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DISSERTATION ABSTRACT

Matthew Arbo

Doctor of Philosophy
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Title: Zonotopes and Hypertoric Varieties

Hypertoric varieties are a class of conical symplectic resolutions which are very

computable. In the current literature, they are only defined constructively, using

hyperplane arrangements. We provide an abstract definition of a hypertoric variety and

a new construction using zonotopal tilings and relate the zonotopal construction to the

hyperplane construction.
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CHAPTER I

INTRODUCTION

Hypertoric varieties were introduced by Bielawski and Dancer under the name

“toric hyperkähler manifolds” in 2000 [BD00]. The definition they give is constructive:

given a suitable rational hyperplane arrangement in the dual of the Lie algebra of a given

torus, one can construct a manifold, and manifolds which arise this way are called toric

hyperkähler manifolds. Hypertoric varieties arising from this construction have been

studied in many papers, including [HS02, HH05, PW07, Pro08, Kon00]. In this paper,

we provide an abstract definition for hypertoric varieties, and a new construction which

includes all hypertoric varieties which come from hyperplane arrangements, as well as

new hypertoric varieties that do not appear in the literature. Among our varieties, those

arising from hyperplane arrangements are precisely the ones that are projective over

their affinizations.

The situation may be understood by analogy to toric varieties. Given a torus T

over a field k, a T -toric variety is a normal variety with an action of T that has a dense

orbit. To each affine toric variety X0, we can associate a cone σ in Lie(T ) and its dual

σ∨ ∈ Lie(T )∗. The cone σ contains precisely those cocharacters that act on X0 with non-

negative weights, while the cone in Lie(T )∗ contains precisely the characters of T that

extend to functions on X0. Given a polyhedron P in Lie(T )∗ with recession cone σ∨, we

obtain a toric variety XP which is projective over its affinization Spec k[XP ] = X0. The

map P 7→ XP is not a bijection, and the polyhedron in fact determines a presentation

of XP as a GIT quotient An//K. (Equivalently, P determines a toric variety XP along

with a choice of T -equivariant ample line bundle.) In Lie(T ), we instead consider fans

Σ such that |Σ| = σ. Such a fan determines a toric variety XΣ with affinization X0, and
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in this case the map is proper, but not necessarily projective. In this case, toric varieties

which are proper over X0 are in bijection with fans.

By analogy, the current state of hypertoric varieties is that there is a construction

which takes a central hyperplane arrangement A0 to an affine variety Y0, and which

takes an affinization A of A0 to a variety Y which is projective over its affinization

Spec k[Y ] = Y0. However, there is no abstract definition in the literature, and there

is no equivalent to the fan construction for toric varieties. The natural combinatorial

structure dual to a central arrangement is a zonotope, and the natural structure dual

to an affine arrangement is a zonotopal tiling. Hence, we define a construction which

takes a zonotope Z to an affine variety Y (Z), and a zonotopal tiling to a variety Y (T ).

Additionally, we provide an abstract definition of “hypertoric variety,” and show that

our varieties satisfy this definition if and only if the tiling is full-dimensional.

1.1. Preliminaries

We now give some definitions that build up to the definition of hypertoric variety.

(Definition 1.4)

Fix an algebraically closed field k. We call a variety X over k convex if k[X] is

finitely generated and the natural map π : X → X0 := Spec k[X] is proper. In this

case, we will also say that X is convex over X0. We call X semiprojective if π is

projective. We call a line bundle L on X (relatively) very ample if it is very ample

with respect to the map X → X0; thus X is semiprojective if and only if it admits a

very ample line bundle.

Definition 1.1 (Beauville) [Bea00] A symplectic variety X over k is a normal

Poisson variety such that
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– the Poisson structure on X is induced by a symplectic form ω ∈ Ω2(Xreg) on the

regular locus

– for some (equivalently any) resolution π : X̃ → X, the form π∗ω extends to a

2-form on X̃.

We say that an action of Gm on X has nonnegative weights if the induced

grading on k[X] is zero in negative degrees. We say that the action has positive

weights if, in addition, k[X]Gm = k.

Definition 1.2 A symplectic variety X over k is conical if there exists an action of

Gm on X with positive weights, such that the Poisson structure is homogeneous of

negative weight.

Note that the choice of Gm action is not part of the data of a conical symplectic

variety. We call a particular Gm action a weight m action if the Poisson structure is

homogeneous of weight −m.

Definition 1.3 A partial conical symplectic resolution (PCSR) over k is a convex

conical symplectic variety X such that the map X → X0 is an isomorphism over Xreg
0 .

We now provide our abstract definition of “hypertoric variety.” Fix a torus T and

d = dimT .

Definition 1.4 A T -hypertoric variety is a PCSR X of dimension 2d equipped with

an effective Hamiltonian action of T . We further require that the conical action of Gm

can be chosen to commute with T .

When we have to choose a moment map µ for the action of T , we always choose the one

which takes the Gm-fixed points to the origin. The level set µ−1(0) which contains these

points is called the extended core of X. We are primarily interested in comparing the
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Gm and T actions on the extended core, because the extended core is the only level set

of µ which is preserved by Gm.

We use ρ(t, s) denote the automorphism of X induced by (t, s) ∈ T ×Gm.

Definition 1.5 For a cocharacter η of T and a T ×Gm-subvariety X ′ ⊂ X, we say that

Gm acts by η on X ′ if ρ(η(s), 1)|X′ = ρ(1, s)|X′ for all s ∈ Gm. We call η a matched

cocharacter if there exists a T ×Gm-subvariety on which Gm acts by η but does not

act by any other cocharacter.

Definition 1.6 Given a T ×Gm-variety X, we define the η-twisted action to be the

action where (t, s) acts by ρ(η(s)t, s).

In Chapter III, we define a construction Z 7→ Y (Z) which takes as input a weight 2

integral zonotope in the cocharacter lattice N := X∗(T ) and produces an affine Poisson

T ×Gm-variety. In Chapter IV we define T 7→ Y (T ) which takes as input a weight 2

integral zonotopal tiling in the cocharacter lattice N := X∗(T ) and produces a Poisson

T ×Gm-variety. It will be immediately clear from the definitions that if T is the trivial

tiling of the zonotope Z, then Y (Z) = Y (T ) and that the Gm action has weight 2.

Many characteristics of Y (T ) can be determined from the combinatorics of zonotopes

and zonotopal tilings, as defined in Chapter II.

– Y (T ) is a hypertoric variety if and only if T is a full-dimensional tiling. (Theorem

5.3).

– Given two tilings T and T ′, the varieties Y (T ) and Y (T ′) are isomorphic as

Poisson T -varieties if and only if T is a translate of T ′ and are isomorphic as

Poisson T ×Gm-varieties if and only if T = T ′. (Proposition 5.6)
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– Every refinement of tilings T ≤ T ′ induces a map Y (T ′)→ Y (T ). The affinization

of Y (T ) is the map Y (T )→ Y (|T |). In particular, Y (T ) is affine if and only if T

is the trivial tiling of some zonotope. (Corollary 4.1)

– Strictly convex support functions on T are in bijection with T -equivarant ample

line bundles on Y (T ). In particular, Y (T ) is projective if and only if T is regular.

(Proposition 5.9)

– There is one extended core component E(T )v for each vertex v of T , a toric variety

with associated fan Σv. The intersection of two components E(T )v ∩ E(T )v′ is a

toric variety with fan ΣZ , where Z is the smallest zonotope containing v and v′,

and is empty if T contains no such zonotope. (Proposition 5.5)

– The inclusion of a face of a zonotope F ⊂ Z corresponds to the inclusion of a

subvariety Y (F ) ⊂ Y (Z). (Note that if a zonotope has positive codimension, then

the associated variety is not a hypertoric variety.) (Corollary 3.12) The variety

Y (T ) is the colimit of the directed system {Y (Z)|Z ∈ T }, where morphisms are

given by face inclusions. (Corollary 4.3)

– For a cocharacter η, the η-twisted Gm action has nonnegative weights if and only

if η ∈ |T | and it has positive weights if and only if η is in the interior of |T |.

(Proposition 5.7)

We also make the conjecture that we have described all hypertoric varieties.

Conjecture 1.7 For every T -hypertoric variety Y , there exists a full-dimensional

weight-two zonotopal tiling T in N (unique up to translation by Theorem 5.3) such that

Y is isomorphic to Y (T ) as a Poisson T -variety.
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We end this section by giving examples of results on toric varieties and analogous

results on hypertoric varieties. (Table 1.1)

Toric result Hypertoric result

A cone σ in N determines an affine
toric variety X(σ).

A zonotope Z in N determines an
affine hypertoric variety Y (Z).

A cone σ∨ in M := N∗ determines
an affine toric variety X(σ).

A hyperplane arrangement A0 in
M determines an affine hypertoric
variety Y (A).

A polytope P whose recession
cone is σ∨ determines projective
toric partial resolution X(P ) of
X(σ).

An affine hyperplane arrangement
A with associated central
arrangement A0 determines a
projective hypertoric resolution
Y (A) of Y (A0).

A refinement Σ of σ determines
a toric partial resolution X(Σ) of
X(σ)

A tiling T of Z determines a
hypertoric partial resolution Y (T )
of Y (Z).

A support function φ on Σ
determines a T -equivariant line
bundle L(φ) on X(Σ), which is
ample if and only if φ is strictly
convex.

A support function φ on T
determines a T -equivariant line
bundle L(φ) on Y (T ), which is
ample if and only if φ is strictly
convex.

TABLE 1.1. A comparison of results on toric and hypertoric varieties
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CHAPTER II

COMBINATORICS

We now present standard material on oriented matroids, zonotopes, and hyperplane

arrangements. See for example [BLVS+99] or [Zie95].

Throughout this chapter, a = (a1, . . . , an) is any configuration of vectors in a

lattice N which spans NR
1, and ν is an additional integral vector in N . Given such a

configuration, we describe three related constructions: the oriented matroid M(a), the

linear hyperplane arrangement A(a), and the zonotope Z(a).

2.1. Sign Vectors and Oriented Matroids

We refer to an element of the set {+1,−1, 0}, which we abbreviate {+,−, 0}, as a

sign, and for any index set E, an element of {+,−, 0}E as a sign vector.2 Given a

real number λ, we use sign(λ) to mean +, −, or 0 if λ is positive, negative, or zero, and

given a vector (λi) of real numbers, we define the sign vector sign(λ) componentwise.

Finally, we define a partial order on signs by 0 < + and 0 < −, and define a partial

order on sign vectors componentwise.

Given a sign vector u, we define the support of u to be the set {i ∈ E|ui 6= 0}.

Given two sign vectors u and v, we define the separation set S(u, v) to be the subset

{i|ui = −vi 6= 0} of their mutual support on which they disagree. We define uv as the

componenent wise product (uv)i = uivi, and we say u ⊥ v if uv consists of only 0s, or

has at least one + and at least one −. Finally, we define u ◦ v by (u ◦ v)i = ui if ui 6= 0,

and vi otherwise.

1All of the combinatorial definitions are valid for any configuration, spanning or not. The difference
is only important in Remark 2.6.

2We will almost always use either [n] := {1, . . . , n} or [n] ∪ 0 as index sets.
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Given a vector configuration a, we can define two sets of sign vectors V =

{sign(λ)|
∑
λiai = 0} and V∗ = {sign(λ(a))|λ ∈ N∗}. These are our primary examples

of oriented matroids:

Definition 2.1 An oriented matroid M is a set E and a collection F of sign vectors

indexed by E satisfying:

– 000 · · · 0 ∈ F

– If u ∈ F , then −u ∈ F

– If u, v ∈ F , then u ◦ v ∈ F

– If u, v ∈ F and i ∈ S(u, v), then there is w ∈ F such that wi = 0 and wj = (u◦v)j

for all j /∈ S(u, v).

We have the following from [Zie95]:

Proposition 2.2 Let a ∈ Nn. Then M(a) = ([n],V) and M∗(a) = ([n],V∗) are

oriented matroids.

Proposition 2.3 Let (E,F) be an oriented matroid. Then (E,F⊥) is also an oriented

matroid, where F⊥ := {u : u ⊥ v for all v ∈ F}.

The entire set F can be reconstructed from its maximal elements Fmax or its

minimal nonzero elements Fmin with respect to the partial order <.

Proposition 2.4 Let a ∈ Nn. Then V = (V∗)⊥ = (V∗min)⊥ = (V∗max)
⊥ and V∗ = V⊥ =

V⊥min = V⊥max.

For any sign vector u on an index set E and set E ′ ⊆ E, we define u|E′ to be the

sign vector obtained by deleting all entries indexed by E \ E ′. If M = (E,F) is a

matroid and E ′ ⊆ E, we define M|E′ to be (E ′, {u|E′ : u ∈ F}).
8



If u and u′ are sign vectors on E and E ′, we use u|u′ to represent the sign vector

on E t E ′ obtained by concatenating their entries (and likewise for a|a′).

2.2. Zonotopes and Linear Hyperplane Arrangements

Given a configuration a in N , we can make two geometric constructions:

Definition 2.5 A (weight 2) zonotope in NR is a polytope which is Minkowski sum

of integral line segments of even length. We define Z(a) :=
∑n

i=1[−1, 1] · ai and more

generally, for any sign vector u, Z(a, u) :=
∑n

i=1 uiai +
∑

ui=0 ·ai.

Remark 2.6 Zonotopes of the form Z(a) are precisely the full-dimensional zonotopes

centered at 0. We will always use such a zonotope, and all other zonotopes will be

subsets of the form Z(a, u).

The term “weight 2” is a reference to the length of [−1, 1]. We assume all zonotopes

are weight 2 until Section 5.3.

Alternately, we may view Z(a) as the convex hull of the points
∑n

i=1±ai. It is

clear that the zonotope is unchanged if we permute the ai or replace ai with −ai; we

call such an action a relabeling. It is also unchanged if we replace ` copies of ai with a

single vector `ai or vice versa; we call this a multiplicity operation. Conversely, we

may recover a up to relabeling and multiplicity: each edge is a translate of [−m,m] · ai

for some ai; the vectors ai and −ai appear a total of m times if both length and multiple

appearances are counted.

Figure 2.1 gives an example of a zonotope and a relabeling.
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origin a1

a3 a2

−+ + + + +

+ +−

+−−−−−

−−+
a1

a2

a3

−+− + +−

+−−

+−+−−+

−+ +

FIGURE 2.1. A zonotope with vertices labeled, and a relabeling of the same zonotope.
To avoid confusion, no axes are drawn, and vectors are based at the origin.

Definition 2.7 We call a zonotope Z a parallelotope if there is an injective affine

map φ : Rn → NR such that φ(Zn) ⊂ N and φ([−1, 1]n) = Z. We call a parallelotope a

cube if φ(Zn) = N .

Definition 2.8 Fix an edge E of a zonotope Z. We define a zone to be all faces of Z

which contain an edge parallel to E.

We note that for any face F of Z(a), there is a unique sign vector u so that

F = Z(a, u).3 Given a zonotope Z, we may construct sign vectors without explicit

reference to a: we number the zones Z1, . . . ,Zn of Z. For each zone Zi, the set
⋃
F /∈Zi

F

contains two connected components; we arbitrarily label one the positive side and one

the negative side. Then to each face F , we give it the sign vector whose ith coordinate

is + or − if F is on the positive or negative side of Zi, and 0 if F ∈ Zi.

3In the case of a non-face subzonotope, neither existence nor uniqueness of the sign vector is
guaranteed.
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Definition 2.9 Let F be a face of a zonotope Z; then we define the cone associated to

F , CF,Z := R+(Z − F ) = {r(n1 − n2) : r ∈ R, n1 ∈ Z, n2 ∈ F}. If there is no ambiguity,

we write CF,Z as CF .

Definition 2.10 Given a ∈ Nn, for each nonzero ai, we define Hi = a⊥i ⊂ M := N∗,

and we define A(a) = {Hi}1≤i≤n. We also define H+
i and H−i to be the closed half

spaces which ai maps to [0,∞) and (−∞, 0], respectively.

Given a sign vector u, we define Mu =
⋂
ui 6=0H

ui
i ∩

⋂
ui=0Hi. We have that Hu is

not empty if and only if u ∈ V∗. For each χ ∈M , we can associate a unique smallest u

so that χ ∈Mu.

There is a bijection between the faces of Z(a) and of A(a) given by sign vectors.

We may describe this bijection more directly by using the fact that elements of M are

linear functionals on N (and thus on Z). Given Mu, Zu consists of the subset of Z

that maximizes all elements of Mu (it suffices to choose an interior element of Mu).

Conversely, given Zu, Mu consists of the elements of M that are maximized at every

point of Zu.

2.3. Zonotopal Tilings

All of the structures in this section are informally “one dimension up” from those

in the previous section. More precisely, an affine oriented matroid is an oriented matroid

on the ground set E ∪ {0}, an affine hyperplane arrangement in MR is equivalent to

a hyperplane arrangement in MR ⊕ R, and many (though crucially, not all) zonotopal

tilings of a zonotope Z ⊂ NR are equivalent to a zonotope Z̃ ⊂ NR ⊕ R.

An affine oriented matroid is an oriented matroid with a distinguished element.

More precisely,

11



Definition 2.11 An affine oriented matroid (E,F , g) is a set E, and element g ∈ E,

and a set F of sign vectors on E such that (E,F) is an oriented matroid and there is

at least one sign vector u ∈ F with ug 6= 0. (In matroid terminology, g is not a loop.)

The positive covectors F+ are the set of sign vectors {u ∈ F : ug = +}. A positive

covector u is called a bounded covector if there is no sign vector v in F with u < v

and vg = 0.

In practice, we will always use 0 as the distinguished element, and conversely if

0 ∈ E then we are viewing the associated matroid as an affine matroid. We say that

(E∪{0}, F ) is an affine matroid over the oriented matroid (E, {u|E : u ∈ F and u0 = 0}).

Note that F = ((F+)⊥)⊥, so that any affine oriented matroid is identified by its

positive covectors.

Definition 2.12 A zonotopal tiling T is a collection of zonotopes such that

– |T | :=
⋃
Z∈T Z is a zonotope.

– If F is a face of Z ∈ T , then F ∈ T .

– If Z,Z ′ ∈ T , then the intersection Z ∩ Z ′ is a face of both Z and Z ′.

In this case we says that T is a zonotopal tiling of |T |.

Figure 2.2 gives two examples of zonotopal tilings.

Definition 2.13 Let a ∈ Nn be a vector configuration, and M+ be the positive

covectors of some oriented matroid over the matroid M(a). Then T (a,M+) :=

{Z(a, u)|u ∈M+}.

Tilings correspond to oriented matroid extensions. [RGZ94, Theorem 1.7]

12



FIGURE 2.2. Two different tilings of the same zonotope.

Theorem 2.14 (Bohne-Dress) Let a ∈ Nn be a configuration. Then T (a,M+) is a

zonotopal tiling of Z(a). Furthermore, all zonotopal tilings of Z(a) arise this way.

To describe the inverse map, we generalize the notion of zones to tilings.

Definition 2.15 Divide the edges of T into equivalence classes using the relation

generated by E ∼ E ′ if E and E ′ are opposite edges of some zonotope Z ∈ T . Fix one

such equivalence class; the collection of all zonotopes which contain an edge from this

class is called a zone of the tiling. (See Figure 2.3.)

Remark 2.16 If all edges of |T | are edges of T , then E ∼ E ′ if and only if E is parallel

to E ′.

If T is a tiling, then we obtain a sign vector for each zonotope as before: number the

zones and designate one side as “positive” and one as “negative.” From here we obtain

both a configuration a and a set M+ of sign vectors. By the Bohne-Dress Theorem,

these are the sign vectors of an orientation. If we wish to use a designated representation

Z = Z(a′), then we may transform a to a′ by relabeling and multiplicity operations,

provided we apply the same transformations to M+.
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Definition 2.17 Let Z be a zonotope in T . Then the fan associated to Z is

ΣZ := {CZ,Z′|Z is a face of Z ′ ∈ T }.

We note that a zonotopal tiling can be recovered from the set of vertices and their

associated fans.

Definition 2.18 Given two tilings T and T ′ with |T | = |T ′|, we say that T ′ refines T

if, for every Z ′ ∈ T ′, there is a Z ∈ T such that Z ′ ⊆ Z. In this case, we write T ′ ≤ T .

If T = T (a,M+) and T ′ = T (a,M′
+), we say that M+ and M′

+ are compatible

if, for u ∈M+ and u′ ∈M′
+, Z(a, u) ⊂ Z(a, u′) implies u ≥ u′.

Definition 2.19 We define a support function φ for T to be a piecewise linear

function |T | → R such that

– φ(N ∩ |T |) ⊂ Z

– φ is affine-linear on each zonotope of T , and

– if v′ and v are opposite vertices of |T |, then φ(v′) = −φ(v).

A support function is called strictly convex if it is convex and the maximal domains

of linearity are the maximal zonotopes of T . If there exists a strictly convex support

function for T , then T is called a regular zonotope.

Note that in the case of a zonotope centered at 0, the third condition becomes

φ(−v) = −φ(v). If m and m + ai are both in the ith zone, then φ(m + ai) − φ(m) is

independent of m; we call this integer the slope along ai and refer to it as ri. The points

(ai, ri) and (−ai,−ri) in NR × R are then the vertices of a zonotope Z(φ) (centered at
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zero by the third condition), and for any a ∈ NR, φ(a) is the maximum value of r such

that (a, r) ∈ Z(φ).

FIGURE 2.3. The bold line segments are an equivalence class. Together with the gray
two-dimensional zonotopes, they form a zone of the tiling. The tiling which includes the
dashed edges and the three parallelotopes which contain them is called the non-Pappus
tiling, and is well-known to be non-regular.

Such a tuple (r1, . . . , rn) can also be used to define an affine arrangement by

translating Hi by ri; more precisely, we define H̃i := {ai + ri = 0}. Then each

hyperplane still has a positive and a negative side as before, and we may again define

chambers Mu. There is of course a bijection between affine arrangements and support

functions given by using the same ri. However, this has a more geometric meaning.

Given a configuration a and a tuple (r1, . . . , rn), define ãi := (ai, ri) ∈ N ⊕R. Then

the lower faces of Z(ã) determine a convex support function on a tiling of Z(a), and

the arrangement {H̃i} is the the intersection of the arrangement A(ã) with NR × {1}.
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CHAPTER III

VARIETIES FROM ZONOTOPES

Rather than an abstract lattice N , we now assume that T is a torus over a field k,

and a is a vector configuration in N := X∗(T ) which is compatible with k in the sense

that no nonzero ai has a length which is a multiple of the characteristic of k.

A configuration a ⊂ N determines a map from the coordinate torus Gn
m to the

torus T . In general, we only have an exact sequence

1→ K → Gn
m → T → T ′ → 1

where the connected component K◦ of K is a torus, and K/K◦ is a finite group, and T

and T ′ are tori. If the configuration spans NR, then T ′ is trivial, and if the sublattice

generated by a is saturated, then K = K◦. Unless otherwise noted, we assume for

the rest of this chapter that a spans NR. (We do not assume that the sublattice they

generate is saturated.) If N ′ is a lattice, then we define TN ′ := N ′ ⊗Gm to be the torus

with cocharacter lattice N ′. If N ′ ⊂ N , then TN ′ is a finite quotient of a subtorus of

T = TN . This allows us to write a short exact sequence of tori

1→ K◦ → Gn
m → TZa → 1

which is easier to work with. In particular, if we choose isomorphisms K◦ ∼= Gk
m

and T ∼= Gd
m, then the map from Lie(Gn

m) to Lie(T ) is given by an n × d matrix

A = (a1| · · · |an). Then a cocharacter β of Gn
m is a cocharacter of K◦ if

∑n
i=1 βiai = 0.

The dependences β are a vector space of dimension k; we choose a basis {bj} of these

to be the rows of a matrix B. Then the map Lie(K) → Lie(Gn
m) is given by BT . By
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choosing this basis carefully, we can make computations easier. Among other things,

throughout this paper it may be assumed that sign(bj) is minimal.

3.1. Varieties from Arrangements and Signed Arrangements

In this section we define the variety Y (Z) for any zonotope Y (Z). First, given a

spanning configuration a, we define Y (a) as the categorical quotient by K of the level

set µ−1
K (0). We then define the variety Y (a, u,N) by removing coordinate hyperplanes

from T ∗An before taking the quotient. Finally, we show that the variety obtained by

either construction depends only on the zonotope Z(a) or Z(a, u).

We coordinatize T ∗An = Spec k[x1+, . . . , xn+, x1−, . . . , xn−]. If necessary for clarity,

we may write xi,+ or xi,− instead. For convenience, we often write xi± to mean both

xi+ and xi−; thus we could instead write k[xi± : 1 ≤ i ≤ n]. We use x+ = (x1+, . . . , xn+)

and likewise for x−. Finally, we define xi = xi+xi−.

Given a configuration a ∈ Nn of length n, we define 1

U(a, N) := Spec k[x1+, . . . , xn+, x1−, . . . , xn−] ∼= T ∗An

with the following structures:

– The Poisson structure is given by the symplectic form
∑n

i=1 dxi+ ∧ dxi−.

– The Gn
m action is given by t · (x+, x−) = (tx+, t

−1x−).

– This action is Hamiltonian with moment map µn(x+, x−) = (x1, . . . , xn) ∈ An ∼=

Lie(Gn
m)∗

– The Gm action has weight one on all variables s× (x+, x−) = (sx+, sx−).

1We do not need all the data of (a, N) to define U(a, N), but this keeps U(a, N) consistent with
other notation. In particular, we use the length of a.

17



We will define the associated affine hypertoric variety Y (a, N) as the algebraic

symplectic quotient U(a, N)////K, which will require both taking a level set of the

moment map µK and taking a GIT quotient by K. This may be done in either order,

and it is useful to have notation for the result of either operation done alone.

Definition 3.1 Let a be a configuration of vectors in N that spans NR. Then we

define L(a, N) = V (µK) ⊆ U(a, N) and X(a, N) := U(a, N)//K, and Y (a, N) =

L(a, N)//K ∼= V (µK) ⊂ X(a, N).

Proposition 3.2 Let a′ and a′′ be vector configurations in lattices N ′ and N ′′,

respectively. Then Y (a′|a′′, N ′ ⊕N ′′) ∼= Y (a′, N ′)× Y (a′′, N ′′) as TN ′⊕N ′′ ∼= TN ′ × TN ′′-

Poisson varieties.

Proof: We may choose B to be in block diagonal form. Then we have

k[Y (a′|a′′, N ′ ⊕N ′′)] = k[T ∗An′ × T ∗An′′ ]K
′⊕K′′/(µK′ , µK′′)

∼= k[T ∗An′ ]K
′
/(µK′)⊗ k[T ∗An′′ ]K

′′
/(µK′′)

∼= k[Y (a′, N ′)]⊗ k[Y (a′′, N ′′)]

2

In particular, we may add or delete 0 entries of a without affecting the variety,

since Y ((0), 0) is a point.

Proposition 3.3 Let a be a configuration of vectors in N that spans NR. Then

Y (a, N) = Y (a,Za)/(K/K◦).
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Proof: We have that L(a) := L(a, N) = L(a,Za), since it does not depend upon the

ambient lattice. Then k[Y (a, N)] = k[L(a)]K = (k[L(a)]K
◦
)K/K

◦
= k[Y (a,Za)]K/K

◦
=

Spec k[Y (a,Za)]//(K/K◦), and the quotient is geometric since K/K◦ is finite. 2

Proposition 3.4 If a and a′ are configurations of vectors in N , compatible with k, with

Z(a) = Z(a′), then Y (a, N) ∼= Y (a′, N).

Proof: It suffices to consider the case where a and a′ differ by a permuation, a sign

change, or a multiplicity operation. In the first two cases, the isomorphisms are obvious.

In the third case, we assume that the operation takes place at the end, so that ai = a′i

for i < n, and an = `a′i for i ≥ n. We choose B to have the form

B =

 B′′ 0

`C 1


and

B′ =



B′′ 0 0 0

C 1 −1 0

0
. . .

0 0 1 −1


Define a map k[Y (a′)]→ k[Y (a)] by x′i± 7→ xi± for i < n, and x′n± · · ·x′n′± 7→ xn±/` for

i ≥ n, and x′i 7→ xn/`. 2

Note that the compatibility with k is essential; if ` divides chark, then no such

map exists. (There is a map Y (a)→ Y (a′) which is an isomorphism of varieties, but

not of Poisson varieties.)
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We also may define varieties using sign vectors; if ui 6= 0, then we remove the

locus xi,ui = 0 for each nonzero ui. We use xu :=
∏
xi,ui , where xi,0 = 1. We begin

with U(a, u,N) := Spec k[xi±]xu ⊂ U(a, N), and define the other three analogously:

L(a, u,N) := U(a, u,N) ∩ L(a, N), X(a, u,N) := U(a, u,N)//K, and Y (a, u,N) :=

L(a, u,N)//K ∼= V (µK) ⊂ X(a, u,N). Note that U(a, N) = U(a, 0, N), and thus

likewise for L(a, N), X(a, N), and Y (a, N).

Lemma 3.5 Let (a, u) be a signed configuration and (a′, u′) be the signed configuration

obtained by appending η ∈ N to a and + to u. Then Y (a, u) ∼= Y (a′, u′) as T -varieties,

with Gm actions twisted by η.

Proof: Write B′ by appending a column of 0s to B, and then appending a single

row expressing a′n′ as a linear combination of ai. Then Y (a′, u′, N) = (Y (a, u,N) ×

k[xn′,±, x
−1
n′+])K

′/K/(f), where

f = xi− −
1

bn′,d′xi+

n∑
i=1

bi,d′xi

Hence Y (a′, u′, N) = (Y (a, u,N) × k[x±1
n′,+])K

′/K , and there is a bijection between K-

invariant monomials in the first n variables, and K ′-invariant monomials in all n′

variables given by the last row of B. 2

In particular, we may append to a any configuration of vectors which sums to 0

and to u the corresponding number of +s without changing Y (a, u,N).

Proposition 3.6 Let (a, u) and (a, u′) be signed configurations in N . If Z(a, u) =

Z(a′, u′), then Y (a, u,N) ∼= Y (a′, u′N) as Poisson T × Gm-varieties. If Z(a, u) =
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Z(a′, u′) + η for some cocharacter η, then they are isomorphic as Poisson T -varieties,

but the Gm action on Y (a, u,N) is the η-twisted action on Y (a′, u′, N).

The converse of both statements is true; this is proved in the next chapter. In light

of Proposition 3.6, we make the following definition:

Definition 3.7 Let Z = Z(a, u) be a zonotope in N such that a spans NR. Then

Y (Z,N) := Y (a, u,N). If N is understood, we write Y (Z) for Y (Z,N).

Proposition 3.8 There is a TN∩Ra ×Gm-equivariant isomorphism Y (a, u,N ∩ Ra)×

T ∗(TN/TZa) ∼= Y (a, u,N) that is T -equivariant on the second factor.

Proof: Let e = (e1, . . . , e`) be vectors in N that descend to a basis of N/Za. Then

(U(a, u,N)× T × T )////Gn
m = U(a|e|e, u|+ · · ·+ | − · · · −, N)////K ′, where K ′ is the

kernel of the map given by the configuration a|e|e. 2

Remark 3.9 All zonotopes are expressible in the form Z(a, u), with many nonzero

signs in the case of full-dimensional zonotopes. We can also define Y (a, u,N) where

a does not span N . Since we wish Proposition 3.6 to hold under this new definition,

we should be able to append pairs of opposite vectors to a, with corresponding +s

appended to u, without changing Y .

Let a be any configuration of n vectors in N . Then we define Y (a, N) =

(U(a, u,N) × T × T )////Gn
m, where Gm acts on U(a, u,N) as normal, and on T × T

via (A(t), A(t)−1), where A is the map Gn
m → T .

21



3.2. Zonotopes and the Extended Core

Before talking about zonotopes, we need a more concrete description of the action

of Gn
m (particularly K) on U(a, N). Let πi be the projection U(a, N) → T ∗A1 =

Spec k[xi±], β ∈ Zn be a character of Gn
m, and p ∈ T ∗A. Then there are three possibilities

for lifting the map φβ,i,p : Gm → T ∗A1 given by t 7→ tβ · p to a map A1 → T ∗A1 .

– If the action is nontrivial and p is off the coordinate axes then the orbit is closed,

and φβ,i may not be extended.

– If the action is nontrivial and p is on one coordinate axis, then the origin is in the

closure of tβ · p, and exactly one of φβ,i or φ−β,i may be extended.

– If p is a fixed point, then either p is the origin or βi = 0, and both φβ,i and φ−β,i

may be extended.

We now consider a point p ∈ U(a, N) and the map φβ,p : Gm → U(a, N) given by

t 7→ tβ · p. We define a sign vector indexed by the coordinates of µn(p) which are zero,

where up,i = + if and only if xi+ 6= 0, up,i = − if and only if xi− 6= 0. The map φβ,p may

be extended if and only if it may be extended coordinatewise.

We decompose the set µ−1
n (0), where at least one of xi+ or xi− is 0 for every i, as

the union of Gm-orbits O′u where xi,ui 6= 0, and xi,j = 0 otherwise. Clearly, O′u is in the

closure of O′v if and only if u ≤ v, but we can say more about how this closure interacts

with the action of Gn
m.

Proposition 3.10 Let β ∈ Zn be a cocharacter of Gn
m, let p ∈ O′u. Then tβ · p is closed

if and only if u ⊥ sign(β). The map φβ may be extended if and only if (u sign(β)) has

no −s.
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The interesting case is where the orbit is not closed and the map may be extended:

in this case the image of 0 under the extension is in the closure of O′u but not in O′u.

Proposition 3.11 The K-orbit of a point p ∈ O′u is closed if and only if u ∈M(a). If

u /∈M(a), then the unique closed K-orbit in the closure of K · p is O′v, where u covers

v.

Proof: If u ∈ M(a), then for every cocharacter β of K, sign(β) ∈ M∗(a), so that

β(Gm) · p is closed. If u /∈M(a), then there is some cocharacter β such that sign(β) is

not perpendicular to u. Since sign(β) ⊥ v, it must be that sign(β) and v have disjoint

support. Aassume that wherever sign(β) and u agree, they both have +. Then we have

that lim β(t) ∈ O′w, where wi = 0 if ui = sign(βi) = + and wi = ui otherwise. If w = v,

then we are done; otherwise we may proceed by induction, since u > w ≥ v. 2

Since u ∈M(a) if and only if Z(a, u) is a face of Z(a), this implies:

Corollary 3.12 Let Z be a zonotope and F be a face of Z. Then there is a canonical

inclusion Y (F )→ Y (Z).

3.3. The Extended Core

Definition 3.13 We define the extended core E(a, u,N) of Y (a, u,N) to be the

subvariety2 µ−1(0), where µ is the moment map for the T action.

This is also the subvariety of X(a, u), defined by the ideal (µn). The ideal (µn) is

not prime, but it has an obvious decomposition as (µn) =
⋂
u((x1,u1), . . . , xn,un).

We may now describe the coordinate ring k[Y (Z)] more explicitly:

2That is, we give the reduced scheme structure to the subscheme µ−1(0).
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By Definition 3.1, Y (Z) ∼= Spec k[xi±]K/(µK) is a subset of X(Z) := Spec k[xi±]K .

The varietyX(Z) is an affine toric variety, called the Lawrence toric variety associated

to Z. It is clear that the components xi = xi+xi− of the map µn are primitive K-invariant

monomials, and therefore all other primitive K-invariant monomials contain at most

one of xi+ or xi− for each i. We call any monomial in k[xi±] which is not in the ideal

generated by µn an extended core monomial, or an EC monomial for short. Thus,

the coordinate ring k[X(Z)] = k[xi±]K is generated by n moment map components

xi+xi−, and some number of invariant EC monomials.

Note that only invariant EC monomials (monomials in k[xi±]K which are not in

the ideal (µ)) are functions on the extended core, but all EC monomials are sections of

line bundles (and thus determine subvarieties).

Note that the extended core is a T ×Gm-variety, whose components are T -toric

varieties. More specifically:

Definition 3.14 For any sign vector u, we define Vu to be the subvariety defined by

xi,−ui = 0, and we define Ou to be the open subset of Vu where xi,ui 6= 0.

Proposition 3.15 The components of the extended core are the Vu for maximal

covectors u. The associated cone is the cone over ua := (uiai)1≤i≤n.

Proof: By relabeling a, it suffices to prove that the statement when u is the sign vector

of all +s, or the subvariety where xi− = 0 for all i. However, this is the T -toric variety

corresponding to the cone over the ai. This toric variety has the same dimension as T if

and only if the cone over the ai is pointed, which occurs exactly when u is a maximal

covector. 2

It is also clear the Ou is the dense T -orbit of Vu.
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We now use matched cocharacters and positive weight cocharacters to recover Z

from Y (Z).

Proposition 3.16 If η ∈ Z(a, u) for some u ∈ M(a), then Gm acts by η on Vu. In

particular, the matched cocharacters of Y (Z) are the vertices of Z.

Proof: The action of Gm on Vu is given by the cocharacter
∑
aiui. Furthermore, the

action of Gm by ai is trivial if ui = 0 since xi+ = xi− = 0. But every η ∈ Zu is of the

form η =
∑
uiai +

∑
ui=0 ciai for some integers ci. 2

Proposition 3.17 Let η ∈ N . Then the action of Gm on Y (Z) by s ×η p := sη(s)p

has nonnegative weights if and only if η ∈ Z. It has positive weights if and only if η is

in the interior of Z.

Proof: Moment map components always have weight 2, and a cocharacter has positive

weights on Y (Z) if and only if it has positive weights on E(Z), if and only if it has positive

weights on each component of E(Z) where it is nonzero, and similarly for non-negative

weights. Finally, it has positive weight on a component corresponding to a vertex v

if it is in the interior of the cone Σv, and non-negative weights if it lies in the cone at all. 2

3.4. Smoothness

We now give a criterion for Y (Z) to be smooth:

Proposition 3.18 The following statements are equivalent:

1. Z is a cube
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2. The variety Y (Z) is smooth

3. The variety Y (Z) is smooth at the origin

Proof: If Z is a cube, then we may write it as Z = (e1, . . . , en) for some basis e1, . . . , en

of N . Hence, Y (Z) = T ∗An. If Z is not a cube, note that Y (Z) is a codimension k

subvariety of X(Z), and T ∗0 Y (Z) is a codimension k subspace of T ∗0X(Z). Since X(Z)

is singular at the origin, so is Y (Z). 2

If Y (Z) is not smooth, then its regular locus is what might combinatorially be

expected.

Proposition 3.19 The regular locus Y (Z)reg =
⋃
F is a cube Y (F ).

Proof: If p ∈ Y (F ) where F is a cube, then p is a regular point since Y (F ) is smooth.

For the converse, let F be the smallest face such that p ∈ Y (F ) and suppose that F is

not a cube. Then p maps to (0, p′) ∈ Y (F )× T ∗(TN/N ′) under the isomorphism of 3.8,

and hence is a singular point. 2

Proposition 3.20 If Z is a parallelotope, then Y (Z) is an orbifold.

Proof: In this case Z = Z(a) for some basis of NR. 2
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CHAPTER IV

VARIETIES FROM TILINGS

We now construct varieties of the form Y (T ) for zonotopal tilings T . We are

now removing a set of codimension at least 2 from T ∗An, although the definition does

not take this form; instead of describing U(a,M+, N) as the complement of a set of

codimension 2, we describe it as the union of U(a, u,N) for u ∈M+.

Let M+ be the positive sign vectors of an affine oriented matroid over M(a).

Then we define U(a,M+, N) =
⋃
u∈M+

U(a, u,N) ⊆ U(a, N). As before, we define

X(a,M+, N) := U(a,M+, N)//K, L(a,M+, N) = U(a,M+, N) ∩ L(a, N), and

Y (a,M+, N) = L(a,M+, N).

The variety X(a,M+, N) is called a Lawrence toric variety, with affinization

X(a, N). Its fan is necessarily a subdivision of the cone associated to X(a, N). We

denote the associated cone ΣZ , and refer to the rays of ΣZ as ρi+ if they are associated

to xi+ or ρi− if they are associated to xi−. To a sign vector u, we associate the cone

σu := R+({ρi,j|j ≤ ui}). For any tiling T of Z, the map φ : Zu 7→ σu then associates

a collection of cones {φ(Z)}Z∈T to T . This collection determines a fan1, and U(T ) is

the open set associated to it; hence X(T ) := U(T )//K is a partial toric resolution of

X(|T |).

Because L(a,M+, N) ⊂ L(a, N) with complement at least codimension 2, we have

that their coordinate rings are equal, and thus so are K-invariant functions. The induced

map Y (a,M+, N)→ Y (a, N) is thus the affinization map. On the level of tilings, we

have the following proposition.

1The collection is not itself a fan, but it does determine one; it includes all maximal cones of the fan.
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Proposition 4.1 Let T be any zonotopal tiling. Then Y (T )0
∼= Y (|T |).

Note that if T consists of a zonotope Z and its faces, then U(Z) = U(T ), so that

we we may consider Z as a tiling.

4.1. Refinements and Partial Resolutions

For any refinement of tilings T ≤ T ′ of Z, we have an inclusion U(T ′) ⊂ U(T ),

which induces a T -equivariant Poisson map Y (T ′) → Y (T ). For each zonotope Z =

Z(a, u) ∈ T , the K-orbits in U(a, u,N) which are in U(a, T ′, N), are precisely the

K-orbits indexed by v ≥ u.

The next lemma says that these maps are all partial resolutions.

Proposition 4.2 The map Y (T ′) → Y (T ) is proper and an isomorphism over the

regular locus of Y (T ).

Proof: Choose compatible representations T ′ = T (a,M′
+) and T = T (a,M+). On the

level of Lawrence toric varieties, X(a,M′
+, N)→ X(a,M+, N) is proper; this remains

when taking a closed subvariety. The map is an isomorphism over the regular locus

because cubes cannot be subdivided. 2

The following description of Y (T ) is now evident:

Proposition 4.3 The variety Y (T ) is the colimit of the directed system {Y (Z)|Z ∈ T }

with morphisms given by the inclusions of faces as in Corollary 3.12.
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CHAPTER V

THE MAIN THEOREM

We now prove that Y (T ) is a hypertoric variety for any full-dimensional tiling T .

It is clear that there is a positive weight Gm action, that the action of T is effective. By

Proposition 4.2 we have that Y (T ) is convex and a partial resolution. In the case that

Z is a parallelotope, we have symplecticness by the following result of Beauville:

Lemma 5.1 If Z is a full-dimensional parallelotope, then Y (Z) is a hypertoric variety.

Proof: In this case K is finite, so Y (Z) = A2n/K, which is symplectic by [Bea00, 2.4]. 2

We prove that Y (T ) is symplectic in general by using the maps φT ′,T and the

following lemma:

Lemma 5.2 Suppose that X → Y is a Poisson map of normal varieties that is an

isomorphism over Y reg. Then X is symplectic if and only if Y is.

Proof: Choose any resolution X̃ → X. If either X or Y is symplectic, then so is X̃

since it is a resolution of both. And if X̃ is symplectic, then both X and Y are, since

the map to each is an isomorphism over the regular locus. 2

Theorem 5.3 Let T be any full-dimensional zonotopal tiling. Then Y (T ) is a hypertoric

variety.

Proof: Choose a refinement T ′ of T by parallelotopes. To prove normality, let Z ∈ T .

Then Y (T ′|Z) is normal, hence Y (Z) = Y (T ′|Z)0 is too. Since the Y (Z) cover Y (T ),
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Y (T ) is normal. To prove symplecticness, we note that Y (T ′) is symplectic, since by

Proposition 5.1 it has a cover by symplectic varieties; hence by Lemma 5.2 Y (T ) is

symplectic too. 2

5.1. The Extended Core

We now state the analogues of Propositions 3.16 and 3.17 for tilings.

Proposition 5.4 If η ∈ Z(a, u), then Gm acts by η on Vu.

Proof: The proof of 3.16 applies without modification. 2

We also note that Vu ⊂ Vv if and only if u ≥ v. Hence we can describe the extended

core more completely:

Proposition 5.5 There is one extended core component E(T )v for each vertex v of T , a

toric variety with associated fan Σv. The intersection of two components E(T )v∩E(T )v′

is a toric variety with fan ΣZ, where Z is the smallest zonotope containing v and v′,

and is empty if T contains no such zonotope.

Proposition 5.6 Given two tilings T and T ′, Y (T ) and Y (T ′) are isomorphic as

Poisson T -varieties if and only if T = T ′ + η. In this case, the × action on Y (T ) is

the ×η action on Y (T ′).

Proof: If Y (T ) and Y (T ′) are isomorphic as Poisson T -varieties, then they have the

same number of extended core components, and hence T and T ′ have the same number

of vertices. Furthermore, the fans associated to corresponding vertices are the same.

This means that there are bijections between the zones of T and T ′ as well. If T and
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T ′ are not translation-equivalent, then at least one zone is of different widths on the

two tilings. But then the two varieties do not have the same resolutions, and hence are

not isomorphic. 2

Because of the map φT ,T ′ , we can extend Proposition 3.17 to all varieties of the

form Y (T ).

Corollary 5.7 Let η ∈ N . Then the action of Gm on Y (T ) by s ×η p := sη(s)p has

nonnegative weights if and only if η ∈ |T |. It has positive weights if and only if η is in

the interior of |T |.

5.2. Line Bundles

For line bundles, we confine our discussion to the smooth case. Suppose that we

have a zonotopal tiling T consisting of cubes, and a support function φ. This support

function determines n integers ri, which we may interpret as a character (r1, . . . , rn) on

T n, which descends to a character α on K. Conversely, a character of K may be lifted

to a character of T n, which provides the ri to determine a support function.

Proposition 5.8 Let T be a tiling of cubes. Then strictly convex support functions on

T are in bijection with T -equivariant ample line bundles on Y (T ).

Proof: We have a commutative diagram

Zn H2
Tn(T ∗An) H2

T (Y )

X∗(K) H2
K(T ∗An) H2(Y )

≈

≈
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of Kirwan maps. Given r ∈ Zn, we have a T -equivariant line bundle in H2
T (Y ). The

cone of strictly convex support functions is the GIT cone under this bijection; by [BPW,

2.22], the cone of strictly convex support functions in Zn corresponds to the ample cone

in H2(Y ). 2

Proposition 5.9 If φ is a strictly convex support function for T , then the set U(T ) is

precisely the semistable set for the character α.

Proof: We may lift φ to a support function on the fan of X(T ); by the theory of toric

varieties (for example, Section 14.2 of [CLS11]), X(T ) = T ∗An//αK. 2

Proposition 5.10 Let T be a zonotopal tiling. Then Y (T ) is a projective hypertoric

variety if and only if T is regular.

Proof: Let T ′ be a regular tiling of |T |. Then by the ample cone of any conical

symplectic resolution of Y (|T |) is a projective GIT quotient at some character of Gn
m.

But we already know these quotients; they are the hypertoric varieties associated to

regular tilings. 2

5.3. Alternate Weights

We have chosen to focus on weight 2 actions of Gm. However, we can produce the

same results with any weight.

Definition 5.11 A weight m zonotope is a set of the form Zm(a) :=
∑n

i=0[0,m] · ai

or a translate Zm(a, ν) := ν + Z(a).
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Note that although Z(a) 6= Z2(a), the two are translates of each other; hence this

definition of “weight 2 zonotope” agrees with our earlier one.

We define Ym(a), Ym(Z), and Ym(T ) to be the same as before, except that we

begin by equipping T ∗An with the action s× (z, w) = (smz, w). All of our proofs follow,

except the proof of conicality; we must translate Zm(a) so that the origin is an interior

point; this may not be possible in the case m = 1.
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CHAPTER VI

RECOVERING THE TILING

We have two methods for recovering the tiling T from the variety Y (T ). Under

conjecture 1.7, this would provide classification of all hypertoric varieties.

First, we can focus on the extended core. In this case, we decompose the core into

its components, each of which is a T -toric variety. To each component, we thus may

associate a fan, and we may determine by which cocharacter Gm acts. In this case,

Conjecture 1.7 is then a statement that these fans are compatible, in the sense that they

do come from a zonotopal tiling.

Conjecture 6.1 Let Y be any T -hypertoric variety. Then:

1. For any matched cocharacter η, there is a unique orbit Oη on which it acts.

2. There is a zonotopal tiling T in N with vertex set equal to the matched cocharacters

of Y , and with Ση equal to the fan of the toric variety Vη.

3. Y is isomorphic to Y (T ) as a Poisson T ×Gm-variety.

Second, given a T -hypertoric variety Y , we can find a cover by affine hypertoric

varieties. For each of these affine patches, we can recover the associated zonotope by

finding the cocharacters which act with positive weights. In this case, Conjecture 1.7

implies that each affine patch has an associated zonotope, and also that these zonotopes

and their faces will then form a zonotopal tiling.

Conjecture 6.2 1. Let Y be an affine T -hypertoric variety. Then there is a zonotope

Z(Y ) such that a cocharacter η has positive weights on Y if and only if η ∈ Z(Y ).
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2. Let Y be any hypertoric variety. Then Y is covered by affine hypertoric varieties

Y1, . . . , Y`, and Z(Y1), . . . , Z(Y`) are the maximial zonotopes of a zonotopal tiling

T , and Y ∼= Y (T ) as a Poisson T ×Gm-variety.

Proposition 6.3 Conjecture 1.7 implies Conjectures 6.1 and 6.2

We note that both Proposition 6.1 and 6.2 are true in the case of varieties of the

form Y (T ).
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CHAPTER VII

A WORKED EXAMPLE

In this chapter we work through an extended example by constructing T ∗CP 2 from

a zonotopal tiling, then recovering the tiling from the variety.

7.1. Constructing T ∗CP 2

We begin with the zonotopal tiling

which we center at the origin. First, we write the underlying zonotope as |T | = Z(a),

where a1 = (0, 1), a2 = (1, 0), and a3 = (−1,−1), which determines a sign vector for

each face of T . (Edges are not labeled, but their labels can be inferred.)
−+− + +−

+−−

+−+−−+

−+ +
−−−

00−

0− 0

−00

We also choose the matrix B = (111) so that BTA = 0.

We are now ready to begin the geometric construction; we start with the affine

space T ∗C3 = SpecC[z1, z2, z3, w1, w2, w3] and define an open set for each maximal
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zonotope Z ∈ T . The open set U(T , Z+00) = SpecC[z1, . . . , w3]z1 , and we have a similar

description for each of the other two. The union is U(T ) = T ∗C3 \ V (z1, z2, z3). We

then have that Z(a) is the familiar description of T ∗CP 2: all 6-tuples of numbers such

that µK(z, w) := z1w1 + z2w2 + z3w3 = 0, and zi are not all 0, modulo the torus K.

7.2. Recovering the Tiling

We now describe how to recover the tiling, using only intrinsic properties of T ∗CP 2.

The orbit O−−− is where zi 6= 0 = wi for all i. Its closure is V−−− = (C3 \

(0, 0, 0))//K, which we recognize as CP 2. Coordinates for O−−− are z1/z3 and z2/z3,

on which Gm acts with weight 0, so the matched cocharacter for O−−− is (0, 0). Finally,

we have the fan which is associated to V−−− as a toric variety in Figure 7.1 (a).

FIGURE 7.1. The fans for the toric varieties V−−−, V+−−, and V++−.

The oribit O+−− is where z1 = w2 = w3 = 0 and w1, z2, z3 6= 0. Its closure is

V+−− = (C3 \ C × (0, 0))//K, which is the blowup of A2 at a point. Coordinates

for O+−− are z2w1 and z3w1. On the one hand, we have (t1, t2) · z2w1 = t−1
1 t2z2w1

and (t1, t2) · z3w1 = t−1
1 z3w1; on the other hand, we have s × z2w1 = s2z2w1 and

s × z3w1 = s2z3w1. Thus s2 = t−1
1 t2 and s2 = t−1

1 , so t1 = s−2 and t2 = 1, and the

matched cocharacter is (−2, 0). Finally, the fan for V+−− is shown in Figure 7.1 (b).
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The last type of orbit is given by O++−, which has closure V++− = (C3 \ C× C×

0)//K = A2. Coordinates on O++− are z1w3 and z2w3. Using the same method as

before, we find that the matched cocharacter is (−2,−2), and the fan is Figure 7.1 (c).

After performing a similar analysis on the other sign vectors, we can place a fan at

each matched cocharacter and recover the tiling:

We finish by considering some twisted Gm actions. To illustrate all the possibilities,

we choose an interior point of Z, a point in the relative interior of an edge, a vertex,

and a point not in Z.

Gm ×(1,1) (z, w) = (s2z1, s
2z2, sz3, w1, w2, sw3)

Gm ×(1,2) (z, w) = (s2z1, s
3z2, sz3, w1, s

−1w2, sw3)

Gm ×(1,3) (z, w) = (s2z1, s
4z2, sz3, w1, s

−2w2, sw3)

Gm ×(2,2) (z, w) = (s3z1, s
3z2, sz3, s

−1w1, s
−1w2, sw3)

Since the invariant monomials are precisely the ziwj , it is easy to see that the minimum

weight monomials have weights 1, 0, -1, and 0. We also note that (2, 2), which lies

on a codimension 2 face, has 2 weight zero monomials, while (2, 1), which lies on a

codimension 1 face, has 1 weight zero monomial.
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Finally, we choose the support function which takes the following values on vertices:
−1 −1

−1

11

1
−1

The slopes along a1, a2, and a3 are 0, 0, and 1, so this corresponds to the character

of T n which takes (t1, t2, t3) to t3. But this restricts to the usual character α of K to

write T ∗CP 2 as a projective GIT quotient T ∗C3//αK.
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