-algebras (4,) and a sequence of maps (¢,) from A, to A,y1, we call
(An, pn) a direct system. To this direct system we can associate a C*-algebra A that encodes the
information of the direct system; it contains each A, as a subalgebra and contains the connection
between A, and A,y; via the map ¢, (for a more detailed account of this construction, see [10]).
The important cases for this paper are AF-algebras, which are the direct limits of systems in which
A, is finite dimensional for all n, and AT-algebras, which are the direct limits of systems in which
A, is the direct sum of matrix algebras and matrix algebras over C'(S') (where S! denotes the circle;
note that T also denotes the circle, having two notations for the circle is an unfortunate but standard
practice in C*-algebras).

Let X be a compact Hausdorff space and let h : X — X be a homeomorphism of X. We call (X, h)
a dynamical system. There is a way of associating a C*-algebra to a dynamical system that encodes
the information of the dynamical system; we denote this associated C*-algebra by C*(Z, X, h). This
C*-algebra is generated by C'(X) and a unitary u that satisfies (ufu*)(z) = f(h=1(x)). One can see
that C'(X) encodes the information of X and u encodes the information of h. This is an example of
a crossed product C*-algebra; for more on this subject see [12].

The underlying goal of a lot of research in the field of C*-algebras in the last few decades is
K-theoretic classification, which is the goal of showing that, for various nice classes of C*-algebras,
isomorphism at the level of K-theory implies isomorphism of the C*-algebras. This work was pioneered
by George Elliott in the 70’s (see [3] for his groundbreaking work classifying the simple AF-algebras
introduced by Bratteli in [1]). This work was expanded by himself, Marius Dadarlat, and Guihua Gong
in the 90’s (see [4], [5], and [2]), where the classification result was expanded all the way up to real
rank zero AH-algebras of slow dimension growth. In particular, this classification result includes AT-
algebras of real rank zero, which is precisely the type of C*-algebra that results from the construction
in this paper.

This paper proves that crossed product C*-algebras associated to certain zero-dimensional dynam-
ical systems are AT-algebras with real rank zero (the real rank zero result is not in this current version,
but will be included in the near future and is certainly true), and are hence classifiable by the results

described in the paragraph above. This work is motivated by Putnam’s work in the minimal Cantor



system case (see [9]), where he proves that crossed products associated to minimal zero-dimensional
systems are AT-algebras with real rank zero. The goal of this paper is to find a more general condi-
tion for which the techinque of the proof of Theorem 2.1 of [9] can be applied (see Definition 2.6 and
Definition 2.19 in the paper below).



II PRELIMINARIES

Let X be a totally disconnected compact metrizable space and let h : X — X be a homeomorphism
of X. We call (X, h) a zero-dimensional system. Let a be the automorphism of C(X) induced by h;
that is, « is defined by a(f)(z) = f(h~!(x)) for all f € C(X) and all z € X. Then we denote the
crossed product of C(X) by a by C*(Z, X, h) (or, less commonly, C*(Z,C(X),«)). We denote the
“standard unitary” of C*(Z, X, h) by u, so that ufu* = a(f) for all f € C(X).

Definition 2.1. Let X be a totally disconnected compact metrizable space. We define a partition P
of X to be a finite set of mutually disjoint compact open subsets of X whose union is X. We denote

by C(P) the subset of C'(X) consisting of functions that are constant on elements of P.

For ease of notation, we will often denote a sequence (z,,)22; just by (z,). That such an object is

a sequence will be clear from context.

Definition 2.2. We say that a sequence (P,,) of partitions of X is a generating sequence of partitions

of X if Pp41 is finer than P, for all n € Zs, and if for every x € X, there is a sequence (V,,) such
that V,, € P, for all n € Z~ and (., V,, = {z}.

The terminology “generating sequence” comes from the fact that this sequence generates the

topology of X.

Notation 2.3. Let x € X. We say that = is a periodic point if there is a nonzero integer n such
that h™(z) = x; otherwise, we say that z is an aperiodic point. We denote the orbit of = by orb(z) =
{h™(x) | n € Z}. Similarly, we denote the forward and backward orbits of = by orb™(z) = {h"(2) |ne
Z>o} and orb™ (z) = {h"(z) | n € Z<o}-

We say that a closed subset Y of X is a minimal set if it is h-invariant and has no nonempty
h-invariant proper closed subsets. By Zorn’s lemma, minimal sets exist for every zero-dimensional

system. We use the following definition from [6].

Definition 2.4. We say that a dynamical system (X, h) is an essentially minimal system if it has a

unique minimal set.

We say that (X, h) is a minimal system if the unique minimal set is X. Note that essentially
minimal systems have no nontrivial compact open h-invariant subsets, since such a set and its com-
plement would contain disjoint minimal sets. Also note that we do not assume that all points must be
aperiodic, so Z/nZ with the shift homemorphism is an example of a minimal zero-dimensional system.

We will use the disjoint union symbol | | to denote unions of disjoint sets. We will not always say

explicitly that the sets in this union are disjoint, as this will be implied by the notation.

Notation 2.5. Let (X, h) be a zero-dimensional system and let U C X. We define the map Ay : U —
Z~o U {oo} by Ay(x) = inf{n € Zsg | h™(z) € U} if this infimum exists, and Ay (z) = oo otherwise.
We call this map the first return time map of U.



Definition 2.6. Let (X, h) be a zero-dimensional system and let P be a partition of X. We define a

system of finite first return time maps subordinate to P to be a tuple
S=(T,(Xt)t=1,.. 75 (Ke)t=1,. 7 Ve )t=1,.. Tik=1,. K> (Jrt)t=1,... Tk=1,..K,)

such that:

(a) We have T € Z~.

(b) For each ¢t € {1,...,T}, X; is a compact open subset of X. That S is subordinate to P means
that, for each t € {1,...,T}, X; is contained in an element of P.

(c) Foreach t € {1,...,T}, K; € Z~o.

(d) Foreacht € {1,...,T} and each k € {1,..., K;}, Y x is a compact open subset of X;. Moreover,
foreach t € {1,...,T}, {Yi1,..., Yk, } is a partition of X;; that is,

K
|| Yer = Xe.
k=1

(e) For each t € {1,...,T} and each k € {1,..., K}, Jy 1 € Z~o. Using the Notation 2.5, {Jyx} =
Ax,(Y; k). Moreover, for each t € {1,...,T}, {h7t1(Y;1),...,h7/t % (Y, k,)} is a partition of X;
that is,

Ky
|| n7ox (Vik) = Xo.
k=1

(f) The set
PiS) ={W (Vip)|te{l,....,T}, ke {l,..., K}, and j € {0,..., Jy — 1}}
is a partition of X. Note that this combined with condition (e) also implies
Pa(S) = {W (Vip) |t €{1,.... T}, ke{l,...., K}, and j € {1,..., Jy}}

is a partition of X.

Remark 2.7. We make some comments about what the objects in Definition 2.6 mean and where the
name of the system comes from. Adopt the notation of Definition 2.6. Then for each ¢t € {1,...,T},
each k € {1,...,K;}, and each x € Y, j, we have Ax,(z) = Jy k. So Jy i is the “first return time” of

each element of Y; ;, to X;. We enumerate some more points below.
(a) The number of “bases” (see (b) below) of S is T.
(b) The “bases” of S are (X;){_,. These are the domains of the first return time maps above.

(c¢) For each t € {1,...,T}, K; is the size of the partition of X; into sets with constant first return
time to X;.



(d) For each t € {1,...,T} and each k € {1,..., K}, Yix is a piece of X; that has constant first

return time to Xj.
(e) Foreacht € {1,...,T} and each k € {1,..., K;}, J; i, is the first return time of ¥; 5, to X;.

Examples 2.8. If (X, h) is a minimal zero-dimensional system, then for any partition P of X, (X, h)
admits a system of finite first return time maps subordinate to P. It is shown in the proof of Theorem
2.1 of [9] that we can take T'= 1, and X; can be any compact open subset of X that is contained in
an element of P.

In the comments preceding Theorem 8.3 of [6], it is implicitly stated that if (X, k) is an essentially
minimal zero-dimensional system with no periodic points, then for any partition P of X, (X, h) admits
a system of finite first return time maps subordinate to P. This can be shown using the same technique
of that of the proof of Theorem 2.1 of [9] by taking 7' = 1 and taking X; to be any compact open

subset of X that intersects the unique minimal set of (X, h) and is contained in an element of P.

Let (X, h) be a zero-dimesional system. Theorem 3.1 gives an equivalent characterization of when,
given any partition P of X, (X, h) admits a system of finite first return time maps subordinate to P.

This equivalent characterization makes it easy to construct examples of such systems.

Proposition 2.9. Let (X, h) be a zero-dimensional system, let P be a partition of X, and let S =
(T, (X¢)t=1,...T,--.) be a system of finite first return time maps subordinate to P. Then:

(a) For every t € {1,...,T}, U ez W/ (X¢) is a compact open subset of X.

(b) |_|tT:1 UjeZ h (X)) = X.

Proof. We claim that

H :5

|_| T(Vore) = |J W (X0).

JEZ
Part (a) follows from this claim since the left-hand side of the above equation is clearly compact and

open, as it is the disjoint union of finitely many compact open sets. Part (b) follows from this claim
since |_|t 1 |_| Jt o "hi(Yix) = X. To prove the claim, fix ¢ € {1,...,T} and set

H
H |:3

t,k—
|_| I (Yig)-

Note that condition (e) of Definition 2.6 tells us that |_|£(:t1 h7tx(Y; ) = X;. Thus, W, is an h-invariant
set that contains X, meaning that it must contain (J;c5 hi(X;). To see that W; contains nothing
more, note that Wy C U<z, LI, b (Yig) = U,z P’ (X¢). This proves the claim, and by the argument

above, proves the proposition. O

Proposition 2.10. Let (X, h) be a zero-dimensional system, let P and P’ be partitions of X, and
let S = (T, (X¢)i=1,....T,- - -) be a system of finite first return time maps subordinate to P. Then there
is a system of finite first return time maps subordinate to P, denoted by &’ = (T, (X})i=1,....175- - -),
such that



(a) TV =T and, for all t € {1,...,T}, X; = X|.
(b) Using the notation of Definition 2.6, P1(S’) and P2(S’) are finer than P’.

Proof. Write P’ = {Uy,...,Ug}. Let t € {1,...,T} and let k € {1, ..., K;}. Define the following set:
Apr = {Yex "R (U;) |r€{1,...,R}, j€{0,.... Jux}, and Vs, N LI (U,) # @}

We claim that the union of the elements of A, j is Y; ;. First, notice that every element is a subset of
Y, . Next, notice that since P’ is a partition of X, |_|f:1(Yt,k NU,) = Y: . Thus, the claim follows.
We can therefore let P, be a partition of Y; j such that, for every U € P, and every V € A, , we
either have U C V or UNV = @. Write Py = {Yix(1),..., Y s (M)}

Set T = T. For each t € {1,...,T'}, define X; = X; and K| = ZkK:tl M, . For each
t € {1,....,7'} and each k' € {1,...,K[}, let k € {1,...,K;} and m € {1,..., M} satisfy
K = Z;:ll My + m, and define a compact open set Y/,, C X; by Y/,, = Yix(m) and define
Ji g = Jt k-

We now show that 8" = (17", (X{)¢=1,...17,...) is a system of finite first return time maps subordi-
nate to P by checking the conditions of Definition 2.6. It is clear that (a), (b), and (c) are satisfied.
Observe that for each t € {1,...,7"}, we have

K My

K}
LY=L | ] Yer(m)
k=1

k=1m=1
Ky

= | Y
k=1

— X

Thus, condition (d) is satisfied. Similarly, for each ¢ € {1,...,T'}, we have

K My g

Ki
|| p7e (V) = | L] A7 (YVik(m)
k=1 k=1m=1

K¢ M,

L] L] 27+ (Yiw(m))

k=1m=1

K,
|| 77 (Vi)
k=1

~ X/,

Thus, condition (e) is satisfied. Let € X. There are precisely onet € {1,...,T},one k € {1,..., K;},
and one j € {0,...,Jp — 1} such that x € h/(Y;y). Since Py is a partition of Yy, there is



precisely one m € {1,..., M} such that h=7(z) € Yin(m). Set k' = 377 Miy +m, so that
Yix(m) = Y/,. Then since J/,, = Ji, we have precisely one t € {1,...,T'}, one k" € {1,..., K}},
and one j € {0,..., ], — 1} such that x € #/(Y/,,). Thus, condition (f) is met.

We now verify the conditions of the proposition. Clearly (a) is satisfied. For (b), let t € {1,...T"},
let ¥ € {1,...,K}}, and let j € {0,.. .7Jt’,k — 1}. By definition, there is some k € {1,..., K;} and
some m € {1,..., My} such that Y/,, =Y} (m). Since P’ is a partition of X, it is also clear that

7’} _ {h*j(UrHT’ I= {1,...,R}}

is a partition of X. Thus, there is some r € {1,..., R} such that h=7(U,.) NY; ;. intersects Y; x(m). By
the definition of P x, this means that Y; x(m) C h™7 (U, )NY: k. But then /(Y/,,) = h? (Y x(m)) C U,.
This proves that P1(S’) and Pa(S’) are finer than P’. This proves the proposition. O

Lemma 2.11. Let (X,h) be a zero-dimensional system, let P be a partition of X, and let S =
(T, (X¢)t=1,...T,-..) be a system of finite first return time maps subordinate to P. Let P;(S) and
P2(S) be as in Definition 2.6 and let SM) = (T, (Xt(l))t:LMTu),..‘) be a system of finite first
return time maps subordinate to P;1(S). Then there is a system S’ = (1", (X})¢=1,....17, .. .) of finite
first return time maps subordinate to P and a system S = (T(1)’, (Xt(l)/)tzl’wT(l),, ...) of finite

first return time maps subordinate to P;(S) such that:
(a) We have T/ =T, and for all t € {1,...,T"}, we have X; = X].
(b) The partition P;(S’) is finer than P;(S) and the partition Pa(S’) is finer than Pa(S).

(c) For each s € {1,...,TW"}, there is a t; € {1,...,T} and a ks € {1,..., K; } such that Xt(l)/ =
Y

Proof. For each s € {1,...,TM}, there is some t, € {1,...,T}, some k, € {1,...,K;_}, and some
js € {0,..., Jo k., — 1} such that X c hi=(YV, 4.). Set TW = TO) set XM = p=3:(X) and
set K = K for all s € {1,..., 70}, and set Y}) = h7+(v'})) and set J{}) = J!) for all
se{l,... . TOYand ke {1,..., K"}

We now check that S1’ = (T, (Xt(l)/)t=17.__,T(1)/7...) is a system of finite first return time
maps subordinate to P1(S) by checking each of the conditions of Definition 2.6. Conditions (a)
and (c¢) are clearly met. By construction, for each s € {1,...,T(1)’}7 there are t; € {1,...,T}
and ks € {1,..., K} such that xV c Yi. k. € P1(S). Thus, condition (b) is met. Since for all
se€{l,...,TW} we have |_|,€K:S1 Ys(,? =X forall s € {1,...,TM'} we have

Kél)/ Kgl)
1 —Js 1
L] vi = Lol
k=1 k=1
= 9 (X{)
=XV



Thus, condition (d) is satisfied. For condition (e), clearly J, ; € Zsq for all s € {1,..., 71"} and all

ke{l,.. 1)/} For each s € {1,..., T}, we also have
Kgl)' K(l)
|_| h]<1)/ Y(1)/ |_| h k —Js YS(}C)
k=1
KO
=n || R (v Wy
k=1 7
= B s (Xs(l))
— x @y

Thus, condition (e) holds. Finally, let z € X. Since S(V) is a system of finite first return time
maps subordinate to P;(S), there are precisely one s € {1,...,TM}, one k € {1,..., Kgl)}, and one
jeA{0,..., Jsllz — 1} such that = € hI=Js (Yg(?) =h (Yg(jc)/). This is all that was needed to show that
P1(SM) is a partition of X. Thus, condition (f) is satisfied, proving that S(*) is a system of finite
first return time maps subordinate to Py (S).

Now, for each t € {1,...,T}, let A; = {a(t,1),...,a(t, M;)} denote the set of all s € {1,..., T}
such that t, = t and X"’ # Y k.,and let By = {b(t,1),...,b(t, Ny)} be theset of all k € {1,..., K;}
such that (|_|T<f 5”’) NY, = @ or such that XV = Y, .. Set T = T, X! = X, and K/ = K, + M,
forallt € {1,...,T"}, and

x if s € Ay and k = k,,
Y =1 Yk \Xgl)/ if k= K; +m for some m € {1,...,M;}, and s = a(t,m),

Yi otherwise

)

and

o Jt k.
tk = )
Ji  otherwise

if k = K; +m for some m € {1,..., M}, and s = a(t,m),

for all t € {1,...,7'} and k € {1,...,K;}. We now check that &' = (T",(X/)¢=1,...17,...) is a
system of finite first return time maps subordinate to P by checking the conditions of Definition 2.6.
Conditions (a), (b), and (c) are clearly met. For each t € {1,...,T'}, we have the following, where
we shorten Kq(¢,m) to k(t,m):

K| M, Ny

1 1
LI, = (u X! z;m) ! (u Vst \ i(f,’m>> . (u Y<>)
k=1 n=1

M,
= (I_l Ytk(tm>|—| <|_| Ytb(tn)>
m=1



Thus, condition (d) is met. Similarly, for each ¢t € {1,...,T'}, we have the following, where we again

shorten kgt m) to k(t,m):

K, M, M,

’ 1) 1)/
LI n7ee (i) = <|_| ke <X§(z,m)>) g <|_| BRIk (V) \Xi@,m)))
k=1 m=1

m=1
Ny

n=1
M, N,
= (I—I Rtk ,m) (K&,k(t,m))) L <|—| BItnctm) (K&,b(t,n)))
m=1 n=1
= Xt
X/,

Thus, condition (e) is met. Finally, for each x € X, there are precisely one ¢ € {1,...,T}, one
ke{l,...,K;},and one j € {0,...,J; ) — 1} such that = € b3 (Y, ;). If Vs = Yt',k, then J; j, = J;k,
and so x € h(Y/,,) for precisely one t € {1,..., 7'}, one k € {1,..., K;} and one j € {0,..., J] , —1}.
Otherwise, there is some s € A; such that X §1)/ C Y; ;- There are now two possible cases. First, if z €
hi(x), then J, ), = J} 1, and so @ € h(Y/,) for precisely one t € {1,...,T'}, one k € {1,..., K{}
and one j € {0,...,J;, —1}. Otherwise, if 2 € h7 (Y, \ XV, then z € W (Y/ g, m) where m is
such that s = a(t,m). In this case, we also have J; , = Jj g, ,,,, and so @ € h?(Y/},) for precisely one
te{l,...,T'},one ¥ € {1,..., K;} and one j € {0,...,J{;, — 1} (specifically, k' = K; +m) . Thus,
condition (f) holds, and so &' is indeed a system of finite first return time maps subordinate to P.
We now check that the conditions in the lemma are satisfied. Clearly (a) is satisfied. It is clear
that (b) is satisfied by construction as well, since for all ¢’ € {1,...,7"} and all ¥’ € {1,... K], }, there
aret € {1,...,T} and k € {1,..., K;} such that Yt'%, C Y, . Finally, condition (c) is also clearly
met by the way we defined the elements of S’. O

Lemma 2.12. Let (X,h) be a zero-dimensional system, let P be a partition of X, and let S =
(T, (X¢)t=1,...T,---) be a system of finite first return time maps subordinate to P. Let P;(S) and
P2(S) be as in Definition 2.6 and let S = (T, (Xt(Q))t:L‘_,’T@),...) be a system of finite first
return time maps subordinate to P2(S). Then there is a system S’ = (T, (X})¢=1,....17,...) of finite

first return time maps subordinate to P and a system S = (T, (Xt(Q)/)t:L___’T(z),, ...) of finite

first return time maps subordinate to P2(S) such that:
(a) We have T/ =T, and for all t € {1,...,7"}, we have X; = X].
(b) The partition P;(S’) is finer than P;(S) and the partition Pa(S’) is finer than Pa(S).

(c) For each s € {1,...,T®"} thereis at, € {1,...,T} and a k, € {1,...,K;.} such that Xt(z)/ =
hts ks (Yt/k)

Proof. For each s € {1,...,T®}, there is some t, € {1,...,T}, some ks € {1,...,K;.}, and some
js € {1,..., Ji, k,} such that X§2) C h?=(Y:, k.). For convenience of notation, set Js = J;_ .. Set



T® = 7@ get X&' = hJS_j*(X§2)) and set K%' = K for all s € {1,...,7®"}, and set
Y& = h7e3:(YS)) and set Jf,g’ =J%) forall s € {1,...,T™} and k € {1,..., KV},

We now check that S1 = (T, (Xt(l)/)t:17..‘,T(1),,...) is a system of finite first return time
maps subordinate to P2(S) by checking each of the conditions of Definition 2.6. Conditions (a)
and (c) are clearly met. By construction for each s € {1,..., 7"} there are t, € {1,...,T} and
ke € {1,...,K;,} such that X! € h's(Y;, 1) € P2(S). Thus, condition (b) is met. Since for all
sedl,... ,T(2 } we have |_|k=1 YS(;) =X, for all s € {1,...,T®"} we have

K§2)’ K(2)
LJ Yé?’ LJ B y%QB
k=1 =
K
i 2
k=1
= (X
_ ng)/.

Thus, condition (d) is satisfied. For condition (e), clearly J, x € Zsq for all s € {1,..., 7"} and all
ke{l,... ,Kﬁz)/}. For each s € {1,...,T®"}, we also have

K2 K@)
° @) ¢ (2) .
Jg 2y _ J A Ts—ds (v (2)
|| »/sr (v = | ] nlow (Yox)
k=1 k=1

<2)
— pJeis |_| o (v

Thus, condition (e) holds. Finally, let z € X. Since S®) is a system of finite first return time
maps subordinate to Py(S), there is precisely one s € {1,...,T7®} one k € {1,..., K§2)}, and one
jeAo,. (2) — 1} such that h¥==7(z) € hj(Ys(yi)), and hence z € hitJs=Js (Ys(i)) = hj(Ys(i)/). This
is all that was needed to show that P;(S()) is a partition of X. Thus, condition (f) is satisfied,
proving that S is a system of finite first return time maps subordinate to Py(S).

Now, for each t € {1,. T} let A; = {a(t,1),...,a(t, M;)} denote the set of all s € {1,..., T}
such that t, = t and X{* ;ﬁ h's(Yy, r.), and let By = {b(t,1),...,b(t,N;)} be the set of all k €
{1,..., K} such that (|_| X(z)/) NY;x = @ or such that there is a s € {1,..., T’} such that
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X' =Y,y Set TV =T, set X! = X, and K, = K, + M, for all t € {1,...,T"}, and set

h=e (X)) if s € A, and k = k,
Y= Y \h7s (XgQ)l) if k = K; +m for some m € {1,..., M;}, and s = a(t,m),
Yik otherwise
and
Jeg, if k= K;+m for somem e {1,...,M;}, and s = a(t,m),

t/,k =

Ji,x otherwise
for all t € {1,...,7'} and k € {1,...,K;}. We now check that &' = (T",(X})t=1,...17,...) IS a
system of finite first return time maps subordinate to P by checking the conditions of Definition 2.6.
Conditions (a), (b), and (c) are clearly met. For each t € {1,...,T’}, we have the following, where

we shorten kq(s,m) to k(t,m).

K; M, @ M, ( Ny
_ ~Tagemy (X2 —Jage,my (X2
l_| Y;tl,k - ( |_| h o )(Xa(t’m))> U ( |_|1 Y;&,k(t,m) \h o )(Xa(t,m))> U <|_|1 th,b(t,n))
=1 m= n—=

m=1 =
My Ny
= <|_| Yt,k(t,m)> U <|_| Yt,b(t,n)>
m=1 n=1
= Xt
= Xt’)
Thus, condition (d) is met. Similarly, for each ¢t € {1,...,T"}, we have the following, where we again

shorten kg my to k(t,m).

K; My M,
L] n7ir v = (LI S (e <X§?Z,’m>>)> ] (U e (Yorcem) \h“’ﬂ“f’"><X£?me>>)>
k=1

m=1 -
Ny
. <|_| hJtbctn) (}Qﬁ(t,n)))
n—=1
My 3
= <|—| h‘]t’k(tJn) (l/t,k?(t,m))> I_l (I_l thYb(t‘n) (}/t’b(t,n))>
m=1 -
frng .Xt
=X/,

Thus, condition (e) is met. Finally, for each x € X, there are t € {1,...,T}, k € {1,...,K;}, and
J €{0,..., Jex — 1} such that & € B/ (Yep). I Yy = Yy, then Jyp = Jf;, and so = € h(Y/}) for
precisely one t € {1,...,7"}, one k € {1,..., K;} and one j € {0,...,J;; — 1}. Otherwise, there is
some s € A; such that h=7s (Xég)/) C Y;.1. There are now two possible cases. First, if v € h/=7 (X§2)/),
then J;x = Jjy, and so z € h(Y/}) for precisely one t € {1,...,T"}, one k € {1,..., K{} and one
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j€{0,...,J;, —1}. Otherwise, if z € h/(Y;, \ h~"*(X{*)), then & € W/ (Y/ ¢, ,,,) where m is such
that s = a(t,m). In this case, we also have J;, = J| r¢,\,,, and so x € h?(Y},,) for precisely one
te{l,....,T"}, one k' € {1,..., Ki} and one j € {0,...,J; , — 1} (specifically, k" = K; +m). Thus,
condition (f) holds, and so &’ is indeed a system of finite first return time maps subordinate to P.
We now check that the conditions in the lemma are satisfied. Clearly (a) is satisfied. It is clear
that (b) is satisfied by construction as well, since for all s’ € {1,...,T'} and all &’ € {1, ... K/, }, there
are s € {1,...,T} and k € {1,..., K} such that Y, ;, C Y. Finally, condition (c) is also clearly
met by the way we defined the elements of S'. O

Lemma 2.13. Let (X, h) be a zero-dimensional system such that, for any partition R of X, (X, h)
admits a system of finite first return time maps subordinate to R. Let P and P’ be partitions of X,
and let S = (T, (X{)i=1,...7,-..) be a system of finite first return time maps subordinate to P. Then
there is a system &’ = (T, (X/)¢=1,....17,...) of finite first return time maps subordinate to P’ such
that, for each ¢ € {1,...,7'}, thereis a t € {1,...,T} such that X], C X,.

Proof. By Proposition 2.10, there is a system
8O = (@O, (X )en,. o)

of finite first return time maps subordinate to P such that 7 = T, P;(S®) is finer than P’, and
forall t € {1,...,T}, X\” = X,.

Now, by Lemma 2.11, there is some system
S =T (XDt=1,...1,- )

of finite first return time maps subordinate to P; (S®) such that for all ¢’ € {1,...,T"}, there is some
t € {1,...,T} such that X}, C X,. Since S’ is subordinate to P;(S(®)) and since P;(S(?) is finer than

P’, the conclusion follows. O

Lemma 2.14. Let (X,h) be a zero-dimensional system and let (P,) be a generating sequence of

partitions of X. Let (P),) be a sequence of partitions such that, for every n € Z~g, P/,

a1 18 finer than

P,,, and for every n € Zg, there is some m,, € Z-¢ such that P, is finer than P,. Then (P},) is a

generating sequence of partitions of X.

Proof. Let x € X and let (V},) be a sequence such that V,, € P, for all n € Zs¢ and (), Vi, = {z}.
We inductively construct a sequence (U,,) such that U, € P,, for all m € Z~o and (\,+_, Up, = {x}.
First, by assumption, there is an m; € Z~¢ such that P/, is finer than P;. We can therefore choose
Ui,...,Up, such that Uy D -+ D Upy, Up, C Vi, and x € U, € Py, for all m € {1,...,my}.
Next, there is an mg € Zs such that P/, is finer than P,. Since P}, is finer than P;, for all
m € Zso, we are free to assume that ms > m;. We can therefore choose Uy, 41, ..., Un, such that
Unit41 D -+ D Unyy Uy, C Vo, and x € Uy, € Py, for all m € {my +1,...,m2}. Repeating this

process yields (Uy,), proving the lemma. O
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Construction 2.15. Let (X, h) be a zero-dimensional system such that, for any partition P of X,
(X, h) admits a system of finite first return time maps subordinate to P. Let (P(™) be a generating se-
quence of partitions of X. Using Proposition 2.10, we choose a system S = (T(1), (Xifl))tzl,‘..,T“) .
of finite first return time maps subordinate to P such that P;(S™")) is finer than P2,

We construct a sequence of systems of finite first return time maps inductively. Let n be an
integer such that n > 2 and use Lemma 2.13 with S~ in place of S, P~ in place of P, and
P™) in place of P’ to get a system S of finite first return time maps subordinate to P such
that, for every ¢’ € {1,..., T}, there is a t € {1,...,T™ Y} such that Xt(,")/ C Xt("). Then apply
Proposition 2.10 with P in place of both P and P’ and with S in place of S to get a system
SM = (T (X)) e, ...) such that T = 70 XM — XM for all t € {1,...,T7(M}, and
P1(S™) is finer than P(). By Lemma 2.14, (P;(S(™)) is a generating sequence of partitions, since,
for all n € Zwq, P1(S™) is finer than P+1),

Let z1,22 € X. We say that x; ~ 2 if and only if there exists a sequence (¢,) where ¢, €

{1,..., 7™} for all n € Zso such that z1,22 € (7, U hj(Xt(:)). Define a set Z C X by
o0 T n
Z=0 x™.

n=1 Ut=1

jez

Remark 2.16. Adopt the notation of Construction 2.15. We remark that, for most choices of (¢,,),
the set ()~ U ez hi (Xt(:)) will be empty. In fact, it is nonempty if and only if, for every positive
integer n with n > 2, we have Xt(:) C Xt(:fll); if Xt(:) Z Xt(:jll), then by construction, we have
Xt(j) N Xt(:__ll) = &. Another thing to notice is that since for every n € Z( the sets an), .. ,Xj(ffl)
are pairwise disjoint, the sequence (t,) correponding to an equivalence class is unique. Finally, we

can see that z is in Z if and only if there is a sequence (¢,) such that z € (), Xt(:).
Lemma 2.17. The relation ~ from Construction 2.15 is an equivalence relation.

Proof. The only thing that is nonobvious about whether or not this is an equivalence relation is
whether or not all elements of X have an equivalence class. But by Proposition 2.9, for every n € Z~,
there is some ¢ € {1,..., T} such that = € Ujez hj(Xt(n)). Thus, ~ is indeed an equivalence relation
on X. O

The above equivalence relation will be referenced later, and is important for the proof of Theorem
3.1.

Lemma 2.18. The set Z in Construction 2.15 is a closed subset of X that contains exactly one

element from each equivalence class of ~.

Proof. 1t is clear that Z is a closed subset of X, as it is defined to be the intersection of closed subsets
of X.

We now show that Z contains precisely one element from each equivalence class. To see this, first
let (t,) be a sequence such that, for all n € Z-gb, we have t, € {1,..., 7™} and Xt(:jll) C Xt(:).
Then (Xt(:)) is a decreasing sequence of nonempty compact open subsets of X, and since the union
of (P(”)) generates the topology of X, 77, Xt(:') contains exactly one element, which is certainly in
i (X™M). 1

Z. If 2’ € X is another element in the same equivalence class as z, then ' € (72, U,z

13



we also have ' € Z, then 2’ € ﬂzozl Xt(f), so ' = z. Thus, Z indeed contains precisely one element

from each equivalence class. [

The above set Z will be referenced often throughout this paper and is important to the struc-
tural properties of (X, h). As with the equivalence relation defined earlier in this construction, Z is

important for the proof of Theorem 3.1.

Definition 2.19. Let (X, &) be a zero-dimensional system. We say that (X, h) is fiberwise essentially

minimal if there is a closed subset Z C X and a continuous map ¥ : X — Z such that

(a) ¢¥|z : Z — Z is the identity map.

(b) Yoh =n1.

(¢) For each z € Z, (p~'(2), h|y-1(»)) is an essentially minimal system and z is in its minimal set.
Example 2.20. We provide some examples of fiberwise essentially minimal zero-dimensional systems.

(i) Any essentially minimal zero-dimensional system is a fiberwise essentially minimal zero-dimensional
system. We can take Z to be {z} for any z in the minimal set of X and then ¢ : X — Z is the

map  —> 2.

(ii) Let Z be a compact metrizable totally disconnected space and let (Y, h) be an essentially minimal
zero-dimensional system. Let X =Y x Z and let b’ = id x h. Then (X, k') is an essentially
minimal system, where we take ¢ : X — Z to be the map (y, z) — 2.

(iii) Let Z = Z U {o0}, let (Y, h) be an essentially minimal zero-dimensional system. Let X =
(Y xZ)/(Y x {oc}) and let A’ : X — X be the image of id x h under the quotient map. Then
(X, h') is an essentially minimal system where v is the image of (y,z) — (h(y), z) under the

quotient map.
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I THEOREMS

We now introduce the main theorems of the paper. These theorems will take significant work to prove,

and their proofs will be located in the following sections of the paper.

Theorem 3.1. Let (X, h) be a zero-dimensional system. Then (X, h) is fiberwise essentially minimal
if and only if for any partition P of X, (X,h) admits a system of finite first return time maps

subordinate to P.

The idea for Definition 2.6 came from an attempt to decipher what elements of minimality are
used in the proof of Theorem 2.1 of [9], which states that the C*-algebras associated to minimal
zero-dimensional systems are AT-algebras. As we will soon see, for a zero dimensional system (X, h),
the condition that given any partition P of X, (X, h) admits a system of finite first return time maps
subordinate to P, can be used to prove that C*(Z, X, h) is an AT-algebra. Without Theorem 3.1, it
is difficult to construct or visualize zero-dimensional systems that satisfy this condition. However, it
is not too hard to construct examples of fiberwise essentially minimal zero-dimensional systems, as

Example 2.20 illustrates.

Theorem 3.2. Let (X, h) be a fiberwise essentially minimal zero-dimensional system with no periodic
points. Then C*(Z, X, h) is an AT-algebra.

Note that a later version of this paper will also prove that C*(Z, X, h) has real rank zero, and is

hence classifiable by [2].
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IV. PROOF OF THEOREM 3.1

Proposition 4.1. Let (X, h) be a zero-dimensional system, let U be a compact open subset of X,

and let Ay be as in Notation 2.5. Then Ay is continuous.

Proof. Let zg € U satisfy Ay(zg) = m for some m € Z~o. We show that Ay is continuous at xg.
We claim that since U is open, Ay is upper semi-continuous at xg. Since h™(zg) € U, we have
xg € h~™(U). Then, since h~™ is continuous, h~™(U) is an open set in X, and so is A~ (U) N U.
For all x € h~™(U) N U, we have h™(x) € U, and so A\y(z) < m = Ay(xo). Thus, A\y is upper
semicontinuous at xg. We claim that since U is closed, Ay is lower semi-continuous at xzg. Suppose
that Ay is not lower semi-continuous at xg. This means that there is a sequence (y,,) in U such that
Yn — o and Ay (yn) < Au(wo) for all n € Zo. So, since {Ay(yn) |7 € Zso} C {1,...,Au(wo) — 1},
which is a finite set, there is a subsequence (z,, ) of (x,) such that (A\y(x,,)) is a constant sequence.
Say that Ay (x,,) = m for all k € Z~o. But then (z,,) is a sequence in h~™(U), which is closed
since h~™ is continuous. Since z,, — xg, we conclude that zo € h~™(U). This is a contradiction to
Au(zn) < Au(xg) for all n € Z~o. Thus, Ay is lower semi-continuous at xg, and therefore continuous
at xg.

Now let zg € U satisfy Ay (o) = oo. We now show that Ay is continuous at . Suppose not; that
is, suppose there is a sequence (z,) in U converging to x¢ such that that lim, . Ay (z,) # co. By
passing to a subsequence, we may assume that (Ay(x,)) is bounded, and then by passing to another
subsequence, we may assume that (A (z,)) is constant, say equal to k. This means that h*(x,) € U
for all n € Z~y. But then since h* is continuous, lim,_, o hk(xn) = hk(xo). Since U is closed,
lim,, o h*(z,) € U. Thus, h¥(x) € U, a contradiction to A\y(zs) = 0o. Thus, Ay is continuous at

Zo-

Altogether, we see that Ay is continuous. O
The following proposition is contained in Theorem 1.1 of [6].

Proposition 4.2. Let (X, h) be an essentially minimal zero-dimensional system, let Y be its unique
minimal set, let y € Y, let U be a compact open neighborhood of y, and let Ay be as in Notation 2.5.

Then we have the following;:

(a) UjGZ W(U) = X.

(b) ran(Ay) is a finite subset of Z~.
(c) U={r®(2)|zeU}.

(d) Ujezo, W (U) = Ujez_, W (U) = X.

Proof. Part (a) is contained in Theorem 1.1 of [6], but we include the proof for the convenience of the
reader. First, note that (J,;c, I ez RI(U) is

an h-invariant closed set. Since this h-invariant closed set must contain a minimal set, and y is not

J(U) is an h-invariant open set in X, which means X \ |J
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in this set, we conclude that (X, h) would not have a unique minimal set unless X \ ;¢ hi(U) was
empty.

For part (b), let x € U. Theorem 1.1 of [6] implies that there is some j € Z~q such that h/(z) € U.
Thus, the range of Ay is contained in Z~y. By Proposition 4.1, Ay is continuous, and since U is
compact, Ay therefore has finite range.

For part (c), define a map Ay : U — Z.o N {—0c} by Ay(z) = sup{n € Zg |h(z) € U} if
this supremum exists, and )Tj(x) = —oo otherwise. By Theorem 1.1 of [6], for each = € U, there
is some j € Z-g such that h?(x) € U. Thus, the range of XU is contained in Z.g. To see that XU
is continuous, we apply Proposition 4.1 with ~! in place of h. Thus, XU has finite range. Write
ran()vj) ={Ji,....,Jxtand let k € {1,...,K}. If z € X&l(J;g), then it is easy to see that we must

have Ay (z) = —J . Thus, ran(\y) = {—J1,..., —Jk}, and so we get

K K
(P () |z e U= [Jr O (=) = U X\ (o) = U.
k=1

Part (d) is an immediate consequence of (a) and (c). O

Proof of Theorem 3.1. (=). Let Z and 1 be as in Definition 2.19. Let P be a partition of X. Let
X{,..., X} be the elements of P with nontrivial intersection with Z. For each t € {1,...,T}, set
X; =4 1 (X]/NZ)N X]. Since X1,..., X} are pairwise disjoint, it follows that Xi,..., X7 are also
pairwise disjoint.

Fixte {1,...,T}. Let Ax, : X; = Z~o be as in Notation 2.5 and set Z;, = X;NZ. Let z € Z; and
set V, = X; N~1(z). Note that V, is a compact open neighborhood of z in ¥»~1(z). Since hly-1(z)
is essentially minimal and V., contains an element from the minimal set of (¥ =1(2), hly-1(s)), Ax,|v.
is a finite subset of Z~q by Proposition 4.2(b). Since this holds for all z € Z;, we see that ran(\x,) is
a subset of Z~. Since X} is a compact open subset of X and since A, is continuous by Proposition
4.1, it follows that ran(\x,) is a finite set; thus, we can write ran(Ax,) = {J¢.1,- .., Ji.k, }- For each
ke{l,...,K;}, define Y; , = )\;(:(Jt,Kt)~

We now check that what was defined above satisfies the conditions of Definition 2.6. Conditions
(a) and (c) are clearly met. For each t € {1,...,T}, note that cince X; N Z is compact and open in
Z and since 1 is continuous, ¥ ~(X] N Z) is compact and open, and hence X; is compact and open.
Furthermore, since X; C X7, and X/ is an element of P, it follows that X, is contained in an element
of P. Thus, (b) holds. For each t € {1,...,T}, since ran(Ax,) = {Ji1,-- ., Ji, Kk, }, we also have

K; Ky
|| Yer = [ | Ax (i)
k=1 k=1

== Xt.

Thus, (d) holds. Recall that for each z € Z, (p='(2), h|y-1(»)) is an essentially minimal system and

z is in its minimal set, and so since V, is a compact open neighborhood of z, Proposition 4.2(c) tells
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us that {p*V (z) |z € V.} = V.. Thus, for each ¢t € {1,...,T}, we have

UthkY;k)—{h*Xf@) )|z € X¢}
k=1

= | | {PP (@) |z eV}

2€Zy

Since | |,., V> = Xi, this proves that (e) indeed holds. Next, let € X. There is precisely one
z € Z such that x € ¢~!(z), and precisely one ¢ € {1,...,T} such that z € Z;. Let j € Z>q be the
smallest nonnegative integer such that h=7(z) € V, C X;. This integer exists by applying Proposition
4.2(a), which applies since(y (), hly-1(z)) is an essentially minimal system, z is in its minimal set,
and V, is a compact open neighborhood of z. It is clear that there is precisely one k € {1,..., K;}
such that h=7(z) € Y; . Then note that j € {0,...,J; x — 1} since either j = 0 or h¥(x) ¢ X, for all
k € {—j,...,—1}. Thus, this proves that (f) holds as well. Altogether, we see that (X,h) admits a
system of finite first return time maps subordinate to P.

(«). Let (P™) be a generating sequence of partitions of X. Use Construction 2.15 to construct
a sequence (S(™)) of finite first return time maps and adopt the notation of the construction. Define
amap ¢ : X = Z by ¢(x) =z if 2z € Z and  ~ z. Recall that by Lemma 2.17, ~ is an equivalence
relation, and by Lemma 2.18, v is a well-defined map.

We claim that ¢ and Z satisfy the conditions of Definition 2.19. To see that v is continuous, let
x € X and let V be an open neighborhood of ¥(z) in Z. Since z ~ ¢ (z), there is a sequence ()
such that ¢, € Z>0 for all n € Z>o and z,¢(z) € ;2 Ujez hj(Xt(:)). Since ¥ (z) € Z, we have

P(z) € N,y th because of this and because (P(™) is a generating sequence of partitions, there
is some n € Zs( such that Xt(:) C ¥~ }(V), and so w(Xt(:)) CV. Set U = Ujez hj(Xt(:)), which
contains x. Notice that since the equivalence classes of elements in U are the same as the equivalence
classes of elements in Xt(:l), we have ¢(U) = w(Xt(:)) C V. Since z € U, U is a neighborhood of z
such that ¥(U) C V, which proves that ¢ is continuous.

It is obvious that 9|z is the identity To see that ¢y o h =, let € X and let (¢,) be a sequence
such that t, € Z>o and z € ;¢ R (X, ) for all n € Z~o. Then clearly h(z) € U,y h-j(Xt(:)) for all
n € Zsg, so x ~ h(x). Thus,z/)oh—z/).

Let z € Z. It is left to show that (¢! (z), hly-1(.)) is an essentially minimal system and z is in its
minimal set. By Theorem 1.1 of [6], it suffices to show that, for every neighborhood V' of z in 1)~!(2),
we have J;cz I J(V) =1471(2). So let V be a neighborhood of z in 1~1(2), let V’ be a neighborhood
of z in X such that V' Ny~1(z) = V, and let (¢,) be a sequence such that t,, € Z~ for all n € Zq
and z € (02, X™. Since (P(™)
that X(") C V'. Let x € ¥~1(2), so x ~ z. This means that in particular, we have x € Xt(:). This
tells us that ;o5 hi (X(n) N~1(z)) = ¥~ 1(2), and since Xt(:) Ny~ 1z) Cc V' Nyp~l(z) = V, this
shows us that |, b/ (V) = ¢~ 1(2), as desired. O

is a generating sequence of partitions, there is some n € Z~( such

JEZL
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V.  PROOF OF THEOREM 3.2

The following two propositions are well-known (see [8]).

Proposition 5.1. Let (X,h) be a zero-dimensional system. Then there is an isomorphism ¢ :
Ko(C(X)) — C(X,Z) that sends [xg] (where F is a compact open subset of X) to xg € C(X,Z).

A particular consequence of the above proposition is that if 1 and Fy are compact open subset
of X such that Ey # Es, then [xg,] # [XE,]-

Let T denote the Toeplitz algebra, the universal C*-algebra generated by a single isometry s. Let
A be a unital C*-algebra and let o be an automorphism of A, and let u be the standard unitary
of C*(Z,A,«). We denote by T (A, «) the Toeplitz extension of A by «, which is the subalgebra of
C*(Z,A,a)® T generated by A®1 and u® s. The ideal generated by A ® (1 — ss*) is isomorphic to
A ® K, and the quotient by this ideal is isomorphic to C*(Z, A, «).

Proposition 5.2. Let (X, h) be a zero-dimensional system. Let a be the automorphism of C(X)
induced by h; that is, a is defined by a(f)(z) = f(h=!(z)) for all f € C(X) and all z € X. Let  be

the connecting map obtained from the exact sequence

00— CX)9K —— T(C(X),a) —— C*(Z,A,a) —— 0,

where Ko(C(X) ® K) is identified with K¢(C(X)) in the standard way. Let i : C(X) — C*(Z, X, h)

be the natural inclusion. Then there is an exact sequence
0 —— K1(C*(Z, X, h)) —= Ko(C(X)) 2% Ko(C(X)) —2 Ko(C*(Z, X, h)) — 0.
Proof. Since K1(C(X)) = 0, this follows immediately from Theorem 2.4 of [8]. O

Lemma 5.3. Let (X, h) be a zero-dimensional system and let E C X be a compact open h-invariant
subset of X. Set p = xg. Then §([pup+(1—p)]) = [p]. Moreover, if E is nonempty, then [pup+(1—p)] #
0.

Proof. We use the exact sequence in Proposition 5.2 and the definition of the connecting map as in
Definition 8.1.1 of [11]. Let p; be the matrix (§J) and let

w_<up®8+(1—p)®1 p®(1—ss¥)

0 pu*®5*+(1_p)®1> € My(T(A, a)).

It is straightfoward to check that

r(w) = <UP+(1P) 0 )
0 (up+ (1 —p))*

. 1 0
wprw = :
' 0 p®(1—ss*)
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Thus, §([up 4+ (1 — p)]) = [p] as desired.
If E is nonempty, by Proposition 5.1, [p] # 0. Since § is injective, this means that [up + (1 —p)] #
0. L]

Lemma 5.4. Let (X, h) be a zero-dimensional system and let E be an h-invariant compact open
subset of X. Set p = xg. Then K;(pC*(Z, X, h)p) is torsion-free.

Proof. Set A = C*(Z, X, h) for convenience of notation. By Proposition 5.1, Ko(C(X)) is torsion-
free. By Proposition 5.2, since K;(A) embeds into Ko(C(X)), K1(A) must be torsion-free as well.
Since p is a central projection, we have A = pAp @ (1 — p)A(1 — p). This means that we have
K, (A) = K (pAp) @ K1((1 —p)A(1 —p)). Since K;(pAp) is a direct summand in a torsion-free group,

it itself is torsion-free. O

Lemma 5.5. Let A be a unital C*-algebra, let p be a projection in A, and let v be a unitary in pAp.
Then if [v 4+ (1 — p)] # 0 in K;(A), we have [v] # 0 in K;(pAp).

Proof. Suppose that [v] = 0 in K;(pAp). This means that there is an n € Z~ ¢ such that v®p S --- S p
—_——

n—1 times

is homotopic to p @ - - - @ p in the unitary group of M, (pAp). Let (z¢)ie[0,1) be this homotopy. Define
S

n times

a homotopy (yt)ieo,1] in Mn(A) by v = ¢+ (1 —p)@--- @ (1 —p) for all ¢ € [0,1]. Then yo =

n times

v+(1-p)Hel 691~ t @land y; =1 t - @ 1, which shows that [v+ (1 — p)] =0 in K;(A). O
Proposition 5.6. Let (X, k) be a zero-dimensional system such that, for any partition P of X, (X, h)
admits a system of finite first return time maps subordinate to P. Then (X, h) has no periodic points
if and only if for every partition P and every N € Zso, there is a system S = (T, (Xy)i=1,...7,---)
of finite first return time maps subordinate to P such that Jy > N for all ¢ € {1,...,T} and all
ke{l,...,K}.

Proof. (=). Let N € Z~ and let P be a partition of X. Since all points are aperiodic, for each z € X,
there is a compact open neighborhood U, such that U, h(U,),...,hN~1(U,) are pairwise disjoint.
Then (U,).cx is a compact open cover of X, and hence has a finite compact open refinement. By
taking appropriate intersections, this refinement can be taken to be a partition P’ of X. Let P” be
a partition of X finer than both P and P’ and let S = (T, (X¢)t=1,....T,--.) be a system of finite first
return time maps subordinate to P”. Since P” is finer than P, this S is also subordinate to P. Since
the first N — 1 iterates of any element of this partition are pairwise disjoint, we must have J; ;, > N
forallt e {1,...,T} and all k € {1,..., K;}.

(<). Suppose that x € X is a periodic point of (X,h), let M € Z satisfy hM(z) = z, let
N € Z~ be larger than M, and let P be a partition of X. Let S = (T, (X¢)¢=1,....1,--.) be a system
of finite first return time maps subordinate to P and let P;(S) be as in Definition 2.6. Since Py (S)
is a partition of X, there are t € {1,...,T}, k € {1,..., K}, and j € {0,...,Jix — 1} such that
x € W (Yyy). It is clear that h™7(z) € Y, and h 7 (x) € hM(Yy ), and so J; x < M < N. O
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Lemma 5.7. Let (X,h) be a fiberwise essentially minimal zero-dimensional system, let P be a
partition of X, let Z and 1 be as in Definition 2.19, and let X1, ..., X7 be compact open subsets of
X, each of which is contained in an element of P. Then there is a system S = (T, (X;)=1,...7,...) of
finite first return time maps subordinate to P (where Xi,..., Xy are as in the first sentence) if and
only if for all z € Z, there is precisely one t € {1,...,T} such that X, intersects ¢~!(z), and this

intersection intersects the minimal set of (¢~ (2), hly-1(2)).

Proof. (=). Suppose there is some z € Z such that, for all ¢ € {1,...,T}, X; does not intersect the
minimal set of (¢p~1(2), h|y-1(s)). Since |J, o5 h"(X;) is an h-invariant open set that doesn’t contain
z, it hence doesn’t contain m. Since this is true for all t € {1,..., T}, this contradicts Proposition
2.9(b).

(). Let z € Z and let t € {1,...,T} satisfy X; N9y ~1(z) # @. By our assumptions, X; N¢~1(z)
is a compact open subset of ¢y ~!(z) intersecting the minimal set of (¢)"*(z), hly-1(.)). By Proposition
4.2, Ax,nyp-1(z)(x) < oo for all z € Xy N 1~ 1(z). Since this holds for all z € Z N Xy, it follows that
Ax,(z) < oo for all x € X;. By Proposition 4.1, Ax, is continuous, and so ran(Ax,) is a finite subset
of Z~o. Write ran(Ax,) = {Ji1,... Ji.k, } and, for each k € {1,..., K;}, define Y; , = )\;{}(Jt,;g).

We now claim that S = (T, (X¢)¢=1,...7, - - .) is a system of finite first return time maps subordinate
to P by checking the conditions of Definition 2.6. That (a), (b), and (c) are satisfied is clear. Condition
(d) is satisfied due to the continuity of Ax, for each ¢ € {1,...,T}. Condition (e) is satisfied due to
Proposition 4.2(c). Now, let © € X. By assumption, there is precisely one t € {1,...T} such that
Xy Ny~ (¢p(x)) # @. By Proposition 4.2(d), = € U,,ez_, B (Xs N~ (¢(x))). Let j € Zso be the
smallest nonzero positive integer such that z € h7(X;). Let k € {1,..., K;} satisfy € W/ (Y x).
Then since j was chosen to be minimal, x ¢ h!(X;) for all | € {0,...,j — 1}, and so we must have
j€{0,...,Jux —1}. Suppose k' € {1,...,K;} and j’ € {0,...,J, s — 1} are such that z € hi (Y ).
We have h7(x) € Xy, h/t*7I(x) € Xy, and h= It (x) ¢ X, for all I € {1,...,Jy — 1}, and so
this means j' = j and hence k¥’ = k. Thus, condition (f) is satisfied. This proves the claim and

consequently proves the lemma. O

Lemma 5.8. Let (X,h) be a fiberwise essentially minimal zero-dimensional system, let N € Z~g,
let P be a partition of X, and let Z and v be as in Definition 2.19. Then there is a system S =
(T, (X¢)t=1,...T,- - .) of finite first return time maps subordinate to P such that:

(a) We have Z N |_]tT:1 X, =Z.
(b) Forallt € {1,...,T}, X\;y N Z # &.
(c) Forallt € {1,...,T} and for all n € {0,..., N — 1}, h™(X}) is contained in an element of P.

Proof. Let X{,..., X}, be the elements of P that have nonempty intersection with Z. Let ¢ €
{1,...,T"} and write P = {U,...,Ug}. We claim that

N-1 N-1
P = { m (X;nh™™U,.))|mn€{l,...,R} forne{l,...,N —1}; m (X;nh™™U,,)) # @}
n=1

n=1
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is a partition of X. Clearly P, is a finite set and all elements of P, are compact open subsets of X.
Each element of P, is also contained in X} since X;Nh~"(U,) C X} for alln € {1,...,N —1} and all
re{l,...,R}.

What is left to show is that each element of X7 is in an element of P, and that the elements of
P, are pairwise disjoint. Let = € X]. For each n € {1,...,N — 1}, choose r,, € {1,..., R} such that

h™(z) € Uy, . Then
N-1

ze () (Xenh™™(U,,)).

n=1
So X, is the union of all elements of P;. Now, for each n € {1,...,N — 1}, choose r/, € {1,..., R}. If

N-1
ze [ (Xenh™(Un)),
n=1
then it must be the case that h(x) € Uy, and h(z) € U,;, but since P is a partition of X, this must
mean that r; = r}. We can repeat this process for h%(z),...,hN~1(x), showing that r,, = 7/, for all
n € {l,...,N —1}. Thus, elements of ﬁt are pairwise disjoint, so ﬁt is indeed a partition of X;.

Let P be a partition of X that contains all elements of P, for all t € {1,...,T} and is finer than P.
Let X7, ..., X% be the elements of P that have nonempty intersection with Z. For each t € {1,...,T},
define X; = X/ Ny~ (X N Z). Then X1,..., Xr satisfy conclusions (a) and (b) of this lemma, and
by construction satisfy the hypotheses of Lemma 5.7. Thus, there is a system S = (T, (X )=1,...1,---)
of finite first return time maps subordinate to P. To see that conclusion (c) of the lemma is satisfied,
for each t € {1,...,T}, there exists s € {1,...,T'} such that X, is contained in an element of P, and
therefore for every n € {0,..., N}, h™(X;) is contained in an element of P. O

Lemma 5.9. Let A be a unital C*-algebra, let N € Zsq and let v € A be a unitary with finite

spectrum. Then there is a unitary w € C*(v), such that ||w — 1|| < 7/N and v’ = v.

Proof. Write sp(v) = {A\1,..., Ak} C St Since sp(v) # S!, by functional calculus there is a self-
adjoint element b € A such that exp(b) = v and such that sp(b) C [—7,w|. Setting ¢ = (1/N)b, we
have sp(c) C [-7/N,7/N]. Set w = exp(c), a unitary in A. Clearly w”™ = exp(N¢) = exp(b) = v. We

compute
[w— 1] = [lexp(c) — 1]

< max |exp(A) —1

~ Xé&sp(e) | p( ) |

< max |A—0]

Aé€sp(c)

< /N,
finishing the proof. O
Lemma 5.10. Let A be a C*-algebra, let L € Z~(, and let a, a1, ..., a,, be positive elements in A such
that a = Z%:I am and @y, L apy form,m’ € {1,..., M} with m # m/. Then ||a|| = maxi<;<nm ||am]-
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Proof. Let H be a Hilbert space and let 7 : A — B(H) be a faithful representation. Then from the
operator norm on B(H), we know ||7(a)|| = maxi<;<r, ||7(a;)||. Since the representation is faithful,

the conclusion follows. O

Lemma 5.11. Let A be a unital C*-algebra, let a € A, let € > 0, let M € Z~q, and let p1,...,ppm
and qi,...,qn be projections in A such that Zn]\f:lpm = Zn]‘le ¢m = 1. Then p,,aq, = 0 for all
m,n € {1,..., M} with m # n implies ||a|| < max,, ||Pmaqm]|-

Proof. Set € = maxy, ||pPmagml||- The hypotheses imply that

Now consider

M M
a‘a (Z qma*pm> (Z pmaqm)
m=1

=1

3

-

Im 0" Pmagm
1

3
I

-

(Pmaqm)* (Pmagm)-
1

3
I

We can apply Lemma 5.10 with a replaced by a*a and a,, replaced by (pmagm)*(pPmagm) for all
m € {1,...,M}. To check the hypotheses of the lemma, note for all m,m’ € {1,..., M} with m # m/,
we have ¢ L G, and so (pmaqm)* (Pmadm) L (Pmsagm:)* (PmsaGm:). Now, for all m € {1,..., M},
we have ||pnagm| < &, and so [[(Pmaqm)* (Pmaqm)|| = ||[Pmagm||* < 2. Thus, Lemma 5.10 tells us

that |ja*a|| < &*, and hence ||a]| < & as desired. O

Lemma 5.12. Let A be a unital C*-algebra, let n € Z, let (e;;)i1<i j<n be matrix units for a
unital copy of M, inside A (call this By), and let u € A be a unitary. Let B be the C*-subalgebra
of A generated by By and u. Suppose that u commutes with e; ; for all ¢,5 € {1,...,n} and that
sp(u) = S'. Then B = C(S') @ M,,.

Proof. Recall that C(S') ® M, is the universal C*-algebra generated by (fi j)1<i j<n and v satisfying

the relations

(@) fijfi o =05 fiy foralld,j,i',j" € {1,...,n},

(b) sy fii =1,

(¢) vv* =v*v =1,

(d) fijv=uvf,foralli,je{l,...,n}

Identify v with z ® 1, where z € C(S') is the identity map. Let (gi;)i<ij<n be the standard

matrix units for M,, and identify f; ; with 1 ® g, ; for all 4,5 € {1,...,n}. Since (e;;)1<i j<n and u
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satisfy the relations (a)—(d) as well, by the universal property there is a surjective *-homomorphism
¢ :C(SY) ® M, — B such that p(z ® 1) = u and (1 ® g; ;) = €;; for all 4,5 € {1,...,n}.

For each ¢,j € {1,...,n}, let N;; and M, ; be integers such that M; ; < N, ;. For each i,j €
{1,...,n} and each k € {M, ;,...,N; ;}, let \; j r be a complex number. Then define

n Ni j

e=> | > Nt | ®gi;€C(S) @M,
3,j=1 k:Mi,j

Note that elements of the above form are dense in C(S!) ® M,,. It is clear that

n

N; j
QO(.’E) = Z Z )\i,j_,kuk €i,j-

i,j=1 \ k=M, ;

For each 4,5 € {1,...,n}, since sp(u) = S, we have C*(u) = C(S'), and so chv:;w ) i jruk =0 if
and only if A; ;, = 0 for all k € {N;;,..., M, ;}. But this means that ¢(z) = 0 implies that z = 0,

meaning that ker(p) is trivial. Thus, ¢ is an isomorphism. O

Lemma 5.13. Let (X,h) be a zero-dimensional system, let P be a partition of X, and let S =
(T,(Xt)t=1,...1,-..) and S" = (T", (X[)¢=1,... 17, - . .) be systems of finite first return time maps subor-
dinate to P such that |_|tT=1 Xy = |_|tT=,1 X;. Then P1(S’) is finer than P1(S) if and only if Pa(S’) is
finer than P5(S).

Proof. (=). Set X = |_|tT:1 X; and set X/ = |_|tT:/1 X/ (note that X = X, but the distinction will be
important in our reasoning later). Let t € {1,...,T} and let k € {1,..., K;}. By assumption, there
are s(1),...,s(M) € {1,...,7'} and there are I(m,1),...,l(m, Ny,) € {1,...,K;(m)} for each m €
{1,..., M} such that |_|f:=1 |_|fy;”1 Y iommny = Yok Then clearly |_|g=1 |_|7]?[:1 th’k(Y;(m),l(m,n)) =
h7tk(Yy ). Now, for each & € Y, j, we have A\g(z) = Ax,(z) = Ji . But then for all m €
{1,...,M}, we have )\X;w)(x) = Ag/(z) = Ag(x) = Jyx. Thus, for each m € {1,...,M} and
each n € {1,..., Ny}, we have Jyx = J. (1 (. py» a0d 50 R0 5 (Yy(m) i(m,ny) is an element of Po(S’).

Thus, P2(S’) is finer than P3(S). The proof of (<) is analogous to this. O

Lemma 5.14. Let (X, h) be a zero-dimensional system, let P be a partition of X, and let S =
(T,(Xe)t=1,...17,...) and 8" = (T",(X])¢=1,...17,...) be systems of finite first return time maps sub-
ordinate to P such that | |, X, = |_|tT:,1 X,. Then P1(S’) is finer than P;(S) if and only if for each
sef{l,....,T7"} and each l € {1,..., K.}, thereisat € {1,...,T} and a k € {1,..., K;} such that
Y C Yk

Proof. (=). Let s € {1,..., 7"} and let [ € {1,...,K.}. Since P1(S’) is finer than P;(S), there is
ate{l,....,T},ak e {l,..., K}, and a j € {0,...,J; — 1} such that Y/, C h/(Y; ). But by
assumption, there is ¢' € {1,...,T} such that Y, C Xy. Then since P1(S) is a partition of X, we
must have ¢ = ¢, and hence we must have j = 0.

(<). Let t € {1,...,T}, let k € {1,...,K;}, and let j € {0,...,Jy s — 1}. Let s € {1,...,T"},
le{l,....,K}, and i € {0,...,J5; — 1} satisfy n*(Y];) N h'(Yi ) # @. Now, note that, for all
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x e h(Y.)) N hI(Yig), we have h™'(z), ..., h =7t () ¢ |_|z;1 X, and h77(x) € |_|Z;1 X:. Similarly, we
have h=1(z),...,h=""1(x) ¢ |_]tT:1 X; and h™%(z) € |_|tT:1 X{. Since |_|tT:1 X[ = |_|tT:1 X¢, this means
that i = j, so Y], NY; x # @. But by assumption this means we must have Y, C Y} j, and therefore
hi(Y/,) C h7(Yix). This proves that P1(S’) is finer than P;(S). O

Lemma 5.15. Let (X,h) be a fiberwise essentially minimal zero-dimensional system, let P be a
partition of X, and let Z be as in Definition 2.19. Then there is a system S = (T, (X¢)¢=1,....1,...) of

finite first return time maps subordinate to P such that:

(a) We have |_|tT:1 XinNnzZ=172.

(b) Foreach t € {1,...,T}, X; N Z # .

Proof. Apply the construction in the proof of (=) of Theorem 3.1. O

Lemma 5.16. Let (X,h) be a fiberwise essentially minimal zero-dimensional system, let P be a
partition of X, and let Z and % be as in Definition 2.19. Apply Lemma 5.15 to get a system
S = (T,(Xt)i=1,...1,...) satisfying the conclusions of the lemma. Then there is a system S’ =
(T, (X{)t=1,... 1/, - .) such that:

(a) We have | |, X7 =1, X;.
(b) The partition P;(S’) is finer than P;(S) and P2(S’) is finer than Po(S).
(c) Foreacht € {1,...T'}, Yy NZ # @ and Y/, NZ = for all k € {2,..., K{}.

Proof. For each t € {1,...,T}, let A; = {a(t,1),...,a(t, Ny)} be the set of all k € {1,..., K;} such
that Y, N Z # @. Set T = Y., N;.

Let s € {1,...,7"}. There is some ¢ € {1,...,7T} and some n € {1,...,N;} such that s =
Zf;ll Ny +n. Define X, = "' (Y 0y N Z) N Xy Let By = {b(s,1),...,b(s, K)} be the set of
all k € {1,..., K;} such that Y, N X # @, taking b(s,1) = a(t,n). For each k € {1,..., K]}, set
Y = Yo N X, and set J_ ;= Jy p(s.p)-

We now show that " = (17, (X})t=1,..17,-..) is a system of finite first return time maps subor-
dinate to P by verifying the conditions of Definition 2.6. It is clear that conditions (a) and (c) are
satisfied. Let s € {1,...,7'} and let ¢ € {1,...,T} and n € {1,..., N;} satisfy s = 23;11 N, + n.
Notice that Y; 4,y N Z is compact and open in Z, and so by the continuity of 1), z/)‘l(Yt’a(t’n) NZ)is
compact and open in X. Thus, X! is compact and open. Since X; is contained in an element of P, so
is X;. Thus, condition (b) is satisfied. For each k € {1,..., K}, it is clear that Y/ is a compact open
subset of X!, since it is the intersection of two compact open subsets of X. Moreover, it is nonempty
by construction. Now, notice that if k € {1,..., K;} \ Bs, we have Y; , N X, = @, and using this fact

at the second step below, we have

K K
|| Ve = | Yew N XS
k=1 k=1
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K

= I_l YN Xg
k=1

:X/

Thus, condition (d) holds. For all k € {1,...,K;} \ By, since 1 (Y; 4(¢,n) N Z) is h-invariant and
Yir N wil(Y;}a(m) N Z) = @, we have h't*(Y; ;) N X! = @. Thus, using this fact at the second step

below, we have

K’ K
L a7 (vin) = L w70 (Ve ) 0 XS
k=1 k=1

Ky
- |_| Rk (Y ) N XL
k=1

- X'

Thus, condition (e) holds.
Tt still remains to verify that condition (f) holds. Let 2 € X. There is precisely one ¢t € {1,...,T},
one k € {1,...,K:}, and one j € {0,...,.J; , — 1} such that z € h?(Y; ). Observe that

T N,
L] L] Yeaem NZ =2 (1)
r=1m=1

t
T

Thus, there is exactly one n € {1,..., Ny} such that € ¥ (Y; gt,0) N Z). Let s = Y
We can now see that there is exactly one k € B, such that h=7(z) € Y;k. Since J;k = Jia(t,n), We
have j € {0,...,J;, — 1}. Thus, condition (f) holds.

We now show that S’ satisfies the conclusions of the lemma. It is clear that |_|tT:/1 X, c U, X
Since L, LN, Vit N Z = Z, we have |7 N, = (Via@m) N Z) = X. Hence, | |7, X] =
|_|tT:1 X;. Thus, conclusion (a) of the lemma is satisfied. Now, note that by construction, for every
se{l,...,T"} and every l € {1,..., K.}, thereisat € {1,...,T} and a k € {1,..., K;} such that
Y, C Yy k. Thus, by Lemma 5.14, we see P1(S’) is finer than P;(S), and by Lemma 5.14, we see that
P> (8’) is finer than P5(S). Thus, conclusion (b) of the lemma is satisfied. Now, let s € {1,...,7"} and
let t € {1,..., T} and n € {1,..., N;} satisfy s = Zf;ll N; +n. Since Y| =Y, 4¢,n) N X, it follows
that Y/ ,NZ # @. Let k € {2,..., K{}. Then thereisnon € {1,..., N¢} such that Y y(s.x) = Ye,a(t,n)-
Thus, by (1), we have Y, N Z = @. Thus, condition (c) of the lemma is satisfied. O

LN+

Lemma 5.17. Let (X,h) be a fiberwise essentially minimal zero-dimensional system, let P be a
partition of X, let N € Zso and let Z and 9 be as in Definition 2.19. Apply Lemma 5.15 to get
a system S = (T, (Xt)t=1,..1,...) satisfying the conclusions of the lemma. Then there is a system

S = (T",(X])t=1,.. 1,-..) of finite first return time maps subordinate to P such that:
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(a) The partition P;(S’) is finer than P;(S) and Pa(S’) is finer than Pa(S).

(b) Forallt € {1,...,7"} and all k € {2,..., K}, we have J; > N.

(c) Foreacht € {1,.... 7'}, Vi 1.NZ#@and Yy, NZ =@ forall k € {2,..., K[}
(d) We have |_|;F:1 XinNnzZ=172.

Proof. We now prove this lemma by induction, with the base case N = 0 proved by Lemma 5.16. So
suppose that S satisfies the conclusions of the lemma with N — 1 in place of N. Let ¢t € {1,...,T}
and let B, be the set of all k € {2,..., K;} such that J, , = N. Define X' = X, \ leeBt Yi k-

Let z € Z. Since S satisfies conclusion (c) of this lemma, there is a ¢t € {1,...,T} such that
z € Yy1. Thus, z € X;'. Let s € {1,...,T} satisfy s # t. Then ¥ "1(2) N X5 = @, and so since
X! C X, we conclude that ¥ ~1(2)NX” = @. Thus, by Lemma 5.7, setting T' = T", there is a system
S§" =T, (X} )¢=1,....7,...) of finite first return time maps subordinate to P.

By applying Proposition 2.10 with §” in place of S and where P’ is a partition finer than both
P1(S) and P2(S), we may assume that P;(S”) is finer than P;(S) and Pa(S”) is finer than Ps(S).
By applying Lemma 5.16 with §” in place of S, we may additionally assume that |_|tT:N1 Y/'\NZ=27Z.

For each t € {1,..., 7"}, let C} be the set of all k € {1,..., K{'} such that J{; = N. Let D; =
{a(1),...,a(L1)} be the set of all t € {1,...,7"} such that C; = &. Let Do = {a(L; +1),...,a(L2)}
be the set of all t € {1,...,T"} such that 1 € Cy. Let D3 = {a(Ls 4+ 1),...,a(Ls)} be the set of all
te{l,...,T"} such that C; # & but 1 ¢ C;.

Let t € {1,..., L1}. Set X{ = X/, and Kj = K[/

(’l(t a(t) and for each k € {1,..., K/}, we set

Yil,k = let),k (2)

a

and Jj ;= Jiiy - It is clear that for all k € {1,..., K}, we have Jy ), > N.

Let t € {L1+1,...,La}. Set X = X;'(t). Define

Ytl,l = |_| alét),k (3)
kGCa(t)

and set Jj; = Jz;/(t),l' Write {1,...,K(’1’(t)} \ Cary = {b(t,2),...,0(t, K{)} = Co)- For each k €
{2,..., K|}, define
Y =Y w0k) (4)

and Jt’,k S Jclzl(t),b(t,k)' By construction, it is clear that for all k € {2,..., K}}, we have J; > N.
Let t € {Ly +1,...,Ls}. Then set X| = Xow \ |—|k€Ca(z) Y, (1) - Now, apply Lemma 5.7 with
(w_l(X(;'(t) N2z, h|¢*1(X{l'(,,)ﬁZ)) in place of (X, h), T =1, X} in place of X7, and

PO ={UNy Xy NZ)|U P and UNy~ N (XN Z) # 2}

in place of P. We then get a system S(*) = {T(®) (Xét))s=1,_“7T(t) , ...} of finite first return time maps
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subordinate to P®), and by using Proposition 2.10, we are free to assume that P;(S) is finer than
{UNy X[ yN2Z)|U € Pi(S") and U N~ (X[ N Z) # 2} (5)
and Py (SM) is finer than
{Uny Y (XN 2)|U € Py(S8") and U Ny~ (X)) N Z) # 2}

Using Lemma 5.16, we may assume that S(*) satisfies the conclusions of the lemma with Z N X; in
place of Z. Let s € {1,...,TW}. Set u = Ly + s + Zl Lotl TW, set X! = X set K = K" and
for each k € {1,..., K}, set Y, = Ys(k) and set J) ; = Js(tll. Let k € {1,...,K;}. By (5), there is
some I € ({1,..., Ky} \ Caqr)) such that Yy, C Y[, ;. But since Jj;), > N and since X, C X[/,
we have J;, , > N.

Finally, set 7" = Ly + ZfiL2+1 7O, We now show that &’ = (T, (X{)t=1,...17,--.) is indeed a
system of finite first return time maps subordinate to P by verifying the conditions of Definition 2.6.
That conditions (a) and (c) hold is clear. For condition (b), let t € {1,...,7"}. It is clear that X is
a compact open subset of X. For ¢t € {1,..., Ly}, we have X] C X”(t)7 fort € {Lo+1,...,7"}, let
Le{Lly+1,...,L3} and let s € {1,... (L)} satisfy t = Ly + Zl Lotl TW + s, and then we have
X{ C X1y Thus, in both cases, X{ is contamed in an element of P. This verifies condition (b). For
conditions (d) and (e), let t € {1,..., Ly }. We then have

r_
Xt = Xoo)

Ka(t)

= | Yiox

k=1
Ki
_ Y/
= t.k
k=1
and

X/ C/l/(t)

a(t)

|_| hat (Yate).)

|_| B (V)
=1
Now, let t € {L; +1,..., La}. We then have

Xi = Xou)
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"
Ko

= |_| a(t
|_| alzt),k |_| (t) b(t,k)

keCaw

t
=Y/, u | || Yk

K;
_ /
=[] Yix
k=1
and

Xt = Xaw

a(t)

= | nPor v 0
k=1

K/
= a J "
= L peorne) | u | Lo 0 )
keCG(f) k=2

_ th1 Y/ |_| thk

K]
’
= |_| k(Y ).
k=1

Finally, let w € {Ly +1,...,7'}. Let t € {Ly +1,...,L3} and s € {1,...,T®} such that u =
Lo+ s+ Zt L 7M. Then since S® is a system of finite first return time maps, we get

X =xW
K®

|| v

k=1

K’
_ U
= L vix
k=1

and

X! = xX®

S

K@®

° ®)
= L ko)
k=1
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REASE Ji—1 Ji—1
W= L] L] L] e |u || »)
j teDy keCy

teDy keCy  j=0

Lo ‘]t/,,l_l Lo K; Jt/,,,_l
L] || »orn|u || w7
t=L1+1 j5=0 t=L1+1k=2 3=0

Lo K; Jt/,k71

= || L L] »eie.

t=L1+1k=1 j=0

and
K J{—1
L] L] PO =] v @)
teDs k=1 j5=0 teDs3

70 KO I -1

=y g wod
tEDs s=1 k=1 j=0
K J{x—1

I
= U U e,

t=Lo+1k=1 35=0

Thus, we have



" KD T

L] L] »ods)
t=1k=1 ;=0

X.

!

Thus, condition (f) is satisfied.

We now show that S’ satisfies the conclusions of the lemma. The fact that S’ satisfies conclusion
(a) of the lemma follows from (2), (3), (4), and (5), along with the fact that P;(S”) is finer than
P1(S). Our construction also showed that conclusions (b), (¢), and (d) are satisfied. This proves the

lemma. O

Lemma 5.18. Let (X,h) be a fiberwise essentially minimal zero-dimensional system, let P be a

partition of X, let N € Zs¢, and let S = (T, (X;)¢=1,...7,...) be a system of finite first return time

/!

maps subordinate to P. Then there is a system S’ = (17, (X{)t=1,...17,...) of finite first return time

.....

maps subordinate to P such that, setting X, = X, \ (Y/:n th/~1(Y;’,1)) for each t € {1,..., 7"}, we

have:

(a) The partition P;(S’) is finer than P;(S) and Pa(S’) is finer than Ps(S).

(b) For each t € {1,...,T'}, there is an s € {1,...,T} such that X, C X,.

(c) Foreach t € {1,...,T'} and each z € ¢)(X;), Y/, intersects the minimal set of (1)=1(2), hly-1(2))-
(d) Forallte {1,...,T"} and all k € {2,..., K|}, we have J. > N.

(e) The sets Xy, h(X,),...,h"(X,) are pairwise disjoint.

Proof. By applying Lemma 5.17, we may assume that S satisfies the conclusions of the lemma. Let
te{l,...,T}. Define

Ky
By =R’ (Y1) N <|_| Yt,k>
k=2

and for each n € {1,..., N} define

K
Cim = BiN (U h"(Yea 0 hJ“k(Yt,k))> ~

k=2
Set T/ =T and define N
X=X, \ <U U »7™(Cin) th> .
n=1m=1
Let z € Z. Since S satisfies the conclusions of Lemma 5.17, there is precisely one t € {1,...,T}
such that z € X;. If 2 € X}/, then clearly X, intersects the minimal set of (1) ~1(2), hly-1(z)). Suppose
z ¢ X,'. Then there is some n € {1,..., N} such that z € ., _, h~™(C},,) N X;, which means that

there is some m € {1,...,n} such that
h"(z) € X' (6)
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Since h™(z) is in the minimal set of (¢)~!(2), hly-1(s)), we see X/ intersects the minimal set of
(¢¥~(2), hly-1())- By Lemma 5.7, there is a system S” = (", (X{')=1,... .77, - . .) of finite first return
time maps subordinate to P. By using Proposition 2.10, we are free to assume that P;(S”) is finer
than P;(S) and that Py(S”) is finer than Py(S).
Lett € {1,...,T}, suppose that J;; < N, and suppose that {z € X}/ ’ Axr () = Ji1} is nonempty.
We claim that
{v e X{"| Axp(z) =T} =Y N X/

Let » € X;" and suppose Ax/(z) = Jy1. Then since X;" C X;, we have Ax,(x) < J;x. Thus, by
(b) of Lemma 5.17, we have x € Y; ;. Thus, {x e X/ | Axy(r) = Jt,l} C Y;1 N X/. So suppose
r € X/'NY;1 and suppose h’t1(x) ¢ X,'. This means that there is some n € {1,...,N} and
some m € {1,...,n} such that h't1(x) € h™™(C;,). But then notice that hi(h'w1(z)) ¢ X}
for all j € {0,...,n —m}, and so since z € X}, this must mean that n — m < J,;. But since
hltitm(z) € Gy, we have R/ Tm="(z) € h="(C},,) C X4, a contradiction to Ay, (z) = J;1. Thus,

{z e X!"| Axy(z) = Jea} = Y1 N X/, and so we are free to assume that
{w e X]"| Axp(z) = Jea} =Y/,

by combining all Y/} with J;"; = J; 1, since this assumption does not contradict the fact that P;(S")
is finer than P;(S) and the fact that Po(S”) is finer than Py(S), since we have Ji'; = J;1 and
W (Y/h) C hI(Yia) forall j € {0,...,J;1}. Moreover, forall k € {2,..., K"}, we have Y/} C |_|f22 Yi &,
and so J{'y > N.

Now, note that by (6), we see that

0 T ‘
zc |J W&, (7)
j=—Nt=1

Also, observe that if t € {1,..., 7"}, k€ {1,...,K{'},and z € ZOU?:_N W (Y/’), then Y/} intersects
the minimal set of (¢=1(2), hly-1(2))-
Let {a(1),...,a(L)} be the set of all t € {1,...,T"} such that Z N ngfzv h (Y!) # @. For each

le{l,...,L}, define
0

X = X Ny~ Zn U h ( a1

j=—N

Let {b(1,1),...,b(l, K])} be the set of all k € {1,..., K/, } such that Y[, , N X] # &, making the
choice b(l,1) = 1. For each k € {1,..., Kj}, define Y/, =Y ;1) N X] and define J; , = J7jy 1 1-

Set

L K|
x=x\ (UL U wot) ®

If X is empty, set T’ = L. Otherwise, set Z = Z N X and set ¢ = Y| 5. Notice that if x € X, then
U(z) ¢ |_|lL=1 U?Z_N hj(Yc:El),l)’ and therefore ¢(z) € Z. Thus, ()Z',h|)~() is an essentially minimal
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zero-dimensional system where z; : X — Z satisfies the requirements of Definition 2.19. Notice that
for cach z € Z, there isa t € {1,...,T"} and a k € {2,..., K/} such that

0
ze(Xn |J WO ). (9)
j=-N

Let {a’(1),...,a'(T)} be the set of all t € {1,...,T"} such that ZﬂU?z_N hi(X}') # @. For each
te{l,..., T} set X, = XN (X{/l',(t) \Ya’f(t)’l). Then from (9), we see that for every z € Z, there is
ate {l,...,T} such that X, intersects the minimal set of () ~1(2), h|1Z*1(z))' Thus, by Lemma 5.7,
there is a system

S= (TV7 (Xt)t: 7o)

1,...,T

[RRRE}

of finite first return time map subordinate to
P={UNX|UePandUNX #o}.

For each t € {1,...,T}, let {c(t,1),...,c(t,N,)} be the set of all k € {1,...,K,;} such that Z N

U W (Vi) # 2.
Let t € {1,...,T}, let n € {1,...,N;} and set s:L—i—n—i—Zi:llNr. Define

0
Xi=X,n¢™ [ Zn | W (Viewm)
=N

Let {d(s,1),...,d(s, K})} be the set of all k € {1,...,K,} such that ¥, , N X! # &, where we make
the choice d(s,1) = c(t,n). For each [ € {1,..., K}, set Y, = XN f’t,d(&l) and set J{; = jt,d(SJ).
Set 7" = L + Zle N,. We now check that, for (X,h), &' = (T",(X})t=1,..17,--.) is a system
of finite first return time maps subordinate to P by verifying the conditions of Definition 2.6. That
conditions (a) and (c) hold is clear. Let ¢t € {1,...,L}. Then U?:_N W (Y/") is compact and open
in X, and so Z N U?Z_N hJ (Y(;Et),l) is compact and open in Z, and by the continuity of 1, ¥»~1(Z N
U?:_N hi (Y,(),1)) is compact and open in X, and so X{ is therefore compact and open in X. It is
also clear by construction that X/ is nonempty. Moreover, since X; C X 1/1/( £ and X (’L’(t) is contained
in an element of P, so is X{. Now, let t € {L +1,...,7"}. By the exact same reasoning, X, is a
nonempty compact open subset of X. Since S is subordinate to ﬁ, and since every element of P is
contained in an element of P, we see that X is contained in an element of P. Thus, condition (b)

holds. Now, let t € {1,...,L}. Observe that

K}

K;
|_| YY) = |_| a/zt),b(t,k) nXx;
=1 =1

1"
Kt

= |_| Yalzt),k N Xt/
k=1
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Xa(t) N X,

and
: K,
|| p7ee(VEy) = || Peoeem (Vi ) 0 X
= k=1
K
= [ Wosen (3 ) 1 X
k=1
Xa(t) N X;
= X;.

Now, let t € {Ly,...,T"}, and let s € {1,..., 7"} and n € {1,..., N} satisfy t = L+n+ > ._ 1N.

Then we have

K K]
LI ¥k = 1 Yaaeew 0 X
k=1 k=1
K, B
= sz’k n Xg
k=1
=X, NX|
and
t K/
L] w7 (vl) = L) BP0 (Vs i) 0 X
k=1
K,
|_| Js d(f k) ﬂ X’
X X'
= XJ.

Thus, conditions (d) and (e) hold. For condition (f), for each ¢ € {1,...,T}, set N/ = L + SE_N,

and observe that

Ny 0
X: =X N |_| Y1 Zn U hJ(Y; c(t,n))
n=1 j=—N
N, _ . 0 "
= Xxin 7 Zo U W Vieen)
n=1 j=—N

34



Il
(I
(I

Il

)

|

W)
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N

=
A
£

I
—
e

s=N;_,+1

In particular, we see that for each k € {1,..., INQ}, we have fft,k C |_|iV:’N

. ,+1 X With this in mind,

we have

T Ky Jer—1 N/

=] h || X.nYix
t=1k=1 ;=0 s=N/_,+1
T N KL Joaem—1 B

= |_| |_| |_| n’ (Xs N Y;‘/,d(s,k)>
t=1s=N,_, k=1 j=0

This proves that condition (f) holds.

We now show that S’ satisfies the conclusions of the lemma. That (a) is satisfied follows from
the fact that all elements of P;(S”) and all elements of P;(S) are contained in elements of Py(S),
and all elements of P5(S”) and all elements of Py(S) are contained in elements of P5(S). From the
choices we made in our construction, (b) and (c) are satisfied. To see that (d) is satisfied, first note
that for all t € {1,...,L} and for all k € {2,..., K]}, we earlier showed that J; , > N. Next notice
that for all t € {1,..., 7"} and all z € |_|£€2 Y/, we have Axy(z) > N. Thus, for all t € {1,... ,T}
and all z € X;, we have Az, (@) > N. Thus, forall t € {L+1,...,7"} and all k € {1,..., Kj}, we
have J;; > N. For (e), notice that if t € {L +1,..., 7"}, then Y/, > N for all k € {1,..., K/}, and
o) )A(t, h()?t), e, hN()?t) are clearly pairwise disjoint. So let ¢t € {1,...,L}, let « € )A(t, and suppose
there is some n € {1,...,N} such that A"(z) € X;. This means that Ax;(r) < N, and, from our
work above, we know that means x € Y,(),1. By definition of )?t, this means that there is some
ke {2,.. '7K¢/1(t)} such that x € Y41 N hJa(t)-,k(Ya(t),k). We now have two cases. First, suppose
that h"(x) € By). But since x € Yy4y,1 N hJat).k (Ya(t),x), this would mean that h™(x) € C,,, which
means that x ¢ X}’, a contradiction. The second possibility is that h™(z) € Yy, N h']a(t%l(Ya(t),l)
for some I € {2,..., K,y }. But then since Jo); > n, we would have x = h™"(h"(2)) ¢ Xuq), a
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X

contradiction. Thus, N h"(Xt) . This proves that S’ satisfies the conclusions of the lemma anéi
therefore proves the lemma.

Lemma 5.19. Let (X, h) be a fiberwise essentially minimal system, let P be a partition of X, let N €
Zso,1et S= (T, (X¢)¢=1,... 7, - - -) be a system of finite first return time maps subordinate to P, and let S
"= (T',(X])t=1,... ", - - .) satisfy the conclusions of Lemma 5.18. Let D be the set of all ¢ € {1,...,T"}
such that J; ; < N. Make the following definitions.

(a) Set T =1T".
(b) For each t € D, set X!/ = X/ \ | [*_, " (Yt(1 N ( k. hjtl=k(}/'tfk))).
(¢) Foreach t € {1,...,T'}\ D, set X' = X.

(d) Let t € D. Let E; = {a(1),...,a(L:)} be the set of all k € {1,..., K[} such that
WY N X NY, # 2.

Let E; = {a(L; 4+ 1),...,a(K})} be the set of all k € {1,..., K[} such that
th’k( X// I_lYt/l £0.

For all k& € {1,...,L¢} such that a(k) # 1, set Y} =Y/ )N hf‘]f’vﬂ’w')(Yt"l) N X/ and set
=Jj o m¢J; 1 where my is the integer such that N = mtJt”l —my for 0 <my < Jj ;. If
(k) = 1, then set Y/}, = ¥/, Nh~7ex(Y/) N X/ and set J/}, = J{,. For all k € {L;+1,..., K{'},

set Y/ =Y 4y N~ Te® (|_|l 2 ) N XY and set J' = J] -
(e) Lett € {1,..., T"}\D. Set K;' = Kj. Foreach k € {1,..., K}, set Y} =Y/, and set J;, = J; ;.

Then 8" = (T”,(X{)t=1,...77,--.) is a system of finite first return time maps subordinate to P.
Moreover, the partition P;(S”) is finer than P;(S) and the partition P2(S”) is finer than Pa(S).

Proof. We check that 8" = (T, (X}')i=1,....7,...) is a system of finite first return time maps sub-
ordinate to P by verifying the conditions of Definition 2.6. It is clear that (a) holds. Moreover, for
t € {1,...,T7"}\ D, it is clear that conditions (b) — (e) hold, so we check conditions (b) — (e) for
teD.

For each t € D, we have X;' C X/, so since X} is contained in an element of P, so is X, It is also
clear that X} is a compact open subset of X. Thus, condition (b) holds.

For each t € D and each k € {1,..., K}, we must have h‘Jt/'k(Yt/,k) NY/, for some l € {1,..., K},
and so either k € E; or k € F; (or both). In particular, at least one of E; and E} is nonempty, and
so K}’ > 0. Thus, condition (c) holds.
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Let t € D. For each k € {1,..., K/}, it is clear that Y;:’k is a compact open subset of X. Now, for
each k € {1,..., K]}, notice that

K,
(Per v i) u [ R o [ L) ) = pPe ).
=2
Thus,

K
Xp = L pe(v)
k=1

K, K,
= L (P i) u [ a0 (LY
k=1 =2

And so we have
X! =X/ nX/

K, K,
=x/n [ | (Wi nvin) o (el o | LY
k=1 =2

K! K|
= [ (" 0donvinxy)u [ wlisary | v ) nxy
k=1 =2

Ly K
1 "
= |_| tk | U |_| t,k

k=L:+1

Thus, condition (d) holds.
Let t € D. Let X, be as in the statement of Lemma 5.18. We claim that for all k € {1,..., K"},
we have h7t (YY) € XY'. First, suppose k € {1,...,L;} and a(k) # 1. Then

~

Rt (Y/}) € Yy N AThaw (V] ) € X

We claim that N
<|_| WYy Qe m’,a(k)))) NX{Cy/, (10)
n=0
Otherwise, there is some integer p such that 0 < th’71 < N and

R (V] 0 R0 (Y] ) © YL MR (V)

But then h™’i1(X,) N X; # @, a contradiction to the fact that S’ satisfies (¢) of Lemma 5.18. Thus,
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(10) holds. So since (m; —1)J;; < N, we have
B DT (Y] 0 R0 (Y 40)) € VY,
and so therefore

Wk (Y) = hleemtmelia (v
= W™ (Y] O R0 (Y 4 0)
C hi(y,)
C X}

We claim that
N Ky
Bl (Yl 0 <|_| h (Ytil n <|_| th»l<Y;il)>>> # 2. (11)
n=0 =2
Suppose not. Then there is some n € {0,..., N} and some [ € {2,..., K}} such that
PRI YL ORI (V) # 2.

But notice that
Rl (Y k) = Jeaey (Y5) N Y

and so since myJi | —n < J{; + J{;, it must be the case that
hJ{f’“_n(Yt/,/k) = BT (BT (Y o)) D Y1)

is disjoint from h71(Y; ), which is a contradiction. Thus, (11) holds. Putting (10) and (11) together,
we see h’in (Y/}) C X{'. Next, suppose k € {1,..., L} and a(k) = 1.

Now, let k € {L; +1,..., K{'}. Then h7Ck(Y/,) = h”tato (Y] ) N2 (Vey), and so by (10), we
have h"fk(Yf”k) C X/. Altogether, we see that for all k € {1,..., K/}, we have

Wik (V) © XY (12)
Next, we claim that
Kl
X L] pe () (13)
k=1

Let x € X/'. Since X}/ C X/, there is some [ € {1, ..., K;} such that € h”t (Y{;). Suppose first that
I # 1. Notice that by definition of X;’, we have z ¢ Y/;. By (10), we have h~7ei(z) € X/'. This means
that A= (z) € Y/,nh~7e (|_|ﬁ;2 thm) NX/, and so h™7i1(z) € Y, where k € {Li+1,..., K}'} and
a(k) = 1. Since we have J{; = J,, it follows that = € ik (Y{%,). Now suppose that = € th/wl(Yt’yl)
and h™7%1(x) € X/'. Then since Axy(x) > Ax;(x), we must have \x (h~7i1(z)) = Ji 1, and so we
must have z € h7i'x (Y/%.) where k € {1,...,L,} is such that a(k) = 1.
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Finally, suppose that x € h‘]t’)l(Yt”l) and h7t1(z) ¢ X/. Then there is some [ € {1,..., K]}
such that h~"™7i1(z) € th/’l(YtCZ) NY/;, and so it is clear by definition that = € i (Y/}) where
ke {Li+1,...,K}/'} is such that a(k) = I. Finally, notice that for k,l € {1,..., K/} with k # I, we
have

th,’”’“)(}Q,a(k)) NR7O (Y, 40)) = 2,

SO
th/,a(k)"rmtJf/,,l (Y;f,a(k)) N th,a(l)"rTI’LtJt/.l (}/t,a(l)) — @7

and therefore
Rtk (Y/}) N Rt (YY) = @. (14)

From (12), (13), and (14), we see that condition (e) holds.
Notice that since 77 = T" and since X; C Xj for all t € {1,...,T"}, it is clear that

Jmxp = wexp) 15)
1=0 =0

forallt € {1,...,7"}. Now, let t € D and let k € {1,...,L;}. Then by (10), we have

Ji—1 Tt ak)y—1 Ji,-1
|| ) c L] W) Ul L] PP (16)
=0 i=0 =0

Let € X. Then there is exactly one t € {1,...,T"}, exactly one k € {1,..., K[}, and exactly one
jeAo,..., Jt/,k — 1} such that z € b7 (Y/}). We keep x,t,k, and j until we finish verifying condition
().

Suppose t ¢ D. By (15) and by the fact that h*(Y/}) = h*(Y,) for all I € {1,..., K} and all
i €{0,...,J;; — 1}, it follows that ¢ is the unique element of {1,...,7"}, k is the unique element of
{1,..., K/}, and j is the unique element of {0,...,J;, — 1} such that = € h7(Y}",).

Now, suppose t € D, suppose k > 1, and suppose RTin—i (z) € Y/;. Then by definition, h=i(x) €
Y/} where l € {1, ..., L;} is such that a(l) = k. Then this, combined with (15), (16), and the fact that

i1 > Ji ), tells us that ¢ is the unique element of {1,...,7"}, [ is the unique element of {1,..., K},
and j is the unique element of {0, ..., J{; — 1} such that = € h/(Y}?).

Next, suppose t € D, suppose k > 1, and suppose Rtk (z) ¢ Y/;. Then by definition, h=i(x) €

Y/} where l € {L; + 1,..., K{'} and a(l) = k. Then this, combined with (15), (16), and the fact that
i1 = Ji, tells us that ¢ is the unique element of {1,...,7"}, [ is the unique element of {1,..., K},
and j is the unique element of {0, ..., J/; — 1} such that = € h/(Y}?).

Suppose t € D, suppose k = 1, and suppose h =7 (z) € |_|71:7:0 h™(X;). There there is exactly one
n€{0,...,N +J/, —1} and exactly one [ € {2,..., K/} such that h="(z) € h'+(Y/,) N Y{,. Set
i = J{,+n let m be the unique element of {1,..., L1} such that a(m) = [. Then this, combined with
(15), (16), and the fact that J{; = J;; tells us that ¢ is the unique element of {1,..., 7"}, m is the
unique element of {1,..., K/}, and i is the unique element of {0,..., J/,, —1} such that = € h*(Y/),,).
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Finally, suppose t € D, suppose k = 1, and suppose h~/(z) ¢ |_|f;[:O h"(X;). Then h~¥(z) € X/,
and so by O

Lemma 5.20. Let (X,h) be a fiberwise essentially minimal zero-dimensional system with no pe-
riodic points and let N € Z<o. Then there is a partition P of X such that, for every system
S = (T, (Xt)t=1,....,--.) of finite first return time maps subordinate to P, we have J; , > N for all
te{l,...,T}and all k € {1,..., K;}.

Proof. For each x € X, since x is aperiodic, there is a compact open neighborhood U, such that
Uy, h(Uy),...,hN(U,) are pairwise disjoint. Then (U,),ecx is a compact open cover of X, and hence
has a finite compact open refinement. By taking appropriate intersections, this refinement can be
taken to be a partition P of X.

Now let § = (T, (X{)i=1,....1,-..) be a system of finite first return time maps subordinate to P.
By the above, for each t € {1,...,T}, we have X, h(X;),...,h"N(X;) are pairwise disjoint. Thus, it
is clear that for each t € {1,...,T} and each k € {1,..., K;}, we have J. , > N. O

Proof of Theorem 3.2. Let € > 0, let N € Zs satisfy 7/N < €, and let P be a partition of X.
By possibly passing to a finer partition, we may assume that P satisfies the conclusion of Lemma
5.20. Following the proof of Theorem 2.1 of [9], we will show that there is a C*-subalgebra A of
C*(Z, X, h) which is isomorphic to a direct sum of matrix algebras and matrix algebras over C(S?)
such that C(P) C A and such that A contains a unitary u’ such that ||u’ — u|| < €. By using the
semiprojectivity of circle algebras to construct a direct system, this will imply that C*(Z, X, h) is an
AT-algebra.

Let Z and v be as in Definition 2.19. Use Lemma 5.8 to find a system S” = (T", (X{ )¢=1,...77,...)
of finite first return time maps satisfying the conclusions of the lemma. By applying Proposition 2.10,
we are free to assume that both P (S”) and P2 (S”) are finer than P. By applying Lemma 5.18 with S”
in place of S, we get a system S = (T, (X¢)¢=1,..., 1, - - .) of finite first return time maps subordinate to P
satisfying the conclusions of the lemma. By conclusion (b) of Lemma 5.18, 8" still satisfies conclusion
(c) of Lemma 5.8. Now, notice the conclusion (c) of Lemma 5.18 says that for each ¢t € {1,...,T} and
each z € 1(Xy), Y/, intersects the minimal set of (¢ ~'(2), h|y-1(»)), and hence, h7+1 (Y} 1) intersects
the minimal set of (¢)~!(2),hly-1(;)). Since by Proposition 4.2(b) we have |_|tT:1 Ujez (X)) = X,
it follows that for every z € Z, there is a t € {1,...,T} such that h’t1(Y; ) intersects the minimal
set of (¢ ~1(2), hly-1(»)). Thus, we can apply Lemma 5.7 with h701(Y11),...,h7/"(Y7,1) in place of
Xi1,..., X7 to get asystem &’ = (T7, (X{)i=1,...1, - . .) of finite first return time maps subordinate to
P where T’ = T and X] = h't1(Y;,) for all t € {1,...,T"}. By applying Proposition 2.10, we may
assume that P1(S’) is finer than both P;(S) and Py(S).

For each t € {1,...,T}, each k € {1,..., K;}, and each 4,5 € {0,...,Jy — 1}, define

e = Xne W T Xm0 (v,

We claim that these elements are matrix units for a finite dimensional C*-subalgebra of C*(Z, X, h)
(which we will denote by A;) isomorphic to @thl @sz’l Mj,,. To see this, let ¢,t" € {1,...,T},
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ke{l,....,K;}, kK e{l,...,Kp}, 4, €{0,...,Jpp — 1}, and 7, 5" € {0,..., Jy pr — 1}, and observe
the following:

(k) (t' k) _ g i
ey €t = Xni v Xh () Xa (v )W X (v )
Note that Xpi(y, ,)Xni' (v, ,,)» and hence el(vfj’vk)el(.,t:ﬁ,% isOunlesst =¢, k=Fk', and j =4, as P1(S) is

a partition of X. In the case where we do have these equalities, we have

(tk) (1K) _ i 5
i G = Xni (YW X (v ) Xhi (v 0 W X (v, )

= Xni (Ve ) U X0 (Vi) W Xna (v, )

= XU Xn (vi0)
(t,k)
=e;
Thus, we indeed do have a system of matrix units for a C*-subalgebra of C*(Z, X, h), which we will
call Ay, that is isomorphic to @?:1 kK:tl My, .. Notice that C(P1(S)) is equal to the set of diagonal
matrices in A;. Since by P1(S) is finer than P, we have C(P) C C(P1(S)), and so it follows that

C(P) C Ay. (17)
Define an element v, € Ay by
T K Je k=2
o= D |t T Xy T D X (v X (v )
t=1 k=1 §=0

To see what v does, let t € {1,..., T} and let k € {1,..., K.}, and observe that for j € {0,...,J; ,—2}

we have

UthJ‘(Yt,k)UT = XhHl(Yt,k)UXhJ‘(Yt,k)U*XhHl(YM)

= Xhi+1(Y0)- (18)
We also have
leh"f-,k’l(Yt‘k)vr = XYf,,k-ulth’kXth,kfl(ytyk)UJt’kilxyt,k
= XY (19)

Define u; = vju. To see what u; does, let t € {1,...,T} and let k € {1,..., K;}, and observe that
for j € {0,...,J.r — 2} we have

* * *
UL XRi (Y, ) W1 = VI UXRI (Y)W V1
*
= V1 Xhit1(v; )1

= X (Yi0)> (20)

41



where the step line is justified by (18). We also have

* * *
UL Xh=1(Ys,,) U1 = V1 UXK-1(Y; ) U V1
_ *

= VXY, V1

= Xnk (7007 1)

where the step line is justified by (19).
Using &', we can similarly construct As, v, and us in analogy with the above. To be specific, A

is the finite dimensional C*-algebra generated by the matrix units

(t,k)r _ ) i—G
iy = Xni(yy U Xni(vy )

forte{l,.... T}, ke {1,..., K¢}, and j € {0,...,J/ ; }. Moreover, we define

T K| Ji =2
_ 1-J; ) )
b2 = ZZ Xy, U ' Xh"é,k’l(yt/k) + § : Xhiti(y, HUXni(y; ) | >
t=1 k=1 , =0

and we define ug = viu.
Lett € {1,...,T"} and let k € {1,..., K;}. To see what v, does, observe that for j € {0,...,J; ;, —

2} we have

* *
V2Xhi (v ) V2 = Xniti(yy ) UXhi (v )% Xhit1(v] )

= th+1()/t,,k)' (22)
We also have
* 1—J/ J, -1
v2Xh"£=k71(}’;’k)v2 = th/’ku t,thJi’kfl(Yt'k)u t,k Xy;l,k
= XYL’J@‘ (23)
To see what up does, for j € {0,...,J{, — 2}, we have

) * % . *
U2Xni (v, ) U2 = V2UXhi(yy )W V2
*
= WQX’”“(Y{,;C)UZ

= Xni(v{,) (24)

where the last step is justified by (22). We also have

* 0k *
nghfl(ytck)uz = ”Uguthl(yt/’k)u V2

. *
= V2 Xyy, V2
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= Xh‘jz,kfl(yt/‘k)’ (25)

where the last step is justified by (23).

Since P1(S’) is finer than P;(S) and since X, C X, for all ¢t € {1,...,T"}, we have A; C Ay. Now
consider the unitary vev], which is in A;. Before our computations, first note that if U C X is a
compact open set with U N |_|tT=/1 h=Y(X]) = @, then

Va XUy = Xh(U)- (26)

Let t € {1,...,T}. We have

V2VT XY, | V1V5 = UQXthyl—l(Y},l)'U; by (19)

*
= V2Xh-1(Xx})V2
K

*
E [ [ (%
( 2Xth,k I(Yt/k) 2)
k=1 ’

K,
=> v, (27)
k=1

= XX

= Xh"fvl(Yt,l)’ (28)

Now let k € {2,..., K}. Since P;(S’) is finer than P (S) and since h’t1(Y; 1) = X| = |_|l1i’§1 YY,, there

is a set
ForC{(s,,j)]|se{l,...., T}, 1e{l,...,K},and j € {1,...,J], — 1}}

such that

W) = L M)

(s,,1)€Ft,k

*

* *
VaUq th,kUﬂJQ = 'UQXthyk—l(Yt k)UQ

*
= E nghj71(ysl L)UQ
(s,0,7)EFk

= Z Xhi(Y! ) by (26)

(s,1,5)EF i

= XnTtk (V) (29)

In particular, by (28) and (29), we see that

UZUTXXtvlvék = XX;- (30)

43



Set
T
— |_| X
t=1
Recall that A7 C As, and so xy and v; are elements of As. Thus, (30) tells us that xywvavixy is a
unitary in yy Asxy.
Set v = xyv2v]xy. Since xy A2xy is a finite dimensional C*-algebra, v has finite spectrum. By

Lemma 5.9, there is a unitary w in xy Axy with w"¥ =v and |w — xy|| < 7/N < e.

Define
N—

,_\

Xna (vyw W I X vy + X\ b (v) -
j=0

<.

It is easy to see that z is a unitary, since z = Z?’:O z; for unitaries z; € xp4(v)C™(Z, X, h)Xpi(y) for
j€{0,...,N—1} and a unitary zy = X\ N1 i (v)- We claim that A, the C*-algebra generated by
i=0

zA1z* and us, has the desired properties. Specifically, we claim that

T K
A ( ®th1 S <@th,k>> )
k=2

A contains C(P), and A contains a unitary «’ such that ||u’ — ul| < e.

First, we want C(P) C A. Because P;(S) is finer than P, we have C(P) C Ay, so all that is left
to show is that z commutes with C(P). To see this, let U € P. Since for all t € {1,...,T} and for
all n € {0,...,N — 1}, h™(X;) is contained in an element of P, we can write U = |_|f:O U, where
Uy C X\Ui}lhj(Y) and for all r € {1,..., R}, there are ¢, € {1,...,T} and m, € {0,...,N — 1}
such that U, = k" (X,,). By (30) and (28), we know that v commutes with xj,-m., for every
r€{l,...,R}. So by Lemma 5.9, w commutes with xj-m,q,) for all 7 € {1,..., R} as well. We now

have:
N—-1
XUZ = XU Xns ()W wN T X vy + XX\LY 5 b ()

7=0
N-1

= XU Xnr(ryw? w™ T xyu T XX\ hi(v)
=0
N-1

= XU XhJ(Y)UJXYwNﬂUi] + XX\|_|§V:’01 hi(Y)
j=0
N-—-1

=xu | D xwy @ w4 e vy
j=0

H

T
D xXns () w NI X ) X Yt (v

R N—
r=0 j=0 t=1
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- Z Xu N T N e vy 4 XU,
r=1

R

= Xv, U X 0w T

" X me (v) + XU
r=1
R
=D xu " wN T N gm0 X () + XU

r=1
R

_ my, N—m, —m,

= XU, v w u XU, T XU
r=1

A similar computation yields the same thing for zyy. Thus, z commutes with ¢ for all U € P, which
shows that z commutes with C'(P).

Now, we define v’ = zv12*us, a unitary in A. We still must show that ||u’ — u|| < e. We have

[0/ = ul| = [lzv12"us — u|
= ||zv12"ugs — vaus||
= [lzv12" — va|
= ||zv12* — vozz™||

= ||zv; —v2z||. (31)

We will now show that ||zv; — vez| < e.
Now, notice that for each t € {1,...,T} and each k € {1,...,K;}, we have n < J, , — 1 by (?7?).

Thus, we have

T K Ji e —2 T K
vy = (DD | vl Jt”“Xth,W(Yt,k)JF D X (V) XA (Vi) (Z Xh”“'”)

t=1 k=1 j=0 t=1 k=1

T Ky Jee—2 T K

t=1 k=1 j=0 t=1 k=1

Xhmt1 (Y, ) WX (Ve k)

o~
Il
i

I Il
(-]~ 1[4~
L NgEs

UXhm (Ye, k)
1

o~
Il

1

x>
I

= UXpn(Y)- (32)

Now, since P1(S8’) is finer than P;(S), so h™(Y) is the union of some of the members of P;(S’). Also,
ift € {1,...,7"}, k € {1,...,K;}, and j € {0,...,J/; — 1} are such that h7(Y/,) C h™(Y), then

actually we have j # J; , — 1, since

WY ) € R
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_ thS,kS _1(}/,557]65)
c h (X)),

and h~!(X;) trivially intersects h"(X;) since Jy > N for all k € {1,..., K;}. This means that there

is a set

F,c{(t,k,j)|[te{l,.... T} ke{l,...,K{}, and j € {0,...,J; , — 2}},
such that
)= || M.
(t,k,j)EFn
Thus, we have the following:
T K J, =2
vaxnnry = | ) | g, ut T oo T > Xni+1(v{ ) UXh (Y] }) > xwory
t=1 k=1 bk j=0 (t.k,j)EFy
= Z XhJ+1(Y/k)uth( k)
(t,k,j)EF,
= D wwioyy
(t,k,j)EFn
= Uth(Y). (33)

If ne{0,...,N —2}, we have

Xhrt1(v) (201 = V22) Xnn (v) = Xant1(v) (2V1XRn (v) — V22Xnn (Y))
= Xnnt1(v) (ZUXRn (v) — V22Xhn(Y)) by (32)
= Xhr+1(Y) (ZUth(Y) - U2th(Y)Z)
= Xnnt1(v) (RUXRn(v) — UXhn(v)?) by (33)
= Ypntr (e TN T (g — w)u T vy (34)

We also have

XhN(Y)(Zvl — V22)XpN- 1Y) = XhN Y)(Z'U1XhN 1(y) — V22XpN-— 1(Y))
= XN (v) (ZUXRN 1Y) — V22X RN -1(y)) by (32)
= XhN(Y)(ZUXhN Ly) — V2XhN- 1(Y)Z)
= Xnn~ (v) (FUXRN-1(y) — UXAN-1(v)?) by (33)
= XN (Y)UXRN-1(Y) = XN (Y)UXRN-1(Y)Z
_ _ N-1, —(N-1)
= XnN(Y)UXhN-1(Y) — XhN(Y)UXpN-1(Y)U wu XhN=1(Y)

= XN (Y)UXRN-1(Y) — XhN(Y)UNWU?(N*l)

(N-1)

XhN=1(Y)

—(N-1)

= X;LN(Y)UNXYU_ XhN-1(y) — XhN(Y)uqu XhN-1(Y)

46



= xnv vyt Oy — w)u” Ny (35)
So since ||lw — xy || < &, (34) and (35) give us
I Xpnt1 vy (201 — v22) xR (v || < €. (36)

Now, let p be any projection orthogonal to xpn+1(y). We have

PRU1Xhn(Y) = PRUXR (Y) by (32)
= pxhn+1(y)zu

=0. (37)
Similarly, we have

PU22Xhn(Y) = PU2Xhn(Y)?

= PUXhn(Y)* by (33)
= PXhrti(y)U
— 0. (38)
Thus, (37) and (38) yield
p(zv1 — v22)Xpn(y) = 0. (39)

Let E C X be any compact open set such that E C X \ |_|;.V:_O1 h3(Y). We then have

N-1

ZXE = Z Xh-i(Y)ijN_jU_thi(Y) + XX\|_|§,\’:51 Ri(y) | XE
=0

= XX\|_|§\’=*01 }Lj(y)XE
= XE- (40)
Similarly,
XEZ = XE- (41)
Now, let t € {1,...,7} and let k € {1,...,K;}. Note that h'/e+=1(Y, ) € X\ |_|;.V:_O1 hi(Y) by

condition (a) above. Also, since h't#(Y; ) C Y, we have

N-1

o
Xptr v = | D X0 0N I Xy 00 ) | Xnte v
=0

= XYwNXth,k- (Yex)

.
= XY R2UIXp ek (v 1)
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= szh—l(Y)UithJt,k (Yir)
= V2UI XA X Ttk (v, )

= UQ'UTX}IJL,C(YL]C). (42)

We therefore have

(zv1 — ’UQZ)Xth’k—l(Ytyk) = ZUIX T (v, ) T V2EX R (v )
= ZXY, VL~ V22X ek (v, )
= ZXY; 5 U1 T V2X Tk (y, ) by (40)
= V207 XY, U1 — V2X 0k (y, ) by (42)

T V2XnTee T (e T V2XRTER T (1)

-0 (43)

Thus,
(zv1 — v22)Xp-1(v) = 0. (44)

Set

N
Y=X\ || »¥
j=—1
We have zxp = xy by (40) since YcX\ |_|§.V:_O1 h3(Y). Since P;(S’) is finer than P;(S), there is a
set

Go{tkte{l,...T'hke{l,... . K}hje{l,.... ], —2}}

such that
Y = |_| hj( t/k)
(t,k,§)€G
Note that if (¢, &, j) € G, then j # J;; — 1, since thka_l(Yt”k) C h=1(Y), which is disjoint from Y.
Using (40) at the first step, we therefore have

V2zXp = VaXg

Jt',c 2

T K,
ZZ Xy, ut thth/k /) + Z Xha+1(y) ) UXhi (v Z (Y )

t=1k=1 (tk,))EG

T K, Ji =2

ZZ D XUk ') > WYy

t=1k=1 ;=0 (t,k,§)€G

Z Xhit1(y/ ) UXhi (Y,
(t,k,5)€G

= uxy- (45)
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We also have

T K¢ Je k=2
Xy = Z XY, U i "Xk Yy T Z Xhi+1(Yy, o) WX (Yz,i) Xy
t=1 k=1 j=0
T K; Je,x—2
= Z Xhi+t1(Y;, ) UXhi (Yy,k)
t=1 k=1 j=N
1 T K Je =2
= XhJ(Y ulw JU*JXhJ'(Y) + XX\I_IN_Bl hi(Y) Z Xhi+1(Yy, 1) UXhi (Yy,k)
j= - t=1 k=1 j=N
T K Je—2
(XX\uN lmm) Z DD XU (Vi)
t=1 k=1 j=N
T K¢ Je,k—2
O IPIE R
t=1 k=1
= uXy- (46)
Putting our recent work together, we get
(2v1 — v22)Xp = 2V1Xy — V22X3
= 201Xy — UXy by (45)
= uxy — uXy by (46)
=0. (47)
Precisely the same argument shows that
(zv1 — v22) XN (v) = 0. (48)

We now apply Lemma 5.11 with M = N 43, a = 2v1 — v2z, pn = Xpn(y) forall n € {1,..., N},
Gn = Xnr-1(y) for all n € {1,..., N + 1}, pn+1 = Xv, PN+2 = qN+2 = Xn-1(v), and P43 = qN43 =
Xy, By (36), we have [|ppagn|| < e for alln € {1,...,N}. By (39), for n € {1,..., N} with n # m,
we have gnap, = 0 for all m € {1,..., M} such that m # n. By (48), we have p,,agn+1 = 0 for
all m € {1,...,M}. By (44), we have ppaqni2 = 0 for all m € {1,...,M}. By (47), we have
pmaqn+3 = 0 for all m € {1,..., M}. Thus, Lemma 5.11 applies to give us ||zv; — v2z|| < €. Thus,
by (31), we have ||u’ — u| < e.

We will now show that

A

1%

(o ()

t=1
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To do this, we

Let t €{1,...,

first claim that us and z commute. First note our formula for us:

= vyu
T K| J{ =2

= ’ ul_Jf/wk ’ —|— i+1 U i ’
ZZ XY/, Xth:kfl(Y’k) Z Xhi+1(y] YUXRI(Y] )
t=1 k=1 b §j=0
T K] Jt/,k_2

o Jl -1 ) LRV

= ZZ XhJé=k71(Y/k)u t,k ny:k + Z X’”(Yt,,k)u thﬂ(yt/,k)
t=1 k=1 b §j=0
T K| Ji =2

= Jik—1 . *

= Xythamt s 0T D et | | u
t=1 k=1 ’ j=0

K; J,f’,cf2
Tl .
Z Xh‘]t/,kfl(yf’k)u YXhil(Yt/,k)—i_ Z XhJ(Yf,’,k)
£, =0

t=1 k=1
T’} and let k € {1,..., K[}. Since

Y CRNY) € X\ || W),

=0

by (40), we have

AXR=1(Y/ ) = Xh=1 (Y] )"

By (41), we have

Thus, we have

Xh=1(Y/ )% = Xh=1(Y{ )"

ZXhil(Yt’,k) = thl(yt/,k)z.

Since
N-1
WY ) chTHY) c X\ | W),
§=0
by a process similar to the above, we have
zXthkil(Y/,k) thékal(Yt/’k)Z
Since
N-1 T K Jii—2
|| W) c| ] | ] » (i),
j=0 t=1k=1 j=0
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we have

7 K| Ji.—2

N-1 N—-1
Z Xhi(Y)ijN_ju_thj(Y) ZZ Z Xni(yy ) | = Z th(Y)uij
§=0 §=0

t=1 k=1 ;=0
and

il K; Jl::,t72

DD D xwoy ]thf<Y>uij_ju_jX}zj(Y> :fohf(Y)uij
=0 i

t=1k=1 j=0
It is also clear that if F is any subset of X \ |_|§\:01 R (Y), then

ZXE = XE*

Tu vy (52)

T Xpiyy- (53)

(54)

Again, since w is obtained via functional calculus at vov}, w™N 7 commutes with u as well. Therefore,

we have
uz = uxhj(y)uij_ju_jxhj(y)
= th+1(Y)ujuwN7ju7thJ(Y)
= th+1(y)uij7juu7tha‘(y)
= th+1(y)uij_ju_thj+1(y)u
= zu.
We have
T K, JiR—2
Zug = 2 ZZ XhJ;,,fl(Yt,k)UJ’/"*’thl(Yt{k) + Z Xhi(Y{,)
t=1 k=1 : §=0
T K Jik—2
- R e TSR DT
t=1 k=1 : j=0
T K| Ji =2
- RS SR DR
t=1 k=1 : 3=0
7 K Ji k=2
,
= Xh‘]i,k’l(yt/k)u']t’kZXhil(Y‘/’k) + Z ZXhi(Y] )
t=1 k=1 ’ §=0
T K Ji k=2
- R LR ER D DT
t=1 k=1 : j=0
T K Ji =2
= Xh‘lf{,k—l(yt,k)ujtl’kxh_l(Yt’wk)z + Z Xhi (Y] )%
t=1 k=1 : 3=0

o1

by (55)

by (54)



= U2Zz.

Thus, we see z and us indeed commute.

Since z and us commute, the C*-algebra A generated by A; and wy is unitarily equivalent to A
(via z). Thus, A & A, and we will therefore work with A for the remainder of the proof. Recall that
for each t € {1,...,T'}, we have X/ = h7t1(Y; ;). For convenience of notation during the rest of the
proof, set

Jeq—1

P= X, e vy

Let
T Jea—1
- (t,1) (t,1) .
U_Z Z eJJtlflu eJt1*1J+p
We claim 7 is a unitary in A. First, for s € {1,...,7"}, and j € {0, .. — 1}, observe that

Ug e(t b e(t 1) Uy = Uy e(t D u)
Je1—1,575,Je,1—172 Je1—1,Jp1—1%2

*
= u2Xth‘1_l(Yt,1)u2
_ *
= U2Xh-1(Xx])U2

* *
= UQUXh—l(Xé)U V2

«
= U XXx,V2
Kt
= g vy Xy v
= 2 XY/, V2
k=1
K,
= r
2 Xyt
k=1

= Xh=1(X})
= Xth,lfl(yt’ly (56)
Now, observe that
T Ji1—1 T Jia1—1
O (t,1) . (t,1) « (5,1 ~
= Z Z thereJﬂflJer Z Z €5 Jia—1U2€y, 1 TP
t=1 ;=0 t=1 j=0
T Jia—1
_ (t,1) (t.1) (t,1) (t,1)
*Z Z €, dea—1 (“ 2€7, 11,565, 7,1 2) €y 1, tD
t=1 j=0
T Jia—1
_ (t,1) B
_Z Z ej’ftlflxh‘ltl 1(Yt1) Jt, 1*1]+p by (56)
t=1 j=0
Je1—1

1) (1) (t,1)
Z Z €5 Tin 1€, =101 —1€0, —15 TP
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— (t,1)

= ej,' +
t=1 ;=0
T Jea-1

= Xhi (Y1) TP
t=1 j=0

=1

A similar computation shows w*u = 1. Thus, @ is a unitary.
We claim that A; and © commute. To see this, it is clear that we only need to check commutativity

with matrix units of the form e( ) for s € {1,...,T"}. But with this in mind, we have

Gt o _ (t1) (t,1) (t,1) r (t,1)
€ U =€ g, aU2€y 1 €5 €01 —1U€ )
_ (1 (t,1) (t,1)
el Jt, 1—1U2 eJt 1—1,J¢, 1_1u2€Jt 1—1,5
St (D) CEY
=€ g, 1-1€0, 1 ~1,J,1—16J, 1 ~1,j by (56)
(t 1)

7]

Thus, A; and © commute.

We claim that A; and u generate A. To see this, notice that

’ T

(1) ~ (1) (t,1) (t,1)
Z €Jia—10 | U €0,J:,1—1 ZeJtlfl Jea—142€7 1 g, -1

t=1 t=1

which, when added to XX\UZ, b7 (e = XX\, A1 (X)) yields us.
Let t € {1,..., T}, let k€ {2,...,K;}, and let i, € {0,..., Jy,, — 1}. We have

(fj )u = Xhi(vs, k)u th(Yt.k)Z/)\

= Xhi(Y,, k)u - Xh]‘(Yt,k)

(k)
€ij
and similarly ue(t k) = (t k), Thus, setting p; j, = Z;];’(’)CA Z(-i-’k), we have
pt,kA\pt,k =My, ,- (57)

Fixte{1,...,T7'} and set p; = Zj;f)_l Xhi (Vi) = Zj;i)_l egfj’-l). We now claim that pyuop; and

piup; are unitaries in p,C*(Z, X, h)p;. To show this, we show that p; commutes with us and .

It is obvious that p; commutes with u, since & commutes with A;. So to show that p; commutes

with ug, we first claim that, for each j € {—J;1,..., —2}, we have
K{ Jie—
|_| |_| W' (Y, (58)
k=1 j'=0
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To see this, note that

K. in,k*Q fk -1
L] L w LILIh”Yt’k\h = U\ nhx),
k=1 j'=0 k=1 j'=0 J'ez

and then note that Y; 1 = h~7t1(X}), and so since Y; 1, (Y1), .., h7171(Y; 1) are pairwise disjoint,

it follows that h/(X]) Nh~1(X]) = @ for all j € {—J;1,...,—2}. Thus, the claim follows. Now,
T’ Kt/ J;,k_Q Ji1—1
Ik
wape= | D> Xpta g )X 000 > Xn(v,) > X

s=1 k=1 . j=0 j=0
T K! Jo =2 —1

— u’t . .

= ZZ Xyt X0+ D X D Xwexp
s=1k=1 J=0 Jj==Jea
K, -2

= ZXthk v ek X vy | Xnmix Z Xhi (X)) by (58)
k=1 j=—Ji1
K/

= ZXthk 1(Y’ )u thh (YY) ZXh Y k) + Z Xhi(X])
k=1 j=—Jt1

K/
- th‘]t k- (Y’ )u t *Xh- H Jr Z Xhi (X
k=1 j==Jt1
Similarly,
Jei—1 T K Jé,k_Q
Piug = Xhi (Y1) Z X B (v ) JS”‘thl(Y;,k,) + Z Xhi(Y/! )
j=0 s=1k=1 Y, j=0
—1 T K| T k=2

= 2 x| (222 Xp7n= iy )UJ“’”"Xh*(Y;,k) + D Xwivy,)

j=—Jia s=1k=1 ok =0
K| -2
= Xh-1(x) ZX Ty ek X v o | > xwix by (58)
j==Jia

K! K! _9
_ ik .
= 2 X | Xy W00 |+ D

j=—Jt1
K! -2
—ZXhJsk Yyt X, Z; Xhi (X1):
= ——Jt,1

Thus, p; commutes with u, and so pyusp; is a unitary in p:C*(Z, X, h)p;.
~ . ' Ji =1 . .
Set Xy = U,z W (X7) = |_],€K:‘1 L2 P/(Y{}), an h-invariant compact open subset of X. Set
Tt = X g/, @ projection that therefore commutes with «, which means that it is central in C*(Z, X, h).
t

We claim that [rury] = Jy1[reuere] in Kq(r:C*(Z, X, h)r). For each j € {0,...,J;1 — 1}, set D; =
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{0,..., 1,1 — 1} \ {j} and set

_ (1) (t,1)
w; =€’ 1U2€Jt1 U—i—Ze“ T — Pt).
i€D;

Note that wj, , 1 = ryusr; . We have

Jiai—1 Jia1—1
o (t,1) (t,1) (t,1)
H Wi = H eJ]tl 1u26]t1 1J+Ze + ps)
§=0 3=0 i€D;

Jia1—1

_ (t,1) 1)

- ej7Jt1 1u26Jt1 1,5 +(Tt _pt)
=0

= rtﬂrt.

Let j €{0,...,Ji1 — 2}. Define D} = {0,...,Jy1 — 2} \ {j},

pj = Z ez(',til) + (re — pr),

i€D)
and
wj = e‘gt‘]lf)l 1 +€(th11) 1+ P
We have
K] T, -2
wjTiugTy = (e?ﬁl ey uﬂ’ﬂ) > Xth,k—wy;k)“J{”“Xh*(w,u+ D Xwioy,)
k=1 : =0

We break the right hand side of this computation into steps. First, recall that h=1(
With this in mind, we have
KI

A

—(Jr1—1
€5, gy —1TtU2Tt = (th(Yt,l)uj Weamt)

k=1

=2 T X R

K

— ) j—(Je,1—1
- kzlxm(y"l)uj . )Xh%,k*l(yg, )

K/
J—(Je1—1)+J]
= E Xhi(Ye,1)W BEXR=1(Y, )
k=1
K,

=D X et~ T g
k=1

u‘]t th 1( k)
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t
= Z Xh]._(,hlwt,’)kmk)uaf(Jt,rl)JrJt,kXh_l(yt,k)' (60)
k=1 *

Since
K{ Ji =2
e L]
k=1 j'=0
we have
K Jip=2
e<(]tt 1) 1]rtu2’rt Xh‘]t’l71(Yf,,l)u‘]t,liliJth(YtJ) Z Z th(yt,,k)
k=1 j=0
= Xpo, 171(YM)th,rl*thj(Yt,l)
t,1
- ef]t 1) 1,7° (61)
Note that p; = x B where
K, J{—1 1
Ej=| rvo ol (U U »od | |_| I(Yin)
€D, k=1 i=0 =0
Kl J{ =1
= L] P70 |\ (7 (V) U (Vi)
k=1 i=0
K! J{,—1
= |_| |_| WY/ ) |\ (WX LR (Vi)
k=1 i=0
K, Jix—2
= L »ode | \W (). (62)
k=1 i=0
Thus, E; C | it 1[_| tk “h W (Y/}), and so we have
K| T -2
pjriusry = pj Z Z Xhi (Y,
k=1 j=0
=pj- (63)
From (60), (61), and (63), we have
K/
k=1
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Now, simplify w rtugrtw which rewritten is

j—(Je 1 —1)+J] (t,1) (t,1) (t,1)
thjf‘]tvlJrJt,,k(Yt’k)uj (Jer =)+ t)thil(}/t/,k) + eJt 1—1,5 +p] (ejJt,l—l + eJt 1—1,5 +p])
k=1 :

From (62), it is clear that
AUy _
pj€; -1 =0
Since j # Ji1 — 1, we have h/(Y; 1) Nh™1(X]) = @, so
t (t1)
j—(Je1—1)+J] _
ZX —Jy 1+J"’“(Y/ )uj (Je,1—1) . I(Ylk)ej A =0.
Thus, we have
(t,1) (t,1) (t,1)
wj TtuQTte] Jea—1 7 eJt 1—17.76] Ji,1—1
=€ (64)
Since Jy1 — 1 ¢ D;, and from (62), we can easily see that
(t,1) (t,1) _
(eJ, L +p]) €14 =0
Thus, we have
w rtu27“teJt17 ZX JtJJrJ;’k(Ytlﬁk)uj_(‘]t‘l +J;, FY e I(Y/k)xh‘]‘ iy, l)th,l—l—thj(Ytyl)
= ZXhﬂ‘-"wz,k<Ygu“ﬁuﬁl*l)ﬂ“’“xh*l(Y;,k>thl(X;>“J* T X v
K/
_thj s, 1+J“€(Y’ )u]—(Jf,g )+Jt KX e 1(Y’ )u —1— Jth(thl)
k=1

s
_ § ) F=(Je1—1)+J{
- XhJ_Jt’1+',£wk(Yt/k)u
k=1 ’

K/
= E thth 1+Jt’€(Y’ )u kahjfifl
k=1

But then notice that

(t,1) (t,1)

) Jia1—1—j3 J—(Je1
€5, Ton—1U2€) 15 = Xhi(Ye)U Xpte1=1(y, 1) U2Xp e 1y, )Y

_ Z Jea—1-j
= X —Jg 1+ ]t k(y/ )U Xth/,’
=1

LY

Jia1—1—j3
k t,1 J "
t Xh_l(Yt/,k)u XhJ—Jt,l(Yt/’k)

Y

"D Xni (vi0)

-1
oY)

Itk J=(Jea1=1),, .
u“t Xh_l(yt’,k)u Xh]th’l(Yt/,k)



K

— J=(Jea=D+J] oy
= - / u ’ ’ j—J .
’;Xh] Jt/’1+Jt’k(§/t/,k) XhJ t,l(Yt/’k)

Thus,
/ (t,1) _ (1) (t,1)
wireusrie) =€; 7 _1U2ey _q ;- (65)

—Lj

Finally, it is immediately clear that

’ ~
W;TtU2TtPj = PjPj

=i (66)
So by (64), (65), and (66), we see
K|
t,1 , ~
w;rtuzrtw; - 65”- ) + Zthf‘]%l*%{,k(Y/k)UJt’thj*Jt,l(Yg’k) +Dj
k=1
K/
= T (t.1)
= thj_‘]t‘l-h]{‘k(yt’k)u t’thjth’l(}/t,,k) + Z 61.77; + (Tt fpt)
=t ' ieD;

_ (t,1)
= €jg 12,1+ Y, e+ (re—pr)

i€D;

:’w]'.

Now note that w; is a unitary in r;Asrs, and since r;Asry is a finite-dimensional C*-subalgebra of
reC*(Z, X, h)ry, wj has trivial K-class. Thus, in K (r;C*(Z, X, h)r), we have [w;] = [ryuar], so by
(59), we have

[retry] = Jya[reusr). (67)

We now show that [riusry] # 0. First note that ryvery € rpAgry, and since ryAgry is finite-

dimensional, we have [rivars] = 0. From Lemma 5.3, we have [ryury] # 0. Thus,

[reugrs] = [revsur]
= —[rivars] + [rrur]

#0. (68)
By Lemma 5.4, r,C*(Z, X, h)r; has torsion-free K7, so (67) and (68) give us

[riur:] # 0. (69)
A very straightforward computation shows

riury = paupy + (re — py)
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This fact combined with (69) and Lemma 5.5 gives us [psup:] # 0 in K (p:C*(Z, X, h)p;). Thus,

sp(pitip;) = S*. So because of this, because p;iip; commutes with egfj’-l) for all 4,5 € {0,...,Ji 1 — 1},
and because p;up; and (egfj’.l))ogi,jghl_l generate pyAp;, by Lemma 5.12, we have

P Ap;, & C(SY)Y® My, ,. (70)

Altogether, from (57) and (70), we get

T K
A @ ((C(sl) ®My,,)® (@ MJM>> ,
t=1 k=2
finishing the proof of the theorem. O
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