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Inference for the neighbourhood inequality index

Francesco Andreoli a and Eugenio Peluso b

ABSTRACT
The neighborhood inequality (NI) index measures aspects of spatial inequality in the distribution of incomes
within a city. It is a population average of the normalized income gap between each individual’s income
(observed at a given location in the city) and the incomes of the neighbours located within a certain
distance range. The approach overcomes the modifiable areal units problem affecting local inequality
measures. This paper provides minimum bounds for the NI index standard error and shows that unbiased
estimators can be identified under fairly common hypothesis in spatial statistics. Results from a Monte
Carlo study support the relevance of the approximations. Rich income data are then used to infer about
trends of NI in Chicago, IL, over the last 35 years.

KEYWORDS
individual neighbourhood, variogram, ratio measures, variance approximation, income, US Census and
American Community Survey (ACS)
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INTRODUCTION

The importance of regional disparities for economic development, social and political cohesion is well
established in the literature (Doran et al., 2018). The increasing inequality pattern registered in the
United States in the last few decades seems also to be replicated at a local scale within cities (Baum-
Snow & Pavan, 2013; Chetty &Hendren, 2018; Moretti, 2013). Income inequalities that arise from
differences across neighbourhoods, understood as areal units defined by an exogenous partition of the
urban space, have received substantial attention in the literature (Jargowsky, 1997; Massey & Eggers,
1990; Reardon & Bischoff, 2011; Watson, 2009). Less evidence is available about the extent and
dynamics of income inequality within the neighbourhood (relevant contributions are Dawkins,
2007; Hardman& Ioannides, 2004; Kim& Jargowsky, 2009; Shorrocks &Wan, 2005; andWheeler
& La Jeunesse, 2008). The degree of inequality within the neighbourhood of residence has been
found to have an independent effect on important dimensions of quality of life, such as labour market
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attachment (Conley & Topa, 2002), well-being (Ludwig et al., 2012), health (Chetty et al., 2016;
Ludwig et al., 2011, 2013) and intergenerational mobility (Andreoli & Peluso, 2018).

Existing approaches to the measurement of inequality within neighbourhoods rely on the
exogenous partition of the urban space into areal units, and are hence exposed to the modifi-
able areal unit problem (MAUP) (Openshaw, 1983; Wong, 2009). The MAUP can be miti-
gated by addressing neighbourhood inequality across contiguous areas (Chakravorty, 1996;
Shorrocks & Wan, 2005) or among neighbours in selected clusters (Hardman & Ioannides,
2004). Andreoli and Peluso (2018) suggest a class of local inequality measures based on the
notion of individual neighbourhood (Galster, 2001), assuming spatial continuity in the under-
lying income distribution. A new neighborhood inequality (NI) index is obtained following
two steps of aggregation of spatial income heterogeneity recorded in individual neighbour-
hoods. First, inequality is assessed within each individual neighbourhood of a fixed (arbitrary)
size. An individual neighbourhood in location s gathers all income units located within the cir-
cular region of given size centred on s, and it may overlap with other individual neighbour-
hoods of similar size but centred on different locations. Second, the resulting values of
inequality within individual neighbourhoods are aggregated across the relevant population.
The approach guarantees robustness vis-à-vis the MAUP, insofar individual neighbourhoods
depend exclusively on the spatial arrangements of incomes on the map but do not rely on a
specific organization of the space.

Using census and American Community Survey (ACS) data from American MSAs, Andreoli
and Peluso (2018) find that neighbourhood inequality is (1) high and close to citywide inequality,
even when the neighbourhood size is < 1 mile in range; (2) on the rise since the 1980s; and (3)
displays similar patterns across cities. The NI index estimates may be biased by measurement
error and by the sampling design of spatial data, whereas bias cannot be effectively dealt with with-
out an appropriate inference strategy.

In this paper, we derive minimum bounds for the standard error (SE) of the NI index and use
these bounds to infer about robust changes in NI. We use some properties of the ratio estimators
in Goodman and Hartley (1958) to derive bounds for the NI index variance when the data-gen-
erating process is not i.i.d., accommodating for the possibility of spatial dependence. We assume
that the process is continuous in nature and relies exclusively on information about income levels
and their geocoded location. We then show (in the second and third sections) that under fairly
common assumptions in spatial statistics, the estimators of the NI index SE are identified by
moments of the spatial income distribution and by the variogram, a measure of spatial dependence
of the data (Matheron, 1963). A simulation study (in the fourth section) confirms the qualities of
the SE estimator proposed here. The fifth section infers about changes in NI in Chicago, IL,
where we find robust statistical support for rising neighbourhood inequality irrespectively of the
chosen size of individual neighbourhoods. The sixth section concludes.

MEASURING INEQUALITY IN THE NEIGHBOURHOOD

NI index and the related literature
Consider a population of n ≥ 3 individuals, indexed by i = 1, . . . , n. Let yi be the income of indi-
vidual i and y = (y1, y2, . . . , yn) the sample income distribution with average m . 0. Information
on incomes comes with information about their location on the city map (non-stochastic). An
individual neighbourhood di gathers nid individuals living in the circular region of ray d centred
on location i. If each individual occupies a separate location, there would be as many different indi-
vidual neighbourhoods as individuals in the city. Each individual neighbourhood is characterized
by an average income mid = ∑

j[di
yj/nid , while Di(y, d ) = (1/mid )

∑
j[di

(|yi−yj |/nid ) is a
normalized measure of the average gap between i’s income and that of her neighbours.
The NI index measures the degree of inequality in the average individual neighbourhood. It is
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defined as:

NI (y, d ) = 1

2

∑n
i=1

1

n
Di(y, d ). (1)

The NI index depends on d , a parameter chosen by the researcher. The plot of NI (y, d ) against d
defines a NI curve. The curve is expected to be close to the origin when d tends to zero (individual
neighbourhoods are very small), remaining low when sample units are spatially clustered by
income. When d reaches the size of the city, each individual neighbourhood spans the whole
city. In this case, neighbourhood inequality converges to citywide inequality measured by the
Gini index and the NI curve is flat.

Alternative approaches to spatial inequality within (Shorrocks & Wan, 2005; Wheeler & La
Jeunesse, 2008) and across (Iceland & Hernandez, 2017; Reardon & Bischoff, 2011) areal units
(such as regions, counties, census tracts, etc.) have been discussed in the literature. These
approaches are subject to the MAUP (Openshaw, 1983; Wong, 2009), that is, they are not robust
to the zonation effect, due to the administrative partition of space (for instance, by census tracts or
school districts), or to the subsequent way of scaling it (for instance, by block groups or by zip
codes). The example in Figure 1 illustrates the implications of these effects for spatial inequality.
Each panel shows the spatial distribution of rich (black dots) and poor (circles) individuals. The
administrative partition of the stylized city is induced by vertical and horizontal lines. As a con-
sequence of the zonation effect (Figure 1 (A)), spatial inequality measures may reverse the ranking
of the two cities by just changing the design of the administrative partition (i.e., replacing the hori-
zontal lines by the vertical ones artificially minimizes inequality within neighbourhoods, inhabited
by same-income individuals, and maximizes inequality between neighbourhoods). As a conse-
quence of the scaling effect (Figure 1 (B)), large discontinuities in spatial inequality evaluation
may occur in response to minor refinements of the neighbourhoods’ partition. In the upper dia-
gram of Figure 1(B), each neighbourhood displays the same inequality as in the city. In the bottom
diagram, inequality within neighbourhoods is eliminated by virtue of a finer partition obtained by

Figure 1. Scaling and zonation effects on neighbourhood inequality.
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drawing two additional vertical lines. If, instead, the finer partition was obtained by drawing hori-
zontal lines, then the opposite situation (high inequality within the neighbourhood) would have
emerged.

The NI index overcomes the MAUP by treating the spatial distribution of income as continu-
ous and by using individual neighbourhoods to avoid the zonation issues. Furthermore, scaling is
also controlled for by the levels of the distance threshold d , so that evaluations only depend on the
actual distribution of incomes in space. These properties guarantee that the NI index ranks as
equivalent the two panels A and B in Figure 1.

Individual neighbourhoods have been used in the analysis of segregation in space (Clark et al.,
2015; Galster, 2001), in networks (Echenique & Fryer, 2007), across housing units (Hardman &
Ioannides, 2004) or across time (Biondi & Qeadan, 2008). Chakravorty (1996) applied the notion
of individual neighbourhood to organizational units to develop a neighborhood disparity measure
(ND), which is a normalized average of the difference between the income observed in each areal
unit and the average income of neighbouring parcels.

The NI index is instead related to the Gini index of inequality and develops on pairwise
income comparisons within individual neighbourhoods. Following Pyatt (1976), the NI index
can be interpreted as the expected (relative) income gain that a randomly chosen urban resident
would experience if her income was exchanged with those of her neighbours located within a
ray of length d . Differently from traditional decomposable inequality measures, the NI index con-
siders a multidimensional distribution of individual income observations alongside individual geo-
graphical locations. The two ingredients are combined through the individual neighbourhoods.
This allows establishing a methodological bridge with geostatistics.

Statistical properties of the NI index
Consider a spatially continuous process {Ys:s = 1, . . . , n} where s [ S is one location on the ran-
dom field and n is the total number of locations. The process is jointly distributed as FS and may
represent, for instance, the data-generating process underlying the spatial distribution of incomes
across locations in a city. The joint distribution functionFS combines information about the mar-
ginal income distributions in each location and the degree of spatial dependence of incomes on S.
In the analysis, locations on S are non-random and the process is defined conditionally on S.
Through geolocalization, it is possible to compute the distance ‘||.||’ between two generic locations
s, v [ S, which we denote ||s − v|| ≤ d or equivalently v [ ds, which denotes the set of locations
located within a range d from s. The cardinality of ds is nds . The observed spatial income distri-
bution y (alongside geographical coordinates of the income observations) is a particular draw from
FS , where only one income realization is observed in any location s.

The NI index of the spatial process FS can be written in terms of first-order moments of the
random variables Ys as follows:

NI (FS , d ) =
∑
s

∑
v[ds

1

2n nds

E[|Ys − Yv|]
E[Yv]

. (2)

The numerator in (2) depends on the extent of spatial dependence displayed by FS . To show
this, consider the restrictive yet widely adopted parametric assumption that Yi follows a linear
SAR model with Y = m+ rdWd · (Y − m)+ e, with Y = (Y1, . . . , Yn)

′
, where Wd is an

n× n spatial weighting matrix with wij = 1/ndi if j [ di and wij = 0 otherwise; e is a column
vector of i.i.d. innovations; and m = (m, . . .m) with the average income. The parameter rd
measures spatial autocorrelation at distance range d (Moran’s I statistics is often used as an esti-
mator for this correlation; Li et al., 2007). Under standard assumptions (Kelejian & Prucha,
2010), Y = m+ (I − rdWd )

−1 · e = m+ S(rd ) · e, so that Yi = m+ Si(rd ) · e, where Si(rd ) is
a non-stochastic row vector. Under these circumstances,
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E[|Ys − Yv|] = E[|Ss(rd ) · e− Sv(rd ) · e|] depends on both inequality in the data (e) and spatial
correlation in the data (S(rd )), whereas E[Yv] = m.

If incomes Ys and Yv are i.i.d. with distributionFS for any s, v [ S (i.e., rd = 0 at any d ), then
NI (FS , d ) = E[|Ys − Yv|]/E[Yv] (= E[|es − ev|]/m under SAR), which coincides with a defi-
nition of the Gini index (Muliere & Scarsini, 1989). If, instead, spatial dependence is at stake
(typically rd . 0), then the NI index differs from the Gini index and E[|Ys − Yv|] varies across
locations. This quantity cannot be identified from the observation of just one data point in
each location. We then introduce additional assumptions about the spatial income process that
allow to derive the NI index from the first and second moments of FS .

The first assumption is thatFS displays (second-order) stationarity (Chilès &Delfiner, 2012),
that is, E[Ys] = m, Var[Ys] = s2 and Cov[Ys, Yv] = c(||v− s||) = c(d ) is isotropic, with
||v− s|| = d . Under these circumstances, Var[Ys+d − Ys] = E[(Ys+d − Ys)

2] = 2s2 − 2c(d ) =
2g(d ) denotes the variogram of the process at distance range d (Matheron, 1963). The function
2g(d ) is informative of the correlation between two random variables that are at a distance d one
from the other, insofar c(d ) = s2 − g(d ). Under stationarity, 2g(d ) � 0 as d approaches 0 if the
spatial process displays high positive association at small distance ranges. Conversely,
2g(d ) � 2s2 when d is sufficiently large, indicating spatial independence. We follow the conven-
tion that s − v = d whenever ||s − v|| = d (which implies that the process occurs on a transect at
neighbourhood level).

The second assumption is that Ys is Gaussian with mean m and variance s2. The random vari-
able (Ys+d − Ys) is also Gaussian with variance 2g(d ), which implies |Ys+d − Ys| is folded-normal
distributed (Leone et al., 1961) and its first and second moments depend exclusively on the var-

iogram, having expectation E[|Ys+d − Ys|] =
���������������������
2/pVar[Ys+d − Ys]

√
= 2

��������
g(d )/p

√
and variance

Var[|Ys+d − Ys|] = (1− 2/p)2g(d ).
Altogether, these assumptions allow to characterize the NI index as a function of the vario-

gram. For given d , we consider partitioning the distance spectrum [0, d ] into Bd ordered intervals
of size d/Bd , and derive the NI index formulation at distance intervals of fixed size. If the size were
chosen equal to the minimum distance recorded between locations, then the NI index could be
rewritten explicitly as a function of locations. Each interval is denoted by the index b with
b = 1, . . . , Bd . We further denote with dbi the set of locations at interval b (and thus distant
b · d/Bd from si) within the range d from location si . The cardinality of this set is
ndbi ≤ ndi ≤ n. Assuming stationarity of FS and normality allows to write theNI index as follows:

NI (FS , d ) =
∑
i

∑
j[di

1

2nndi

E[|Ysj − Ysi |]
m

=
∑
i

∑
j[di

1

2nndi

�����������������
4g(||sj − si||)/p

√
m

=
∑
i

1

n

∑Bd

b=1

ndbi
ndi

∑
j[dbi

1

2ndbi

�������������������
4g(si + b− si)/p

√
m

= 1

2

∑Bd

b=1

∑
i

ndbi
nndi

( ) ���������
4g(b)/p

√
m

,

(3)

This result (see also Andreoli & Peluso, 2018) sets out the geostatistics foundations of the NI
index by showing that the index is fully characterized by the distribution of locations on the city
map (non-stochastic) and the degree of spatial dependence measured by the variogram.1 Under
these assumptions, the index can be understood as an average of a standardized measure of
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dispersion (the second term in the summation in (3)) taken at different distance thresholds b,
and weighted by the population on the random field located on the average individual
neighbourhood of size d , a parameter chosen by the researcher. The implications of
dropping the normality assumption, widely (often implicitly) adopted in geostatistics analysis,
are assessed in a Monte Carlo experiment. For the results, see Appendix C in the supplemental
data online.

Discussion
A few remarks are in order. First, the NI index depends both on geographical distance across
locations and local income variability, averaged across all individual neighbourhoods while holding
distance range fixed. In the presence of positive spatial correlation in incomes, small individual
neighbourhoods gather few likely similar income realizations, implying minimal income hetero-
geneity (NI � 0). When the size of the individual neighbourhood is large, the inequality evalu-
ation tends to include an increasing number of income observations that are spatially unrelated.
For large d , the variogram coincides with the variance of the stationary process and is constant.
Equation (3) shows that the NI index stabilizes on a converging level of inequality when rising
d , hence rising the weight of locations where incomes are spatially uncorrelated. This level of
inequality is the Gini index of the population income distribution.2

A second remark is about the choice of the distance parameter d . This parameter’s relative
magnitude is contingent to the problem under analysis. When addressing neighbourhood
income inequality in an urban context, it makes sense to limit the analysis to well-defined stat-
istical aggregates such as commuting zone or metropolitan statistical areas. The geographical
size of these areas is generally well defined by their administrative boundaries, density and
commuting time requirements. The interpretation of the NI index, which is grounded on indi-
vidual neighbourhoods attributable to the residents, is meaningful when d is limited to the
boundaries of the city.3 The choice of a limit for a distance parameter may become crucial
when analysing spatial inequality within inner cities, thus neglecting edge effects on the NI
index and its SE bounds induced by the income distribution across the boundary areas of
the city. Appendix D in the supplemental data online investigates more carefully the issue
of edge effects.

Third, we stress that the NI index is a measure of inequality which is normalized by an
implicit spatial weighting scheme, which we assume to be uniform in (2) and (3). More pre-
cisely, each income unit observed within i’s individual neighbourhood is weighted 1/ndi ,
whereas individual neighbourhoods are weighted 1/n. This weighting scheme allows us to cap-
ture empirically aspects related to the population size, as well as the population distribution
across the data field, which may cluster in dense urban areas, or sprawl in suburbs. The relation
between d and n in the population is described by the intensity of the population point process
(the concept is formalized, among others, by Diggle, 1985). The local density ndi is an esti-
mator of the process intensity, which may be a source of bias in the NI index estimates.
This bias vanishes when n is large4 but may still survive for small values of d (small individual
neighbourhoods) if local density is too small. These concerns seem to be of secondary impor-
tance for empirical applications of the NI index in the context of urban inequality analysis.
One the one hand, urban agglomerates generally display large population size and density at
all distance scales. On the other, meaningful estimators of the empirical variogram for (3)
should be based on at least 30 pairs of observations (Journel & Huijbregts, 1989, p. 194),
thus providing a minimum bound for estimating the NI index at small geographical scale.
Additionally, the simulation study by LeSage and Pace (2014) suggests that, at small distance
ranges, the exact specification of the weighting scheme is likely irrelevant for addressing spatial
variability in the data. These considerations extend to the estimation of the NI variance
bounds, also based on the variogram.
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VARIANCE BOUNDS FOR THE NI INDEX

Main result
We explore the geostatistics foundations of the NI index to derive empirically tractable bounds for
the NI index variance. We denote locations on the random field with i = 1, . . . , n, each having
non-stochastic weight wi ≥ 0 with w = ∑

i wi , which might reflect the inverse probability of
selection from the population. The underlying process F is stationary with mean m and variance
s2.

The first implication of the assumptions we consider is that, asymptotically, the random vari-
able mid = ∑

j[di
(wj/

∑
j[di

wj)Yj is equivalent in expectation to m̃ = ∑
i (wi/

∑
i wi)Yi, with,

E[m̃] = m. The second implication is that the spatial correlation exhibited by F is stationary in
d and can be represented through the variogram of F , denoted 2g (d ).

Our analysis focuses on an asymptotically equivalent version of the weighted NI index of the
process distributed as F , that is:

NI (F , d ) = 1

2m̃

∑n
i=1

∑
j[di

wiwj

2 w
∑

j[di
wj

|Yi − Yj | = 1

2m̃
Dd . (4)

The NI index can thus be expressed as a ratio of two random variables. Asymptotic approxi-
mations for the SE of ratios of random variables have been developed by Goodman and Hartley
(1958, p. 496). Koop (1964) and Tin (1965) have demonstrated that, under normality, such
approximations are minimum variance bounds. We use these results to obtain minimum variance
bounds for the NI index in (4) as follows:

Var[NI (F , d )] = 1

4nm2
Var[Dd ]+ (NI (F , d ))2

nm2
Var[m̃]

− NI (F , d )

nm2
Cov[Dd , m̃]+ O(n−2),

(5)

where the SE approximation is SEd =
����������������
Var[NI (F , d )]

√
at any d . The approximation converges

quickly when the number of locations is large, as it the case in applications based on census micro-
data, and holds when income realizations are spatially correlated.5 As suggested by Tin (1965), we
use plug-in estimators for the SE.

We provide estimators for each of the three addends in (5) under appropriate assumptions.
First, we assume that the process F is stationary with known second moments. Let the positive
integer scalars m, b, b′ identify non-overlapping intervals of the distance range d , and B is the
number of such intervals. The variance of m̃, Var[m̃], writes:

Var[m̃] =
∑
i

wi

w

∑
j

wj

w
E[YiYj]− m2

=
∑
i

wi

w

∑B
m=1

∑
j[dmi

wj

w

∑
j[dmi

wj∑
j[dmi

wj
c(||si − sj ||).

(6)

=
∑B
m=1

∑
i

wi

w

∑
j[dmi

wj

w
(s2 − g(m))

( )
. (7)

= s2 −
∑B
m=1

v(m)g(m), (8)

Inference for the neighbourhood inequality index 7
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where (8) is obtained from (7) by renaming the weight scores so that
∑B

m=1 v(m) = 1, and by
using the definition of the variogram and the fact that sj = si + m. The score v(.) depends on
the density in one given location. In random sampling with uniform weights (i.e. when
wi = 1/n), this factor reduces to an average of the population ndmi residing in distance segment
m from any unit i normalized by the total population, that is:

v(m) = 1

n

∑
i

1

n
ndmi .

The second variance component of (5), Var[Dd ], can be written as follows:

Var[Dd ] =
∑n
i=1

∑
j[di

wiwj

w
∑

j[di
wj

∑n
ℓ=1

∑
k[dℓ

wℓwk

w
∑

k[dℓ
wk

E[|Yi − Yj ||Yℓ − Yk|]

−
∑
i

wi

w

∑
j[di

wj∑
j[di

wj
E[|Yj − Yi|]

( )2

.

The first component of Var[Dd ] cannot be further simplified, as the absolute value operator enters
the expectation term in a multiplicative way. We assume stationarity and, additionally, normality
to be able to simulate the expectation, since the random vector (Yj , Yi, Yk, Yℓ) is jointly normally
distributed with expectations (m, m, m, m) and variance–covariance matrix Cov[(Yj , Yi, Yk, Yℓ)],
with:

Cov[(Yj , Yi, Yk, Yℓ)] =
s2 c(||sj − si||) c(||sj − sk||) c(||sj − sℓ||)

s2 c(||si − sk||) c(||si − sℓ||)
s2 c(||sk − sℓ||)

s2

⎛⎜⎜⎝
⎞⎟⎟⎠.

Denote further that sj − si = b ≥ 0 and sk − sℓ = b′ ≥ 0 for the positive integers b ≤ Bd and
b′ ≤ Bd . We also take the (unrestrictive) convention that si − sℓ = m with 0 ≤ m ≤ B. We can
hence express the variance–covariance matrix as a function of the variogram:

Cov[(Yj , Yi, Yk, Yℓ)] =
s2 s2 − g(b) s2 − g(m+ b− b′) s2 − g(m+ b)

s2 s2 − g(m− b′) s2 − g(m)
s2 s2 − g(b′)

s2

⎛⎜⎜⎝
⎞⎟⎟⎠.

The expectation E[|Yi − Yj ||Yℓ − Yk|] can be simulated from a large number S (with S = 1, 000)
of independent draws (y1s, y2s, y3s, y4s) with s = 1, . . . , S, from the random vector (Yj , Yi, Yk, Yℓ).
The simulated expectation is a function of the variogram parameters m, b, b′ and d and of s2. It is
denoted u(m, b, b′, d , s2) and estimated as follows:

u(m, b, b′, d , s2) = 1

S

∑S
s=1

|y2s − y1s| · |y4s − y3s|.

With some algebra, and using the fact that E[|Yℓ − Yi|] = 2
���������
g(m)/p

√
for locations ℓ

and i at distance m ≤ B one from each other, it is then possible to write the term Var[Dd ] as
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follows:

Var[Dd ] =
∑B
m=1

∑Bd

b=1

∑Bd

b′=1

v(m, b, b′, d )u(m, b, b′, d , s2)

− 4
∑m
Bd

v(m, d )
���������
g(m)/p

√( )2

.

(9)

In the formula, v(m, b, b′, d ) = ∑
i (wi/w)

∑
j[dbi

(wj/
∑

j[di
wj)

∑
ℓ[dmi

(wℓ/w)
∑

k[db′ℓ
(wk/

∑
k[dℓ

wk) and v(m, d ) = ∑
i (wi/w)

∑
j[dmi

(wj/
∑

j[di
wj) are calculated as before.

The third component of (5) is the covariance term. It can also be written as a function of the
variogram. To show this, we maintain the convention that si − sℓ = m ≥ 0 and sj − si = b ≥ 0.
This gives the following equivalence:

E[|Yj − Yi|Yℓ] = E[|YjYℓ − YiYℓ|] = E[YjYℓ]− E[YiYℓ]− 2E[min {YjYℓ − YiYℓ, 0}]

= c(||sj − sℓ||)+ m2 − c(||si − sℓ||)− m2 − 2E[min {YjYℓ − YiYℓ, 0}]

= g(m)− g(m+ b)− 2E[min {YjYℓ − YiYℓ, 0}].

(10)

The expectation E[min {YjYℓ − YiYℓ, 0}] is non-linear in the underlying random
variables. Under the Gaussian assumption, the expectation can be simulated from a large number
S (with S = 1, 000) of independent draws (y1s, y2s, y3s) with s = 1, . . . , S, from the random
vector(Yj , Yi, Yℓ), which is normally distributed with expectations (m, m, m) and variance–covari-
ance matrix Cov[(Yj , Yi , Yℓ)]. The variance–covariance matrix writes:

Cov[(Yj , Yi, Yℓ)] =
s2 s2 − g(b) s2 − g(m+ b)

s2 s2 − g(m)
s2

⎛⎝ ⎞⎠
for givenm, b and d . The resulting simulated expectation is denotedf(m, b, d , s2) and computed as
follows:

f(m, b, d , s2) = 1

S

∑S
s=1

min {y1sy3s − y2sy3s, 0}.

Based on this result, the covariance term in (5) becomes:

Cov[Dd , m̃] =
∑
i

wi

w

∑
j[di

wj∑
j[di

wj

∑
ℓ

wℓ

w
E[|Yj − Yi|Yℓ]

− m
∑
i

wi

w

∑
j[di

wj∑
j[di

wj
E[|Yj − Yi|]

=
∑B
m=1

∑Bd

b=1

v(m, b, d ) g(m) − g(m+ b) − 2f(m, b, d ,s2)[ ]
− 2m

∑Bd

m=1

v(m, d )
���������
g(m)/p

√
. (11)

The weights in (11) coincide respectively with v(m, b, d ) = ∑
i

wi

w

∑
ℓ[dmi

wℓ

w

∑
j[dbiwj∑

j[di
wj

and v(m, d ) = ∑
i

wi

w

∑
j[dmi

wj∑
j[di

wj
.
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A consistent estimator for the SE, denoted ŜEd , is obtained by plugging into (5) the empirical
counterparts of the variogram and the lag-dependent weights, using formulas in (8), (9) and (11).
Cressie and Hawkins (1980) provide non-parametric estimators for the variogram that are robust
with respect to outliers (in the empirical application, we use the robust spherical variogram model
in Cressie, 1985). For details, see Appendix A in the supplemental data online.

Hypothesis testing
The NI index and the implied NI curves can be used to assess patterns and trends of neighbour-
hood inequality. Various hypotheses are of interest. One concern may be about the extent at which
inequality in the average individual neighbourhood of size d is different from citywide inequality
measured by the Gini index. The relevant null hypothesis is H 1

0 : NI (y, d ) = G(y) against an
unrestricted alternative (reflecting the fact that neighbourhood inequality can be either larger or
smaller than citywide inequality). A second concern is that the empirical patterns of neighbour-
hood inequality are related to the size of individual neighbourhoods. In presence of income sort-
ing, one expects that inequality within neighbourhoods of small size to be, on average, smaller than
inequality in neighbourhoods of larger size. Consequently, the NI curve is expected to be increas-
ing in the individual neighbourhood size. The relevant null here is H 2

0 : NI (y, d
′) = NI (y, d ) for

d ′ . d , to be tested against a restricted alternative. Rejecting both null hypotheses H 1
0 and H 2

0

gives statistical support for the existence of a neighbourhood component in the urban income
distribution.

It is also of interest to study the dynamics of neighbourhood inequality across income distri-
butions yt and yt ′ . For a given size d of the individual neighbourhood, the relevant null hypothesis
isH 3

0 (d ): NI (yt , d ) = NI (yt ′ , d ) against an unrestricted one. An increase or decline in neighbour-
hood inequality is robust (with respect to the choice of the distance parameter) when it involves a
form of dominance in neighbourhood inequality curves: that is, when the NI curves never intersect
each other. In this case, the relevant null hypothesis is:H 3

0 : H
3
0 (d ) for some d against a constrained

alternative mind {NI (yt , d )− NI (yt ′ , d )} . 0, which signals that one curve lies above the other at
any distance range. One particular case in which H 3

0 cannot be rejected is the situation in which
H 3

0 (d ) is true for every d . As for H 1
0 and H 2

0 , the null hypotheses are expressed in the form of
equalities to stress that one is compelled to conclude in favour of increasing or decreasing neigh-
bourhood inequality only if there is strong evidence against the null hypothesis.

The acceptance regions for the null hypotheses H 1
0 , H

2
0 and H 3

0 (d ) can be constructed using
the confidence bounds implied by the SE approximations provided above. Confidence bounds for
the NI index based on individual neighbourhoods of size d take the form N̂I (y, d )+ zaSEd ,
where N̂I is a consistent estimator of the NI index and za is assumed to be the standard normal
critical value for confidence level 1− a (for instance, 95%). To test H 3

0 , it is sufficient to plot the
confidence bounds of NI (yt ′ , d )− NI (yt , d ) against d and verify that the horizontal axis lies
homogeneously in the implied rejection region. In fact, H 3

0 is rejected only if there is enough evi-
dence against a possible crossing in NI curves, which requires to verify if the implied confidence
interval bounds do not include the horizontal orthant.6

MONTE CARLO STUDY

Results
The size and power properties of the estimators adopted to test dominance in NI curves are now
assessed within the framework of a Monte Carlo study. The simulation study is informative about
the behaviour of the SE estimates and the implication that this has for testing null hypothesis
about NI curves based on different distributions.

The distributions used in the simulation study are calibrated to represent the actual distri-
bution of gross equivalent household income in Chicago, IL, in 2014, obtained from the Census
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Bureau’s American Community Survey (ACS) data, 2010–14 module. We compare the actual
distribution with counterfactual distributions obtained by applying suitable transformations to
the actual ACS 2010–14 data, so that these distributions can be unambiguously ranked in
terms of NI curves dominance. We then use moments of these population distributions to identify
moments of the income data-generating processes adopted in the simulation study.

The first distribution F 0 represents the spatial income distribution in Chicago, 2014
(m0 = $53, 456, s0 = $55, 310). We further consider two counterfactual distributions F 1 and
F 2. The distribution F 1 is obtained by adding noise to F 0, so that y1 = y0 + 1 for y1 � F 1,
y0 � F 0 and 1 � N (0, 6118.44) (m1 = m0 and s1 = $55, 631 . s0). This counterfactual distri-
bution displays similar patterns of neighbourhood inequality as F 0: H

3
0 : NI (F 0, d ) = NI (F 1, d )

for at least some d , cannot be rejected, as shown in Figure 2(a). The distribution F 2 is obtained by
simulating the effect of a redistributive linear income tax scheme applied to incomes distributed as
F 0, so that y2 = (1− t)y0 + m, for y0 � F 0, a flat tax rate t = 0.3 and basic income m = 0.3m0

(m2 = m0, s2 = $38, 716 , s0). The null hypothesis H 3
0 : NI (F 0, d ) = NI (F 1, d ) for at least

some d is clearly rejected in favour of a dominance alternative, as shown in Figure 2(b).
The simulation study is based on models for the income process Y n

f � (mf , s
2
f , gf (.)) that is

normal distributed with finite moments estimated on F f with f = 0, 1, 2. The Monte Carlo
experiment consists in randomly drawing realizations from Y n

f , each denoted ynf ,r with
r = 1, . . . , 200, and assessing relevant nulls hypothesis at predetermined distance threshold
and for variable n. For samples of size n = 2000, 5000, 8000, distance cut-offs are set at approxi-
mately one-third of a mile distance range increments within the first 2 miles, and then at increas-
ing increments within the next 12 miles (at 19 miles’ range the NI index converges to citywide
inequality). For the sample of size n = 1000, distance thresholds within 1 and 19 miles are set
by looking at increments of 0.75 mile exclusively. H 3

0 (d ) is tested at each distance cut-off. The
null hypothesis of the type H 3

0 is tested instead by looking at all distance cut-offs. For a detailed
description of the Monte Carlo study, see Appendix in the supplemental data online.

We first investigate the size for the tests for various null hypothesis about NI curves. The size
corresponds to the fraction of simulated samples that allow to reject the relevant null hypothesis
when the null hypothesis is true in the population. We consider populations where H 3

0 :
NI (F 0, d ) = NI (F 1, d ) for at least some d is true. We draw replicas yn0,r and yn1,r , and we test
whether H 3

0 (d ):NI (y
n
0,r , d ) = NI (yn1,r , d ), as well as the implied null H 3

0 , are rejected by the

Figure 2. Neighbourhood inequality in Chicago, IL, 2014, versus two counterfactual distributions.
Note: Author analysis of US Census and American Community Survey (ACS) data. Confidence intervals
are at the 95% level. (a) NI(F0, d) - NI(F1, d), (b) NI(F0, d) - NI(F

2, d).
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Table 1. Monte Carlo simulations of the size and power of dominance tests for NI curves that are based on the NI index SE approximations.
Distance cut-offs (miles) # Rejected Rejected Weak Strong

0.4 0.7 1 1.4 1.7 2 3 5 12

n (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

(A) Size comparisons for the true null H3
0:NI(y

n
0,r , d) = NI(yn1,r , d), ∀d

1000 . 0.00 . 0.24 . 0.19 0.16 0.03 0.01 1.1 0.46 0.60 0.00

2000 0.00 0.00 0.32 0.22 0.23 0.19 0.10 0.08 0.00 2.4 0.62 0.53 0.00

5000 0.00 0.00 0.33 0.15 0.17 0.09 0.01 0.01 0.00 1.1 0.52 0.47 0.00

8000 0.00 0.00 0.22 0.06 0.09 0.06 0.05 0.01 0.00 0.8 0.38 0.53 0.00

(B) Power comparisons for the true alternative H3
a :NI(y

n
0,r , d) ≥ NI(yn2,r , d), ∀d

1000 . 0.00 . 0.29 . 0.31 0.19 0.09 0.03 1.7 0.60 0.92 0.00

2000 0.00 0.00 0.40 0.31 0.44 0.26 0.13 0.08 0.00 3.3 0.85 0.88 0.00

5000 0.00 0.00 0.55 0.28 0.49 0.24 0.12 0.09 0.03 4.3 0.81 0.98 0.00

8000 0.00 0.05 0.57 0.34 0.53 0.32 0.30 0.22 0.15 8.7 0.82 0.99 0.00
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data. Rejections are recorded and the average share of rejections over the 200 replicas is stored in
Table 1(A). Columns (1) to (9) report the size of test for null hypothesis H 3

0 (d ) at well-defined
distance cut-offs. Column (10) reports the average number of rejections of H 3

0 (d ) across all avail-
able distance cut-offs. Column (11) reports the proportion of times that a null hypothesisH 3

0 (d ) is
rejected at least one. Columns (12) and (13) report, respectively, the share of cases where the rejec-
tion entails a weak dominance in NI curves (i.e., all cases where multiple rejections ofH 3

0 (d ) occur
within the same replica r and differences in NI curves have the same sign) and the proportion of
the cases in (12) where dominance is strong (i.e., H 3

0 is rejected at every distance cut-off).
Overall, the tests based on the NI index SE bounds have larger size compared with the nom-

inal 5% level. The size of tests carried out at fixed distance cut-offs is < 10% when the sample size
is at least of 5000 units and it is virtually zero when d ≤ 1 mile. Tests for H 3

0 (d ) for d ≥ 5 miles
are < 5%. At these distance ranges, in fact, neighbourhood inequality converges to the levels of
citywide inequality measured by the Gini coefficient, and the SE approximation converges asymp-
totically (since the spatial association of incomes becomes negligible). On average, there is fewer
than one rejection ofH 3

0 (d ) across the distance cut-offs for which we test. The upper bound for the
size is of 18% in the largest sample. The size of the test monotonically converges to this number as
the sample size grows. A linear interpolation of size estimates in column (11) suggests
that the upper bound for the size converges to its nominal value of 5% when the sample size is
> 16,000 units.

We also investigate the power of the tests for various null hypothesis about NI curves. Power is
measured by the share of replicas that reject the relevant null hypothesis in favour of a specific
alternative when the alternative is true in the population. We use distributions so that H 3

0 :
NI (F 0, d ) = NI (F 2, d ) for at least some d is rejected in favour of (strong) dominance in NI
curves. We draw replicas yn0,r and yn2,r and we test if H 3

0 (d ): NI (y
n
0,r , d ) = NI (yn2,r , d ) at each dis-

tance cut-off separately, as well as the implied null H 3
0 , are rejected by the data. We find that the

power of tests for H 3
0 (d ) are relatively small for small and large distance cut-offs, while power

grows > 30% for distance cut-offs between 1 and 5 miles for which we test. Tests for H 3
0 neglect

the positive correlation between SE computed at different distance cut-offs, thus making rejec-
tions of the null hypothesis more likely (since part of the variability in NI curves estimates is neg-
lected). Hence, rejections rates for H 3

0 in favour of (weak) dominance can only be interpreted as
upper bounds for the power of the joint tests. These upper bounds are estimated by the product of
the columns (11) and (12). The upper bound for the power of tests forH 3

0 is of 74.8% for samples
of size 2000 units and grows to 81% in the largest samples. Despite being upper bounds, these
power estimates support the validity of tests for NI curves dominance based on the SE approxi-
mations even in relatively small samples. We also find that the average number of distance cut-offs
where H 3

0 (d ) is rejected at any given simulated sample grows steadily with the simulated sample
size (column (10)), from 1.7 rejections when n = 1000 to 8.7 rejections on average when
n = 8000, alongside larger chances that these rejections are in favour of a weak form of dominance
in NI curves. Altogether, these figures confirm the relevance of the SE approximations for infer-
ring about patterns and dynamics of neighbourhood inequality.

Additional checks
In Appendix C in the supplemental data online, we challenge the normality assumption. First, we
derive SE bounds for the NI index while assuming stationarity and log-normality of the process as
a reasonable alternative. Estimated bounds are marginally larger than those obtained under nor-
mality, implying a smaller rejection region. In the Monte Carlo experiment, we maintain the
assumption that SE bounds are derived under normality and apply these bounds to simulated
data from counterfactual joint log-normal (hence, non-gaussian) distributions. Compared with
the results in Table 1, the simulated size seems not affected by lack of normality in the underlying
data, while we register improvements in simulated power estimates. This may follow from the
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larger acceptance region implied by the normality assumption. Overall, evidence suggests that the
normality assumption leads to high-power and high-conservative tests for the null of lack of
changes in neighbourhood inequality.

Appendix D in the supplemental data online also considers the implications of edge effects
arising from the choice of boundaries of the urban areas. A simulation exercise aims at assessing
the implications of such effects by considering the spatial income distributions of Chicago, 2014,
alongside a buffer zone on the boundaries: inequality measured in the individual neighbourhoods
of those living in the buffer area does not contribute to NI computation (Griffith, 1983; Xu &
Dowd, 2012). The sizes of the tests based on the simulated distributions (under normality) are
comparable with those in Table 1, but smaller for samples of 8000 units. Accounting for edge
effects reduces the power of the tests for H 3

0 , although the difference with Table 1 is mitigated
when rising sample size.

INFERENCE FOR PATTERNS AND TRENDS OF NEIGHBOURHOOD
INEQUALITY IN CHICAGO, IL, 1980–2014

Andreoli and Peluso (2018) provide robust evidence that neighbourhood inequality is high in large
American metro areas, it has been growing over the last 35 years, and it almost converges to city-
wide income inequality, even when estimates are based on individual neighbourhoods of small size
(< 0.5 mile). Are these patterns producing reliable evidence for the population? Is the growth in
neighbourhood inequality statistically significant?

We use the data for the metropolitan statistical area of Chicago in 1980, 1990, 2000 and 2014
to infer about dominance in NI curves.7 Chicago has experienced large demographic growth over
the last 35 years, with the number of inhabited census blocks (each gathering approximately 1000
households) increasing from 3756 in 1980 to more than 4700 in 2014. The growth in average

Table 2. P-values for the null hypothesis of the type H1
0: NI(yt, d) = G(yt) and H2

0: NI(yt, d) = NI(yt, 0.4),
with t = 1980, 1990, 2000, 2014 and G(y1980) = 0.434, G(y1990) = 0.461, G(y2000) = 0.473,
G(y2014) = 0.486.

Years Distance d (miles)

2–7 0.4 1 2 3 5 12

(A) p-values for H1
0

1980 0.000 0.000 0.000 0.000 0.004 0.160

1990 0.000 0.000 0.000 0.000 0.000 0.003

2000 0.000 0.000 0.000 0.000 0.001 0.070

2014 0.000 0.000 0.000 0.000 0.002 0.108

(B) p-values for H2
0

1980 . 0.493 0.454 0.396 0.239 0.067

0 0.000 0.001 0.003 0.009 0.020

1990 . 0.357 0.122 0.046 0.020 0.002

0 0.004 0.014 0.020 0.025 0.039

2000 . 0.311 0.410 0.461 0.239 0.060

0 −0.008 −0.004 0.002 0.012 0.027

2014 . 0.467 0.465 0.390 0.269 0.071

0 −0.001 0.002 0.005 0.011 0.027

Note: Differences in levels of the neighborhood inequality (NI) index are shown in italics.
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equivalent income (in nominal terms), ranging from US$13,794 in 1980 to US$55,710 in 2014,
has been followed by an expansion of relative inequality. The Gini index for the citywide income
distribution has evolved steadily, from 0.434 in 1980 to 0.461 in 1990, then to 0.473 in 2000, and
finally to 0.486 in 2014, reflecting both demographic and economic changes.

Figure 3. Trends in neighbourhood inequality in Chicago, IL.
Note: Author analysis of US Census and American Community Survey (ACS) data. Confidence intervals
are at the 95% level.
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Neighbourhood inequality in Chicago mirrors the trends observed in other large American
metro areas. As shown in Figure 3(a), in each year the NI index is high and close to the level
of the citywide Gini index even in neighbourhoods of relatively small size.8 The NI estimates
are always significant at all distance ranges, with SE of the magnitude of 0.01− 0.02 points.
As Table 2(A) shows, hypothesis H 1

0 is rejected with p-values always close to zero when the indi-
vidual neighbourhood size is < 5 miles. When the individual neighbourhood is of ≥12 miles,
neighbourhood inequality is statistically indistinguishable from the level of inequality observed
in the city at conventional levels of significance in 1980, 2000 and 2014. Table 2(B) reports
the evolution of the NI index at different distance thresholds compared with the level of neigh-
bourhood inequality in individual neighbourhoods of size 0.4 miles. The gap in the NI index,
in italics, is positive almost everywhere and always increasing with distance. Nonetheless, these
differences are not statistically significant in a distance range < 5 miles. At 12 miles, H 2

0 can be
rejected in every year with p-values that are slightly > 5% (smaller in 1990). The patterns of p-
values confirm the findings of Andreoli and Peluso (2018) that after the year 2000 the degree
of neighbourhood inequality registered in small neighbourhoods has become more representative
of the degree of inequality in the city.

The trends of neighbourhood inequality in Chicago resemble those observed in other large
American metro areas. The year-to-year changes in NI, reported in panels (b), (c) and (d) of
Figure 3, are always positive at every distance range. The magnitude of these changes is, however,
too small to be statistically significant according to the rejection region implied by the SE bounds.
Nonetheless, the cumulated change of neighbourhood inequality over the four decades turns out to
be positive and significant at every distance range. As panel (f) of Figure 3 shows, the acceptance
region for H 3

0 is always positive and never includes the horizontal axis, implying that we have
strong statistical evidence that the NI curve of Chicago for 2014 lies always above that of 1980
and the gap between these two curves is different from (in fact, larger than) zero.

CONCLUSIONS

This paper provides variance bounds for the neighbourhood inequality index. These bounds are
identified from the knowledge of the variogram function which, under assumptions on the
income-generating process that are common in spatial statistics literature, fully characterizes
the spatial income distribution.

An application to rich income data from the US Census and ACS motivates the interest in
using SE approximations for the NI index when assessing patterns and trends of neighbourhood
inequality across US cities. Focusing on the city of Chicago, IL, we find robust statistical evidence
that neighbourhood inequality is large even for individual neighbourhoods of small size, but it is
statistically different from citywide inequality (as measured by the Gini index). The cumulated
growth of neighbourhood inequality over the period 1980–2014 is substantial and significant at
standard confidence levels, reflecting a general trend in largest American cities documented by
Andreoli and Peluso (2018). Patterns are robust to granularity of the spatial distribution as well
as to edge effects. The Monte Carlo study reveals that the tests for NI curves dominance based
on the SE approximations have a higher size than the nominal values, although the (upper
bound) size estimates quickly converge when the sample size grows. We expect that a sample
of 16,000 units, smaller than the sample used to obtain estimates on the five-year ACS module,
is sufficient to guarantee that the size of the tests we consider converge to their nominal
values. The power of these tests is relatively small for null hypotheses defined at given distance
cut-offs (but > 30% in simulated samples of at least 8000 units), but power grows significantly
to > 80% when considering tests for NI curves (weak) dominance (although these are only
upper bounds). Investigations about the appropriate testing procedure when placing domi-
nance/non-dominance of NI curves under the null are also left for future research.
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An interesting extension is to design individual neighbourhoods based on a nearest-neighbour
logic, that is, by holding ndi as fixed and d variable. Cressie (1991) provides estimators for the var-
iogram based on nearest-neighbour logic. While the nearest-neighbourhood weighting scheme
bears little practical implications for calculating spatial statistics like the NI index at small geo-
graphical scale (LeSage & Pace, 2014), it fails basic replication invariance properties. Consider,
for instance, the possibility of ‘replicating’ the population so that each income unit’s replica has
the same income and location as the original. This operation doubles the population size and den-
sity of a city, without affecting the patterns of spatial income inequality. The NI index we study in
this paper, which is normalized by population density, is not affected by this transformation. Con-
versely, a measure of neighbourhood inequality based on the nearest-neighbourhood logic would
artificially dilute inequality evaluations over a larger number of neighbours. These arguments pro-
vide further support for the use of a distance-based criteria, such as the individual neighbourhood,
in spatial inequality measurement.

NOTES

1 Under second-order stationarity, the spatial autocorrelation is rd = c(d )/s2, which implies
g(d ) = s2(1− rd ). When data are i.i.d., g(d ) = s2 and NI is a local measure of inequality.
Otherwise, the NI index is capable of measuring the consequences of spatial autocorrelation in
the data (likely displaying rd . 0) on local inequality estimates.
2 It can be showed that E[|Ys − Yv|] =

�������������������
2Var[Ys − Yv]/p

√
= s

�����
2/p

√
for any pair of i.i.d. nor-

mal random variables Ys, Yv. It follows from Muliere and Scarsini (1989) that the Gini index
writes (E[|Ys − Yv|]/E[Yv]) =

�����
2/p

√
(s/m), which is a scaled version of the coefficient of vari-

ation. In our setting, when d is large, g(d ) = s. If the spatial process is i.i.d., then NI (FS , d )
coincides with the Gini index at any distance threshold d .
3 When d is large enough to include multiple urban areas, the graph of NI plotted against d may
not flatten for d large. The meaningfulness of this computation rests, however, on the interest in
analysing individual neighbourhoods that span over multiple urban aggregates.
4 Bias can be attenuated by smoothing the observed distribution of locations using kernel estimators.
As shown by Zimmerman (2008), large samples need substantially less smoothing across locations to
reduce the bias, holding fixed the geographical size of the city, thus supporting the use of ndi .
5 The sample counterpart of the NI index in (4) can be interpreted as a U-statistic. As shown by
Hoeffding (1948, theorem 7.5), the variance bound in (5) converges to the asymptotic unbiased
estimator of the NI index variance when the income observations are i.i.d. Under this specific cir-
cumstance, asymptotic normality is also granted both with simple or with complex sampling
design (Davidson, 2009; Xu, 2007).
6 H 3

0 cannot be rejected if there is evidence of at least some intersection between the curves. It is
rejected if one curve lies everywhere above the other, implying that the former distribution displays
more spatial inequality than the other irrespectively of the choice of the distance parameter. The
suggested procedure of joint testing is analogous to that used in stochastic dominance analysis
(Dardanoni & Forcina, 1999). One can test for intersections of cumulative distribution functions
against the alternative of strong first order stochastic dominance by producing t-tests for the inter-
section of cumulative distribution functions at any given income percentile (usually a grid). The
null is rejected when the smallest t-test value recorded across percentiles range is larger than
the corresponding 95% percentile of a standardized normal distribution (see also Andreoli,
2018; Bishop et al., 1989). We use the same logic to test for equality in NI curves taking dom-
inance as the alternative.
7 See Andreoli and Peluso (2018) for details about the data. We use equivalized household mar-
ket income estimates as observations; each is assumed to be located at the block group’s centroid.
This assumption follows the empirical constraints dictated by the way data are organized into
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small areal units (block groups), whereas the NI index is defined for spatially continuous processes.
In a simulation exercise discussed in Appendix E in the supplemental data online, we test the
robustness of our estimates to such assumption.
8 The nature of the census and ACS publicly accessible data does not allow us to estimate unbia-
sedly NI in neighbourhoods < 0.3 miles. Confidence intervals are only reported for larger
neighbourhoods.
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