PERIODIC MARGOLIS SELF MAPS AT $P=2$

by
 LEANNE ELIZABETH MERRILL

A DISSERTATION

Presented to the Department of Mathematics and the Graduate School of the University of Oregon in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
September 2017

DISSERTATION APPROVAL PAGE

Student: Leanne Elizabeth Merrill

Title: Periodic Margolis Self-Maps at $p=2$
This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Mathematics by:

Dr. Hal Sadofsky
Chair
Dr. Boris Botvinnik
Core Member
Dr. Dev Sinha
Core Member
Dr. Christopher Sinclair
Dr. Malcom Wilson
Core Member
Institutional Representative
and
Dr. Sara D. Hodges Interim Vice Provost and Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate School.

Degree awarded September 2017
© 2017 Leanne Elizabeth Merrill

DISSERTATION ABSTRACT

Leanne Elizabeth Merrill

Doctor of Philosophy

Department of Mathematics
September 2017
Title: Periodic Margolis Self-Maps at $p=2$

The Periodicity theorem [HS98] tells us that any finite spectrum supports a v_{n}-map for some n. We are interested in finding finite 2-local spectra that both support a v_{2}-map with a low power of v_{2} and have few cells. Following the process outlined in [PS94], we study a related class of self-maps, known as u_{2}-maps, between stably finite spectra. We construct examples of spectra that might be expected to support u_{2}^{1}-maps, and then we use Margolis homology and homological algebra computations to show that they do not support u_{2}^{1}-maps. We also show that one example does not support a u_{2}^{2}-map. The nonexistence of u_{2}-maps on these spectra eliminates certain examples from consideration by this technique.

CURRICULUM VITAE

NAME OF AUTHOR: Leanne Elizabeth Merrill

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR
The State University of New York at Potsdam, Potsdam, NY

DEGREES AWARDED:

Doctor of Philosophy, Mathematics, 2017, University of Oregon
Master of Science, Mathematics, 2014, University of Oregon
Master of Arts, Mathematics, 2011, The State University of New York at Potsdam
Bachelor of Arts, Mathematics and Music, 2011, The State University of New York at Potsdam

AREAS OF SPECIAL INTEREST:

Algebraic Topology
Stable Homotopy Theory
Chromatic Homotopy Theory

PROFESSIONAL EXPERIENCE:

Graduate Teaching Fellow, Department of Mathematics, University of Oregon, Eugene, 2011-2017

GRANTS, AWARDS AND HONORS:
Graduate Teaching Excellence Award, University of Oregon, 2016
Anderson Distinguished Graduate Teaching Award, University of Oregon, 2016

Johnson Fellowship for Travel and Research, University of Oregon, 2016
Dan Kimble First Year Teaching Award, University of Oregon, 2016

PUBLICATIONS:

A Tale of Two Puzzles: Towers of Hanoi and Spin-Out 2013, Journal of Information Processing, v. 21, pp. 378-392.

Intrinsically linked signed graphs in projective space, 2012, Discrete Mathematics, v. 312, pp. 2009-2022.

ACKNOWLEDGEMENTS

I thank Hal for his guidance and patience.
I thank my parents for their support and encouragement.
I thank Nick for his love.

TABLE OF CONTENTS

Chapter
Page
I. INTRODUCTION 1
1.1. Motivation 1
1.2. Strategy 3
1.3. Results 9
II. U_{1} MAPS AND THE DEFINITION OF $Z\left(\beta_{1}, \beta_{2}\right)$ 10
2.1. Calculation of $K_{0}(Y)$ 10
2.2. Identifying u_{1} on Y 11
2.3. Definition of the Complexes $Z\left(\beta_{1}, \beta_{2}\right)$ 19
III. MARGOLIS HOMOLOGY COMPUTATIONS 25
IV. PROJECTIVE RESOLUTIONS FOR $H^{*} Z\left(\beta_{1}, \beta_{2}\right)$ 36
4.1. $K_{0} Z(0,0)$ and $P_{1} Z(0,0)$ 37
4.2. $K_{0} Z(1,0)$ and $P_{1} Z(1,0)$ 42
4.3. $\quad K_{0} Z(0,1)$ and $P_{1} Z(0,1)$ 47
4.4. $K_{0} Z(1,1)$ and $P_{1} Z(1,1)$ 52
Chapter Page
V. NONEXISTENCE OF U_{2}^{1} ON $Z\left(\beta_{1}, \beta_{2}\right)$ 58
VI. NONEXISTENCE OF U_{2}^{2} ON $Z(0,0)$ 90
6.1. Calculation of $P_{\bullet} H^{*} Z(0,0)$ 90
6.2. Long Exact Sequences 117
REFERENCES CITED 125

LIST OF FIGURES

Figure

Page
2.1. A-module structure of $H^{*} Y$ 10
2.2. $K_{0} Y$ through dimension 10 11
2.3. $H^{*} Z(0,0)$ through dimension 12 21
2.4. $H^{*} Z(1,0)$ through dimension 12 22
2.5. $H^{*} Z(0,1)$ through dimension 12 23
2.6. $H^{*} Z(1,1)$ through dimension 12 24
4.1. $K_{0} Z(0,0)$ through dimension 12 41
4.2. $K_{0} Z(1,0)$ through dimension 12 46
4.3. $K_{0} Z(0,1)$ through dimension 12 51
4.4. $K_{0} Z(1,1)$ through dimension 12 56
6.1. $H^{*} Z$ through dimension 17 , Part 1 91
6.2. $H^{*} Z$ through dimension 17, Part 2 92
6.3. $H^{*} Z$ through dimension 17, Part 3 93
6.4. $H^{*} Z$ through dimension 17, Part 4 94
6.5. $K_{0} Z$ through dimension 17 , Part 1 108
6.6. $K_{0} Z$ through dimension 17, Part 2 109
6.7. $K_{0} Z$ through dimension 17, Part 3 110
6.8. $K_{1} Z$ through dimension 17 116

LIST OF TABLES

TablePage
1.1. First four P_{t}^{s} elements, ordered by degree 3
1.2. Correspondence between $u_{i^{-}}$and v_{n}-maps 7
3.1. Margolis homology of $H^{*} Y, H^{*} K_{0} Y, H^{*} Y_{1}, H^{*} \Sigma^{2} Y$ 27
3.2. Margolis homology of $H^{*} Z(0,0), H^{*} Z(1,0)$ 33
3.3. Margolis homology of $H^{*} Z(0,1), H^{*} Z(1,1)$ 34
4.1. Calculation of $K_{0} Z(0,0)$ through dimension 12 37
4.2. Calculation of $K_{0} Z(1,0)$ through dimension 12 42
4.3. Calculation of $K_{0} Z(0,1)$ through dimension 12 47
4.4. Calculation of $K_{0} Z(1,1)$ through dimension 12 53
6.1. Calculation of $d_{0}: P_{0} Z \rightarrow H^{*} Z$ through dimension 17 95
6.2. Generators of $K_{0} Z$ through dimension 17 104
6.3. Calculation of $d_{1}: P_{1} Z \rightarrow P_{0} Z$ through dimension 17 111

CHAPTER I

INTRODUCTION

1.1. Motivation

We are interested in the homotopy properties of CW-spectra with finitely many cells. For the definitions of spectra and related terms, see Chapter 8 of [Swi02]. For definitions involving p-locality, see Chapter 1 of [Rav92].

Definition 1.1. A finite spectrum is a CW-spectrum with finitely many cells.

Such spectra are suspension spectra of CW-complexes, possibly desuspended. We use cohomology theories to study finite spectra and their self-maps. Fix a prime p. There are extraordinary cohomology theories $K(n)_{*}$, known as the Morava K-theories, which separate p-local spectra into different types. They satisfy $K(n)_{*}\left(S^{0}\right)=\mathbb{F}_{p}\left[v_{n}, v_{n}^{-1}\right]$ where $\left|v_{n}\right|=2 p^{n}-2$ (see Proposition 1.5.2 in [Rav92]).

Definition 1.2 (Definition 1.5.3.i from [Rav92]). A finite spectrum X is of type n if $K(n)_{*} X \neq 0$ but $K(m)_{*} X=0$ for all $m<n$.

All p-local finite spectra are type n for some n. Given a type n complex X, the Periodicity theorem [HS98] guarantees the existence of a self map of X which is an isomorphism on $K(n)_{*}$, and is thus non-nilpotent. We quite the following restatement of the Periodicity theorem for later use.

Theorem 1.3 (Theorem 1.5.4.i from [Rav92]). Let X be a p-local finite CW-complex of type n. There is a self-map $f: \Sigma^{d+i} X \rightarrow \Sigma^{i} X$ for some $i \geq 0$ such that $K(n)_{*}(f)$ is an isomorphism and $K(m)_{*}(f)$ is trivial for $m>n$. Such a map is called an v_{n}-map.

The Nilpotence theorem [DHS88] tells us that essentially all non-nilpotent maps have this property. The Periodicity theorem does not specify the minimum value of d or the number of cells in X, though d must be a multiple of the degree of v_{n}. Since we are concerned about the particular value of d in the theorem above, we make the following definition:

Definition 1.4. A v_{n}^{j}-map on a spectrum X is a map $f: \Sigma \Sigma^{j\left(2 p^{n}-2\right)+i} X \rightarrow \Sigma^{i} X$ for some $i \geq 0$ which induces multiplication by v_{n}^{j} on $K(n)_{*}$.

We would like to study examples where both the the number of cells in X and the power of v_{n} are small. Typically, a complex with more cells allows a lower power of v_{n}, while a higher power of v_{n} requires fewer cells.

The following examples illustrate this principle. In [DM81], two complexes are described that support v_{1}-maps. $\mathbb{R} P^{2}$, which has two cells, supports a v_{1}^{4}-map and no lower power of v_{1}. This example realizes the minimal number of cells and one can prove from this example that no two cell complex can support a v_{1}^{k}-map for $k<4$. On the other hand,

$$
Y=\Sigma^{-3} \mathbb{R} P^{2} \wedge \mathbb{C} P^{2}
$$

has four cells and supports a v_{1}^{1}-map, which is the minimal value of d. Any complex supporting a v_{1}^{1}-map must have at least four cells. Similarly, for v_{2}, [BHHM08] describes a four cell complex that supports at v_{2}^{32}-map, and [BE16] describes several homotopy classes of 32 -cell complexes which support a v_{2}^{1}-map.

Our goal is to identify complexes with a small number of cells that have $v_{2^{-}}$ maps with a low power of v_{2}. We do not succeed in this goal, but we eliminate certain examples from consideration.

1.2. Strategy

The following strategy to find v_{n}-maps is described in detail [PS94]. It involves introducing other self maps, known as u_{i}-maps. u_{i}-maps interpolate between the v_{n}-maps, potentially giving an inductive technique to go from a $v_{n^{-}}$ to a v_{n+1}-map. We need to develop some algebraic background to describe $u_{i^{-}}$ maps in more detail.

1.2.1. The Steenrod Algebra and u_{i} maps

Let A represent the usual mod 2 Steenrod algebra. It is a theorem of Milnor [Mil58] that A_{*}, the dual to A, satisfies

$$
A_{*}=\mathbb{Z} / 2\left[\xi_{1}, \xi_{2}, \ldots\right]
$$

Let $P_{t}^{s} \in A$ be the element dual to $\tilde{\xi}_{t}^{2^{s}}$. By Lemma 15.4 in [Mar83], $\left(P_{t}^{s}\right)^{2}=0$ if and only if $s<t$. We can order these elements by their degree: $\left|P_{t}^{s}\right|=2^{s}\left(2^{t}-1\right)$. For example, the first few elements are given in Table 1.1.

element	degree
P_{1}^{0}	1
P_{2}^{0}	3
P_{2}^{1}	6
P_{3}^{0}	7

TABLE 1.1. First four P_{t}^{s} elements, ordered by degree
Let x_{i} be the $i^{\text {th }}$ element in this list for $i \geq 0$, so $x_{0}=P_{1}^{0}$. Let $E=E\left(x_{i}\right)$ be the exterior subalgebra of A generated by x_{i} for $i \geq 0 . \operatorname{Ext}_{E}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[u_{i}\right]$ where u_{i}
is a polynomial generator with bidegree $\left(1,\left|x_{i}\right|\right)$. Let M be a module over A and consider the following diagram:

The downward map exists because a free A-resolution of M is also a free E-resolution of M : A is free over $E\left(\left\{P_{t}^{r}: r<t\right\}\right)$ ([Rav92], Lemma C.3.1) and $E\left(\left\{P_{t}^{r}: r<t\right\}\right)$ is free over $E\left(P_{t}^{s}\right)$ for any particular $s<t$. Therefore, A is free over $E\left(P_{s}^{t}\right)$ for any $s<t$, and so any free A-module is a free E-module by [MM65].

Definition 1.5. An element $f \in \operatorname{Ext}_{A}^{k, k\left|x_{i}\right|}(M, M)$ is a u_{i}-map if $i^{*}(f)=\left(u_{i}\right)^{k} \otimes 1_{M}$ for some k.

The above definition is purely algebraic. We are interested in maps between the cohomology of spectra that survive the Adams spectral sequence to get an element of homotopy. In order to describe such maps, we introduce the topological structure used to build the Adams spectral sequence.

Definition 1.6 (2.2.1 in [Rav86]). Given a spectrum X, an Adams resolution for X is a diagram:

$$
\begin{aligned}
& \stackrel{\stackrel{1}{\downarrow}}{\stackrel{\downarrow}{X}} \xrightarrow{ } \xrightarrow{b_{2}} C_{2}(X) \\
& \stackrel{i_{2} \downarrow}{X_{1}} \xrightarrow{b_{1}} C_{1}(X) \\
& \stackrel{i_{1}}{\downarrow} \underset{ }{\downarrow} \xrightarrow{b_{0}} C_{0}(X)
\end{aligned}
$$

such that for all $i \geq 0$, the following conditions hold:
(1) Each $C_{i}(X)$ is a wedge of suspensions of $K(\mathbb{Z} / 2)^{\prime}$;
(2) Each $b_{i}^{*}: H^{*}\left(C_{i}(X)\right) \rightarrow H^{*}\left(X_{i}\right)$ is surjective (here $\left.X:=X_{0}\right)$.

The spectra X_{i} and the maps between them form an Adams tower for X.

Given any spectrum X, such a diagram always exists (see [Rav86]). Define $P_{i}(X)=$ $H^{*} \Sigma^{i} C_{i}(X)$, and note that by condition (1) the modules $P_{i}(X)$ are free. We can knit these together into a long exact sequence to form a projective resolution for $H^{*} X$ as an A-module:

$$
\ldots \xrightarrow{d_{2}} P_{2}(X) \xrightarrow{d_{2}} P_{1}(X) \xrightarrow{d_{1}} P_{0}(X) \xrightarrow{d_{0}} H^{*} X \rightarrow 0
$$

Let $K_{i} X=\operatorname{ker}\left(d_{i}: P_{i} \rightarrow P_{i-1} X\right)$. We note that $K_{i} X=H^{*} \Sigma^{i+1} X_{i+1}$, which we will use extensively later.

Now we can say what it means for X to have a u_{i}-map. Let $H^{*} X:=H^{*}\left(X ; \mathbb{Z}_{2}\right)$.
Definition 1.7. Let $f \in \operatorname{Ext}_{A}^{k, k\left|x_{i}\right|}\left(H^{*} X, H^{*} X\right)$ be such that $i^{*}(f)=\left(u_{i}\right)^{k} \otimes 1_{H^{*} X}$ for some k. If f is a permanent cycle in the Adams Spectral Sequence, then we say that X has a u_{i}-map.

Under these hypotheses, the permanent cycle f corresponds to a map

$$
\tilde{\phi}: \Sigma^{k \cdot\left|u_{i}\right|} X \rightarrow X
$$

which lifts to the $k^{\text {th }}$ stage of the Adams tower:

The map ϕ is defined to be the composite of $\tilde{\phi}$ with the downward maps.
Lemma 3.1 and Theorem 3.3 in [PS94] give an inductive method to produce a complex supporting a u_{i+1}-map from a complex that supports a u_{i}-map. Let X be a complex supporting a u_{i}-map and $\tilde{\phi}$ be as above.

Let

$$
Y=\operatorname{cof}(\tilde{\phi})
$$

We may assume that $\tilde{\phi}^{*}: H^{*} X_{k} \rightarrow H^{*} \Sigma^{k| | u_{i} \mid} X$ is onto since we can add copies of A to $H^{*} X_{k}$ by choosing $C_{k-1}(X)$ to have more wedge summands of $K(\mathbb{Z} / 2)$. Thus we have that

$$
H^{*} Y=\operatorname{ker}\left(\tilde{\phi}^{*}: H^{*} X_{k} \rightarrow H^{*} \Sigma^{k \cdot\left|u_{i}\right|} X\right)
$$

The proof of Theorem 3.3 in [PS94] shows that Y supports a u_{i+1}^{j}-map for some j. Inductively taking cofibers in this way allows us to obtain spectra with u_{i}-maps for all i; however, this does not control the power j.

1.2.2. u_{i} maps and v_{n} maps

There is a correspondence between u_{i}-maps and v_{n}-maps, described in the proofs of Theorem 3.3 and Corollary 3.5 in [PS94]. They show that for each i, there is cofiber sequence

$$
F \rightarrow X_{i} \rightarrow X_{i}^{\prime}
$$

where X_{i} has a u_{i}^{k}-map for some k, X_{i}^{\prime} is a finite spectrum, and F has a finite Adams resolution. The proof uses the inductive process described above.

In the case that u_{i} corresponds to P_{n+1}^{0} for the elements P_{t}^{s} described above, they show that the u_{i}-map on X_{i} induces a v_{n}-map on X_{i}^{\prime}.

The first several cases of this correspondence are given in Table 1.2.

u_{i}	x_{i}	v_{n}	degree
u_{0}	P_{1}^{0}	v_{0}	1
u_{1}	P_{2}^{0}	v_{1}	3
u_{2}	P_{2}^{1}	-	6
u_{3}	P_{3}^{0}	v_{2}	7

TABLE 1.2. Correspondence between $u_{i^{-}}$and v_{n}-maps

1.2.3. Margolis Homology

We see above that u_{i}-maps can give rise to v_{n}-maps on associated finite complexes. In order to detect u_{i}-maps, we use a tool called Margolis homology.

Let $x \in A$ be such that $x^{2}=0$. Let M be a left A-module, and define a vector space map $x: M \rightarrow M$ by $m \mapsto x m$. Since $x^{2}=0, \operatorname{im} x \subseteq \operatorname{ker} x$. So one can define the homology of an A-module M with respect to x to be

$$
H(M, x)=\frac{\operatorname{ker} x: M \rightarrow M}{\operatorname{im} x: M \rightarrow M}
$$

We'll specialize to the cases where $x=x_{i}=P_{t}^{s}$ for $s<t$. These give the Margolis homology groups of a spectrum X, where

$$
H\left(H^{*} X, x_{i}\right)=\frac{\operatorname{ker} x_{i}: H^{*} X \rightarrow H^{*} X}{\operatorname{im} x_{i}: H^{*} X \rightarrow H^{*} X}
$$

We often use short exact sequences to calculate Margolis homology. When one of the modules in a short exact sequence is free, we will use the following theorem:

Theorem 1.8 (Theorem 19.1 from [Mar83]). If M is a free module, then $H\left(M, x_{i}\right)=0$ for all i.

We will also use the following Theorem 2.4 from [Rei17]:

Theorem 1.9. Let M be a stably finite A-module such that $H\left(M, x_{m}\right)=0$ for $m<k$, and $H\left(M, x_{k}\right) \neq 0$. Let $\alpha \in \operatorname{Ext}_{A}^{q, r}(M, M)$ be represented by a function $f: P_{q}(M) \rightarrow \Sigma^{r} M$. Then some power of α is a u_{k}-map if and only if the induced map $\bar{f}: K_{q-1}(M) \rightarrow \Sigma^{r}(M)$ is an isomorphism on x_{k} homology.

This theorem gives us a computationally feasible way of determining whether a given element of $\operatorname{Ext}_{A}^{q, r}\left(H^{*} X, H^{*} X\right)$ is a u_{k}-map for low values of q.

1.3. Results

In this paper, I describe four complexes $Z\left(\beta_{1}, \beta_{2}\right)$, where $\beta_{1}, \beta_{2} \in\{0,1\}$. These are candidates for complexes with a minimal number of cells supporting a low power of u_{2}. Using the techniques outlined above, we expect the cofiber of such a map to support a low power of v_{2}.

We show instead that none of these complexes support

$$
u_{2}^{1}: \Sigma^{6} Z\left(\beta_{1}, \beta_{2}\right) \rightarrow Z\left(\beta_{1}, \beta_{2}\right)
$$

and that $Z(0,0)$ does not support

$$
u_{2}^{2}: \Sigma^{12} Z(0,0) \rightarrow Z(0,0)
$$

The main result of the paper is Theorem 5.2.

CHAPTER II

U_{1} MAPS AND THE DEFINITION OF $Z\left(\beta_{1}, \beta_{2}\right)$

Davis and Mahowald show [DM81] that the complex $Y=\Sigma^{-3} \mathbb{R} P^{2} \wedge C P^{2}$ supports a self-map $v_{1}^{1}: \Sigma^{2} Y \rightarrow Y$. Following the notation of [PS94], this corresponds to a map u_{1} map $\pi \in \operatorname{Ext}_{A}^{1,3}\left(H^{*} Y, H^{*} Y\right)$. Recall that $H^{*} Y$ has four vector space generators, which we will call $\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$, where α_{i} is in degree $i . H^{*} Y$ is a module over A with module structure given below. All other $\mathrm{Sq}^{\mathrm{i}^{i}}$ are zero since they change degree by at least four. The A-module structure is pictured in Figure 2.1.

FIGURE 2.1. A-module structure of $H^{*} Y$
We will use Y and a v_{1}-map to build a complex that supports a u_{2}^{i}-map.

2.1. Calculation of $K_{0}(Y)$

We build an Adams resolution for Y as follows. We take $C_{0}(Y)=K(\mathbb{Z} / 2)$, so that $P_{0}(Y)=A$. Let $Y \rightarrow K(\mathbb{Z} / 2)$ be the map corresponding to α_{0}. Then $d_{0}: P_{0}(Y) \rightarrow H^{*} Y$ is given by $d_{0}\left(\mathrm{Sq}^{0}\right)=\alpha_{0}$. Clearly d_{0} is surjective. As before, let $K_{0} Y=\operatorname{ker} d_{0}$.

We will need describe the A-module structure of $K_{0}(Y)$ in a finite range to perform later computations. We note that, above dimension $3, K_{0}(Y) \cong A$, since $H^{*} Y$ is nonzero only in dimensions $0,1,2$, and 3 . The A-module structure of $K_{0}(Y)$ through dimension 10 appears in Figure 2.2. We are using shorthand to refer to the Serre-Cartan basis elements of A. For example $(2,1)+(3)$ represents the Serre-Cartan basis element $\mathrm{Sq}^{2} \mathrm{Sq}^{1}+\mathrm{Sq}^{3} \in A$. Each arc represents an action of $\mathrm{Sq}^{2^{i}}$; the value of i can be determined by the difference in dimension. Some $\mathrm{Sq}^{4 \prime} \mathrm{~s}$ and $\mathrm{Sq}^{8 \prime} \mathrm{~s}$ are omitted for clarity.

FIGURE 2.2. $K_{0} Y$ through dimension 10

2.2. Identifying u_{1} on Y

In the Adams resolution, we have $K_{i}(Y) \cong H^{*} \sum^{i+1} Y_{i+1}$. From now on, we may refer to $K_{0}(Y)$ as $H^{*} \Sigma Y_{1}$ (alternatively, $\Sigma^{-1} K_{0}(Y)=H^{*} Y_{1}$).

Now that we have $H^{*} \Sigma Y_{1}$, we look for a u_{1}^{1}-map on Y. The u_{1}^{1}-map corresponds to the $v_{1}^{1}: \Sigma^{2} Y \rightarrow Y$ identified in [DM81]. This is represented by an element

$$
[\pi] \in \operatorname{Ext}_{A}^{1,3}\left(H^{*} Y, H^{*} Y\right)
$$

which maps to the polynomial generator $u_{1} \otimes 1 \in \operatorname{Ext}_{E\left(P_{2}^{0}\right)}^{1,3}\left(H^{*} Y, H^{*} Y\right)$ under the map induced by the inclusion $E\left(P_{2}^{0}\right) \subset A$. Recall that elements of $\operatorname{Ext}_{A}^{1,3}\left(H^{*} Y, H^{*} Y\right)$ are represented by maps $P_{1}(Y) \rightarrow H^{*} \Sigma^{3} Y$ that are cocycles.

We proceed as follows:

1. Calculate $P_{1}(Y), P_{2}(Y)$ through dimension 6;
2. Find maps $P_{1}(Y) \rightarrow H^{*} \Sigma^{3} Y$ that are cocycles;
3. Determine if these maps lift u_{1}^{1}.

We note that we need only to calculate $P_{2}(Y), P_{1}(Y)$ through dimension 6 because $H^{*} \Sigma^{3} Y$ is 0 above dimension 6 , so this information will be sufficient to determine whether a map is a cocycle.

Since $P_{1}(Y)$ must surject onto $H^{*} \Sigma Y_{1}=K_{0}(Y)$, we choose

$$
P_{1}(Y)=\Sigma^{3} A \oplus \Sigma^{4} A \oplus \Sigma^{6} A \oplus \ldots
$$

through dimension 6. Denote the generator of $\Sigma^{n} A$ by ι_{n}. The map $d_{1}: P_{1}(Y) \rightarrow$ $P_{0}(Y)=A$ is given by

$$
\begin{aligned}
& d_{1}\left(\iota_{3}\right)=\mathrm{Sq}^{3}+\mathrm{Sq}^{2} \mathrm{Sq}^{1} \\
& d_{1}\left(\iota_{4}\right)=\mathrm{Sq}^{4} \\
& d_{1}\left(\iota_{6}\right)=\mathrm{Sq}^{4} \mathrm{Sq}^{2}
\end{aligned}
$$

In order to calculate $P_{2}(Y)$, we must identify $\operatorname{ker}\left(d_{1}: P_{1}(Y) \rightarrow P_{2}(Y)\right)$ and choose $P_{2}(Y)$ so that it maps surjectively onto this kernel. Through dimension 6, this kernel has only one element, which is $\left(\mathrm{Sq}^{3}+\mathrm{Sq}^{2} \mathrm{Sq}^{1}\right) \iota_{3}$. Thus through dimension 6 we have $P_{2}(Y)=\Sigma^{6} A$. Call the generator of this group j_{6}; then the map $d_{2}: P_{2}(Y) \rightarrow$ $P_{1}(Y)$ is given by $d_{2}\left(j_{6}\right)=\left(\mathrm{Sq}^{3}+\mathrm{Sq}^{2} \mathrm{Sq}^{1}\right) \iota_{3}$. This calculation of $P_{1}(Y)$ and $P_{2}(Y)$ will be sufficient to find a u_{1}^{1} map.

Next we find maps $P_{1}(Y) \rightarrow H^{*} \Sigma^{3} Y$ that are cocycles. The vector space $\operatorname{Hom}_{A}\left(P_{1}(Y), \Sigma^{3} H^{*} Y\right)$ has three generators $\phi_{3}, \phi_{4}, \phi_{6}$, defined as follows:

$$
\begin{aligned}
& \phi_{3}\left(\iota_{n}\right)= \begin{cases}\Sigma^{3} \alpha_{0} & \text { if } n=3 \\
0 & \text { if } n \neq 3\end{cases} \\
& \phi_{4}\left(\iota_{n}\right)= \begin{cases}\Sigma^{3} \alpha_{1} & \text { if } n=4 \\
0 & \text { if } n \neq 4\end{cases} \\
& \phi_{6}\left(l_{n}\right)= \begin{cases}\Sigma^{3} \alpha_{3} & \text { if } n=6 \\
0 & \text { if } n \neq 6\end{cases}
\end{aligned}
$$

Now we look at the images of these maps under

$$
d_{2}^{*}: \operatorname{Hom}_{A}\left(P_{1}(Y), H^{*} \Sigma^{3} Y\right) \rightarrow \operatorname{Hom}_{A}\left(P_{2}(Y), H^{*} \Sigma^{3} Y\right)
$$

The group $\operatorname{Hom}_{A}\left(P_{2}(Y), H^{*} \Sigma^{3} Y\right)$ only has one generator, j_{6}, in the relevant dimensions. So it is sufficient to evaluate $d_{2}^{*}\left(\phi_{i}\right)\left(j_{6}\right)$; if this is zero, then ϕ_{i} is
a cocycle. We have

$$
\begin{aligned}
d_{2}^{*}\left(\phi_{3}\right)\left(j_{6}\right) & =\left(\phi_{3} \circ d_{2}\right)\left(j_{6}\right) \\
& =\phi_{3}\left(\left(\mathrm{Sq}^{3}+\mathrm{Sq}^{2} \mathrm{Sq}^{1}\right) \iota_{3}\right) \\
& =\left(\mathrm{Sq}^{3}+\mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)\left(\Sigma^{3} \alpha_{0}\right) \\
& =\Sigma^{3}\left(\alpha_{3}+\alpha_{3}\right) \\
& =0 \\
d_{2}^{*}\left(\phi_{4}\right)\left(j_{6}\right) & =\left(\phi_{4} \circ d_{2}\right)\left(j_{6}\right) \\
& =\phi_{4}\left(\left(\mathrm{Sq}^{3}+\mathrm{Sq}^{2} \mathrm{Sq}^{1}\right) \iota_{3}\right) \\
& =\left(\mathrm{Sq}^{3}+\mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)\left(\Sigma^{3} \alpha_{1}\right) \\
& =0 \\
d_{2}^{*}\left(\phi_{6}\right)\left(j_{6}\right) & =\left(\phi_{6} \circ d_{2}\right)\left(j_{6}\right) \\
& =\phi_{6}\left(\left(\mathrm{Sq}^{3}+\mathrm{Sq}^{2} \mathrm{Sq}^{1}\right) \iota_{3}\right) \\
& =\left(\mathrm{Sq}^{3}+\mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)\left(\Sigma^{3} \alpha_{3}\right) \\
& =0
\end{aligned}
$$

Thus, all of $\phi_{3}, \phi_{4}, \phi_{6}$ are cocycles.

Last, we determine which linear combination of these lift $u_{1}^{1} \otimes 1 \quad \epsilon$ $\operatorname{Ext}_{E\left(P_{2}^{0}\right)}^{1,3}\left(H^{*} Y, H^{*} Y\right)$. In order to do so, we make a $E\left(P_{2}^{0}\right)$-resolution of $H^{*} Y$, which we will call $Q \cdot(Y)$, and using that resolution, we will identify a representative for
u_{1}^{1}. Any free A-module is also free over $E\left(P_{2}^{0}\right)$, so an A-resolution of $H^{*} Y$ is also an $E\left(P_{2}^{0}\right)$-resolution. Thus our resolution $P_{\bullet}(Y)$ is also a $E\left(P_{2}^{0}\right)$-resolution. Then we will use a map of resolutions $Q \bullet(Y) \rightarrow P_{\bullet}(Y)$ to see which maps lift our representative u_{1}^{1}.

Define $Q_{i}(Y)=\Sigma^{3 i} E\left(P_{2}^{0}\right) \otimes H^{*} Y$, so that $Q_{\bullet}(Y)$ is the minimal resolution of Y as an $E\left(P_{2}^{0}\right)$-module. More explicitly, this resolution is given by

$$
\cdots \rightarrow \Sigma^{6} E\left(P_{2}^{0}\right) \otimes H^{*} Y \xrightarrow{d_{2}^{\prime}} \Sigma^{3} E\left(P_{2}^{0}\right) \otimes H^{*} Y \xrightarrow{d_{1}^{\prime}} E\left(P_{2}^{0}\right) \otimes H^{*} Y \xrightarrow{d_{0}^{\prime}} H^{*} Y \rightarrow 0
$$

where the maps are: $d_{i}^{\prime}\left(\Sigma^{3 i} 1 \otimes \alpha_{j}\right)=\Sigma^{3(i-1)} P_{2}^{0} \otimes \alpha_{j}$ for all $i \geq 1$ and $j=0,1,2,3$. Observe that $\left(d^{\prime}\right)^{2}=0$.

This resolution can be used to compute that

$$
\operatorname{Ext}_{E\left(P_{2}^{0}\right)}\left(H^{*} Y, H^{*} Y\right)=\mathbb{F}_{2}\left[u_{1}\right] \otimes \operatorname{Hom}_{\mathbb{F}_{2}}\left(H^{*} Y, H^{*} Y\right)
$$

u_{1} is represented by a map $p \in \operatorname{Hom}_{E\left(P_{2}^{0}\right)}\left(Q_{1}(Y), H^{*} \Sigma^{3} Y\right)$ so that $p\left(\Sigma^{3} 1 \otimes \alpha_{j}\right)=\Sigma^{3} \alpha_{j}$.

Now we compare Q. to the resolution P_{\bullet} given above. We will create a map between these two resolutions in order to identify the lift of the u_{1} representative. Consider the following diagram:

$$
\begin{gathered}
\cdots \longrightarrow \underset{2}{\longrightarrow} P_{2}(Y) \xrightarrow{d_{2}} P_{1}(Y) \xrightarrow{d_{1}} P_{0}(Y) \xrightarrow{d_{0}} H^{*} Y \rightarrow 0 \\
f_{2} \uparrow \\
\cdots \rightarrow \Sigma^{6} E\left(P_{2}^{0}\right) \otimes H^{*} Y \xrightarrow{d_{2}^{\prime}} \Sigma^{3} E\left(P_{2}^{0}\right) \otimes H^{*} Y \xrightarrow{d_{1}^{\prime}} E\left(P_{2}^{0}\right) \otimes H^{*} Y \xrightarrow{d_{0}^{\prime}} H^{*} \Upsilon \rightarrow 0
\end{gathered}
$$

We now need to define the maps f_{i} above so that the diagram commutes and is a diagram of $E\left(P_{2}^{0}\right)$-modules. For f_{0} we can choose

$$
\begin{aligned}
& f_{0}\left(1 \otimes \alpha_{0}\right)=\mathrm{Sq}^{0} \\
& f_{0}\left(1 \otimes \alpha_{1}\right)=\mathrm{Sq}^{1} \\
& f_{0}\left(1 \otimes \alpha_{2}\right)=\mathrm{Sq}^{2} \\
& f_{0}\left(1 \otimes \alpha_{3}\right)=\mathrm{Sq}^{3}
\end{aligned}
$$

The other images are determined by the $E\left(P_{2}^{0}\right)$-module structure of $E\left(P_{2}^{0}\right) \otimes P_{0}(Y)$, so we have

$$
\begin{aligned}
& f_{0}\left(P_{2}^{0} \otimes \alpha_{0}\right)=\mathrm{Sq}^{3}+\mathrm{Sq}^{2} \mathrm{Sq}^{1} \\
& f_{0}\left(P_{2}^{0} \otimes \alpha_{1}\right)=\mathrm{Sq}^{3} \mathrm{Sq}^{1} \\
& f_{0}\left(P_{2}^{0} \otimes \alpha_{2}\right)=\mathrm{Sq}^{5}+\mathrm{Sq}^{4} \mathrm{Sq}^{1} \\
& f_{0}\left(P_{2}^{0} \otimes \alpha_{3}\right)=\mathrm{Sq}^{5} \mathrm{Sq}^{1}
\end{aligned}
$$

Now we define f_{1} so that the diagram commutes. We have

$$
\begin{aligned}
& f_{1}\left(\Sigma^{3} 1 \otimes \alpha_{0}\right)=\iota_{3} \\
& f_{1}\left(\Sigma^{3} 1 \otimes \alpha_{1}\right)=\mathrm{Sq}^{1} \iota_{3} \\
& f_{1}\left(\Sigma^{3} 1 \otimes \alpha_{2}\right)=\mathrm{Sq}^{2} \iota_{3} \\
& f_{1}\left(\Sigma^{3} 1 \otimes \alpha_{3}\right)=\mathrm{Sq}^{3} \iota_{3}
\end{aligned}
$$

Again, the other images are determined by the $E\left(P_{2}^{0}\right)$-module structure of $\Sigma^{3} E\left(P_{2}^{0}\right) \otimes H^{*} Y$.

This map $f_{1}: Q_{1}(Y) \rightarrow P_{1}(Y)$ induces a map

$$
f_{1}^{*}: \operatorname{Hom}_{E\left(P_{2}^{0}\right)}\left(P_{1}(Y), H^{*} \Sigma^{3} Y\right) \rightarrow \operatorname{Hom}_{E\left(P_{2}^{0}\right)}\left(Q_{1}(Y), H^{*} \Sigma^{3} Y\right)
$$

We also have an inclusion

$$
i: \operatorname{Hom}_{A}\left(P_{1}(Y), H^{*} \Sigma^{3} Y\right) \subseteq \operatorname{Hom}_{E\left(P_{2}^{0}\right)}\left(P_{1}(Y), H^{*} \Sigma^{3} Y\right)
$$

which compose to give us a map

$$
f_{1}^{*} \circ i: \operatorname{Hom}_{A}\left(P_{1}(Y), H^{*} \Sigma^{3} Y\right) \rightarrow \operatorname{Hom}_{E\left(P_{2}^{0}\right)}\left(Q_{1}(Y), H^{*} \Sigma^{3} Y\right)
$$

An element of $\operatorname{Hom}_{A}\left(P_{1}(Y), H^{*} \Sigma^{3} Y\right)$ represents a u_{1} map if its image under this composition is homologous to the map p described above.

We have already identified three basis elements

$$
\phi_{3}, \phi_{4}, \phi_{6} \in \operatorname{Hom}_{A}\left(P_{1}(Y), H^{*} \Sigma^{3} Y\right)
$$

in dimensions 6 or below, all of which are cocycles and therefore potential u_{1} maps. We examine the images of these under $f_{1}^{*} \circ i$. In an abuse of notation, we will use ϕ_{k} to refer to the image $i\left(\phi_{k}\right) \in \operatorname{Hom}_{E\left(P_{2}^{0}\right)}\left(P_{1}(Y), H^{*} \Sigma^{3} Y\right)$ for $k=3,4,6$. Thus we need to examine the images of ϕ_{k} under f_{1}^{*}. Calculating $f_{1}^{*}\left(\phi_{k}\right)$ on $\Sigma^{3} 1 \otimes \alpha_{0}$ for $k=3,4,6$, we see that

$$
\begin{aligned}
f_{1}^{*}\left(\phi_{3}\right)\left(\Sigma^{3} 1 \otimes \alpha_{0}\right) & =\left(\phi_{3} \circ f_{1}\right)\left(\Sigma^{3} \otimes \alpha_{0}\right) \\
& =\phi_{3}\left(\mathrm{Sq}^{i} \iota_{3}\right) \\
& =\Sigma^{3} \alpha_{0}
\end{aligned}
$$

Thus, we see that $f_{1}^{*}\left(\phi_{3}\right) \in \operatorname{Hom}_{E\left(P_{2}^{0}\right)}\left(P_{1}(Y), \Sigma^{3} H^{*} Y\right)$ is homologous to p described above. Therefore, ϕ_{3} represents a u_{1} map on Y.

We also have

$$
\begin{aligned}
f_{1}^{*}\left(\phi_{4}\right)\left(\Sigma^{3} 1 \otimes \alpha_{i}\right) & =\left(\phi_{4} \circ f_{1}\right)\left(\Sigma^{3} \otimes \alpha_{i}\right) \\
& =\phi_{4}\left(\mathrm{Sq}^{i} \iota_{3}\right) \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
f_{1}^{*}\left(\phi_{6}\right)\left(\Sigma^{3} 1 \otimes \alpha_{i}\right) & =\left(\phi_{6} \circ f_{1}\right)\left(\Sigma^{3} \otimes \alpha_{i}\right) \\
& =\phi_{6}\left(\mathrm{Sq}^{i} \iota_{3}\right) \\
& =0
\end{aligned}
$$

Therefore, $f_{1}^{*}\left(\phi_{3}+\beta_{1} \phi_{4}+\beta_{2} \phi_{6}\right)=p$ for any $\beta_{1}, \beta_{2} \in\{0,1\}$.
We note that each possibility for u_{1} is a permanent cycle in the Adams spectral sequence: the map

$$
d_{2}: \operatorname{Ext}_{A}^{1,3}\left(H^{*} Y, H^{*} Y\right) \rightarrow \operatorname{Ext}_{A}^{3,2}\left(H^{*} Y, H^{*} Y\right)
$$

is the zero map because $P_{3}(Y)$ is zero below dimension 9, and so there are no nonzero maps $P_{3} Y \rightarrow \Sigma^{i} H^{*} Y$ for $i<6$.

2.3. Definition of the Complexes $Z\left(\beta_{1}, \beta_{2}\right)$

We have described different lifts of u_{1}^{1} described above. Therefore, we have four possible algebraic u_{1} maps from

$$
\left(\phi_{3}+\beta_{1} \phi_{4}+\beta_{2} \phi_{6}\right): H^{*} Y_{1} \rightarrow H^{*} \Sigma^{2} Y
$$

where $H^{*} Y_{1}=\Sigma^{-1} K_{0} Y$. Since these maps are permanent cycles in the Adams spectral sequence, they correspond to topological maps

$$
\psi_{\beta_{1}, \beta_{2}}: \Sigma^{2} Y \rightarrow Y_{1}
$$

Define four complexes $Z\left(\beta_{1}, \beta_{2}\right)$ by

$$
Z\left(\beta_{1}, \beta_{2}\right)=\operatorname{cof}\left(\phi_{\beta_{1}, \beta_{2}}\right)
$$

for $\beta_{1}, \beta_{2} \in\{0,1\}$.
Then

$$
H^{*} Z\left(\beta_{1}, \beta_{2}\right)=\operatorname{ker}\left(\phi_{3}+\beta_{1} \phi_{4}+\beta_{2} \phi_{6}\right)
$$

since $\phi_{\beta_{1}, \beta_{2}}$ are onto in cohomology for each choice of $\beta_{1}, \beta_{2} \in\{0,1\}$.
This gives us four complexes, all of which must support a u_{2}^{i}-map for some i. We show that none of them support a u_{2}^{1}-map, and that $Z(0,0)$ does not support a u_{2}^{2}-map either. We will also show that among these four complexes there are
at least two different Steenrod algebra structures via a computation in Margolis homology.

We end this chapter with an explicit description of all four $H^{*} Z\left(\beta_{1}, \beta_{2}\right)$ in low degrees in Figures 2.3., 2.4., 2.5., and 2.6. The reader will find this helpful in following computations later on. The classes are named according to their images under the inclusions

$$
H^{*} Z\left(\beta_{1}, \beta_{2}\right) \subseteq H^{*} Y_{1}=\Sigma^{-1} K_{0}(Y) \subseteq A
$$

but the desuspensions and Sq symbols are omitted for brevity. For example, the class labeled " $51+6^{\prime \prime}$ in $H^{*} Z(0,0)$ is shorthand for $\Sigma^{-1}\left(S q^{5} \mathrm{Sq}^{1}+\mathrm{Sq}^{6}\right)$.

FIGURE 2.3. $H^{*} Z(0,0)$ through dimension 12

FIGURE 2.4. $H^{*} Z(1,0)$ through dimension 12

FIGURE 2.5. $H^{*} Z(0,1)$ through dimension 12

FIGURE 2.6. $H^{*} Z(1,1)$ through dimension 12

CHAPTER III

MARGOLIS HOMOLOGY COMPUTATIONS

In order to detect a u_{2}-map on $Z\left(\beta_{1}, \beta_{2}\right)$, we use the following theorem due to [Rei17]:

Theorem 3.1. Let M be a stably finite A-module such that $H\left(M, x_{m}\right)=0$ for $m<k$, and $H\left(M, x_{k}\right) \neq 0$. Let $\alpha \in \operatorname{Ext}_{A}^{q, r}(M, M)$ be represented by a function $f: P_{q}(M) \rightarrow \Sigma^{r} M$. Then some power of α is a u_{k}-map if and only if the induced map $\bar{f}: K_{q-1}(M) \rightarrow \Sigma^{r}(M)$ is an isomorphism on x_{k} homology.

Specifically, if a map α is a u_{2}^{1}-map on $Z\left(\beta_{1}, \beta_{2}\right)$, it must induce an isomorphism

$$
H\left(K_{0} Z\left(\beta_{1}, \beta_{2}\right), x_{2}\right) \stackrel{\cong}{\rightarrow} H\left(H^{*} \Sigma^{6} Z\left(\beta_{1}, \beta_{2}\right), x_{2}\right)
$$

Therefore, we set about calculating the Margolis homology $H\left(-, x_{2}\right)$ of each of these groups. We will prove the following theorem:

Theorem 3.2. 1. $H\left(H^{*} Z(0,0), x_{2}\right)$ and $H\left(H^{*} Z(1,1), x_{2}\right)$ have nonzero classes only in dimensions $5,6,7,8,9,10,11 . H\left(K_{0} Z(0,0), x_{2}\right) H\left(K_{0} Z(1,1), x_{2}\right)$ have nonzero classes only in dimensions $11,12,13,14,15,16,17$.
2. $H\left(H^{*} Z(1,0), x_{2}\right)$ and $H\left(H^{*} Z(0,1), x_{2}\right)$ have nonzero classes only in dimensions $6,7,8,9,10$.. $H\left(K_{0} Z(1,0), x_{2}\right) H\left(K_{0} Z(0,1), x_{2}\right)$ have nonzero classes only in dimensions $12,13,14,15,16$.

An interesting corollary of this theorem is that although the diagrams representing the Steenrod algebra structure for the four choices of $Z\left(\beta_{1}, \beta_{2}\right)$ are identical in low degrees, a relatively low Margolis differential, namely x_{2}, detects
a difference in the Steenrod algebra structure between some of the choices for $Z\left(\beta_{1}, \beta_{2}\right)$: it can tell $Z(0,0)$ from $Z(0,1)$ and $Z(1,0)$, but it cannot distinguish $Z(0,0)$ and $Z(1,1)$, for instance.

In this proof, we will describe identify the ranks of the vector spaces of $H\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), x_{2}\right)$ and $H\left(K_{0} Z\left(\beta_{1}, \beta_{2}\right), x_{2}\right)$ for all choices of $\beta_{1}, \beta_{2} \in\{0,1\}$. At the end of the proof we will provide explicit generators for these groups, using the fact that $H^{*} Z\left(\beta_{1}, \beta_{2}\right) \subseteq H^{*} Y_{1} \subseteq \Sigma^{-1} A$.

Proof. We make use of two short exact sequences:

$$
0 \rightarrow K_{0}(Y) \rightarrow A \rightarrow H^{*} Y \rightarrow 0
$$

and

$$
0 \rightarrow H^{*} Z\left(\beta_{1}, \beta_{2}\right) \rightarrow H^{*} Y_{1} \rightarrow H^{*} \Sigma^{2} Y \rightarrow 0
$$

which are related by the fact that $\Sigma^{-1} K_{0}(Y)=H^{*} Y_{1}$. We will apply $H\left(-, x_{2}\right)$ to these sequences and use knowledge of $H^{*} Y$ to determine elements of $H\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), x_{2}\right)$.

Since $x_{2}=\mathrm{Sq}^{6}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}+\mathrm{Sq}^{4} \mathrm{Sq}^{2}$ has dimension 6 , we see that

$$
H\left(H^{*} Y, x_{2}\right)=H^{*} Y
$$

has four classes represented by α_{i} for $i=0,1,2,3$. Since A is a free A-module, its Margolis homology is 0 . Applying $H\left(-, x_{2}\right)$ to the first short exact sequence, we obtain long exact sequences of the form

$$
\begin{aligned}
\ldots & \longrightarrow H_{n}\left(K_{0}(Y), x_{2}\right) \longrightarrow H_{n}\left(A, x_{2}\right) \longrightarrow H_{n}\left(H^{*} Y, x_{2}\right) \longrightarrow \\
& \longleftrightarrow H_{n+6}\left(K_{0}(Y), x_{2}\right) \longrightarrow H_{n+6}\left(A, x_{2}\right) \longrightarrow H_{n+6}\left(H^{*} Y, x_{2}\right) \longrightarrow \ldots
\end{aligned}
$$

which give us isomorphisms of the form $H_{n}\left(H^{*} Y, x_{2}\right) \cong H_{n+6}\left(K_{0}(Y), x_{2}\right)$. We can explicitly compute the classes using the connecting homomorphism. We conclude that $K_{0}(Y)$ has nonzero Margolis homology in dimension 6,7,8,9, and thus $\Sigma^{-1} K_{0}(Y)=H^{*} Y_{1}$ has Margolis homology in dimension 5,6,7,8. We also note that $H\left(\Sigma^{2} H^{*} Y, x_{2}\right) \cong \Sigma^{2} H^{*} Y$. This information is summarized in Table 3.1.

dim	$H^{*} Y$	$H^{*} K_{0}(Y)$	$H^{*} Y_{1}$	$H^{*} \Sigma^{2} Y$
0	α_{0}	0	0	0
1	α_{1}	0	0	0
2	α_{2}	0	0	$\Sigma^{2} \alpha_{0}$
3	α_{3}	0	0	$\Sigma^{2} \alpha_{1}$
4	0	0	$\Sigma^{-1}\left(\mathrm{Sq}^{6}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}+\mathrm{Sq}^{4} \mathrm{Sq}^{2}\right)$	$\Sigma^{2} \alpha_{3}$
5	0	0	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{1}+\mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$	0
6	0	$\mathrm{Sq}^{6}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}+\mathrm{Sq}^{4} \mathrm{Sq}^{2}$	0	
7	0	$\mathrm{Sq}^{6} \mathrm{Sq}^{1}+\mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}$	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$	0
8	0	$\mathrm{Sq}^{6} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}^{2} \mathrm{Sq}^{1}$	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$	0
9	0	$\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1}$	0	0

TABLE 3.1. Margolis homology of $H^{*} Y, H^{*} K_{0} Y, H^{*} Y_{1}, H^{*} \Sigma^{2} Y$
Now we will apply $H\left(-, x_{2}\right)$ to the short exact sequence

$$
0 \rightarrow H^{*} Z\left(\beta_{1}, \beta_{2}\right) \rightarrow H^{*} Y_{1} \rightarrow H^{*} \Sigma^{2} Y \rightarrow 0
$$

which produces long exact sequences of the form

$$
\begin{aligned}
\ldots & H_{n}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), x_{2}\right) \longrightarrow H_{n}\left(H^{*} Y_{1}, x_{2}\right) \longrightarrow H_{n}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \longrightarrow \\
& \longleftrightarrow H_{n+6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), x_{2}\right) \longrightarrow H_{n+6}\left(H^{*} Y_{1}, x_{2}\right) \longrightarrow H_{n+6}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \longrightarrow \ldots
\end{aligned}
$$

Since $H_{n}\left(H^{*} Y_{1}, x_{2}\right)=0$ unless $n=5,6,7,8$, and $H_{n}\left(H^{*} \Sigma^{2} Y, x_{2}\right)=0$ unless $n=2,3,4,5$, we have automatically that $H_{n+6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), x_{2}\right)=0$ unless $n=$ $5,6,7,8,9,10,11$. Below we show that in the case that $\beta_{1}=\beta_{2}$, all of these dimensions contain nonzero Margolis homology. In the case that $\beta_{1} \neq \beta_{2}$, we have that $H_{n}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), x_{2}\right) \neq 0$ in dimensions $6,7,8,9,10$. We prove this in cases:

$\underline{H^{*} Z(0,0)}$

$\underline{n=2}$: We have $H_{2}\left(H^{*} Y_{1}, x_{2}\right)=H_{8}\left(H^{*} \Sigma^{2} Y, x_{2}\right)=0$, so we have

$$
0 \rightarrow H_{2}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \xrightarrow{\delta} H_{8}\left(H^{*} Z(0,0), x_{2}\right) \rightarrow H_{8}\left(H^{*} Y_{1}, x_{2}\right) \rightarrow 0
$$

Computing the connecting homomorphism δ above shows that $\delta\left(\Sigma^{2} \alpha_{0}\right)=$ $\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{3}+\mathrm{Sq}^{7} \mathrm{Sq}^{2}+\mathrm{Sq}^{8} \mathrm{Sq}^{1}+\mathrm{Sq}^{9}\right)$. We have, by previous computation, that $H_{8}\left(H^{*} Y_{1}, x_{2}\right)$ is generated by $\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$. So these are the two generators of $H_{8}\left(H^{*} Z(0,0), x_{2}\right)$.
$\underline{n=3}$: In this case, we have an isomorphism $H_{3}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \cong H_{9}\left(H^{*} Z(0,0), x_{2}\right)$ since $H_{3}\left(H^{*} Y_{1}, x_{2}\right)=H_{9}\left(H^{*} Y_{1}, x_{2}\right)=0$.
$\underline{n=4}$: Similar to $n=3$, we have an isomorphism $H_{4}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \cong$ $H_{10}\left(H^{*} Z(0,0), x_{2}\right)$.
$\underline{n=5}$: Since $H_{-1}\left(H^{*} \Sigma^{2} Y, x_{2}\right)=0$ and $H_{11}\left(H^{*} Y_{1}, x_{2}\right)=0$, we have an exact sequence
$0 \rightarrow H_{5}\left(H^{*} Z(0,0), x_{2}\right) \rightarrow H_{5}\left(H^{*} Y_{1}, x_{2}\right) \xrightarrow{f_{0,0}} H_{5}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \rightarrow H_{11}\left(H^{*} Z(0,0), x_{2}\right) \rightarrow 0$
where $f_{0,0}=\left(\phi_{3}\right)_{*}$.
The generator of $H_{5}\left(H^{*} Y_{1}, x_{2}\right)$ is the class of $\Sigma^{-1}\left(\mathrm{Sq}^{6}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}+\mathrm{Sq}^{4} \mathrm{Sq}^{2}\right)$, which maps to 0 under ϕ_{3}. Thus we have isomorphisms $H_{5}\left(H^{*} Z(0,0), x_{2}\right) \cong$ $H_{5}\left(H^{*} Y_{1}, x_{2}\right)$ and $H_{5}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \cong H_{11}\left(H^{*} Z(0,0), x_{2}\right)$. Thus we obtain two nonzero classes in $H\left(H^{*} Z(0,0), x_{2}\right)$.
$\underline{n=6:}$ Since $H_{0}\left(H^{*} \Sigma^{2} Y, x_{2}\right)=H_{6}\left(H^{*} \Sigma^{2} Y, x_{2}\right)=0$, we have an isomorphism $H_{6}\left(H^{*} Z(0,0), x_{2}\right) \cong H_{6}\left(H^{*} Y_{1}, x_{2}\right)$.
$\underline{n=7}$: Similar to $n=6$, we have an isomorphism $H_{7}\left(H^{*} Z(0,0), x_{2}\right) \cong H_{7}\left(H^{*} Y_{1}, x_{2}\right)$.

Thus, we have eight nonzero classes in $H\left(H^{*} Z(0,0), x_{2}\right)$.
$\underline{H^{*} Z(1,0):}$
$\underline{n=2}$: We have $H_{2}\left(H^{*} Y_{1}, x_{2}\right)=H_{8}\left(H^{*} \Sigma^{2} Y, x_{2}\right)=0$, so we have

$$
0 \rightarrow H_{2}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \xrightarrow{\delta} H_{8}\left(H^{*} Z(1,0), x_{2}\right) \rightarrow H_{8}\left(H^{*} Y_{1}, x_{2}\right) \rightarrow 0
$$

Computing the connecting homomorphism δ above shows that $\delta\left(\Sigma^{2} \alpha_{0}\right)=$ $\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{3}+\mathrm{Sq}^{7} \mathrm{Sq}^{2}+\mathrm{Sq}^{8} \mathrm{Sq}^{1}+S \mathrm{q}^{9}\right)$. We have, by previous computation, that $H_{8}\left(H^{*} Y_{1}, x_{2}\right)$ is generated by $\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$. So these are the two generators of $H_{8}\left(H^{*} Z(1,0), x_{2}\right)$.
$\underline{n=3}$: In this case, we have an isomorphism $H_{3}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \cong H_{9}\left(H^{*} Z(1,0), x_{2}\right)$ since $H_{3}\left(H^{*} Y_{1}, x_{2}\right)=H_{9}\left(H^{*} Y_{1}, x_{2}\right)=0$.
$\underline{n=4:}$ Similar to $n=3$, we have an isomorphism $H_{4}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \cong$ $H_{10}\left(H^{*} Z(1,0), x_{2}\right)$.
$\underline{n=5}$: Since $H_{-1}\left(H^{*} \Sigma^{2} Y, x_{2}\right)=0$ and $H_{11}\left(H^{*} Y_{1}, x_{2}\right)=0$, we have an exact sequence
$0 \rightarrow H_{5}\left(H^{*} Z(1,0), x_{2}\right) \rightarrow H_{5}\left(H^{*} Y_{1}, x_{2}\right) \xrightarrow{f_{1,0}} H_{5}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \rightarrow H_{11}\left(H^{*} Z(1,0), x_{2}\right) \rightarrow 0$
where $f_{1,0}=\left(\phi_{3}+\phi_{4}\right)_{*}$.
The generator of $H_{5}\left(H^{*} Y_{1}, x_{2}\right)$ is the class of $\Sigma^{-1}\left(S q^{6}+\mathrm{Sq}^{5} S q^{1}+\mathrm{Sq}^{4} S q^{2}\right)$, which maps to $\Sigma^{2} \alpha_{3}$, which generates $H_{5}\left(H^{*} \Sigma^{2} Y, x_{2}\right)$. Thus $\left(\phi_{3}+\phi_{4}\right)_{*}$ is an isomorphism, and so $H_{5}\left(H^{*} Z(1,0), x_{2}\right)=H_{11}\left(H^{*} Z(1,0), x_{2}\right)=0$.
$\underline{n=6}$: Since $H_{0}\left(H^{*} \Sigma^{2} Y, x_{2}\right)=H_{6}\left(H^{*} \Sigma^{2} Y, x_{2}\right)=0$, we have an isomorphism $H_{6}\left(H^{*} Z(1,0), x_{2}\right) \cong H_{6}\left(H^{*} Y_{1}, x_{2}\right)$.
$\underline{n=7}$: Similar to $n=6$, we have an isomorphism $H_{7}\left(H^{*} Z(1,0), x_{2}\right) \cong H_{7}\left(H^{*} Y_{1}, x_{2}\right)$.

Thus, we have six nonzero classes in $H\left(H^{*} Z(1,0), x_{2}\right)$.
$\underline{H^{*} Z(0,1):}$
$n=2$: We have $H_{2}\left(H^{*} Y_{1}, x_{2}\right)=H_{8}\left(H^{*} \Sigma^{2} Y, x_{2}\right)=0$, so we have

$$
0 \rightarrow H_{2}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \xrightarrow{\delta} H_{8}\left(H^{*} Z(0,1), x_{2}\right) \rightarrow H_{8}\left(H^{*} Y_{1}, x_{2}\right) \rightarrow 0
$$

Computing the connecting homomorphism δ above shows that $\delta\left(\Sigma^{2} \alpha_{0}\right)=$ $\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{3}+\mathrm{Sq}^{7} \mathrm{Sq}^{2}+\mathrm{Sq}^{8} \mathrm{Sq}^{1}+\mathrm{Sq}^{9}\right)$. We have, by previous computation, that $H_{8}\left(H^{*} Y_{1}, x_{2}\right)$ is generated by $\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$. So these are the two generators of $H_{8}\left(H^{*} Z(0,1), x_{2}\right)$.
$\underline{n=3}$: In this case, we have an isomorphism $H_{3}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \cong H_{9}\left(H^{*} Z(1,0), x_{2}\right)$ since $H_{3}\left(H^{*} Y_{1}, x_{2}\right)=H_{9}\left(H^{*} Y_{1}, x_{2}\right)=0$.
$\underline{n=4:}$ Similar to $n=3$, we have an isomorphism $H_{4}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \cong$ $H_{10}\left(H^{*} Z(0,1), x_{2}\right)$.
$\underline{n=5}$: Since $H_{-1}\left(H^{*} \Sigma^{2} Y, x_{2}\right)=0$ and $H_{11}\left(H^{*} Y_{1}, x_{2}\right)=0$, we have an exact sequence
$0 \rightarrow H_{5}\left(H^{*} Z(0,1), x_{2}\right) \rightarrow H_{5}\left(H^{*} Y_{1}, x_{2}\right) \xrightarrow{f_{0,1}} H_{5}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \rightarrow H_{11}\left(H^{*} Z(0,1), x_{2}\right) \rightarrow 0$
where $f_{0,1}=\left(\phi_{3}+\phi_{6}\right)_{*}$.
The generator of $H_{5}\left(H^{*} Y_{1}, x_{2}\right)$ is the class of $\Sigma^{-1}\left(S q^{6}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}+S q^{4} S q^{2}\right)$, which maps to $\Sigma^{2} \alpha_{3}$, which generates $H_{5}\left(H^{*} \Sigma^{2} Y, x_{2}\right)$. Thus $\left(\phi_{3}+\phi_{6}\right)_{*}$ is an isomorphism, and so $H_{5}\left(H^{*} Z(0,1), x_{2}\right)=H_{11}\left(H^{*} Z(0,1), x_{2}\right)=0$.
$\underline{n=6}$: Since $H_{0}\left(H^{*} \Sigma^{2} Y, x_{2}\right)=H_{6}\left(H^{*} \Sigma^{2} Y, x_{2}\right)=0$, we have an isomorphism $H_{6}\left(H^{*} Z(0,1), x_{2}\right) \cong H_{6}\left(H^{*} Y_{1}, x_{2}\right)$.
$\underline{n=7}$: Similar to $n=6$, we have an isomorphism $H_{7}\left(H^{*} Z(0,1), x_{2}\right) \cong H_{7}\left(H^{*} Y_{1}, x_{2}\right)$.

Thus, we have six nonzero classes in $H\left(H^{*} Z(1,0), x_{2}\right)$.
$\underline{H^{*} Z(1,1):}$
$\underline{n=2}$: We have $H_{2}\left(H^{*} Y_{1}, x_{2}\right)=H_{8}\left(H^{*} \Sigma^{2} Y, x_{2}\right)=0$, so we have

$$
0 \rightarrow H_{2}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \xrightarrow{\delta} H_{8}\left(H^{*} Z(1,1), x_{2}\right) \rightarrow H_{8}\left(H^{*} Y_{1}, x_{2}\right) \rightarrow 0
$$

Computing the connecting homomorphism δ above shows that $\delta\left(\Sigma^{2} \alpha_{0}\right)=$ $\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{3}+\mathrm{Sq}^{7} \mathrm{Sq}^{2}+\mathrm{Sq}^{8} \mathrm{Sq}^{1}+\mathrm{Sq}^{9}\right)$. We have, by previous computation, that $H_{8}\left(H^{*} Y_{1}, x_{2}\right)$ is generated by $\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$. So these are the two generators of $H_{8}\left(H^{*} Z(1,1), x_{2}\right)$.
$\underline{n=3:}$ In this case, we have an isomorphism $H_{3}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \cong H_{9}\left(H^{*} Z(1,1), x_{2}\right)$ since $H_{3}\left(H^{*} Y_{1}, x_{2}\right)=H_{9}\left(H^{*} Y_{1}, x_{2}\right)=0$.
$\underline{n=4}$: Similar to $n=3$, we have an isomorphism $H_{4}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \cong$ $H_{10}\left(H^{*} Z(1,1), x_{2}\right)$.
$\underline{n=5}$: Since $H_{-1}\left(H^{*} \Sigma^{2} Y, x_{2}\right)=0$ and $H_{11}\left(H^{*} Y_{1}, x_{2}\right)=0$, we have an exact sequence
$0 \rightarrow H_{5}\left(H^{*} Z(1,1), x_{2}\right) \rightarrow H_{5}\left(H^{*} Y_{1}, x_{2}\right) \xrightarrow{f_{1,1}} H_{5}\left(H^{*} \Sigma^{2} Y, x_{2}\right) \rightarrow H_{11}\left(H^{*} Z(1,1), x_{2}\right) \rightarrow 0$
where $f_{1,1}=\left(\phi_{3}+\phi_{4}+\phi_{6}\right)_{*}$.
The generator of $H_{5}\left(H^{*} Y_{1}, x_{2}\right)$ is the class of $\Sigma^{-1}\left(\mathrm{Sq}^{6}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}+\mathrm{Sq}^{4} \mathrm{Sq}^{2}\right)$, which maps to 0 under $\phi_{3}+\phi_{4}+\phi_{6}$. Thus we have isomorphisms $H_{5}\left(H^{*} Z(1,1), x_{2}\right) \cong H_{5}\left(H^{*} Y_{1}, x_{2}\right)$ and $H_{5}\left(H^{*} \Sigma^{2} \Upsilon, x_{2}\right) \cong H_{11}\left(H^{*} Z(1,1), x_{2}\right)$. Thus we obtain two nonzero classes in $H\left(H^{*} Z(1,1), x_{2}\right)$.
$\underline{n=6}$: Since $H_{0}\left(H^{*} \Sigma^{2} Y, x_{2}\right)=H_{6}\left(H^{*} \Sigma^{2} Y, x_{2}\right)=0$, we have an isomorphism $H_{6}\left(H^{*} Z(1,1), x_{2}\right) \cong H_{6}\left(H^{*} Y_{1}, x_{2}\right)$.
$\underline{n=7}$: Similar to $n=6$, we have an isomorphism $H_{7}\left(H^{*} Z(1,1), x_{2}\right) \cong H_{7}\left(H^{*} Y_{1}, x_{2}\right)$.

Thus, we have eight nonzero classes in $H\left(H^{*} Z(1,1), x_{2}\right)$.
All of this information is summarized in Tables 3.2. and 3.3. below.

dim	$H^{*} Z(0,0)$	$H^{*} Z(1,0)$
5	$\Sigma^{-1}\left(\mathrm{Sq}^{6}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}+\mathrm{Sq}^{4} \mathrm{Sq}^{2}\right)$	0
6	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{1}+\mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{1}+\mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$
7	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$
8	$\left(\mathrm{Sq}^{6} \mathrm{Sq}^{3}+\mathrm{Sq}^{7} \mathrm{Sq}^{2}+\mathrm{Sq}^{8} \mathrm{Sq}^{1}+\mathrm{Sq}^{9}\right)$,	$\left(\mathrm{Sq}^{6} \mathrm{Sq}^{3}+\mathrm{Sq}^{7} \mathrm{Sq}^{2}+\mathrm{Sq}^{8} \mathrm{Sq}^{1}+\mathrm{Sq}^{9}\right)$,
	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$
9	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{7} \mathrm{Sq}^{2} \mathrm{Sq}^{1}+\mathrm{Sq}^{9} \mathrm{Sq}^{1}\right)$	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{7} \mathrm{Sq}^{2} \mathrm{Sq}^{1}+\mathrm{Sq}^{9} \mathrm{Sq}^{1}\right)$
10	$\Sigma^{-1}\left(\mathrm{Sq}^{7} \mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{8} \mathrm{Sq}^{3}+\mathrm{Sq}^{9} \mathrm{Sq}^{2}\right)$	$\Sigma^{-1}\left(\mathrm{Sq}^{7} \mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{8} \mathrm{Sq}^{3}+\mathrm{Sq}^{9} \mathrm{Sq}^{2}\right)$
11	$\Sigma^{-1}\left(\mathrm{Sq}^{8} \mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{9} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$	0

TABLE 3.2. Margolis homology of $H^{*} Z(0,0), H^{*} Z(1,0)$

dim	$H^{*} Z(0,1)$	$H^{*} Z(1,1)$
5	0	$\Sigma^{-1}\left(\mathrm{Sq}^{6}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}+\mathrm{Sq}^{4} \mathrm{Sq}^{2}\right)$
6	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{1}+\mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{1}+\mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$
7	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$
8	$\left(\mathrm{Sq}^{6} \mathrm{Sq}^{3}+\mathrm{Sq}^{7} \mathrm{Sq}^{2}+\mathrm{Sq}^{8} \mathrm{Sq}^{1}+\mathrm{Sq}^{9}\right)$,	$\left(\mathrm{Sq}^{6} \mathrm{Sq}^{3}+\mathrm{Sq}^{7} \mathrm{Sq}^{2}+\mathrm{Sq}^{8} \mathrm{Sq}^{1}+\mathrm{Sq}^{9}\right)$,
	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$
9	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{7} \mathrm{Sq}^{2} \mathrm{Sq}^{1}+\mathrm{Sq}^{9} \mathrm{Sq}^{1}\right)$	$\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{7} \mathrm{Sq}^{2} \mathrm{Sq}^{1}+\mathrm{Sq}^{9} \mathrm{Sq}^{1}\right)$
10	$\Sigma^{-1}\left(\mathrm{Sq}^{7} \mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{8} \mathrm{Sq}^{3}+\mathrm{Sq}^{9} \mathrm{Sq}^{2}\right)$	$\Sigma^{-1}\left(\mathrm{Sq}^{7} \mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{8} \mathrm{Sq}^{3}+\mathrm{Sq}^{9} \mathrm{Sq}^{2}\right)$
11	0	$\Sigma^{-1}\left(\mathrm{Sq}^{8} \mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{9} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)$

TABLE 3.3. Margolis homology of $H^{*} Z(0,1), H^{*} Z(1,1)$

Thus we have proven that $H\left(H^{*} Z(0,0), x_{2}\right)$ and $H\left(H^{*} Z(1,1), x_{2}\right)$ have nonzero classes only in dimensions $5,6,7,8,9,10,11$, and $H\left(H^{*} Z(1,0), x_{2}\right)$ and $H\left(H^{*} Z(0,1), x_{2}\right)$ have nonzero classes only in dimensions $6,7,8,9,10$. This shows that there are at least two different A-module structures amongst the various choices of $Z\left(\beta_{1}, \beta_{2}\right)$.

To prove the second parts of the statements, we use the fact that

$$
K_{0} Z\left(\beta_{1}, \beta_{2}\right)=\operatorname{ker}\left(d_{0}: P_{0} Z\left(\beta_{1}, \beta_{2}\right) \rightarrow H^{*} Z\left(\beta_{1}, \beta_{2}\right)\right)
$$

where $P_{0} Z\left(\beta_{1}, \beta_{2}\right)$ is the $0^{\text {th }}$ stage of a free resolution of $Z\left(\beta_{1}, \beta_{2}\right)$. Thus we have a short exact sequence

$$
0 \rightarrow K_{0} Z\left(\beta_{1}, \beta_{2}\right) \rightarrow P_{0} Z\left(\beta_{1}, \beta_{2}\right) \rightarrow H^{*} Z\left(\beta_{1}, \beta_{2}\right) \rightarrow 0
$$

for all choices of β_{1}, β_{2}. Since $P_{0} Z\left(\beta_{1}, \beta_{2}\right)$ is free, its Margolis homology is trivial. Thus, by applying $H\left(-, x_{2}\right)$ to the short exact sequence above, we have isomorphisms

$$
H_{n}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), x_{2}\right) \cong H_{n+6}\left(K_{0} Z\left(\beta_{1}, \beta_{2}\right), x_{2}\right)
$$

induced by the connecting homomorphisms in the long exact sequence. This proves the theorem.

Now that we know the dimensions in which Margolis homology of $H^{*} Z\left(\beta_{1}, \beta_{2}\right)$ and $K_{0} Z\left(\beta_{1}, \beta_{2}\right)$ and nonzero, we will begin to search for elements of

$$
\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), H^{*} Z\left(\beta_{1}, \beta_{2}\right)\right)
$$

whose representatives

$$
f: P_{1} Z\left(\beta_{1}, \beta_{2}\right) \rightarrow H^{*} \Sigma^{6} Z\left(\beta_{1}, \beta_{2}\right)
$$

induce an isomorphism on Margolis homology. This requires us to calculate the beginning of a projective resolution for each $H^{*} Z\left(\beta_{1}, \beta_{2}\right)$. As we will see, the computations are quite similar.

CHAPTER IV

PROJECTIVE RESOLUTIONS FOR $H^{*} Z\left(\beta_{1}, \beta_{2}\right)$

In this chapter we explicitly compute the first two stages in a projective resolution for $H^{*} Z\left(\beta_{1}, \beta_{2}\right)$ for $\beta_{1}, \beta_{2} \in\{0,1\}$.

For $P_{0} Z\left(\beta_{1}, \beta_{2}\right)$, we see from the A-module structure that we can choose

$$
P_{0} Z\left(\beta_{1}, \beta_{2}\right)=\Sigma^{3} A \oplus \Sigma^{5} A \oplus \Sigma^{6} A \oplus \Sigma^{7} A \oplus \bigoplus_{l_{k}>12} \Sigma^{l_{k}} A
$$

for any $\beta_{1}, \beta_{2} \in\{0,1\}$. Here the last summand stands for the rest of the summands of $P_{0} Z\left(\beta_{1}, \beta_{2}\right)$ which have generators in dimensions above 12 . Let i_{k} stand for the generator of $\Sigma^{k} A$ in $P_{0} Z\left(\beta_{1}, \beta_{2}\right)$. We will only need this for $k \leq 12$ where it is unambiguous.

We will compute

$$
K_{0} Z\left(\beta_{1}, \beta_{2}\right)=\operatorname{ker}\left(d_{0}: P_{0} Z\left(\beta_{1}, \beta_{2}\right) \rightarrow H^{*} Z\left(\beta_{1}, \beta_{2}\right)\right.
$$

for all choices of β_{1} and β_{2}, and then we will show that

$$
P_{1} Z\left(\beta_{1}, \beta_{2}\right)=\Sigma^{7} A \oplus \Sigma^{9} A \oplus \Sigma^{10} A \oplus \Sigma^{12} A \oplus \bigoplus_{l_{k}>12} \Sigma^{l_{k}} A
$$

for $\beta_{1}, \beta_{2} \in\{0,1\}$. Again, all of the generators beyond those listed will occur above dimension 12.

These partial calculations of $P_{\bullet} Z\left(\beta_{1}, \beta_{2}\right)$ will be sufficient to compute

$$
\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), H^{*} Z\left(\beta_{1}, \beta_{2}\right)\right)
$$

4.1. $K_{0} Z(0,0)$ and $P_{1} Z(0,0)$

Define $d_{0}: P_{0} Z(0,0) \rightarrow H^{*} Z(0,0)$

$$
\begin{aligned}
& d_{0}\left(i_{3}\right)=\Sigma^{-1} \mathrm{Sq}^{4} \\
& d_{0}\left(i_{5}\right)=\Sigma^{-1} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \\
& d_{0}\left(i_{6}\right)=\Sigma^{-1} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1} \\
& d_{0}\left(i_{7}\right)=\Sigma^{-1} \mathrm{Sq}^{8}
\end{aligned}
$$

It is clear that d_{0} is surjective through dimension 12 by an examination of Figure 2.3.

We calculate $K_{0} Z(0,0)=\operatorname{ker}\left(d_{0}: P_{0} Z(0,0) \rightarrow H^{*} Z(0,0)\right)$ in Table 4.1. This table describes the inputs and outputs of d_{0} by dimension. In the rightmost column, we list possible generators of $K_{0} Z(0,0)$ in that dimension. The names of these generators are chosen to assist in the calculation of $P_{1} Z(0,0)$, which follows later. Again, we use shorthand to refer to elements of $P_{0} Z(0,0)$ and $H^{*} Z(0,0)$. So for example, (1) i_{3} means $\mathrm{Sq}^{1} i_{3}$ in $P_{0} \mathrm{Z}(0,0)$, and (5) means $\Sigma^{-1} \mathrm{Sq}^{5} \in H^{*} Z(0,0)$. We use the word "zero" to refer to the zero element of $P_{0} Z(0,0)$ to avoid confusion with the element $S q^{0}$.

TABLE 4.1. Calculation of $K_{0} \mathrm{Z}(0,0)$ through dimension 12

dimension	input	output	generator of $K_{0} Z(0,0)$
3	i_{3}	(4)	
4	$(1) i_{3}$	(5)	
5	$(2) i_{3}$	$(5,1)+(6)$	
	i_{5}	$(4,2)$	

TABLE 4.1. (continued)

dimension	input	output	generator of $K_{0} Z(0,0)$
6	(7) i_{3} $(2,1) i_{3}$ (1) i_{5} i_{6}	(7) $(6,1)$ $(5,2)$ $(4,2,1)$	
7	$(3,1) i_{3}$ (4) i_{3} (2) i_{5} (1) i_{6} i_{7}	$\begin{gathered} (7,1) \\ (6,2)+(7,1) \\ (6,2) \\ (5,2,1) \\ 8 \end{gathered}$	$[(3,1)+(4)] i_{3}+(2) i_{5}$
8	(5) i_{3} $(4,1) i_{3}$ (3) i_{5} $(2,1) i_{5}$ (2) i_{6} (1) i_{7}	$(7,2)$ $\begin{gathered} (7,2)+(8,1)+(9) \\ (7,2) \\ (6,3) \\ (6,2,1) \end{gathered}$ (9)	(5) $i_{3}+(3) i_{5}$
9	$\begin{gathered} (6) i_{3} \\ (5,1) i_{3} \\ (4,2) i_{3} \\ (4) i_{5} \\ (3,1) i_{5} \\ (3) i_{6} \\ (2,1) i_{6} \end{gathered}$	$\begin{gathered} (7,3) \\ (9,1) \\ (7,2,1)+(8,2)+(9,1)+(10) \\ (6,3,1)+(7,3) \\ (7,3) \\ (7,2,1) \\ (6,3,1) \end{gathered}$	$\begin{gathered} (6) i_{3}+(3,1) i_{5} \\ {[(3,1)+(4)] i_{5}+(2,1) i_{6}} \end{gathered}$

TABLE 4.1. (continued)

dimension	input	output	generator of $K_{0} \mathrm{Z}(0,0)$
	(2) i_{7}	$(9,1)+(10)$	
10	$\begin{gathered} (7) i_{3} \\ (6,1) i_{3} \\ (5,2) i_{3} \\ (4,2,1) i_{3} \\ (5) i_{5} \\ (4,1) i_{5} \\ (4) i_{6} \\ (3,1) i_{6} \\ (3) i_{7} \\ (2,1) i_{7} \end{gathered}$	zero $\begin{gathered} (8,3)+(9,2) \\ (9,2)+(11) \\ (8,2,1)+(10,1) \\ (7,3,1) \\ (7,3,1)+(8,3)+(9,2) \\ (7,3,1) \\ (7,3,1) \\ (11) \\ (10,1) \end{gathered}$	(7) i_{3} $\begin{gathered} (6,1) i_{3}+[(4,1)+(5)] i_{5} \\ (5) i_{5}+(3,1) i_{6} \\ {[(3,1)+(4)] i_{6}} \end{gathered}$
11	$\begin{gathered} (8) i_{3} \\ (7,1) i_{3} \\ (6,2) i_{3} \\ (5,2,1) i_{3} \\ (6) i_{5} \\ (5,1) i_{5} \\ (4,2) i_{5} \\ (5) i_{6} \\ (4,1) i_{6} \\ (4) i_{7} \end{gathered}$	$(8,4)$ $(9,3)$ $\begin{gathered} (8,3,1)+(9,2,1)+(9,3) \\ +(10,2)+(11,1) \\ (9,2,1)+(11,1) \end{gathered}$ zero $(9,3)$ $(8,3,1)+(10,2)$ zero $\begin{gathered} (8,3,1)+(9,2,1) \\ (10,2)+(11,1)+(12) \end{gathered}$	$\begin{gathered} (7,1) i_{3}+(5,1) i_{5} \\ {[(5,2,1)+(6,2)+(7,1)] i_{3}} \\ +(4,2) i_{5} \end{gathered}$ (5) i_{6} (6) i_{5}

TABLE 4.1. (continued)

dimension	input	output	generator of $K_{0} Z(0,0)$
	$(3,1) i_{7}$	$(11,1)$	
12	$\begin{gathered} (9) i_{3} \\ (8,1) i_{3} \\ (7,2) i_{3} \\ (6,3) i_{3} \\ (6,2,1) i_{3} \\ (7) i_{5} \\ (6,1) i_{5} \\ (5,2) i_{5} \\ (4,2,1) i_{5} \\ (6) i_{6} \\ (5,1) i_{6} \\ (4,2) i_{6} \\ (5) i_{7} \\ (4,1) i_{7} \end{gathered}$	$\begin{gathered} (9,4) \\ (9,4) \\ (9,3,1)+(11,2) \\ (10,3)+(12,1)+(13) \\ (9,3,1)+(10,2,1) \\ \text { zero } \\ (9,3,1) \\ (9,3,1)+(11,2) \\ (8,4,1)+(9,4)+(10,3) \\ \text { zero } \\ (9,3,1) \\ (10,2,1) \\ (11,2)+(13) \\ (11,2)+(12,1) \end{gathered}$	$\begin{gathered} {[(8,1)+(9)] i_{3}} \\ (7,2) i_{3}+(5,2) i_{5} \\ (7) i_{5} \\ (6,1) i_{5}+(5,1) i_{6} \\ (6) i_{6} \\ (6,2,1) i_{3}+[(4,2) \\ +(5,1)] i_{6} \end{gathered}$

The A-module structure of $K_{0} Z(0,0)$ through dimension 12 is pictured in Figure 4.1. The only $\mathrm{Sq}^{2^{n}}$ missing in this range is $\mathrm{Sq}^{4}\left(\mathrm{Sq}^{5} i_{3}+\mathrm{Sq}^{3} i_{5}\right)=$ $\left(\mathrm{Sq}^{7} \mathrm{Sq}^{2}+\mathrm{Sq}^{8} \mathrm{Sq}^{1}+\mathrm{Sq}^{9}\right) i_{3}+\mathrm{Sq}^{5} \mathrm{Sq}^{2} i_{5}$.

FIGURE 4.1. $K_{0} Z(0,0)$ through dimension 12
From this, we see that we can choose

$$
P_{1} Z(0,0)=\Sigma^{7} A \oplus \Sigma^{9} A \oplus \Sigma^{10} A \oplus \Sigma^{12} A \oplus \bigoplus_{l_{k}>12} \Sigma^{l_{k}} A
$$

Let h_{k} denote the generator of $\Sigma^{k} A$ in $P_{1} Z(0,0)$. We define $d_{1}: P_{1} Z(0,0) \rightarrow P_{0} Z(0,0)$ by

$$
\begin{aligned}
d_{1}\left(h_{7}\right) & =\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) i_{3}+\mathrm{Sq}^{2} i_{5} \\
d_{1}\left(h_{9}\right) & =\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) i_{5}+\mathrm{Sq}^{2} \mathrm{Sq}^{1} i_{6} \\
d_{1}\left(h_{10}\right) & =\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) i_{6} \\
d_{1}\left(h_{12}\right) & =\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1} i_{3}+\left(\mathrm{Sq}^{4} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}\right) i_{6}
\end{aligned}
$$

4.2. $K_{0} Z(1,0)$ and $P_{1} Z(1,0)$

Define $d_{0}: P_{0} Z(1,0) \rightarrow H^{*} Z(1,0)$

$$
\begin{aligned}
& d_{0}\left(i_{3}\right)=\Sigma^{-1} \mathrm{Sq}^{4} \\
& d_{0}\left(i_{5}\right)=\Sigma^{-1}\left(\mathrm{Sq}^{4} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}\right) \\
& d_{0}\left(i_{6}\right)=\Sigma^{-1} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1} \\
& d_{0}\left(i_{7}\right)=\Sigma^{-1} \mathrm{Sq}^{8}
\end{aligned}
$$

It is clear that d_{0} is surjective through dimension 12 by an examination of Figure 2.4.

Next, we will calculate $K_{0} Z(1,0)=\operatorname{ker}\left(d_{0}: P_{0} Z(1,0) \rightarrow H^{*} Z(1,0)\right)$. We will make a table similar to that in Section 4.1:

TABLE 4.2. Calculation of $K_{0} Z(1,0)$ through dimension 12

dimension	input	output	generator of $K_{0} Z(1,0)$
3	i_{3}	$(4)+(3,1)$	

TABLE 4.2. (continued)

dimension	input	output	generator of $K_{0} Z(1,0)$
4	(1) i_{3}	(5)	
5	$\begin{gathered} (2) i_{3} \\ i_{5} \end{gathered}$	(6) $(4,2)$	
6	(3) i_{3} $(2,1) i_{3}$ (1) i_{5} i_{6}	(7) $(6,1)$ $(5,2)$ $(4,2,1)$	
7	(4) i_{3} $(3,1) i_{3}$ (2) i_{5} (1) i_{6} i_{7}	$\begin{gathered} (5,2,1)+(6,2)+(7,1) \\ (7,1) \\ (6,2) \\ (5,2,1) \end{gathered}$ (8)	$[(3,1)+(4)] i_{3}+(2) i_{5}+(1) i_{6}$
8	(5) i_{3} $(4,1) i_{3}$ (3) i_{5} $(2,1) i_{5}$ (2) i_{6} (1) i_{7}	$\begin{gathered} (7,2) \\ (7,2)+(8,1)+(9) \\ (7,2) \\ (6,3) \\ (6,2,1) \end{gathered}$ (9)	(5) $i_{3}+(3) i_{5}$
9	$\begin{gathered} (6) i_{3} \\ (5,1) i_{3} \\ (4,2) i_{3} \\ (4) i_{5} \end{gathered}$	$\begin{gathered} (6,3,1)+(7,3) \\ (9,1) \\ (8,2)+(10) \\ (6,3,1)+(7,3) \end{gathered}$	$\begin{aligned} & (6) i_{3}+(3,1) i_{5}+(2,1) i_{6} \\ & {[(3,1)+(4)] i_{5}+(2,1) i_{6}} \end{aligned}$

TABLE 4.2. (continued)

\begin{tabular}{|c|c|c|c|}
\hline dimension \& input \& output \& generator of \(K_{0} Z(1,0)\) \\
\hline \& \begin{tabular}{l}
\[
(3,1) i_{5}
\] \\
(3) \(i_{6}\) \\
\((2,1) i_{6}\) \\
(2) \(i_{7}\)
\end{tabular} \& \[
\begin{gathered}
(7,3) \\
(7,2,1) \\
(6,3,1) \\
(9,1)+(10)
\end{gathered}
\] \& \\
\hline 10 \& \[
\begin{gathered}
(7) i_{3} \\
(6,1) i_{3} \\
(5,2) i_{3} \\
(4,2,1) i_{3} \\
(5) i_{5} \\
(4,1) i_{5} \\
(4) i_{6} \\
(3,1) i_{6} \\
(3) i_{7} \\
(2,1) i_{7}
\end{gathered}
\] \& \[
\begin{gathered}
(7,3,1) \\
(8,3)+(9,2) \\
(9,2)+(11) \\
(8,2,1)+(10,1) \\
(7,3,1) \\
(7,3,1)+(8,3)+(9,2) \\
(7,3,1) \\
(7,3,1) \\
(11) \\
(10,1)
\end{gathered}
\] \& \[
\begin{gathered}
(7) i_{3}+(3,1) i_{6} \\
(6,1) i_{3}+[(4,1)+(5)] i_{5}
\end{gathered}
\]
\[
\begin{aligned}
\& (5) i_{5}+(3,1) i_{6} \\
\& {[(3,1)+(4)] i_{6}}
\end{aligned}
\] \\
\hline 11

11 \& $$
\begin{gathered}
(8) i_{3} \\
(7,1) i_{3} \\
(6,2) i_{3} \\
(5,2,1) i_{3} \\
(6) i_{5} \\
(5,1) i_{5} \\
(4,2) i_{5} \\
(5) i_{6}
\end{gathered}
$$ \& \[

$$
\begin{gathered}
(8,4)+(8,3,1) \\
(9,3) \\
(9,3)+(10,2)+(11,1) \\
(11,2,1) \\
\text { zero } \\
(9,3) \\
(8,3,1)+(10,2) \\
\text { zero }
\end{gathered}
$$

\] \& | $(7,1) i_{3}+(5,1) i_{5}$ $\begin{gathered} {[(5,2,1)+(6,2)+(7,1)] i_{3}} \\ +(4,2) i_{5}+(4,1) i_{6} \end{gathered}$ |
| :--- |
| (6) i_{5} |
| (5) i_{6} |

\hline
\end{tabular}

TABLE 4.2. (continued)

dimension	input	output	generator of $K_{0} Z(1,0)$
	$\begin{gathered} (4,1) i_{6} \\ (4) i_{7} \\ (3,1) i_{7} \end{gathered}$	$\begin{gathered} (8,3,1)+(9,2,1) \\ (10,2)+(11,1)+(12) \\ (11,1) \end{gathered}$	
12	$\begin{gathered} (9) i_{3} \\ (8,1) i_{3} \\ (7,2) i_{3} \\ (6,3) i_{3} \\ (6,2,1) i_{3} \\ (7) i_{5} \\ (6,1) i_{5} \\ (5,2) i_{5} \\ (4,2,1) i_{5} \\ (6) i_{6} \\ (5,1) i_{6} \\ (4,2) i_{6} \\ (5) i_{7} \\ (4,1) i_{7} \end{gathered}$	$\begin{gathered} (9,4)+(9,3,1) \\ (9,4) \\ (11,2) \\ (10,3)+(12,1)+(13) \\ (9,3,1)+(10,2,1) \\ \text { zero } \\ (9,3,1) \\ (9,3,1)+(11,2) \\ (8,4,1)+(9,4)+(10,3) \\ \text { zero } \\ (9,3,1) \\ (10,2,1) \\ (11,2)+(13) \\ (11,2)+(12,1) \end{gathered}$	$[(8,1)+(9)] i_{3}$ $(7,2) i_{3}+(5,2) i_{5}+(5,1) i_{6}$ (7) i_{5} $(6,1) i_{5}+(5,1) i_{6}$ (6) i_{6} $(6,2,1) i_{3}+[(4,2)+(5,1)] i_{6}$

The A-module structure of $K_{0} Z(1,0)$ through dimension 12 is pictured in Figure 4.2. The only $\mathrm{Sq}^{2^{n}}$ missing in this range is $\mathrm{Sq}^{4}\left(\mathrm{Sq}^{5} i_{3}+\mathrm{Sq}^{3} i_{5}\right)=$ $\left(\mathrm{Sq}^{7} \mathrm{Sq}^{2}+\mathrm{Sq}^{8} \mathrm{Sq}^{1}+\mathrm{Sq}^{9}\right) i_{3}+\mathrm{Sq}^{5} \mathrm{Sq}^{2} i_{5}$.

FIGURE 4.2. $K_{0} Z(1,0)$ through dimension 12
From this, we see that we can choose

$$
P_{1} Z(1,0)=\Sigma^{7} A \oplus \Sigma^{9} A \oplus \Sigma^{10} A \oplus \Sigma^{12} A \oplus \bigoplus_{l_{k}>12} \Sigma^{l_{k}} A
$$

Let h_{k} denote the generator of $\Sigma^{k} A$ in $P_{1} Z(1,0)$. We define $d_{1}: P_{1} Z(1,0) \rightarrow P_{0} Z(1,0)$ by

$$
\begin{aligned}
d_{1}\left(h_{7}\right) & =\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) i_{3}+\mathrm{Sq}^{2} i_{5}+1 i_{6} \\
d_{1}\left(h_{9}\right) & =\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) i_{5}+\mathrm{Sq}^{2} \mathrm{Sq}^{1} i_{6} \\
d_{1}\left(h_{10}\right) & =\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) i_{6} \\
d_{1}\left(h_{12}\right) & =\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1} i_{3}+\left(\mathrm{Sq}^{4} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}\right) i_{6}
\end{aligned}
$$

4.3. $K_{0} \mathrm{Z}(0,1)$ and $P_{1} \mathrm{Z}(0,1)$

Define $d_{0}: P_{0} Z(0,1) \rightarrow H^{*} Z(0,1)$

$$
\begin{aligned}
& d_{0}\left(i_{3}\right)=\Sigma^{-1} \mathrm{Sq}^{4} \\
& d_{0}\left(i_{5}\right)=\Sigma^{-1}\left(\mathrm{Sq}^{4} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}\right) \\
& d_{0}\left(i_{6}\right)=\Sigma^{-1} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1} \\
& d_{0}\left(i_{7}\right)=\Sigma^{-1} \mathrm{Sq}^{8}
\end{aligned}
$$

It is clear that d_{0} is surjective through dimension 12 by an examination of Figure 2.5.

Next, we will calculate $K_{0} Z(0,1)=\operatorname{ker}\left(d_{0}: P_{0} Z(0,1) \rightarrow H^{*} Z(0,1)\right)$. We will make a table similar to that in Section 4.1:

TABLE 4.3. Calculation of $K_{0} \mathrm{Z}(0,1)$ through dimension 12

dimension	input	output	generator of $K_{0} Z(0,1)$
3	i_{3}	(4)	

TABLE 4.3. (continued)

dimension	input	output	generator of $K_{0} Z(0,1)$
4	(1) i_{3}	(5)	
5	$\begin{gathered} (2) i_{3} \\ i_{5} \end{gathered}$	$\begin{gathered} (5,1)+(6) \\ (4,2)+(5,1) \end{gathered}$	
6	(3) i_{3} $(2,1) i_{3}$ (1) i_{5} i_{6}	(7) $(6,1)$ $(5,2)$ $(4,2,1)$	
7	(4) i_{3} $(3,1) i_{3}$ (2) i_{5} (1) i_{6} i_{7}	$\begin{gathered} (6,2)+(7,1) \\ (7,1) \\ (6,2) \\ (5,2,1) \end{gathered}$ (8)	$[(3,1)+(4)] i_{3}+(2) i_{5}$
8	(5) i_{3} $(4,1) i_{3}$ (3) i_{5} $(2,1) i_{5}$ (2) i_{6} (1) i_{7}	$(7,2)$ $\begin{gathered} (7,2)+(8,1)+(9) \\ (7,2) \\ (6,3) \\ (6,2,1) \end{gathered}$ (9)	(5) $i_{3}+(3) i_{5}$
9	(6) i_{3} $(5,1) i_{3}$ $(4,2) i_{3}$ (4) i_{5}	$\begin{gathered} (7,3) \\ (9,1) \\ (7,2,1)+(9,1)+(8,2)+(10) \\ (6,3,1)+(7,3)+ \end{gathered}$	$(6) i_{3}+(3,1) i_{5}$ $\begin{gathered} (5,1) i_{3}+[(3,1)+(4)] i_{5} \\ +[(2,1)+(3)] i_{6} \end{gathered}$

TABLE 4.3. (continued)

dimension	input	output	generator of $K_{0} Z(0,1)$
	$(3,1) i_{5}$ (3) i_{6} $(2,1) i_{6}$ (2) i_{7}	$\begin{gathered} (7,2,1)+(9,1) \\ (7,3) \\ (7,2,1) \\ (6,3,1) \\ (9,1)+(10) \end{gathered}$	
10	$\begin{gathered} (7) i_{3} \\ (6,1) i_{3} \\ (5,2) i_{3} \\ (4,2,1) i_{3} \\ (5) i_{5} \\ (4,1) i_{5} \\ (4) i_{6} \\ (3,1) i_{6} \\ (3) i_{7} \\ (2,1) i_{7} \end{gathered}$	zero $\begin{gathered} (8,3)+(9,2) \\ (9,2)+(11) \\ (8,2,1)+(10,1) \\ (7,3,1) \\ (7,3,1)+(8,3)+(9,2) \\ (7,3,1) \\ (7,3,1) \\ (11) \\ (10,1) \end{gathered}$	$\begin{gathered} 7 i_{3} \\ (6,1) i_{3}+[(4,1)+(5)] i_{5} \end{gathered}$ $\begin{aligned} & (5) i_{5}+(3,1) i_{6} \\ & {[(3,1)+(4)] i_{6}} \end{aligned}$
11	$\begin{gathered} (8) i_{3} \\ (7,1) i_{3} \\ (6,2) i_{3} \\ (5,2,1) i_{3} \\ (6) i_{5} \\ (5,1) i_{5} \end{gathered}$	$\begin{gathered} (8,4) \\ (9,3) \\ (8,3,1)+(9,2,1)+ \\ (9,3)+(10,2)+(11,1) \\ (9,2,1)+(11,1) \\ (8,3,1)+(9,2,1) \\ (9,3) \end{gathered}$	$(7,1) i_{3}+(5,1) i_{3}$ $\begin{gathered} {[(5,2,1)+(6,2)+(7,1)] i_{3}} \\ +(4,2) i_{5} \end{gathered}$

TABLE 4.3. (continued)

dimension	input	output	generator of $K_{0} Z(0,1)$
	$\begin{gathered} (4,2) i_{5} \\ (5) i_{6} \\ (4,1) i_{6} \\ (4) i_{7} \\ (3,1) i_{7} \end{gathered}$	$(8,3,1)+(10,2)$ zero $\begin{gathered} (8,3,1)+(9,2,1) \\ (10,2)+(11,1)+(12) \end{gathered}$ $(11,1)$	$\begin{gathered} (5) i_{6} \\ (6) i_{5}+[(4,1)+(5)] i_{6} \end{gathered}$
12	$\begin{gathered} (9) i_{3} \\ (8,1) i_{3} \\ (7,2) i_{3} \\ (6,3) i_{3} \\ (6,2,1) i_{3} \\ (7) i_{5} \\ (6,1) i_{5} \\ (5,2) i_{5} \\ (4,2,1) i_{5} \\ (6) i_{6} \\ (5,1) i_{6} \\ (4,2) i_{6} \\ (5) i_{7} \\ (4,1) i_{7} \end{gathered}$	$\begin{gathered} (9,4) \\ (9,4) \\ (9,3,1)+(11,2) \\ (10,3)+(12,1)+(13) \\ (9,3,1)+(10,2,1) \\ (9,3,1) \\ (9,3,1) \\ (9,3,1)+(11,2) \\ (8,4,1)+(9,4)+(10,3) \\ z e r o \\ (9,3,1) \\ (10,2,1) \\ (11,2)+(13) \\ (11,2)+(12,1) \end{gathered}$	$[(8,1)+(9)] i_{3}$ $(7,2) i_{3}+(5,2) i_{5}$ $\begin{gathered} (7) i_{5}+(5,1) i_{6} \\ (6,1) i_{5}+(5,1) i_{6} \end{gathered}$ (6) i_{6} $(6,2,1) i_{3}+[(4,2)+(5,1)] i_{6}$

The A-module structure of $K_{0} Z(0,1)$ through dimension 12 is pictured in Figure 4.3. The only $\mathrm{Sq}^{2^{n}}$ missing in this range is $\mathrm{Sq}^{4}\left(\mathrm{Sq}^{5} i_{3}+\mathrm{Sq}^{3} i_{5}\right)=$ $\left(\mathrm{Sq}^{7} \mathrm{Sq}^{2}+\mathrm{Sq}^{8} \mathrm{Sq}^{1}+\mathrm{Sq}^{9}\right) i_{3}+\mathrm{Sq}^{5} \mathrm{Sq}^{2} i_{5}$.

FIGURE 4.3. $K_{0} Z(0,1)$ through dimension 12
From this, we see that we can choose

$$
P_{1} Z(0,1)=\Sigma^{7} A \oplus \Sigma^{9} A \oplus \Sigma^{10} A \oplus \Sigma^{12} A \oplus \bigoplus_{l_{k}>12} \Sigma^{l_{k}} A
$$

Let h_{k} denote the generator of $\Sigma^{k} A$ in $P_{1} Z(0,1)$. We define $d_{1}: P_{1} Z(0,1) \rightarrow P_{0} Z(0,1)$ by

$$
\begin{aligned}
& d_{1}\left(h_{7}\right)=\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) i_{3}+\mathrm{Sq}^{2} i_{5} \\
& d_{1}\left(h_{9}\right)=\mathrm{Sq}^{5} \mathrm{Sq}^{1} i_{3}+\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) i_{5}+\left(\mathrm{Sq}^{2} \mathrm{Sq}^{1}+\mathrm{Sq}^{3}\right) i_{6} \\
& d_{1}\left(h_{10}\right)=\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) i_{6} \\
& d_{1}\left(h_{12}\right)=\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1} i_{3}+\left(\mathrm{Sq}^{4} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}\right) i_{6}
\end{aligned}
$$

4.4. $K_{0} Z(1,1)$ and $P_{1} Z(1,1)$

Define $d_{0}: P_{0} Z(1,1) \rightarrow H^{*} Z(1,1)$

$$
\begin{aligned}
& d_{0}\left(i_{3}\right)=\Sigma^{-1} \mathrm{Sq}^{4}+\mathrm{Sq}^{3} \mathrm{Sq}^{1} \\
& d_{0}\left(i_{5}\right)=\Sigma^{-1}\left(\mathrm{Sq}^{4} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}\right) \\
& d_{0}\left(i_{6}\right)=\Sigma^{-1} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1} \\
& d_{0}\left(i_{7}\right)=\Sigma^{-1} \mathrm{Sq}^{8}
\end{aligned}
$$

It is clear that d_{0} is surjective through dimension 12 by an examination of Figure 2.6.

Next, we will calculate $K_{0} Z(1,1)=\operatorname{ker}\left(d_{0}: P_{0} Z(1,1) \rightarrow H^{*} Z(1,1)\right)$. We will make a table similar to that in Section 4.1:

TABLE 4.4. Calculation of $K_{0} Z(1,1)$ through dimension 12

dimension	input	output	generator of $K_{0} Z(1,1)$
3	i_{3}	$(4)+(3,1)$	
4	(1) i_{3}	(5)	
5	$\begin{gathered} (2) i_{3} \\ i_{5} \end{gathered}$	(6) $(4,2)+(5,1)$	
6	(3) i_{3} $(2,1) i_{3}$ (1) i_{5} i_{6}	(7) $(6,1)$ $(5,2)$ $(4,2,1)$	
7	(4) i_{3} $(3,1) i_{3}$ (2) i_{5} (1) i_{6} i_{7}	$\begin{gathered} (5,2,1)+(6,2)+(7,1) \\ (7,1) \\ (6,2) \\ (5,2,1) \end{gathered}$ (8)	$[(3,1)+(4)] i_{3}+(2) i_{5}+1 i_{6}$
8	(5) i_{3} $(4,1) i_{3}$ (3) i_{5} $(2,1) i_{5}$ (2) i_{6} (1) i_{7}	$\begin{gathered} (7,2) \\ (7,2)+(8,1)+(9) \\ (7,2) \\ (6,3) \\ (6,2,1) \end{gathered}$ (9)	(5) $i_{3}+(3) i_{5}$
9	$\begin{gathered} (6) i_{3} \\ (5,1) i_{3} \\ (4,2) i_{3} \end{gathered}$	$\begin{gathered} (6,3,1)+(7,3) \\ (9,1) \\ (8,2)+(10) \end{gathered}$	$\begin{aligned} & (6) i_{3}+(3,1) i_{5}+(2,1) i_{6} \\ & (5,1) i_{3}+[(3,1)+(4)] i_{5} \end{aligned}$

TABLE 4.4. (continued)

dimension	input	output	generator of $K_{0} Z(1,1)$
10	$(4) i_{5}$	$(6,3,1)+(7,2,1)+$	$+[(2,1)+(3)] i_{6}$
	$(3,1) i_{5}$	$(7,3)+(9,1)$	
	$(3) i_{6}$	$(7,3)$	
	$(2,1) i_{6}$	$(7,2,1)$	
	$(2) i_{7}$	$(6,3,1) i_{3}$	$(7,3,1)$
	$(6,1) i_{3}$	$(8,3)+(9,2)$	$(6,1) i_{3}+[(4,1)+(5)] i_{5}$
	$(5,2) i_{3}$	$(9,2)+(11)$	
	$(4,2,1) i_{3}$	$(8,2,1)+(10,1)$	
	$(5) i_{5}$	$(7,3,1)$	$(5) i_{5}+(3,1) i_{6}$
	$(4,1) i_{5}$	$(7,3,1)+(8,3)+(9,2)$	$[(3,1)+(4)] i_{6}$
	$(4) i_{6}$	$(7,3,1)$	
	$(3,1) i_{6}$	$(7,3,1)$	
	$(3) i_{7}$	(11)	$(5,1) i_{5}$

TABLE 4.4. (continued)

dimension	input	output	generator of $K_{0} Z(1,1)$
	$\begin{gathered} (4,2) i_{5} \\ (5) i_{6} \\ (4,1) i_{6} \\ (4) i_{7} \\ (3,1) i_{7} \end{gathered}$	$(8,3,1)+(10,2)$ zero $\begin{gathered} (8,3,1)+(9,2,1) \\ (10,2)+(11,1)+(12) \\ (11,1) \end{gathered}$	(5) i_{6}
12	$\begin{gathered} (9) i_{3} \\ (8,1) i_{3} \\ (7,2) i_{3} \\ (6,3) i_{3} \\ (6,2,1) i_{3} \\ (7) i_{5} \\ (6,1) i_{5} \\ (5,2) i_{5} \\ (4,2,1) i_{5} \\ (6) i_{6} \\ (5,1) i_{6} \\ (4,2) i_{6} \\ (5) i_{7} \\ (4,1) i_{7} \end{gathered}$	$\begin{gathered} (9,4)+(9,3,1) \\ (9,4) \\ (11,2) \\ (10,3)+(12,1)+(13) \\ (9,3,1)+(10,2,1) \\ (9,3,1) \\ (9,3,1) \\ (9,3,1)+(11,2) \\ (8,4,1)+(9,4)+(10,3) \\ \text { zero } \\ (9,3,1) \\ (10,2,1) \\ (11,2)+(13) \\ (11,2)+(12,1) \end{gathered}$	$[(8,1)+(9)] i_{3}+(5,1) i_{6}$ $(7,2) i_{3}+(5,2) i_{5}+(5,1) i_{6}$ $\begin{gathered} (7) i_{5}+(5,1) i_{6} \\ (6,1) i_{5}+(5,1) i_{6} \end{gathered}$ (6) i_{6} $(6,2,1) i_{3}+[(4,2)+(5,1)] i_{6}$

The A-module structure of $K_{0} Z(1,1)$ through dimension 12 is pictured in Figure 4.4. The only $\mathrm{Sq}^{2^{n}}$ missing in this range is $\mathrm{Sq}^{4}\left(\mathrm{Sq}^{5} i_{3}+\mathrm{Sq}^{3} i_{5}\right)=$ $\left(\mathrm{Sq}^{7} \mathrm{Sq}^{2}+\mathrm{Sq}^{8} \mathrm{Sq}^{1}+\mathrm{Sq}^{9}\right) i_{3}+\mathrm{Sq}^{5} \mathrm{Sq}^{2} i_{5}$.

FIGURE 4.4. $K_{0} Z(1,1)$ through dimension 12
From this, we see that we can choose

$$
P_{1} Z(1,1)=\Sigma^{7} A \oplus \Sigma^{9} A \oplus \Sigma^{10} A \oplus \Sigma^{12} A \oplus \bigoplus_{l_{k}>12} \Sigma^{l_{k}} A
$$

Let h_{k} denote the generator of $\Sigma^{k} A$ in $P_{1} Z(1,1)$. We define $d_{1}: P_{1} Z(1,1) \rightarrow P_{0} Z(1,1)$ by

$$
\begin{aligned}
& d_{1}\left(h_{7}\right)=\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) i_{3}+\mathrm{Sq}^{2} i_{5}+\mathrm{Sq}^{1} i_{6} \\
& d_{1}\left(h_{9}\right)=\mathrm{Sq}^{5} \mathrm{Sq}^{1} i_{3}+\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) i_{5}+\left(\mathrm{Sq}^{2} \mathrm{Sq}^{1}+\mathrm{Sq}^{3}\right) i_{6} \\
& d_{1}\left(h_{10}\right)=\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) i_{6} \\
& d_{1}\left(h_{12}\right)=\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1} i_{3}+\left(\mathrm{Sq}^{4} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}\right) i_{6}
\end{aligned}
$$

CHAPTER V

NONEXISTENCE OF U_{2}^{1} ON $Z\left(\beta_{1}, \beta_{2}\right)$

We will now show that none of the complexes $Z\left(\beta_{1}, \beta_{2}\right)$ support a u_{2}^{1}-map. To do so, we will show that

$$
\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), H^{*} Z\left(\beta_{1}, \beta_{2}\right)\right)=\mathbb{F}_{2}
$$

for each choice of β_{1}, β_{2}. Then we will show that the generator of these groups, which is represented by a map

$$
f: P_{1} Z\left(\beta_{1}, \beta_{2}\right) \rightarrow H^{*} \Sigma^{6} Z\left(\beta_{1}, \beta_{2}\right)
$$

cannot induce an isomorphism

$$
H\left(K_{0} Z\left(\beta_{1}, \beta_{2}\right), x_{2}\right) \rightarrow H\left(H^{*} \Sigma^{6} Z\left(\beta_{1}, \beta_{2}\right), x_{2}\right)
$$

and therefore cannot be a u_{2}^{1}-map.
We first prove a lemma:

Lemma 5.1. 1. $\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), \Sigma^{-1} A\right)=0$
2. $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), \Sigma^{-1} A\right)=0$

Proof. 1. By Theorem 13.3.12 in [Mar83], A is self-injective. Therefore, if we apply $\operatorname{Hom}_{A}\left(-, \Sigma^{5} A\right)$ to the short exact sequence

$$
0 \rightarrow \Sigma^{-1} K_{0}(Y) \rightarrow \Sigma^{-1} A \rightarrow H^{*} \Sigma^{-1} Y \rightarrow 0
$$

we get

$$
\begin{gathered}
0 \leftarrow \operatorname{Hom}_{A}\left(\Sigma^{-1} K_{0}(Y), \Sigma^{5} A\right) \leftarrow \operatorname{Hom}_{A}\left(\Sigma^{-1} A, \Sigma^{5} A\right) \\
\leftarrow \operatorname{Hom}_{A}\left(\Sigma^{-1} H^{*} Y, \Sigma^{5} A\right) \leftarrow 0
\end{gathered}
$$

The rightmost group is zero for dimensional reasons, so we have

$$
\operatorname{Hom}_{A}\left(\Sigma^{-1} K_{0}(Y), \Sigma^{5} A\right) \cong \operatorname{Hom}_{A}\left(\Sigma^{-1} A, \Sigma^{5} A\right)
$$

But the only degree $0 A$-module map $\Sigma^{-1} A \rightarrow \Sigma^{5} A$ is the zero map, so both of these groups are also zero.

Now, apply $\operatorname{Hom}_{A}\left(-, \Sigma^{5} A\right)$ to

$$
0 \rightarrow H^{*} Z\left(\beta_{1}, \beta_{2}\right) \rightarrow H^{*} Y_{1} \rightarrow H^{*} \Sigma^{2} Y \rightarrow 0
$$

to get

$$
\begin{gathered}
0 \leftarrow \operatorname{Hom}_{A}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), \Sigma^{5} A\right) \leftarrow \operatorname{Hom}_{A}\left(H^{*} Y_{1}, \Sigma^{5} A\right) \\
\leftarrow \operatorname{Hom}_{A}\left(H^{*} \Sigma^{2} Y, \Sigma^{5} A\right) \leftarrow 0
\end{gathered}
$$

Recall that $H^{*} Y_{1}=\Sigma^{-1} K_{0}(Y)$, and so the middle group is 0 . Thus $\operatorname{Hom}_{A}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), \Sigma^{5} A\right)=\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), \Sigma^{-1} A\right)=0$.
2. This follows directly from the self-injectivity of A (Theorem 13.3.12 in [Mar83]).

We will use this to prove the following:

Theorem 5.2.

$$
\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), H^{*} Z\left(\beta_{1}, \beta_{2}\right)\right)=\mathbb{F}_{2}
$$

for each choice of $\beta_{1}, \beta_{2} \in\{0,1\}$, and the only nonzero element of this group is not a u_{2}^{1}-map.

The proof will be in four cases corresponding to the choices of β_{1} and β_{2}, though the format of each case is quite similar. The general strategy used in each case is the following:

1. Apply the functor $\operatorname{Ext}_{A}^{*, 6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right),-\right)$ to the short exact sequences

$$
0 \rightarrow H^{*} Y_{1} \rightarrow \Sigma^{-1} A \rightarrow H^{*} \Sigma^{-1} Y \rightarrow 0
$$

and

$$
0 \rightarrow H^{*} Z\left(\beta_{1}, \beta_{2}\right) \rightarrow H^{*} Y_{1} \rightarrow H^{*} \Sigma^{2} Y \rightarrow 0
$$

2. Use the resulting long exact sequences to show that

$$
\operatorname{Hom}_{A}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), \Sigma^{5} H^{*} Y\right)=\mathbb{F}_{2} \oplus \mathbb{F}_{2}
$$

3. Compute the connecting homomorphism

$$
\delta_{0}: \operatorname{Hom}_{A}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), \Sigma^{5} H^{*} Y\right) \xrightarrow{\cong} \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), H^{*} Y_{1}\right)
$$

to identify two generators of $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), H^{*} Y_{1}\right)$.
4. Examine the maps $\iota_{*}, \phi_{*}=\left(\phi_{3}+\beta_{1} \phi_{4}+\beta_{2} \phi_{6}\right)_{*}$ in the exact sequence below:

$$
\begin{gathered}
\left.0 \rightarrow \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), H^{*} Z\left(\beta_{1}, \beta_{2}\right)\right) \xrightarrow{\iota_{*}} \operatorname{Ext}_{A}^{1,6} H^{*} Z\left(\beta_{1}, \beta_{2}\right), H^{*} Y_{1}\right) \\
\xrightarrow{\phi_{*}} \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), H^{*} \Sigma^{2} Y\right) \rightarrow \ldots
\end{gathered}
$$

and show that, of the two generators in the previous step, one is not in $\operatorname{ker}\left(\phi_{*}\right)$, so it does not pull back to $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right)\right)\right.$. The other generator does pull back to $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right), \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z\left(\beta_{1}, \beta_{2}\right)\right)\right.$, but is the zero map through dimension 12, so in no case can it induce the desired isomorphism in Margolis homology. Thus, it cannot be a u_{2}^{1}-map.

Proof. $\beta_{1}=0, \beta_{2}=0$:

We apply $\operatorname{Ext}_{A}^{n}\left(H^{*} Z(0,0),-\right)$ to the short exact sequence

$$
0 \rightarrow H^{*} Y_{1} \rightarrow \Sigma^{-1} A \rightarrow H^{*} \Sigma^{-1} Y \rightarrow 0
$$

to get the long exact sequence

$$
\begin{gathered}
0 \rightarrow \operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(0,0), H^{*} Y_{1}\right)-\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(0,0), \Sigma^{-1} A\right)-\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(0,0), \Sigma^{-1} H^{*} Y\right) \\
\not \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,0), H^{*} Y_{1}\right)-\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,0), \Sigma^{-1} A\right)-\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,0), \Sigma^{-1} H^{*} Y\right) \rightarrow \ldots
\end{gathered}
$$

By Lemma 5.1, we have

$$
\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(0,0), \Sigma^{-1} A\right)=\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,0), \Sigma^{-1} A\right)=0
$$

Therefore we have an isomorphism

$$
\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(0,0), \Sigma^{-1} H^{*} Y\right) \cong \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,0), H^{*} Y_{1}\right)
$$

Lemma 5.3.

$$
\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(0,0), \Sigma^{-1} H^{*} Y\right) \cong \operatorname{Hom}_{A}\left(H^{*} Z(0,0), H^{*} \Sigma^{5} Y\right) \cong \mathbb{F}_{2} \oplus \mathbb{F}_{2}
$$

Proof. Note that $\Sigma^{5} H^{*} Y$ is 0 except in dimensions $5,6,7$, and 8 , and so $\operatorname{Hom}_{A}\left(H^{*} Z(0,0), H^{*} \Sigma^{5} Y\right)=0$ except in dimensions $5,6,7,8$. We will show that there are no nonzero maps in dimensions 5 and 6, but there are nonzero maps in dimensions 7 and 8 . Let $g \in \operatorname{Hom}_{A}\left(H^{*} Z(0,0), \Sigma^{5} H^{*} Y\right)$.

Since $\Sigma^{5} H^{*} Y=0$ in dimension 4, we must have that $g\left(\Sigma^{-1} \mathrm{Sq}^{4}\right)=0$. Therefore $g\left(\Sigma^{-1} \mathrm{Sq}^{5}\right)=0$ (see the diagram in Section 2.3).

Then we must also have

$$
\begin{aligned}
0 & =\mathrm{Sq}^{4}\left(g\left(\Sigma^{-1}\left(\mathrm{Sq}^{4}+\mathrm{Sq}^{3} \mathrm{Sq}^{1}\right)\right)\right. \\
& =g\left(\Sigma^{-1} \mathrm{Sq}^{4}\left(\mathrm{Sq}^{4}+\mathrm{Sq}^{3} \mathrm{Sq}^{1}\right)\right) \\
& \left.=g\left(\Sigma^{-1} \mathrm{Sq}^{6} \mathrm{Sq}^{2}+\mathrm{Sq}^{7} \mathrm{Sq}^{1}\right)\right)
\end{aligned}
$$

Thus we have $g\left(\Sigma^{-1} \mathrm{Sq}^{6} \mathrm{Sq}^{2}\right)=g\left(\Sigma^{-1} \mathrm{Sq}^{7} \mathrm{Sq}^{1}\right)$. But we know that

$$
\begin{aligned}
0 & =\mathrm{Sq}^{3} \mathrm{Sq}^{1}\left(g\left(\Sigma^{-1}\left(\mathrm{Sq}^{4}\right)\right)\right. \\
& =g\left(\Sigma^{-1} \mathrm{Sq}^{3} \mathrm{Sq}^{1} \mathrm{Sq}^{4}\right) \\
& =g\left(\Sigma^{-1} \mathrm{Sq}^{7} \mathrm{Sq}^{1}\right)
\end{aligned}
$$

Therefore $g\left(\Sigma^{-1} \mathrm{Sq}^{6} \mathrm{Sq}^{2}\right)=g\left(\Sigma^{-1} \mathrm{Sq}^{7} \mathrm{Sq}^{1}\right)=0$.
Therefore, $\operatorname{Hom}_{A}\left(H^{*} Z(0,0), H^{*} \Sigma^{5} Y\right)=0$ in dimension 6.
For dimensions 7 and 8 , we have we have

$$
g\left(\Sigma^{-1} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)=\epsilon_{1}\left(\Sigma^{5} \alpha_{1}\right) \quad \text { and } \quad g\left(\Sigma^{-1} \mathrm{Sq}^{8}\right)=\epsilon_{2}\left(\Sigma^{5} \alpha_{2}\right)
$$

for $\epsilon_{1}, \epsilon_{2} \in \mathbb{F}_{2}$. Define two maps $f_{1}, f_{2} \in \operatorname{Hom}_{A}\left(H^{*} Z(0,0), \Sigma^{5} H^{*} Y\right)$ by setting $\epsilon_{1}=$ $1, \epsilon_{2}=0$ for f_{1}, and $\epsilon_{1}=0, \epsilon_{2}=1$ for f_{2}. More explicitly, we have

$$
\begin{aligned}
f_{1}\left(\Sigma^{-1} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right) & =\Sigma^{5} \alpha_{1} \\
f_{1}\left(\Sigma^{-1} \mathrm{Sq}^{6} \mathrm{Sq}^{2} S \mathrm{q}^{1}\right) & =\Sigma^{5} \alpha_{3} \\
f_{1}(\eta) & =0 \text { for all other elements } \eta \in H^{*} \mathrm{Z}(0,0)
\end{aligned}
$$

and

$$
\begin{aligned}
f_{2}\left(\Sigma^{-1} \mathrm{Sq}^{8}\right) & =\Sigma^{5} \alpha_{2} \\
f_{2}(\eta) & =0 \text { for all other elements } \eta \in H^{*} Z(1,1)
\end{aligned}
$$

Both of these elements are module maps in that they do not contradict any relations involving elements in lower dimensions. Therefore, these two elements
are a basis of $\operatorname{Hom}_{A}\left(H^{*} Z(0,0), \Sigma^{5} H^{*} Y\right)$ over A, so
$\operatorname{Hom}_{A}\left(H^{*} Z(0,0), \Sigma^{5} H^{*} Y\right)=\mathbb{F}_{2} \oplus \mathbb{F}_{2}$.

Thus we have

$$
\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(0,0), \Sigma^{-1} H^{*} Y\right) \cong \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,0), H^{*} Y_{1}\right) \cong \mathbb{F}_{2} \oplus \mathbb{F}_{2}
$$

We identified two generators $f_{1}, f_{2} \in \operatorname{Hom}_{A}\left(H^{*} Z(0,0), \Sigma^{5} H^{*} Y\right)$. We calculate their image under δ_{0}. In order to do so, we examine the following diagram:

```
    Hom
        d\(d_{0}^{*} \downarrow\)
\[
0 \rightarrow \operatorname{Hom}_{A}\left(P_{0}(Z(0,0)), \Sigma^{6} H^{*} Y_{1}\right) \xrightarrow{i_{*}} \operatorname{Hom}_{A}\left(P_{0}(Z(0,0)), \Sigma^{5} A\right) \xrightarrow{\pi_{*}} \operatorname{Hom}_{A}\left(P_{0}(Z(0,0)), \Sigma^{5} H^{*} Y\right) \rightarrow 0
\]
\[
0 \rightarrow \operatorname{Hom}_{A}\left(P_{1}(Z(0,0)), \Sigma^{6} H^{*} Y_{1}\right) \xrightarrow{i_{*}^{*}} \operatorname{Hom}_{A}\left(P_{1}(Z(0,0)), \Sigma^{5} A\right) \xrightarrow{d_{*}^{*}} \operatorname{Hom}_{A}\left(P_{1}(Z(0,0)), \Sigma^{5} H^{*} Y\right) \rightarrow 0
\]
```

where the horizontal maps are coming from the sequence

$$
0 \rightarrow H^{*} Y_{1} \xrightarrow{i} \Sigma^{-1} A \xrightarrow{\pi} H^{*} \Sigma^{-1} Y \rightarrow 0
$$

Starting with $f_{1} \in \operatorname{Hom}_{A}\left(H^{*} Z(0,0), \Sigma^{5} H^{*} Y\right)$, we calculate it d_{0}^{*} as an element of $\operatorname{Hom}_{A}\left(P_{0}(Z(0,0)), \Sigma^{5} H^{*} Y\right) .$. The map $d_{0}^{*}\left(f_{1}\right)=\left(f_{1} \circ d_{0}\right)$ is given on the generators
of $P_{0}(Z(0,0))$ in dimensions 12 and below by:

$$
\begin{aligned}
& \left(f_{1} \circ d_{0}\right)\left(i_{3}\right)=0 \\
& \left(f_{1} \circ d_{0}\right)\left(i_{5}\right)=0 \\
& \left(f_{1} \circ d_{0}\right)\left(i_{6}\right)=\Sigma^{5} \alpha_{1} \\
& \left(f_{1} \circ d_{0}\right)\left(i_{7}\right)=0
\end{aligned}
$$

Now we need to lift $d_{0}^{*}\left(f_{1}\right)$ to a map in $\gamma_{1} \in \operatorname{Hom}_{A}\left(P_{1}(Z(0,0)), \Sigma^{5} A\right)$. We choose γ_{1} to be given by $\gamma_{1}\left(i_{6}\right)=\Sigma^{5} \mathrm{Sq}^{1}$ and $\gamma_{1}\left(i_{k}\right)=0$ for $k \neq 6, k \leq 12$.

Next, we apply d_{1}^{*} to get a map $d_{1}^{*}\left(\gamma_{1}\right) \in \operatorname{Hom}_{A}\left(P_{1}(Z(0,0)), \Sigma^{5} A\right)$. The map $d_{1}^{*}\left(\gamma_{1}\right)=\left(\gamma_{1} \circ d_{1}\right)$ is given on the generators of $P_{1}(Z(0,0))$ by:

$$
\begin{aligned}
\left(\gamma_{1} \circ d_{1}\right)\left(h_{7}\right) & =0 \\
\left(\gamma_{1} \circ d_{1}\right)\left(h_{9}\right) & =0 \\
\left(\gamma_{1} \circ d_{1}\right)\left(h_{10}\right) & =\Sigma^{5} \mathrm{Sq}^{4} \mathrm{Sq}^{1} \\
\left(\gamma_{1} \circ d_{1}\right)\left(h_{12}\right) & =\Sigma^{5} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}
\end{aligned}
$$

Last, we must lift $d_{1}^{*}\left(\gamma_{1}\right)$ to $\operatorname{Hom}_{A}\left(P_{1}(Z(0,0)), \Sigma^{6} H^{*} Y_{1}\right)$. We use that $H^{*} Y_{1} \subseteq \Sigma^{-1} A$ and that this is an isomorphism in dimensions where $d_{1}^{*}\left(\gamma_{1}\right) \neq 0$. Call this lift g_{1}; on the generators of $P_{1}(Z(0,0))$ through dimension $12, g_{1}$ is given by the same
formula as $d_{1}^{*}\left(\gamma_{1}\right)$. Explicitly, we have:

$$
\begin{aligned}
g_{1}\left(h_{7}\right) & =0 \\
g_{1}\left(h_{9}\right) & =0 \\
g_{1}\left(h_{10}\right) & =\Sigma^{5} \mathrm{Sq}^{4} \mathrm{Sq}^{1} \\
g_{1}\left(h_{12}\right) & =\Sigma^{5} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}
\end{aligned}
$$

It is evident that g_{1} is a lift of $d_{1}^{*}\left(\gamma_{1}\right)$ since $H^{*} Y_{1}=\Sigma^{-1} K_{0}(Y)$ is a submodule of $\Sigma^{-1} A$.

We have identified a representative of one of the two generators of $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,0), H^{*} Y_{1}\right)$. We will show that it does not pull back to a generator of $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,0), H^{*} Z(1,1)\right)$ by examining the short exact sequence

$$
\begin{gathered}
0 \rightarrow \operatorname{Hom}_{A}\left(P_{1}(Z(0,0)), \Sigma^{6} H^{*} Z(0,0)\right) \xrightarrow{\iota_{*}} \operatorname{Hom}_{A}\left(P_{1}(Z(0,0)), \Sigma^{6} H^{*} Y_{1}\right) \\
\xrightarrow{\left(\phi_{3}\right)_{*}} \operatorname{Hom}_{A}\left(P_{1}(Z(0,0)), \Sigma^{8} H^{*} Y\right) \rightarrow 0
\end{gathered}
$$

We see that $\left(\phi_{3}\right)_{*}\left(g_{1}\right)=\left(\phi_{3}\right) \circ g_{1}$ is given by

$$
\begin{aligned}
\left(\left(\phi_{3}\right) \circ g_{1}\right)\left(h_{7}\right) & =0 \\
\left(\left(\phi_{3}\right) \circ g_{1}\right)\left(h_{9}\right) & =0 \\
\left(\left(\phi_{3}\right) \circ g_{1}\right)\left(h_{10}\right) & =\Sigma^{8} \alpha_{2} \\
\left(\left(\phi_{3}\right) \circ g_{1}\right)\left(h_{12}\right) & =0
\end{aligned}
$$

Thus $g_{1} \notin \operatorname{ker}\left(\left(\phi_{3}\right)_{*}\right)=\operatorname{im}\left(\iota_{*}\right)$. Since $\operatorname{Hom}_{A}\left(P_{0}(Z(0,0)), \Sigma^{8} H^{*} Y\right)=0$, we know that $\phi_{3}\left(g_{1}\right)$ is not a boundary. On the level of Ext groups, this
shows that the element $\left[g_{1}\right] \in \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,0), H^{*} Y_{1}\right)$ does not pull back under the inclusion $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,0), H^{*} Z(0,0)\right) \rightarrow \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,0), H^{*} Y_{1}\right)$, so $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,0), H^{*} Z(0,0)\right)$ has at most rank 1 .

We now investigate $g_{2}=\delta_{0}\left(f_{2}\right)$.
We take $f_{2} \in \operatorname{Hom}_{A}\left(H^{*} Z(0,0), \Sigma^{5} H^{*} Y\right)$ and apply d_{0}^{*} to get $d_{0}^{*}\left(f_{2}\right)=f_{2} \circ d_{0} \in$ $\operatorname{Hom}_{A}\left(P_{0}(Z(0,0)), \Sigma^{5} H^{*} Y\right)$. We have

$$
\begin{aligned}
& \left(f_{2} \circ d_{0}\right)\left(i_{3}\right)=0 \\
& \left(f_{2} \circ d_{0}\right)\left(i_{5}\right)=0 \\
& \left(f_{2} \circ d_{0}\right)\left(i_{6}\right)=0 \\
& \left(f_{2} \circ d_{0}\right)\left(i_{7}\right)=\Sigma^{5} \alpha_{2}
\end{aligned}
$$

Now we need to lift $d_{0}^{*}\left(f_{2}\right)$ to a map in $\gamma_{2} \in \operatorname{Hom}_{A}\left(P_{1}(Z(0,0)), \Sigma^{5} A\right)$. We choose γ_{2} so that $\gamma_{1}\left(i_{7}\right)=\Sigma^{5} \mathrm{Sq}^{2}$ and $\gamma_{2}\left(i_{k}\right)=0$ for $k \neq 7, k \leq 12$. Next, we apply d_{1}^{*} to get a map $d_{1}^{*}\left(\gamma_{2}\right) \in \operatorname{Hom}_{A}\left(P_{1}(Z(0,0)), \Sigma^{5} A\right)$. The map $d_{1}^{*}\left(\gamma_{2}\right)=\left(\gamma_{2} \circ d_{1}\right)$ is given on the generators of $P_{1}(Z(0,0))$ by:

$$
\begin{aligned}
\left(\gamma_{2} \circ d_{1}\right)\left(h_{7}\right) & =0 \\
\left(\gamma_{2} \circ d_{1}\right)\left(h_{9}\right) & =0 \\
\left(\gamma_{2} \circ d_{1}\right)\left(h_{10}\right) & =0 \\
\left(\gamma_{2} \circ d_{1}\right)\left(h_{12}\right) & =0
\end{aligned}
$$

The calculations here are simple from the information provided; essentially, this map is 0 through dimension 12 because $d_{1}\left(h_{i}\right)$ never involves an A-multiple of i_{7} in dimensions below 12 .

So we lift $d_{1}^{*}\left(\gamma_{2}\right)$ to $g_{2} \in \operatorname{Hom}_{A}\left(P_{1}(Z(0,0)), H^{*} Y_{1}\right)$ with

$$
\begin{array}{r}
g_{2}\left(h_{7}\right)=0 \\
g_{2}\left(h_{9}\right)=0 \\
g_{2}\left(h_{10}\right)=0 \\
g_{2}\left(h_{12}\right)=0
\end{array}
$$

We have now identified a representative of the second generator of $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,0), H^{*} Y_{1}\right)$. Unlike the first generator, we have $\left(\phi_{3}\right)_{*}\left(g_{2}\right)=0$ in the short exact sequence

$$
\begin{gathered}
0 \rightarrow \operatorname{Hom}_{A}\left(P_{1}(Z(0,0)), \Sigma^{6} H^{*} Z(0,0)\right) \xrightarrow{\iota_{*}} \operatorname{Hom}_{A}\left(P_{1}(Z(0,0)), \Sigma^{6} H^{*} Y_{1}\right) \\
\xrightarrow{\left(\phi_{3}\right)_{*}} \operatorname{Hom}_{A}\left(P_{1}(Z(0,0)), \Sigma^{8} H^{*} Y\right) \rightarrow 0
\end{gathered}
$$

because $\Sigma^{8} H^{*} Y$ is nonzero only in dimensions 8, 9, 10, and 11, and $\left(\phi_{3}\right)_{*}\left(g_{2}\right)$ is zero in those dimensions. This we can find a map $\tilde{g_{2}} \epsilon$ $\operatorname{Hom}_{A}\left(P_{1}(Z(0,0)), \Sigma^{6} H^{*} Z(0,0)\right)$; however, this map is zero through dimension 11. Since $H_{*}\left(K_{0} Z(0,0), x_{2}\right)$ is nonzero in dimension 11, $\tilde{g_{2}}$ cannot be a u_{2}^{1}-map.
$\beta_{1}=1, \beta_{2}=0:$

We apply $\operatorname{Ext}_{A}^{n}\left(H^{*} Z(1,0),-\right)$ to the short exact sequence

$$
0 \rightarrow H^{*} Y_{1} \rightarrow \Sigma^{-1} A \rightarrow H^{*} \Sigma^{-1} Y \rightarrow 0
$$

to get the long exact sequence

$$
\begin{gathered}
0 \rightarrow \operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(1,0), H^{*} Y_{1}\right)-\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(1,0), \Sigma^{-1} A\right) \rightarrow \operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(1,0), \Sigma^{-1} H^{*} Y\right) \\
\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,0), H^{*} Y_{1}\right)-\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,0), \Sigma^{-1} A\right)-\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,0), \Sigma^{-1} H^{*} Y\right) \rightarrow \ldots
\end{gathered}
$$

By lemma 5.1, we have

$$
\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(1,0), \Sigma^{-1} A\right)=\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,0), \Sigma^{-1} A\right)=0
$$

Therefore we have an isomorphism

$$
\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(1,0), \Sigma^{-1} H^{*} Y\right) \cong \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,0), H^{*} Y_{1}\right)
$$

Lemma 5.4.

$$
\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(1,0), \Sigma^{-1} H^{*} Y\right) \cong \operatorname{Hom}_{A}\left(H^{*} Z(1,0), H^{*} \Sigma^{5} Y\right) \cong \mathbb{F}_{2} \oplus \mathbb{F}_{2}
$$

Proof. Note that $\Sigma^{5} H^{*} Y$ is 0 except in dimensions 5, 6, 7, and 8, and so $\operatorname{Hom}_{A}\left(H^{*} Z(1,0), H^{*} \Sigma^{5} Y\right)=0$ except in dimensions $5,6,7,8$. We will show that there are no nonzero maps in dimensions 5 and 6, but there are nonzero maps in dimensions 7 and 8. Let $g \in \operatorname{Hom}_{A}\left(H^{*} Z(1,0), \Sigma^{5} H^{*} Y\right)$.

Since $\Sigma^{5} H^{*} Y=0$ in dimension 4, we must have that $g\left(\Sigma^{-1} \mathrm{Sq}^{4}\right)=0$. Therefore $g\left(\Sigma^{-1} \mathrm{Sq}^{5}\right)=0$ (see the diagram in Section 2.3).

Then we must also have

$$
\begin{aligned}
0 & =\mathrm{Sq}^{4}\left(g\left(\Sigma^{-1}\left(\mathrm{Sq}^{4}+\mathrm{Sq}^{3} \mathrm{Sq}^{1}\right)\right)\right. \\
& =g\left(\Sigma^{-1} \mathrm{Sq}^{4}\left(\mathrm{Sq}^{4}+\mathrm{Sq}^{3} \mathrm{Sq}^{1}\right)\right) \\
& =g\left(\Sigma^{-1}\left(\mathrm{Sq}^{5} \mathrm{Sq}^{2} \mathrm{Sq}^{1}+\mathrm{Sq}^{6} \mathrm{Sq}^{2}+\mathrm{Sq}^{7} \mathrm{Sq}^{1}\right)\right)
\end{aligned}
$$

But we know that

$$
\begin{aligned}
0 & =\mathrm{Sq}^{3} \mathrm{Sq}^{1}\left(g\left(\Sigma^{-1}\left(\mathrm{Sq}^{4}+\mathrm{Sq}^{3} \mathrm{Sq}^{1}\right)\right)\right. \\
& =g\left(\Sigma^{-1} \mathrm{Sq}^{3} \mathrm{Sq}^{1} \mathrm{Sq}^{4}\right) \\
& =g\left(\Sigma^{-1} \mathrm{Sq}^{7} \mathrm{Sq}^{1}\right)
\end{aligned}
$$

Therefore $g\left(\Sigma^{-1}\left(\mathrm{Sq}^{5} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)=g\left(\Sigma^{-1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2}\right)\right.\right.$. We will show that both are zero.
Suppose that $g\left(\Sigma^{-1} \mathrm{Sq}^{4} \mathrm{Sq}^{2}\right)=\Sigma^{5} \alpha_{0}$. Then $g\left(\Sigma^{-1} \mathrm{Sq}^{5} \mathrm{Sq}^{2}\right)=\Sigma^{5} \alpha_{1}$, and $g\left(\Sigma^{-1} \mathrm{Sq}^{2} \mathrm{Sq}^{4} \mathrm{Sq}^{2}\right)=\Sigma^{5} \alpha_{2}$. Then we would have $g\left(\Sigma^{-1} \mathrm{Sq}^{5} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)=\Sigma^{5} \alpha_{2}$. But this is a contradiction, because $g\left(\Sigma^{-1} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)=\epsilon \alpha_{1}$ for $\epsilon \in\{0,1\}$, but $g\left(\Sigma^{-1} \mathrm{Sq}^{5} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)=\mathrm{Sq}^{1} g\left(\Sigma^{-1} \mathrm{Sq}^{4} \mathrm{Sq} 2 \mathrm{Sq}^{1}\right)=\mathrm{Sq}^{1} \epsilon \alpha_{1}=0$ for $\epsilon \in\{0,1\}$. So we have $g\left(\Sigma^{-1}\left(\mathrm{Sq}^{4} \mathrm{Sq}^{2}\right)=0\right.$.
Therefore, $\operatorname{Hom}_{A}\left(H^{*} Z(1,0), H^{*} \Sigma^{5} Y\right)=0$ in dimension 6 .
For dimensions 7 and 8 , we have we have

$$
g\left(\Sigma^{-1} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)=\epsilon_{1}\left(\Sigma^{5} \alpha_{1}\right) \quad \text { and } \quad g\left(\Sigma^{-1} \mathrm{Sq}^{8}\right)=\epsilon_{2}\left(\Sigma^{5} \alpha_{2}\right)
$$

for $\epsilon_{1}, \epsilon_{2} \in \mathbb{F}_{2}$. Define two maps $f_{1}, f_{2} \in \operatorname{Hom}_{A}\left(H^{*} Z(0,0), \Sigma^{5} H^{*} Y\right)$ by setting $\epsilon_{1}=$ $1, \epsilon_{2}=0$ for f_{1}, and $\epsilon_{1}=0, \epsilon_{2}=1$ for f_{2}. More explicitly, we have

$$
\begin{aligned}
f_{1}\left(\Sigma^{-1} \mathrm{Sq}^{4} S q^{2} \mathrm{Sq}^{1}\right) & =\Sigma^{5} \alpha_{1} \\
f_{1}\left(\Sigma^{-1} \mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right) & =\Sigma^{5} \alpha_{3} \\
f_{1}(\eta) & =0 \text { for all other elements } \eta \in H^{*} Z(1,0)
\end{aligned}
$$

and

$$
\begin{aligned}
f_{2}\left(\Sigma^{-1} \mathrm{Sq}^{8}\right) & =\Sigma^{5} \alpha_{2} \\
f_{2}(\eta) & =0 \text { for all other elements } \eta \in H^{*} Z(1,0)
\end{aligned}
$$

Both of these elements are module maps in that they do not contradict any relations involving elements in lower dimensions. Therefore, these two elements are a basis of $\operatorname{Hom}_{A}\left(H^{*} Z(1,0), \Sigma^{5} H^{*} Y\right)$ over A, so

$$
\operatorname{Hom}_{A}\left(H^{*} Z(0,0), \Sigma^{5} H^{*} Y\right)=\mathbb{F}_{2} \oplus \mathbb{F}_{2}
$$

Thus we have

$$
\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(1,0), \Sigma^{-1} H^{*} Y\right) \cong \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,0), H^{*} Y_{1}\right) \cong \mathbb{F}_{2} \oplus \mathbb{F}_{2}
$$

We identified two generators $f_{1}, f_{2} \in \operatorname{Hom}_{A}\left(H^{*} Z(1,0), \Sigma^{5} H^{*} Y\right)$. We calculate their imagine under δ_{0}. In order to do so, we examine the following diagram:

where the horizontal maps are coming from the sequence

$$
0 \rightarrow H^{*} Y_{1} \xrightarrow{i} \Sigma^{-1} A \xrightarrow{\pi} H^{*} \Sigma^{-1} Y \rightarrow 0
$$

Starting with $f_{1} \in \operatorname{Hom}_{A}\left(H^{*} Z(1,0), \Sigma^{5} H^{*} Y\right)$, we calculate it d_{0}^{*} as an element of $\operatorname{Hom}_{A}\left(P_{0}(Z(1,0)), \Sigma^{5} H^{*} Y\right)$. The map $d_{0}^{*}\left(f_{1}\right)=\left(f_{1} \circ d_{0}\right)$ is given on the generators of $P_{0}(Z(1,0))$ in dimensions 12 and below by:

$$
\begin{aligned}
& \left(f_{1} \circ d_{0}\right)\left(i_{3}\right)=0 \\
& \left(f_{1} \circ d_{0}\right)\left(i_{5}\right)=0 \\
& \left(f_{1} \circ d_{0}\right)\left(i_{6}\right)=\Sigma^{5} \alpha_{1} \\
& \left(f_{1} \circ d_{0}\right)\left(i_{7}\right)=0
\end{aligned}
$$

Now we need to lift $d_{0}^{*}\left(f_{1}\right)$ to a map in $\gamma_{1} \in \operatorname{Hom}_{A}\left(P_{1}(Z(1,0)), \Sigma^{5} A\right)$. We choose γ_{1} to be given by $\gamma_{1}\left(i_{6}\right)=\Sigma^{5} \mathrm{Sq}^{1}$ and $\gamma_{1}\left(i_{k}\right)=0$ for $k \neq 6, k \leq 12$.
Next, we apply d_{1}^{*} to get a map $d_{1}^{*}\left(\gamma_{1}\right) \in \operatorname{Hom}_{A}\left(P_{1}(Z(1,0)), \Sigma^{5} A\right)$. The map $d_{1}^{*}\left(\gamma_{1}\right)=\left(\gamma_{1} \circ d_{1}\right)$ is given on the generators of $P_{1}(Z(1,0))$ by:

$$
\begin{aligned}
\left(\gamma_{1} \circ d_{1}\right)\left(h_{7}\right) & =0 \\
\left(\gamma_{1} \circ d_{1}\right)\left(h_{9}\right) & =0 \\
\left(\gamma_{1} \circ d_{1}\right)\left(h_{10}\right) & =\Sigma^{5} \mathrm{Sq}^{4} \mathrm{Sq}^{1} \\
\left(\gamma_{1} \circ d_{1}\right)\left(h_{12}\right) & =\Sigma^{5} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}
\end{aligned}
$$

Last, we must lift $d_{1}^{*}\left(\gamma_{1}\right)$ to $\operatorname{Hom}_{A}\left(P_{1}(Z(1,0)), \Sigma^{6} H^{*} Y_{1}\right)$. We use that $H^{*} Y_{1} \subseteq \Sigma^{-1} A$ and that this is an isomorphism in dimensions where $d_{1}^{*}\left(\gamma_{1}\right) \neq 0$. Call this lift g_{1}; on the generators of $P_{1}(Z(1,0))$ through dimension $12, g_{1}$ is given by the same
formula as $d_{1}^{*}\left(\gamma_{1}\right)$. Explicitly, we have:

$$
\begin{aligned}
g_{1}\left(h_{7}\right) & =0 \\
g_{1}\left(h_{9}\right) & =0 \\
g_{1}\left(h_{10}\right) & =\Sigma^{5} \mathrm{Sq}^{4} \mathrm{Sq}^{1} \\
g_{1}\left(h_{12}\right) & =\Sigma^{5} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}
\end{aligned}
$$

It is evident that g_{1} is a lift of $d_{1}^{*}\left(\gamma_{1}\right)$ since $H^{*} Y_{1}=\Sigma^{-1} K_{0}(Y)$ is a submodule of $\Sigma^{-1} A$.

We have identified a representative of one of the two generators of $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,0), H^{*} Y_{1}\right)$. We will show that it does not pull back to a generator of $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,0), H^{*} Z(1,0)\right)$ by examining the short exact sequence

$$
\begin{gathered}
0 \rightarrow \operatorname{Hom}_{A}\left(P_{1}(Z(1,0)), \Sigma^{6} H^{*} Z(1,0)\right) \xrightarrow{\iota_{*}} \operatorname{Hom}_{A}\left(P_{1}(Z(1,0)), \Sigma^{6} H^{*} Y_{1}\right) \\
\xrightarrow{\left(\phi_{3}+\phi_{4}\right)_{*}} \operatorname{Hom}_{A}\left(P_{1}(Z(1,0)), \Sigma^{8} H^{*} Y\right) \rightarrow 0
\end{gathered}
$$

We see that $\left(\phi_{3}+\phi_{4}\right)_{*}\left(g_{1}\right)=\left(\phi_{3}+\phi_{4}\right) \circ g_{1}$ is given by

$$
\begin{aligned}
\left(\left(\phi_{3}+\phi_{4}\right) \circ g_{1}\right)\left(h_{7}\right) & =0 \\
\left(\left(\phi_{3}+\phi_{4}\right) \circ g_{1}\right)\left(h_{9}\right) & =0 \\
\left(\left(\phi_{3}+\phi_{4}\right) \circ g_{1}\right)\left(h_{10}\right) & =\Sigma^{8} \alpha_{2} \\
\left(\left(\phi_{3}+\phi_{4}\right) \circ g_{1}\right)\left(h_{12}\right) & =0
\end{aligned}
$$

Thus $g_{1} \notin \operatorname{ker}\left(\left(\phi_{3}+\phi_{4}+\phi_{6}\right)_{*}\right)=\operatorname{im}\left(\iota_{*}\right)$. Since $\operatorname{Hom}_{A}\left(P_{0}(Z(1,0)), \Sigma^{8} H^{*} Y\right)=$ 0 , we know that g_{1} is not a boundary. On the level of Ext groups, this
shows that the element $\left[g_{1}\right] \in \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,0), H^{*} Y_{1}\right)$ does not pull back under the inclusion $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,0), H^{*} Z(1,0)\right) \rightarrow \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,0), H^{*} Y_{1}\right)$, so $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,0), H^{*} Z(1,0)\right)$ has at most rank 1 .

We now investigate $g_{2}=\delta_{0}\left(f_{2}\right)$.
We take $f_{2} \in \operatorname{Hom}_{A}\left(H^{*} Z(1,0), \Sigma^{5} H^{*} Y\right)$ and apply d_{0}^{*} to get $d_{0}^{*}\left(f_{2}\right)=f_{2} \circ d_{0} \in$ $\operatorname{Hom}_{A}\left(P_{0}(Z(1,0)), \Sigma^{5} H^{*} Y\right)$. We have

$$
\begin{aligned}
& \left(f_{2} \circ d_{0}\right)\left(i_{3}\right)=0 \\
& \left(f_{2} \circ d_{0}\right)\left(i_{5}\right)=0 \\
& \left(f_{2} \circ d_{0}\right)\left(i_{6}\right)=0 \\
& \left(f_{2} \circ d_{0}\right)\left(i_{7}\right)=\Sigma^{5} \alpha_{2}
\end{aligned}
$$

Now we need to lift $d_{0}^{*}\left(f_{2}\right)$ to a map in $\gamma_{2} \in \operatorname{Hom}_{A}\left(P_{1}(Z(1,0)), \Sigma^{5} A\right)$. We choose γ_{2} so that $\gamma_{1}\left(i_{7}\right)=\Sigma^{5} \mathrm{Sq}^{2}$ and $\gamma_{2}\left(i_{k}\right)=0$ for $k \neq 7, k \leq 12$. Next, we apply d_{1}^{*} to get a map $d_{1}^{*}\left(\gamma_{2}\right) \in \operatorname{Hom}_{A}\left(P_{1}(Z(1,0)), \Sigma^{5} A\right)$. The map $d_{1}^{*}\left(\gamma_{2}\right)=\left(\gamma_{2} \circ d_{1}\right)$ is given on the generators of $P_{1}(Z(1,0))$ by:

$$
\begin{aligned}
\left(\gamma_{2} \circ d_{1}\right)\left(h_{7}\right) & =0 \\
\left(\gamma_{2} \circ d_{1}\right)\left(h_{9}\right) & =0 \\
\left(\gamma_{2} \circ d_{1}\right)\left(h_{10}\right) & =0 \\
\left(\gamma_{2} \circ d_{1}\right)\left(h_{12}\right) & =0
\end{aligned}
$$

The calculations here are simple from the information provided; essentially, this map is 0 through dimension 12 because $d_{1}\left(h_{i}\right)$ never involves an A-multiple of i_{7} in dimensions below 12 .

So we lift $d_{1}^{*}\left(\gamma_{2}\right)$ to $g_{2} \in \operatorname{Hom}_{A}\left(P_{1}(Z(1,0)), H^{*} Y_{1}\right)$ with

$$
\begin{array}{r}
g_{2}\left(h_{7}\right)=0 \\
g_{2}\left(h_{9}\right)=0 \\
g_{2}\left(h_{10}\right)=0 \\
g_{2}\left(h_{12}\right)=0
\end{array}
$$

We have now identified a representative of the second generator of $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,0), H^{*} Y_{1}\right)$. Unlike the first generator, we have $\left(\phi_{3}+\phi_{4}\right)_{*}\left(g_{2}\right)=0$ in the short exact sequence

$$
\begin{gathered}
0 \rightarrow \operatorname{Hom}_{A}\left(P_{1}(Z(1,0)), \Sigma^{6} H^{*} Z(1,0)\right) \xrightarrow{\iota_{*}} \operatorname{Hom}_{A}\left(P_{1}(Z(1,0)), \Sigma^{6} H^{*} Y_{1}\right) \\
\xrightarrow{\left(\phi_{3}+\phi_{4}\right)_{*}} \operatorname{Hom}_{A}\left(P_{1}(Z(1,0)), \Sigma^{8} H^{*} Y\right) \rightarrow 0
\end{gathered}
$$

because $\Sigma^{8} H^{*} Y$ is nonzero only in dimensions $8,9,10$, and 11 , and $\left(\phi_{3}+\right.$ $\left.\phi_{4}\right)_{*}\left(g_{2}\right)$ is zero in those dimensions. This we can find a map $\tilde{g_{2}} \epsilon$ $\operatorname{Hom}_{A}\left(P_{1}(Z(1,0)), \Sigma^{6} H^{*} Z(1,0)\right)$; however, this map is zero through dimension 11. Since $H_{\star}\left(K_{0} Z(1,0), x_{2}\right)$ is nonzero in dimension 11, $\tilde{g_{2}}$ cannot be a u_{2}^{1}-map.
$\beta_{1}=0, \beta_{2}=1:$

We apply $\operatorname{Ext}_{A}^{n}\left(H^{*} Z(0,1),-\right)$ to the short exact sequence

$$
0 \rightarrow H^{*} Y_{1} \rightarrow \Sigma^{-1} A \rightarrow H^{*} \Sigma^{-1} Y \rightarrow 0
$$

to get the long exact sequence

$$
\begin{gathered}
0 \rightarrow \operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(0,1), H^{*} Y_{1}\right) \rightarrow \operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(0,1), \Sigma^{-1} A\right) \rightarrow \operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(0,1), \Sigma^{-1} H^{*} Y\right) \\
\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,1), H^{*} Y_{1}\right) \rightarrow \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,1), \Sigma^{-1} A\right) \rightarrow \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,1), \Sigma^{-1} H^{*} Y\right) \rightarrow \ldots
\end{gathered}
$$

By lemma 5.1, we have

$$
\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(0,1), \Sigma^{-1} A\right)=\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,1), \Sigma^{-1} A\right)=0
$$

Therefore we have an isomorphism

$$
\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(0,1), \Sigma^{-1} H^{*} Y\right) \cong \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,1), H^{*} Y_{1}\right)
$$

Lemma 5.5.

$$
\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(0,1), \Sigma^{-1} H^{*} Y\right) \cong \operatorname{Hom}_{A}\left(H^{*} Z(0,1), H^{*} \Sigma^{5} Y\right) \cong \mathbb{F}_{2} \oplus \mathbb{F}_{2}
$$

Proof. Note that $\Sigma^{5} H^{*} Y$ is 0 except in dimensions 5, 6, 7, and 8, and so $\operatorname{Hom}_{A}\left(H^{*} Z(0,1), H^{*} \Sigma^{5} Y\right)=0$ except in dimensions $5,6,7,8$. We will show that there are no nonzero maps in dimensions 5 and 6, but there are nonzero maps in dimensions 7 and 8 . Let $g \in \operatorname{Hom}_{A}\left(H^{*} Z(0,1), \Sigma^{5} H^{*} Y\right)$.

Since $\Sigma^{5} H^{*} Y=0$ in dimension 4, we must have that $g\left(\Sigma^{-1}\left(\mathrm{Sq}^{4}\right)=0\right.$. Therefore $g\left(\Sigma^{-1} \mathrm{Sq}^{5}\right)=0$ (see the diagram in Section 2.3).

Then we must also have

$$
\left.\left.\begin{array}{rl}
0 & =\mathrm{Sq}^{4}\left(g\left(\Sigma^{-1} \mathrm{Sq}^{4}\right)\right) \\
& =g\left(\Sigma^{-1} \mathrm{Sq}^{4} \mathrm{Sq}^{4}\right) \\
& =g\left(\Sigma ^ { - 1 } \left(\mathrm{Sq}^{6} \mathrm{Sq}^{2}+\mathrm{Sq}^{7} \mathrm{Sq}\right.\right.
\end{array}{ }^{1}\right)\right)
$$

So we have $g\left(\Sigma^{-1} \mathrm{Sq}^{6} \mathrm{Sq}^{2}\right)=g\left(\Sigma^{-1} \mathrm{Sq}^{7} \mathrm{Sq}^{1}\right)$. But we also have

$$
\begin{aligned}
0 & =\mathrm{Sq}^{3} \mathrm{Sq}^{1}\left(g\left(\Sigma^{-1} \mathrm{Sq}^{4}\right)\right) \\
& =g\left(\Sigma^{-1} \mathrm{Sq}^{3} \mathrm{Sq}^{1} \mathrm{Sq}^{4}\right) \\
& =g\left(\Sigma^{-1} \mathrm{Sq}^{7} \mathrm{Sq}^{1}\right)
\end{aligned}
$$

Thus we have $0=g\left(\Sigma^{-1} \mathrm{Sq}^{6} \mathrm{Sq}^{2}\right)=g\left(\Sigma^{-1} \mathrm{Sq}^{7} \mathrm{Sq}^{1}\right)$.
So we have

$$
\begin{aligned}
& 0=g\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2}\right) \\
&=g\left(\mathrm { Sq } ^ { 2 } \left(\mathrm{Sq}^{4} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}\right.\right. \\
& \\
&)) \\
&=\mathrm{Sq}^{2} g\left(\mathrm{Sq}^{4} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}\right)
\end{aligned}
$$

But $g\left(\mathrm{Sq}^{4} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}\right)=\epsilon \alpha_{0}$ and $\mathrm{Sq}^{2} \epsilon \alpha_{0}=\epsilon \alpha_{2}$, so $\epsilon=0$.
So we have that $g\left(\Sigma^{-1} \mathrm{Sq}^{4}\right)=0$ and $g\left(\Sigma^{-1}\left(\mathrm{Sq}^{4} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}\right)=0\right.$. Then

$$
g\left(\Sigma^{-1} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)=\epsilon_{1}\left(\Sigma^{5} \alpha_{1}\right) \quad \text { and } \quad g\left(\Sigma^{-1} \mathrm{Sq}^{8}\right)=\epsilon_{2}\left(\Sigma^{5} \alpha_{2}\right)
$$

for $\epsilon_{1}, \epsilon_{2} \in \mathbb{F}_{2}$. Define two maps $f_{1}, f_{2} \in \operatorname{Hom}_{A}\left(H^{*} Z(0,1), \Sigma^{5} H^{*} Y\right)$ by setting $\epsilon_{1}=$ $1, \epsilon_{2}=0$ for f_{1}, and $\epsilon_{1}=0, \epsilon_{2}=1$ for f_{2}. More explicitly, we have

$$
\left.\begin{array}{rl}
f_{1}\left(\Sigma^{-1} \mathrm{Sq}^{4} S \mathrm{q}^{2} \mathrm{Sq}\right. \\
\\
1
\end{array}\right)=\Sigma^{5} \alpha_{1}, ~ \begin{aligned}
f_{1}\left(\Sigma^{-1} \mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right) & =\Sigma^{6} \alpha_{3} \\
f_{1}(\eta) & =0 \text { for all other elements } \eta \in H^{*} \mathrm{Z}(0,1)
\end{aligned}
$$

and

$$
\begin{aligned}
f_{2}\left(\Sigma^{-1} \mathrm{Sq}^{8}\right) & =\Sigma^{5} \alpha_{2} \\
f_{2}(\eta) & =0 \text { for all other elements } \eta \in H^{*} Z(0,1)
\end{aligned}
$$

These two elements are a basis of $\operatorname{Hom}_{A}\left(H^{*} Z(0,1), \Sigma^{5} H^{*} Y\right)$ over A, so

$$
\operatorname{Hom}_{A}\left(H^{*} Z(0,1), \Sigma^{5} H^{*} Y\right)=\mathbb{F}_{2} \oplus \mathbb{F}_{2}
$$

Thus we have

$$
\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(0,1), \Sigma^{-1} H^{*} Y\right) \cong \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,1), H^{*} Y_{1}\right) \cong \mathbb{F}_{2} \oplus \mathbb{F}_{2}
$$

We identified two maps $f_{1}, f_{2} \in \operatorname{Hom}_{A}\left(H^{*} Z(0,1), \Sigma^{5} H^{*} Y\right)$. Starting with f_{1}, we calculate its image under δ_{0}. In order to do so, we examine the following diagram:

```
    Hom
```



```
0)
```

where the horizontal maps are coming from the sequence

$$
0 \rightarrow H^{*} Y_{1} \xrightarrow{i} \Sigma^{-1} A \xrightarrow{\pi} H^{*} \Sigma^{-1} Y \rightarrow 0
$$

Starting with $f_{1} \in \operatorname{Hom}_{A}\left(H^{*} Z(0,1), \Sigma^{5} H^{*} Y\right)$, we calculate it d_{0}^{*} as an element of $\operatorname{Hom}_{A}\left(P_{0}(Z(0,1)), \Sigma^{5} H^{*} Y\right)$. The map $d_{0}^{*}\left(f_{1}\right)=\left(f_{1} \circ d_{0}\right)$ is given on the generators
of $P_{0}(Z(0,1))$ in dimensions 12 and below by:

$$
\begin{aligned}
& \left(f_{1} \circ d_{0}\right)\left(i_{3}\right)=0 \\
& \left(f_{1} \circ d_{0}\right)\left(i_{5}\right)=0 \\
& \left(f_{1} \circ d_{0}\right)\left(i_{6}\right)=\Sigma^{5} \alpha_{1} \\
& \left(f_{1} \circ d_{0}\right)\left(i_{7}\right)=0
\end{aligned}
$$

Now we need to lift $d_{0}^{*}\left(f_{1}\right)$ to a map in $\gamma_{1} \in \operatorname{Hom}_{A}\left(P_{1}(Z(0,1)), \Sigma^{5} A\right)$. We choose γ_{1} to be given by $\gamma_{1}\left(i_{6}\right)=\Sigma^{5} \mathrm{Sq}^{1}$ and $\gamma_{1}\left(i_{k}\right)=0$ for $k \neq 6, k \leq 12$.

Next, we apply d_{1}^{*} to get a map $d_{1}^{*}\left(\gamma_{1}\right) \in \operatorname{Hom}_{A}\left(P_{1}(Z(0,1)), \Sigma^{5} A\right)$. The map $d_{1}^{*}\left(\gamma_{1}\right)=\left(\gamma_{1} \circ d_{1}\right)$ is given on the generators of $P_{1}(Z(0,1))$ by:

$$
\begin{aligned}
\left(\gamma_{1} \circ d_{1}\right)\left(h_{7}\right) & =0 \\
\left(\gamma_{1} \circ d_{1}\right)\left(h_{9}\right) & =\Sigma^{5} \mathrm{Sq}^{3} \mathrm{Sq}^{1} \\
\left(\gamma_{1} \circ d_{1}\right)\left(h_{10}\right) & =\Sigma^{5} \mathrm{Sq}^{4} \mathrm{Sq}^{1} \\
\left(\gamma_{1} \circ d_{1}\right)\left(h_{12}\right) & =\Sigma^{5} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}
\end{aligned}
$$

Last, we must lift $d_{1}^{*}\left(\gamma_{1}\right)$ to $\operatorname{Hom}_{A}\left(P_{1}(Z(0,1)), \Sigma^{6} H^{*} Y_{1}\right)$. We use that $H^{*} Y_{1} \subseteq \Sigma^{-1} A$ and that this is an isomorphism in dimensions where $d_{1}^{*}\left(\gamma_{1}\right) \neq 0$. Call this lift g_{1}; on the generators of $P_{1}(Z(0,0))$ through dimension $12, g_{1}$ is given by the same
formula as $d_{1}^{*}\left(\gamma_{1}\right)$. Explicitly, we have:

$$
\begin{aligned}
& g_{1}\left(h_{7}\right)=0 \\
& g_{1}\left(h_{9}\right)=\Sigma^{5} \mathrm{Sq}^{3} \mathrm{Sq}^{1} \\
& g_{1}\left(h_{10}\right)=\Sigma^{5} \mathrm{Sq}^{4} \mathrm{Sq}^{1} \\
& g_{1}\left(h_{12}\right)=\Sigma^{5} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}
\end{aligned}
$$

It is evident that g_{1} is a lift of $d_{1}^{*}\left(\gamma_{1}\right)$ since $H^{*} Y_{1}=\Sigma^{-1} K_{0}(Y)$ is a submodule of $\Sigma^{-1} A$.

We have identified a representative of one of the two generators of $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,1), H^{*} Y_{1}\right)$. We will show that it does not pull back to a generator of $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,1), H^{*} Z(0,1)\right)$ by examining the short exact sequence

$$
\begin{gathered}
0 \rightarrow \operatorname{Hom}_{A}\left(P_{1}(Z(0,1)), \Sigma^{6} H^{*} Z(0,1)\right) \xrightarrow{\stackrel{\iota}{l}} \operatorname{Hom}_{A}\left(P_{1}(Z(0,1)), \Sigma^{6} H^{*} Y_{1}\right) \\
\xrightarrow{\left(\phi_{3}+\phi_{6}\right)_{*}} \operatorname{Hom}_{A}\left(P_{1}(Z(0,1)), \Sigma^{8} H^{*} Y\right) \rightarrow 0
\end{gathered}
$$

We see that $\left(\phi_{3}+\phi_{6}\right)_{*}\left(g_{1}\right)=\left(\phi_{3}+\phi_{6}\right) \circ g_{1}$ is given by

$$
\begin{aligned}
\left(\left(\phi_{3}+\phi_{6}\right) \circ g_{1}\right)\left(h_{7}\right) & =0 \\
\left(\left(\phi_{3}+\phi_{6}\right) \circ g_{1}\right)\left(h_{9}\right) & =\Sigma^{8} \alpha_{1} \\
\left(\left(\phi_{3}+\phi_{6}\right) \circ g_{1}\right)\left(h_{10}\right) & =\Sigma^{8} \alpha_{2} \\
\left(\left(\phi_{3}+\phi_{6}\right) \circ g_{1}\right)\left(h_{12}\right) & =0
\end{aligned}
$$

Thus $g_{1} \notin \operatorname{ker}\left(\left(\phi_{3}+\phi_{4}+\phi_{6}\right)_{*}\right)=\operatorname{im}\left(\iota_{*}\right)$. Since $\operatorname{Hom}_{A}\left(P_{0}(Z(0,1)), \Sigma^{8} H^{*} Y\right)=$ 0 , we know that g_{1} is not a boundary. On the level of Ext groups, this
shows that the element $\left[g_{1}\right] \in \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,1), H^{*} Y_{1}\right)$ does not pull back under the inclusion $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,1), H^{*} Z(0,1)\right) \rightarrow \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,1), H^{*} Y_{1}\right)$, so $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,1), H^{*} Z(0,1)\right)$ has at most rank 1 .

We now investigate $g_{2}=\delta_{0}\left(f_{2}\right)$.
We take $f_{2} \in \operatorname{Hom}_{A}\left(H^{*} Z(0,1), \Sigma^{5} H^{*} Y\right)$ and apply d_{0}^{*} to get $d_{0}^{*}\left(f_{2}\right)=f_{2} \circ d_{0} \in$ $\operatorname{Hom}_{A}\left(P_{0}(Z(0,1)), \Sigma^{5} H^{*} Y\right)$. We have

$$
\begin{aligned}
& \left(f_{2} \circ d_{0}\right)\left(i_{3}\right)=0 \\
& \left(f_{2} \circ d_{0}\right)\left(i_{5}\right)=0 \\
& \left(f_{2} \circ d_{0}\right)\left(i_{6}\right)=0 \\
& \left(f_{2} \circ d_{0}\right)\left(i_{7}\right)=\Sigma^{5} \alpha_{2}
\end{aligned}
$$

Now we need to lift $d_{0}^{*}\left(f_{2}\right)$ to a map in $\gamma_{2} \in \operatorname{Hom}_{A}\left(P_{1}(Z(0,1)), \Sigma^{5} A\right)$. We choose γ_{2} so that $\gamma_{1}\left(i_{7}\right)=\Sigma^{5} \mathrm{Sq}^{2}$ and $\gamma_{2}\left(i_{k}\right)=0$ for $k \neq 7, k \leq 12$. Next, we apply d_{1}^{*} to get a map $d_{1}^{*}\left(\gamma_{2}\right) \in \operatorname{Hom}_{A}\left(P_{1}(Z(0,1)), \Sigma^{5} A\right)$. The map $d_{1}^{*}\left(\gamma_{2}\right)=\left(\gamma_{2} \circ d_{1}\right)$ is given on the generators of $P_{1}(Z(0,1))$ by:

$$
\begin{aligned}
\left(\gamma_{2} \circ d_{1}\right)\left(h_{7}\right) & =0 \\
\left(\gamma_{2} \circ d_{1}\right)\left(h_{9}\right) & =0 \\
\left(\gamma_{2} \circ d_{1}\right)\left(h_{10}\right) & =0 \\
\left(\gamma_{2} \circ d_{1}\right)\left(h_{12}\right) & =0
\end{aligned}
$$

The calculations here are simple from the information provided; essentially, this map is 0 through dimension 12 because $d_{1}\left(h_{i}\right)$ never involves an A-multiple of i_{7} in dimensions below 12 .

So we lift $d_{1}^{*}\left(\gamma_{2}\right)$ to $g_{2} \in \operatorname{Hom}_{A}\left(P_{1}(Z(0,1)), H^{*} Y_{1}\right)$ with

$$
\begin{array}{r}
g_{2}\left(h_{7}\right)=0 \\
g_{2}\left(h_{9}\right)=0 \\
g_{2}\left(h_{10}\right)=0 \\
g_{2}\left(h_{12}\right)=0
\end{array}
$$

We have now identified a representative of the second generator of $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(0,1), H^{*} Y_{1}\right)$. Unlike the first generator, we have $\left(\phi_{3}+\phi_{6}\right)_{*}\left(g_{2}\right)=0$ in the short exact sequence

$$
\begin{gathered}
0 \rightarrow \operatorname{Hom}_{A}\left(P_{1}(Z(0,1)), \Sigma^{6} H^{*} Z(1,0)\right) \xrightarrow{\iota_{*}} \operatorname{Hom}_{A}\left(P_{1}(Z(0,1)), \Sigma^{6} H^{*} Y_{1}\right) \\
\xrightarrow{\left(\phi_{3}+\phi_{6}\right)_{*}} \operatorname{Hom}_{A}\left(P_{1}(Z(0,1)), \Sigma^{8} H^{*} Y\right) \rightarrow 0
\end{gathered}
$$

because $\Sigma^{8} H^{*} Y$ is nonzero only in dimensions $8,9,10$, and 11 , and $\left(\phi_{3}+\right.$ $\left.\phi_{6}\right)_{*}\left(g_{2}\right)$ is zero in those dimensions. This we can find a map $\tilde{g_{2}} \epsilon$ $\operatorname{Hom}_{A}\left(P_{1}(Z(0,1)), \Sigma^{6} H^{*} Z(0,1)\right)$; however, this map is zero through dimension 12. Since $H_{*}\left(K_{0} Z(0,1), x_{2}\right)$ is nonzero in dimension $12, \tilde{g_{2}}$ cannot be a u_{2}^{1}-map.
$\beta_{1}=1, \beta_{2}=1$

We apply $\operatorname{Ext}_{A}^{n}\left(H^{*} Z(1,1),-\right)$ to the short exact sequence

$$
0 \rightarrow H^{*} Y_{1} \rightarrow \Sigma^{-1} A \rightarrow H^{*} \Sigma^{-1} Y \rightarrow 0
$$

to get the long exact sequence

$$
\begin{aligned}
& 0 \sim \operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(1,1), H^{*} Y_{1}\right) \rightleftharpoons \operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(1,1), \Sigma^{-1} A\right) \rightarrow \operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(1,1), \Sigma^{-1} H^{*} Y\right) \\
& \longleftrightarrow \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,1), H^{*} Y_{1}\right) \rightarrow \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,1), \Sigma^{-1} A\right) \sim \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,1), \Sigma^{-1} H^{*} Y\right) \rightleftharpoons \cdots
\end{aligned}
$$

By lemma 5.1, we have

$$
\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(1,1), \Sigma^{-1} A\right)=\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,1), \Sigma^{-1} A\right)=0
$$

Therefore we have an isomorphism

$$
\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(1,1), \Sigma^{-1} H^{*} Y\right) \cong \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,1), H^{*} Y_{1}\right)
$$

Lemma 5.6.

$$
\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(1,1), \Sigma^{-1} H^{*} Y\right) \cong \operatorname{Hom}_{A}\left(H^{*} Z(1,1), H^{*} \Sigma^{5} Y\right) \cong \mathbb{F}_{2} \oplus \mathbb{F}_{2}
$$

Proof. Note that $\Sigma^{5} H^{*} Y$ is 0 except in dimensions 5, 6, 7, and 8, and so $\operatorname{Hom}_{A}\left(H^{*} Z(0,0), H^{*} \Sigma^{5} Y\right)=0$ except in dimensions $5,6,7,8$. We will show that there are no nonzero maps in dimensions 5 and 6, but there are nonzero maps in dimensions 7 and 8 . Let $g \in \operatorname{Hom}_{A}\left(H^{*} Z(1,1), \Sigma^{5} H^{*} Y\right)$.

Since $\Sigma^{5} H^{*} Y=0$ in dimension 4, we must have that $g\left(\Sigma^{-1}\left(\mathrm{Sq}^{4}\right)=0\right.$. Therefore $g\left(\Sigma^{-1} \mathrm{Sq}^{5}\right)=0$ (see the diagram in Section 2.3).

Then we must also have

$$
\begin{aligned}
0 & =\mathrm{Sq}^{4}\left(g\left(\Sigma^{-1}\left(\mathrm{Sq}^{4}+\mathrm{Sq}^{3} \mathrm{Sq}^{1}\right)\right)\right. \\
& =g\left(\Sigma^{-1} \mathrm{Sq}^{4}\left(\mathrm{Sq}^{4}+\mathrm{Sq}^{3} \mathrm{Sq}^{1}\right)\right) \\
& \left.=g\left(\Sigma^{-1} \mathrm{Sq}^{6} \mathrm{Sq}^{2}+\mathrm{Sq}^{7} \mathrm{Sq}^{1}\right)\right)
\end{aligned}
$$

Thus we have $g\left(\Sigma^{-1} \mathrm{Sq}^{6} \mathrm{Sq}^{2}\right)=g\left(\Sigma^{-1} \mathrm{Sq}^{7} \mathrm{Sq}^{1}\right)$.
But we know that

$$
\begin{aligned}
0 & =\mathrm{Sq}^{3} \mathrm{Sq}^{1}\left(g\left(\Sigma^{-1}\left(\mathrm{Sq}^{4}\right)\right)\right. \\
& =g\left(\Sigma^{-1} \mathrm{Sq}^{3} \mathrm{Sq}^{1} \mathrm{Sq}^{4}\right) \\
& =g\left(\Sigma^{-1} \mathrm{Sq}^{7} \mathrm{Sq}^{1}\right)
\end{aligned}
$$

Therefore $g\left(\Sigma^{-1} \mathrm{Sq}^{6} \mathrm{Sq}^{2}\right)=g\left(\Sigma^{-1} \mathrm{Sq}^{7} \mathrm{Sq}^{1}\right)=0$. Therefore, $\operatorname{Hom}_{A}\left(H^{*} Z(1,1), H^{*} \Sigma^{5} Y\right)=0$ in dimension 6.

For dimensions 7 and 8, we have we have

$$
g\left(\Sigma^{-1} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right)=\epsilon_{1}\left(\Sigma^{5} \alpha_{1}\right) \quad \text { and } \quad g\left(\Sigma^{-1} \mathrm{Sq}^{8}\right)=\epsilon_{2}\left(\Sigma^{5} \alpha_{2}\right)
$$

for $\epsilon_{1}, \epsilon_{2} \in \mathbb{F}_{2}$. Define two maps $f_{1}, f_{2} \in \operatorname{Hom}_{A}\left(H^{*} Z(1,1), \Sigma^{5} H^{*} Y\right)$ by setting $\epsilon_{1}=$ $1, \epsilon_{2}=0$ for f_{1}, and $\epsilon_{1}=0, \epsilon_{2}=1$ for f_{2}. More explicitly, we have

$$
\begin{aligned}
f_{1}\left(\Sigma^{-1} \mathrm{Sq}^{4} \mathrm{Sq}^{2} S \mathrm{q}^{1}\right) & =\Sigma^{5} \alpha_{1} \\
f_{1}\left(\Sigma^{-1} \mathrm{Sq}^{6} \mathrm{Sq}^{2} S \mathrm{q}^{1}\right) & =\Sigma^{5} \alpha_{3} \\
f_{1}(\eta) & =0 \text { for all other elements } \eta \in H^{*} Z(0,0)
\end{aligned}
$$

and

$$
\begin{aligned}
f_{2}\left(\Sigma^{-1} S q^{8}\right) & =\Sigma^{5} \alpha_{2} \\
f_{2}(\eta) & =0 \text { for all other elements } \eta \in H^{*} Z(1,1)
\end{aligned}
$$

Both of these elements are module maps in that they do not contradict any relations involving elements in lower dimensions. Therefore, these two elements are a basis of $\operatorname{Hom}_{A}\left(H^{*} Z(1,1), \Sigma^{5} H^{*} Y\right)$ over A, so

$$
\operatorname{Hom}_{A}\left(H^{*} Z(1,1), \Sigma^{5} H^{*} Y\right)=\mathbb{F}_{2} \oplus \mathbb{F}_{2}
$$

Thus we have

$$
\operatorname{Ext}_{A}^{0,6}\left(H^{*} Z(1,1), \Sigma^{-1} H^{*} Y\right) \cong \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,1), H^{*} Y_{1}\right) \cong \mathbb{F}_{2} \oplus \mathbb{F}_{2}
$$

We identified two maps $f_{1}, f_{2} \in \operatorname{Hom}_{A}\left(H^{*} Z(1,1), \Sigma^{5} H^{*} Y\right)$. Starting with f_{1}, we calculate its image under δ_{0}. In order to do so, we examine the following diagram:

where the horizontal maps are coming from the sequence

$$
0 \rightarrow H^{*} Y_{1} \xrightarrow{i} \Sigma^{-1} A \xrightarrow{\pi} H^{*} \Sigma^{-1} Y \rightarrow 0
$$

Starting with $f_{1} \in \operatorname{Hom}_{A}\left(H^{*} Z(1,1), \Sigma^{5} H^{*} Y\right)$, we calculate it d_{0}^{*} as an element of $\operatorname{Hom}_{A}\left(P_{0}(Z(1,1)), \Sigma^{5} H^{*} Y\right)$. The map $d_{0}^{*}\left(f_{1}\right)=\left(f_{1} \circ d_{0}\right)$ is given on the generators of $P_{0}(Z(1,1))$ in dimensions 12 and below by:

$$
\begin{aligned}
& \left(f_{1} \circ d_{0}\right)\left(i_{3}\right)=0 \\
& \left(f_{1} \circ d_{0}\right)\left(i_{5}\right)=0 \\
& \left(f_{1} \circ d_{0}\right)\left(i_{6}\right)=\Sigma^{5} \alpha_{1} \\
& \left(f_{1} \circ d_{0}\right)\left(i_{7}\right)=0
\end{aligned}
$$

Now we need to lift $d_{0}^{*}\left(f_{1}\right)$ to a map in $\gamma_{1} \in \operatorname{Hom}_{A}\left(P_{1}(Z(1,1)), \Sigma^{5} A\right)$. We choose γ_{1} to be given by $\gamma_{1}\left(i_{6}\right)=\Sigma^{5} \mathrm{Sq}^{1}$ and $\gamma_{1}\left(i_{k}\right)=0$ for $k \neq 6, k \leq 12$.
Next, we apply d_{1}^{*} to get a map $d_{1}^{*}\left(\gamma_{1}\right) \in \operatorname{Hom}_{A}\left(P_{1}(Z(1,1)), \Sigma^{5} A\right)$. The map $d_{1}^{*}\left(\gamma_{1}\right)=\left(\gamma_{1} \circ d_{1}\right)$ is given on the generators of $P_{1}(Z(1,1))$ by:

$$
\begin{aligned}
\left(\gamma_{1} \circ d_{1}\right)\left(h_{7}\right) & =0 \\
\left(\gamma_{1} \circ d_{1}\right)\left(h_{9}\right) & =\Sigma^{5} \mathrm{Sq}^{3} \mathrm{Sq}^{1} \\
\left(\gamma_{1} \circ d_{1}\right)\left(h_{10}\right) & =\Sigma^{5} \mathrm{Sq}^{4} \mathrm{Sq}^{1} \\
\left(\gamma_{1} \circ d_{1}\right)\left(h_{12}\right) & =\Sigma^{5} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}
\end{aligned}
$$

Last, we must lift $d_{1}^{*}\left(\gamma_{1}\right)$ to $\operatorname{Hom}_{A}\left(P_{1}(Z(1,1)), \Sigma^{6} H^{*} Y_{1}\right)$. We use that $H^{*} Y_{1} \subseteq \Sigma^{-1} A$ and that this is an isomorphism in dimensions where $d_{1}^{*}\left(\gamma_{1}\right) \neq 0$. Call this lift g_{1}; on the generators of $P_{1}(Z(1,1))$ through dimension $12, g_{1}$ is given by the same
formula as $d_{1}^{*}\left(\gamma_{1}\right)$. Explicitly, we have:

$$
\begin{aligned}
& g_{1}\left(h_{7}\right)=0 \\
& g_{1}\left(h_{9}\right)=\Sigma^{5} \mathrm{Sq}^{3} \mathrm{Sq}^{1} \\
& g_{1}\left(h_{10}\right)=\Sigma^{5} \mathrm{Sq}^{4} \mathrm{Sq}^{1} \\
& g_{1}\left(h_{12}\right)=\Sigma^{5} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \mathrm{Sq}^{1}
\end{aligned}
$$

It is evident that g_{1} is a lift of $d_{1}^{*}\left(\gamma_{1}\right)$ since $H^{*} Y_{1}=\Sigma^{-1} K_{0}(Y)$ is a submodule of $\Sigma^{-1} A$.

We have identified a representative of one of the two generators of $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,1), H^{*} Y_{1}\right)$. We will show that it does not pull back to a generator of $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,1), H^{*} Z(1,1)\right)$ by examining the short exact sequence

$$
\begin{gathered}
0 \rightarrow \operatorname{Hom}_{A}\left(P_{1}(Z(1,1)), \Sigma^{6} H^{*} Z(1,0)\right) \xrightarrow{\iota_{*}} \operatorname{Hom}_{A}\left(P_{1}(Z(1,1)), \Sigma^{6} H^{*} Y_{1}\right) \\
\xrightarrow{\left(\phi_{3}+\phi_{4}+\phi_{6}\right)_{*}} \operatorname{Hom}_{A}\left(P_{1}(Z(1,1)), \Sigma^{8} H^{*} Y\right) \rightarrow 0
\end{gathered}
$$

We see that $\left(\phi_{3}+\phi_{4}\right)_{*}\left(g_{1}\right)=\left(\phi_{3}+\phi_{6}\right) \circ g_{1}$ is given by

$$
\begin{aligned}
\left(\left(\phi_{3}+\phi_{4}+\phi_{6}\right) \circ g_{1}\right)\left(h_{7}\right) & =0 \\
\left(\left(\phi_{3}+\phi_{4}+\phi_{6}\right) \circ g_{1}\right)\left(h_{9}\right) & =\Sigma^{8} \alpha_{1} \\
\left(\left(\phi_{3}+\phi_{4}+\phi_{6}\right) \circ g_{1}\right)\left(h_{10}\right) & =\Sigma^{8} \alpha_{2} \\
\left(\left(\phi_{3}+\phi_{4}+\phi_{6}\right) \circ g_{1}\right)\left(h_{12}\right) & =0
\end{aligned}
$$

Thus $g_{1} \notin \operatorname{ker}\left(\left(\phi_{3}+\phi_{4}+\phi_{6}\right)_{*}\right)=\operatorname{im}\left(\iota_{*}\right)$. Since $\operatorname{Hom}_{A}\left(P_{0}(Z(1,1)), \Sigma^{8} H^{*} Y\right)=$ 0 , we know that g_{1} is not a boundary. On the level of Ext groups, this
shows that the element $\left[g_{1}\right] \in \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,1), H^{*} Y_{1}\right)$ does not pull back under the inclusion $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,1), H^{*} Z(1,1)\right) \rightarrow \operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,1), H^{*} Y_{1}\right)$, so $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,1), H^{*} Z(1,1)\right)$ has at most rank 1 .

We now investigate $g_{2}=\delta_{0}\left(f_{2}\right)$.
We take $f_{2} \in \operatorname{Hom}_{A}\left(H^{*} Z(1,1), \Sigma^{5} H^{*} Y\right)$ and apply d_{0}^{*} to get $d_{0}^{*}\left(f_{2}\right)=f_{2} \circ d_{0} \in$ $\operatorname{Hom}_{A}\left(P_{0}(Z(1,1)), \Sigma^{5} H^{*} Y\right)$. We have

$$
\begin{aligned}
& \left(f_{2} \circ d_{0}\right)\left(i_{3}\right)=0 \\
& \left(f_{2} \circ d_{0}\right)\left(i_{5}\right)=0 \\
& \left(f_{2} \circ d_{0}\right)\left(i_{6}\right)=0 \\
& \left(f_{2} \circ d_{0}\right)\left(i_{7}\right)=\Sigma^{5} \alpha_{2}
\end{aligned}
$$

Now we need to lift $d_{0}^{*}\left(f_{2}\right)$ to a map in $\gamma_{2} \in \operatorname{Hom}_{A}\left(P_{1}(Z(1,1)), \Sigma^{5} A\right)$. We choose γ_{2} so that $\gamma_{1}\left(i_{7}\right)=\Sigma^{5} \mathrm{Sq}^{2}$ and $\gamma_{2}\left(i_{k}\right)=0$ for $k \neq 7, k \leq 12$. Next, we apply d_{1}^{*} to get a map $d_{1}^{*}\left(\gamma_{2}\right) \in \operatorname{Hom}_{A}\left(P_{1}(Z(1,1)), \Sigma^{5} A\right)$. The map $d_{1}^{*}\left(\gamma_{2}\right)=\left(\gamma_{2} \circ d_{1}\right)$ is given on the generators of $P_{1}(Z(1,1))$ by:

$$
\begin{aligned}
\left(\gamma_{2} \circ d_{1}\right)\left(h_{7}\right) & =0 \\
\left(\gamma_{2} \circ d_{1}\right)\left(h_{9}\right) & =0 \\
\left(\gamma_{2} \circ d_{1}\right)\left(h_{10}\right) & =0 \\
\left(\gamma_{2} \circ d_{1}\right)\left(h_{12}\right) & =0
\end{aligned}
$$

The calculations here are simple from the information provided; essentially, this map is 0 through dimension 12 because $d_{1}\left(h_{i}\right)$ never involves an A-multiple of i_{7} in dimensions below 12 .

So we lift $d_{1}^{*}\left(\gamma_{2}\right)$ to $g_{2} \in \operatorname{Hom}_{A}\left(P_{1}(Z(1,1)), H^{*} Y_{1}\right)$ with

$$
\begin{array}{r}
g_{2}\left(h_{7}\right)=0 \\
g_{2}\left(h_{9}\right)=0 \\
g_{2}\left(h_{10}\right)=0 \\
g_{2}\left(h_{12}\right)=0
\end{array}
$$

We have now identified a representative of the second generator of $\operatorname{Ext}_{A}^{1,6}\left(H^{*} Z(1,1), H^{*} Y_{1}\right)$. Unlike the first generator, we have $\left(\phi_{3}+\phi_{4}+\phi_{6}\right) *\left(g_{2}\right)=0$ in the short exact sequence

$$
\begin{gathered}
0 \rightarrow \operatorname{Hom}_{A}\left(P_{1}(Z(1,1)), \Sigma^{6} H^{*} Z(1,0)\right) \xrightarrow{\iota_{*}} \operatorname{Hom}_{A}\left(P_{1}(Z(1,1)), \Sigma^{6} H^{*} Y_{1}\right) \\
\xrightarrow{\left(\phi_{3}+\phi_{4}+\phi_{6}\right)_{*}} \operatorname{Hom}_{A}\left(P_{1}(Z(1,1)), \Sigma^{8} H^{*} Y\right) \rightarrow 0
\end{gathered}
$$

because $\Sigma^{8} H^{*} Y$ is nonzero only in dimensions $8,9,10$, and 11 , and $\left(\phi_{3}+\right.$ $\left.\phi_{4}+\phi_{6}\right)_{*}\left(g_{2}\right)$ is zero in those dimensions. This we can find a map $\tilde{g_{2}} \epsilon$ $\operatorname{Hom}_{A}\left(P_{1}(Z(1,1)), \Sigma^{6} H^{*} Z(1,1)\right)$; however, this map is zero through dimension 11. Since $H_{*}\left(K_{0} Z(1,1), x_{2}\right)$ is nonzero in dimension 11, $\tilde{g_{2}}$ cannot be a u_{2}^{1}-map.

CHAPTER VI

NONEXISTENCE OF U_{2}^{2} ON $Z(0,0)$

6.1. Calculation of $P_{\bullet} H^{*} Z(0,0)$

We ask whether there is an element of $\operatorname{Ext}_{A}^{2,12}\left(H^{*} Z(0,0), H^{*} Z(0,0)\right)$ corresponding to u_{2}^{2}, and so we must identify the elements of this group explicitly. We outline the procedure for doing this here. Throughout, we use Z for $Z(0,0)$ for brevity.

1. Calculate $H^{*} Z$ through dimension 17;
2. Calculate $P . Z$ through dimension 17 for $\bullet=0,1,2$;
3. Examine the long exact sequence

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Ext}_{A}^{0,12}\left(H^{*} Z, H^{*} Z\right) \rightarrow \operatorname{Ext}_{A}^{0,12}\left(H^{*} Z, H^{*} Y_{1}\right) \rightarrow \operatorname{Ext}_{A}^{0,12}\left(H^{*} Z, H^{*} \Sigma^{2} Y\right) \\
& \left.\longleftrightarrow \operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, H^{*} Z\right) \rightarrow \operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, H^{*} Y_{1}\right) \rightarrow \operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, H^{*} \Sigma^{2} Y\right)\right) \\
& \left.\longleftrightarrow \operatorname{Ext}_{A}^{2,12}\left(H^{*} Z, H^{*} Z\right) \rightarrow \operatorname{Ext}_{A}^{2,12}\left(H^{*} Z, H^{*} Y_{1}\right) \rightarrow \operatorname{Ext}_{A}^{2,12}\left(H^{*} Z, H^{*} \Sigma^{2} Y\right)\right) \rightarrow \ldots
\end{aligned}
$$

and use this to compute $\operatorname{Ext}_{A}^{2,12}\left(H^{*} Z, H^{*} Z\right)$.
Once we have representatives for elements of $\operatorname{Ext}_{A}^{2,12}\left(H^{*} Z, H^{*} Z\right)$, which will be given as maps $P_{2}(Z) \rightarrow \Sigma^{12} H^{*} Z$, then we can use Theorem 2.4 from [Rei17] to check whether or not they are u_{2} maps. This will involve calculating $H\left(K_{1}(Z), x_{2}\right)$, which will be similar to the computation of $H\left(K_{0}(Z), x_{2}\right)$. Recall that $H^{*} Z=$ $\operatorname{ker}\left(\phi_{3}\right)$ from Section 2.3., and $K_{i} Z=\operatorname{ker}\left(d_{i}: P_{i} Z \rightarrow P_{i-1} Z\right)$ where $P_{i} Z$ is the $i^{\text {th }}$ stage in a projective resolution of $H^{*} Z . H^{*} Z$ is described in Figures 6.1., 6.2., 6.3., and 6.4.

FIGURE 6.1. $H^{*} Z$ through dimension 17, Part 1

FIGURE 6.2. $H^{*} Z$ through dimension 17, Part 2

FIGURE 6.3. $H^{*} Z$ through dimension 17, Part 3

FIGURE 6.4. $H^{*} Z$ through dimension 17, Part 4
The above images can be glued together along the matching entries in dimension 13, with the final image beginning in dimension 14. Though some elements may appear to be new generators, they are in fact connected to lower-dimensional elements via $\mathrm{Sq}^{2}, \mathrm{Sq}^{4}$, or Sq^{8}. The only generators in this range occur in dimensions 3, 5,6, 7, and 15.

6.1.1. Calculation of $P_{\bullet}(Z)$ through dimension 17

We observe that there are generators of $H^{*} Z$ in dimensions $3,5,6,7$, and 15 . So we choose

$$
P_{0}(Z)=\Sigma^{3} A \oplus \Sigma^{5} A \oplus \Sigma^{6} A \oplus \Sigma^{7} A \oplus \Sigma^{15} A \oplus \bigoplus_{l_{k}>17} \Sigma^{l_{k}} A
$$

Let i_{k} stand for the generator of $\Sigma^{k} A$ in $P_{0}(Z)$. In order to calculate $P_{1}(Z)$, we must find $K_{0}(Z)=\operatorname{ker}\left(d_{0}: P_{0}(Z) \rightarrow H^{*} Z\right)$. In Table 6.1., we calculate d_{0} in each dimension. In the "input" column, the elements are expressed as linear combinations of Serre-Cartan basis elements acting on the generators of $P_{0}(Z)$ so as to give a basis for $P_{0} \mathrm{Z}$ in the appropriate dimension. For example, $(3,1) i_{3}$ means $\mathrm{Sq}^{3} \mathrm{Sq}^{1} i_{3}$. In the "output" column, we express elements of $H^{*} \mathrm{Z}$ as SerreCartan basis elements in $\Sigma^{-1} A$, though the desuspension is omitted for brevity.

TABLE 6.1. Calculation of $d_{0}: P_{0} Z \rightarrow H^{*} Z$ through dimension 17

dimension	input	output
3	i_{3}	(4)
4	$(1) i_{3}$	(5)
5	$(2) i_{3}$	$(5,1)+(6)$
	i_{5}	$(4,2)$
6	$(7) i_{3}$	(7)
	$(2,1) i_{3}$	$(6,1)$
	$(1) i_{5}$	$(5,2)$
	i_{6}	$(4,2,1)$
7	$(3,1) i_{3}$	
	$(4) i_{3}$	
		95

TABLE 6.1. (continued)

dimension	input	output
	$\begin{gathered} (2) i_{5} \\ (1) i_{6} \\ i_{7} \end{gathered}$	$\begin{gathered} (6,2) \\ (5,2,1) \\ 8 \end{gathered}$
8	(5) i_{3} $(4,1) i_{3}$ (3) i_{5} $(2,1) i_{5}$ (2) i_{6} (1) i_{7}	$(7,2)$ $\begin{gathered} (7,2)+(8,1)+(9) \\ (7,2) \\ (6,3) \\ (6,2,1) \end{gathered}$
9	$(6) i_{3}$ $(5,1) i_{3}$ $(4,2) i_{3}$ $(4) i_{5}$ $(3,1) i_{5}$ $(3) i_{6}$ $(2,1) i_{6}$ $(2) i_{7}$	$\begin{gathered} (7,3) \\ (9,1) \\ (7,2,1)+(8,2)+(9,1)+(10) \\ (6,3,1)+(7,3) \\ (7,3) \\ (7,2,1) \\ (6,3,1) \\ (9,1)+(10) \end{gathered}$
10	$\begin{gathered} (7) i_{3} \\ (6,1) i_{3} \\ (5,2) i_{3} \\ (4,2,1) i_{3} \\ (5) i_{5} \end{gathered}$	zero $\begin{gathered} (8,3)+(9,2) \\ (9,2)+(11) \\ (8,2,1)+(10,1) \\ (7,3,1) \end{gathered}$

TABLE 6.1. (continued)

dimension	input	output
	$\begin{gathered} (4,1) i_{5} \\ (4) i_{6} \\ (3,1) i_{6} \\ (3) i_{7} \\ (2,1) i_{7} \end{gathered}$	$\begin{gathered} (7,3,1)+(8,3)+(9,2) \\ (7,3,1) \\ (7,3,1) \\ (11) \\ (10,1) \end{gathered}$
11	$\begin{gathered} (8) i_{3} \\ (7,1) i_{3} \\ (6,2) i_{3} \\ (5,2,1) i_{3} \\ (6) i_{5} \\ (5,1) i_{5} \\ (4,2) i_{5} \\ (5) i_{6} \\ (4,1) i_{6} \\ (4) i_{7} \\ (3,1) i_{7} \end{gathered}$	$\begin{gathered} (8,4) \\ (9,3) \\ (8,3,1)+(9,2,1)+(9,3)+(10,2)+(11,1) \\ (9,2,1)+(11,1) \\ \text { zero } \\ (9,3) \\ (8,3,1)+(10,2) \\ \text { zero } \\ (8,3,1)+(9,2,1) \\ (10,2)+(11,1)+(12) \\ (11,1) \end{gathered}$
12	$\begin{gathered} (9) i_{3} \\ (8,1) i_{3} \\ (7,2) i_{3} \\ (6,3) i_{3} \\ (6,2,1) i_{3} \\ (7) i_{5} \end{gathered}$	$\begin{gathered} (9,4) \\ (9,4) \\ (9,3,1)+(11,2) \\ (10,3)+(12,1)+(13) \\ (9,3,1)+(10,2,1) \\ \text { zero } \end{gathered}$

TABLE 6.1. (continued)

dimension	input	output
	$\begin{gathered} (6,1) i_{5} \\ (5,2) i_{5} \\ (4,2,1) i_{5} \\ (6) i_{6} \\ (5,1) i_{6} \\ (4,2) i_{6} \\ (5) i_{7} \\ (4,1) i_{7} \end{gathered}$	$\begin{gathered} (9,3,1) \\ (9,3,1)+(11,2) \\ (8,4,1)+(9,4)+(10,3) \\ \text { zero } \\ (9,3,1) \\ (10,2,1) \\ (11,2)+(13) \\ (11,2)+(12,1) \end{gathered}$
13	$\begin{gathered} (10) i_{3} \\ (9,1) i_{3} \\ (8,2) i_{3} \\ (7,3) i_{3} \\ (7,2,1) i_{3} \\ (6,3,1) i_{3} \\ (8) i_{5} \\ (7,1) i_{5} \\ (6,2) i_{5} \\ (5,2,1) i_{5} \\ (7) i_{6} \\ (6,1) i_{6} \\ (5,2) i_{6} \\ (4,2,1) i_{6} \end{gathered}$	$\begin{gathered} (10,4) \\ \text { zero } \\ (9,4,1)+(10,4)+(11,3) \\ (11,3)+(13,1) \\ (11,2,1) \\ (10,3,1)+(13,1) \\ (8,4,2) \\ \text { zero } \\ (10,3,1)+(11,3) \\ (9,4,1)+(11,3) \\ \text { zero } \\ \text { zero } \\ (11,2,1) \\ (9,4,1)+(10,3,1) \end{gathered}$

TABLE 6.1. (continued)

dimension	input	output
14	$(6) i_{7}$	$(11,3)+(13,1)+(14)$
	$(5,1) i_{7}$	$(13,1)$
	$(4,2) i_{7}$	$(11,2,1)+(12,2)$
	$(11) i_{3}$	$(11,4)$
	$(10,1) i_{3}$	$(11,4)$
	$(9,2) i_{3}$	$(11,4)+(12,3)+(13,2)$
	$(8,3) i_{3}$	$(10,4,1)+(11,3,1)$
	$(8,2,1) i_{3}$	$(9,4,2)$
	$(7,3,1) i_{3}$	$(9,4,2)$
	$(9) i_{5}$	$(11,3,1)$
	$(8,1) i_{5}$	$(12,3)+(13,2)$
	$(7,2) i_{5}$	$(10,4,1)+(10,5)$
	$(6,3) i_{5}$	$(8,4,2,1)$
	$(6,2,1) i_{5}$	zero
	$(8) i_{6}$	$(11,3,1)$
$(7,1) i_{6}$	$(11,3,1)$	
	$(6,2) i_{6}$	(15)
	$(5,2,1) i_{6}$	$(12,3)+(13,2)+(14,1)$
	$(5,2) i_{7}$	$(13,2)$
		$(12,1) i_{7}$

TABLE 6.1. (continued)

dimension	input	output
15	(12) i_{3}	$(12,4)$
	$(11,1) i_{3}$	$(11,5)$
	$(10,2) i_{3}$	$(10,5,1)+(11,5)$
	$(9,3) i_{3}$	$(13,3)$
	$(9,2,1) i_{3}$	$(11,4,1)$
	$(8,4) i_{3}$	$(10,4,2)+(11,4,1)+(12,3,1)+(13,2,1)$
	$(8,3,1) i_{3}$	$(11,4,1)+(12,3,1)+(13,2,1)$
	(10) i_{5}	$(10,4,2)$
	$(9,1) i_{5}$	zero
	$(8,2) i_{5}$	$(10,4,2)$
	$(7,3) i_{5}$	$(13,3)$
	$(7,2,1) i_{5}$	$(11,4,1)+(11,5)$
	$(6,3,1) i_{5}$	$(10,5,1)+(13,3)$
	(9) i_{6}	$(9,4,2,1)$
	$(8,1) i_{6}$	$(9,4,2,1)$
	$(7,2) i_{6}$	zero
	$(6,3) i_{6}$	$(12,3,1)+(13,2,1)$
	$(6,2,1) i_{6}$	$(10,5,1)$
	(8) i_{7}	$(12,4)+(14,2)+(15,1)$
	$(7,1) i_{7}$	$(13,3)+(15,1)$
	$(6,2) i_{7}$	$(12,3,1)+(13,2,1)+(13,3)+(14,2)$
	$(5,2,1) i_{7}$	$(13,2,1)$

TABLE 6.1. (continued)

dimension	input	output
	i_{15}	(16)
16	(13) i_{3}	$(13,4)$
	$(12,1) i_{3}$	$(12,5)$
	$(11,2) i_{3}$	$(11,5,1)$
	$(10,3) i_{3}$	$(12,5)+(13,4)$
	$(10,2,1) i_{3}$	$(11,5,1)$
	$(9,4) i_{3}$	$(11,4,2)+(13,3,1)$
	$(9,3,1) i_{3}$	$(13,3,1)$
	$(8,4,1) i_{3}$	$(11,4,2)+(12,4,1)+(13,3,1)+$
		$(13,4)+(14,2,1)+(15,2)+(16,1)+(17)$
	(11) i_{5}	$(11,4,2)$
	$(10,1) i_{5}$	$(10,5,2)$
	$(9,2) i_{5}$	$(11,4,2)$
	$(8,3) i_{5}$	$(11,4,2)+(13,3,1)$
	$(8,2,1) i_{5}$	$(10,5,2)+(11,5,1)$
	$(7,3,1) i_{5}$	$(11,5,1)$
	(10) i_{6}	$(10,4,2,1)$
	$(9,1) i_{6}$	zero
	$(8,2) i_{6}$	$(10,4,2,1)$
	$(7,3) i_{6}$	$(13,3,1)$
	$(7,2,1) i_{6}$	$(11,5,1)$
	$(6,3,1) i_{6}$	$(13,3,1)$

TABLE 6.1. (continued)

dimension	input	output
	$\begin{gathered} (9) i_{7} \\ (8,1) i_{7} \\ (7,2) i_{7} \\ (6,3) i_{7} \\ (6,2,1) i_{7} \\ (1) i_{15} \\ \hline \end{gathered}$	$\begin{gathered} (13,4)+(15,2) \\ (13,4)+(15,2)+(16,1)+(17) \\ (13,3,1)+(15,2) \\ (14,3) \\ (13,3,1)+(14,2,1) \end{gathered}$
17	$\begin{gathered} (14) i_{3} \\ (13,1) i_{3} \\ (12,2) i_{3} \\ (11,3) i_{3} \\ (11,2,1) i_{3} \\ (10,4) i_{3} \\ (10,3,1) i_{3} \\ (9,4,1) i_{3} \\ (8,4,2) i_{3} \\ (12) i_{5} \\ (11,1) i_{5} \\ (10,2) i_{5} \\ (9,3) i_{5} \\ (9,2,1) i_{5} \\ (8,4) i_{5} \end{gathered}$	$\begin{gathered} (14,4) \\ (13,5) \\ (12,5,1)+(12,6) \\ (13,5) \\ \text { zero } \\ (11,5,2)+(12,5,1)+(13,4,1) \\ (12,5,1)+(13,4,1) \\ (13,4,1)+(15,2,1)+(17,1) \\ (14,4,2,1)+(12,4,2)+(13,4,1)+(14,3,1)+ \\ (15,2,1)+(17,1)+(16,2)+(18) \\ (11,5,2) \\ (11,5,2) \\ \text { zero } \\ (11,5,2) \\ (10,5,2,1)+(11,5,2)+ \end{gathered}$

TABLE 6.1. (continued)

dimension	input	output
		$(12,5,1)+(13,4,1)+(13,5)$
	$(8,3,1) i_{5}$	$(11,5,2)+(12,5,1)+(13,4,1)+(13,5)$
	$(11) i_{6}$	$(11,4,2,1)$
	$(10,1) i_{6}$	$(10,5,2,1)$
	$(9,2) i_{6}$	$(11,4,2,1)$
	$(8,3) i_{6}$	$(11,4,2,1)$
	$(10,5,2,1)$	
	$(7,3,1) i_{6}$	zero
	$(10) i_{7}$	$(13,5)+(14,4)+(15,3)$
	$(9,1) i_{7}$	$(17,1)$
	$(8,2) i_{7}$	$(13,4,1)+(15,2,1)+(17,1)+(14,4)+$
		$(15,3)+(16,2)+(18)$
	$(7,2,1) i_{7}$	$(15,2,1)$
	$(6,3,1) i_{7}$	$(14,3,1)$
	$(2) i_{15}$	$(17,1)+(18)$

Now that we know $d_{0}: P_{0}(Z) \rightarrow H^{*} Z$ explicitly, we can write down elements of $K_{0}(Z)=\operatorname{ker} d_{0}$. Observe that $K_{0}(Z)$ is zero below dimension 7. Table 6.2. lists the generators of $K_{0}(Z)$ in dimensions 7 through 17 , and its Steenrod algebra structure is given by the Figures 6.5., 6.6., 6.7..

TABLE 6.2. Generators of $K_{0} Z$ through dimension 17

dimension	generators of $K_{0}(Z)$
7	$[(3,1)+(4)] i_{3}+(2) i_{5}$
8	$(5) i_{3}+(3) i_{5}$
9	$\begin{gathered} (6) i_{3}+(3,1) i_{5} \\ {[(3,1)+(4)] i_{5}+(2,1) i_{6}} \end{gathered}$
10	(7) i_{3} $\begin{gathered} (6,1) i_{3}+[(4,1)+(5)] i_{5} \\ (5) i_{5}+(3,1) i_{6} \\ {[(3,1)+(4)] i_{6}} \end{gathered}$
11	$\begin{gathered} (7,1) i_{3}+(5,1) i_{5} \\ {[(5,2,1)+(6,2)+(7,1)] i_{3}+(4,2) i_{5}} \end{gathered}$ (6) i_{5} (5) i_{6}
12	$\begin{gathered} {[(8,1)+(9)] i_{3}} \\ (7,2) i_{3}+(5,2) i_{5} \end{gathered}$ (7) i_{5} $(6,1) i_{5}+(5,1) i_{6}$ (6) i_{6} $(6,2,1) i_{3}+[(4,2)+(5,1)] i_{6}$
13	$\begin{gathered} {[(8,2)+(10)] i_{3}+(5,2,1) i_{5}} \\ (9,1) i_{3} \\ {[(6,3,1)+(7,3)+(9,1)] i_{3}+(6,2) i_{5}} \\ {[(5,2,1)+(6,2)+(7,1)] i_{5}+(4,2,1) i_{6}} \end{gathered}$

TABLE 6.2. (continued)

dimension	generators of $K_{0}(Z)$
	$\begin{gathered} (7,1) i_{5} \\ (7) i_{6} \\ (6,1) i_{6} \\ (7,2,1) i_{3}+(6,2) i_{6} \end{gathered}$
14	$\begin{gathered} {[(9,2)+(11)] i_{3}} \\ {[(8,2,1)+(10,1)] i_{3}+[(6,2,1)+(7,2)+(8,1)+(9)] i_{5}} \\ (7,3,1) i_{3}+(7,2) i_{5} \\ {[(8,3)+(9,2)] i_{3}+(6,3) i_{5}} \\ (7,2) i_{5}+(5,2,1) i_{6} \\ {[(8,1)+(9)] i_{5}} \\ (7,1) i_{6} \\ (7,3,1) i_{3}+(6,2) i_{6} \end{gathered}$
15	$\begin{gathered} {[(8,3,1)+(8,4)] i_{3}+(8,2) i_{5}} \\ {[(9,3)+(10,2)+(11,1)] i_{3}+(6,3,1) i_{5}} \\ {[(9,2,1)+(11,1)] i_{3}+[(7,2,1)+(9,1)] i_{5}} \\ (9,3) i_{3}+(7,3) i_{5} \\ {[(6,3,1)+(7,3)+(9,1)] i_{5}+(6,2,1) i_{6}} \\ {[(8,2)+(10)] i_{5}} \\ (9,1) i_{5} \\ {[(8,1)+(9)] i_{6}} \\ (7,2) i_{6} \\ {[(8,3,1)+(9,2,1)] i_{3}+(6,3) i_{6}} \end{gathered}$

TABLE 6.2. (continued)

dimension	generators of $K_{0}(Z)$
	$(12) i_{3}+(6,3) i_{6}+[(6,2)+(7,1)+(8)] i_{7}$
16	$\begin{gathered} {[(9,3,1)+(9,4)] i_{3}+(9,2) i_{5}} \\ (11,2,1) i_{3}+(7,3,1) i_{5} \\ {[(10,3)+(12,1)+(13)] i_{3}} \\ {[(9,3,1)+(10,2,1)] i_{3}+[(7,3,1)+(8,3)+(9,2)] i_{5}} \\ (9,3,1)+[(8,3)+(9,2)] i_{5} \\ (7,3,1) i_{5}+(7,2,1) i_{6} \\ {[(8,3)+(9,2)] i_{5}+(6,3,1) i_{6}} \\ {[(9,2)+(11)] i_{5}} \\ {[(8,2,1)+(10,1)] i_{5}+[(7,2,1)+(9,1)] i_{6}} \\ {[(8,2)+(10)] i_{6}} \\ (9,1) i_{6} \\ (9,3,1) i_{3}+(7,3) i_{6} \\ (13) i_{3}+(7,3) i_{6}+[(7,2)+(9)] i_{7} \end{gathered}$
17	$\begin{gathered} {[(10,3,1)+(10,4)] i_{3}+[(9,3)+(10,2)] i_{5}} \\ {[(11,3)+(13,1)] i_{3}} \\ (11,2,1) i_{3}+(9,3) i_{5} \\ {[(10,3,1)+(13,1)] i_{3}+[(8,3,1)+(9,2,1)] i_{5}} \\ (9,3) i_{5} \\ (9,3) i_{5}+(7,3,1) i_{6} \\ {[(9,3)+(10,2)+(11,1)] i_{5}} \\ {[(9,2,1)+(11,1)] i_{5}} \end{gathered}$

TABLE 6.2. (continued)

dimension	generators of $K_{0}(Z)$
	$[(8,3,1)+(8,4)] i_{5}+(8,2,1) i_{6}$
$[(9,2)+(11)] i_{6}$	
	$[(8,2,1)+(10,1)] i_{6}$
$[(8,3)+(9,2)] i_{6}$	
	$[(13,1)+(14)] i_{3}+[(7,3)+(10)] i_{7}$
	$(8,4,2) i_{3}+(12) i_{5}+(9,2) i_{6}+[(6,3,1)+(7,3)+(8,2)] i_{7}$

FIGURE 6.5. $K_{0} Z$ through dimension 17, Part 1

FIGURE 6.6. $K_{0} Z$ through dimension 17, Part 2

FIGURE 6.7. $K_{0} Z$ through dimension 17, Part 3

Thus, we choose

$$
P_{1}(Z)=\Sigma^{7} A \oplus \Sigma^{9} A \oplus \Sigma^{10} \oplus \Sigma^{12} A \oplus \Sigma^{15} A \oplus \Sigma^{17} A
$$

Let h_{k} denote the generator of $\Sigma^{k} A$ in $P_{1}(Z)$. The map $d_{1}: P_{1}(Z) \rightarrow P_{0}(Z)$ by

$$
\begin{aligned}
& d_{1}\left(h_{7}\right)=\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) i_{3}+\mathrm{Sq}^{2} i_{5} \\
& d_{1}\left(h_{9}\right)=\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) i_{5}+\mathrm{Sq}^{2} \mathrm{Sq}^{1} i_{6} \\
& d_{1}\left(h_{10}\right)=\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) i_{6} \\
& d_{1}\left(h_{12}\right)=\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1} i_{3}+\left(\mathrm{Sq}^{4} \mathrm{Sq}^{2}+\mathrm{Sq}^{5} \mathrm{Sq}^{1}\right) i_{6} \\
& d_{1}\left(h_{15}\right)=\mathrm{Sq}^{12} i_{3}+\mathrm{Sq}^{6} \mathrm{Sq}^{3} i_{6}+\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2}+\mathrm{Sq}^{7} \mathrm{Sq}^{1}+\mathrm{Sq}^{8}\right) i_{7} \\
& d_{1}\left(h_{17}\right)=\mathrm{Sq}^{8} \mathrm{Sq}^{4} \mathrm{Sq}^{2} i_{3}+\mathrm{Sq}^{12} i_{5}+\mathrm{Sq}^{9} \mathrm{Sq}^{2} i_{6}+\left(\mathrm{Sq}^{6} \mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{7} \mathrm{Sq}^{3}+\mathrm{Sq}^{8} \mathrm{Sq}^{2}\right) i_{7}
\end{aligned}
$$

In order to find $P_{2}(Z)$, we must calculate $K_{1}(Z)=\operatorname{ker}\left(d_{1}: P_{1}(Z) \rightarrow P_{0}(Z)\right)$. We calculate d_{1} in a manner similar to our calculation of d_{0} above.

TABLE 6.3. Calculation of $d_{1}: P_{1} Z \rightarrow P_{0} Z$ through dimension 17

dimension	input	output
7	h_{7}	$[(3,1)+(4)] i_{3}+(2) i_{5}$
8	$(1) h_{7}$	$(5) i_{3}+(3) i_{5}$
9	$(2) h_{7}$	$(6) i_{3}+(3,1) i_{5}$
	h_{9}	$[(3,1)+(4)] i_{5}+(2,1) i_{5}$
10	$(3) h_{7}$	$(7) i_{3}$
	$(2,1) h_{7}$	$(6,1) i_{3}+[(4,1)+(5)] i_{5}$

TABLE 6.3. (continued)

dimension	input	output
	$\begin{gathered} (1) h_{9} \\ h_{10} \end{gathered}$	$\begin{aligned} & (5) i_{5}+(3,1) i_{6} \\ & {[(3,1)+(4)] i_{6}} \end{aligned}$
11	(4) h_{7} $(3,1) h_{7}$ (2) h_{9} (1) h_{10}	$\begin{gathered} {[(5,2,1)+(6,2)+(7,1)] i_{3}+(4,2) i_{5}} \\ (7,1) i_{3}+(5,1) i_{5} \\ (6) i_{5} \\ (5) i_{6} \\ \hline \end{gathered}$
12	(5) h_{7} $(4,1) h_{7}$ (3) h_{9} $(2,1) h_{9}$ (2) h_{10} h_{12}	$\begin{gathered} (7,2) i_{3}+(5,2) i_{5} \\ {[(7,2)+(8,1)+(9)] i_{3}+(5,2) i_{5}} \end{gathered}$ (7) i_{5} $(6,1) i_{5}+(5,1) i_{6}$ (6) i_{6} $(6,2,1) i_{3}+[(4,2)+(5,1)] i_{6}$
13	(6) h_{7} $(5,1) h_{7}$ $(4,2) h_{7}$ (4) h_{9} $(3,1) h_{9}$ (3) h_{10} $(2,1) h_{10}$ (1) h_{12}	$\begin{gathered} {[(6,3,1)+(7,3)] i_{3}+(6,2) i_{5}} \\ (9,1) i_{3} \\ {[(8,2)+(10)] i_{3}+(5,2,1) i_{5}} \\ {[(5,2,1)+(6,2)+(7,1)] i_{5}+(4,2,1) i_{6}} \\ (7,1) i_{5} \\ (7) i_{6} \\ (6,1) i_{6} \\ (7,2,1) i_{3}+(5,2) i_{6} \end{gathered}$
14	(7) h_{7} $(6,1) h_{7}$	$\begin{gathered} (7,3,1) i_{3}+(7,2) i_{5} \\ {[(8,3)+(9,2)] i_{3}+(6,3) i_{5}} \end{gathered}$

TABLE 6.3. (continued)

dimension	input	output
	$\begin{gathered} (5,2) h_{7} \\ (4,2,1) h_{7} \\ (5) h_{9} \\ (4,1) h_{9} \\ (4) h_{10} \\ (3,1) h_{10} \\ (2) h_{12} \end{gathered}$	$\begin{gathered} {[(9,2)+(11)] i_{3}} \\ {[(8,2,1)+(10,1)] i_{3}+[(6,2,1)+(7,2)+(8,1)+(9)] i_{5}} \\ (7,2) i_{5}+(5,2,1) i_{6} \\ {[(7,2)+(8,1)+(9)] i_{5}+(5,2,1) i_{6}} \\ {[(5,2,1)+(6,2)+(7,1)] i_{6}} \\ (7,1) i_{6} \\ (7,3,1) i_{3}+(6,2) i_{6} \end{gathered}$
15	$\begin{gathered} (8) h_{7} \\ (7,1) h_{7} \\ (6,2) h_{7} \\ (5,2,1) h_{7} \\ (6) h_{9} \\ (5,1) h_{9} \\ (4,2) h_{9} \\ (5) h_{10} \\ (4,1) h_{10} \\ (3) h_{12} \\ (2,1) h_{12} \\ h_{15} \end{gathered}$	$\begin{gathered} {[(8,3,1)+(8,4)] i_{3}+(8,2) i_{5}} \\ (9,3) i_{3}+(7,3) i_{5} \\ {[(9,3)+(10,2)+(11,1)] i_{3}+(6,3,1) i_{5}} \\ {[(9,2,1)+(11,1)] i_{3}+[(7,2,1)+(9,1)] i_{5}} \\ {[(6,3,1)+(7,3)] i_{5}+(6,2,1) i_{6}} \\ (9,1) i_{6} \\ {[(8,2)+(10)] i_{5}} \\ (7,2) i_{6} \\ {[(7,2)+(8,1)+(9)] i_{6}} \\ (7,2) i_{6} \\ {[(8,3,1)+(9,2,1)] i_{3}+(6,3) i_{6}} \\ (12) i_{3}+(6,3) i_{6}+[(6,2)+(7,1)+(8)] i_{7} \end{gathered}$
16	$\begin{gathered} (9) h_{7} \\ (8,1) h_{7} \\ (7,2) h_{7} \end{gathered}$	$\begin{gathered} {[(9,3,1)+(9,4)] i_{3}+(9,2) i_{5}} \\ (9,4) i_{3}+(8,3) i_{5} \\ (11,2) i_{3}+(7,3,1) i_{5} \end{gathered}$

TABLE 6.3. (continued)

dimension	input	output
	$\begin{gathered} (6,3) h_{7} \\ (6,2,1) h_{7} \\ (7) h_{9} \\ (6,1) h_{9} \\ (5,2) h_{9} \\ (4,2,1) h_{9} \\ (6) h_{10} \\ (5,1) h_{10} \\ (4,2) h_{10} \\ (4) h_{12} \\ (3,1) h_{12} \\ (1) h_{15} \end{gathered}$	$\begin{gathered} {[(10,3)+(12,1)+(13)] i_{3}} \\ {[(9,3,1)+(10,2,1)] i_{3}+[(7,3,1)+(8,3)+(9,2)] i_{5}} \\ (7,3,1) i_{5}+(7,2,1) i_{6} \\ {[(8,3)+(9,2)] i_{5}+(6,3,1) i_{6}} \\ {[(9,2)+(11)] i_{5}} \\ {[(8,2,1)+(10,1)] i_{5}+[(7,2,1)+(9,1)] i_{6}} \\ {[(6,3,1)+(7,3)] i_{6}} \\ (9,1) i_{6} \\ {[(8,2)+(10)] i_{6}} \\ (10,2,1) i_{3}+[(6,3,1)+(7,2,1)+(7,3)+(9,1)] i_{6} \\ (9,3,1) i_{3}+(7,3) i_{6} \\ (13) i_{3}+(7,3) i_{6}+[(7,2)+(9)] i_{7} \end{gathered}$
17	$\begin{gathered} (10) h_{7} \\ (9,1) h_{7} \\ (8,2) h_{7} \\ (7,3) h_{7} \\ (7,2,1) h_{7} \\ (8) h_{9} \\ (7,1) h_{9} \\ (6,2) h_{9} \\ (5,2,1) h_{9} \\ (7) h_{10} \end{gathered}$	$\begin{gathered} {[(10,3,1)+(10,4)] i_{3}+(10,2) i_{5}} \\ (9,3) i_{5} \\ {[(10,4)+(11,3)] i_{3}+(8,3,1) i_{5}} \\ {[(11,3)+(13,1)] i_{3}} \\ (11,2,1) i_{3}+(9,3) i_{5} \\ {[(8,3,1)+(8,4)] i_{5}+(2,1) i_{6}} \\ (9,3) i_{5}+(7,3,1) i_{6} \\ {[(9,3)+(10,2)+(11,1)] i_{5}} \\ {[(9,2,1)+(11,1)] i_{5}} \\ (7,3,1) i_{6} \end{gathered}$

TABLE 6.3. (continued)

dimension	input	output
	$(6,1) h_{10}$	$[(8,3)+(9,2)] i_{6}$
	$(5,2) h_{10}$	$[(9,2)+(11)] i_{6}$
	$(4,2,1) h_{10}$	$[(8,2,1)+(10,1)] i_{6}$
	$(5) h_{12}$	$(11,2,1) i_{3}+(7,3,1) i_{6}$
	$(4,1) h_{12}$	$(11,2,1) i_{3}+[(7,3,1)+(8,3)+(9,2)] i_{6}$
	$(2) h_{15}$	$[(13,1)+(14)] i_{3}+[(7,3)+(10)] i_{7}$
	h_{17}	$(8,4,2) i_{3}+(12) i_{5}+(9,2) i_{6}+[(6,3,1)+(7,3)+(8,2)] i_{7}$

Now we calculate $K_{1}(Z)$. The generators of $K_{1}(Z)$, and their Steenrod algebra structure, is given below.

FIGURE 6.8. $K_{1} Z$ through dimension 17

From this, we see that we can choose

$$
P_{2}(Z)=\Sigma^{14} Z \oplus \Sigma^{16} A \oplus \Sigma^{17} A \oplus \bigoplus_{l_{k}>17} \Sigma^{l_{k}} A
$$

Let j_{k} be the generator of $\Sigma^{k} A$ in $P_{2}(Z)$. Then $d_{2}: P_{2}(Z) \rightarrow P_{1}(Z)$ is given by

$$
\begin{aligned}
d_{2}\left(j_{14}\right) & =\mathrm{Sq}^{7} h_{7}+\mathrm{Sq}^{5} h_{9}+\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) h_{10}+\mathrm{Sq}^{2} h_{12} \\
d_{2}\left(j_{16}\right) & =\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1} h_{7}+\left(\mathrm{Sq}^{6} \mathrm{Sq}^{1}+\mathrm{Sq}^{7}\right) h_{9}+\mathrm{Sq}^{5} \mathrm{Sq}^{1} h_{10}+\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) h_{12} \\
d_{2}\left(j_{17}\right) & =\left(\mathrm{Sq}^{6} \mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{7} \mathrm{Sq}^{3}+\mathrm{Sq}^{8} \mathrm{Sq}^{2}+\mathrm{Sq}^{9} \mathrm{Sq}^{1}+\mathrm{Sq}^{10}\right) h_{7} \\
& =+\left(\mathrm{Sq}^{5} \mathrm{Sq}^{2} \mathrm{Sq}^{1}+\mathrm{Sq}^{6} \mathrm{Sq}^{2}\right) h_{9}
\end{aligned}
$$

This calculation will be sufficient to show that there is no u_{2}^{2}-map on Z.

6.2. Long Exact Sequences

From the short exact sequence

$$
0 \rightarrow H^{*} Y_{1} \rightarrow \Sigma^{-1} A \rightarrow H^{*} \Sigma^{-1} Y
$$

we get the long exact sequence

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Ext}_{A}^{0,12}\left(H^{*} Z, H^{*} Y_{1}\right) \rightarrow \operatorname{Ext}_{A}^{0,12}\left(H^{*} Z, \Sigma^{-1} A\right) \rightarrow \operatorname{Ext}_{A}^{0,12}\left(H^{*} Z, H^{*} \Sigma^{-1} Y\right) \\
& \left.\longleftrightarrow \operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, H^{*} Y_{1}\right) \rightarrow \operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, \Sigma^{-1} A\right) \rightarrow \operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, \Sigma^{-1} H^{*} Y\right)\right) \rightarrow \ldots
\end{aligned}
$$

Lemma 6.1. $\operatorname{Ext}_{A}^{0,12}\left(H^{*} Z, \Sigma^{-1} A\right)=\operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, \Sigma^{-1} A\right)=0$

Proof. Note that A is self-injective, and apply $\operatorname{Hom}_{A}\left(-, \Sigma^{11} A\right)$ the short exact sequence

$$
0 \rightarrow \Sigma^{-1} K_{0}(Y) \rightarrow \Sigma^{-1} A \rightarrow H^{*} \Sigma^{-1} Y \rightarrow 0
$$

to get

$$
0 \leftarrow \operatorname{Hom}_{A}\left(\Sigma^{-1} K_{0}(Y), \Sigma^{11} A\right) \leftarrow \operatorname{Hom}_{A}\left(\Sigma^{-1} A, \Sigma^{11} A\right) \leftarrow \operatorname{Hom}_{A}\left(H^{*} \Sigma^{-1} Y, \Sigma^{11} A\right) \leftarrow 0
$$

The rightmost group is zero for dimensional reasons, so we have

$$
\operatorname{Hom}_{A}\left(\Sigma^{-1} K_{0}(Y), \Sigma^{11} A\right) \cong \operatorname{Hom}_{A}\left(\Sigma^{-1} A, \Sigma^{11} A\right)
$$

But there are no degree $0 A$-module maps $\Sigma^{-1} A \rightarrow \Sigma^{11} A$, so both of these groups are also zero.

Now, apply $\operatorname{Hom}_{A}\left(-, \Sigma^{11} A\right)$ to

$$
0 \rightarrow H^{*} Z \rightarrow H^{*} Y_{1} \rightarrow H^{*} \Sigma^{2} Y \rightarrow 0
$$

to get

$$
0 \leftarrow \operatorname{Hom}_{A}\left(H^{*} Z, \Sigma^{11} A\right) \leftarrow \operatorname{Hom}_{A}\left(H^{*} Y_{1}, \Sigma^{11} A\right) \leftarrow \operatorname{Hom}_{A}\left(H^{*} \Sigma^{2} Y, \Sigma^{11} A\right) \leftarrow 0
$$

Recall that $H^{*} Y_{1}=\Sigma^{-1} K_{0}(Y)$, and so the middle group is 0 since $K_{0} Y$ has no generators in dimension 10. Thus $\operatorname{Hom}_{A}\left(H^{*} Z, \Sigma^{11} A\right)=\operatorname{Ext}_{A}^{0,12}\left(H^{*} Z, \Sigma^{-1} A\right)=0$.
$\operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, \Sigma^{-1} A\right)=0$ since A is self-injective.
and so we have

$$
\operatorname{Ext}_{A}^{0,12}\left(H^{*} Z, H^{*} \Sigma^{-1} Y\right) \cong \operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, H^{*} Y_{1}\right)
$$

The lefthand side of this is $\operatorname{Ext}_{A}^{0,12}\left(H^{*} Z, H^{*} \Sigma^{-1} Y\right) \cong \operatorname{Hom}_{A}\left(H^{*} Z, \Sigma^{11} H^{*} Y\right)$. We have that $\operatorname{Hom}_{A}\left(H^{*} Z, \Sigma^{11} H^{*} Y\right)=0$ because $H^{*} Z$ has no generators in dimensions $11,12,13,14$, whereas $\Sigma^{11} H^{*} Y$ is nonzero only in those dimensions. So we have that

$$
\operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, H^{*} Y_{1}\right)=0
$$

Thus, from the short exact sequence

$$
0 \rightarrow H^{*} Z \rightarrow H^{*} Y_{1} \rightarrow \Sigma^{2} H^{*} Y \rightarrow 0
$$

we have the long exact sequence

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Ext}_{A}^{0,12}\left(H^{*} Z, H^{*} Z\right) \rightarrow \operatorname{Ext}_{A}^{0,12}\left(H^{*} Z, H^{*} Y_{1}\right) \rightarrow \operatorname{Ext}_{A}^{0,12}\left(H^{*} Z, H^{*} \Sigma^{2} Y\right) \\
& \longleftrightarrow \operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, H^{*} Z\right) \rightarrow \operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, H^{*} Y_{1}\right) \rightarrow \operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, H^{*} \Sigma^{2} Y\right) \\
& <\operatorname{Ext}_{A}^{2,12}\left(H^{*} Z, H^{*} Z\right) \rightarrow \operatorname{Ext}_{A}^{2,12}\left(H^{*} Z, H^{*} Y_{1}\right) \rightarrow \operatorname{Ext}_{A}^{2,12}\left(H^{*} Z, H^{*} \Sigma^{2} Y\right) \rightarrow \ldots
\end{aligned}
$$

which simplifies to

Next, we examine

$$
\operatorname{Ext}_{A}^{2,12}\left(H^{*} Z, H^{*} Y_{1}\right)
$$

In order to examine this, we again look at the long exact sequence

$$
\begin{aligned}
\ldots & \rightarrow \operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, H^{*} Y_{1}\right) \rightarrow \operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, \Sigma^{-1} A\right) \rightarrow \operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, H^{*} \Sigma^{-1} Y\right) \\
& \delta_{1} \operatorname{Ext}_{A}^{2,12}\left(H^{*} Z, H^{*} Y_{1}\right) \rightarrow \operatorname{Ext}_{A}^{2,12}\left(H^{*} Z, \Sigma^{-1} A\right) \rightarrow \operatorname{Ext}_{A}^{2,12}\left(H^{*} Z, \Sigma^{-1} H^{*} Y\right) \rightarrow \ldots
\end{aligned}
$$

Again, since $\operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, \Sigma^{-1} A\right)=\operatorname{Ext}_{A}^{2,12}\left(H^{*} Z, \Sigma^{-1} A\right)=0$, we get

$$
\operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, H^{*} \Sigma^{-1} Y\right) \cong \operatorname{Ext}_{A}^{2,12}\left(H^{*} Z, H^{*} Y_{1}\right)
$$

The lefthand side is a subquotient of

$$
\operatorname{Hom}_{A}\left(P_{1}(Z), \Sigma^{11} H^{*} Y\right)
$$

There is only one possible map here, which is f_{12} given by

$$
f_{12}\left(h_{k}\right)= \begin{cases}\Sigma^{11} \alpha_{1} & \text { if } k=12 \\ 0 & \text { if } k \neq 12\end{cases}
$$

We claim this is not an element of Ext. Examining the long exact sequence

$$
\begin{gathered}
0 \rightarrow \operatorname{Hom}^{12}\left(P_{0}(Z), H^{*} \Sigma^{-1} Y\right) \rightarrow \operatorname{Hom}^{12}\left(P_{1}(Z), H^{*} \Sigma^{-1} Y\right) \\
\rightarrow \operatorname{Hom}^{12}\left(P_{2}(Z), H^{*} \Sigma^{-1} Y\right) \rightarrow \ldots
\end{gathered}
$$

and particularly the map

$$
\operatorname{Hom}_{A}^{12}\left(P_{1}(Z), H^{*} \Sigma^{-1} Y\right) \xrightarrow{d_{2}^{*}} \operatorname{Hom}_{A}^{12}\left(P_{2}(Z), H^{*} \Sigma^{-1} Y\right)
$$

we see that $d_{2}^{*}\left(f_{12}\right)=f_{12} \circ d_{2}$ is given on the generators of $P_{2}(Z)$ by

$$
\begin{aligned}
\left(f_{12} \circ d_{2}\right)\left(h_{14}\right) & =f_{12}\left(\mathrm{Sq}^{7} h_{7}+\mathrm{Sq}^{5} h_{9}+\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) h_{10}+\mathrm{Sq}^{2} h_{12}\right) \\
& =\mathrm{Sq}^{2} \Sigma^{11} \alpha_{1} \\
& =\Sigma^{11} \alpha_{3}
\end{aligned}
$$

So $f_{12} \notin \operatorname{ker} d_{2}^{*}$, and therefore does not represent a nonzero element of $\operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, H^{*} \Sigma^{-1} Y\right)$. Thus, $\operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, H^{*} \Sigma^{-1} Y\right)=0$ and so $\operatorname{Ext}_{A}^{2,12}\left(H^{*} Z, H^{*} Y_{1}\right)=0$.

Returning to the long exact sequence associated to

$$
0 \rightarrow H^{*} Z \rightarrow H^{*} Y_{1} \rightarrow \Sigma^{2} H^{*} Y \rightarrow 0
$$

we have an isomorphism

$$
\operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, H^{*} \Sigma^{2} Y\right) \cong \operatorname{Ext}_{A}^{2,12}\left(H^{*} Z, H^{*} Z\right)
$$

which is given by the connecting homomorphism.
In order to compute the connecting homomorphism, we identify representatives for elements of $\operatorname{Ext}_{A}^{1,12}\left(H^{*} Z, H^{*} \Sigma^{2} Y\right)$. Such representatives are given as elements of $\operatorname{Hom}_{A}\left(P_{1}(Z), \Sigma^{14} H^{*} Y\right)$. Since $\Sigma^{14} H^{*} Y$ is nonzero only in dimensions $14,15,16$, 17 , a basis for this vector space is given by f_{1} and f_{2}, where

$$
\begin{aligned}
& f_{1}\left(h_{k}\right)= \begin{cases}\Sigma^{14} \alpha_{1} & \text { if } k=15 \\
0 & \text { if } k \neq 15\end{cases} \\
& f_{2}\left(h_{k}\right)= \begin{cases}\Sigma^{14} \alpha_{3} & \text { if } k=17 \\
0 & \text { if } k \neq 17\end{cases}
\end{aligned}
$$

We compute the connecting homomorphisms by looking at the diagram

$$
\begin{aligned}
0 \rightarrow \operatorname{Hom}_{A}\left(P_{1}(Z), \Sigma^{12} H^{*} Z\right) \xrightarrow{i_{*}} \operatorname{Hom}_{A}\left(P_{1}(Z), \Sigma^{12} H^{*} Y_{1}\right) \xrightarrow{\left(\phi_{3}\right)_{*}} \operatorname{Hom}_{A}\left(P_{1}(Z), \Sigma^{14} H^{*} Y\right) \rightarrow 0 \\
0 \rightarrow \operatorname{Hom}_{A}\left(P_{2}(Z), \Sigma^{12} H^{*} Z\right) \xrightarrow{d_{i}^{*}} \downarrow \operatorname{Hom}_{A}\left(P_{2}(Z), \Sigma^{12} H^{*} Y_{1}\right) \xrightarrow{\left(\phi_{3}\right)_{*}^{*}} \operatorname{Hom}_{A}\left(P_{2}(Z), \Sigma^{14} H^{*} Y\right) \rightarrow 0
\end{aligned}
$$

where the horizontal maps are coming from the sequence

$$
0 \rightarrow H^{*} Z \rightarrow H^{*} Y_{1} \rightarrow \Sigma^{2} H^{*} Y \rightarrow 0
$$

We begin with $f_{1} \in \operatorname{Hom}_{A}\left(P_{1}(Z), \Sigma^{14} H^{*} Y\right)$. This pulls back to $\gamma_{1} \in$ $\operatorname{Hom}_{A}\left(P_{1}(Z), \Sigma^{12} H^{*} Y_{1}\right)$ so that $\gamma_{1}\left(h_{15}\right)=\Sigma^{11} \mathrm{Sq}^{3} \mathrm{Sq}^{1}$ and $\gamma_{1}\left(h_{k}\right)=0$ for $k \neq 15$. Composing with d_{2}^{*}, we see that $d_{2}^{*}\left(\gamma_{1}\right)=\gamma_{1} \circ d_{2}$ is given by

$$
\begin{aligned}
\left(\gamma_{1} \circ d_{2}\right)\left(h_{14}\right) & =\gamma_{1}\left(\mathrm{Sq}^{7} h_{7}+\mathrm{Sq}^{5} h_{9}+\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) h_{10}+\mathrm{Sq}^{2} h_{12}\right) \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
\left(\gamma_{1} \circ d_{2}\right)\left(h_{16}\right) & =\gamma_{1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1} h_{7}+\left(\mathrm{Sq}^{6} \mathrm{Sq}^{1}+\mathrm{Sq}^{7}\right) h_{9}\right. \\
& \left.=+\mathrm{Sq}^{5} \mathrm{Sq}^{1} h_{10}+\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) h_{12}\right) \\
& =0 \\
\left(\gamma_{1} \circ d_{2}\right)\left(h_{17}\right) & =\gamma_{1}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{7} \mathrm{Sq}^{3}+\mathrm{Sq}^{8} \mathrm{Sq}^{2}+\mathrm{Sq}^{9} \mathrm{Sq}^{1}+\mathrm{Sq}^{10} h_{7}\right. \\
& =+\left(\mathrm{Sq}^{5} \mathrm{Sq}^{2} \mathrm{Sq}^{1}+\mathrm{Sq}^{6} \mathrm{Sq}^{2}\right) h_{9} \\
& =0
\end{aligned}
$$

So, the map $d_{2}^{*}\left(\gamma_{1}\right) \in \operatorname{Hom}_{A}\left(P_{2}(Z), \Sigma^{12} H^{*} Y_{1}\right)$ is zero through dimensions 17. Therefore, the pullback in $\operatorname{Hom}_{A}\left(P_{2}(Z), \Sigma^{12} H^{*} Z\right)$ is also zero through dimension 17.

Next, we examine $f_{2} \in \operatorname{Hom}_{A}\left(P_{1}(Z), \Sigma^{14} H^{*} Y\right)$. This pulls back to $\gamma_{2} \in$ $\operatorname{Hom}_{A}\left(P_{1}(Z), \Sigma^{12} H^{*} Y_{1}\right)$ so that $\gamma_{2}\left(h_{17}\right)=\Sigma^{11} \mathrm{Sq}^{5} \mathrm{Sq}^{1}$ and $\gamma_{1}\left(h_{k}\right)=0$ for $k \neq 17$. Composing with d_{2}^{*}, we see that $d_{2}^{*}\left(\gamma_{2}\right)=\gamma_{2} \circ d_{2}$ is given by

$$
\begin{aligned}
\left(\gamma_{2} \circ d_{2}\right)\left(h_{14}\right) & =\gamma_{2}\left(\mathrm{Sq}^{7} h_{7}+\mathrm{Sq}^{5} h_{9}+\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) h_{10}+\mathrm{Sq}^{2} h_{12}\right) \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
\left(\gamma_{2} \circ d_{2}\right)\left(h_{16}\right. & =\gamma_{2}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{2} \mathrm{Sq}^{1} h_{7}+\left(\mathrm{Sq}^{6} \mathrm{Sq}^{1}+\mathrm{Sq}^{7}\right) h_{9}\right. \\
& \left.=+\mathrm{Sq}^{5} \mathrm{Sq}^{1} h_{10}+\left(\mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{4}\right) h_{12}\right) \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
\left(\gamma_{2} \circ d_{2}\right)\left(h_{17}\right) & =\gamma_{2}\left(\mathrm{Sq}^{6} \mathrm{Sq}^{3} \mathrm{Sq}^{1}+\mathrm{Sq}^{7} \mathrm{Sq}^{3}+\mathrm{Sq}^{8} \mathrm{Sq}^{2}+\mathrm{Sq}^{9} \mathrm{Sq}^{1}+\mathrm{Sq}^{10} h_{7}\right. \\
& =+\left(\mathrm{Sq}^{5} \mathrm{Sq}^{2} S q^{1}+\mathrm{Sq}^{6} \mathrm{Sq}^{2}\right) h_{9} \\
& =0
\end{aligned}
$$

So, the map $d_{2}^{*}\left(\gamma_{2}\right) \in \operatorname{Hom}_{A}\left(P_{2}(Z), \Sigma^{12} H^{*} Y_{1}\right)$ is zero through dimensions 17. Therefore, the pullback in $\operatorname{Hom}_{A}\left(P_{2}(Z), \Sigma^{12} H^{*} Z\right)$ is also zero through dimension 17.

We claim that this is sufficient to show that there is no u_{2}^{2} on Z. We saw before that $H^{*} Z$ is nonzero only in dimensions $5,6,7,8,9,10,11 . H_{*}\left(K_{0}(Z), x_{2}\right)$ is nonzero only in dimensions $11,12,13,14,15,16,17$. Using the short exact sequence

$$
0 \rightarrow K_{1}(Z) \rightarrow P_{1}(Z) \rightarrow K_{0}(Z) \rightarrow 0
$$

we see that $H_{*}\left(K_{1}(Z), x_{2}\right)$ in nonzero only in dimensions $17,18,19,20,21,22,23$. By [Rei17] an element $[f] \in \operatorname{Ext}_{A}^{2,12}\left(H^{*} Z, H^{*} Z\right)$ that is a u_{2}^{2} map must induce an isomorphism $f: K_{0}(Z) \rightarrow \Sigma^{12} H^{*} Z$. But since the images of $f_{1}, f_{2} \in \operatorname{Hom}_{A}\left(P_{2}(Z), \Sigma^{12} H^{*} Z\right)$ are zero through dimension 17 , they cannot be isomorphisms in dimension 17. Therefore, they cannot represent u_{2}^{2}-maps.

REFERENCES CITED

[BE16] Prasit Bhattacharya and Philip Egger. A class of 2-local finite spectra with admit a v_{2}^{1}-self-map. Preprint available at https://arxiv.org/abs/1608.06250, 2016.
[BHHM08] Mark Behrens, Michael Hill, Michael J. Hopkins, and Mark
Mahowald. On the existence of a v_{2}^{32}-self map on $m(1,4)$ at the prime 2.
Homology, Homotopy and Applications, 10(3):45-84, 2008.
[DHS88] Ethan S. Devinatz, Michael J. Hopkins, and Jeffrey H. Smith. Nilpotence and stable homotopy theory i. Annals of Mathematics, 128(2):207-241, 1988.
[DM81] Donald M. Davis and Mark Mahowald. v_{1-} and v_{2}-periodicty in stable homotopy theory. American Journal of Mathematics, 103:615-659, 1981.
[HS98] Michael J. Hopkins and Jeffrey H. Smith. Nilpotence and stable homotopy theory ii. Annals of Mathematics, 148(2):1-49, 1998.
[Mar83] H. R. Margolis. Spectra and the Steenrod Algebra. North Holland Publishers, 1983.
[Mil58] John Milnor. The steenrod algebra and its dual. Annals of Mathematics, 67(1):150-171, January 1958.
[MM65] John W. Milnor and John C. Moore. On the structure of hopf algebras. Annals of Mathematics, 81(2):211-264, March 1965.
[PS94] John H. Palmieri and Hal Sadofsky. Sef-maps of spectra, a theorem of j. smith, and margolis's killing construction. Mathematics Zeitschrift, 215:477-490, 1994.
[Rav86] Douglas Ravenel. Complex Cobordism and the Stable Homotopy Groups of Spheres, volume 121. Academic Press, 1986.
[Rav92] Douglas Ravenel. Nilpotence and Periodicity in Stable Homotopy Theory. Princeton University Press, 1992.
[Rei17] Benjamin William Reid. Constructing a v_{2}^{1} self map at $p=3$. PhD thesis, University of Oregon, 2017.
[Swi02] Robert M. Switzer. Algebraic Topology - Homology and Homotopy. Springer, 2002.

