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DISSERTATION ABSTRACT

Nicholas L. Howell

Doctor of Philosophy

Department of Mathematics

June 2017

Title: Motives of Log Schemes

This thesis introduces two notions of motive associated to a log scheme. We introduce a

category of log motives à la Voevodsky, and prove that the embedding of Voevodsky motives is

an equivalence, in particular proving that any homotopy-invariant cohomology theory of schemes

extends uniquely to log schemes. In the case of a log smooth degeneration, we give an explicit

construction of the motivic Albanese of the degeneration, and show that the Hodge realization of

this construction gives the Albanese of the limit Hodge structure.
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CHAPTER I

INTRODUCTION

This thesis is part of a joint project with Vadim Vologodsky.

1.1. For a General Audience

1.1.1. Consider a family X of smooth proper genus-2 curves degenerating to a union X0 = P1 ∪ E

of P1 and a genus-1 curve creating two nodes. In topology, or even differential geometry, we can

recover the genus-2 curve by removing the two points and gluing the collars. The precise way in

which the gluing is performed can be described as follows.

1.1.2. Let p be one of the singular points. A choice of local coordinate t for the degeneration

gives a trivialization

dtp : TpX = N(P1|X)|p ×N(E|X)|p −→ C

Taking the fiber over 1 gives a choice of identification of punctured normal bundles

N(D|X)|◦p ' N(E|X)|◦p (1.1.2.1)

1.1.3. Since N(D|X) ∩N(E|X) = 0 we must have N(P1|X) ⊂ TE so that

N(P1|X)|p = (TE ×X P1)|p = N(p|E),

and similarly

N(E|X)|p = (TP1 ×X E)|p = N(p|P1).

1.1.4. Now apply the tubular neighborhood theorem from differential geometry to identify

neighborhoods TN(p|−) of p with the normal bundle N(p|−) at p:

N(E|X)|p N(p|P1) TN(p|P1) P1

N(P1|X)|p N(p|E) TN(p|E) E

= ∼= ⊂

= ∼= ⊂

Applying (1.1.2.1) gives identifications of the punctured tubular neighborhoods TN(p|−) \ p,

allowing us to glue.
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1.1.5. In algebraic geometry, there is no tubular neighborhood theorem, so we cannot glue

along punctured tubular neighborhoods. There is a substitute, though, if we are willing to work

with stable homotopy types: the stable homotopy theory of schemes has a punctured tubular

neighborhood theorem, and we can use this to glue in the stable motivic homotopy category.

Working with motivic homotopy types gives access to the rich algebraic and holomorphic

data common in algebraic geometry: Galois representations, periods, motives, Hodge structure,

etc.

1.1.6. The key in the construction of this algebraic punctured tubular neighborhood theorem is

remembering the choice of coordinate along the special fiber. This vanishes on restriction to the

special fiber, so to preserve it will require equipping the special fiber with additional structure.

The precise structure required is a special case of a more general object called a virtual log

scheme; this thesis is a part of a broader work, Conjecture 1.2.6, to show that all (nice) virtual log

schemes have stable motivic homotopy types.

1.1.7. In the thesis, we prove several weakened versions of the conjecture.

The first result is that, in the case of a (nice) degeneration of smooth projective algebraic

varieties, the cohomology degenerates “algebraically;” see 1.2.14 for a concrete application to

limits of integrals on Calabi-Yau varieties.

The second result is that virtual log schemes have Voevodsky Q-motives, which are a notion

of algebraic cohomology theories with rational coefficients.

1.2. For a Technical Audience

1.2.1. A log structure on a scheme T is a (Zariski-)sheaf of (commutative) monoids MT with

a map α : MT −→ (OT , ·) inducing an isomorphism on invertible elements M∗T
∼−→ O∗T . A log

scheme is a pair (T,MT ). (See chapter II.)

We restrict to a nice subcategory of all log schemes (the fine log schemes), which in

particular have the canonical abelianization map MT −→ M+
T an injection and M+

T /O∗T finitely

generated constructible. The locus T ∗ ⊂ T where MT = M∗T is called the trivial locus, and is

open.

Log structure can be pulled back along morphisms of schemes: if f : T −→ V , set f∗MV =

f−1MV ⊕f−1O∗V O
∗
T .
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Example 1.2.2. Let X −→ S be a proper family over the disk with local coordinate t, smooth

away from t = 0 and with fiber over 0 a divisor with normal crossings.

If the map f : X −→ S is given by

X∗ X X0

S∗ S 0

j

sm pr

i

with S∗ = S \ 0, we choose the log structure on X given by j∗O∗X∗ ∩OX ; it induces a log structure

on X0 given by MX0
= i∗MX . Observe that the function t gives a global section of MX0

, and that

α(t) = 0.

1.2.3. There is an extension of the analytification functor to log schemes:

(T,MT ) 7→ (T,MT )log-an =

(x, x[) : x ∈ Xan, x∗MT /R+ x∗MT /C∗
x[


the resulting space is called the Kato-Nakayama space[KN99] of (T,MT ) (or just “of T” where

there is no ambiguity). It has a proper map to T an, and the fibers are subgroups of compact tori.

In the setting of Example 1.2.2, (X,MX)log-an is homotopy-equivalent to (X∗)an, and

(X0,MX0
)log-an has the homotopy type of a punctured tubular neighborhood of X0 in X. The

log scheme (X,MX) is a special case of a regular log scheme; regular log schemes always have

Kato-Nakayama space homotopy-equivalent to the analytification of their trivial locus.

1.2.4. The Kato-Nakayama construction depends only on the abelianization M+ of M , so we

introduce the notion of of a virtual log scheme (see chapter III):

A virtual log structure on T is an extension of sheaves of abelian groups O∗T ⊂ M+
T � ΛT .

If T is noetherian and ΛT is constructible with finitely generated fibers, then (T,M+
T ) is called a

fine virtual log scheme. We restrict ourself to these.

1.2.5. The Morel-Voevodsky category (see [MV99]) Ho(Sm /T ) of A1-homotopy types of

schemes over T is a homotopy category of simplicial sheaves on Sm /T where A1 plays the

role of the interval; if T is defined over C, Ho(Sm /T ) has a topological realization functor to

homotopy types over T an. Much of the machinery of homotopy theory works in Ho(Sm /T ),

including stabilization: there is a distinction between the suspension operators Σs, smash with

3



the simplicial constant sheaf with fiber S1, and Σt, smash with the zero-dimensional simplicial

sheaf representing Gm.

This thesis is part of a project to prove

Conjecture 1.2.6. Let (T,M+
T ) be a fine virtual log scheme. Then

(a) the topological homotopy type Σ[T log-an]+ ∈ Ho(Top /T an)+ (see [Jam95]) is the topological

realization of a motivic homotopy type [ΣsT
log
+ ] ∈ Ho(Sm /T )+, and

(b) in the case that (T,M+
T ) comes from a regular log scheme, the canonical map

Σs[T
∗]+ −→ [ΣsT

log
+ ]

in H(Sm /T )+ is an A1-homotopy equivalence.

Example 1.2.7. Consider the setting of Example 1.2.2, and suppose that X0 = D is smooth.

Then X log-an
0 is the sphere bundle of the normal bundle to X0 in X, and is homotopy-equivalent

to the analytification of the punctured normal bundle N(D|X)◦; thus [X log
0 ] = [N(D|X)◦] is even

a smooth scheme over X0, stronger than the conjecture.

Even further, since D is cut out by the global function t, N(D|X) is canonically trivialized,

so that X log
0 = X0 ×Gm and X log-an

0 = Xan
0 × S1.

Remark 1.2.8. We might hope to strengthen Conjecture 1.2.6 by omitting the point and the

suspension; however consider Example 1.2.2 with X a genus-1 curve with X0 = p a single point. If

an unstable motivic homotopy type [X log] existed, we would have a map

[Gm,p] = [X log
0 ] −→ [X log] = [X∗].

Standard results in A1-homotopy theory imply there are no such maps over X.

1.2.9. After pointing and suspension in the A1-homotopy category, we do have a map

Σs[N(D|X)◦]+ −→ Σs[X \D]+:

a fundamental result of the A1-homotopy theory is that

cone([N(D|X)◦] −→ [N(D|X)]) ' cone([X \D] −→ [X]).

4



Coning over D as well gives

cone([N(D|X)◦] t [D] −→ [N(D|X)]) ' cone([X \D] t [D] −→ [X]).

We can identify the former with Σs[N(D|X)◦]+, and by functoriality have a map

Σs[N(D|X)◦]+ ' cone([X \D] t [D] −→ [X]) −→ Σs[X \D]+.

Example 1.2.10. If instead X0 = D1 ∪ D2 is the union of two smooth components with normal

crossings D12, then the punctured tubular neighborhoods of the two divisors must be “glued”

along their restrictions to the double intersection. We only have the gluing maps after suspension,

so we obtain for [Σs(X
log
0 )+]

hocolim(Σs[N(D12|D1)◦]+ ⇒ Σs[N(D1|X)◦]+ t Σs[N(D2|X)◦]+)

1.2.11. If we are willing to work in the abelian setting and T is a field, we have a satisfactory

result: let R be a coefficient ring with charT inverted, and let Log /T and v Log /T be the

categories of fine log schemes over T and fine virtual log schemes over T , respectively.

For L = Log /T or v Log /T , let DA(L;R) be the quotient of the derived category of

presheaves of R-modules on L by the ideal generated by

– A1-homotopy

– cdh covers on underlying schemes which induce isomorphisms on the abelianization M+

– the complex [Gm] −→ [A1(log 0)]

Theorem 1.2.12. The functor DA(Sch /T ;R) −→ DA(L;R) is an equivalence, with quasi-inverse

(X,MX) 7→ SdimXM+
Xsat ⊗R.

1.2.13. One interpretation of the theorem is that any Weil cohomology theory uniquely extends

from Sch /T to L.

1.2.14. An application of these ideas is the compatibility of nearby cycles with Hodge realization.

Original constructions of limit motives and limit stable motivic homotopy types are due

to Ayoub (see [Ayo08], [AIS]), as is the proof of compatibility with the `-adic and rigid-analytic

realization, but results on compatibility with Hodge realization are not present in the literature.

5



1.2.15. For H an anti-effective mixed Hodge structure (e.g. the cohomology of a complex

variety), the 1-Hodge substructure H(1) is the largest sub-Hodge structure containing W1H

and the Tate part of GrW2 H. If H is the cohomology of a curve, H = H(1).

Theorem 1.2.16. Assume the situation of Example 1.2.2 over a field k ⊂ C; then

Y 7→ RΓcdh(Y ×Xsat
0 ; pr∗2 M

+)⊗Q

is a 1-motive (see [Bar07]) over Gm,k with Hodge realization dual to the 1-Hodge substructure of

the family of limit Hodge structures of the cohomology, H(X∞)(1) ⊗Q.

Remark 1.2.17. This theorem can be interpreted as the Deligne conjecture on 1-motives

(see 5.1.6, or [Del74]) for limit Hodge structures.

1.2.18. Since Voevodsky motives satisfy cdh descent, they do not provide information in

infinitesimal families: if i : S0 ↪−→ S is a nilimmersion, then any motive takes i to a quasi-

isomorphism.

The construction in Theorem 1.2.16 admits an obvious weakening, where the cdh topology

is replaced by the Zariski or Nisnevich topologies; this construction does provide infinitesimal

information.

Example 1.2.19. Let f : X −→ S∗ be a maximal degeneration of Calabi-Yau varieties, of relative

dimension d over a punctured disk S∗. Maximality here means that the monodromy T = 1 + N is

unipotent of maximal index n (so that Nn 6= 0 but Nn+1 = 0).

There are canonical sections (up to scaling) δ1 and δ2 of Rdfan
∗ QX : a generator of kerNn

and a preimage of the generator of kerNn−1/ kerNn (see chapter IV).

The Poincaré pairing over C of these two sections gives a multivalued function on S∗, which

descends to a function q(s) = exp(2πi 〈δ1, δ2〉 / 〈δ1, δ1〉) called the canonical coordinate.

Expanding in s to obtain a power series q(s) =
∑
ais

i, we obtain complex numbers

ai. The constant term, a0, is the period of the limit 1-Hodge structure Hn(limX;Q)(1) =

Ext1
MHS(Q(−1),Q) = C/2πiQ.

If the degeneration is defined over a field k ⊂ C, theorem 1.2.16 implies that this class is in

the image of the Hodge realization of Ext1
DM (Q(−1),Q) ∼= k∗ ⊗Q, as predicted by [Vol07].

A future work will explain that q(s) actually lives in k((t))⊗Q.
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1.3. Organization

This thesis is divided into two parts. The first part consists of several chapters of

background material, much of which can be found in the literature: chapter II reviews the

necessary preliminaries on log geometry, chapter III introduces the new notion of virtual log

geometry, chapters VI and V provide background on Voevodsky motives and Deligne 1-motives,

and chapter IV reviews the necessary background in Hodge theory.

The second part is divided into two chapters, the proof and applications of theorem 1.2.12,

and the proof and applications of theorem 1.2.16.

7
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CHAPTER II

LOG GEOMETRY

2.0.1. Let E ⊂ X be a divisor with normal crossings. The cohomology of X \ E can be computed

as the hypercohomology of a certain complex of vector bundles on X known as the logarithmic

de Rham complex,

Ω•X(logE) = {α : ordE α ≥ −1} ⊂ Ω•ηX

where Ω•ηX is the complex of rational differential forms and ordE(α) is the order of pole of α along

E.

Log geometry is a formalism where spaces can be “tagged” so as to remember that they

have been obtained by compactification.

2.1. Monoids

Definition 2.1.1. A (commutative) monoid is a set M with an associative (commutative)

unital binary operation · : M ×M −→ M . A morphism of monoids is a unital morphism preserving

the operation. The category of monoids is denoted Mon.

All monoids will be commutative.

Example 2.1.2. Any cone in an abelian group is a monoid. There is a left adjoint to the

forgetful functor Set←− Mon taking a set S to NS .

Proposition 2.1.3. There is an adjoint triple

for : Ab Mon : for,un⊥

⊥

respectively sending a monoid M to the free abelian group abM = M+ generated by it, forgetting

the inverses in a group, and taking a monoid M to its invertible elements unM = M∗.

Proof. Standard.

9



Definition 2.1.4. A monoid M is called integral if the unit map M −→ for abM is an injection,

finitely generated if it admits a surjection from Nn for some n ∈ N, and fine if it is both

integral and finitely generated.

Example 2.1.5. Consider the pointed monoid F1 = {0, 1} with obvious multiplication law. Then

F+
1 has 0 invertible, so [0] = [0]2 implies [1] = [0], and F+

1 is the trivial group: F1 is not integral.

Proposition 2.1.6. The category of monoids admits finite colimits.

Proof. Finite coproducts is evident. Coequalizers f, g : M ⇒ N can be obtained by taking the

equivalence relation n ∼ n′ iff n = f(m) and n′ = g(m) for some m ∈ M , and extending the

relation to respect the monoid operation: n ∼′ n′ iff there exist x, a, a′ ∈ N such that n = xa,

n′ = xa′, and a ∼ a′. The set N/ ∼′ has a canonical monoid structure coequalizing (f, g).

Example 2.1.7. Not all coequalizers can be written as quotients: the coequalizer 2, 3 : N ⇒ N,

i.e., N/〈2 ∼ 3〉, has [2] = [3], but since neither 2 nor 3 is invertible, we cannot write a submonoid

of N to quotient by.

Definition 2.1.8. A monoid P is saturated if it is integral and P = P ∩ (P+ ⊗ Q). It is fs if it

is fine and saturated.

Proposition 2.1.9. The forgetful functor Mon ←− Monsat : for has a left adjoint sat : Mon −→

Monsat.

Proof. Standard.

Example 2.1.10. P = 2N3N ⊂ N is not saturated; its saturation is N.

2.2. Logarithmic Structure on Rings

Proposition 2.2.1. Let A be a (commutative unital) ring. The functor from A-algebras to

monoids which forgets addition, Mon ←− A- Alg : for, admits a left adjoint A[−] : Mon −→ A- Alg

(“monoid algebra”).

Proof. Standard.

10



Definition 2.2.2. Let A be a ring. A prelog structure on A is a morphism of monoids α : P −→

forA. It is a log structure if it induces an isomorphism on invertible elements: α|P∗ : P ∗
∼−→ A∗.

A log ring is a ring equipped with log structure A = (A,αA). A morphism φ of log rings is

a map φ[ of monoids and a map φ of rings such that αφ[ = φα.

Proposition 2.2.3. The forgetful functor from log structures to prelog structures has a left

adjoint sending P −→ A to P ⊕P∗ A∗ −→ A.

The forgetful functor from log rings to rings has a fully faithful left adjoint sending a ring A

to A∗ ⊂ A; we abusively write A for the image.

Proof. Standard.

Proposition 2.2.4. Let A be a log ring. The forgetful functor A- Alg −→ A- Alg from log rings

over A to rings over A admits a left adjoint, called the pullback log structure.

Proof. Let φ : B −→ A; then the pullback log structure on B is B = (B,φ∗αA) where φ∗αA is the

map

φ ◦ αA : MA ⊕A∗ B∗ −→ B.

2.3. Logarithmic Structure on Spaces

Definition 2.3.1. Let (X,OX) be a locally ringed space. A prelog structure on X is a morphism

of sheaves of monoids αX : MX −→ OX ; αX is a log structure if over every open set it is a log

structure.

If f : X −→ Y is a morphism of locally ringed spaces and αY : MY −→ OY is a log structure,

We write f∗αY : f∗MY −→ OX for the pullback log structure.

A log space is a pair X = (X,αX) of a locally ringed space equipped with log structure. A

morphism of log spaces f : X −→ Y is a pair f : X −→ Y and f [ : MX ←− f∗MY compatible with αX

and f∗(αY ).

Example 2.3.2. (i) Locally ringed spaces embed into log spaces by taking MX = O∗X . The

image is the trivial log spaces.

11



(ii) If X is a smooth proper variety and Z ⊂ X a smooth closed subvariety, then (setting j :

U −→ X to be the inclusion of the complement) X(logZ) = (X, j∗O∗U ∩OX) is a log structure.

This is the compactification log structure of X along Z, or of U in X.

(iii) If X is a log space and i : Z ↪−→ X is a sub-locally ringed space of X, then the inverse image

sheaf i−1MX is a prelog structure on Z. The associated log structure is the restriction log

structure on Z.

(iv) If i : Z = V (t) −→ X is cut out by t ∈ Γ(OX), then i−1MX(logZ) is a prelog structure on Z,

and i∗MX(logZ) is non-canonically O∗ZtN, where t is a function cutting out Z.

(v) Let k be a field; the log space ptk = Spec(tN −→ k) (or just pt if the field is understood) is

the log point.

(vi) Any monoid P has monoid algebra Z[P ]; AP = SpecZ[P ] has a canonical log structure

P ⊕P∗ O∗AP , where P and P ∗ are written for their respective constant sheaves on AP . AP

is then a toric variety, with the locus of trivial log structure identified with the dense torus

SpecZ[P ∗].

(vii) If A is a ring and P −→ forA is a morphism of monoids, then Spec(P −→ A) is the log scheme

whose underlying space is SpecA with log structure P ⊕P∗ O∗SpecA.

Definition 2.3.3. Let X be a log space. A chart for X is a map φ : X −→ AP such that MX =

φ∗P . X is said to be quasi-coherent if it locally admits a chart, and coherent, or integral,

fine, saturated, or fs if it locally admits a chart to AP with P finitely generated, or integral,

fine, saturated, or fs.

Example 2.3.4. P1(log 0,∞) is a fine log scheme, with charts P = tN and Q = t−N.

Example 2.3.5. Let P = 2N3N ⊂ N. (See example 2.1.10.) Then Spec k[P ], the cuspidal

cubic, is not saturated. The saturation is P sat = N, and the unit of the adjunction induces a

map Spec k[N] −→ Spec k[P ]: the normalization of the cusp.

Proposition 2.3.6. If X is coherent, then MX/O∗X is constructible.

Proof. The property is local, in which case it follows from the fact that MX/O∗X ∼= φ−1(P/P ∗),

where φ : X −→ AP is a chart.
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Definition 2.3.7. A morphism f : T −→ T ′ of integral log schemes is a thickening if f is an

infinitesimal thickening on underlying schemes. A morphism g : X −→ Y of integral log schemes is

formally smooth if it admits left lifting with respect to thickenings, and smooth if X and Y are

coherent and f is locally of finite presentation.

Example 2.3.8. Let P be a fs monoid; then AP −→ Spec(N −→ Z) and AP −→ SpecZ are smooth.

Definition 2.3.9. Let T be a log scheme. A one-parameter degeneration over T is a smooth

morphism of log schemes X −→ T × pt.

Remark 2.3.10. Usually T is a field.

Example 2.3.11. Let X −→ S be a semistable degeneration, with Xs −→ s the special fiber and

Xσ −→ σ the generic fiber. Then X ×S S(log s) −→ S(log s) is a smooth morphism of log schemes,

and so Xs ×s pts −→ pts is a one-parameter degeneration.

Remark 2.3.12. Compare with the notion of logarithmic deformation, where the log

structure on Xs is locally given by compactification log structure, in [Ste95].

2.4. Cohomology of Log Spaces

There are many cohomology theories defined on log schemes in the literature: singular, de

Rham, étale, and crystalline cohomologies all have extensions to log schemes. See Theorem 1.2.12

for a proof that all homotopy-invariant Weil cohomology theories extend uniquely to log schemes.

2.41. Kato-Nakayama Space and Singular Cohomology

Definition 2.4.1. The log analytic point is the log analytic space ptlog-an = Spec(R≥0 × S1 −→

C) where the map is given by multipication.

Let X be a log scheme. The Kato-Nakayama space, or log analytification, of X, is the

set X(ptlog-an) equipped with the topology generated by the projection map X(ptlog-an) −→ Xan

and for every section m ∈ Γ(U,MX) the map prS1 ◦ evm : X(ptlog-an) −→ S1 (where S1 is equipped

with the Euclidean topology).

Proposition 2.4.2. Let X be a fine log scheme. Then X log-an is a topological space over Xan,

with fiber over x ∈ Xan given by Hom(x∗M+/C∗, S1).

Proof. Immediate.
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Example 2.4.3. Alog-an
N −→ (A1)an is the “oriented real blowup” of the complex plane at

the origin: the fiber over 0 is S1, and other fibers are a single point. In particular, Spec(N −→

C)log-an = S1.

Theorem 2.4.4 ([NO10]). Let f : X −→ S be a smooth proper morphism of fine log schemes. Then

f log-an is a fiber bundle.

Proof. See [NO10], theorem 5.1.

Remark 2.4.5. Note that the underlying morphism X −→ S need not be smooth.

Definition 2.4.6. Let X be a log space over C and Λ a coefficient ring. The singular

cohomology of X is the singular cohomology of X log-an, H .
sing(X; Λ) = H .

sing(X log-an; Λ).

2.42. de Rham Cohomology

Definition 2.4.7. Let φ : B −→ A be a morphism of log rings, and let E be a A-module. A

derivation of φ with values in E is a pair of maps δ : MA −→ E and d : A −→ E such that d

is a B-derivation over A with values in E, δ is a homomorphism of monoids MA −→ (E,+) with

δ(φ[MB) = 0, and d(α(p)) = α(p)δ(p).

Example 2.4.8. Let P −→ A = tN × k∗ ⊂ k[t] and Q −→ B = k∗ ⊂ k. Then d : k[t] −→ k[t] · dt/t and

d log : tN × k∗ −→ k[t] · dt/t, defined by d(t) = t · dt/t, d log(t) = dt/t, is a derivation.

Proposition 2.4.9. Let φ : B −→ A be a morphism of log rings. There is a universal B-derivation

(d, d log) : A −→ Ω1
φ, with presentation

Ω1
φ ⊕A{d log p : p ∈ (P/φ[(Q))+}/K

where K is generated by expressions of the form

α(p)d log(p)− dα(p) and d log(pp′)− d log(p)− d log(p′).

Proof. Similar to the classical result.

14



Definition 2.4.10. Let f : X −→ Y be a morphism of log schemes. The Kähler differentials Ω1
X/Y

of X over Y is the sheaf on X associated to U 7→ Ω1
(f∗U ,f

[
U )

.

Proposition 2.4.11. Let f : X −→ Y be a morphism of fine log schemes with underlying morphism

of schemes finitely presented. Then Ω1
f is coherent.

Proof. Similar to the classical result.

Definition 2.4.12. Let f : X −→ Y be a morphism of log schemes. The de Rham complex of f

is the complex Ω.f = (
∧.

Ω1
f , d), and the de Rham cohomology of f is Rf∗Ω.f .

Example 2.4.13. Let X = Spec(tN −→ C[t±]) over C; then X∗ = Gm and Ω.X is the log de Rham

complex for Gm ⊂ A1, so H .
dR(X) = H .

dR(X∗).

Theorem 2.4.14. Let X/C be an fs log scheme admitting an atlas of the form X −→ V (Σ) ⊂ AP ,

where Σ ⊂ P is an ideal, such that X −→ V (Σ) is smooth.

Then there is a canonical isomorphism H .
dR(X) ∼= H .

sing(X;C).

Proof. See [KN99].

2.5. Blow-ups of Log Schemes

Definition 2.5.1. Let P be a monoid. An ideal of P is a subset Σ closed under multiplication by

P , i.e., P · Σ = Σ.

Definition 2.5.2. Let X be a quasicoherent log scheme. A quasicoherent sheaf of ideals on

X is a sheaf of ideals I ⊂M such that locally there exists a chart π : U −→ AP such that IU ∼= π[J

for some ideal J ⊂ P . An idealized quasicoherent log scheme is such a pair (X, I).

Definition 2.5.3. Let (X, I) be an idealized fs log scheme. The blowup BlI X of X along I is

the log scheme over X given on a chart X −→ AP by pulling back the saturation of the classical

blow-up Blk[P ]I Spec(k[P ]) equipped with log structure given locally by charts Ua = AP [I/a].

Example 2.5.4. Let I = (x) on A1(log 0); then BlI X = A1(log 0). Let I = (x, y) on

Spec(xNyN −→ k); then BlI X = P1(log{0,∞}).
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Lemma 2.5.5. Suppose t : X −→ S is a log-smooth 1-parameter degeneration. After log blowups at

ideals supported along the special fiber, the degeneration is semistable.

Proof. This is due to [Niz06], theorem 5.10.
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CHAPTER III

VIRTUAL LOG GEOMETRY

We introduce the notion of virtual log structure and cohomology of virtual log spaces, and

compare these notions with log geometry.

3.1. Virtual Log Structure on Schemes

Definition 3.1.1. Let X be a locally ringed space. A virtual log structure on X is an

extension L of an abelian sheaf Λ (called the characteristic of L) by O∗X . A virtual log space

is a pair X = (X,LX) of a space and virtual log structure.

Virtual log structure can be pulled back along a morphism of spaces; if Y is a virtual log

space and f : X −→ Y is a map of locally ringed spaces the pullback virtual log structure f∗LY on

X is given by

f−1O∗Y f−1LY f−1ΛY

O∗X f∗LY f−1ΛY
p

f∗

A morphism X −→ Y of virtual log spaces is a pair f = (f, f [) with f : X −→ Y and

f [ : LX ←− f∗LY extending f∗ : O∗X ←− f
−1O∗Y .

Proposition 3.1.2. The forgetful functor for : vLog −→ Sch admits a fully faithful left adjoint by

taking X to (X,O∗X). We abusively write X for the image.

Proof. Standard.

Proposition 3.1.3. The category of virtual log spaces admits finite fiber products: if X,Y −→ Z

then X ×Z Y = (X ×Z Y ,pr∗1 LX ⊕pr∗ LZ pr∗2 LY ).

Proof. Standard.

3.1.4. The embedding Sch −→ vLog extends to a “virtualization” functor (−)+ : Log −→ v Log

taking a log structure M on X to its group completion L = M+; this is not an embedding, even

when restricted to Logfs.
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Definition 3.1.5. A virtual log space X is said to be

– quasi-coherent if Λ is quasi-constructible (i.e., X admits a stratification such that Λ is

constant on the open strata; see [Ogu16, def. 2.5.1]);

– coherent if furthermore Λ has finitely generated stalks;

– saturated (respectively, finite) if furthermore Λ is torsion-free (respectively, torsion).

Example 3.1.6. If X is a quasi-coherent (respectively, coherent, saturated, finite) log scheme

then its virtualization X+ is quasi-coherent (coherent, saturated, finite).

Proposition 3.1.7. Let X be a coherent virtual log scheme with X noetherian. Then ΛX is

noetherian.

Proof. If dimX = 0, then topologically X is a finite number of points (as X is noetherian), and

since X is coherent ΛX =
⊕

x∈X ΛX,x is a finite sum of finitely generated abelian groups at each

point, thus noetherian.

If ΛY is noetherian for every coherent noetherian Y of dimension at most d and dimX =

d+1, then let j : X(0) ↪−→ X be the inclusion of the points of X of codimension-0, and observe that

j−1ΛX is noetherian (by the same argument as in the dimension-0 case).

Let Y = supp(ker ΛX −→ j∗j
−1ΛX) (with inclusion i : Y ↪−→ X) and Y = (Y , i∗ ker(LX −→

j∗j
−1ΛX)). Then Y is coherent (since Y ⊂ X is closed, and ΛY is a subsheaf of i−1ΛX) and has

dimension at most d, so that i∗ΛY = ker(ΛX −→ j∗j
−1ΛX) is noetherian. Since ΛX is an extension

of j∗j
−1ΛX by ΛY , it also is noetherian.

3.2. Splittings of Virtual Log Structure

One of the key differences between log schemes and virtual log schemes is the possibility of

splittings:

Definition 3.2.1. A splitting of the virtual log structure on a virtual log space X is a splitting

of the extension, equivalent to a section of the canonical morphism X −→ X. A splitting family

for a virtual log space X is a space T with a map of virtual log spaces T −→ X; the pullback

virtual log structure along such a map is canonically split.
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The category of splitting families of X, with obvious morphisms, is denoted Split(X).

We say that X is splittable if there is a section of the canonical map X −→ X, and admits a

splitting space Xsp if there is a final object Xsp ∈ Split(X)

Example 3.2.2. Let E be an elliptic curve with compactification log structure at a point p. Then

any splitting space is birational with E, but over p the fiber is Gm, a contradiction.

Definition 3.2.3. An affine scheme T is seminormal if every map to the cusp C lifts along the

normalization A1 −→ C:

A1

T C

A scheme is seminormal if its local schemes are seminormal, i.e., every SpecOT,t ⊂ T is

seminormal. See [LV81] for more on semi-normal varieties.

Theorem 3.2.4. Let X be a finite virtual log scheme. Then the functor v Log(−, X) : Schsn −→

Set from seminormal schemes to sets is representable. (We say “X has a semi-normal splitting

space.”)

We first prove the theorem in two special cases.

Lemma 3.2.5. Let X be an finite virtual log scheme with Λ constant cyclic on an open subset

U ⊂ X and vanishing on X \ U .

Then v Log(−, X) : Schsn −→ Set is representable.

For the proof, we need the following machinery of Kollár:

Definition 3.2.6 ([Kól11], definition 2). Let X and R be reduced S-schemes. A morphism σ :

R −→ X×SX is a set-theoretic equivalence relation on X if every geometric point s : Spec k −→

S gives an equivalence relation on s-points. It is finite if the compositions with the projections σ1

and σ2 are finite.

Definition 3.2.7 ([Kól11], definition 4). Given two finite morphisms σ1, σ2 : R ⇒ X, a morphism

X −→ Y is the geometric quotient of X by R if is the coequalizer of σ1, σ2, is finite, and the

geometric fibers are the set-theoretic equivalence classes.

Lemma 3.2.8 ([Kól11], lemma 17). Let S be a Noetherian scheme. Assume that X is finite over

S, and let p1, p2 : R ⇒ X be a finite, set-theoretic equivalence relation over S. Then the geometric

quotient X/R exists.
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Proof. See [Kól11], lemma 17.

Proof (of lemma 3.2.5). Let λ be the generator of Γ(U,Λ), or order n, and let v ∈ Γ(U,L) be a

preimage. Let V be the pullback

V Gm

U Gm

t

y
n:1

mn

and set V = NmV X. Let Z = X \ U and R = ∆X(V ) ∪ (V ×X V ) ×X Z ⊂ V ×X V , a finite

set-theoretic equivalence relation on V (in the sense of [Kól11, def. 2]).

Applying [Kól11, lem. 17], the quotient X̃ = V /R exists. We will show that X̃sn is the

seminormal splitting scheme of X.

Let φ : T −→ X be a seminormal splitting family; in particular, φU : TU −→ U factors as

TU
φV−−→ V −→ U . Set Γ = graph(φV ), closed in TU ×X V , and let Γ be its closure in T ×X X̃. Then

we have a commutative diagram

Γ×T TZ Γ×X Z

Γ TZ

X̃ Z

pr2
pr2 φZ

Since Γ t TZ −→ T is an h-cover (indeed, ΓZ −→ Γ −→ T and ΓZ −→ TZ −→ T are agree), this gives a

section of Shh(LT,LX̃); but T is seminormal, so we obtain (see [Voe93, prop. 3.2.10]) a canonical

map φ̃ : T −→ X̃, factoring φ. The factoring is unique, as any section of Shh(LT,LX̃) is determined

by its restrictions to Γ t TZ , in turn determined by the restriction to ΓU t TZ = graph(φV ) t φZ .

Again, T is seminormal, so φ̃ factors uniquely through X̃sn.

Lemma 3.2.9. Let X be a virtual log scheme with characteristic sheaf ΛX supported on Z ⊂ X

and generated by a nontrivial section λ ∈ Γ(V,Λ) of order n.

Then v Log(−, X) : Schsn −→ Sets is representable.
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Proof. Let U = X \ Z and let m ∈ Γ(V,L) be a preimage of λ. Set W as the pullback

W Gm

V Gm

t

pr1
y

n:1

mn

Let D
(

pr[1m|WU
− t
∣∣
WU

)
be the locus where pr[1m is a function and disagrees with t, and set

Ṽ = W \D
(

pr[1m|WU
− t
∣∣
WU

)

Write V = NmṼ X and R = ∆X(V ) ∪
(
V ×X V ×X (X \ V )

)
⊂ V ×X V . This is a finite

set-theoretic equivalence relation on V , so that the quotient X̃ = V /R exists (again, by [Kól11,

lem. 17]).

We reduce to the case V = X, Ṽ = X̃ by applying Lemma 3.2.5, observing that Ṽ −→ V is

finite.

The virtual log structure on W is canonically split by sp : W −→ W sending pr[1m to t. Let

s = φ[(m) ∈ Γ(T,O∗T ); then f = (φ, s) gives a unique map T −→ W . Since f∗(pr[1(m)) = φ[(m) =

s = f∗(t), everywhere on T , we see that f factors through Ṽ . Since T is seminormal, there is even

a unique factorization through Ṽ sn.

3.2.10. Proof (of Theorem 3.2.4). Let λ ∈ Γ(U,ΛX) be a non-trivial section, and j : U ↪−→ X

the inclusion; the virtual log scheme Xλ = (X, ker(LX −→ ΛX/j!λ
Z)) meets the hypotheses

of Lemma 3.2.9, so that there is a seminormal splitting scheme X̃sn
λ −→ Xλ. We then have the

following diagram:

Xsp(λ) X̃
sn

λ

X Xλ

y
π

The virtual log structure on Xsp(λ) is

LXsp(λ) = π−1LX ⊕π−1LXλ
O∗
X̃λ

;

in particular, any lift of λ to LX pulls back to an invertible function on Xsp(λ).
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Any seminormal splitting family of X by composition gives a seminormal splitting family of

Xλ, and thus factors through X̃sn
λ to give a factoring through Xsp(λ).

Replacing X by Xsp(λ) we obtain a new virtual log scheme, with ΛX of strictly shorter

length. Since ΛX is noetherian, after finitely many steps ΛX = 0, i.e. we obtain a scheme X̃.

Let Xsp be the seminormalization of this scheme equipped with the pullback virtual log structure

from X. Then any seminormal splitting family of X factors through X̃ and thus Xsp.

Definition 3.2.11. Let X be a noetherian virtual log space.

– The finite part of X is the finite virtual log scheme Xfin = (X, ker(LX −→ ΛX ⊗Q)). There

is a canonical map X −→ Xfin corresponding to the inclusion LX ⊃ LXfin .

– Assume Xfin admits a splitting space. The partial saturation of X is Xp sat =(
Xfin,sp, π∗LX

)
. Here π : Xfin,sp −→ Xfin is the projection. There is a canonical map

Xp sat −→ Xfin,sp corresponding to the pullback of the inclusion LX ⊃ LXfin .

– Assume Xfin admits a splitting space. The saturation of X is the pullback

Xsat Xfin,sp

Xp sat Xfin,sp

y

3.2.12. Xp sat abstractly admits an action of Hom(Λtor,O∗), which is a finitely generated quotient

of µ∞. The action does not fix the splitting, however: maps Xp sat −→ X form a Hom(Λtor,O∗)-

torsor, and unless it is trivialized, the action does not descend to Xsat.

3.3. Cohomology of Virtual Log Schemes

3.301. Kato-Nakayama Space and Singular Cohomology

Definition 3.3.1. Let X be a virtual log space over C. The Kato-Nakayama space X log-an of

X is, as a set, (x, σ) : x ∈ X(C), x∗LX/R+ x∗LX/C∗
arg ◦x[

σ
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with topology generated by the projection X log-an −→ Xan and for m ∈ Γ(U,LX) evaluation maps

evm : U log-an −→ S1, evm(x, σ) = σ(x∗m).

Proposition 3.3.2. Let X be a virtual log space. Then X log-an = (X+)log-an, i.e. they are

canonically homeomorphic.

Proof. We may assume X = SpecC.

Splittings of M+/R+ −→ Λ are the same as splittings C∗/R+ ⊂ M+/R+, aka maps S1 −→

M+/R+.

Maps x[ : M ←− R≥0 × S1 over x∗ = id : C∗ ←− C∗ are by divisibility the same as maps

M/C∗ ←− 0× S1; by adjunction this is the same as maps M+/C∗ ←− S1.

The topology on (X+)log-an is at least as fine as on X log-an; given m − n ∈ Γ(U,M+) with

m,n ∈ Γ(U,M) we have evm−n(x, σ) evm(x, σ)/ evn(x, σ); since division is continuous on S1, this

is continuous in the topology generated by evm and evn.

Definition 3.3.3. If X is a virtual log analytic space defined over C, then the virtual log Betti

cohomology of X is the singular cohomology of the space X log-an.

3.302. de Rham Cohomology

Definition 3.3.4. Let X be a virtual log space with X integral. The sheaf of Kähler forms

on X, denoted Ω1
X , is given by the quotient of Ω

1

X by sections supported in positive codimension,

where Ω
1

X is given by

O∗ ⊗O L⊗O Λ⊗O

Ω1
X Ω

1

X Λ⊗O

d log⊗O
p

δ⊗O

The de Rham complex Ω.X of X is
∧.

Ω1
X

The quotient Ω
1 −→ Ω1 compensates for the lack of a map α found in log geometry.

Example 3.3.5. Let X = A1(log 0)+; then Ω
1

X = Ω1
X ⊕O∗ (O∗tZ ⊗ O). Let i : 0 −→ X and

j : Gm −→ X be the obvious inclusions. We have a global section δ(t) such that j∗δ(t) = d log(t);

in particular, tj∗δ(t) = dt, so that j∗(tδ(t)− dt) = 0. Since t is not invertible on all of X, however,

there are no global relations between δ(t) and dt: tδ(t)− dt is supported at the origin.

The image in Ω1
X , however, does satisfy the global relation tδ(t) = dt.
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Proposition 3.3.6. Let X be a quasi-coherent log scheme with X integral and locally noetherian.

Then Ω1
X
∼= Ω1

X+ .

Proof. The canonical map Ω
1

X+ −→ Ω1
X+ factors through Ω1

X : if m ∈ M+ then α(m)d log(m) −

dα(m) = 0 in Ω1
X , while α(m)δ(m) − dα(m) in Ω

1

X+ is supported on V (α(m)), i.e. in positive

codimension.

For the same reason, the map Ω
1

X+ −→ Ω1
X descends to Ω1

X+ .

Proposition 3.3.7. Let X be an fs log scheme admitting an atlas of the form X −→ V (Σ) ⊂ AP

where Σ ⊂ P is an ideal, and X −→ V (Σ) is smooth. Then H .
dR(X+) ∼= H .

sing(X+).

Proof. Immediate from the results of Chapter II.
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CHAPTER IV

HODGE THEORY

4.1. Pure, Mixed, and Polarized Hodge Structures

For the general theory of mixed Hodge structures, we refer the reader to [Del71] and

[Del74]. For polarization and the period mapping, see [Gri68a], [Gri68b], and [Gri70].

Definition 4.1.1. Let n be an integer. A pure Hodge structure of weight n is a finitely

generated abelian group V = VZ and a decomposition

VC = V ⊗Z C =
⊕
p+q=n

V pqC

such that V pqC = V
qp

. (Here the conjugation is with respect to the image of VZ −→ VC.) We write

hpq for the Hodge numbers dimV pqC .

A morphism of such Hodge structures is a map fZ : VZ −→ WZ which preserves the

decomposition. The category of pure Hodge structures of weight n is denoted HSn.

Example 4.1.2. Let X be a smooth projective variety over C. Then Hn(X;Q) has a canonical

pure Hodge structure of weight n, with F . induced by the brutal filtration on Ω.X/C.

Remark 4.1.3. A pure Hodge structure of weight n gives a flag F . on VC, with F p =⊕
p′≥p V

p(n−p), satisfying the condition F p ∩ Fn−p+1
= 0.

Given such a flag, we can recover the decomposition by taking V pqC = F p ∩ Fn−p.

Definition 4.1.4. A mixed Hodge structure with is a finitely generated abelian group V = VZ

with an increasing filtration W. on VQ and a decreasing filtration on F . on VC inducing a pure

Hodge structure of weight n on GrWn VQ.

A morphism of mixed Hodge structures is a map VZ −→WZ preserving the two filtrations.

Example 4.1.5. Let X be an algebraic variety over C. Then Hn(X;Q) has a canonical mixed

Hodge structure. See [Del71] for the smooth case, and [Del74] for singular varieties.

4.1.6. The category of mixed Hodge structures is an abelian rigid tensor category of global

dimension 1. It has neither enough projectives nor enough injectives. For this reason, we

introduce (see [Bei86])
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Definition 4.1.7. A mixed Hodge complex is a tuple

(
VZ, αQ : VZ ⊗Q ∼−→ VQ, αC : WQVQ ⊗ C ∼−→WCVC

)

with VZ a complex of abelian groups, (WQVQ) a filtered complex of Q-vector spaces, and

(WCFCVC) a biregular filtered complex of C-vector spaces, and αQ a quasi-isomorphism and αC

a filtered quasi-isomorphism.

Morphisms and weak equivalences in the category of mixed Hodge complexes are evident.

The derived category of mixed Hodge complexes is DMHC = MHC[qis−1].

Theorem 4.1.8. The obvious functor DMHS −→ DMHC is a derived equivalence.

Definition 4.1.9. Let S be a complex analytic space. A mixed Hodge complex of sheaves on

S is a tuple (
VZ, αQ : VZ ⊗Q ∼−→ VQ, αC : WQVQ ⊗ C ∼−→WCVC

)
with VZ a complex of abelian sheaves, (WQVQ) a filtered complex of Q-vector spaces, and

(WCFCVC) a biregular filtered complex of C-vector spaces, and αQ a quasi-isomorphism and αC

a filtered quasi-isomorphism.

Morphisms and weak equivalences in the category of mixed Hodge complexes of sheaves

are evident. There is an exact functor RΓDMHC(S) −→ DMHC taking (VZ,W
QVQ,W

CFCVC)

to (RΓVZ,Dec(WQ)RΓVQ,Dec(WC)FCRΓVC). The filtration Dec(W ) is the filtration decaleé

(see [Del71]), Dec(W )kR
nΓV = RnΓWk−nV .

Definition 4.1.10. A mixed Hodge structure H is (homologically) effective if F 0HC = 0, and

cohomologically effective if F 0HC = HC. The subcategory of (co)homologically effective mixed

Hodge structures is denoted MHSeff (MHSeff).

Example 4.1.11. The (co)homology of an algebraic variety is (co)homologically effective. The

dual of a homologically effective mixed Hodge structure is cohomologically effective, and vice-

versa.

Definition 4.1.12. Let V be a pure Hodge structure of weight n. A polarization of V is a

graded-symmetric bilinear form S(−,−) on V whose complexification descends to a pairing V pqC ⊗

V qpC −→ C satisfying ip−qS(v, v) > 0 for v ∈ V pqC .
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Example 4.1.13. Let X be a smooth projective variety, and H a hyperplane section. Then

Hn(X) has a canonical polarization given as follows: let α, β ∈ Hn(X); write them as α =

[H]n−aα′ and β = [H]n−bβ′, with a and b minimal. Then

S(α, β) = (−1)(
a+b
2 )
∫
X

α ∪ β.

4.1.14. Let π : X −→ C be a smooth projective family of complex algebraic varieties over a

curve. To each t ∈ C we can assign a pure Hodge structure of weight n, Hn(Xt); by the work of

Griffiths ([Gri68a], [Gri68b], [Gri70]), this can be arranged into a vector bundle V = Rnπ∗QX with

filtered complexification F .VC; the hyperplane class induces a polarization S on V. This data is

the prototypical example of a polarized variation of Hodge structure of weight n.

4.2. Limit Hodge Structure

Let V be a polarized variation of Hodge structure of weight n over the puncture disk

D∗. There is a canonical extension of the vector bundle over D; the new fiber is called the

nearby cycles of the degeneration. Schmid developed a technique to canonically (up to choice

of coordinate on D) endow the new fiber with mixed Hodge structure.

The idea is to exhibit the flag F as obtained from a map to a flag variety, and compute a

limit in this flag variety.

Definition 4.2.1 (Griffiths). Let VZ be a lattice, hpq integers such that
∑
p+q=n h

pq = rkV , and

S a bilinear form V ⊗2 −→ Q. The polarized flag variety for (V, S) is Ď = O(VC, S)/B(VC, S)

(where B(VC, S) is a Borel subgroup of O(VC, S), the elements of Aut(VC) preserving the form).

The Hodge flag variety D is the collection of F . ⊂ Ď such that (V, F ., S) is a polarized

variation of Hodge structure of weight n; this is a closed condition, so D ⊂ Ď is a closed algebraic

variety. The period domain is P = D /O(VZ, S).

Definition 4.2.2. Let T be a smooth complex variety. A polarized variation of Hodge structure

on T is a locally liftable map Φ : T −→ D such that the induced filtered vector bundle with lattice

satisfies

∇Fn ⊂ Fn−1 ⊗ Ω1.

The map Φ is called the period mapping.
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4.2.3. Assume that the polarized variation of Hodge structure V comes from a smooth projective

family of algebraic varieties over the puncture disk D∗. The existence of local liftings gives a map

Φ̃ : h −→ D lifting Φ. The deck transformation group exhibits T as translation by 1 in h, and this

induces an action (also denoted T ) on D.

The monodromy operator T is quasi-unipotent (due to a theorem of Borel); by base-

changing if necessary, we may assume it is unipotent. Then the monodromy logarithm

N = log T =
∑

(−1)k(1− T )k/k ∈ g = Lie Aut(VC, S)

is nilpotent. Define

Ψ̃(s) = e−sN Φ̃(s).

This new map descends to a map Ψ : D∗ −→ P.

Theorem 4.2.4 (Schmid). The map Ψ extends over D, and (N,W (N)[n],Ψ(0)) (where

W (N)[n]i = kerNn−i) gives a polarized mixed Hodge structure on VZ.

4.2.5. Steenbrink gives an alternate construction (see [Ste76a]), using the sheaf of nearby cycles.

4.2.6. Let f : X −→ S be a proper 1-parameter degeneration, with special fiber X0 −→ 0. Equip S

with compactification log structure along 0, and X −→ S with the pullback log structure.

Definition 4.2.7. Assume S is an analytic disk, j : σ −→ S the embedding of σ = S \ 0, and let

j : 〈 −→ σ be the universal cover; write k = j ◦ j.

The nearby cycles of a sheaf F of abelian groups on Xσ is the sheaf ψfF of abelian

groups on X0 given by i∗Rk∗k
∗F .

X〈 Xσ X X0

〈 σ S 0

j j i

f

j j i

Lemma 4.2.8. (i) H.ψfZ ' H .ZXs for s 6= 0.

(ii) ψfQ ' S.(O ⊗Q −→Mf ⊗Q)

(iii) ψfC ' Ω.X/S(logX0/0)
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Proof. Part i is obvious, and the others follow from theorem 2.4.4 and theorem 2.4.14.

Definition 4.2.9. The limit mixed Hodge complex of f is

RΓ(RψfZ, S.(O ⊗Q −→Mf ⊗Q),Ω.X/S(logX0/0))

.

4.3. Mixed Hodge Modules

4.3.1. The theory of mixed Hodge modules lifts mixed Hodge structures to the relative setting:

one should think of a mixed Hodge module as a “sheaf of mixed Hodge structures.”

4.3.2. We will not give a formal review of the theory here, or even the complete definition; we will

only state some basic properties that we need. For the original sources, see [Sai86a], [Sai86b]; for a

(relatively) concise introduction, see [Sch14].

For every scheme X/C there is a category MHM(X), and a six functors plus vanishing

cycle formalism. The category MHM(SpecC) is identified with MHS(Q), and Deligne’s

canonical mixed Hodge structure on the cohomology of a scheme X is canonically Rf∗f
∗Q. The

constructions of Schmid and Steenbrink are realized using the vanishing cycle formalism. If X is

smooth, then Ext1(f∗Q, f∗Q(1)) is canonically identified with O∗X ⊗Q.

4.4. 1-Hodge Structures

Definition 4.4.1. A (co)homologically effective mixed Hodge structure H is called

(co)homological 1-Hodge if F−1HC = HC (F 2HC = 0). The full subcategory of

(co)homological 1-Hodge structures is denoted MHS1 (MHS1).

Proposition 4.4.2. The inclusions MHS1 ⊂ MHSeff and MHS1 ⊂ MHSeff admit left adjoints,

denoted Alb∨ and Alb, called the cohomological and homological Albanese, respectively.

Proof. Standard.
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CHAPTER V

1-MOTIVES

5.0.1. In [Del74], Deligne introduces an abelian category of mixed motives generated by curves,

along with Hodge, étale, and Betti realizations. After Voevodsky’s construction of a triangulated

category of mixed motives, Orgogozo [Org04] gave an embedding of the derived category of

Deligne 1-motives into the Voevodsky category.

5.1. 1-motives

In this section, k is a field with separable closure k and Λ a ring of coefficients.

Definition 5.1.1. A semi-abelian variety over k is an extension G of an abelian variety by an

algebraic torus. A lattice L over k is a finitely generated torsion-free commutative group scheme

over k.

A 1-motive over k is a tuple (L,G, u) with L a lattice and G a semi-abelian variety over k,

such that u : L(k) −→ G(k) is a homomorphism of groups. We usually denote the tuple [L
u−→ G].

The category of 1-motives over k, with obvious morphisms, is denoted M1(k); because

cokernels can be torsion, it is not abelian. Tensoring the morphisms with Q gives the category of

1-motives over k up to isogeny, denoted M1(k;Q).

Example 5.1.2. Let C be a smooth projective curve over an algebraically closed field k. Then

the motivic cohomology of C is H0
M(C) = [SpecO(C) −→ 0], H1

M(C) = [0 −→ Pic0(C)], and

H2
M(C) = [0 −→ Gm]. If C = C \ S with C smooth and projective, then H1

M(C) = [ZS −→ Pic0(C)],

where u : ZS −→ Pic0(C) is the kernel of the map ZS −→ Pic(C) −→ Z.

Theorem 5.1.3. Let k be a perfect field. Then the functor DM1(k;Q) −→ DM ét(k;Q) given by

[L −→ G] 7→ Sch(−;L) −→ Sch(−;G) is fully faithful with essential image the thick subcategory

generated by motives of curves.

Proof. See [Org04] or [Bar07].

5.1.4. We thus have realization functors for M1(k;Q). Deligne gives independent definitions for

these; they are verified to agree in the case of Hodge realization ([Vol12]).

30



Theorem 5.1.5. The functor RHodge :M1(C;Q) −→MHS1(Q) is an equivalence.

Proof. Using Deligne’s definition of Hodge realization, see [Del74].

Conjecture 5.1.6 (Deligne). Let H be a 1-mixed Hodge structure “of geometric origin;” then H

can be obtained as the Hodge realization of a 1-motive over k.

Remark 5.1.7. Theorem 1.2.16 can be interpreted as a proof of the conjecture for H the

Albanese of the limit Hodge structure.
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CHAPTER VI

MOTIVES

6.0.1. In topology, Brown representability implies that every Eilenberg-Steenrod cohomology

theory is determined by its value over a point; the (triangulated) category of cohomology theories

is thus DAb.

For Weil cohomology theories of schemes, the situation is somewhat more complicated. We

briefly describe the background required for later chapters.

6.1. Homotopy-Invariant and Transfer for Sheaves

Definition 6.1.1. Let S be a scheme. A presheaf F on Sm /S is homotopy-invariant if the

canonical map pr∗ : F (−× A1)←− F (−) is an isomorphism of sheaves.

Definition 6.1.2. Let k be a field and X,Y schemes over S. An elementary finite

correspondence is a integral subscheme γ of X × Y such that prX : γ −→ X is an isomorphism

and prY : γ −→ Y is finite.

The finite correspondences Cork(X,Y ) from X to Y are the free abelian group

generated by the elementary finite correspondences. Given γ ∈ Cork(X,Y ) and δ ∈ Cork(Y,Z) we

can form the composition γ ◦ δ = pr(X×Z)∗(pr∗X×Y γ ∩ pr∗Y×Z δ).

The category whose objects are smooth schemes and morphisms are finite correspondences

is denoted Cork.

A presheaf with transfers on Sm /k is a presheaf on the category Cork.

Proposition 6.1.3. O∗ has a natural structure of homotopy-invariant sheaf with transfers.

Proof. Nm gives the transfer structure; homotopy-invariance is obvious.

6.2. Nisnevich Topology

Definition 6.2.1. Let X be a scheme. A Nisnevich covering space of X is a morphims Y −→

X such that Y −→ X is étale and every fiber Yx −→ x admits a section.

Example 6.2.2. Let X be over an algebraically closed field k. Then Nisnevich covers and étale

covers are the same.
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Proposition 6.2.3. A Nisnevich covering space admits a constructible section, i.e., a

stratification with sections over the open strata.

Proof. Obvious from the definition.

Proposition 6.2.4. Let X be a smooth scheme over a perfect field and F a homotopy-invariant

Nisnevich sheaf with transfers. Then H .(XZar;F ) ∼= H .(XNis;F ).

Proof. See [MVW06], 13.9.

6.3. cdh Topology

Definition 6.3.1. An abstract blow-up is a proper birational morphism.

Definition 6.3.2. The cdh topology is the Grothendieck topology generated by abstract blow-

ups and Nisnevich covers.

Proposition 6.3.3 ([MVW06] 13.27). Let X be a smooth scheme over a perfect field and F a

homotopy-invariant Nisnevich sheaf with transfers. Then H .(XNis;F ) ∼= H .(Xcdh;F cdh).

6.4. Voevodsky Motives

Definition 6.4.1. Let k be a perfect field and Λ a ring. The category of effective Voevodsky

(étale) motives is DM eff(,ét)(k; Λ) = D Sh(Cork,Nis (ét); Λ)/
〈
F ←− F (−× A1)

〉
.

The category of effective (étale) Voevodsky motives without transfers is DAeff(,ét)(k; Λ) =

D Sh(Smk,Nis (ét); Λ)/
〈
F ←− F (−× A1)

〉
.

Proposition 6.4.2. The Yoneda maps Cork −→ DM eff(,ét) and Smk −→ DAeff(,ét) gives a collection

of compact generators for each; in particular, every motive F has a resolution by representables.

Further, the Yoneda map is compatible with the monoidal structure, and this induces on

DM eff(,ét) and DAeff(,ét) a triangulated tensor structure.

Proof. See [MVW06] chapter 8 and its appendix 8A.

Proposition 6.4.3. If Λ contains Q, the “add transfers” map DAeff,ét −→ DM eff,ét is an

equivalence.
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Proof. See [Ayo] appendix B.

Definition 6.4.4. Let Deff = DM eff(,ét) or DAeff(,ét). Then the Voevodsky, or non-effective

Voevodsky, or stable Voevodsky, (étale) motives are the category D = DM (ét) or DA(ét) given by

inverting the Tate motive cone(pt −→ Gm) under the tensor product.

Proposition 6.4.5. Let X = Spec k[P ] be a fs toric variety and j : T = Spec k[P+] ↪−→ X the

inclusion of its dense torus. Then (j∗O∗)cdh ' Rjcdh
∗ O∗.

Proof. We may replace X with its germ at a point in the toric boundary; X is then the spectrum

of a smooth local ring and T is its generic point. The result is then immediate from the fact the

O∗ is homotopy-invariant with transfers, so Hi(TZar;O∗) ∼= Hi(TNis;O∗), which is zero for i > 0.

6.5. Realizations

There are many functors from DM or DA, corresponding to the various familiar Weil

cohomology theories.

Definition 6.5.1. Let D(C; Λ) be a category of Voevodsky motives. The Betti realization is

the unique tensor-triangulated functor RBetti : D(C; Λ) −→ D(Λ −Mod) satisfying RBetti([X]) =

Csing
. (X(C)) for smooth X.

Definition 6.5.2. Let D(C; Λ), with Λ ⊂ C, be a category of Voevodsky motives. The Hodge

realization is the unique tensor-triangulated functor RHodge : D(C; Λ) −→ DMHS(Λ) taking [X]

to the canonical mixed Hodge complex on its homology.

Definition 6.5.3. Let D(k; Λ), with k perfect and Λ torsion, be a category of Voevodsky motives.

The étale realization is the unique tensor-triangulated functor Rét : D(k; Λ) −→ DRep(Gal(k); Λ)

taking [X] to the canonical chain complex computing étale homology with Λ coefficients.
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Main Results
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CHAPTER VII

LOG MOTIVES

7.1. The Category of Log Motives

Definition 7.1.1. Let k be a field, and Log /k the category of coherent log schemes over k.

The category of log motives with Λ-coefficients over k, written DAlog(k; Λ), is the quotient of

D pSh(Log /k; Λ) by the thick subcategory I generated by

(cdh) Mayer-Vietoris relations in the cdh topology: if U −−� T is a cdh cover, then

[U ×T U ] −→ [U ] −→ [T ]

is in I, where [−] is the representable Λ-presheaf.

(A1) A1-homotopy relation: F (−× A1) −→ F is in I for every F ∈ pSh(Log /k; Λ).

(pt) log relation: Gm −→ A1(log 0) is in I, where A1(log 0) = Spec(xN −→ k[x]).

(log) change of log structure relation: if T −→ S is a map of log schemes over X and S′ −→ S is an

isomorphism on underlying schemes, then [T ′] −→ [T ]⊕ [S′] −→ [S] is in I.

Remark 7.1.2. Replacing Log with the category of fine or fs log schemes, or with coherent or

saturated virtual log schemes, gives the same category.

7.1.3. There is an obvious functor Φ : DA(k; Λ) −→ DAlog(k; Λ).

Theorem 7.1.4. Assume Λ contains Q. Then the functor Φ is an equivalence.

Proof. We must show

(a) Φ is fully faithful, and

(b) Φ is essentially surjective.

In fact, (a) implies (b), by induction on dimension: if it is zero dimensional, then M+ =

k∗Zn so the corresponding Voevodsky motive is [Gnm].

In higher dimension, M+ is generically constant, so we may induct using cdh blowup

triangles. Here fully faithfulness is assumed so as to ensure the maps between objects in the

essential image (in this triangle) are also in the image.
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To prove (a), it suffices to notice the category of Voevodsky motives is rigid, and to show

that RHom(−,Λ(n)) on DA(k; Λ) extends to DAlog(k; Λ).

We give the construction for any log scheme X with smooth underlying scheme; these

generate DAlog. Consider M+ as a motivic sheaf over X, so that it can be evaluated on any

scheme smooth over X. Then compute RΓ(XNis, S
nM+); that this agrees in the case of trivial

log structure follows from the fact that Sn[X] = [SnX].

Remark 7.1.5. If we had an understanding of the meaning of exterior algebra over the integers,

we could remove the condition that Q ⊂ Λ.

Conjecture 7.1.6. Let X be a toric variety, and let X be the X equipped with the

compactification log structure induced by the toric boundary.

Let F be a log motive. Then the restriction map F (X) −→ F (T ) is a quasi-isomorphism.

Remark 7.1.7. The conjecture becomes true if F is instead a Kummer étale `-adic sheaf;

see [Ill02].

The conjecture holds in the case X = AN by the relation (pt), or if X is fs and F = M+
cdh

by proposition 6.4.5.

Lemma 7.1.8. Let F be a log motive over k, and assume Conjecture 7.1.6 for F .

Then F satisfies acyclicity of log blow-ups: if S̃ −→ S is a log blowup of a log smooth f.s.

log scheme over k, then F (S̃)←− F (S) is acyclic.

Proof. Using the Mayer-Vietoris relations, we are reduced to the case that S̃ −→ S admits a global

chart, in which case it can be expressed as a pullback square

S̃ BlI AP

S AP

y

where P is a f.s. monoid and I is an ideal of P .
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Factoring this square vertically into strict and change-of-log structure, we obtain:

S̃ BlI AP

(S̃)S (BlI AP )AP

S AP

The upper square is change-of-log structure, so has acyclic image under F . The lower is by

Nisnevich descent equivalent to

(Z̃)Z (BlI AP )AP

Z AP

where Z is the center of the log blowup; this latter is an abstract blowup square, and has acyclic

image under F . We are thus reduced to showing that BlI AP −→ AP has acyclic image under F .

We mimic the proof for Kummer étale sheaves given in [Ill02]: let X = AP , X̃ = BlI AP ,

with blow-down map π. Set K = cone(π∗FX̃ −→ FX). We wish to show K ' 0.

By induction on rkP we may assume that K ' 0 away from the vertex 0 = V (P ), so that

RΓ(X;K) ' RΓ(0;K0). Applying the conjecture, we have that RΓ(X;K) = RΓ(X∗;KX∗); over

X∗ we know K is zero.

Corollary 7.1.9. Let X be a log motive. Then T 7→ RΓcdh(T × X,π∗2M
+
X ) satisfies acyclicity

under log blowups.

Corollary 7.1.10. RΓ(−;MψtX) ∼= RΓ(−;MψtX̃
).
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CHAPTER VIII

1-MOTIVES OF VIRTUAL LOG SCHEMES

In this section, all schemes are over C and all mixed Hodge modules are algebraic. For

f : X −→ A1 a regular function, ψf always refers to the functor of nearby cycles of mixed Hodge

modules or perverse sheaves; in particular, ψ
Ch(Perv)
f = Rψ

Ch(Sh)
f [−1].

8.1. Limit 1-motives

8.1.1. Let τ : X −→ pt be a log smooth morphism. We write ψX for the pullback

ψX X

ptsp pt

y

sp

Choosing an isomorphism t : pt
∼−→ Spec(εN

0−→ k) gives an isomorphism ptsp ∼−→ Gm, sending the

coordinate on Gm to (sp ◦t)[(ε), and a fiber ψtX.

Definition 8.1.2. Let f : X −→ A1(log 0) be the virtualization of a log smooth morphism. The

limit 1-motive (up to isogeny) of f is the complex

ψ(1)[X] = RΓcdh(ψsatX ×−,M)⊗Q

equipped with the finite monodromy, the action of Ẑ(1) lifted from RΓcdh(ψp satX × −,M), and

unipotent monodromy logarithm N : ψ(1)[X](1) −→ ψ(1)[X] defined by

RΓcdh(ψsatX ×−,M)(1)⊗Q

' RΓcdh(ψp satX ×−,M)(1)⊗Q

δ(1)−−→ RΓcdh(ψp satX ×−, µ[1])⊗Q

−→ RΓcdh(ψp satX ×−,O∗)⊗Q

−→ RΓcdh(ψp satX ×−,M)⊗Q

' RΓcdh(ψsatX ×−,M)⊗Q.
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Let 1p sat : ψp satX −→ Xp sat be the obvious morphism. Here δ is the composition of the

connecting homomorphism in

Q t−→M(ψp satX)Xp sat
⊗Q

(1p sat)
[

−−−−−→Mψp satX ⊗Q δ−→ Q[1],

with the projection Q −→ Q/Z.

8.2. Limit Mixed Hodge Modules

8.2.1. Let M be a mixed Hodge module on X and f ∈ OX a function; let X0 = V (f). Then

the mixed Hodge module of nearby cycles ψfM in MHM(X0) is equipped with the monodromy

operator: the map N(1) gives a nilpotent endomorphism of ψfM . Terms of the weight filtration

on ψfM are given by the kernels of powers of N(1).

If M = QX and f : X −→ A1 is a semistable degeneration, then Steenbrink ([Ste76b]) has

computed that

rat kerN(1)iψfM = τ
Ch(Sh)
≤− dimX0+i ratψfM ,

so

rat GrW2i ψfM =

i∧(
Λ[−1]

)
[dimX0]. (8.2.1.1)

where Λ = NmX0∗QNmX0
/QX0

.

8.2.2. Let M be the variation of mixed Hodge structure over Gm given by [t] ∈ O∗Gm ∼=

Ext1
Gm(Z(−1),Z), so that F 1Mt = (v0 + tv2)C, where v2i generates Z(−1). The monodromy

operator is given by

T =

1 1

0 1

 .

By [Sch73], in this case the nilpotent orbit is actually constant, so the limit Hodge filtration

ψtM is simply

F •ψtM = (e−t log T · F •Mt)|t=0

so that F 1ψtM = (v0 + v2)C, which gives a splitting of ψtM .
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8.3. Main Result

Theorem 8.3.1. Let t : X −→ A1(log 0) be a proper log smooth degeneration over C.

Then the Hodge realization of ψ
(1)
t [X+] agrees with the 1-Hodge component of the limit

Hodge structure Alb∨RΓψtQX(1) of [Ste76b].

Proof. First we show that sat∗Mψsat
t X [−1] ∼= RHom(Q(−1), ψtQ). We abuse notation,

occasionally writing T for T where it will not cause confusion.

8.3.2. We reduce to the case that t is semistable and ψtX is saturated: by lemma 2.5.5, after

log blow-up we obtain a semistable family. But lemma 7.1.9 implies the 1-motive of the two

degenerations are the same. The morphism ψsat
t X −→ ψtX induces an isomorphism on limit

1-motives by definition, and the corresponding map on limit Hodge structures induces an

isomorphism, also by definition; see [Ste76b] for details.

8.3.3. We show that RHom(Q(−1), ψtQ) is constructibly concentrated in degree-1.

Let X0 = V (t), with trivial log structure. Then we have a short exact sequence of mixed

Hodge modules on X0

ψtQX ↪−→ φtQX −−� QX0
(8.3.3.1)

Applying RHom(Q(−1),−) with (8.2.1.1) to the sequence (8.3.3.1) we obtain

QX0 [−1] −→ RHom(Q(−1), ψtQX) −→ Λ[dimX0 − 1](−1) −→

This expresses RHom(Q(−1), ψtQX) (a perverse sheaf) as constructibly concentrated in degree-

(dimX0 − 1).

8.3.4. Next we construct a canonical map

RΓφ : ψ
(1)
t

[
X+
]
−→ RΓRHom(Q(−1), ψtQX).

Consider first the map

φX : O∗X [−1] RHom(QX(−1),QX) RHom(QX(−1), j∗j
∗QX)

s [s]

'
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where j is the open embedding of U = X \ X0 into X, which takes an invertible function f and

uses it to parameterize an extension Ext1(Q,Q(1)) over U , then extends to X.

We can compose the restriction along i : X0 ↪−→ X, i−1φX , with the canonical map

j∗j
∗QX −→ ψtQX :

φ : i−1O∗X [−1] −→ RHom(QX(−1), ψtQX)

If s restricts to 1 over X0, then s+ z · (1− s) gives a section of

Ext1(QX×A1(−1),pr∗1 ψtQX).

The section gives a family of variations of Hodge structure parameterized by A1; all such are

constant, so the fibers z = 0 (given by φ(s)) and z = 1 (given by φ(1)) are canonically identified.

Thus φ(s) is split, and φ factors through MX0 = i−1O∗X/ ker i∗.

Furthermore, φ(t) = φ(1) = Q(−1)⊕ψtj∗j∗QX , as φ(t) ∈ Ext1(Q(−1), j∗QX) is the pullback

from φA1(t) ∈ Ext1
Gm(Q(−1),Q), so ψtφ(t) is the pullback of ψtφA1(t), which is split by 8.2.2.

Thus φ factors through a map

φ : MψtX −→ RHom(QX(−1), ψtQX).

Applying sheaf cohomology and extending in the obvious way to SchC gives the desired map RΓφ.

8.3.5. Now we show that φ is an isomorphism.

We have the diagram

O∗X0
Ext1(QX0(−1),QX0)

MψtX Ext1(QX0
(−1), ψtQX)

ΛψtX Ext1(QX0
(−1), φtQX)

∼

φ

π

We are thus reduced to showing that π is an isomorphism. But this is immediate: φtQX is a

direct sum of pure Tate modules, so by weights Ext1(Q(−1), φtQX) = Ext1(Q(−1),Λ(−1)[−1]) =

Λ. Any section s = (si)1≤i≤r of Λ can be realized from MψtX as fs = fs11 · · · fsrr , where t =

f1 · · · fr.
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