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DISSERTATION ABSTRACT

Gavin Armstrong

Doctor of Philosophy

Department of Mathematics

June 2018

Title: Unimodal Lévy Processes on Bounded Lipschitz Sets

We give asymptotics near the boundary for the distribution of the first exit

time of the isotropic α-stable Lévy process on bounded Lipschitz sets in Rd. These

asymptotics bear some relation to the existence of limits in the Yaglom sense of

α-stable processes. Our approach relies on the uniform integrability of the ratio of

Green functions on bounded Lipschitz sets.

We use bounds for the heat remainder to give the first two terms in the

small time asymptotic expansion of the trace of the heat kernel of unimodal Lévy

processes satisfying some weak scaling conditions on bounded Lipschitz domains.

This dissertation includes previously unpublished co-authored material.
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CHAPTER I

INTRODUCTION

This dissertation explores two distinct properties of the heat kernel of

unimodal Lévy processes on bounded Lipschitz sets: the limiting boundary

behavior of the heat kernel for isotropic α-stable processes and the small time

asymptotic behavior of the trace of the heat kernel for unimodal Lévy processes.

The first of these properties was work co-authored with Prof. Krzysztof

Bogdan. We establish how the isotropic α-stable process, conditioned on its

survival, acts near the boundary of its domain. This is a generalization of the work

done by Bogdan et al. [19] for cones. Our proof relies on similar sharp estimates

of the heat kernel on Lipschitz sets and on a formula expressing the survival

probability in terms of a Green potential. A noteworthy difference in our approach

is that we use the α-harmonicity of the Martin kernel on bounded Lipschitz sets to

conclude the uniform integrability of the ratio of Green potentials, which in turn

helps us establish the existence of the necessary integrals.

These asymptotics give us some insight into the inherent behavior of the

Dirichlet heat kernel on the boundary. An additional implication of this result is

the existence of a “Yaglom limit”-like probability measure on our set [33]. That

is, the boundary behavior of the heat kernel gives us a measure which represents

the probability distribution of the (naturally) rescaled process conditioned on non-

extinction.

Such asymptotics are consistent with previous work, and can be regarded

as part of the culmination of the study of the Dirichlet fractional Laplacian. This

study started with boundary estimates and asymptotics of harmonic functions,
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these boundary estimates led to Green function estimates and asymptotics, which,

in turn, gave the Martin representation of harmonic functions, and finally sharp

estimates of the heat kernel.

The study of the Dirichlet fractional Laplacian in this way began with proofs

of the boundary Harnack principle for the fractional Laplacian by Bogdan [7]

and Song and Wu [52]. Sharp estimates for the Green function of the fractional

laplacian were given by Jakubowsi [34]. Boundary asymptotics of ratios of

harmonic functions were given by Bogdan et al. [18]. Sharp estimates of the

Dirichlet heat kernel are given in [15]. As is the case here, results in this area for

Lipschitz sets are often preceded and informed by the results for cones. Related

background is given by DeBlassie [29], Kulczycki [40], Burdzy and Kulczycki [25],

Méndez-Hernández [43], Bogdan and Jakubowski [17], Michalik [44], Kulczycki and

Siudeja [42], and Bogdan and Grzywny [12]. For smooth domains see Kulczycki

[41], Song and Chen [28], and Kim et al. [36, 39].

The second property discussed in this dissertation is the approximation of

the trace of the heat kernel for unimodal Lévy processes on bounded Lipschitz

domains. The trace of the heat kernel has been long studied in analysis and

probability. Given a type of stochastic process and a domain, can we estimate

or give asymptotics for the trace of that heat kernel? This is related to an older

question in analysis [35]: What is the relationship between the spectrum of the

Laplacian on a domain and the geometry of the domain? The latter question can,

in part, be approached through the theory of stochastic processes using the trace of

the heat kernel. Therefore a question about the relationship between the spectrum

of the fractional Laplacian and the geometry of D can become a question about the

relationship between the trace of the heat kernel and the geometry of D.
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We give the first two terms in the small time asymptotic expansion of the

trace of the heat kernel of unimodal Lévy processes on bounded Lipschitz domains.

This approximation is a bound of the trace which is uniform in t for small values

of t. The first component is given by the d-dimensional Lebesgue measure of the

domain and the second is given by the (d − 1)-dimensional Hausdorff measure of

the boundary of the domain. Our result fits perfectly with the existing collection of

estimates and asymptotics of traces.

The first term of our asymptotic expansion is near trivial to demonstrate.

The second term is obtained using properties of the Lipschitz boundary to separate

the boundary into good sets, of significant measure, and bad sets, of smaller

measure. On both sets we use recent estimates for the heat remainder from [21].

On the good set we show, through a series of applications of the triangle inequality,

that the heat remainder on our domain is comparable with the heat remainder

on the half-plane, and hence the second term of our asymptotic expansion is the

product of the Hausdorff measure of the boundary and a constant only depending

on the upper-half space of Rd.

One of the first studies of traces in this way was a two-term estimate for

Brownian motion on R-smooth domains by van den Berg [54]. Asymptotics of the

Brownian motion case were given for C1 domains by Brossard and Carmona [23]

and Lipschitz domains by Brown [24]. Estimates for isotropic α-stable processes on

R-smooth domains were given by Bañuelos and Kulczycki [3], and asymptotics on

Lipschitz were given by Bañuelos et al. [4]. Most recently two-term estimates for

unimodal Lévy processes on R-smooth domains were given by Bogdan and Siudeja

[21]. This leads exactly to our asymptotic expansion.
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CHAPTER II

PRELIMINARIES

In this chapter we provide some necessary definitions, notations, and known

results from the theory of stochastic processes which will help us in later chapters.

2.1. Definitions

Let 0 < α < 2, 2 ≤ d, and Rd be the real d-dimensional Euclidean space.

Unless stated otherwise, we will assume that all our random variables are Rd-

valued. We summarize the basics of stochastic and Lévy processes in this section,

for a more detailed discussion see [1, 47].

A stochastic process, X(ω) = (Xt(ω))t∈T , is a collection of random

variables defined on a common probability space, (Ω,F ,P), where Ω is a sample

space, F is a σ-algebra, P is a probability measure. The random variables, Xt(ω),

indexed by some set T , all take values in the same mathematical space S, which

must be measurable with respect to some σ-algebra, Σ. Note: we will often

suppress the notation and write “Xt(ω)” as just “Xt”.

We will be concerned with a specific type of stochastic process: processes

whose increments are independent and stationary, otherwise known as a Lévy

process. These processes can be viewed as the continuous-time analogue of

random walks.

Definition 2.1.1. A stochastic process X = (Xt)t≥0 is said to be a Lévy process

if it satisfies the following properties:

1. X0 = 0, almost surely.
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2. Independent increments: For any 0 ≤ t1 < t2 < · · · < tn < ∞, the random

variables Xt2 −Xt1, Xt3 −Xt2, . . ., Xtn −Xtn−1 are independent of each other.

3. Stationary increments: For any s < t, the distribution of Xt − Xs is equal to

the distribution of Xt−s.

4. Continuity in probability: For any ε > 0 and t ≥ 0 it is true that

lim
h→0

P (|Xt+h −Xt| > ε) = 0.

5. CÀDLÀG: There exists Ω0 ∈ F with P (Ω0) = 1 such that for every ω ∈ Ω0

Xt(ω) is right-continuous in t ≥ 0 and has left limits in t > 0.

The primary tool in studying the distributions of Lévy processes is the

characteristic function, or Fourier transform, of their distributions. Let Y be a

random variable defined on (Ω,F ,P) taking values in Rd with probability law pY .

The characteristic function of Y , φY : Rd → C, is defined by

φY (ξ) = E
[
ei〈ξ,Y 〉

]
=

∫
Ω

ei〈ξ,Y (ω)〉P(dω) =

∫
Rd
ei〈ξ,y〉pY (dy), (2.1)

for each ξ ∈ Rd.

The “Independent increments” property of a Lévy processes, X = (Xt)t≥0,

allows us to conclude that the random variables Xt are infinitely divisible for each

t ≥ 0. That is, for all n ∈ N there exist a collection of independent and identically

distributed random variables, Y
(n,t)

1 , . . . , Y
(n,t)
n such that

distribution (Xt) = distribution
(
Y

(n,t)
1 + · · ·+ Y (n,t)

n

)
.
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Because of this “infinite divisibility” property we can apply the Lévy-Khintchine

formula to Lévy processes.

Theorem 2.1.1 (Lévy-Khintchine). Given a Lévy process, X = (Xt)t≥0, there

exists a vector b ∈ Rd, a positive definite symmetric d × d matrix A, and a Borel

measure ν on R\{0} such that

φXt(ξ) = exp

[
t ·
{
i〈b, ξ〉 − 1

2
〈ξ, Aξ〉+

∫
Rd

(
ei〈ξ,y〉 − 1− i〈ξ, y〉1B1(0)

)
ν(dy)

}]
,

(2.2)

for each ξ ∈ Rd and t ≥ 0, where B1(0) is the ball of radius 1 centered at the origin,

1 is the indicator function, and ν satisfies
∫
Rd
(
|y|2 ∧ 1

)
ν(dy) <∞.

The exponent in (2.2) is often called the characteristic exponent or Lévy

exponent of X, denoted ψ(x). The matrix A is called the Gaussian covariance

matrix of X and ν is called the Lévy measure of X.

We call a measure isotropic if it is absolutely continuous on Rd\{0} with

respect to Lebesgue measure and it is invariant under linear isometries of Rd. We

call a measure unimodal if it is isotropic and its density function is radially non-

increasing. We say that a Lévy process is unimodal if all its density functions are

unimodal, see [11, 55]

We can simplify the characteristic exponent of unimodal Lévy processes to

ψ(ξ) = σ2 |ξ|2 +

∫
Rd

(1− cos〈ξ, y〉) ν(dy), (2.3)

where ν(dy) = ν(y)dy = ν (|y|) dy is a unimodal Lévy measure and σ ≥ 0.
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For the remainder of this dissertation we assume that all our stochastic

processes are unimodal Lévy processes, and that all sets, measures, and functions

are Borel.

Let X = (Xt)t≥0 be a unimodal Lévy process. For x ∈ Rd, we denote by Px

and Ex the probability and the expectation of a process starting from x. We will

denote by

pt(x, y) = pt(x− y) (2.4)

the transition density of X. That is, for A ⊂ Rd, we have

Px (Xt ∈ A) =

∫
A

pt(x, y)dy.

Let D ⊂ Rd be a nonempty open set, then the first exit time from D is

τD = inf {t ≥ 0 : Xt /∈ D} . (2.5)

Note that if D is bounded, then τD < ∞ almost surely. The transition density of

the process killed upon exiting D (the heat kernel) is defined by

Px (Xt ∈ A, τD > t) =

∫
A

pDt (x, y)dy. (2.6)

The heat remainder of the process killed upon exiting D is defined by

rDt (x, y) = Ex [pt−τD (XτD , y) ; τD < t ] =

∫
{τD<t}

pt−τD
(
XτD , y

)
dPx (2.7)

We can see that

pt(x, y) = pDt (x, y) + rDt (x, y). (2.8)
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Note that pDt satisfies the Chapman-Kolmogorov identity:

∫
pDs (x, y)pDt (y, z)dy = pDt+s(x, z), s, t > 0, x, z ∈ Rd, (2.9)

see [21, 9, 26]

Let η ≥ 0. The truncated Green function of the set D is defined by

Gη
D(x, y) =

∫ η

0

pDt (x, y)dt. (2.10)

We will use the term Green function and notation GD(x, y) to refer to the case

when η = ∞. We have GD(x, x) = ∞ if x ∈ D and we set GD(x, x) = 0 if x ∈ Dc.

For integrable or nonnegative functions f , we define the Green operator to be

(GDf) (x) =

∫
D

GD(x, y)f(y)dy. (2.11)

It is well-known that GD(x, y) > 0 on D. Also GD(x, y) = GD(y, x), for x, y ∈ Rd,

and GD(x, y) = 0 is x ∈ Dc or y ∈ Dc. We can define the truncated Poisson

kernel of the set D in a similar way:

P η
D(x, y) =

∫
D

Gη
D(x, z)ν(z − y)dz. (2.12)

The term Poisson kernel and notation PD(x, y) will refer to the case η =∞.

We denote the semigroup on L2(D) of X killed upon exiting D by
{
PD
t

}
t≥0

.

That is, for x ∈ D, t > 0 and f ∈ L2(D) we define

(
PD
t f
)

(x) = Ex [f (Xt) ; τD > t] =

∫
D

pDt (x, y)f(y)dy. (2.13)
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The infinitesimal generator of the killed semigroup
{
PD
t

}
t≥0

is defined by

Lf = lim
t→0

t−1
(
PD
t f − f

)
. (2.14)

Given any unimodal Lévy process X the corresponding infinitesimal generator has

a unique representation as an integro-differential operator:

(Lf) (x) =
d∑
i=1

bi
∂f

∂xi
+ σ2∆f +

∫
Rd

(
f(x+ y)− f(x)−

d∑
i=1

yi
∂f

∂xi
1D(y)

)
ν(dy),

(2.15)

where ∆ =
∑d

i=1
∂2

∂x2i
is the standard Laplace operator.

An open set D ⊂ Rd is called Lipschitz if we can find R > 0 and Λ > 0

such that for every Q ∈ ∂D there exists a Lipschitz function φQ : Rd−1 → R with

Lipschitz constant not greater than Λ and an orthonormal coordinate system CSQ

such that if y = (y1, . . . , yd−1, yd) in CSQ coordinates, then

D ∩B(Q,R) = {y : yd > φQ (y1, . . . , yd−1)} ∩B(Q,R),

where B(Q,R) =
{
z ∈ Rd : |z −Q| < R

}
.

We recall the Ikeda-Watanabe formula from [21] for the joint distribution of

XτD and τD. For x ∈ D, 0 ≤ t1 ≤ t2 and A ⊂
(
D
)c

we have

Px [XτD ∈ A, t1 < τD < t2] =

∫
D

∫ t2

t1

pDs (x, y)ds

∫
A

ν(y − z)dzdy. (2.16)

See also [2, Lemma 1], [20], [27, Appendix A], [30, VII.68], or [48, Theorem 2.4].

For the rest of this dissertation we assume that D is an open bounded

nonempty Lipschitz set.
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2.2. Stable Processes

The isotropic α-stable process is a commonly studied unimodal Lévy process.

The process is determined by the jump measure with density function

ν(y) =
2αΓ ((d+ α)/2)

πd/2 |Γ (−α/2)|
|y|−d−α, y ∈ Rd. (2.17)

This process has characteristic function Exei〈ξ,Xt−x〉 = e−t|ξ|
α

, ξ ∈ Rd. The

transition densities, pt(x), are smooth real-valued functions on Rd and satisfy the

Fourier transform: ∫
Rd
pt(x)ei〈x,ξ〉dx = e−t|ξ|

α

, ξ ∈ Rd. (2.18)

Further, the following scaling property is a consequence of (2.18):

pt(x) = t−d/αp1(t−1/αx), x ∈ Rd, t > 0. (2.19)

There exists a constant c such that

c−1

(
t−d/α ∧ t

|x|d+α

)
≤ pt(x) ≤ c

(
t−d/α ∧ t

|x|d+α

)
, x ∈ Rd, t > 0.

See [6, 13, 22] for the explicit constant. We write f ≈ g when the functions f, g ≥ 0

are comparable, i.e. their ratio is uniformly bounded between two constants on

the whole domain. Hence

pt(x) ≈ t−d/α ∧ t

|x|d+α
, x ∈ Rd, t > 0. (2.20)

Note that throughout this dissertation we use many different constants. The value

of these constants is not usually of importance and the same specific constant
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is rarely required more than once. Hence the letters “c” or “C” are often used

generically to refer to a constant, but almost never refer to the same constant more

than once. We note that

0 ≤ pDt (x, y) = pDt (y, x) ≤ pt(y − x).

Since D is Lipschitz, it satisfies the exterior cone condition. Therefore, by

Blumenthal’s 0-1 law: Px (τD = 0) = 0 if x ∈ Dc, in particular pDt (x, y) = 0 when x

or y are outside of D. We note that

Px (τD > t) =

∫
D

pDt (x, y)dy. (2.21)

Additionally, the following scaling property follows from (2.19)

pDt (x, y) = t−d/αpt
−1/αD

1

(
t−1/αx, t−1/αy

)
, x, y ∈ Rd, t > 0. (2.22)

Combining (2.21) and (2.22) we get

Px (τD > t) =

∫
D

t−d/αpt
−1/αD

1

(
t−1/αx, t−1/αy

)
dy

=

∫
t−1/αD

pt
−1/αD

1

(
t−1/αx, u

)
du

= Pt−1/αx (τt−1/αD > 1) . (2.23)

We denote the killing intensity of X on D by

κD(z) =

∫
Dc
ν(z − y)dy, (2.24)
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and the fractional Laplacian operator by

(
∆α/2u

)
(x) = lim

r→0

∫
Rd\B(0,r)

(u(x+ y)− u(x)) ν(y)dy, (2.25)

where ν is the jump-measure as defined in (2.17).

Definition 2.2.1. Let u ≥ 0 be a Borel measurable function on Rd.

– We say that u(x) is regular α-harmonic in an open set V ⊂ Rd, written

u ∈H α
reg(V ), if

u(x) = Ex
[
u
(
XτV

)]
<∞, for all x ∈ V.

– We say that u(x) is α-harmonic in V ⊂ Rd, written u ∈H α(V ), if for every

bounded B ⊂ V such that B ⊂ V we have

u(x) = Ex
[
u
(
XτB

)]
<∞, for all x ∈ B.

– We say that u(x) is singular α-harmonic in V ⊂ Rd, written u ∈ H α
0 (V ),

if u ∈H α(V ) and u(x) = 0 for every x ∈ V c.

Since τB ≤ τV for B ⊂ V , it follows by the strong Markov property that

regular α-harmonic functions are also α-harmonic. For x ∈ Rd, the Px-distribution

of XτV is called the α-harmonic measure, denoted by ωxV . This measure is

concentrated on V c and for u ∈H α
reg(V ) we have

u(x) =

∫
V c
u(y)ωxV (dy), x ∈ V. (2.26)

12



Given an α-harmonic measure on a Lipschitz set we can express it in terms

of its density function (the Poisson kernel) [7, Lemma 6]. That is, for every u ∈

H α
reg(D) we have a representation

u(x) =

∫
Dc
PD(x, y)u(y)dy, x ∈ D. (2.27)

It can be shown that for each y ∈ D, G(x, y) is α-harmonic in x ∈ D\{y} and

regular α-harmonic in D\B(y, r), for every r > 0, see [8].

Fix an arbitrary reference point x0 ∈ D. For Q ∈ ∂D and y ∈ D we define the

Martin kernel on D by

Mx0
D (y,Q) = lim

x→Q

GD(x, y)

GD(x, x0)
, x ∈ D. (2.28)

In [8, Lemma 6] it is shown that the Martin kernel exists, the mapping (y,Q) 7→

Mx0
D (y,Q) is continuous on D × ∂D, and for every Q ∈ ∂D the function Mx0

D (·, Q)

is singular α-harmonic in D.

2.3. Weak Scaling Conditions

Let us return to general unimodal Lévy process setting. We asserted in

equation (2.3) that unimodal Lévy processes are characterized by Lévy-Khintchine

(characteristic) exponents of the form

ψ(ξ) = σ2|ξ|2 +

∫
Rd

(1− cos〈ξ, x〉) ν(dx),

where ν(dx) = ν(x)dx = ν(|x|)dx is a unimodal Lévy measure and σ ≥ 0. Since

ψ(ξ) is a radial function, we often let ξ(r) = ψ(ξ) where ξ ∈ Rd and r = |ξ| ≥ 0.
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Consider the pure-jump Lévy process X = (Xt)t≥0 on Rd. That is, let σ = 0.

This process is determined by the Lévy-Khintchine formula:

Eei〈ξ,Xt〉 =

∫
Rd
ei〈ξ,x〉pt(dx) = e−tψ(ξ). (2.29)

Here pt(dx) is the distribution of Xt. It turns out that pt(dx) is also unimodal;

therefore we can call the process X (isotropic) unimodal. We wish for pt(dx) to

have bounded and smooth density functions, pt(x) for t > 0. This is a consequence

of the Hartman-Wintner condition, see [14, Lemma 1.1]:

lim
|ξ|→∞

ψ(ξ)/ ln(ξ) =∞. (2.30)

The Hartman-Wintner condition itself will be a consequence of our assumption

that ψ(ξ) satisfies some weak lower scaling condition, yet to be defined. We always

assume that the Lévy-Khintchine exponent, ψ(ξ), is unbounded, that is, ν
(
Rd
)

=

∞. Clearly ψ(0) = 0 and ψ(u) > 0 for u > 0.

Let X1
t be the first coordinate process of Xt. We define the running

maximum of Xt by

mt = sup
0≤s≤t

X1
s . (2.31)

We then define the local time of mt − X1
t at 0, L0(t), to be the amount of time,

up to time t, that mt −X1
t spends at 0:

L0(t) =

∫ t

0

δ
(
ms −X1

s

)
ds, (2.32)

where δ(·) is the Dirac delta function. Consider the right-continuous inverse of

L0(t): (L0)
−1

(s). This is called the ascending ladder time process for X1
t .
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Composing X1
t with (L0)

−1
(s) gives us the ascending ladder-height process:

Hs = X1
(L0)−1(s)

= m(L0)−1(s). (2.33)

The accumulated potential of this ascending ladder-height process is

defined by

V (x) := E
∫ ∞

0

1[0,x] (Hs) ds =

∫ ∞
0

P (Hs ≤ x) ds. (2.34)

This is a continuous and strictly increasing from [0,∞) onto [0,∞). In particular,

limr→∞ V (r) =∞ and V (x) is sub-additive:

V (x+ y) ≤ V (x) + V (y), for all x, y ∈ R. (2.35)

The relationship between V (x) and ψ(x) is given in [14, Lemma 1.2] by

V 2(r) ≈ 1

ψ(1/r)
, r > 0. (2.36)

For more details on the ascending ladder-height process and accumulated potential

see [11] and [49].

We are interested in the (relative) power-type behavior of ψ(r) at infinity.

We say that ψ(r) satisfies the weak lower scaling condition at infinity,

WLSC (α, θ, C), if there are numbers α > 0, θ ≥ 0, and C ∈ (0, 1] such that

ψ(λr) ≥ Cλαψ(r), (2.37)

for λ ≥ 1, r > θ. In general, we write ψ ∈ WLSC (α, θ, C). Or, in short, we write

ψ ∈ WLSC (α, θ, C), ψ ∈ WLSC (α, θ), or ψ ∈ WLSC (α) depending on how

15



specific we want to be. Further, we say that ψ(r) satisfies the global weak lower

scaling condition at infinity (global WLSC) if ψ ∈ WLSC(α, 0). If θ > 0, then we

can emphasize this by calling the scaling “local at infinity”.

We say that ψ(r) satisfies the weak upper scaling condition at infinity,

WUSC
(
α, θ, C

)
, if there are numbers α < 2, θ ≥ 0, and C ∈ [1,∞) such that

ψ(λr) ≤ Cλαψ(r), (2.38)

for λ ≥ 1, r > θ. In general, we write ψ ∈ WUSC
(
α, θ, C

)
. Or, in short, we write

ψ ∈ WUSC
(
α, θ, C

)
, ψ ∈ WUSC

(
α, θ
)
, or ψ ∈ WUSC (α) depending on how

specific we want to be. Further, we say that ψ(r) satisfies the global weak upper

scaling condition at infinity (global WUSC) if ψ ∈ WUSC(α, 0). If θ > 0, then we

can emphasize this by calling the scaling “local at infinity”.

As pointed out in [14, Remark 1.4], by inflating (or deflating) C and C we

can deflate (or inflate) θ and θ so that θ = θ = θ > 0 in both WLSC and WUSC.

These scalings are natural conditions on ψ(r) in the unimodal setting and there are

many examples of Lévy-Khintchine exponents which satisfy WLSC or WUSC. For

example, as is shown in [13], every unimodal Lévy process satisfies

ψ ∈ WLSC
(
0, 0, 1/π2

)
∩WUSC

(
2, 0, π2

)
.

Another example is ψ(ξ) = |ξ|α, the Lévy-Khintchine exponent of the

isotropic α-stable Lévy process in Rd with α ∈ (0, 2). This satisfies WLSC(α, 0, 1)

and WUSC(α, 0, 1). Alternatively, a non-stable example is ψ(ξ) = |ξ|α1 + |ξ|α2 ,

for which we have ψ(ξ) ∈ WLSC (α1, 0, 1) ∩ WUSC (α2, 0, 1), where 0 < α1 <

α2 < 2. Finally, if ψ(r) is α-regular varying at infinity and 0 < α < 2, then
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ψ ∈ WLSC (α) ∩WUSC (α), for any 0 < α < α < α < 2. See [13] for more details

on WLSC and WUSC.

By definition, if ψ ∈ WLSC (α, θ), then there exists some constant C such

that

V
(

1
λr

)
V
(

1
r

) ≤ Cλ−α/2,

for λ ≥ 1 and r > θ. That is,

V (εs)

V (s)
≤ Cεα/2, (2.39)

for 0 < ε ≤ 1 and s < 1/θ. Similarly, if ψ ∈ WUSC
(
α, θ
)

then there exists some

constant C such that

V (s)

V (εs)
≤ Cε−α/2, (2.40)

for 0 < ε ≤ 1 and s < 1/θ.

Lemma 2.3.1 (Potter-like Bounds). If ψ ∈ WLSC(α, θ) ∩WUSC(α, θ), 0 < x <

1/θ, and 0 < y < 1/θ, then there exists some constant C such that

V (x)

V (y)
≤ C

[(
x

y

)α/2
∨
(
x

y

)α/2]
. (2.41)

Proof. Using (2.39) and (2.40) we have

V (x)

V (y)
=


V (ty)
V (y)

, if t = x
y
≤ 1,

V (x)
V (t−1x)

, if t−1 = y
x
≤ 1.

≤


Ctα/2, if t = x

y
≤ 1 and y < 1/θ,

Ctα/2, if t−1 = y
x
≤ 1 and x < 1/θ.
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Thus

V (x)

V (y)
≤ C

[(
x

y

)α/2
∨
(
x

y

)α/2]
, for x < 1/θ, y < θ.

We frequently refer to the inverse function of V (x) on [0,∞) in this

dissertation. To simplify notation, we choose to write

T (t) := V −1
(√

t
)
. (2.42)

This is equivalent to V 2 (T (t)) = t. For example, T (t) = t1/α for the isotropic α-

stable Lévy process. The scaling properties of T (t) at zero reflect those of ψ(ξ) at

infinity. See [21] for further discussion of T (t). A nice consequence of weak scaling

conditions is that they imply the Hartman-Wintner condition, mentioned above in

(2.30). That is, weak scaling conditions imply that the distribution, pt(dx), of Xt

has a bounded and smooth density function, pt(x) for t > 0.

Throughout the rest of this dissertation we make the following assumptions:

– The Lévy measure ν is unimodal and infinite on Rd with d ≥ 2.

– The Lévy-Khintchine exponent satisfies both weak upper and lower scaling

conditions

0 6= ψ ∈ WLSC (α, θ) ∩WUSC (α, θ) , (2.43)

for some constants 0 < α ≤ α < 2 and 0 ≤ θ ≤ infx∈D (1/δD(x)).
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2.4. Trace Estimates

We define the trace of the heat kernel pDt (x, y) by

ZD(t) =

∫
Rd
pDt (x, x)dx. (2.44)

A classical question in analysis is: what is the relationship between the spectrum

of the Laplacian and the geometry of the domain on which it is defined? This

problem can be approached through the theory of stochastic processes using

the trace of the heat kernel. For example, consider the infinitesimal generator of{
PD
t

}
t≥0

for the isotropic α-stable process. In this case, it can be shown that there

exists an orthonormal basis of eigenfunctions {ϕi}∞i=1 for L2(D) and corresponding

eigenvalues {λi}∞i=1 of Lf satisfying 0 < λ1 < λ2 ≤ λ3 ≤ · · · , with λi → ∞ as

i→∞, see [31]. That is, {ϕi, λi} satisfies

(
PD
t ϕi

)
(x) = e−λitϕi(x), x ∈ D, t > 0. (2.45)

Thus

pDt (x, y) =
∞∑
i=1

e−λitϕi(x)ϕi(y). (2.46)

Hence

ZD(t) =
∞∑
i=1

e−λit
∫
D

ϕ2
i (x)dx =

∞∑
i=1

e−λit. (2.47)

Therefore a question about the relationship between the spectrum of the fractional

Laplacian and the geometry of D can become a question about the relationship

between the trace of the heat kernel and the geometry of D.

19



CHAPTER III

BOUNDARY BEHAVIOR OF THE HEAT KERNEL OF ALPHA-STABLE

PROCESSES ON BOUNDED LIPSCHITZ SETS

3.1. Boundary Behavior of the Heat Kernel

In this chapter we establish the limiting boundary behavior of the heat

kernel for isotropic α-stable processes on bounded Lipschitz sets. This has some

relationship to Yaglom limits, which refer to the existence of a rescaling of a Lévy

process and a non-trivial probability measure such that the rescaling conditioned

on non-extinction converges in distribution towards the measure. This project is a

generalization of the work done by Bogdan et al. [19] for cones, and was completed

under the guidance of Prof. Krzysztof Bogdan at Wroc law University of Science

and Technology.

We consider solely the isotropic α-stable processes in this chapter. Let X =

(Xt)t≥0 be the isotropic α-stable Lévy process in Rd.

Theorem 3.1.1. Let D be an open bounded Lipschitz set in Rd and let Q ∈ ∂D.

The following limit exists

nt,Q(y) = lim
x→Q

pDt (x, y)

Px (τD > 1)
, x ∈ D, (t, y) ∈ [1,∞)×D. (3.1)

Furthermore it is finite, strictly positive, continuous on t and y, and for 1 ≤ t <∞,

0 < s <∞, y ∈ D we have

n1,Q(y) ≈ Py (τD > 1) , (3.2)

nt+s,Q(y) =

∫
D

nt,Q(z)pDs (z, y)dz. (3.3)
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3.2. Asymptotics of Green Potentials

We wish to prove Theorem 3.1.1. To do this we first establish the asymptotics

of Green potentials at the boundary points. This extends what is already known

about the asymptotics of Green potentials for cones [19, Lemma 3.5]

Lemma 3.2.1 (Uniform Integrability of the Ratio of Green Functions).

Let f be a measurable function bounded on D and let Q ∈ ∂D. We have

lim
x→Q

∫
D

GD(x, y)

GD(x, x0)
f(y)dy =

∫
D

lim
x→Q

GD(x, y)

GD(x, x0)
f(y)dy <∞, x ∈ D.

Proof of Lemma 3.2.1. Let z1, z2 ∈ D. We choose

ρ = (dist (z1, ∂D) ∧ dist (z2, ∂D) ∧ |z1 − z2|) /3 (3.4)

so that B(z1, ρ), B(z2, ρ) ⊂ D and B(z1, ρ) ∩ B(z2, ρ) = ∅. We know that

GD(·, y) is regular α-harmonic on B(z1, ρ) and B(z2, ρ), see [41]. We also know that

Mx0
D (·, Q) is regular α-harmonic on B(z1, ρ) and B(z2, ρ), see [8, Lemma 6]. Using

the definition of the Martin kernel (2.28) and the α-harmonicity of both the Martin

kernel and the Green function we get

∫
B(zi,ρ)c

lim
x→Q

GD(x, y)

GD(x, x0)
ωziB(zi,ρ)(dy) =

∫
B(zi,ρ)c

Mx0
D (y,Q)ωziB(zi,ρ)(dy)

= Mx0
D (zi, Q)

= lim
x→Q

GD(x, zi)

GD(x, x0)

= lim
x→Q

∫
B(zi,ρ)c

GD(x, y)ωziB(zi,ρ)(dy)

GD(x, x0)

= lim
x→Q

∫
B(zi,ρ)c

GD(x, y)

GD(x, x0)
ωziB(zi,ρ)(dy),
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for i = 1, 2. This tells us that, with respect to the α-harmonic measure on

B (zi, ρ), the above integral and limit are interchangeable. Vitali’s theorem [50,

Theorem 16.6] tells us that the collection of functions
(
GD(x,y)
GD(x,x0)

)
x→Q

is uniformly

integrable on D with respect to ωB(z1,ρ) + ωB(z2,ρ).

The α-harmonic measures ωziB(zi,ρ) have explicit density functions, see e.g. [8].

It can be shown that

PB(zi,ρ)(zi, y) ≥ cd,α,z1,z2(
|y − zi|2

)α/2 |y − zi|d ≥
cd,α,z1,z2

(|y|+ |zi|)d+α
≥ cd,α,z1,z2 ,

for y ∈ B(zi, ρ)c and i = 1, 2. Thus [50, Theorem 16.8] tells us that we also have

the uniform integrability of
(
GD(x,y)
GD(x,x0)

)
x→Q

on D with respect to Lebesgue measure.

Therefore

lim
x→Q

∫
D

GD(x, y)

GD(x, x0)
f(y)dy =

∫
D

lim
x→Q

GD(x, y)

GD(x, x0)
f(y)dy <∞,

for any bounded measurable f(y).

3.3. Distributions and Green Potentials

We can also establish the following identity, expressing the distribution of the

first exit time in terms of a Green potential:

Lemma 3.3.1. For x ∈ Rd, we have

Px (τD > 1) =
(
GDP

D
1 κD

)
(x). (3.5)
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Proof of Lemma 3.3.1. Let x ∈ D. Since our domain D is Lipschitz, it follows from

[53] that

ωxD (∂D) = Px (XτD ∈ ∂D) = 0,

Thus

Px (XτD− = XτD) = 0.

By the Ikeda-Watanabe formula:

Px (τD > 1) = Px (τD > 1, XτD− ∈ D, XτD ∈ Dc)

=

∫ ∞
1

∫
Dc

∫
D

pDs (x, z)ν(z − w) dz dw ds

=

∫
Rd

∫
Dc

∫ ∞
0

pDt+1(x, z)ν(z − w) dt dw dz

=

∫
Rd

∫
Dc

∫ ∞
0

∫
D

pDt (x, y)pD1 (y, z) dy ν(z − w) dt dw dz

=

∫
D

∫ ∞
0

pDt (x, y) dt

∫
Rd
pD1 (y, z)

∫
Dc
ν(z − w) dw dz dy

=

∫
D

GD(x, y)

∫
Rd
pD1 (y, z)κD(z) dz dy

=

∫
D

GD(x, y)
(
PD

1 κD
)

(y) dy

=
(
GDP

D
1 κD

)
(x).

For x ∈ Dc we can see that τD = 0 almost surely with respect to Px. Therefore the

identity (3.5) is established.

Next we show that the limit of the ratio of the distribution of the exit time

and the Green function exists near the boundary. We will denote this limit by C1
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and we will show that

C1 =

∫
D

∫
D

Mx0
D (y,Q)pD1 (y, z)κD(z)dzdy. (3.6)

Combining the two lemmas above we obtain the following theorem:

Theorem 3.3.1. The constant 0 < C1 <∞ exists, satisfies equation (3.6), and

lim
x→Q

Px (τD > 1)

GD(x, x0)
= C1. (3.7)

Proof of Theorem 3.3.1. We first show that f(y) =
(
PD

1 κD
)

(y) satisfies the

assumptions of Lemma 3.2.1, i.e. that f is bounded. Indeed, by [15, Theorem 1]

we have the following factorization

pD1 (y, z) ≈ Py
(
τD > 1

)
Pz
(
τD > 1

)
p1(y, z), y, z ∈ D. (3.8)

Thus,

(
PD

1 κD
)

(y) =

∫
D

pD1 (y, z) κD(z) dz

≈ Py
(
τD > 1

) ∫
D

Pz
(
τD > 1

)
p1(y, z) κD(z) dz. (3.9)

Since D is bounded, it follows from equation (2.20) that

p1(y, z) ≈ 1, y, z ∈ D. (3.10)
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Hence equation (3.9) becomes

(
PD

1 κD
)

(y) ≈ Py(τD > 1)

∫
D

Pz(τD > 1)κD(z) dz. (3.11)

Using equation (3.5) we see that

∫
D

GD(x, y)
(
P Γ

1 κΓ

)
(y)dy =

(
GDP

Γ
1 κΓ

)
(x) = Px (τD > 1) ≤ 1,

for y ∈ Rd. By [56], GD(x, y) is strictly positive for all x, y ∈ D. Thus P Γ
1 κΓ has

to be finite almost everywhere. Hence the integral in equation (3.11) must be finite.

Therefore (
PD

1 κD
)

(y) ≈ Py(τD > 1),

for y ∈ D. In particular,
(
PD

1 κΓ

)
(y) is bounded on D.

Finally, since
(
PD

1 κΓ

)
(y) is bounded, we can apply Lemma 3.2.1:

lim
x→Q

Px (τD > 1)

GD(x, x0)
= lim

x→Q

(
GDP

D
1 κD

)
(x)

GD(x, x0)

= lim
x→Q

∫
D

GD(x, y)

GD(x, x0)

(
PD

1 κD
)

(y) dy

=

∫
D

Mx0
D (y,Q)

(
PD

1 κD
)

(y) dy

= C1 <∞. (3.12)

3.4. Limiting Boundary Behavior

We are now in a position to prove Theorem 3.1.1.
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Proof of Theorem 3.1.1. Let us define

µx(A) :=

∫
A
pD1 (x, y)dy

Px (τD > 1)
, x ∈ D, A ⊂ Rd. (3.13)

First we note that the family {µx : x ∈ D} is tight. Indeed, combining the

factorization of pD1 (x, y) in equations (3.8) and (3.10) we get

pD1 (x, y)

Px (τD > 1)
≈ Py (τD > 1) , (3.14)

for x, y ∈ D. The density functions of these µx(A) are bounded by a single

integrable function and hence this collection of measures is tight.

Next we wish to prove that the measures µx converge weakly to a probability

measure µQ on D as x → Q. To this end, consider an arbitrary sequence {xn} such

that xn → Q. By tightness there exists a subsequence {xnk} such that µxnk ⇒ µQ

for some probability measure µQ, as k → ∞. We wish to show that this limit is

unique.

Let φ ∈ C∞c (D) and uφ = −∆α/2φ, where ∆α/2 is the fractional Laplacian

operator defined in equation (2.25). For x ∈ Rd, we claim that

(
PD

1 φ
)

(x) =
(
GDP

D
1 uφ

)
(x). (3.15)

To show this we first remark that the function uφ is bounded and continuous and

that (GDuφ) (x) = φ(x), see [16, (19)] and [18, (11)]. By equation (2.20) it follows

that

(
PD

1 |uφ|
)

(x) =

∫
D

pD1 (x, y) |uφ(y)| dy ≤ c.
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It now follows from [18, (74)] that(
GDP

D
1 |uφ|

)
(x) =

∫
D

GD(x, y)
(
PD

1 |uφ|
)

(y)dy

≤ c

∫
D

GD(x, y)dy <∞. (3.16)

As a result of this, we can apply Fubini’s theorem:(
GDP

D
1 uφ

)
(x) =

∫
D

∫
D

∫ ∞
0

pDt (x, y)pD1 (y, z)uφ(z)dtdzdy

=

∫
D

∫ ∞
0

pDt+1(x, z)uφ(z)dtdz

=

∫
D

∫ ∞
0

pDt+1(z, x)uφ(z)dtdz

=

∫
D

∫
D

∫ ∞
0

pDt (z, y)pD1 (y, x)uφ(z)dtdzdy

=
(
PD

1 GDuφ
)

(x)

=
(
PD

1 φ
)

(x).

This establishes equation (3.15).

Let us denote µx(φ) :=
∫
D
φ(y)µx(dy). Using equation (3.15), Theorem 3.3.1,

and Lemma 3.2.1 we get

lim
x→Q

µx(φ) = lim
x→Q

(
PD

1 φ
)

(x)

Px (τD > 1)

= lim
x→Q

(
PD

1 GDuφ
)

(x)

Px (τD > 1)

= lim
x→Q

(
GDP

D
1 uφ

)
(x)

GD(x, x0)

GD(x, x0)

Px (τD > 1)

=
1

C1

∫
D

Mx0
D (y,Q)

(
PD

1 uφ
)

(y)dy. (3.17)

In particular µQ(φ) := limk→∞ µxnk (φ) does not depend on the choice of

subsequence. Thus µx ⇒ µQ as x→ Q.
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For any t > 1 we can consider φt,y(·) = pDt−1(·, y) ∈ C0(Rd). Using the

Chapman-Kolmogorov identity (2.9) we get

nt,Q(y) = lim
x→Q

pDt (x, y)

Px (τD > 1)

= lim
x→Q

∫
D
pDt−1(z, y)pD1 (x, z)dz

Px (τD > 1)

= lim
x→Q

(
PD

1 p
D
t−1(·, y)

)
(x)

Px (τD > 1)

= lim
x→Q

µx
(
pDt−1(·, y)

)
.

By (3.17), the existence of nt,Q(y) for t > 1 now follows:

nt,Q(y) = µQ
(
pDt−1(·, y)

)
.

The case t = 1 also follows from this, but instead of pDt−1(x, y) we just need the

appropriate identity function on D.

Note that for every φ ∈ C0(Rd) and every Q ∈ ∂D we have

µQ(φ) = lim
x→Q

∫
D

pD1 (x, y)

Px (τD > 1)
φ(y)dy =

∫
D

n1,Q(y)φ(y)dy.

That is, n1,Q(y) is the density function of µQ with respect to the Lebesgue measure.

Also equation (3.2) follows from equation (3.14), and equation (3.3) follows from

the Chapman-Kolmogorov identity (2.9) and the Dominated Convergence Theorem:

nt+s,Q(y) = lim
x→Q

∫
D

pDt (x, z)

Px (τD > 1)
pDs (z, y)dz =

∫
D

nt,Q(z)pDs (z, y)dz. (3.18)
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Corollary 3.4.1. Let D be an open bounded Lipschitz set in Rd and let Q ∈ ∂D.

The following limit exists

mD
t,Q(y) = lim

x→Q

pDt (x, y)

Px (τD > t)
, x ∈ D, (t, y) ∈ (0,∞)×D. (3.19)

Furthermore it is finite, strictly positive, and for 0 < t <∞, y ∈ D we have

mD
t,Q(y) = t−d/αm

D/t1/α

1,Q/t1/α

(
y/t1/α

)
. (3.20)

Proof. For t ≥ 1, the existence of mD
t,Q(y) follows from Theorem 3.1.1:

mD
t,Q(y) = lim

x→Q

pDt (x, y)

Px (τD > t)

= lim
x→Q

pDt (x, y)

Px (τD > 1)
· lim
x→Q

Px (τD > 1)

Px (τD > t)

=
nt,Q(y)

lim
x→∞

∫
D

pDt (x, y)

Px (τD > 1)
dy

=
nt,Q(y)∫

D
nt,Q(y)dy

. (3.21)

Using equations (2.22) and (2.23) we get the following rescaling property of mD
t,Q(y)

for t > 0:

mD
t,Q(y) = lim

x→Q

pDt (x, y)

Px (τD > 1)

= lim
x→Q

t−d/αpt
−1/αD

1

(
t−1/αx, t−1/αy

)
Pt−1/αx (τt−1/αD > 1)

= t−d/αmt−1/αD
1,t−1/αQ

(
t−1/αy

)
. (3.22)
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One interpretation of the implications of Theorem 3.1.1 is the following:

Corollary 3.4.2. Given a bounded Lipschitz set D, x ∈ D, and 0 = Q ∈ ∂D

there exists a probability measure µQ concentrated on D such that for every Borel

set A ⊂ Rd,

lim
t→∞

Px
(
Xt

t1/α
∈ A

∣∣∣∣ ( Xs

t1/α

)
0≤s≤t

⊂ D

)
= µQ(A). (3.23)

This corollary tells us that, given its survival for a short period of time, the

rescaled process Xt/t
1/α has a limiting distribution independent of the starting

point x.

Proof of Corollary 3.4.2. Suppose that our boundary point, Q, coincides with the

origin, that is Q = 0. We claim that the probability that the rescaled process

belongs to some Borel set A at a time t > 0, given that the rescaled process hasn’t

escaped the domain D yet, can be expressed in terms of the measure µt−1/αx(A),

irrespective of the starting point x of the process X. Indeed, for any Borel set

A ⊂ Rd we have

Px
(
Xt

t1/α
∈ A

∣∣∣∣ ( Xs

t1/α

)
0≤s≤t

⊂ D

)
=

Px
(

Xt
t1/α
∈ A,

(
Xs
t1/α

)
0≤s≤t

⊂ D

)
Px
((

Xs
t1/α

)
0≤s≤t

⊂ D

)
=

∫
t1/αA

pt
1/αD
t (x, y)dy∫

t1/αD
pt

1/αD
t (x, y)dy

=

∫
t1/αA

t−d/αpD1
(
t−1/αx, t−1/αy

)
dy∫

t1/αD
pD1 (t−1/αx, t−1/αy) dy

=

∫
A
pD1
(
t−1/αx, y

)
dy∫

D
pD1 (t−1/αx, y) dy

= µt−1/αx(A).

Therefore, as t→∞, this probability approaches µ0(A) = µQ(A).

30



CHAPTER IV

TRACE ASYMPTOTICS FOR UNIMODAL LÉVY PROCESSESS ON

LIPSCHITZ DOMAINS

4.1. Trace Asymptotics

In this chapter we provide the first two terms in the small-time asymptotic

expansion of the trace of the heat kernel for unimodal Lévy processes on bounded

Lipschitz domains. Asymptotics in this form on Lipschitz domains have been

established for Brownian motion [24] and for isotropic α-stable processes [4]. The

following theorem is the next generalization in this sequence.

Theorem 4.1.1. Let D ⊂ Rd be a bounded open Lipschitz domain. Given any

unimodal Lévy process satisfying weak scaling conditions and any ε > 0, there exists

some t0 > 0 such that for 0 < t < t0 the trace of the heat kernel satisfies

∣∣ZD(t)− pt(0)|D|+ CH(t)Hd−1(∂D)
∣∣ ≤ c(ε)T (t)1−d, (4.1)

where c(ε)→ 0 as ε→ 0, and

CH(t) = T (t)1−d
∫ ∞

0

rH (t, (q, 0, ..., 0) , (q, 0, ..., 0)) dq. (4.2)

Here

H =
{

(x1, ..., xd) ∈ Rd : x1 > 0
}

= Rd
+ (4.3)

is the upper half-space of Rd, |D| is the d-dimensional Lebesgue measure of D, and

Hd−1 (∂D) is the (d− 1)-dimensional Hausdorff measure of ∂D.
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4.2. Good Sets

In order to prove Theorem 4.1.1 we dissect the Lipschitz domain D in the

same way as [4] and [24]; we dissect it into good and bad sets. Let ε, r > 0. We

say that G ⊂ ∂D is (ε, r)-good if, for each point q ∈ G, the unit inner-normal at

q, v(q), exists, and the boundary of D, near q, is contained in a cone orthogonal to

the inner-normal. That is,

B(q, r) ∩ ∂D ⊂ {x : |(x− q) · v(q)| < ε|x− q|} .

Let ϕε ∈ [0, π/2] denote the angle, measured from v(q), such that cos (ϕε) = ε.

We say that G ⊂ D is a good subset of D if each of its points is contained in the

inner-cone of some point in an (ε, r)-good set of D:

G :=
⋃
q∈G

Γr(q, ε), (4.4)

where Γr(q, ε) is an inner-cone whose axis contains v(q)

Γr(q, ε) :=
{
x : (x− q) · v(q) >

√
1− ε2|x− q|

}
∩B(q, r). (4.5)

For x ∈ Rd, let us denote the distance between x and the boundary of D by

δD(x) := dist (x, ∂D). In [4, Lemma 2.7, Lemma 2.8] it is shown that the collection

of points close to the boundary and not contained in the good subset of D has

small measure:
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q

v(q)

Γr(q, ε)

∂D

B(q, r)

q

v(q) ϕε

B(q, r)

FIGURE 1 The ball on the boundary showing the inner-normal, the inner-cone and
the inner-angle.

Lemma 4.2.1. Let 0 < ε < 1/4 and r > 0. There exists a measurable (ε, r)-good

set G ⊂ ∂D and s0(∂D,G) such that for all s < s0

|{x ∈ D : δD(x) < s} \G| ≤ sε
(
4 +Hd−1 (∂D)

)
. (4.6)

Notice that if we take x ∈ G, then we can find q(x) ∈ ∂D such that x ∈

Γr(q(x), ε). This allows us to define the inner and outer regions of B(q(x), r):

Ir(q(x)) := {y : (y − q(x)) · v(q(x)) > ε|y − q(x)|} ∩B(q(x), r), (4.7)

Ur(q(x)) := {y : (y − q(x)) · v(q(x)) < −ε|y − q(x)|} ∩B(q(x), r). (4.8)

Note that the following containment always holds

Γr(q(x), ε) ⊂ Ir(q(x)) ⊂ D ⊂ U c
r (q(x)).

It is shown in [4] that for any x ∈ G there exists a half-space H∗(x) containing

x, separating the inner and outer regions, and such that the distance between x

and the boundary of D is equal to the distance between x and the boundary of the
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q(x)

x

Γr(q(x), ε)

∂D

B(q(x), r)

q(x)

Ir(q(x))

Ur(q(x))

B(q(x), r)

∂D

FIGURE 2 The cone corresponding to the point x, the inner and outer regions.

half-space:

x ∈ H∗(x), δH∗(x)(x) = δD(x), Ir(q(x)) ⊆ H∗(x) ⊆ U c
r (q(x)). (4.9)

x

∂H∗(x)

δD(x) = δH∗(x)(x)

FIGURE 3 The half-space separating the inner and outer regions.

4.3. Establishing the Estimates

We are now in a position to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. Recall that the transition densities of isotropic processes

killed upon exiting a domain D are given by the Hunt formula (2.8)

pDt (x, y) = pt(y − x)− rDt (x, y). (4.10)
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Restricting to x and integrating over D we get

−
∫
D

rDt (x, x)dx =

∫
D

pDt (x, x)dx−
∫
D

pt(0)dx

= ZD(t)− pt(0)|D|. (4.11)

This gives us the first term in the asymptotic expansion of the heat kernel.

Now, in order to prove Theorem 4.1.1, it is sufficient to show that for an arbitrary

ε > 0 there exists a t0 > 0 such that for any 0 < t < t0 we have

∣∣∣∣∫
D

rDt (x, x)dx− CH(t)Hd−1(∂D)

∣∣∣∣ ≤ c(ε)T (t)1−d, (4.12)

where c(ε)→ 0 as ε→ 0. In other words, we need to estimate

∫
D

rDt (x, x)dx. (4.13)

Fix 0 < ε < 1/4. Let G ⊂ ∂D to be the (ε, r)-good set as described above

in Lemma 4.2.1. Let G be the corresponding good subset of D. Divide D into the

following domains

D1 = {x ∈ D\G : δD(x) < s} ,

D2 = {x ∈ D ∩ G : δD(x) < s} ,

D3 = {x ∈ D : δD(x) ≥ s} ,

We fix s so that it is smaller than the s0 given in Lemma 4.2.1. For

sufficiently small t we can let s = T (t)/
√
ε.
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D3

= D1 ∪D2

D

FIGURE 4 The partitioning of D.

The domain D1: The following estimate for rDt (x, y) comes from [21,

Lemma 2.4].

Lemma 4.3.1. Suppose ψ ∈ WLSC(α, θ) and T (t) < 1/θ. Then

rDt (x, y) ≤ C

{
T (t)−d ∧ t

δdD(x)V 2 (δD(x))

}
. (4.14)

We have assumed that the Lévy-Khintchine exponent satisfies some scaling

conditions, see equation (2.43). Thus ψ ∈ WLSC (α, θ) and so Lemma 4.3.1 implies

that if T (t) < 1/θ, then

∫
D1

rDt (x, x)dx ≤ C

∫
D1

T (t)−d dx

= CT (t)−d|D1|. (4.15)

But, by Lemma 4.2.1, we know that the measure of the set of bad points near the

boundary is small. Hence if T (t) < 1/θ, then

∫
D1

rDt (x, x)dx ≤ C(∂D)εsT (t)−d ≤ C
√
εT (t)1−d , (4.16)

where C is a constant depending on d, α, and ∂D.
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The domain D3: By assumption ψ ∈ WLSC(α, θ) and so we can apply

Lemma 4.3.1 again: if T (t) < 1/θ, then

∫
D3

rDt (x, x)dx ≤ CT (t)−d
∫
D3

{
1 ∧ T (t)d

δdD(x)

V 2(T (t))

V 2(δD(x))

}
dx. (4.17)

Next, our Potter-like bound in Lemma 2.3.1 tells us that if T (t) < 1/θ, then

∫
D3

rDt (x, x)dx ≤ CT (t)−d
∫
D3

{
1 ∧ T (t)d

δdD(x)

(
T (t)α

δαD(x)
∨ T (t)α

δαD(x)

)}
dx. (4.18)

By definition, for any x ∈ D3 we have δD(x) ≥ s = T (t)/
√
ε. Or equivalently

1 ≤ δD(x)
T (t)

√
ε. Hence

∫
D3

rDt (x, x)dx ≤ CT (t)−d
∫
D3

{
1 ∧
√
ε
T (t)d−1

δd−1
D (x)

(
T (t)α

δαD(x)
∨ T (t)α

δαD(x)

)}
dx

≤ CT (t)−d
∫
D

{(
1 ∧
√
ε
T (t)d+α−1

δd+α−1
D (x)

)
+

(
1 ∧
√
ε
T (t)d+α−1

δd+α−1
D (x)

)}
dx

= CT (t)1−d 1

T (t)

∫
D

{
1 ∧
√
ε

(
δD(x)

T (t)

)1−d−α

+1 ∧
√
ε

(
δD(x)

T (t)

)1−d−α}
dx. (4.19)

We are now in a position to apply the following proposition from [4]:

Proposition 4.3.2. Let D ⊂ Rd be a bounded Lipschitz domain. Suppose that

f : (0,∞) → R is continuous and satisfies f(s) ≤ c
(
1 ∧ s−β

)
, s > 0, for some

β > 1, and suppose that for any 0 < R1 < R2 < ∞, f(s) is Lipschitz on [R1, R2].

Then

lim
η→0+

1

η

∫
D

f

(
δD(x)

η

)
dx = Hd−1(∂D)

∫ ∞
0

f(s)ds. (4.20)
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Letting η = T (t) and f(s) = 1 ∧
√
εs−d−α+1 and f(s) = 1 ∧

√
εs−d−α+1,

respectively, we can apply Proposition 4.3.2 to both of the integrals in (4.19). Thus

for small values of t we get

∫
D3

rDt (x, x)dx ≤ C
Hd−1(∂D)

T (t)d−1

∫ ∞
0

{(
1 ∧
√
εr−d−α+1

)
+
(
1 ∧
√
εr−d−α+1

)}
dr.

Using substitution this becomes

∫
D3

rDt (x, x)dx ≤ C(∂D)T (t)1−d
{
ε

1
2(d+α−1)

∫ ∞
0

(
1 ∧ r−d−α+1

)
dr

+ ε
1

2(d+α−1)

∫ ∞
0

(
1 ∧ r−d−α+1

)
dr

}
≤ CT (t)1−d

(
ε

1
2(d+α−1) + ε

1
2(d+α−1)

)
. (4.21)

This covers the domains D1 and D3.

The domain D2: It remains to show that rDt (x, x) is comparable to rH
∗

t (x, x)

on D2. Suppose x ∈ D2 ⊂ G. Let q(x) be as above. Then x ∈ Γr (q(x), ε). For

the purposes of brevity we will use the following notation I := Ir(q(x)) and U c :=

U c
r (q(x)).

q(x)

I := Ir(q(x))
∂D

∂H∗(x) q(x)

U c := U c
r (q(x))

∂D

∂H∗(x)

Γr(q(x), ε)

x

FIGURE 5 Regions used to estimate the heat remainder on D2.
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Notice that

H∗(x) ⊆ U c and I ⊆ D.

Hence

∣∣∣rDt (x, x)− rH
∗(x)

t (x, x)
∣∣∣ ≤ rIt (x, x)− rUct (x, x). (4.22)

We can use the following proposition to estimate the heat remainder on the

above inner and outer regions:

Proposition 4.3.3. Let v(q) ∈ Rd be a unit vector. Assume that 0 < ε < 1/4 and

r > 0. If x ∈ Γ2s(v(q), ε) and s = T (t)/
√
ε < r/4, then

0 ≤ rIt (x, x)− rUct (x, x) ≤
(
ε1−α/2 + ε1−α/2) ∨√ε

T (t)d

(
1 ∧ T (t)d−1

δd−1
I (x)

V 2(T (t))

V 2 (δI(x))

)
. (4.23)

We postpone the proof of this proposition until Section 4.4.

From equation (4.22) and Proposition 4.3.3 we get

∫
D2

∣∣rDt (x, x)− rH∗t (x, x)
∣∣ dx ≤ ∫

D2

(
rIt (x, x)− rUct (x, x)

)
dx

≤ C (ε)

T (t)d

∫
D2

(
1 ∧ T (t)d−1

δd−1
I (x)

V 2(T (t))

V 2 (δI(x))

)
dx.(4.24)

Notice that since x ∈ Γ2s(v(q), ε), ∂D ∩B(q, r) ⊂ B(q, r)\I, and ε < 1/4 we have

δI(x) ≥ |x− q| sin (2ϕε − π/2) = −|x− q| cos (2ϕε)

=
(
1− 2ε2

)
|x− q| ≥

(
1− 2ε2

)
δD(x) >

7

8
δD(x). (4.25)
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Hence our bound for the difference between the heat remainders becomes

∫
D2

∣∣rDt (x, x)− rH∗t (x, x)
∣∣ dx ≤ C(ε)

T (t)d

∫
D2

(
1 ∧ T (t)d−1

δd−1
D (x)

V 2(T (t))

V 2 (δD(x))

)
dx. (4.26)

We can use our Potter-like bounds, (2.41), again: if T (t) < 1/θ, then

∫
D2

∣∣rDt (x, x)− rH∗t (x, x)
∣∣ dx ≤ C(ε)

T (t)d

∫
D2

{
1 ∧ T (t)d−1

δd−1
D (x)

(
T (t)α

δαD(x)
∨ T (t)α

δαD(x)

)}
dx

≤ C(ε)

T (t)d

∫
D2

{
1 ∧

(
T (t)

δD(x)

)d+α−1

+1 ∧
(
T (t)

δD(x)

)d+α−1}
dx. (4.27)

Letting η = T (t), as above, we can apply Proposition 4.3.2. This says that for

sufficiently small t we have

∫
D2

∣∣rDt (x, x)− rH∗t (x, x)
∣∣ dx ≤ C(ε)

T (t)d−1
Hd−1 (∂D)

∫ ∞
0

{ (
1 ∧ r−d−α+1

)
+
(
1 ∧ r−d−α+1

) }
dr

≤ C(ε)T (t)1−d . (4.28)

Finally, it remains to show that

∣∣∣∣∫
D2

r
H∗(x)
t (x, x)dx− H

d−1(∂D)

T (t)d−1

∫ ∞
0

rHt ((q, 0, ..., 0) , (q, 0, ..., 0)) dq

∣∣∣∣ ≤ c(ε)T (t).

To do this we apply Proposition 4.3.2 to
∫
D2
r
H∗(x)
t (x, x)dx. Note that, by

construction, the diagonal of the heat remainder of H∗ can be expressed in terms
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of the diagonal of the heat remainder of H:

r
H∗(x)
t (x, x) = r

H∗(x)
t

((
δH∗(x)(x), 0, ..., 0

)
,
(
δH∗(x)(x), 0, ..., 0

))
(4.29)

= r
H∗(x)
t ((δD(x), 0, ..., 0) , (δD(x), 0, ..., 0)) (4.30)

= rHt ((δD(x), 0, ..., 0) , (δD(x), 0, ..., 0)) (4.31)

=: rHt (δD(x)) . (4.32)

The heat remainder of H∗(x) on D2 satisfies

∫
D2

r
H∗(x)
t (x, x)dx =

∫
D

rHt (δD(x)) dx−
∫
D1∪D3

rHt (δD(x)) dx (4.33)

and the argument we used in equations (4.16) and (4.21) can be applied to the heat

remainder of H on D1 ∪D3:

∫
D1∪D3

rHt (δD(x)) dx ≤ c(ε)T (t)1−d, (4.34)

where c(ε)→ 0, as ε→ 0.

The bound for the heat remainder in Lemma 4.3.1 tells us that

rHt (δD(x)) ≤ CT (t)−d
(

1 ∧ T (t)d

δdD

V 2(T (t))

V 2 (δD(x))

)
. (4.35)

To which we can apply our Potter-like bounds from Lemma 2.3.1:

rHt (δD(x)) ≤ C

T (t)d

{
1 ∧

(
T (t)

δD(x)

)d+α

+ 1 ∧
(
T (t)

δD(x)

)d+α
}
. (4.36)
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We wish to show that rHt (δD(x)) satisfies the assumptions of

Proposition 4.3.2. Hence we must show that rHt (t, δD(x)) is Lipschitz. Firstly, the

following bound for the gradient of pt(x) is provided by [32]:

Lemma 4.3.4. Let ψ ∈ WLSC(α, θ). For T (t) < 1/θ we have

|∇xpt(x)| ≤ c

T (t)
min

{
pt(0),

t

|x|dV 2(|x|)

}
. (4.37)

Next we show that the heat remained of D is a Lipschitz function in one of its

spacial components

Lemma 4.3.5. Let D ⊂ Rd be an open nonempty set. Fix ε > 0. For any y ∈ D

and w, z ∈ D with δD(w) > ε, δD(z) > ε, there exists c(ε, t) such that

∣∣rDt (w, y)− rDt (z, y)
∣∣ ≤ c(ε, t) |w − z| . (4.38)

Proof. The mean value theorem and Lemma 4.3.4 tells us that there exists some

0 ≤ l ≤ 1 such that

|pt(w)− pt(z)| ≤ |∇xpt(lw + (1− l)w)| |w − z|

≤ c

T (t)
min

{
pt(0),

t

|lw + (1− l)z|dV 2 (|lw + (1− l)z|)

}
|w − z|

≤ c

T (t)
min

{
pt(0),

t

(|w| ∧ |z|)dV 2 (|w| ∧ |z|)

}
|w − z|. (4.39)

Recall the definition of the heat remainder (2.7)

rDt (x, y) = Ey [τD < t; pt−τD (XτD − x)] .
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This allows us to rewrite equation (4.39) as follows

∣∣rDt (w, y)− rDt (z, y)
∣∣ ≤ Ey [τD < t; pt−τD (XτD − w)− pt−τD (XτD − z)]

≤ cEy
[
τD < t;

|w − z|
T (t− τD)

min

{
pt−τD(0),

t− τD
(|XτD − w| ∧ |XτD − z|)

d V 2 (|XτD − w| ∧ |XτD − z|)

}]
≤ cEy

[
τD < t;

|w − z|
T (t− τD)

min

{
pt−τD(0),

t− τD
(|δD(w)| ∧ |δD(z)|)d V 2 (|δD(w)| ∧ |δD(z)|)

}]

Hence our assumption that both δD(w) and δD(z) are larger than ε implies

∣∣rDt (w, y)− rDt (z, y)
∣∣ ≤ c

|w − z|
(|δD(w)| ∧ |δD(z)|)d V 2 (|δD(w)| ∧ |δD(z)|)

×Ey
[
τD < t;

t− τD
T (t− τD)

]
≤ c(ε, t)|w − z|. (4.40)

We can now show that rHt (δD(x)) is a Lipschitz function:

Lemma 4.3.6. Let D ⊂ Rd be an open nonempty set. Fix ε > 0. For any y ∈ D

and w, z ∈ D with δD(w) > ε, δD(z) > ε, there exists c(ε, t) such that

∣∣rDt (w,w)− rDt (z, z)
∣∣ ≤ c(ε, t) |w − z| . (4.41)
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Proof. Using Lemma 4.3.5 and the symmetry of the heat remainder, that is

rDt (w, z) = rDt (z, w), we get

∣∣rDt (w,w)− rDt (z, z)
∣∣ ≤ ∣∣rDt (w,w)− rDt (z, w)

∣∣+
∣∣rDt (w, z)− rDt (z, z)

∣∣ (4.42)

≤ c(ε, t) |w − z| . (4.43)

Lemma 4.3.6 tells us that rHt (δD(x)) is a Lipschitz function, thus it satisfies

the assumptions of Proposition 4.3.2. Therefore we can apply Proposition 4.3.2 to

rHt (δD(x)). For small t, we have

∣∣∣∣∫
D

rHt (δD(x)) dx− CH(t)Hd−1(∂D)

∣∣∣∣ ≤ εT (t)1−d . (4.44)

This completes the proof of Theorem 4.1.1.

4.4. Heat Remainders of the Inner and Outer Regions

All that remains is to prove Proposition 4.3.3.

Proof of Proposition 4.3.3. We wish to show that

0 ≤ rIt (x, x)− rUct (x, x) ≤
(
ε1−α/2 + ε1−α/2) ∨√ε

T (t)d

(
1 ∧ T (t)d−1

δd−1
I (x)

V 2(T (t))

V 2 (δI(x))

)
. (4.45)

In order to establish this inequality we combine different aspects of similar proofs

given in Proposition 3.2 of [21] and Proposition 3.1 of [4].
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Firstly, by definition, we have

rIt (x, x)− rUct (x, x) = pU
c

t (x, x)− pIt (x, x) (4.46)

= Ex
[
τI < t, X (τI) ∈ U c \I; pU

c

t−τI (X (τI) , x)
]
. (4.47)

The space-time Ikeda-Watanabe formula (2.16) then tells us that

rIt (x, x)− rUct (x, x) =

∫
I

∫ t

0

pIl (x, y)

∫
Uc\I

ν(y − z)pU
c

t−l(x, z)dz dl dy. (4.48)

Without loss of generality we can assume that q = 0 and v(0) = (1, 0, . . . , 0).

Let

I = {y : y · v(0) > ε|y|} , (4.49)

U = {y : y · v(0) < −ε|y|} , (4.50)

Γ(0, ε) =
{
y : y · v(0) >

√
1− ε2|y|

}
. (4.51)

0

U c \I

I

0

U

I
Γ(0, ε)

v(0)

B(0, r)

FIGURE 6 Interior and exterior regions of the domain.
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Notice that

U c \I = Bc(0, r) ∪ (U c \I) and I ⊂ I.

By the construction of these domains we can see that equation (4.48) can be

broken up as follows

rIt (x, x)− rUct (x, x) ≤
∫
I

∫ t

0

pIl (x, y)

∫
(Uc\I)∩B(0,r)

ν(y − z)pU
c

t−l(x, z)dz dl dy

+

∫
I

∫ t

0

pIl (x, y)

∫
Bc(0,r)

ν(y − z)pU
c

t−l(x, z)dz dl dy

= At(x) +Bt(x). (4.52)

At(x) : Lemma 1.5 in [14] gives a bound for the heat kernel under certain

scaling conditions:

Lemma 4.4.1. Suppose ψ ∈ WLSC(α, θ) and T (t) < 1/θ. Then there exists a

constant C such that

pt(x− z) ≤ C

(
T−d(t) ∧ t

|x− z|dV 2(|x− z|)

)
. (4.53)

Notice that if x ∈ Γ(0, ε) and z ∈ U c \I = {y : −ε|y| < y · v(0) < ε|y|}, then

|x− z| ≥ |x| sin
(

2ϕε −
π

2

)
= |x|

(
1− 2 cos2 (ϕε)

)
= |x|(1− 2ε2). (4.54)

46



Thus Lemma 4.4.1 and the monotonicity of V (r) imply that

pt−l(x− z) ≤ C
1

|x− z|d
t

V 2(|x− z|)

≤ C
1

(1− 2ε2)d |x|d
t

V 2 ((1− 2ε2)|x|)
. (4.55)

By assumption ψ ∈ WUSC (α, θ) and ε < 1/4, hence

pt−l(x− z) ≤ C
(
1− 2ε2

)−d−α 1

|x|d
t

V 2 (|x|)
≤ C

1

|x|d
t

V 2 (|x|)
. (4.56)

We can now apply this bound directly to At(x):

At(x) ≤
∫
I

∫ t

0

pIl (x, y)

∫
(Uc\I)∩B(0,r)

ν(y − z)pt−l(x, z)dz dl dy

≤ C

|x|d
t

V 2(|x|)

∫
I

∫ t

0

pIl (x, y)

∫
(Uc\I)∩B(0,r)

ν(y − z)dz dl dy

≤ C

|x|d
t

V 2(|x|)

∫
I

∫ V 2(1/θ)

0

pIl (x, y)dl

∫
(Uc\I)∩B(0,r)

ν(y − z)dz dy

=
C

|x|d
t

V 2(|x|)

∫
(Uc\I)∩B(0,r)

∫
I
G
V 2(1/θ)
I (x, y)ν(y − z)dy dz (4.57)

=
C

|x|d
t

V 2(|x|)

∫
(Uc\I)∩B(0,r)

P
V 2(1/θ)
I (x, z)dz, (4.58)

where in the last two equations we have used definitions of the truncated Green

function and the truncated Poisson kernel, (2.10) and (2.12) respectively. We can

then apply the bound for truncated Poisson kernels given in Lemma 2.9 of [21]:

At(x) ≤ C

|x|d
t

V 2(|x|)

∫
(Uc\I)∩B(0,r)

cθ
|x− z|d

V (δI(x))

V (δIc(z))
dz. (4.59)
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Our Potter-like bounds in Lemma 2.3.1 tell us that

∫
(Uc\I)∩B(0,r)

1

|x− z|d
V (δI(x))

V (δIc(z))
dz ≤

∫
(Uc\I)∩B(0,r)

1

|x− z|d

{(
δI(x)

δIc(z)

)α/2
∨
(
δI(x)

δIc(z)

)α/2}
dz

≤ δ
α/2
I (x)

∫
(Uc\I)∩B(0,r)

dz

δ
α/2
Ic (z)|x− z|d

+δ
α/2
I (x)

∫
(Uc\I)∩B(0,r)

dz

δ
α/2
Ic (z)|x− z|d

.

In Lemma 3.2 of [4] it is shown that:

Lemma 4.4.2. For any ε ∈ (0, 1/4), w ∈ Γ(0, ε), M ∈ (0,∞] we have

∫
(Uc\I)∩B(0,M)

dz

δ
α/2
Ic (z)|z − w|γ

≤


cγε

1−α/2|w|d−α/2−γ for γ > d− α/2,

cγε
1−α/2Md−α/2−γ for 0 < γ < d− α/2.

(4.60)

Notice that for z ∈ (U c\I) ∩ B(0, r) we must have δIc(z) = δIc(z). Thus for

γ = d we get:

∫
(Uc\I)∩B(0,r)

1

|x− z|d
V (δI(x))

V (δIc(z))
dz ≤ C

{
δ
α/2
I (x)ε1−α/2

|x|α/2
+
δ
α/2
I (x)ε1−α/2

|x|α/2

}

≤ C

{
δ
α/2
I (x)ε1−α/2

δ
α/2
I (x)

+
δ
α/2
I (x)ε1−α/2

δ
α/2
I (x)

}
≤ C

{
ε1−α/2 + ε1−α/2} . (4.61)

This gives us one bound for At(x):

At(x) ≤ C
(
ε1−α/2 + ε1−α/2) 1

|x|d
V 2(T (t))

V 2(|x|)
. (4.62)
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Let us now consider At(x) from another perspective. We divide At(x) into the

following subregions:

At(x) =

∫
I

∫ t/2

0

pIl (x, y)

∫
(Uc\I)∩B(0,r)

ν(y − z)pU
c

t−l(x, z)dz dl dy

+

∫
I

∫ t

t/2

pIl (x, y)

∫
(Uc\I)∩B(0,r)∩{|x−z|≤T}

ν(y − z)pU
c

t−l(x, z)dz dl dy

+

∫
I

∫ t

t/2

pIl (x, y)

∫
(Uc\I)∩B(0,r)∩{|x−z|>T}

ν(y − z)pU
c

t−l(x, z)dz dl dy

= I + II + III. (4.63)

Short jump time: I. For l ∈ [0, t/2] we can use the bound for the heat

kernel given in equation (4.53) of Lemma 4.4.1:

pU
c

t−l(x, z) ≤ pt−l(x, z) ≤ CT (t− l)−d. (4.64)

The monotonicity of T (t) then implies

pU
c

t−l(x, z) ≤ CT (t/2)−d . (4.65)

The scaling of ψ(ξ) at infinity implies the scaling of T (t) at 0, as is shown in

Lemma 2.1 of [21]. Hence

pU
c

t−l(x, z) ≤ C (1/2)−d/α T (t)−d = CT (t)−d. (4.66)
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Thus

I ≤ CT (t)−d
∫
I

∫ t/2

0

pIl (x, y)

∫
(Uc\I)∩B(0,r)

ν(y − z)dz dl dy (4.67)

≤ CT (t)−d
∫

(Uc\I)∩B(0,r)

P
V 2(1/θ)
I (x, z)dz. (4.68)

It now follows from the calculations in (4.58), (4.59), (4.60), and (4.61) that

I ≤ C
(
ε1−α/2 + ε1−α/2)T (t)−d . (4.69)

Long exit time and short jumps: II. The following bound for the heat

kernel is given in Lemma 2.6 of [21]:

Lemma 4.4.3. There exists a constant cθ such that if T (t) < 1/θ ∨ |x− y|, then

pDt (x, y) ≤ cθ

(
V (δD(x))

V (T )
∧ 1

)(
V (δD(y))

V (T )
∧ 1

)(
t

|x− y|dV 2(|x− y|)
∧ T (t)−d

)
.

(4.70)

Let S := (U c\I) ∩ B(0, r) ∩ {|x − z| ≤ T}. For l ∈ [t/2, t) we can use the

bounds from Lemma 4.4.1 and Lemma 4.4.3 to get

II =

∫
I

∫ t

t/2

pIl (x, y)

∫
S

ν(y − z)pU
c

t−l(x, z)dz dl dy

≤ C

∫
I

∫ t

t/2

T (t)−d
V (δI(y))

V (T (t))

∫
S

1

|y − z|dV 2(|y − z|)
pU

c

t−l(x, z)dz dl dy

= CT (t)−d
∫
I

∫
S

V (δI(y))

V (T (t))

1

|y − z|dV 2(|y − z|)

∫ t

t/2

pU
c

t−l(x, z)dl dz dy

≤ CT (t)−d
∫
S

∫
I

V (δI(y))

V (T (t))

1

|y − z|dV 2(|y − z|)
G
t/2
Uc (x, z)dy dz. (4.71)
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It follows from bounds given in [14] and [21] that

II ≤ C
T (t)−d

V (T (t))

∫
S

∫
I

V (δI(y))

|y − z|dV 2(|y − z|)
V (|x|)V (δUc(z))

|x− z|d
dy dz. (4.72)

By construction δI(y), δI(z) ≤ |y − z| and so

II ≤ CT (t)−d
V (|x|)
V (T (t))

∫
S

∫
I

1

|y − z|dV (|y − z|)
V (δUc(z))

|x− z|d
dy dz

≤ CT (t)−d
V (|x|)
V (T (t))

∫
S

∫
I

δ
α/2
I (z)

|y − z|d+α/2V (δI(z))

V (δUc(z))

|x− z|d
dy dz

≤ CT (t)−d
V (|x|)
V (T (t))

∫
S

δ
α/2
I (z)

|x− z|d
V (δUc(z))

V (δI(z))

∫
I

1

|y − z|d+α/2
dy dz. (4.73)

We have seen in (4.54) that |x− z| > (1− 2ε2)|x|. Thus for these short jumps

we have (1 − 2ε2)|x| < T (t) and hence V (|x|) < cV (T (t)), for some constant c.

Therefore

II ≤ CT (t)−d
∫
S

δ
α/2
I (z)

|x− z|d
V (δUc(z))

V (δI(z))

∫
I

1

|y − z|d+α/2
dy dz

≤ CT (t)−d
∫
S

δ
α/2
I (z)

|x− z|d
V (δUc(z))

V (δI(z))

∫
B(z,δI(z))c

1

|y − z|d+α/2
dy dz. (4.74)

Changing to polar coordinates we get

II ≤ CT (t)−d
∫
S

δ
α/2
I (z)

|x− z|d
V (δcU(z))

V (δI(z))

∫ ∞
δIc (z)

1

rd+α/2
rd−1 dr dz

= CT (t)−d
∫
S

δ
α/2
I (z)

|x− z|d
V (δUc(z))

V (δI(z))

1

δ
α/2
I (z)

dz

= CT (t)−d
∫
S

1

|x− z|d
V (δUc(z))

V (δI(z))
dz. (4.75)
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Lemma 4.4.4. For any ε ∈ (0, 1/4), x ∈ Γ(0, ε), r ∈ (0,∞) we have

∫
(Uc\I)∩B(0,r)

1

|x− z|d
δ
α/2
Uc (z)

δ
α/2
I (z)

dz ≤ cε1−α/2. (4.76)

Proof. Let us use polar coordinates (ρ, ϕ1, ..., ϕd), with center q = 0 and principal

axis v(0) = (1, 0, ..., 0). We prove this lemma for the case d ≥ 3, the case with d = 2

is essentially the same but with different restrictions on the angle. As above, we let

ϕε ∈ [0, π/2] be the angle such that cos (ϕε) = ε. Then

U c\I = {(ρ, ϕ1, ..., ϕd−1) : ϕ1 ∈ (ϕε, π − ϕε)} ,

δI(z) = ρ sin (ϕ1 − ϕε) ,

δUc(z) = ρ sin (ϕε + ϕ1) ,

for z ∈ U c\I.

Let V1 = (U c\I) ∩ B(0, |x|) and V2 = (U c\I) ∩ Bc(0, |x|) ∩ B(0, r). Recall,

(1− 2ε2)|x|, (1− 2ε2)|z| ≤ |x− z| and notice that for z ∈ V1 we have |x− z| ≤ 2|x|,

thus |x− z| ' |x| for z ∈ V1. Similarly, if z ∈ V2, then |x− z| ' |z|. Thus

∫
V1

1

|x− z|d
δ
α/2
Uc (z))

δ
α/2
I (z))

dz ≤ c

|x|d

∫
V1

δ
α/2
Uc (z)

δ
α/2
I (z)

dz

≤ c

|x|d

∫ |x|
0

∫ π−ϕε

ϕε

ρα/2 sin (ϕε + ϕ1) ρd−1 sind−2 (ϕ1)

ρα/2 sinα/2 (ϕ1 − ϕε)
dϕ1dρ

≤ c

|x|d

∫ |x|
0

ρd−1dρ

∫ π−ϕε

ϕε

1

sinα/2 (ϕ1 − ϕε)
dϕ1

≤ c

∫ π−2ϕε

0

1

ϕα/2
dϕ

≤ cε1−α/2. (4.77)
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The last inequality in (4.77) follows from the fact that for ε ∈ (0, 1/4) we have

sin(π − 2ϕε) ' 2 sin(π/2− ϕε), so π − 2ϕε ≤ cε. On the remaining domain we have

∫
V2

1

|x− z|d
δ
α/2
Uc (z))

δ
α/2
I (z))

dz ≤
∫
V2

δ
α/2
Uc (z)

|z|dδα/2I (z)
dz

≤
∫ r

|x|

∫ π−ϕε

ϕε

ρα/2 sin (ϕε + ϕ1) ρd−1 sind−2 (ϕ1)

ρd+α/2 sinα/2 (ϕ1 − ϕε)
dϕ1dρ

≤
∫ r

|x|
ρ−1dρ

∫ π−2ϕε

0

1

ϕα/2
dϕ

≤ cε1−α/2.

It now follows from equation (4.75) and Lemma 4.4.4 that

II ≤ C
(
ε1−α/2 + ε1−α/2)T (t)−d . (4.78)

Long exit time and large jumps: III. We now suppose that |x − z| > T .

Let Q := (U c\I)∩B(0, r)∩{|x−z| > T}. Again using the bound from Lemma 4.4.3

we get

III ≤ C

∫
I

∫ t

t/2

pIl (x, y)

∫
Q

ν(y − z)T (t− l)−d V (δUc(z))

V (T (t− l))

×
(

1 ∧ T (t− l)dV 2(T (t− l))
|x− z|dV 2(|x− z|)

)
dz dl dy

≤ CT (t)−d
∫
Q

P
V 2(1/θ)
I (x, z)

V (δUc(z))

V (T (t))

(
1 ∧ T (t)dV 2(T (t))

|x− z|dV 2(|x− z|)

)
dz. (4.79)
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We can use the Poisson kernel bound from Lemma 2.9 in [21]:

III ≤ C

T (t)d

∫
Q

V (|x|)
V (δI(z))

1

|x− z|d
V (δUc(z))

V (T (t))

(
1 ∧ T (t)dV 2(T (t))

|x− z|dV 2(|x− z|)

)
dz

≤ CV (T (t))

∫
Q

V (|x|)
|x− z|2dV 2(|x− z|)

V (δUc(z))

V (δI(z))
dz

≤ CV (T (t))

∫
Q

1

|x− z|2dV (|x− z|)
V (δUc(z))

V (δI(z))
dz

≤ C
V (T (t))

(T (t))d V (T (t))

∫
Q

V (δUc(z))

|x− z|dV (δI(z))
dz. (4.80)

Finally, applying Lemma 4.4.4 we get

III ≤ C
(
ε1−α/2 + ε1−α/2)T (t)−d . (4.81)

Therefore

At(x) ≤ C
(
ε1−α/2 + ε1−α/2)(T (t)−d ∧ 1

|x|d
V 2(T (t))

V 2(|x|)

)
. (4.82)

Bt(x): It remains to find a bound for

Bt(x) ≤
∫
I

∫ t

0

pIl (x, y)

∫
Bc(0,r)

ν(y − z)pt−l(x, z)dz dl dy. (4.83)

By assumption x ∈ Γ2s(v(q), ε), s < r/4, and z ∈ Bc(0, r). Thus |x − z| >

r/2 > 2s. Combining this with the bound for the heat kernel in Lemma 4.4.1, we
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get:

pt−l(x, z) ≤ C

(
T (t− l)−d ∧ 1

|x− z|d
t− l

V 2(|x− z|)

)
(4.84)

≤ C

(
T (t− l)−d ∧ 1

sd
t− l
V 2(s)

)
. (4.85)

Thus

Bt(x) ≤ C

(
1

T (t− l)d
∧ 1

sd
V 2(T (t))

V 2(s)

)∫
I

∫ t

0

pIl (x, y)

∫
Bc(0,r)

ν(y − z)dzdldy

≤ C

(
T (t− l)−d ∧ 1

sd
V 2(T (t))

V 2(s)

)
Px (τI < t, |XτI | > r)

≤ C
1

sd
V 2(T (t))

V 2(s)
. (4.86)

We can chose s = T (t)/
√
ε so that

Bt(x) ≤ C
(
√
ε)
d

T (t)d
V 2(T (t))

V 2
(
T (t)√
ε

) . (4.87)

Since x ∈ Γ2s(v(q), ε) this choice of s also tells us that |x| < 2s = 2T (t)/
√
ε. Hence

Bt(x) ≤ C
(
√
ε)
β

T (t)β
1

|x|d−β
V 2(T (t))

V 2
(
T (t)√
ε

) ≤ C
(
√
ε)
β

T (t)β
1

|x|d−β
V 2(T (t))

V 2 (|x|)
. (4.88)

Letting β = d and β = 1 in (4.88) gives us

Bt(x) ≤ C

(
(
√
ε)
d

T (t)d
∧
√
ε

T (t)

1

|x|d−1

V 2(T (t))

V 2 (|x|)

)

≤ C
√
εT (t)−d

(
1 ∧ T (t)d−1

|x|d−1

V 2 (T (t))

V 2 (|x|)

)
. (4.89)
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Therefore, combining our bound for At(x) in (4.82) and Bt(x) in (4.89) we get

rIt (x, x)− rUct (x, x) ≤ C

T (t)d
{(
ε1−α/2 + ε1−α/2) ∨√ε}(1 ∧ T (t)d−1

|x|d−1

V 2(T (t))

V 2(|x|)

)
.

This completes the proof of Proposition 4.3.3.
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[39] Kim, P., Song, R., & Vondraček, Z. (2012). Uniform boundary Harnack
principle for rotationally symmetric Lévy processes in general open sets. Sci.
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