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DISSERTATION ABSTRACT

Arunima Bhattacharya

Doctor of Philosophy

Department of Mathematics

June 2019

Title: Regularity of Fourth and Second Order Nonlinear Elliptic Equations

In this thesis, we prove regularity theory for nonlinear fourth order and

second order elliptic equations. First we show that for a certain class of fourth

order equations in the double divergence form, where the nonlinearity is in the

Hessian, solutions that are C2,α enjoy interior estimates on all derivatives. Next,

we consider the fourth order Lagrangian Hamiltonian stationary equation for all

phases in dimension two and show that solutions, which are C1,1 will be smooth

and we also derive a C2,α estimate for it. We also prove explicit C2,α interior

estimates for viscosity solutions of fully nonlinear, uniformly elliptic second order

equations, which are close to linear equations and we compute an explicit bound for

the closeness.

This dissertation includes previously published co-authored material.
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CHAPTER I

INTRODUCTION

In this thesis, we discuss the regularity of second and fourth order nonlinear

partial differential equations that arise naturally in differential geometry. In

particular, we study the fourth order Lagrangian Hamiltonian stationary equation

and solutions of fourth order nonlinear elliptic equations in the double divergence

form; for example, critical points of convex or concave functionals defined on

Hessian spaces. We also study fully nonlinear second order equations which are

neither convex nor concave but are close to linear equations.

Chapter two introduces functionals of the form (2.40) defined on the space of

matrices. The Euler-Lagrange form of such functionals are fourth order nonlinear

equations of the double divergence form that may not necessarily be factored into

second order operators. In section (2.2) we prove estimates for the bounded mean

oscillations of solutions of constant coefficient fourth order elliptic equations in the

double divergence form and in section (2.3) we prove Schauder type estimates for

solutions of linear fourth order elliptic equations in the double divergence form.

Combining the above two results we prove our main result in section (2.4), i.e, we

prove smoothness and derive interior estimates for solutions of a certain class of

Euler Lagrange equations that arise from functionals of the form (2.40). In section

(2.5) we show some important applications of our result. Much of this chapter

draws from the paper [1].

Chapter three introduces the second order special Lagrangian equation (3.2)

and the fourth order Lagrangian Hamiltonian stationary equation (3.3). In section

(3.2), we prove interior Schauder estimates for solutions of the non homogeneous

special Lagrangian equation where the phase is a Cα function and lies in the
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sub-critical region. Using this result along with regularity results for the special

Lagrangian equation with a supercritical phase, we prove our main results in

section (3.3) and section (3.4), i.e., we prove that C1,1 solutions of the Hamiltonian

stationary equation, for all phases in dimension two, are smooth with uniform

interior C2,α estimates. Much of this chapter draws from the paper [2].

Chapter four introduces the theory of a priori estimates for viscosity solutions

of second order equations with convexity and uniform ellipticity and how the

structure of F plays a key role in deriving higher order estimates for fully nonlinear

equations of the form (4.2 and 4.1). We consider viscosity solutions of fully

nonlinear, uniformly elliptic equations that are neither convex nor concave but

are close to linear equations and in section (4.2), we derive an explicit formula to

compute the distance between (4.1) and the Laplace equation and also construct

a quadratic polynomial that separates from u by a distance of r2+α on the ball of

radius r. Using this result along with results involving W 2,p estimates for concave

equations [3] we prove our main theorems in section (4.3) and section (4.4), i.e, we

derive C2,α interior estimates for (4.2 and 4.1) along with computing an explicit

bound for the closeness. Much of this chapter draws from the paper [4].
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CHAPTER II

REGULARITY BOOTSTRAPPING: 4TH ORDER EQUATIONS

2.1. Background and Introduction

In this chapter, we develop Schauder and bootstrapping theory for solutions

to fourth order non linear elliptic equations of the following double divergence form

∫
Ω

aij,kl(D2u)uijηkldx = 0, ∀η ∈ C∞0 (Ω) (2.1)

in B1 = B1(0). For the Schauder theory, we require the standard Legendre-

Hadamard ellipticity condition,

aij,kl(D2u(x))ξijξkl ≥ Λ|ξrs|2 (2.2)

while in order to bootstrap, we will require the following condition:

bij,kl(D2u(x)) = aij,kl(D2u(x)) +
∂apq,kl

∂uij
(D2u(x))upq(x) (2.3)

satisfies

bij,kl(D2u(x))ξijξkl ≥ Λ1 ‖ξ‖2 . (2.4)

Our main result is the following: Suppose that conditions (2.1) and (2.4) are met

on some open set U ⊆ Sn×n (space of symmetric matrices). If u is a C2,α solution

with D2u(B1) ⊂ U , then u is smooth on the interior of the domain B1.
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One example of such an equation is the Hamiltonian Stationary Lagrangian

equation, which governs Lagrangian surfaces that minimize the area functional

∫
Ω

√
det(I + (D2u)T D2u)dx (2.5)

among potential functions u. (cf. [5], [6, Proposition 2.2]). The minimizer satisfies

a fourth order equation, that, when smooth, can be factored into a a Laplace type

operator on a nonlinear quantity. Recently in [7], the authors have shown that a

C2 solution is smooth. The results in [7] are the combination of an initial regularity

boost, followed by applications of the second order Schauder theory as in [3].

More generally, for a functional F on the space of matrices, one may consider

a functional of the form ∫
M

F (D2u)dx.

The Euler-Lagrange equation will generically be of the following double-divergence

type:

∂2

∂xi∂xj
(
∂F

∂uij
(D2u)) = 0. (2.6)

(2.6) need not factor into second order operators, so it may be genuinely a fourth

order double-divergence elliptic type equation. It should be noted that in general,

(2.6) need not take the form of (2.1). It does when F (D2u) can be written as a

function of D2uTD2u (as for example (3.3)). Our results in this chapter apply to a

class of Euler-Lagrange equations arising from such functionals. In particular, we

will show that if F is a convex function of D2u and a function of D2uTD2u (such as

3.3 when |D2u| ≤ 1) then C2,α solutions will be smooth.

The Schauder theory for second order divergence and non-divergence type

elliptic equations is by now well-developed, see [8] , [9] and [3]. For higher order
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non-divergence equations, Schauder theory is available, see [10]. However, for higher

order equations in divergence form, much less is known. One expects the results to

be different. For second order equations, solutions to divergence type equations

with Cα coefficients are known to be C1,α, [8, Theorem 3.13], whereas for non-

divergence equations, solutions will be C2,α [9, Chapter 6]. Recently, in [11], the

authors have obtained general Schauder theory results for parabolic equations

(of order 2m) in divergence form, where the time coefficients are allowed to be

merely measurable. Their proof (like ours) is in the spirit of Campanato techniques,

but requires smooth initial conditions. Our result is aimed at showing that weak

solutions are in fact smooth. Classical Schauder theory for general systems has

been developed, [12, Chapter 5,6 ]. However, it is non-trivial to apply the general

classical results to obtain the result we are after. Even so, it is useful to focus

on a specific class of fourth order double-divergence operators, and offer random

access to the non-linear Schauder theory for these cases. Regularity for fourth order

equations remains an important developing area of geometric analysis.

Our proof goes as follows: We start with a C2,α solution of (2.1) whose

coefficient matrix is a smooth function of the Hessian of u. We first prove that u ∈

W 3,2 by taking a difference quotient of (2.1) and give a W 3,2 estimate of u in terms

of its C2,α norm. Again by taking a difference quotient and using the fact that

now u ∈ W 3,2, we prove that u ∈ C3,α.

Next, we make a more general proposition where we prove a W 3,2 estimate for

u ∈ W 2,2 satisfying a uniformly elliptic equation of the form

∫
(cij,kluik + hjl)ηjldx = 0
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in B1(0), where cij,kl, hkl ∈ W 1,2(B1) and η is a test function in B1. Using the fact

that u ∈ W 3,2, we prove that u ∈ C3,α and also derive a C3,α estimate of u in terms

of its W 3,2 norm. Finally, using difference quotients and dominated convergence,

we achieve all higher orders of regularity.

Definition 2.1.1. We say an equation of the form (2.1) is regular on U ⊆ Sn×n

when the coefficients of the equation satisfy the following conditions on U :

1. The coefficients aij,kl depend smoothly on D2u.

2.The coefficients aij,kl satisfy (3.16).

3.Either bijkl or −bijkl (given by (2.3)) satisfy (2.4).

The following is our main result.

Theorem 2.1.2. Suppose that u ∈ C2,α(B1) satisfies the following fourth order

equation

∫
B1(0)

aij,kl(D2u(x))uij(x)ηkl(x)dx = 0

∀η ∈ C∞0 (B1(0))

If aij,kl is regular on an open set containing D2u(B1(0)), then u is smooth on Br(0)

for r < 1.

To prove this, we will need the following two Schauder type estimates.

Proposition 2.1.3. Suppose u ∈ W 2,∞(B1) satisfies the following

∫
B1(0)

[
cij,kl(x)uij(x) + fkl(x)

]
ηkl(x)dx = 0 (2.7)

∀η ∈ C∞0 (B1(0))
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where cij,kl, fkl ∈ W 1,2(B1), and cij,kl satisfies (3.16). Then u ∈ W 3,2(B1/2) and

∥∥D3u
∥∥
L2(B1/2)

≤ C(||u||W 2,∞(B1),
∥∥fkl∥∥

W 1,2(B1)
,
∥∥cij,kl∥∥

W 1,2 ,Λ1).

Proposition 2.1.4. Suppose u ∈ C2,α(B1) satisfies (2.7) in B1 where cij,kl, fkl ∈

C1,α(B1) and cij,kl satisfies (3.16).Then we have u ∈ C3,α(B1/2) with

||D3u||C0,α(B1/4) ≤ C(1 + ||D3u||L2(B3/4))

and C = C(|cij,kl|Cα(B1), |fkl|Cα(B1),Λ1, α) is a positive constant.

We note that the above estimates are appropriately scaling invariant: Thus

we can use these to obtain interior estimates for a solution in the interior of any

sized domain.

2.2. Preliminaries

We begin by considering a constant coefficient double divergence equation.

Theorem 2.2.1. Suppose w ∈ H2(Br) satisfies the constant coefficient equation

∫
cik,jl0 wikηjldx = 0 (2.8)

∀η ∈ C∞0 (Br(0)).

Then for any 0 < ρ ≤ r there holds
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∫
Bρ

|D2w|2 ≤ C1(ρ/r)n||D2w||2L2(Br)∫
Bρ

|D2w − (D2w)ρ|2 ≤ C2(ρ/r)n+2

∫
Br

|D2w − (D2w)r|2.

Here (D2w)ρ is the average value of D2w on a ball of radius ρ.

Proof. By dilation we may consider r = 1. We restrict our consideration to the

range ρ ∈ (0, a] noting that the statement is trivial for ρ ∈ [a, 1] where a is some

constant in (0, 1/2).

First, we note that w is smooth [13, Theorem 33.10]. Recall [14, Lemma 2,

Section 4, applied to elliptic case] : For an elliptic 4th order L0

L0u = 0 on BR

=⇒ ‖Du‖L∞(BR/4) ≤ C3(Λ, n) ‖u‖L2(BR) .

We may apply this to the second derivatives of w to conclude that

∥∥D3w
∥∥2

L∞(Ba)
≤ C4(Λ, n)

∫
B1

∥∥D2w
∥∥2
. (2.9)
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For small enough a < 1. Now

∫
Bρ

∣∣D2w
∣∣2 ≤ C5(n)ρn

∥∥D2w
∥∥2

L∞(Ba)

= C5ρ
n inf
x∈Ba

sup
y∈Ba

∣∣D2w(x) +D2w(y)−D2w(x)
∣∣2

≤ C5ρ
n inf
x∈Ba

[
D2w(x) + 2a

∥∥D3w
∥∥
L∞(Ba)

]2

≤ 2C5ρ
n

[
inf
x∈Ba

∥∥D2w(x)
∥∥2

+ 4a2
∥∥D3w

∥∥
L∞(Ba)

]
≤ 2C5ρ

n

[
1

|Ba|
||D2w||2L2(Ba) + 4a2C4||D2w||2L2(Ba)

]
≤ C6(a, n)ρn||D2w||2L2(B1).

Similarly

∫
Bρ

∣∣D2w − (D2w)ρ
∣∣2 ≤ ∫

Bρ

∣∣D2w −D2w(0)
∣∣2

≤
∫
Sn−1

∫ ρ

0

r2
∣∣D3w

∣∣2 rn−1drdφ

= C7ρ
n+2||D3w||2L∞(Ba). (2.10)

Next, observe that (2.8) is purely fourth order, so the equation still holds when a

second order polynomial is added to the solution. In particular, we may choose

D2w̄ = D2w −
(
D2w

)
1

for w̄ also satisfying the equation. Then

D3w̄ = D3w
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so by the Poincare inequality we have

∥∥D3w
∥∥2

L∞(Ba)
=
∥∥D3w̄

∥∥2

L∞(Ba)
(2.11)

≤ C4

∫
B1

∥∥D2w̄
∥∥2

= C4

∫
B1

∥∥D2w −
(
D2w

)
1

∥∥2
.

We conclude from (2.11) and (2.10)

∫
Bρ

∣∣D2w − (D2w)ρ
∣∣2 ≤ C7ρ

n+2C4

∫
B1

∥∥D2w −
(
D2w

)
1

∥∥2
.

Next, we have a corollary to the above theorem.

Corollary 2.2.2. Suppose w is as in the Theorem 2.2.1. Then for any u ∈ H2(Br),

and for any 0 < ρ ≤ r, there holds

∫
Bρ

∣∣D2u
∣∣2 ≤ 4C1(ρ/r)n

∥∥D2u
∥∥2

L2(Br)
+ (2 + 8C1)

∥∥D2(u− w)
∥∥2

L2(Br)
. (2.12)

and

∫
Bρ

∣∣D2u− (D2u)ρ
∣∣2 ≤ 4C2(ρ/r)n+2

∫
Br

∣∣D2u− (D2u)r
∣∣2 (2.13)

+ (8 + 16C2)

∫
Br

∣∣D2(u− w)
∣∣2

10



Proof. Let v = u− w. Then (2.12) follows from direct computation:

∫
Bρ

|D2u|2 ≤ 2

∫
Bρ

|D2w|2 + 2

∫
Bρ

|D2v|2.

≤ 2C1(ρ/r)n||D2w||2L2(Br)
+ 2

∫
Br

|D2v|2

≤ 4C1(ρ/r)n
[
||D2v||2L2(Br)

+ ||D2u||2L2(Br)

]
+ 2

∫
Br

|D2v|2

= 4C1(ρ/r)n
∥∥D2u

∥∥2

L2(Br)
+ 2[1 + 2C1(ρ/r)n]

∥∥D2v
∥∥2

L2(Br)
.

Similarly

∫
Bρ

∣∣D2u− (D2u)ρ
∣∣2 ≤ 2

∫
Bρ

∣∣D2w − (D2w)ρ
∣∣2 + 2

∫
Bρ

∣∣D2v − (D2v)ρ
∣∣2

≤ 2

∫
Bρ

∣∣D2w − (D2w)ρ
∣∣2 + 8

∫
Bρ

∣∣D2v
∣∣2

≤ 2C2(ρ/r)n+2

∫
Br

|D2w − (D2w)r|2 + 8

∫
Bρ

∣∣D2v
∣∣2

≤ 2C2(ρ/r)n+2

 2
∫
Br
|D2u− (D2u)r|2

+2
∫
Br
|D2v − (D2v)r|2

+ 8

∫
Br

∣∣D2v
∣∣2

≤ 4C2(ρ/r)n+2

∫
Br

∣∣D2u− (D2u)r
∣∣2

+
(
8 + 16C2(ρ/r)n+2

) ∫
Br

∣∣D2v
∣∣2 .

The statement follows, noting that ρ/r ≤ 1.

We will be using the following Lemma frequently, so we state it here for the

reader’s convenience.
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Lemma 2.2.3. [8, Lemma 3.4]. Let φ be a nonnegative and nondecreasing

function on [0, R]. Suppose that

φ(ρ) ≤ A
[(ρ
r

)α
+ ε
]
φ(r) +Brβ

for any 0 < ρ ≤ r ≤ R, with A,B, α, β nonnegative constants and β < α. Then for

any γ ∈ (β, α), there exists a constant ε0 = ε0(A,α, β, γ) such that if ε < ε0 we have

for all 0 < ρ ≤ r ≤ R

φ(ρ) ≤ c
[(ρ
r

)γ
φ(r) +Brβ

]
where c is a positive constant depending on A,α, β, γ. In particular, we have for

any 0 < r ≤ R

φ(r) ≤ c

[
φ(R)

Rγ
rγ +Brβ

]
.

2.3. Proofs of the propositions

We begin by proving Proposition 2.1.3.

Proof. By approximation, (2.7) holds holds for η ∈ W 2,2
0 . We are assuming that

u ∈ W 2,∞, so (2.7) must hold for the test function

η = −[τ 4uhp ]−hp

where τ ∈ C∞c is a cutoff function in B1 that is 1 on B1/2, and the superscript

hp refers to taking difference quotient in the ep direction. We choose h small

enough after having fixed τ , so that η is well defined. We have

∫
B1

(cij,kluij + fkl)[τ 4uhp ]
−hp
kl dx = 0

12



For h small we can integrate by parts with respect to the difference quotient to get

∫
B1

(cij,kluij + fkl)hp [τ 4uhp ]kldx = 0.

Using the product rule for difference quotients we get

∫
B1

[(cij,kl(x))hpuij(x) + cij,kl(x+ hep)u
hp
ij + (fkl)hp ][τ 4uhp ]kldx = 0

Letting v = uhp , differentiating the second factor gives:

∫
B1

[
(cij,kl(x))hpuij(x) + cij,kl(x+ hep)vij(x) + (fkl)hp(x)

]
×

 τ 4vkl + 4τ 3τkvl + 4τ 3τlvk

+4v (τ 3τkl + 3τ 2τkτl)

 (x)dx = 0

from which

∫
B1

τ 4cij,kl(x+ hep)vijvkldx = −
∫
B1

[(cij,kl(x))hpuij(x)+

cij,kl(x+ hep)vij(x) + (fkl)hp(x)]

×

 4τ 3τkvl + 4τ 3τlvk

+4v (τ 3τkl + 3τ 2τkτl)

 dx (2.14)

−
∫
B1

[(cij,kl(x))hpuij(x) + (fkl)hp(x)]τ 4vkldx.

13



First we bound the terms on the right side of (2.14). Starting at the top:

∫
B1

[
(cij,kl(x))hpuij(x) + (fkl)hp(x)

]
×

 4τ 3τkvl + 4τ 3τlvk

+4v (τ 3τkl + 3τ 2τkτl)

 dx
≤

[
‖u‖2

W 2,∞(B1) + 1
] ∫

B1

(∣∣(cij,kl(x))hp
∣∣2 +

∣∣(fkl)hp(x)
∣∣2) dx (2.15)

+ C8(τ,Dτ,D2τ)

∫
B1

(
|Dv|2 + |v|2

)
dx.

Next, by Young’s inequality we have:

∫
B1

cij,kl(x+ hep)vij(x)×

[4τ 3τjvl + 4τ 3τlvj + 4v (τ 3τjl + 3τ 2τjτl)]dx

≤ C9(τ,Dτ,D2τ, cij,kl)

ε

∫
B1

(
|Dv|2 + v2

)
dx+ ε

∫
B1

τ 4
∣∣D2v

∣∣2 dx (2.16)

and also

∫
B1

[
(cij,kl(x))hpuij(x) + (fkl)hp(x)

]
τ 4vkldx

≤ ε

∫
B1

τ 4
∥∥D2v

∥∥2
dx

+
C10

ε
(||u||2W 2,∞(B1), |τ |L∞(B1))

∫
B1

[|(cijkl)hp|2 + |(hjl)hp|2]dx (2.17)

Now by uniform ellipticity (3.16), the left hand side of (2.14) is bounded

below by

Λ

∫
B1

τ 4
∥∥D2v

∥∥2
dx ≤

∫
B1

τ 4cij,kl(x+ hep)vik(x)vkl(x)dx (2.18)
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Combining all (2.14), (2.15) ,(2.17) , (2.16) and (2.18) and choosing ε appropriately,

we get

Λ

2

∫
B1

τ 4
∥∥D2v

∥∥2
dx

≤ C11(||τ ||W 2,∞(B1), ||u||2W 2,∞(B1))(

∫
B1

|(fkl)hp |2 + |cij,kl|2 + |(cij,kl)hp |2)

≤ C12(||τ ||W 2,∞(B1), ||u||2W 2,∞(B1), ||fkl||2W 1,2(B1),
∥∥cij,kl∥∥2

W 1,2(B1)
,Λ).

Now this estimate is uniform in h and direction ep so we conclude that

the difference quotients of u are uniformly bounded in W 2,2(B1/2). Hence u ∈

W 3,2(B1/2) and

||D3f ||L2(B1/2)

≤ 2C12

Λ
(||τ ||W 2,∞(B1), ||u||2W 2,∞(B1), ||fkl||2W 1,2(B1),

∥∥cij,kl∥∥2

W 1,2(B1)
,Λ).

We now prove Proposition 2.1.4

Proof. We begin by taking a difference quotient of the equation

∫
(cij,kluij + fkl)ηkldx = 0

along the direction hm . This gives

∫
[(cij,kl(x))hmuij(x) + cij,kl(x+ hem)uhmij (x) + (fkl)hm ]ηkl(x)dx = 0

15



which gives us the following PDE in uhmij :

∫
cij,kl(x+ hem)uhmij (x)ηkl(x)dx =

∫
q(x)ηkl(x)dx

where

q(x) = −(fkl)hm(x)− (cij,kl(x))hmuij(x)

Note that q ∈ Cα(B1) and cij,kl(x + hem) is still an elliptic term for all x in B1. For

compactness of notation we denote

g = uhm (2.19)

and replace cij,kl(x+ hem) with cij,kl, as the difference is immaterial. Our equation

reduces to ∫
cij,klgijηkldx =

∫
qηkldx (2.20)

Using integration by parts we have

∫
cij,klgijηkldx = −

∫
qlηkdx

= −
∫

(q − q(0))lηkdx

=

∫
(q − q(0))ηkldx

16



Now for each fixed r < 1 we write g = v + w where w satisfies the following

constant coefficient PDE on Br ⊆ B1 :

∫
B1(0)

cij,kl(0)wijηkldx = 0 (2.21)

∀η ∈ C∞0 (Br(0))

w = g on ∂Br

∇w = ∇g on ∂Br.

By the Lax Milgram Theorem the above PDE with the given boundary condition

has a unique solution in the space H2
0 . By combining (2.20) and (2.21) we conclude

∫
Br

cij,kl(0)vijηkldx =

∫
Br

(cij,kl(0)− cij,kl(x))gijηkldx+

∫
Br

qηkldx (2.22)

Now w is smooth (again see [13, Theorem 33.10]), and g = uhm is C2,α, so

v = g−w is C2,α and can be well approximated by smooth test functions in H2
0 (Br).

It follows that v can be used as a test function in (2.22): On the left hand side we

have by (3.16) [∫
Br

cij,kl(0)vijvkldx

]2

≥
[
Λ

∫
Br

|D2v|2dx
]2

.

Defining

ζ(r) = sup{| cij,kl(x)− cij,kl(y)| : x, y ∈ Br} (2.23)

and using the Cauchy-Schwarz inequality we get

[∫
Br

(cij,kl(0)− cij,kl(x))gijvkldx

]2

≤ ζ2(r)

∫
Br

|D2g|2dx
∫
Br

|D2v|2dx.

17



Using Holder’s inequality

[∫
Br

|(q(x)− q(0))vkl(x)| dx
]2

≤
∫
Br

|q(x)− q(0)|2dx
∫
Br

|D2v|2dx

This gives us

Λ2

[∫
Br

|D2v|2dx
]2

≤ ζ2(r)

∫
Br

|D2g|2dx
∫
Br

|D2v|2dx+∫
Br

|q(x)− q(0)|2dx
∫
Br

|D2v|2dx

which implies

Λ2

∫
Br

|D2v|2dx ≤ ζ2(r)

∫
Br

|D2g|2dx+

∫
Br

|q(x)− q(0)|2dx. (2.24)

Using corollary 2.2.2 for any 0 < ρ ≤ r we get

∫
Bρ

∣∣D2g
∣∣2 dx ≤ 4C1(ρ/r)n

∥∥D2g
∥∥2

L2(Br)
+ (2 + 8C1)

∥∥D2v
∥∥2

L2(Br)
(2.25)

Now combing (2.25) and (2.24) we get

∫
Bρ

∣∣D2g
∣∣2 dx ≤ 4C1(ρ/r)n

∥∥D2g
∥∥2

L2(Br)

+
(2 + 8C1)

Λ2

[
ζ2(r)

∫
Br

|D2g|2dx+

∫
Br

|q(x)− q(0)|2dx
]

=

[
(2 + 8C1) ζ2(r)

Λ2
+ 4C1(ρ/r)n

] ∫
Br

|D2g|2dx

+
(2 + 8C1)

Λ2

∫
Br

|q(x)− q(0)|2dx. (2.26)
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Also from Corollary 2.2.2

∫
Bρ

∣∣D2g − (D2g)ρ
∣∣2 dx ≤ 4C2(ρ/r)n+2

∫
Br

∣∣D2g − (D2g)r
∣∣2 dx

+ (8 + 16C2)

∫
Br

∣∣D2v
∣∣2 dx

≤ 4C2(ρ/r)n+2

∫
Br

∣∣D2g − (D2g)ρ
∣∣2 dx

+
(8 + 16C2)

Λ2

[
ζ2(r)

∫
Br

|D2g|2dx+

∫
Br

|q(x)− q(0)|2dx
]
.

Because cij,kl ∈ C1,α we have from (2.23) that

ζ(r)2 ≤ C13r
2α (2.27)

Again q is a Cα function which implies

|q(x)− q(0)| ≤ ‖q‖Cα(B1) |x− 0|α

and ∫
Br

|q − q(0)|2dx ≤ C14 ‖q‖Cα(B1) r
n+2α

So we have

∫
Bρ

|D2g − (D2g)ρ|2 (2.28)

≤ 4C2(ρ/r)n+2

∫
Br

∣∣D2g − (D2g)ρ
∣∣2

+
(8 + 16C2)

Λ2
C13r

2α

∫
Br

|D2g|2

+
(8 + 16C2)

Λ2
C14 ‖q‖Cα(B1) r

n+2α.
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For r < r0 < 1/4 to be determined, we have (2.26)

∫
Bρ

∣∣D2g
∣∣2 ≤ C15

{
[(ρ/r)n + r2α]

∫
Br

∣∣D2g
∣∣2 + r2α+2δ

0 rn−2δ

}
.

Where δ is some positive number. Now we apply [8, Lemma 3.4]. In particular,

take

φ(ρ) =

∫
Bρ

∣∣D2g
∣∣2

A = C15

B = r2α+2δ
0

α = n

β = n− 2δ

γ = n− δ.

There exists ε0(A,α, β, γ) such that if

r2α
0 ≤ ε0 (2.29)

we have

φ(ρ) ≤ C15

{
[(ρ/r)n + ε0]φ(r) + r2α+2δ

0 rn−2δ
}

and the conclusion of [8, Lemma 3.4] says that for ρ < r0

φ(ρ) ≤ C16

{
[(ρ/r)γ]φ(r) + r2α+2δ

0 ρn−2δ
}

≤ C16
1

rn−δ0

ρn−δ
∥∥D2g

∥∥
L2(Br0 )

+ r2α+2δ
0 ρn−2δ

≤ C17ρ
n−δ
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This C17 depends on r0 which is chosen by (2.29) and ‖D2g‖L2(B3/4). So there

is a positive uniform radius upon which this holds for points well in the interior. In

particular, we choose r0 ∈ (0, 1/4) so that the estimate can be applied uniformly

at points centered in B1/2(0) whose balls remain in B3/4(0). Turning back to (2.28),

we now have,

∫
Bρ

|D2g − (D2g)ρ|2 ≤ 4C2(ρ/r)n+2

∫
Br

∣∣D2g − (D2g)ρ
∣∣2 + C18r

2αρn−δ

+ C19 ‖q‖Cα(B1) r
n+2α

≤ 4C2(ρ/r)n+2

∫
Br

∣∣D2g − (D2g)ρ
∣∣2 + C20r

n+2α−δ

Again we apply [8, Lemma 3.4]: This time, take

φ(ρ) =

∫
Bρ

|D2g − (D2g)ρ|2

A = 4C2

B = C20

α = n+ 2

β = n+ 2α− δ

γ = n+ 2α

and conclude that for any r < r0

∫
Br

|D2g − (D2g)ρ|2 ≤ C21

{
1

rn+2α
0

∫
Br0

|D2g − (D2g)r0|2rn+2α + C20r
n+2α−δ

}

≤ C22r
n+2α−δ
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with C22 depending on r0, ‖D2g‖L2(B3/4), ‖q‖Cα(B1) etc. It follows by [8, Theorem

3.1] that D2g ∈ C(2α−δ)/2(B1/4), in particular, must be bounded locally:

∥∥D2g
∥∥
L∞(B1/4)

≤ C23

{
1 +

∥∥D2g
∥∥
L2(B1/2)

}
. (2.30)

This allows us to bound ∫
Br

|D2g|2 ≤ C24r
n

which we can plug back in to (2.28):

∫
Bρ

|D2g − (D2g)ρ|2 ≤ 4C2(ρ/r)n+2

∫
Br

∣∣D2g − (D2g)ρ
∣∣2 + C25r

2αC24r
n

+ C19 ‖q‖Cα(B1) r
n+2α

≤ C26r
n+2α

This is precisely the hypothesis in [8, Theorem 3.1]. We conclude that

∥∥D2g
∥∥
Cα(B1/4)

≤ C27

{√
C26 +

∥∥D2g
∥∥
L2(B1/2)

}
.

Recalling (2.19) we see that u must enjoy uniform C3,α estimates on the interior,

and the result follows.

2.4. Proof of the Main Theorem

The propositions in the previous section allow us to prove the following

Corollary, from which the Main Theorem will follow.
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Corollary 2.4.1. Suppose u ∈ CN,α(B1) , N ≥ 2,and satisfies the following regular

(recall (2.3)) fourth order equation

∫
Ω

aij,kl(D2u)uijηkldx = 0, ∀η ∈ C∞0 (Ω).

Then

‖u‖CN+1,α(Br)
≤ C(n, b, ‖u‖WN,∞(B1)).

In particular

u ∈ CN,α(B1) =⇒ u ∈ CN+1,α(Br)

Case 1 N = 2. The function u ∈ C2,α (B1) and hence also in W 2,∞ (B1) . By

approximation (2.1) holds for η ∈ W 2,∞
0 , in particular, for

η = −[τ 4uhm ]−hm

where τ ∈ C∞c (B1) is a cut off function in B1 that is 1 on B1/2, and superscript

hm refers to the difference quotient. As before, we have chosen h small enough

(depending on τ) so that η is well defined . We have

∫
Ω

aij,kl(D2u)uij
[
τ 4uhm

]
kl
dx = 0.

Integrating by parts as before with respect to the difference quotient, we get

∫
B1

[aij,kl(D2u)uij]
hm [τ 4uhm ]kldx = 0
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Let v = uhm . Observe that the first difference quotient can be expressed as

[aij,kl(D2u)uij]
hm(x) = aij,kl(D2u(x+ hem))

uij(x+ hem)− uij(x)

h
(2.31)

+
1

h

[
aij,kl(D2u(x+ hem))− aij,kl(D2u(x))

]
uij(x)

= aij,kl(D2u(x+ hem))vij(x)

+

[∫ 1

0

∂aij,kl

∂upq
(tD2u(x+ hem) + (1− t)D2u(x))dt

]
vpq(x)uij(x).

We get ∫
B1

b̃ij,klvij[τ
4v]kldx = 0 (2.32)

where

b̃ij,kl(x) = aij,kl(D2u(x+ hem)) + [

∫ 1

0

∂apq,kl

∂uij
(tD2u(x+ hem)+

(1− t)D2u(x))dt]upq(x). (2.33)

Expanding derivatives of the second factor in (2.32) and collecting terms gives us

∫
B1

b̃ij,klvijτ
4vkldx ≤

∫
B1

∣∣∣b̃ij,kl∣∣∣ |vij| τ 2C28(τ,Dτ,D2τ) (1 + |v|+ |Dv|) dx

Now for h small, b̃ij,kl very closely approximates bij,kl, so we may assume h is small.

Applying (2.4)) and Young’s inequality

∫
B1

τ 4Λ1|D2v|2 ≤ C28 sup b̃ij,kl
∫
B1

(
ετ 4|D2v|2 + C32

1

ε
(1 + |v|+ |Dv|)2

)
dx.

That is ∫
B1/2

|D2v|2 ≤ C29

∫
B1

(1 + |v|+ |Dv|)2dx.
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Now this estimate is uniform in h (for h small enough) and direction em, so we

conclude that the derivatives are in W 2,2(B1/2). This also shows that

||D3u||L2(B1/2) ≤ C30

(
||Du||L2(B1),

∥∥D2u
∥∥
L2(B1)

)
.

Remark : We only used uniform continuity of D2u to allow us to take the limit, but

we did require the precise modulus of continuity.

For the next step, we are not quite able to use Proposition 2.1.4 because the

coefficients aij,kl are only known to be W 1,2. So we proceed by hand.

We begin by taking a single difference quotient

∫
B1

[aij,kl(D2u)uij]
hmηkldx = 0

and arriving at the equation in the same fashion as to (2.32) above (this time

letting g = uhm) we have ∫
B1

b̃ij,klgij(x)ηkldx = 0.

Inspecting (2.33) we see that b̃ij,kl is Cα :

∥∥∥b̃ij,kl(x)− b̃ij,kl(y)
∥∥∥ ≤ C31 |x− y|α

where C31 depends on ‖D2u‖Cα and on bounds of Daij,kl and D2aij,kl. As in the

proof of Proposition 2.1.4, for a fixed r < 1 we let w solve the boundary value
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problem

∫
Br

b̃ij,kl(0)wijηkldx = 0,∀η ∈ C∞0 (Br)

w = g on ∂Br

∇w = ∇g on ∂Br

Let v = g − w. Note that

∫
Br

b̃ij,kl(0)vijηkldx =

∫
Br

(
b̃ij,kl(0)− b̃ij,kl(x)

)
gijηkldx.

Now v vanishes to second order on the boundary, and we may use v as a test

function. We get

∫
Br

b̃ij,kl(0)vijvkldx =

∫
Br

(
b̃ij,kl(0)− b̃ij,kl(x)

)
gijvkldx.

As before,

(
Λ

∫
Br

∣∣D2v
∣∣2 dx)2

≤
[

sup
x∈Br

∣∣∣b̃ij,kl(0)− b̃ij,kl(x)
∣∣∣]2 ∫

Br

∣∣D2g
∣∣2 dx∫

Br

∣∣D2v
∣∣2 dx.

Defining

ζ(r) = sup{
∣∣∣b̃ij,kl(x)− b̃ij,kl(y)

∣∣∣x, y ∈ Br} (2.34)

≤ 4αC31r
2α

then ∫
Br

(b̃ij,kl(0)− b̃ij,kl(x))gijvkldx)2 ≤ ζ2(r)

∫
Br

∣∣D2g
∣∣2 ∫

Br

∣∣D2v
∣∣2 .
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So now we have :

∫
Br

∣∣D2v
∣∣2 ≤ ζ2(r)

Λ2

∫
Br

∣∣D2g
∣∣2 .

Using Corollary 2.2.2, for any 0 < ρ ≤ r we get

∫
Bρ

∣∣D2g − (D2g)ρ
∣∣2 ≤ 4C2(ρ/r)n+2

∫
Br

∣∣D2g − (D2g)r
∣∣2

+ (8 + 16C2)

∫
Br

∣∣D2v
∣∣2

≤ 4C2(ρ/r)n+2

∫
Br

∣∣D2g − (D2g)r
∣∣2

+
(8 + 16C2) ζ2(r)

Λ2

∥∥D2g
∥∥2

L2(Br)
. (2.35)

Also by Corollary 2.2.2

∫
Bρ

∣∣D2g
∣∣2 ≤ 4C1(ρ/r)n

∥∥D2g
∥∥2

L2(Br)
+ (2 + 8C1)

∥∥D2v
∥∥2

L2(Br)

≤ 4C1(ρ/r)n
∥∥D2g

∥∥2

L2(Br)
+ (2 + 8C1)

ζ2(r)

Λ2

∥∥D2g
∥∥2

L2(Br)
.

This implies

∫
Bρ

∣∣D2g
∣∣2 ≤ (4C1(ρ/r)n + (2 + 8C1) 42αC2

31r
2α
) ∥∥D2g

∥∥2

L2(Br)
.
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Now we can apply [8, Lemma 3.4] again, this time with

φ(ρ) =

∫
Bρ

∣∣D2g
∣∣2

A = 4C1

α = n

B, β = 0

γ = n− 2δ

ε = (2 + 8C1) 42αC2
31r

2α.

There exists a constant ε0(A,α, γ) such that by chosing

r2α
0 ≤

ε0

(2 + 8C1) 42αC2
31

<
1

4

we may conclude that for 0 < r ≤ r0

∫
Br

∣∣D2g
∣∣2 ≤ C32r

n−2δ

∫
Br0
|D2g|2

rn−2δ
0

. (2.36)

Next, for small ρ < r < r0 we have combining (2.35) (2.34) and (2.36)

∫
Bρ

∣∣D2g − (D2g)ρ
∣∣2 ≤ 4C2(ρ/r)n+2

∫
Br

∣∣D2g − (D2g)r
∣∣2 (2.37)

+
(8 + 16C2) 4α

Λ2

∫
Br0
|D2g|2

rn−2δ
0

C31C32r
n−2δr2α

≤ C33r
n+2α−δ

with C33 depending on ‖D2g‖L2(B3/4) , r0, ε0. Again, we apply [8, Theorem 3.1] to

D2g ∈ C(2α−δ)/2(B1/4). From here, the argument is identical to the argument
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following (2.30). We conclude that

∥∥D2g
∥∥
Cα(B1/4)

≤ C34

{
1 +

∥∥D2g
∥∥
L2(B3/4)

}
.

Substituting g = uhm we see that u must enjoy uniform C3,α estimates on the

interior, and the result follows.

Case 2 N = 3. We may take a difference quotient of (2.1) directly.

∫
Ω

[
aij,kl(D2u)uij

]hm
ηkldx = 0, ∀η ∈ C∞0 (Ω).

(To be more clear we are using a slightly offset test function η(x + hem) and then

using a change of variables, subtracting, and dividing by h.)

We get

∫
B1

[
aij,kl(D2u(x+ hem))uhmij (x) +

∂aij,kl

∂upq
(M∗(x))uhmpq (x)uij(x)

]
ηkl = 0.

where M∗(x) = t∗D2u(x + hm) + (1 − t∗)D2u(x) and t∗ ∈ [0, 1]. Now we are

assuming that u ∈ C3,α(B1), so the first and second derivatives of the difference

quotient will converge to the second and third derivatives, uniformly. We can then

apply dominated convergence, passing the limit as h → 0 inside the integral and

recalling um = v as before, we obtain

∫
B1

[
[aij,kl(D2u(x))vij(x) +

∂apq,kl

∂uij

(
D2u(x)

)
vij(x)upq(x)

]
ηkl = 0

that is ∫
B1

bij,kl(D2u(x))vij(x)ηkl(x) = 0, ∀η ∈ C∞0 (Ω). (2.38)
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It follows that v ∈ C2,α satisfies a fourth order double divergence equation,

with coefficients in C1,α. First, we apply Proposition 2.1.3 :

∥∥D3v
∥∥
L2(B1/2)

≤ C35

(
||v||W 2,∞(B1)

)
(1 + ||bij,kl||W 1,2(B1)).

In particular, u ∈ W 4,2(B1/2). Next, we apply 2.1.4

||D3v||C0,α(B1/4) ≤ C(1 + ||D3v||L2(B1/2)) ≤ C(||u||W 2,∞(B1), |bij,kl||W 1,2(B1))

≤ C36(n, b, ‖u‖C3,α(B1)).

We conclude that u ∈ C4,α(Br) for any r < 1.

Case 3 N ≥ 4. Let v = Dαu for some multindex α with |α| = N −

2. Observe that taking the first difference quotient and then taking a limit yields

(2.38), when u ∈ C3,α. Now if u ∈ C4,α we may take a difference quotient and limit

of (2.38) to obtain

∫
B1

[
bij,kl(D2u(x))uijm1m2(x) +

∂bij,kl

∂upq
(D2u(x))upqm2uij

]
ηkl(x) = 0, ∀η ∈ C∞0 (Ω).

and if u ∈ CN,α, then v ∈ C2,α, so we may take N − 2 difference quotients to obtain

∫
B1

[
bij,kl(D2u(x))vij(x) + fkl(x)

]
ηkl(x) = 0, ∀η ∈ C∞0 (Ω). (2.39)

where

fkl = Dβ
(
bij,kl(D2u(x))uij

)
− bij,kl(D2u(x))Dαuij
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where |β| = |α| − 1. One can check by applying the chain rule repeatedly that fkl is

C1,α. So we may apply Proposition 2.1.3 to (2.39) and obtain that

∥∥D3v
∥∥
L2(B1/2)

≤ C37(‖v‖W 2,∞(B1))(1 + ||bij,kl||W 1,2(B1))

that is

‖u‖WN+1,2(Br)
≤ C38(n, b, ‖u‖WN,∞(B1)).

Now apply Proposition 2.1.4:

||D3v||C0,α(B1/4) ≤ C39(1 + ||D3v||L2(B3/4))

that is

‖u‖CN+1,α(Br)
≤ C40(n, b, ‖u‖WN,∞(B1)).

The Main Theorem follows.

2.5. Critical Points of Convex Functions of the Hessian

Suppose that F (D2u) is either a convex or a concave function of D2u, and we

have found a critical point of ∫
Ω

F (D2u)dx (2.40)

for some Ω ⊂ Rn, where we are restricting to compactly supported variations,

so that the Euler-Lagrange equation is (2.6). If we suppose that F also has the

additional structure condition,

∂F (D2u)

∂uij
= apq,ij(D2u)upq (2.41)
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for a some aij,kl satisfying (3.16), then we can derive smoothness from C2,α, as

follows.

Corollary 2.5.1. Suppose u ∈ C2,α(B1) is critical point of (2.40), where F is

a smooth function satisfying (2.41) with aij,kl satisfying (3.16) and F is uniformly

convex or uniformly concave on U ⊆ Sn×n where U is the range of D2u(B1) in the

Hessian space.

Then u ∈ C∞(Br), for all r < 1.

Proof. If u is a critical point of (2.40), then it satisfies the weak (2.1), for aij,kl in

(2.41). To apply the main Theorem, all we need to show is that

bij,kl(D2u(x)) = aij,kl(D2u(x)) +
∂apq,kl

∂uij
(D2u(x))upq(x)

satisfies (3.16). From (2.41):

∂

∂ukl

(
∂F (D2u)

∂uij

)
= akl,ij(D2u) +

∂apq,ij(D2u)

∂ukl
upq. (2.42)

So

bij,kl(D2u(x))ξijξkl =
∂

∂ukl

(
∂F (D2u)

∂uij

)
ξijξkl ≥ Λ |ξ|2

for some Λ > 0, because F is convex. If F is concave, u is still a critical point of

−F and the same argument holds.

We mention one special case.

Lemma 2.5.2. Suppose F (D2u) = f(w) where w = (D2u)T (D2u). Then

∂F (D2u)

∂uij
= aij,kl(D2u)ukl (2.43)
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Proof. Let

wkl = ukaδ
abubl.

Then

∂F (D2u)

∂uij
=
∂f(w)

∂wkl

∂wkl
∂uij

=
∂f(w)

∂wkl

(
δka,ijδ

abubl + ukaδ
abδbl,ij

)
=
∂f(w)

∂wkl
(δkiujl + ukiδlj)

=
∂f(w)

∂wil
δjmuml +

∂f(w)

∂wkj
ukmδim

=
∂f(w)

∂wil
δjkukl +

∂f(w)

∂wkj
uklδil.

This shows (2.43) for

aij,kl =
∂f(w)

∂wil
δjk +

∂f(w)

∂wkj
δil.
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CHAPTER III

THE HAMILTONIAN STATIONARY EQUATION

3.1. Background and Introduction

In this chapter, we study the regularity of the Lagrangian Hamiltonian

stationary equation, which is a fourth order nonlinear PDE. Consider the function

u : B1 → R where B1 is the unit ball in R2. The gradient graph of u, given by

{(x,Du(x))|x ∈ B1} is a Lagrangian submanifold of the complex Euclidean space.

The function θ is called the Lagrangian phase for the gradient graph and is defined

by

θ = F (D2u) = Im log det(I + iD2u)

or equivalently,

θ =
∑
i

arctan(λi) (3.1)

where λi represents the eigenvalues of the Hessian.

The non homogeneous special Lagrangian equation is given by the following

second order nonlinear equation

F (D2u) = f(x). (3.2)

The Hamiltonian stationary equation is given by the following fourth order

nonlinear PDE

∆gθ = 0 (3.3)
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where ∆g is the Laplace-Beltrami operator, given by:

∆g =
2∑

i,j=1

∂i(
√
detggij∂j)√
detg

and g is the induced Riemannian metric from the Euclidean metric on R4, which

can be written as

g = I + (D2u)2.

Recently, in [7], the authors proved that in any dimension, a C1,1 solution of

the Hamiltonian stationary equation will be smooth with uniform estimates of all

orders if the phase θ ≥ δ + (n − 2)π/2, or, if the bound on the Hessian is small.

In the two dimensional case, using the result in [7], we get uniform estimates for u

when |θ| ≥ δ > 0 (by symmetry). In this chapter, we consider the Hamiltonian

stationary equation for all phases in dimension two without imposing a smallness

condition on the Hessian or on the range of θ, and we derive uniform estimates

for u, in terms of the C1,1 bound which we denote by Λ. We write ||u||C1,1(B1) =

||Du||C0,1(B1) = Λ. Our main results are the following:

Theorem 3.1.1 (Main Theorem 1). Suppose that u ∈ C1,1(B1) and satisfies (3.3)

on B1 ⊂ R2 where θ ∈ W 1,2(B1). Then u is a smooth function with interior Hölder

estimates of all orders, based on the C1,1 bound of u.

Theorem 3.1.2 (Main Theorem 2). Suppose that u ∈ C1,1(B1) and satisfies (3.2)

on B1 ⊂ R2. If f ∈ Cα(B1), then there exists R = R(2,Λ, α) < 1 such that

u ∈ C2,α(BR) and satisfies the following estimate

|D2u|Cα(BR) ≤ C1(||u||L∞(B1),Λ, |f |Cα(B1)). (3.4)
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Our proof goes as follows: we denote

θ(x) = F (D2u(x)) = f(x). (3.5)

We start by applying the De Giorgi-Nash theorem to the uniformly elliptic

Hamiltonian stationary equation (3.3) on B1 to prove that θ ∈ Cα(B1/2). Next

we consider the non-homogeneous special Lagrangian equation (3.2) where θ ∈

Cα(B1/2). Using a rotation of [15] we rotate the gradient graph so that the new

phase θ̄ of the rotated gradient graph satisfies
∣∣θ̄∣∣ ≥ δ > 0. Now we apply the result

in [3] to the new potential ū of the rotated graph to obtain a C2,α interior estimate

for it. On rotating back the rotated gradient graph to our original gradient graph,

we see that our potential u turns out to be C2,α as well. A computation involving

change of co-ordinates gives us the corresponding C2,α estimate, shown in (3.4).

Once we have a C2,α solution of (3.3), smoothness follows by [7, Corollary 5.1].

In two dimensions, solutions to the second order special Lagrangian equation

F (D2u) = C

enjoy full regularity estimates in terms of the potential u [16]. For higher

dimensions, such estimates fail [17] for θ = C with |C| < (n− 2)π/2.

3.2. Proof of the Lemma

We first prove the second Theorem, followed by the proof of the first

Theorem. We prove Theorem 3.1..2 using the following lemma. Recalling (3.5) we

state the following lemma:
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Lemma 3.2.1. Suppose that u ∈ C1,1(B1) satisfies (3.2) on B1 ⊂ R2. Suppose

0 ≤ θ(0) < (π/2− arctan Λ)/4. (3.6)

If θ ∈ C ᾱ(B1), then there exists 0 < α < ᾱ and C0 such that

|D2u(x)−D2u(0)| ≤ C0(||u||L∞(B1),Λ, |θ|Cα(B1)) ∗ |x|α.

Proof. Consider the gradient graph {(x,Du(x))|x ∈ B1} where u has the following

Hessian bound

−ΛIn ≤ D2u ≤ ΛIn

a.e. where it exists.

Define δ as

δ = (π/2− arctan Λ)/2 > 0. (3.7)

Since by (4.17) we have 0 ≤ θ(0) < δ/2, there exists R′(δ, |θ|Cᾱ) > 0 such that

|θ(x)− θ(0)| < δ/2

for all x ∈ BR′ ⊆ B1. This implies for every x in BR′ for which D2u exists, we have

δ > θ > θ(0)− δ/2.

So now we rotate the gradient graph {(x,Du(x))|x ∈ BR′} downward by an angle

of δ.
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Let the new rotated co-ordinate system be denoted by (x̄, ȳ) where

x̄ = cos(δ)x+ sin(δ)Du(x) (3.8)

ȳ = − sin(δ)x+ cos(δ)Du(x). (3.9)

On differentiating x̄ (3.8) with respect to x we see that

dx̄

dx
= cos(δ)In + sin(δ)D2u(x) ≤ cos(δ)In + Λ sin(δ)In

Thus

cos(δ)In − Λ sin(δ)In ≤
dx̄

dx
≤ cos(δ)In + Λ sin(δ)In.

To obtain Lipschitz constants so that

1

L2

In ≤
dx̄

dx
≤ L1In (3.10)

let

L1 = cos(δ) + Λ sin(δ)

L2 = max{
∣∣∣∣ 1

cos(δ)In +D2u(x) sin(δ)

∣∣∣∣|x ∈ BR′}.

To find the value of L2, we see that in BR′ we have the following:
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let min{θ1, θ2} ≥ −A where A = arctan Λ.

cos(δ)In + sin(δ)D2u(x) ≥ cos(δ)− sin(δ) tan(A)

= cos(δ)(1− tan(δ) tan(A))

= cos(δ)
tan(δ) + tan(A)

tan(δ + A)

= cos(δ)
tan(δ) + tan(A)

tan(π/2−A
2

+ A)

= cos(δ)
tan(δ) + tan(A)

tan(π/2− δ)
.

This shows that

1

L2

= cos(δ)
tan(δ) + tan(A)

tan(π/2− δ)
.

Clearly 1/L2 is positive.

Now, by [7, Prop 4.1] we see that there exists a function ū such that

ȳ = Dx̄ū(x̄)

where

ū(x) = u(x) + sin δ cos δ
|Du(x)|2 − |x|2

2
− sin2(δ)Du(x) · x (3.11)

defines ū implicitly in terms of x̄ (since x̄ is invertible). Here x̄ refers to the

rotation map (3.8).

Note that

θ̄(x̄)− θ̄(ȳ) = θ(x)− θ(y)

which implies that θ̄ is also a C ᾱ function

|θ̄(x̄1)− θ̄(x̄2)|
|x̄1 − x̄2|α

=
|θ(x1)− θ(x2)|
|x1 − x2|ᾱ

∗ |x1 − x2|ᾱ

|x̄1 − x̄2|ᾱ
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thus,

|θ̄|Cᾱ(Br0 ) ≤ Lᾱ2 |θ|Cᾱ(BR′ )
.

Let Ω = x̄(BR′). Note that Br0 ⊂ Ω where r0 = R′/2L2. So our new gradient

graph is {(x̄, Dx̄ū(x̄))|x̄ ∈ Ω}. The function ū satisfies the equation

F (D2
x̄ū) = θ̄(x̄)

in Br0 where θ̄ ∈ C ᾱ(Br0). Observe that on Br0 we have

θ̄ = θ − 2δ < δ − 2δ = −δ < 0

as θ < δ on BR′ .

Claim 3.2.2. : If |̄θ| > δ, then F (D2ū) = θ̄ is a solution to a uniformly elliptic

concave equation.

Proof. The proof follows from [18, lemma 2.2] and also from [7, pg 24].

Now using [3, Corollary 1.3] we get interior Schauder estimates for ū:

|D2ū(x̄)−D2ū(0)| ≤ C(||ū||L∞(Br0/2) + |θ̄|Cα(Br0/2)) (3.12)

for all x̄ in Br0/2 where C = C(Λ, α). This is our C2,α estimate for ū.

Next, in order to show the same Schauder type inequality as (3.12) for u in

place of ū, we establish relations between the following pairs:

(i) oscillations of the Hessian of D2u and D2ū

(ii) oscillations of θ and θ̄
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(iii) the supremum norms of u and ū .

We rotate back to our original gradient graph by rotating up by an angle of δ

and consider again the domain BR′(0). This gives us the following relations:

x = cos(δ)x̄− sin(δ)Dx̄ū(x̄)

y = sin(δ)x̄+ cos(δ)Dx̄ū(x̄). (3.13)

This gives us:

dx

dx̄
= cos(δ)In − sin(δ)D2

x̄ū(x̄)

Dx̄y = sin(δ)In + cos(δ)D2
x̄ū(x̄).

So we have

D2
xu(x) = Dx̄y

dx̄

dx
= [sin(δ)In + cos(δ)D2

x̄ū(x̄)][cos(δ)In − sin(δ)D2
x̄ū(x̄)]−1.

The above expression is well defined everywhere because D2
x̄ū(x̄) < cot(δ)In for all

x̄ ∈ Br0 .

Note that we have cos(δ)In −D2
x̄ū(x̄) sin(δ) ≥ 1

L1
, since

dx

dx̄
= cos(δ)In − sin(δ)D2

x̄ū(x̄) =

(
dx̄

dx

)−1

≥ 1

L1

In

by (4.8).
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Next,

D2
xu(x)−D2

xu(0) = [sin(δ)In + cos(δ)D2
x̄ū(x̄)][cos(δ)In − sin(δ)D2

x̄ū(x̄)]−1

− [sin(δ)In + cos(δ)D2
x̄ū(0)][cos(δ)In − sin(δ)D2

x̄ū(0)]−1. (3.14)

For simplification of notation we write

D2
x̄ū(x̄) = A

D2
x̄ū(0) = B

cos(δ) = c, sin(δ) = s.

Noting that [sIn + cA] and [cIn − sA]−1 commute with each other we can write

(3.14) as the following equation

D2
xu(x)−D2

xu(0) =

[cIn − sB]−1[cIn − sB][sIn + cA][cIn − sA]−1−

[cIn − sB]−1[sIn + cB][cIn − sA][cIn − sA]−1.

Again we see that

[cIn − sB][sIn + cA]− [sIn + cB][cIn − sA] = A−B.

This means

D2
xu(x)−D2

xu(0) = [cIn − sB]−1[A−B][cIn − sA]−1.
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We have already shown that

|cIn − sA| ≥
1

L1

which implies

|cIn − sA|−1 ≤ L1.

Thus we get

|D2
xu(x)−D2

xu(0)| ≤ L2
1|D2

x̄ū(x̄)−D2
x̄ū(0)|.

≤ CL2
1(||ū||L∞(Br0/2) + |θ̄|Cα(Br0/2))|x̄|α

≤ CL2+α
1 (||ū||L∞(Br0/2) + |θ̄|Cα(Br0/2)|x|α (3.15)

where L1 is the Lipschitz constant of the co-ordinate change map. This implies

1

Lα+2
1

|D2
xu(x)|Cα(BR) ≤ |D2

x̄u(x̄)|Cα(Br0/2). (3.16)

Recall from (3.11) that

ū(x) = u(x) + v(x).

This shows

||ū(x̄)||L∞(Br0/2) = ||ū(x)||L∞(x̄−1(Br0/2)) ≤ ||ū(x)||L∞(BR′ )

≤ ||u(x)||L∞(BR′ )
+ ||v||L∞(BR′ )

. (3.17)

Note that

||v||L∞(BR) ≤ R||Du||L∞(BR) +
1

2
[R2 + ||Du||2L∞(BR)] (3.18)
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and combining (3.16), (3.17), (3.18) with (3.15) we get

|D2
xu(x)−D2

xu(0)|

≤ CLα+2
1

 ||u||L∞(BR′ )
+R||Du||L∞(BR)+

1
2
[R2 + ||Du||2L∞(BR)] + Lα2 r0|θ|Cα(BR′ )

 |x|α .
This proves the Lemma.

3.3. Proof of Main Theorem 2

Proof. First note that the lemma provides a bound for the Hölder norm of the

Hessian on any interior ball, so by a rescaling of the form

uρ(x) =
u(ρx)

ρ2

for values of ρ > 0 and translation of any point to the origin. Consider the gradient

graph {(x,Du(x))|x ∈ B1} where u satisfies

F (D2u) = θ

on B1 and θ ∈ C ᾱ(B1). Then there exists a ball of radius r inside B1 on which

oscθ < δ/4 where δ is as defined in (4.34).

Now this means that either we have θ(x) < δ/2 in which case, by the above

lemma we see that u ∈ C2,α(Br) satisfying the given estimates; or we have θ(x) >

δ/4 in which case u ∈ C2,α(Br) with uniform estimates, by claim (3.2.2) and [3,

Corollary 1.3].
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3.4. Proof of Main Theorem 1

Proof. Since u ∈ C1,1(B1) and θ ∈ W 1,2(B1) satisfies the uniformly elliptic equation

∆gθ = 0,

by the De Giorgi-Nash Theorem we have that θ ∈ Cα(B1/2). This means that u

satisfies

F (D2u) = θ.

By Theorem 3.1..2 we see that u ∈ C2,α(Br) where r < 1/2. Smoothness follows by

[7, Corollary 5.1].
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CHAPTER IV

ALMOST LINEAR ELLIPTIC EQUATIONS

4.1. Background and Introduction

In this chapter, we derive an a priori interior C2,α estimate for viscosity

solutions of the non-linear, uniformly elliptic equation

F (D2u) = f(x), (4.1)

under the assumption that f(x) ∈ Cα and F is almost linear.

For viscosity solutions of second order, fully non-linear equations of the form

F (D2u) = 0 (4.2)

where F is concave and uniform elliptic, the theory of a priori estimates is well

developed after the work of [19] and [20]. For general F , regularity theory for

solutions to fully nonlinear uniformly elliptic equations of the form (4.2) include

interior C1,α estimates [3] and partial regularity results [21]. The structure of

F plays a key role in deriving higher order estimates for fully non-linear elliptic

equations of the forms (4.1) and (4.2). In [22], the authors have produced

counterexamples to Evans-Krylov type estimates for general fully nonlinear

equations. The classical approach to regularity of equations of the above form,

is to differentiate the equation with respect to a direction i, and then ui solves a

linearized equation which is treated like a linear equation with bounded measurable

coefficients. In [23], Savin proved interior C2,α estimates for flat viscosity solutions
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of (4.2) where F is smooth. He showed that viscosity solutions of (4.2) that are

sufficiently close to a quadratic polynomial are, in fact, classical solutions.

Here, we consider a space of uniformly elliptic, non-linear equations of the

form (4.2) and (4.1) where we assume that F is uniformly differentiable and

there exists a universal constant ε0, such the value of DF at any two points

in Sn is always ε0 close to each other. This means that there exists a linear

operator in the neighborhood of DF (0) such that F is ε0 close to it in the sense

of (4.7). We formally define this property of F in definition 4.1.1. Cordes [24] had

proved interior C1,α estimates for uniformly elliptic linear equations of the form

aij(x)uij(x) = g(x) where the coefficients aij are close to the Laplace equation.

Nirenberg [25, Chapter 6] proved that the same estimate [24] holds under the

assumption that there exists constant d > 0 such that in the intersection S of the

domain of x with every closed sphere of radius d the coefficients aij(x) of the linear

equation have small oscillation for all values of the arguments. Note that unlike

the equation in Cordes, the equation we consider is a fully nonlinear equation

of the form (4.1) where F is close to a linear equation in the sense of (4.7). It

is important to note that Cordes’s result cannot be applied to a linearization of

equation (4.1) to obtain the result we are after since f is merely a Cα here. We

also provide explicit values of how close the operator F should be to the Laplace

equation and prove explicit C2,aα estimates for viscosity solutions of (4.2). In

Theorem 4.1.3, we prove interior C2,α for solutions to (4.1) using the C2,α estimates

we derive for solutions of (4.2) in Theorem 4.1.2 along with [3]’s result on W 2,p

estimates for concave equations.

This chapter is divided into the following sections. In this section we state

definitions and our main results. In section 2, we prove Theorem 4.1.2 and in

section 3, we prove Theorem 4.1.3.
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Definitions and notations

We first define a few terms that we will be using to state the properties of the

operator F .

Definition 4.1.1. We define the uniformly elliptic, non-linear operator F to be

almost linear with constant ε0 if

|DF (M)−DF (N)| ≤ ε0 (4.3)

for all M,N ∈ Sn where Sn is the space of all real symmetric n × n matrices. We

define ε0 to be the closeness constant of F . Through out this chapter we make

the assumption F (0) = 0.

Theorem 4.1.2 (Main Theorem 1). Given λ, Λ there exist universal constants 0 <

ᾱ < 1 and ε0 > 0 such that if F is almost linear with constant ε0 and u ∈ C(B1)

is viscosity solution of (4.2) on B1, then u ∈ C2,ᾱ(B1/2) and satisfies the following

estimate

||u||C2,ᾱ(B1/2) ≤ C1||u||L∞(B1) (4.4)

where

C1 = 24+ᾱC(n)(
5

4
+

n

λ1/2
+

2n2e

λ
+ 32n2e

ε0

λ2
) (4.5)

and C(n) is a dimensional constant.

Theorem 4.1.3 (Main Theorem 2). Given λ, Λ, and 0 < ᾱ < 1 there exists

a universal constant ε0 > 0 such that if F is almost linear with constant ε0 and

u ∈ C(B1) is viscosity solution of (4.1) on B1 with f ∈ Cα(B1), then u ∈ C2,α(B1/2)

and the following estimate holds

||u||C2,α(B1/2) ≤ C2 (4.6)
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where C2 = C2(n, λ,Λ, C1), 0 < α < ᾱ and C1, ᾱ are as defined in the previous

Theorem.

The methods involved in our proof include comparing equation (4.2) to

the Laplace equation with boundary data equal to a mollification of u. We use

the Krylov-Safanov theorem [26] along with harmonic estimates to construct a

quadratic polynomial that would be separated from u by a distance of r2+α on

the ball of radius r. This is used in the construction of an iterative sequence of

quadratic polynomials that leads to our desired estimate in the first theorem. We

used results involving W 2,p estimates for concave equations [3] to prove the second

theorem.

4.2. Proof of Main Theorem 1

Observe that condition (4.3) of definition (1.1) implies that F satisfies the

property that there exists a linear operator L0 such that

|F (N)− L0(N)| ≤ ε0|N | (4.7)

for all N ∈ Sn. On fixing the matrix M to be the zero matrix in equation (4.3) and

using the fundamental theorem of calculus along with the fact that F (0) = 0, one

can easily see that the linear operator can be defined as

L0(N) = DF (0)N. (4.8)

For the following lemma and proposition we assume the operator L0 to be the

Laplacian. The proof of Theorem 4.1.2 follows as a corollary to proposition 4.2.3.
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Lemma 4.2.1. Given ᾱ, λ,Λ there exist universal constants ε0 > 0 and r0 > 0,

such that if the uniformly elliptic operator F satisfies

|F (N)− tr(N)| < ε0|N | (4.9)

for all N ∈ Sn, then for any viscosity solution u ∈ C(B2) of (4.2) in B2(0), we can

find a polynomial P of degree 2 satisfying

F (D2P ) = 0

sup
Br0

|u− P | ≤ r2+ᾱ
0 ||u||L∞(B1)

||P ||L∞(B1) ≤ C0||u||L∞(B1). (4.10)

We compute the explicit values of the universal constants to be

(i) r0 = [1
4
( 1

4n2e
)3]

1
1−ᾱ

(ii) C0 = 5
4

+ n+ 2n2e+ n2e ε0
λ

(iii) ε0 = min{ λrᾱ0
64n2e

,
α0r

2+ᾱ
0

2(3+α0)K2
[

3r2+ᾱ
0

2(3+α0)K1
]

3
α0 } where K1, α0, K2 are defined in (4.12)

and (4.20) respectively.

Proof. Let’s denote ||u||L∞(B1) = M . We consider a function h that satisfies the

following boundary value problem:

∆h = 0 in B1

h = uγ on ∂B1. (4.11)
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Here uγ refers to a mollification of u for any γ > 0. It is defined by

uγ = ηγ ∗ u

where

ηγ(x) =
1

γn
η(
x

γ
)

and η ∈ C∞(Rn) is defined by

η(x) =


C exp( 1

|x|2−1
) if |x| < 1

0 if |x| ≥ 1

with the constant C > 0 being chosen such that
∫
Rn ηdx = 1. Note that since u is

defined on all of Rn, the mollifier sequence uγ is well defined everywhere. From the

Krylov-Safanov theorem (stated below), we get the following estimate

||u||Cα0 (B1) ≤ K1||u||L∞(B2). (4.12)

The Krylov-Safanov theorem states the following:

Theorem 4.2.2. [26, Theorem 1] [Krylov-Safanov] Let u ∈ C0 be a viscosity

solution of S(λ
n
,Λ, 0) = 0 in B1. Then u is Hölder continuous and

||u||Cα0 (B1/2) ≤ C(
λ

n
,Λ)||u||L∞(B1)

with (small) α0 = α0(λ
n
,Λ) > 0.
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This implies that uγ converges to u uniformly on B̄1 and satisfies the

following estimate:

||uγ − u||L∞(B1) ≤ K1γ
α0M. (4.13)

Since h is harmonic and thus analytic there exists a polynomial P0(x) of

degree two

P0(x) = h(0) + x ·Dh(0) + x ·D2h(0)x

such that for all |x| < 1/2, we get

|h(x)− P0(x)| ≤ |R3(x)|

where R3 is the remainder term of order 3 in the Taylor series expansion of h. So

we get

|h(x)− P0(x)| ≤ (| x

(1/4)
|n2e)3M.

We can choose r0 ∈ (0, 1) such that the following holds

sup
Br0

|h(x)− P0(x)| ≤ 1

4
Mr2+ᾱ

0

and we compute the value of r0 to be

r0 = [
1

4
(

1

4n2e
)3]

1
1−ᾱ . (4.14)

Next, using the fact that F satisfies (4.9) and ∆P0 = 0, we define a new

quadratic polynomial P such that

F (D2P ) = 0.
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We define P (x) = P0(x) + |x|2
2λ
c|D2h(0)| where |c| < ε0. Using harmonic estimates

we see that

|D2h(0)| ≤ 2n2eM

(1/4)2
= 32n2eM

on Br0 . We observe that

sup
Br0

|h− P | < sup
Br0

|h− P0|+M
|r2

0|
2λ

ε032n2e. (4.15)

We want the RHS of the above expression to be less than 1
2
Mr2+ᾱ

0 and for that we

need

M
|r2

0|
2λ

ε032n2e ≤M
1

4
r2+ᾱ

0 .

This is possible when

ε0 ≤
λrᾱ0

64n2e
=

λ

64n2e
[
1

4
(

1

4n2e
)3]

ᾱ
1−ᾱ . (4.16)

Again using harmonic estimates, we get the following estimate for P :

||P ||L∞(B1) ≤ C0M

where

C0 =
5

4
+ n+ 2n2e+ n2e

ε0

λ
. (4.17)

Next, by definition of F , we know that

|F (N)− tr(N)| ≤ ε0|N | when N ∈ Sn.
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This gives us the following:

|F (D2h)| = |F (D2h)−∆(h) + ∆(h)| = |F (D2h)−∆(h)|

≤ ε0|D2h| ≤ ε0K (4.18)

where ||D2h||L∞ ¯(B1) = K.

Now, we compute the value of K. From [9, Chapter 6] we see that

K = ||D2h||L∞ ¯(B1) ≤ K̄||uγ||C3 ¯(B1)

where K̄ is a dimensional constant. We compute the value of |uγ|C3 ¯(B1).

Let p be a multi-index such that |p| = 3. For any x ∈ B̄1 we observe the

following:

|Dp(uγ(x))| = |Dp(ηγ) ∗ u(x)| = |
∫
Rn
Dpηγ(x− y)u(y)dy|

≤ sup
y∈supp(ηγ)

|u(y)|
∫
Rn
|Dpηγ(x− y)|dy

≤M

∫
Rn
| 1

γn+3
Dpη(

x− y
γ

)|dy.

We do a change of variable z = x−y
γ

to reduce the above expression to

≤M
1

γ3

∫
Rn
| 1

γn
Dpη(z)γn|dz = M

1

γ3

∫
Rn
|Dpη(z)|dz

This shows that

K ≤ K̄M
1

γ3

∫
Rn
|Dpη(z)|dz. (4.19)

Let’s define

K2 = K̄

∫
Rn
|Dpη(z)|dz, |p| = 3. (4.20)
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For the sake of simplifying notation, we do not substitute the value of K2.

So for the rest of the proof the constant K2 refers to the value obtained in (4.20).

Using uniform ellipticity we see that the following inequalities holds on B1:

F (D2h+D2(
Kε0

2λ
(1− |x|2)) ≤ 0.

F (D2h−D2(
Kε0

2λ
(1− |x|2)) ≥ 0.

Using comparison principles [9, theorem 17.1] and (4.13) we see that for all x ∈ B1

we have:

|u(x)− h(x)| ≤ K1Mγα0 + ε0K2M
1

γ3
. (4.21)

On combining (4.21), (4.15) we see that:

sup
Br0

|u− P | < sup
Br0

|u− h|+ sup
Br0

|h− P |

< K1Mγα0 + ε0K2M
1

γ3
+M

1

2
r2+ᾱ

0 . (4.22)

Our goal is to find a ε0 for which the RHS of the above inequality will be

equal to Mr2+ᾱ
0 . That’s possible when

K1Mγα0 + ε0K2M
1

γ3
≤ 1

2
Mr2+ᾱ

0

for some choice of γ. We choose γ small that maximizes the following function of γ

γ3

2K2

r2+ᾱ
0 − K1

K2

γ3+α0 .
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We see that the above function of γ reaches a maximum when

γ = [
3r2+ᾱ

0

2K1(3 + α0)
]

1
α0 . (4.23)

Using this value of γ we compute the value of ε0 to be

ε0 ≤
α0r

2+ᾱ
0

2(3 + α0)K2

[
3r2+ᾱ

0

2(3 + α0)K1

]
3
α0 (4.24)

where K1, α0 and K2 are defined in (4.12) and (4.20) respectively.

From (4.16) and (4.24) we see that

ε0 = min{ λr
ᾱ
0

64n2e
,

α0r
2+ᾱ
0

2(3 + α0)K2

[
3r2+ᾱ

0

2(3 + α0)K1

]
3
α0 } (4.25)

We now make a proposition similar to the statement of Theorem 1.2 and we

assume that the linear operator L0 in (4.8) is the Laplacian. Throughout this proof

the constants C0 and r0 will refer to the constants obtained in (4.17) and (4.14)

respectively.

Proposition 4.2.3. Given λ, Λ there exist universal constants 0 < ᾱ < 1 and

ε0 > 0 such that if F is almost linear with constant ε0 and satisfies condition (4.9),

then any viscosity solution u ∈ C(B1) of (4.2) will be in C2,ᾱ(B1/2) and satisfy the

following estimate

||u||C2,ᾱ(B1/2) ≤ C1||u||L∞(B1)

where C1 is as stated in 4.5.

Proof. We first prove that the C2,ᾱ estimate holds at the origin. As before, we

denote ||u||L∞(B1) = M .
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We prove that there exists a polynomial P of degree 2 such that

|u(x)− P (x)| ≤MC ′0|x|2+ᾱ ∀x ∈ B1 (4.26)

F (D2P ) = 0

||P ||L∞(B1) ≤MC ′0

where C ′0 = C0(1 + 3
1−r2+ᾱ

0

). In order to prove the existence of such a polynomial P ,

we need the following claim.

Claim 4.2.4. There exists a sequence of polynomials {Pk}∞k=1 of degree 2 such that

F (D2Pk) = 0 (4.27)

||u− Pk||L∞(B
rk0

) ≤Mr
k(2+ᾱ)
0 (4.28)

where F and u are as defined in Theorem 4.1.2.

We first prove the claim.

Proof. : Let P0 = 0. Then (4.28) holds good for the k = 0 case. We assume that

(4.28) holds for k ≤ i and we prove it for k = i+ 1.

Consider

vi(x) =
u(ri0x)− Pi(ri0x)

r2i
0

for all x ∈ B1. Define

Fi(N) = F (N +D2Pi)

for all N ∈ Sn. Since F (D2Pi) = 0 we see that Fi(D
2vi) = 0. Since

||u− Pi||L∞(B
ri0

) ≤Mr
i(2+ᾱ)
0 ,
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we observe that

||vi||L∞(B1) ≤
Mr

i(2+ᾱ)
0

r2i
0

= Mriᾱ0 .

Note that the operator Fi satisfies the same properties as the operator F :

|DFi(M)−DFi(N)| = |DF (M +D2Pi)−DF (N +D2Pi)| ≤ ε0

and Fi also has the same ellipticity constants as F . We apply the above corollary to

the equation Fi(D
2vi) = 0. This gives us the existence of a quadratic polynomial P̄i

such that

Fi(D
2P̄i) = 0 (4.29)

||vi − P̄i||L∞(Br0 ) ≤Mriᾱ0 r
(2+ᾱ)
0

| ¯|P i||L∞(B1) ≤ C0Mriᾱ0 .

Next, we define

Pi+1 = Pi + r2i
0 P̄i(r

−i
0 x). (4.30)

From (4.29) we see that

F (D2Pi+1) = Fi(D
2P̄i) = 0

and on substituting the value of vi in the second inequality of (4.29) we see that

||u(ri0x)− Pi(ri0x)

r2i
0

− P̄i||L∞(Br0 ) ≤Mriᾱ0 r
(2+ᾱ)
0 r2i

0

which reduces to

||u− Pi+1||L∞(B
ri+1
0

) ≤Mr
(i+1)(2+ᾱ)
0 .
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This completes the inductive construction of the quadratic polynomial sequence.

Hence the claim 4.2.4.

Using the above claim, we return to proving Theorem 4.1.2.

We show that this sequence {Pk}∞k=1 is convergent and limk→∞ Pk = P is the

required polynomial in (4.26).

From (4.30) we see that

Pi+1 − Pi = r2i
0 ai + ri0bi · x+ xT ci · x.

From the third inequality of (4.29) we observe that the terms of the series∑∞
i=1(Pi+1 − Pi) is bounded by a convergent geometric series

|Pi+1 − Pi| ≤MC0r
i(2+ᾱ)
0 .

Hence the series
∑∞

i=1(Pi+1 − Pi) being telescopic converges and we define

P = lim
i→∞

Pi =
∞∑
i=1

(Pi+1 − Pi).

Note that F (D2P ) = 0 as F (D2Pi) = 0 for all i.

For all x ∈ Bri0
we have

|P (x)− Pi(x)| ≤
∞∑
j=i

|Pj+1 − Pj| ≤MC0

∞∑
j=i

(r2j
0 r

jᾱ
0 + rj0r

jᾱ
0 rj0 + rj0r

jᾱ
0 rj0)

≤ 3MC0

1− r2+ᾱ
0

r
i(2+ᾱ)
0 .
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This shows that

||P ||L∞(B1) = ||P − P0||L∞(B1) ≤
3MC0

1− r2+ᾱ
0

in B1. Note that Pi is a uniformly bounded sequence of quadratic polynomials

converging uniformly, so the limit P should be a quadratic polynomial as well.

If we fix x ∈ B1, we can choose an integer i such that

ri+1
0 < |x| ≤ ri0.

Then we have the estimate

|u(x)− P (x)| ≤ |u(x)− Pi(x)|+ |Pi(x)− P (x)|

≤MC0r
i(2+ᾱ)
0 +

3MC0

1− r2+ᾱ
0

r
i(2+ᾱ)
0

≤MC ′0|x|2+ᾱ

where

C ′0 = C0(1 +
3

1− r2+ᾱ
0

).

This completes the proof of (4.26).

Next, consider any point x0 in B1/2. Let v(x) = 4u(x/2 + x0) where x ∈ B1.

Note that B1/2(x0) ⊂ B1 and hence F (D2v) = 0 in B1. Now we repeat the same

argument as before for v in order to obtain the same estimate as (4.26) on the ball

B1/2(x0). By [3, Remark 3, page 74] it follows that u ∈ C2,α(B̄1/2(0)) with bounds

given by

||D2u||Cᾱ(B̄1/2(0)) ≤ C1||u||L∞(B1).
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where

C1 = 22+ᾱC(n)4C0(n, ᾱ, λ,Λ) (4.31)

and C(n) is a dimensional constant. This proves the estimate in (4.4).

Proof. of Theorem 4.1.2:

From definition (1.1) we know that there exists a linear operator L0 such that

|F (N)− L0(N)| ≤ ε0|N |

where L0(N) = DF (0)N . By the following transformation we show that we can

assume the linear operator L0 to be the Laplacian and hence the desired result

follows from the above proposition.

Let W = DF (0). Since F is elliptic, W−1 exists with eigenvalues in [ 1
Λ
, 1

Λ
]. We

define

A =
(
W T

)−1
(4.32)

F̃ (N) = F (AN).
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Note that the eigenvalues of AT lie in [ 1
Λ
, 1
λ
]. Now we make the following

observation

∂F̃

∂nij
=

∂F

∂apq

∂(AN)pq
∂nij

=
∑
p,q

Wpq
∂ (
∑

sApsNsq)

∂nij

=
∑
p,q

Wpq

∑
s

Aps
∂ (Nsq)

∂nij

=
∑
p,q

Wpj

∑
s

Apsδ
siδqj

=
∑
p

WpjApi

=
∑
p

W T
jpApi

=
(
W TA

)
ji

=
(
W T

(
W T

)−1
)
ji

= δij.

It follows that DF̃ (0) = I. Note that F̃ has ellipticity constants in [ λ
Λ
, Λ
λ

] since

F̃ (N + P )− F̃ (P ) = F (AN + AP )− F (AP )

=⇒ λ

Λ
|P | ≤ λ |AP | ≤ F̃ (N + P )− F̃ (P ) ≤ Λ |AP | ≤ Λ

λ
|P | .
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Finally, note that

∣∣∣DF̃ (M)−DF̃ (N)
∣∣∣ =

∣∣AT ·DF (AM)− AT ·DF (AN)
∣∣

=
∣∣AT · (DF (AM)−DF (AN))

∣∣
≤ ε0

∣∣AT ∣∣ .
Therefore, F̃ is almost linear with constant ε0

∣∣AT ∣∣ and satisfies the corresponding

condition in (4.9). Hence the proof.

For the rest of the chapter, the constant C1 will refer to the fixed constant

defined in (4.31).

4.3. Proof of Main Theorem 2

Note that without loss of generality we can write f(0) = 0 since we can write

(4.1) as G(D2u) = g(x) where G(D2u) = F (D2u) − f(0) and g(x) = f(x) − f(0).

Now, we prove Theorem 4.1.3. In order to do so we will require the following two

Lemmas. Lemma 4.3.1 below is a modified version of [3, Lemma 7.9], which we

derive on substituting ε = 0 in (7.18) of [3, Lemma 7.9].

Lemma 4.3.1. Let u be a viscosity solution of (4.1) in B4/7 such that

||u||L∞(B4/7) ≤ 1 and f ∈ Ln(B4/7). Assume that F (D2w) = 0 has C1,1 interior

estimates (with constant C1). Then there exists a function h ∈ C2(B̄3/7) such that h
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satisfies ||h||C1,1(B̄3/7) ≤ c(n)C1 (for a constant c(n) depending only on n) and

||u− h||L∞(B3/7) ≤ C3||f ||Ln(B4/7)

F (D2h) = 0 in B1/2

h = u on ∂B1/2. (4.33)

Here C3 is a positive constant depending on n, λ,Λ, C1.

Note: We say that F (D2w) = 0 has C1,1 interior estimates (with constant

C1) if for any w0 ∈ C(∂B) there exists a solution w ∈ C2(B1) ∩ C(B̄1) of

F (D2w) = 0 in B1

w = w0 on ∂B1

such that ||w||C1,1(B̄1/2) ≤ C1||w0||L∞(∂B1).

Proof. [3, lemma 7.9].

Remark 4.3.2. Recall that the constant C1 was defined in Theorem 4.1.2 to

prove interior C2,ᾱ estimates (4.4) for F (D2u) = 0. Since u ∈ S(λ
n
,Λ, 0), using

maximum principles and Theorem 4.1.2 we see that the same constant C1 works as

the interior C1,1 estimates constant for F (D2w) = 0 in the above lemma.

Lemma 4.3.3. There exists δ > 0 depending on n, λ,Λ, C1, ᾱ, α such that if u is a

viscosity solution of (4.1) in B1 with

||u||L∞(B1) ≤ 1
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and

(
1

|Br|

∫
Br

|f |n)1/n ≤ δrα ∀r ≤ 1 (4.34)

then there exists a polynomial P of degree 2 such that

||u− P ||L∞(Br) ≤ C4r
2+α ∀r ≤ 1,

|DP (0)|+ ||D2P || ≤ C4 (4.35)

for some constant C4 > 0 depending only on n, λ,Λ, C1, ᾱ, α. Here ᾱ and α are

fixed constants from Theorem 4.1.2 and Theorem 4.1.3 respectively.

Proof. The proof follows from the following claim.

Claim 4.3.4. There exists 0 < µ < 1 and a sequence and {Pk} depending on

n, λ,Λ, C1, ᾱ, α such that

Pk(x) = ak + bk · x+
1

2
xtck · x

F (D2Pk) = 0

||u− Pk||L∞(B
µk

) ≤ µk(2+α)

|ak − ak−1|+ µk−1|bk − bk−1|+ µ2(k−1)|ck − ck−1| ≤ C1µ
(k−1)(2+α). (4.36)

Here F and u are as defined in Lemma 4.3.3.

We first prove the claim.

Proof. Let P0 = 0. For k = 0, we see that (4.36) holds for any µ > 0. We assume

that (4.36) holds for k ≤ i and we prove that it holds good for k = i+ 1.

We choose µ small enough such that

2C1µ
ᾱ ≤ µα < 3/7. (4.37)
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We define

vi(x) =
(u− Pi)(µix)

µi(2+α)

Fi(N) =
F (µiαN + ci)

µiα

fi(x) =
f(µix)

µiα

where Pi(x) = ai + bi · x+ 1
2
xT · cix. This shows that

Fi(D
2vi(x)) = fi(x). (4.38)

Now we choose δ small enough such that

C3δ ≤ C1µ
2+ᾱ (4.39)

where C3 is the constant appearing in the first inequality of (4.33) in Lemma 4.3.1.

We consider the equation (4.38). Observe that

||fi||Ln(B1) = µ−iαµ−i||f ||Ln(Bµi )
≤ 2µ−iαµ−iδµiαµi = δ.

Note that Fi satisfies the same properties as F . Since ||vi||L∞(B1) ≤ 1, by applying

Lemma 4.3.1 to (4.38), we see that there exists h ∈ C2(B̄3/7) such that

||vi − h||L∞(B3/7) ≤ C3δ (4.40)
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and h solves the following boundary value problem:

Fi(D
2h) = 0 in B1/2

h = vi on ∂B1/2.

Then from the definition of Fi above, it follows that

F (µiαD2h+ ci) = 0 in B1/2. (4.41)

Note that Fi has the same ellipticity constants as F and DFi satisfies the condition

(4.3) with the same constant ε0. So now since h satisfies the above equation, by

Theorem 4.1.2 and maximum principles we see that

||h||C2,ᾱ(B1/4) ≤ C1||vi||L∞(∂B1/2) ≤ C1, (4.42)

where the last inequality follows by using |vi| ≤ 1. Since h is C2,ᾱ, there exists a

polynomial P̄ given by

P̄ (x) = h(0) +Dh(0) · x+
1

2
xtD2h(0) · x

such that

||h− P̄ ||L∞(Bµ) ≤ C1µ
2+ᾱ. (4.43)
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From (4.40) and (4.43) we have

||vi − P̄ ||L∞(Bµ) ≤ ||vi − h||L∞(Bµ) + ||h− P̄ ||L∞(Bµ)

≤ C3δ + C1µ
2+ᾱ

≤ 2C1µ
2+ᾱ

≤ µ2+α (4.44)

where the last two inequalities follow from (4.39) and (4.37).

Rescaling back (4.44) we see that

|u(x)− Pi(x)− µi(2+α)P̄ (µ−ix)| ≤ µ(2+α)(i+1) (4.45)

for all x ∈ Bµi+1 .

We define

Pi+1(x) = Pi(x) + µi(2+α)P̄ (µ−ix) (4.46)

and we have

ci+1 = ci + µiαD2h(0).

From (4.45) we see that

||u− Pi+1||L∞(Bµi+1 ) ≤ µ(i+1)(2+α)

and from (4.41) we get

F (ci+1) = 0.
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Next, from (4.42) and (4.46) we see that

|ai+1 − ai|+ µi|bi+1 − bi|+ µ2i|ci+1 − ci|

= µi(2+α)(|h(0)|+ |Dh(0)|+ |D2h(0)|)

≤ µi(2+α)C1.

This proves claim 4.3.4.

Now we return to proving the lemma. By the same argument used in the

proof of Theorem 4.1.2 we can show that the sequence {Pi} is uniformly convergent

in B1. Let’s define P = limi→∞ Pi =
∑∞

i=1(Pi+1 − Pi). We see that for i ≥ 0

||u− P ||L∞(Bµi )
≤ ||u− Pi||L∞(Bµi )

+
∞∑
j=i

||Pj+1 − Pj||L∞(B
µj

)

≤ µi(2+α) +
∞∑
j=i

[|aj+1 − aj|+ µj|bj+1 − bj|+
1

2
µ2j|cj+1 − cj|]

≤ µi(2+α) + C1

∞∑
j=i

[µ(j)(2+α) + µjµj(1+α) + µ2jµjα]

≤ C ′4µ
i(2+α)

where C ′4 = 1 + 3C1

1−µ2+α . Clearly we have

|DP (0)|+ ||D2P || ≤ C ′′4

for some constant C ′′4 > 0. By defining C4 = max{C ′4, C ′′4} we see that (4.35) holds

good. This proves the lemma.
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Proof. of Theorem 4.1.3: We first prove the estimate (4.6) at the origin. We show

that there exists a polynomial of degree 2 and r1 < 1 such that

||u− P ||L∞(Br) ≤ C ′2r
2+α ∀r ≤ r1

|DP (0)|+ ||D2P || ≤ C ′2 (4.47)

where C ′2 = C ′2(||u||L∞(B1), |f |Cα(B1), n, λ,Λ, ᾱ, α, C1), 0 < α < ᾱ and ᾱ is the Hölder

power appearing in (4.4):

||u||C2,ᾱ(B1/2) ≤ C1||u||L∞(B1).

Note that the Cα function f(x) satisfies the following

(
1

|B1|

∫
B1

|f |n)1/n ≤ |f |Cα(B1).

The proof follows directly from Lemma 4.3.3, if we do the following rescaling

for all x ∈ B1. Consider the following function

ũ(x) =
r−2

1 u(r1x)

δ−1|f |Cα(B1) + r−2
1 ||u||L∞(B1)

=
r−2

1 u(r1x)

T

where r1 is chosen such that

rα1 |f |Cα(B1) < δT (4.48)

and δ is as defined in (4.39). Observe that ||ũ||L∞(B1) ≤ 1. Now we consider the

operator

FT (N) =
1

T
F (TN)

defined for all N ∈ Sn.
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Note that FT satisfies the following properties:

(i) FT has the same ellipticity constants λ and Λ as F .

(ii) DFT satisfies condition (4.3) with the same constant ε0.

We see that ũ satisfies the equation

FT (D2ũ(x)) =
1

T
F (TD2ũ(x)) =

1

T
F (D2u(r1x)) =

f(r1x)

T
= fT (x),

where for r ≤ 1 we have

(
1

|Br|

∫
Br

|fT |n)1/n ≤
(
rα1 |f |Cα(Brr1 )

T

)
rα < δrα.

Therefore, the equation

FT (D2ũ(x)) = fT (x)

satisfies all the conditions of Lemma 4.3.3 and hence the function ũ satisfies the

estimates (4.35).

Now by rescaling back (4.35) we get the desired estimate (4.47).

Next, consider any point x0 in B1/2. Let v(x) = 4u(x/2 + x0) where x ∈ B1.

Note that B1/2(x0) ⊂ B1 and hence F (D2v) = 0 in B1. Now we repeat the same

argument as before for v in order to obtain the same estimate as (4.47) on the ball

B1/2(x0). By [3, Remark 3, page 74] it follows that u ∈ C2,α(B̄1/2(0)) with bounds

given by

||D2u||Cᾱ(B̄1/2(0)) ≤ C2

where 0 < C2 = C2(n,Λ, λ, C1). This proves the estimate in (4.6). Hence the

proof.
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