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DISSERTATION ABSTRACT

Robert Usher

Doctor of Philosophy

Department of Mathematics

June 2019

Title: On Some Notions of Cohomology for Fusion Categories

In this dissertation, we study two main topics: superfusion categories, and

embeddings of symmetric fusion categories into modular fusion categories. Using

a construction of Brundan and Ellis, we give a formula relating the fermionic

6j-symbols of a superfusion category to the 6j-symbols of the corresponding

underlying fusion category, and prove a version of Ocneanu rigidity for superfusion

categories. Inspired by the work of Lan, Kong, and Wen on the group of modular

extensions of a symmetric fusion category, we also give definitions for the low

cohomology groups of a finite supergroup and show these definitions are functorial.

This dissertation includes previously published material.

iv



CURRICULUM VITAE

NAME OF AUTHOR: Robert Usher

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR, USA
University of Melbourne, Melbourne, Victoria, Australia

DEGREES AWARDED:

Doctor of Philosophy, Mathematics, 2019, University of Oregon
Master of Science, Mathematics, 2013, University of Melbourne
Bachelor of Science, Mathematics, 2011, University of Melbourne

PROFESSIONAL EXPERIENCE:

Graduate Employee, University of Oregon, 2014-2019
Developer, Victorian School of Languages, 2009-2011

GRANTS, AWARDS AND HONORS:

Professor Wilson Prize, University of Melbourne, 2013
E.R. Love Prize, University of Melbourne, 2011

PUBLICATIONS:

Robert Usher. Fermionic 6j-symbols in superfusion categories. Journal of
Algebra, 503:453-473, 2018.

Nora Ganter & Robert Usher. Representation and character theory of finite
categorical groups. Theory Appl. Categ., 31:Paper No. 21, 542-570, 2016.

v



ACKNOWLEDGEMENTS

I would like to thank my advisor, Victor Ostrik, whose guidance and support

has been invaluable to me. I would also like to thank my committee members for

their patience and feedback. Finally, I would like to thank my friends and family

for their love and support.

vi



TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . 7

Abelian Categories . . . . . . . . . . . . . . . . . . . . . . . 7

Monoidal Categories . . . . . . . . . . . . . . . . . . . . . . 9

Monoidal Functors and Natural Transformations . . . . . . . . . 11

Rigid Monoidal Categories . . . . . . . . . . . . . . . . . . 13

Group Cohomology . . . . . . . . . . . . . . . . . . . . . . . 13

Fusion Categories . . . . . . . . . . . . . . . . . . . . . . . . 18

Grothendieck Rings and the Frobenius-Perron Dimension . . . . . 19

Braided Fusion Categories . . . . . . . . . . . . . . . . . . . . 22

Braided Monoidal Functors . . . . . . . . . . . . . . . . . . 24

Centralizers . . . . . . . . . . . . . . . . . . . . . . . . . 24

Drinfeld Center . . . . . . . . . . . . . . . . . . . . . . . 25

Algebras and Modules in a Fusion Category . . . . . . . . . . . . 27

Connected Étale Algebras . . . . . . . . . . . . . . . . . . . 29

Local Modules . . . . . . . . . . . . . . . . . . . . . . . . 31

Deligne Tensor Product of Abelian Categories . . . . . . . . . . . 32

Module Categories . . . . . . . . . . . . . . . . . . . . . . . 33

Group Actions on Categories . . . . . . . . . . . . . . . . . . . 36

vii



Chapter Page

III.FERMIONIC 6J-SYMBOLS IN SUPERFUSION
CATEGORIES . . . . . . . . . . . . . . . . . . . . . . . . . 41

6j-symbols in Fusion Categories . . . . . . . . . . . . . . . . . 41

6j-symbols in Superfusion Categories . . . . . . . . . . . . . . . 45

Superfusion Categories . . . . . . . . . . . . . . . . . . . . 45

Fermionic 6j-symbols . . . . . . . . . . . . . . . . . . . . 49

6j-symbols of the Underlying Fusion Category . . . . . . . . . . 52

IV.OCNEANU RIGIDITY FOR SUPERFUSION CATEGORIES . . . . . 61

Superforms . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Examples of π-Grothendieck Rings . . . . . . . . . . . . . . . . 65

V. COHOMOLOGY OF SYMMETRIC FUSION CATEGORIES . . . . . . 68

The First Cohomology Group of a Supergroup . . . . . . . . . . . 71

The Second Cohomology Group of a Supergroup . . . . . . . . . . 73

Modular Extensions and the Third Cohomology Group . . . . . . . 80

Group of Modular Extensions . . . . . . . . . . . . . . . . . 81

The Third Cohomology Group of a Supergroup . . . . . . . . . 83

Connections and Applications . . . . . . . . . . . . . . . . . 89

REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . . . . 95

viii



LIST OF FIGURES

Figure Page

1. Graphical representation of the composition (3.4). . . . . . . . . . . 43

2. Graphical representation of the composition (3.5). . . . . . . . . . . 43

3. Graphical definition of 6j-symbols. . . . . . . . . . . . . . . . . . 44

4. Graphical definition of fermionic 6j-symbols. . . . . . . . . . . . . . 50

ix



CHAPTER I

INTRODUCTION

This dissertation includes previously published material. Chapters III and IV

appeared in [Ush18], and Chapters I and II include material from [Ush18].

This dissertation is a contribution to the study of fusion categories, which

are abstract objects expressing the idea of quantum symmetries. We study two

topics: some generalizations of fusion categories associated with fermionic matter,

and embeddings of symmetric fusion categories into modular fusion categories. In

both cases some notion of cohomology plays a crucial role.

A fusion category is a semisimple C-linear rigid monoidal category with

finitely many isomorphism classes of simple objects, finite-dimensional spaces of

morphisms between objects, and with simple unit object. Fusion categories play

an important role in condensed matter physics. In [TV92, Tur94], Turaev and Viro

constructed invariants of 3-manifolds from quantum 6j-symbols, and showed that

these lead to a (2 + 1)-dimensional topological quantum field theory (TQFT).

Barrett and Westbury [BW96] showed that these invariants can be constructed

from any spherical fusion category. Following this, Kirillov and Balsam [KB10],

and Turaev and Virelizier [TV10] proved that the Turaev-Viro-Barrett-Westbury

invariants of a spherical fusion category A are the same as the Reshetikhin-Turaev

invariants [RT91] derived from the Drinfeld center Z(A).

More recently, Douglas, Schommer-Pries and Snyder [DSS13] showed

that fusion categories are fully dualizable objects in the 3-category of monoidal

categories, and so by the cobordism hypothesis [Lur09] we can associate a fully

local 3-dimensional TQFT to any fusion category.
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Let sVec be the category of superspaces with morphisms the even linear

maps between them. A supercategory is a category enriched over sVec, i.e. the

collection of morphisms between objects forms a superspace and composition is

an even linear map. A superfusion category over C is a semisimple rigid monoidal

supercategory with finitely many isomorphism classes of simple objects, finite-

dimensional superspaces of morphisms between objects, and with simple unit

object. The tensor product of morphisms satisfies the super interchange law

(f ⊗ g) ◦ (h⊗ k) = (−1)|g||h|(f ◦ h)⊗ (g ◦ k). (1.1)

Gaiotto and Kapustin [GK16], following the work of Gu, Wang and Wen

[GWW15] described a fermionic analogue of the Turaev-Viro construction whose

initial data is a spherical superfusion category, and Bhardwaj, Gaiotto and

Kapustin [BGK17] have further studied spin-TQFTs. In comparison to the fusion

category case however, not much is known about how to construct TQFTs using

superfusion categories.

Fusion categories also have applications to the study of topological phases

of matter (sometimes called topological orders [Wen90]). Indeed, Lan, Kong, and

Wen [LKW17] have conjectured that (2 + 1)-dimensional symmetry protected

topological orders with symmetry a symmetric fusion category E are classified (up

to equivalence) by modular extensions of E with central charge equal to zero (mod

8) .

In Chapter II, we provide a basic review of monoidal categories, group

cohomology, fusion categories, braided fusion categories, algebras and modules in a

fusion category, the Deligne tensor product of abelian categories, module categories,

and group actions on categories.

2



In Chapter III, we study superfusion categories and 6j-symbols. Following

[GWW15], a simple object X in a superfusion category is called bosonic if

End(X) ≃ C1|0, and Majorana if End(X) ≃ C1|1. A superfusion category is called

bosonic if all of its simple objects are bosonic. The associator in a fusion category

admits a description in terms of 6j-symbols satisfying a version of the pentagon

equation, see i.e. [Tur94], [Wan10]. In a similar way, the associator in a superfusion

category can be described in terms of fermionic 6j-symbols satisfying the super

pentagon equation [GWW15]. Using a construction of Brundan and Ellis [BE17],

one can describe the underlying fusion category of a superfusion category, which is

naturally endowed with the structure of a fusion category over sVec (in the sense of

[DGNO10, Definition 7.13.1]).

The main result of Chapter III is to give an explicit formula for the 6j-

symbols of the underlying fusion category in terms of the fermionic 6j-symbols

of the superfusion category (Definition 3.30), and show that these 6j-symbols

satisfy the pentagon equation for a monoidal category (Theorem 3.31). If C is a

bosonic pointed superfusion category, i.e. a bosonic superfusion category such that

the isomorphism classes of simple objects form a group G, then the fermionic 6j-

symbols in C are described by a 3-supercocycle [GWW15] F̃ : G3 → C× satisfying

F̃ (g, h, k)F̃ (g, hk, l)F̃ (h, k, l) = (−1)ω(g,h)ω(k,l)F̃ (gh, k, l)F̃ (g, h, kl) (1.2)

where ω ∈ H2(G,Z/2Z) is a 2-cocycle on G. In this situation, our formula for

the 6j-symbols on the underlying fusion category gives a 3-cocycle on the Z/2Z-

central extension of G determined by ω, whose restriction to G is F̃ . In particular,

this implies that every 3-supercocycle on G arises as the restriction of a (genuine)

3-cocycle on a central extension of G by Z/2Z (Corollary 3.34).
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In Chapter IV we prove a version of Ocneanu rigidity for fusion categories.

Ocneanu rigidity is the statement that (i) the number of fusion categories (up

to equivalence) is countable, and (ii) the number of fusion categories (up to

equivalence) with a given Grothendieck ring is finite. To prove a similar result in

the superfusion category setting, we must first decide what the appropriate notion

of the Grothendieck ring of a superfusion category should be.

Let Zπ = Z[π]/(π2 − 1), then Brundan and Ellis [BE17] defined the

π-Grothendieck ring of a superfusion category C to be the Zπ-module sGr(C)

generated by isomorphism classes of objects [X] ∈ C, subject to the relation that

if 0 → X
f−→ Y

g−→ Z → 0 is a short exact sequence with f and g homogeneous

morphisms, then [Y ] = [X]π|f | + [Z]π|g|. The tensor product on C induces an

associative multiplication on sGr(C) making sGr(C) into a Zπ-algebra. The main

result of Chapter IV is to prove a version of Ocneanu rigidity for superfusion

categories and the π-Grothendieck ring (Theorem 4.3).

In Chapter V, we suggest a notion of cohomology for symmetric fusion

categories. Let (G, z) be a finite supergroup, i.e. a finite group G together with

a central element z ∈ Z(G) such that z2 = 1, then Rep(G, z) is the category of

finite-dimensional representations of G with braiding given by:

czX,Y (x⊗ y) = (−1)mny ⊗ x if x ∈ X, y ∈ Y, zx = (−1)mx and zy = (−1)ny, (1.3)

for irreducible representations X,Y of G. This braiding makes Rep(G, z)

into a symmetric fusion category. A result of Doplicher-Roberts and Deligne

[DR89, Del02] says that every symmetric fusion category is of this form.

Our definition of cohomology was inspired by the work of Lan, Kong, and

Wen [LKW17] on the group of modular extensions of a symmetric fusion category.

Let E be a symmetric fusion category, then a modular extension of E is a modular
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category M together with a braided full embedding E ↪→ M such that E ′|M= E .

Lan, Kong, and Wen showed that the set Mext(E) of equivalence classes of modular

extensions of E admits a group structure making it into a finite abelian group, and

that Mext(Rep(G))
∼−→ H3(G,C×) [LKW17, Theorem 4.2].

This isomorphism forms part of the following dictionary between the low

cohomology groups of G and the category Rep(G):

H1(G,C×) = Invertible objects in Rep(G),

H2(G,C×) = Invertible Rep(G)-module categories,

H3(G,C×) = Modular extensions of Rep(G).

This connection motivates the following definitions for the cohomology of a

finite supergroup (G, z) in terms of the category Rep(G, z):

H1(G, z) = Invertible objects in Rep(G, z),

H2(G, z) = Invertible Rep(G, z)-module categories,

H3(G, z) = Modular extensions of Rep(G, z).

Since group cohomology is functorial, it is natural to ask whether these definitions

are functorial as well. The first main result of Chapter V is to prove that these

definitions of first, second, and third cohomology are contravariant functors

(Theorems 5.16, 5.33 and 5.51).

Of particular interest is the case of third cohomology: given a supergroup

homomorphism f : (G, z) → (H,w), we construct a homomorphism

Mext(Rep(H,w)) → Mext(Rep(G, z)) between the corresponding groups of

modular extensions. Given a supergroup (G, z) with z ̸= 1, there is a canonical

homomorphism i : (Z/2Z,−1) → (G, z), and thus an induced homomorphism

i∗ : Mext(Rep(G, z)) → Mext(sVec) = Z/16Z. (1.4)
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There are five possible images for i∗. The second main result of Chapter V, which

was proven independently of us in [GVR17], is that i∗ is surjective if and only if i is

split (Theorem 5.59).
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CHAPTER II

PRELIMINARIES

Chapter II includes portions of [Ush18].

We begin by providing a basic review of fusion category theory and related

topics. The standard reference for fusion categories is [ENO05]. Additional related

references include [BJ00], [DGNO10]. Where possible, we use definitions as

formulated in [EGNO15].

Abelian Categories

We assume familiarity with abelian categories; a good textbook is [Lan98].

In this section, we recall some necessary definitions from the theory of abelian

categories. The prototypical example of an abelian category to keep in mind

throughout this section is the category of (left) modules over a unital ring R. Most

of the definitions in this section are formulated as in [EGNO15, Chapter 1].

Definition 2.1. Let C be an abelian category. An object X ∈ C is simple if there

are precisely two subobjects of X, namely 0 and X. An object X ∈ C is semisimple

if it is a direct sum of finitely many simple objects, and C is semisimple if every

object of C is semisimple.

We will be primarily interested in semisimple categories with finitely many

simple objects. Recall the classical version of Schur’s Lemma: if R is a unital ring,

and M,N are simple R-modules, then any morphism M → N is either zero or an

isomorphism. An equivalent statement holds in any abelian category.

Lemma 2.2 (Schur’s Lemma). Let C be an abelian category, and X,Y ∈ C simple

objects. Then any morphism X → Y is either zero, or an isomorphism.

In particular, if X ∈ C is simple, then HomC(X,X) is a division ring.
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Definition 2.3. Let C be an abelian category. An object X ∈ C has finite length if

there exists a filtration

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn = X (2.1)

such that Xi/Xi−1 is simple for all i. Such a filtration is called a Jordan-Hölder

filtration of X. If Y ∈ C is simple, then we say that this filtration contains Y with

multiplicity m if Xi/Xi−1 is isomorphic to Y for m distinct values of i.

Theorem 2.4 (Jordan-Hölder). Let C be an abelian category, and suppose X ∈ C

has finite length. Then any two Jordan-Hölder filtrations of X contain any simple

object with the same multiplicity.

Definition 2.5. Let C be an abelian category, and suppose X ∈ C has finite length.

If Y ∈ C is simple, then define [X : Y ] to be the multiplicity of Y in any Jordan-

Hölder filtration of X. If m = [X : Y ] is non-zero, we say that X contains Y with

multiplicity m.

Definition 2.6. Let k be a field. We say an abelian category C is k-linear if, for

any X,Y ∈ C, HomC(X, Y ) is equipped with the structure of a k-vector space such

that composition of morphisms is k-linear.

In the language of enriched category theory (see e.g. [Kel05]), a k-linear

category is precisely a category enriched over the category of k-vector spaces.

Example 2.7. The category VecC of C-vector spaces is a C-linear abelian

category. The category VecC of finite-dimensional C-vector spaces is a semisimple

C-linear abelian category (it has one simple object up to isomorphism, namely the

one-dimensional vector space C).
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In this work we always take k = C, so we omit subscripts and write Vec

and Vec for the categories of C-vector spaces and finite-dimensional C-vector spaces

respectively.

Example 2.8. Let g be a finite-dimensional semisimple Lie algebra over C. The

category RepC(g) of finite-dimensional representations of g is a semisimple C-linear

abelian category.

Monoidal Categories

Monoidal categories are a categorification of the notion of a monoid. In

this section, we provide the definition of a monoidal category, monoidal functors,

monoidal natural transformations, and rigid monoidal categories. We also provide

some examples of monoidal categories. Most of the definitions in this section are

formulated as in [EGNO15, Chapter 2]. Another reference for monoidal category

theory is [Lan98, VII, XI].

Definition 2.9. A monoidal category consists of a category C, together with the

data of a bifunctor ⊗ : C × C → C (called the tensor product bifunctor), a natural

isomorphism a : (−⊗−)⊗ ∼−→ −⊗ (−⊗−):

aX,Y,Z : (X ⊗ Y )⊗ Z
∼−→ X ⊗ (Y ⊗ Z), X, Y, Z ∈ C (2.2)

called the associativity isomorphism, an object 1C ∈ C (called the unit object), and

natural isomorphisms ℓX : 1C ⊗X → X, rX : X ⊗ 1C → X (called the left and right

unit isomorphisms, respectively), subject to the following axioms.

1. The pentagon axiom:
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The diagram

((W ⊗X)⊗ Y )⊗ Z

(W ⊗ (X ⊗ Y ))⊗ Z (W ⊗X)⊗ (Y ⊗ Z)

W ⊗ ((X ⊗ Y )⊗ Z) W ⊗ (X ⊗ (Y ⊗ Z))

aW,X,Y ⊗idZ

aW⊗X,Y,Z

aW,X⊗Y,Z aW,X,Y ⊗Z

idW⊗aX,Y,Z

(2.3)

is commutative for all W , X, Y , Z ∈ C.

2. The triangle axiom:

The diagram

(X ⊗ 1C)⊗ Y X ⊗ (1C ⊗ Y )

X ⊗ Y

rX⊗idY

aX,1C ,Y

idX⊗ℓY

(2.4)

is commutative for all X,Y ∈ C.

To simplify our notation, we will frequently omit the subscript on the unit

object and write 1 := 1C.

Example 2.10. The category VecC of C-vector spaces from Example 2.7 is a

monoidal category. The tensor product functor is given by the usual tensor product

of vector spaces, and the associativity isomorphism aX,Y,Z : (X ⊗C Y ) ⊗C Z
∼−→

X ⊗C (Y ⊗C Z) is given by

(x⊗ y)⊗ z 7→ x⊗ (y ⊗ z), x ∈ X, y ∈ Y, z ∈ Z. (2.5)

The unit object is the one-dimensional vector space C, with the obvious left ℓX :

C⊗C X
∼−→ X and right rX : X ⊗C C ∼−→ X unit isomorphisms.

10



More generally, if R is a commutative ring then the category of R-modules

is a monoidal category. The tensor product is given by the tensor product of R-

modules, the unit object is R, and the associativity and unit isomorphisms are the

obvious ones.

Example 2.11. Let G be a finite group, then the category RepC(G) of

representations of G over C is a monoidal category. The tensor product is given by

the tensor product of representations, the unit object is the trivial representation,

and the associativity and unit isomorphisms are the obvious ones.

We denote by RepC(G) ⊂ RepC(G) the full monoidal subcategory of finite-

dimensional representations of G over C. We will omit the subscript and refer to

this category simply as Rep(G).

Example 2.12. Let g be a Lie algebra over C, then the category RepC(g)

of representations of g over C is a monoidal category. The tensor product of

representations V and W in RepC(g) is defined to be V ⊗C W , with g-action given

by the familiar Leibniz rule.

Monoidal Functors and Natural Transformations.

Definition 2.13. Let C and D be two monoidal categories. A monoidal functor

from C to D is a functor F : C → D, together with a natural isomorphism

JX,Y : F (X)⊗ F (Y )
∼−→ F (X ⊗ Y ) (2.6)

11



such that F (1C) is isomorphic to 1D, and that the diagram (called the monoidal

structure axiom):

(F (X)⊗ F (Y ))⊗ F (Z) F (X)⊗ (F (Y )⊗ F (Z))

F (X ⊗ Y )⊗ F (Z) F (X)⊗ F (Y ⊗ Z)

F ((X ⊗ Y )⊗ Z) F (X ⊗ (Y ⊗ Z)),

JX,Y ⊗idF (Z)

a′
F (X),F (Y ),F (Z)

idF (X)⊗JY,Z

JX⊗Y,Z JX,Y ⊗Z

F (aX,Y,Z)

(2.7)

is commutative for all X, Y, Z ∈ C, where a (respectively a′) denotes the associator

in C (respectively D). We often refer to the monoidal functor (F, J) simply as F .

Example 2.14. Suppose G is a group, and H ≤ G a subgroup. The restriction

functor resGH : Rep(G) → Rep(H) is a monoidal functor.

Definition 2.15. A monoidal functor F : C → D is a monoidal equivalence

if it is an equivalence in the normal sense. In this case, we say that C and D are

monoidally equivalent.

Recall that a functor is an equivalence (in the normal sense) if and only if it

is full, faithful, and essentially surjective, see e.g. [Lan98, IV.4 Theorem 1].

Definition 2.16. Let C and D be two monoidal categories, and let (F, J) and

(F ′, J ′) be two monoidal functors C → D. A natural transformation of monoidal

functors η : (F, J) → (F ′, J ′) is a natural transformation η : F → F ′ such that

η1C : F (1C) → F ′(1C) is an isomorphism, and the diagram

F (X)⊗ F (Y ) F (X ⊗ Y )

F ′(X)⊗ F ′(Y ) F ′(X ⊗ Y )

ηX⊗ηY

JX,Y

ηX⊗Y

J ′
X,Y

(2.8)

is commutative for all X, Y ∈ C.
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Rigid Monoidal Categories.

Definition 2.17. Let C be a monoidal category. An object X∗ is a left dual of X if

there exists morphisms evX : X∗ ⊗ X → 1C and coevX : 1C → X ⊗ X∗, called the

evaluation and coevaluation morphisms respectively, such that the compositions

X (X ⊗X∗)⊗X X ⊗ (X∗ ⊗X) X,
coevX⊗idX aX,X∗,X idX⊗evX (2.9)

and

X∗ X∗ ⊗ (X ⊗X∗) (X∗ ⊗X)⊗X∗ X∗idX∗⊗coevX a−1
X∗,X,X∗ evX⊗idX∗

(2.10)

are given by the identity morphism.

If X ∈ C has a left dual, then it is unique up to a unique isomorphism.

Example 2.18. If V ∈ Vec is a finite-dimensional vector space, then V ∗ =

HomVec(V,C) is a left dual of V , with evaluation map defined on pure tensors by

f ⊗ v 7→ f(v), and coevaluation map defined by z 7→
∑n

i=1 zvi ⊗ v̂i, where v1, . . . , vn

is any basis of V , and v̂1, . . . , v̂n is the corresponding dual basis of V ∗.

There is a similar notion of a right dual of an object, see e.g. [EGNO15,

§2.10] for details. In all examples we care about, every object has isomorphic left

and right duals, so we do not include the definition here.

Definition 2.19. Let C be a monoidal category. An object X ∈ C is rigid if it has

left and right duals. We say that C is rigid if every object of C is rigid.

Group Cohomology

The language of group cohomology is often useful for working with monoidal

categories. Let G be a group, and A a G-module, that is, an abelian group with a

G-action. In this section, we provide a definition of the group cohomology H∗(G,A)
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of G with values in A in terms of the cohomology of the standard complex of G

with values in A. We follow the discussion in [EGNO15, §1.7]; other references

include [Bro82] and [Wei95, Chapter 6].

Definition 2.20. Let G be a group, and A a G-module. The standard complex of

G with values in A is the chain complex (C, d) with terms Cn(G,A) := Fun(Gn, A),

and differential dn : Cn−1 → Cn given by

dn(f)(g1, . . . , gn) = g1 · f(g2, . . . , gn)− f(g1g2, . . . , gn) + . . .

+ (−1)n−1f(g1, . . . , gn−1gn) + (−1)nf(g1, . . . , gn−1).

(2.11)

We call an element of Cn(G,A) an n-cochain, f ∈ ker(dn+1) an n-cocycle,

and the group cohomology of G with values in A is defined to be

H∗(G,A) = H∗((C, d)). (2.12)

For the convenience of the reader, we unpack this definition to write down

the equation that an n-cochain must satisfy to be an n-cocycle for n = 0, 1, 2, 3.

Observe that a 0-cochain is a function (not necessarily a group

homomorphism) f : 1 → A from the trivial group to A, which is completely

determined by f(1) ∈ A. Under this identification, Definition 2.20 implies the

following.

Definition 2.21. A 0-cocycle on G with values in A is an element a ∈ A satisfying

the equation

0 = g · a− a, for all g ∈ G. (2.13)

Thus 0-cocycles are precisely the G-invariant elements of A, so H0(G,A) =

AG.

14



Definition 2.22. A 1-cocycle on G with values in A is a function f : G → A

satisfying the equation

0 = g · f(h)− f(gh) + f(g), for all g, h ∈ G. (2.14)

Definition 2.23. Let G be a group, and A a G-module. We say that A is a trivial

G-module if g · a = a for all g ∈ G, a ∈ A.

If A is a trivial G-module, then a 1-cocycle on G with values in A is

precisely a group homomorphism G → A, and H1(G,A) = Hom(G,A) in this

case.

Definition 2.24. A 2-cocycle on G with values in A is a function f : G × G → A

satisfying the equation:

0 = g · f(h, k)− f(gh, k) + f(g, hk)− f(g, h), for all g, h, k ∈ G, (2.15)

or, written multiplicatively:

f(g, h)f(gh, k) = g · f(h, k)f(g, hk), for all g, h, k ∈ G. (2.16)

We refer to Eqs. (2.15) and (2.16) as the 2-cocycle condition. If A is a trivial

G-module then there is an important connection between the second cohomology

group and central extensions, which we describe now.

Definition 2.25. A central extension of a group G by an abelian group A is a

short exact sequence of groups

1 → A → E → G → 1 (2.17)

such that A ⊆ Z(E). We say that two central extensions E, E ′ of G by A are

equivalent if there exists an isomorphism ϕ : E → E ′ such that the diagram

0 A E G 0

0 A E ′ G 0

idA ϕ idG (2.18)
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commutes.

The following theorem relates central extensions of G by A to the second

cohomology group H2(G,A).

Theorem 2.26. Let G be a group, and A a trivial G-module. The second

cohomology group H2(G,A) is in bijection with equivalence classes of central

extensions of G by A.

We will not prove this theorem, however we will briefly describe the

constructions involved. Given a central extension 1 → A → E
p−→ G → 1, choose

a set-theoretic section s : G → E of p. Then s(ρ(gh)ρ(h)−1ρ(g)−1) = 1, so by

exactness there exists α(g, h) ∈ A such that

ρ(gh) = α(g, h)ρ(g)ρ(h), for g, h ∈ G. (2.19)

associativity of G implies that α : G×G → A satisfies the 2-cocycle condition, so α

represents a class [α] ∈ H2(G,A). It can be shown that this class only depends on

the equivalence class of the central extension; in particular, it does not depend on

the choice of section.

For the reverse construction, let [α] ∈ H2(G,A), and choose a cocycle

representative α : G × G → A. Define the group E to be the set G × A with

multiplication given by

(g1, a1) · (g2, a2) = (g1g2, a1a2α(g1g2)), g1, g2 ∈ G, a1, a2 ∈ A. (2.20)

Associativity of this multiplication is equivalent to α satisfying the 2-cocycle

condition (2.16). This makes E a central extension of G by A, and it can be shown

that the equivalence class of this central extension is independent of the chosen

cocycle representative.
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Definition 2.27. A 3-cocycle on G with values in A is a function f : G×G×G →

A satisfying the equation

0 = g ·f(h, k, l)−f(gh, k, l)+f(g, hk, l)−f(g, h, kl)+f(g, h, k), for all g, h, k, l ∈ G,

(2.21)

or, written multiplicatively:

f(g, h, kl)f(gh, k, l) = g · f(h, k, l)f(g, hk, l)f(g, h, k), for all g, h, k, l ∈ G. (2.22)

As in the n = 2 case, we refer to Eqs. (2.21) and (2.22) as the 3-cocycle

condition.

Example 2.28. Let G be a group. Let VecG be the category whose objects are

finite-dimensional G-graded C-vector spaces, and whose morphisms are linear maps

preserving the G-grading.

We equip VecG with a monoidal structure as follows. The tensor product of

G-graded vector spaces V and W is defined to be V ⊗C W with G-grading given by

(V ⊗C W )g = ⊕h,k∈G

hk=g
Vh ⊗Wk, g ∈ G, (2.23)

with the obvious associativity and unit isomorphisms.

We can obtain other monoidal structures on VecG by twisting the standard

associator by a 3-cocycle. Indeed, let ω : G × G × G → C× be a 3-cocycle, and

for g ∈ G let Cg denote the one-dimensional G-graded vector space concentrated in

degree g. We can define a new associator on VecG by the formula

aωCg ,Ch,Ck
: (Cg ⊗C Ch)⊗C Ck → Cg ⊗C (Ch ⊗C Ck)

aωCg ,Ch,Ck
= ω(g, h, k)aCg ,Ch,Ck

,

(2.24)

for g, h, k ∈ G, and then extending linearly to all objects of VecG. That a
ω satisfies

the pentagon equation (2.3) is equivalent to ω satisfying the 3-cocycle condition

(2.22). We denote by VecωG the monoidal category obtained in this way.
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Remark 2.29. The category VecωG depends (up to monoidal equivalence) only on

the class [ω] ∈ H3(G,C×) [EGNO15, Proposition 2.6.1].

Fusion Categories

The following definition is from [ENO05, §2].

Definition 2.30. A fusion category over C is a semisimple rigid C-linear monoidal

category C with finitely many isomorphism classes of simple objects, finite-

dimensional spaces of morphisms between objects, and with simple unit object.

Example 2.31. Let G be a finite group, then Rep(G), the category of finite-

dimensional representations of G, is a fusion category.

Example 2.32. Let G be a finite group, then the category VecG from

Example 2.28 is a fusion category. The simple objects in VecG are the one-

dimensional spaces Cg for g ∈ G. If ω : G × G × G → C× is a 3-cocycle on G,

then VecωG is also a fusion category.

Recall (Definition 2.19) that rigidity means we have evaluation evX : X∗ ⊗

X → 1C and coevaluation coevX : 1C → X ⊗X∗ morphisms for each object X ∈ C.

Definition 2.33. Let C be a fusion category. We say an object X ∈ C is invertible

if the evaluation evX and coevaluation coevX morphisms are isomorphisms.

Equivalently, an object X ∈ C is invertible if there exists Y ∈ C such that

X ⊗ Y
∼−→ Y ⊗X

∼−→ 1.

Example 2.34. If G is a finite group, then invertible objects in Rep(G) are

precisely the 1-dimensional representations of G.
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Definition 2.35. We say that a fusion category C is pointed if all of its simple

objects are invertible.

Let G be a finite group, and ω : G × G × G → C× a 3-cocycle on G with

values in C×, then the category VecωG considered in Example 2.28 is pointed. In

fact, every pointed fusion category is monoidally equivalent to a category of this

form [ENO05, §8].

Definition 2.36. A fusion subcategory of a fusion category C is a full abelian

subcategory D ⊂ C closed under subquotients and tensor products.

It follows from [EGNO15, Corollary 4.11.4] that a fusion subcategory D ⊂ C

is itself a fusion category. The invertible objects of C form a fusion subcategory of

C, which we denote by Inv(C).

Grothendieck Rings and the Frobenius-Perron Dimension. We

being by recalling the notion of the Grothendieck ring of a monoidal abelian

category.

Definition 2.37. Let C be an abelian category. The Grothendieck group Gr(C) of C

is the abelian group generated by the symbols [X] for X ∈ C, such that if

0 → X → Y → Z → 0 (2.25)

is an exact sequence in C, then we have the relation

[Y ]− [X]− [Z] = 0 (2.26)

in Gr(C).

If C is a monoidal abelian category, then the tensor product on C induces an

associative multiplication on Gr(C) given by the formula:

[X ⊗ Y ] := [X] · [Y ], X, Y ∈ C. (2.27)
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In this situation, we call Gr(C) the Grothendieck ring of C.

We can say even more in the situation where C is a fusion category. Let Xi,

i ∈ I be a complete set of representatives of the isomorphism classes of simple

objects in C. Then Gr(C) is a free abelian group with basis [Xi], i ∈ I. For X ∈ C,

we have the decomposition:

[X] =
∑
i∈I

[X : Xi][Xi]. (2.28)

The following notion was first developed in the fusion category context in

[ENO05].

Definition 2.38. Let C be a fusion category, and take X ∈ C. The Frobenius-

Perron dimension FPdim(X) of X is the largest positive real eigenvalue of the

matrix of (left) multiplication by [X] on Gr(C).

That this definition is well-defined follows from the Frobenius-Perron

theorem [Per07, Fro12]. We recall a simplified version of that theorem here.

Theorem 2.39 (Frobenius-Perron). Let A be a square matrix with non-negative

real entries. Then A has a positive real eigenvalue λA such that if µ ∈ C is any

other eigenvalue of A, then |µ|< λA.

The Frobenius-Perron dimension extends to a homomorphism Gr(C) → R

with the property that FPdim([X]) ≥ 0 for all X ∈ C. It turns out that this

property characterizes the Frobenius-Perron dimension.

Proposition 2.40 ([EGNO15, Proposition 3.3.6]). Let C be a fusion category. The

Frobenius-Perron dimension determines a homomorphism FPdim : Gr(C) → R

such that FPdim([X]) ≥ 0 for all X ∈ C. Moreover, it is the only homomorphism

Gr(C) → R that takes non-negative values on [X] for all X ∈ C.
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The following characterization of invertible objects in a fusion category is

often useful.

Lemma 2.41. Let C be a fusion category. An object X ∈ C is invertible if and only

if FPdim(X) = 1.

In [ENO05], the notion of the Frobenius-Perron dimension of a fusion

category was also developed.

Definition 2.42. Let C be a fusion category, and Xi, i ∈ I a complete set of

representatives of the isomorphism classes of simple objects in C. The Frobenius-

Perron dimension FPdim(C) of C is defined to be

FPdim(C) :=
∑
i∈I

FPdim(Xi)
2. (2.29)

Example 2.43. Consider the category C = Rep(S3) of finite-dimensional

representations of S3 over C. Let 1 be the trivial representation, χ the sign

representation, and S the standard representation. Then Gr(Rep(S3)) has basis

[1], [χ], [S], with multiplication given by:

[χ] · [S] = [S], [χ] · [χ] = [1], [S] · [S] = [1] + [χ] + [S]. (2.30)

A straightforward computation shows that FPdim(1) = FPdim(χ) = 1 and

FPdim(S) = 2. Thus

FPdim(Rep(S3)) = FPdim(1triv)
2 + FPdim(χ)2 + FPdim(S)2 = 6 = |S3|. (2.31)

Remark 2.44. It follows from Proposition 2.40 that if G is a finite group, then

FPdim(X) = dimC(X) for all X ∈ Rep(G), so FPdim(Rep(G)) = |G|.

Observe that the category Rep(G) has the property that the Frobenius-

Perron dimensions of all objects are integers.

21



Definition 2.45. A fusion category C is called integral if FPdim(X) ∈ Z for all

X ∈ C.

In [ENO05, Theorem 8.33] it was proved that a fusion category is integral

if and only if it is category of representations of a finite-dimensional quasi-Hopf

algebra. Not every fusion category is integral however, as the following important

example shows.

Example 2.46 (see [DGNO10]). An Ising fusion category I has three isomorphism

classes of simple objects: the unit object 1, an invertible object π, and a non-

invertible object X, satisfying the multiplication rules:

[π] · [π] = [1], [π] · [X] = [X] · [π] = [X], [X] · [X] = [1] + [π] (2.32)

in Gr(I). It is straightforward to check that:

FPdim(1) = 1, FPdim(π) = 1, FPdim(X) =
√
2. (2.33)

so FPdim(I) = 4. In fact, every non-pointed fusion category with Frobenius-Perron

dimension 4 is an Ising fusion category.

Braided Fusion Categories

Recall that monoidal categories categorify the notion of a monoid. Braided

monoidal categories, introduced in [JS93], categorify the notion of a commutative

monoid. Most of the definitions in this section are formulated as in [EGNO15,

Chapter 8].

Definition 2.47. A braiding on a monoidal category C is a natural isomorphism

cX,Y : X ⊗ Y → Y ⊗X for X, Y ∈ C, (2.34)
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such that the diagrams

X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(X ⊗ Y )⊗ Z Y ⊗ (Z ⊗X),

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

cX,Y ⊗Z

aY,Z,XaX,Y,Z

cX,Y ⊗idZ

aY,X,Z

idY ⊗cX,Z

(2.35)

and

(X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

X ⊗ (Y ⊗ Z) (Z ⊗X)⊗ Y,

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y

cX⊗Y,Z

a−1
Z,X,Ya−1

X,Y,Z

idX⊗cY,Z

a−1
X,Z,Y

cX,Z⊗idY

(2.36)

commute for all X, Y, Z ∈ C.

Definition 2.48. A braided monoidal category is a monoidal category together

with a braiding. A braided fusion category is a fusion category equipped with a

braiding.

Example 2.49. Let G be a group, then Rep(G) admits a braiding given by

transposition of factors:

cV,W : V ⊗W → W ⊗ V

v ⊗ w 7→ w ⊗ v,

(2.37)

for v ∈ V , w ∈ W and V,W ∈ Rep(G).

Example 2.50. Let R be a commutative ring, then the category of R-modules is a

braided monoidal category, with braiding given by transposition of factors. If G is

an abelian group, then VecG (see Example 2.28) is braided, with braiding given by

transposition of factors.
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Example 2.51. The Ising fusion categories considered in Example 2.46 can be

given a braiding, see [DGNO10, Appendix B].

Braided Monoidal Functors.

Definition 2.52. Let C and D be braided monoidal categories with braidings c and

c′ respectively. A monoidal functor (F, J) : C → D is called braided if the following

diagram commutes:

F (X)⊗ F (Y ) F (Y )⊗ F (X)

F (X ⊗ Y ) F (Y ⊗X)

JX,Y

c′
F (X),F (Y )

JY,X

F (cX,Y )

(2.38)

for all X, Y ∈ C.

Definition 2.53. A braided monoidal functor F : C → D is a braided monoidal

equivalence if it is an equivalence in the normal sense. In this case, we say that C

and D are braided equivalent.

Centralizers. The following definition was introduced by Müger in

[Müg03].

Definition 2.54. Let D be a fusion subcategory of a braided fusion category C.

The centralizer D′|C of D in C is defined to be

D′|C= {X ∈ C : cX,Y ◦ cY,X = idX⊗Y for all Y ∈ D} (2.39)

i.e. D′|C is the full subcategory of objects in C that centralize every object in D.

We will occasionally write D′ instead of D′|C.

Definition 2.55. A braided fusion category C is called symmetric if C ′ = C.

Equivalently, C is symmetric if and only if cX,Y ◦ cY,X = idX⊗Y for all

X,Y ∈ C. The braided categories discussed in Examples 2.49 and 2.50 are
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symmetric. Observe that a fusion subcategory D ⊆ C of a braided fusion category is

symmetric if and only if D ⊆ D′|C.

The following notion was defined by Müger in [Müg03].

Definition 2.56. A braided fusion category C is called non-degenerate if C ′ = Vec.

Example 2.57. Any Ising braided fusion category (see Example 2.51) is non-

degenerate [DGNO10, Corollary B.12].

We call a symmetric braided fusion category a symmetric fusion category,

and a non-degenerate braided fusion category a non-degenerate fusion category.

Symmetric fusion categories are those braided fusion categories whose centralizer is

as large as possible, while non-degenerate fusion categories are the braided fusion

categories whose centralizer is as small as possible.

As we will later see, there is a complete classification of symmetric fusion

categories in terms of supergroups. Non-degenerate fusion categories (and the

closely related notion of a modular fusion category) have been classified in low

ranks (see e.g. [RSW09]), though much less is known than in the symmetric case.

Drinfeld Center. In this section we describe the Drinfeld center of a

monoidal category. The Drinfeld center of a fusion category is an example of a non-

degenerate braided fusion category, and will play an important role in Chapter V.

This construction is due to Drinfeld (unpublished), and was given in [JS91, Maj91].

Definition 2.58 (see e.g. [EGNO15, Definition 7.13.1]). Let C be a monoidal

category. The Drinfeld center of C is the category Z(C) whose objects are pairs

(Z, γ) where Z ∈ C and

γX : X ⊗ Z
∼−→ Z ⊗X, X ∈ C (2.40)
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is a natural isomorphism (sometimes called a half-braiding), such that the diagram

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y

X ⊗ (Y ⊗ Z) (Z ⊗X)⊗ Y,

(X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

a−1
X,Z,Y

γX⊗idY

a−1
X,Y,Z

idX⊗γY

γX⊗Y

a−1
Z,X,Y

(2.41)

commutes for all X,Y ∈ C.

A morphism (Z, γ) → (Z ′, γ′) in Z(C) is a morphism f : Z → Z ′ in C such

that the diagram

X ⊗ Z Z ⊗X

X ⊗ Z ′ Z ′ ⊗X,

idX⊗f

γX

f⊗idX

γ′
X

(2.42)

commutes for all X ∈ C.

The Drinfeld center Z(C) has a monoidal structure given as follows. If

(Z, γ), (Z ′, γ′) ∈ Z(C), then

(Z, γ)⊗ (Z ′, γ′) := (Z ⊗ Z ′, γ̃), (2.43)

where γ̃X : X ⊗ (Z ⊗ Z ′) → (Z ⊗ Z ′)⊗X is defined by the following diagram

X ⊗ (Z ⊗ Z ′) (X ⊗ Z)⊗ Z ′ (Z ⊗X)⊗ Z ′

(Z ⊗ Z ′)⊗X Z ⊗ (Z ′ ⊗X) Z ⊗ (X ⊗ Z ′).

γ̃X

a−1
X,Z,Z′ γX⊗idZ′

aZ,X,Z′

a−1
Z,Z′,X

idZ⊗γ′
X

(2.44)

The unit object of Z(C) is (1C, r
−1ℓ) where r and ℓ are the right and left

unit constraints in C respectively.

The Drinfeld center Z(C) comes equipped with a braiding:

c(Z,γ),(Z′,γ′) := γ′
Z . (2.45)
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Theorem 2.59 ([EGNO15, Theorem 7.16.6, Corollary 8.20.13, Theorem 9.3.2]).

Let C be a fusion category. Then

(i) The center Z(C) of C is a fusion category,

(ii) FPdim(Z(C)) = FPdim(C)2, and

(iii) Z(C) is non-degenerate.

Algebras and Modules in a Fusion Category

The following definitions make sense in any monoidal category, but we

restrict our attention to fusion categories here.

Definition 2.60. Let C be a fusion category. An algebra in C (sometimes called

an C-algebra) is a triple (A,m, η) with A an object in C, multiplication morphism

m : A⊗ A → A, and unit morphism η : 1 → A, satisfying the following conditions

m ◦ (idA ⊗m) ◦ aA,A,A = m ◦ (m⊗ idA), (2.46)

m ◦ (η ⊗ idA) = idA = m ◦ (idA ⊗ η). (2.47)

If C is a braided fusion category, then the algebra A is called commutative if

m = m ◦ cA,A. (2.48)

Example 2.61. A Vec-algebra is precisely an associative C-algebra with unit. A

commutative Vec-algebra is precisely an associative commutative C-algebra with

unit.

Example 2.62. If V is a finite dimensional vector space, then A = V ⊗ V ∗ has a

natural algebra structure given by:

m : V ⊗ V ∗ ⊗ V ⊗ V ∗ → V ⊗ V ∗

v ⊗ f ⊗ w ⊗ g 7→ f(w) (v ⊗ g) ,

(2.49)
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for v, w ∈ V and f, g ∈ V ∗. Let v1, . . . , vn be a basis for V , and v̂1, . . . , v̂n the

corresponding dual basis for V ∗, then the unit element in this algebra is given by

η =
n∑

i=1

vi ⊗ v̂i. (2.50)

This makes V ⊗ V ∗ into a Vec-algebra.

Observe that the previous example involved the evaluation and coevaluation

maps from Example 2.18. This suggests the following generalization of the previous

example.

Example 2.63. Let C be a fusion category, and X ∈ C. Define A := X ⊗X∗, then

A is a C-algebra with multiplication morphism

m : A⊗ A = X ⊗X∗ ⊗X ⊗X∗ id⊗evX⊗id−−−−−−→ X ⊗X∗ (2.51)

and unit morphism η = coevX : 1C → X ⊗X∗.

Definition 2.64. Let C be a fusion category, and A a C-algebra. A right A-module

is a pair (M,µ), with M ∈ C and µ : M ⊗ A → M (called the right action

morphism) such that

µ ◦ (µ⊗ idM) = µ ◦ (idM ⊗m) ◦ aM,A,A, (2.52)

µ ◦ (idM ⊗ η) = idM . (2.53)

Definition 2.65. Let C be a fusion category, and A a C-algebra. A left A-module is

a pair (M,µ), with M ∈ C and µ : A ⊗ M → M (called the left action morphism)

such that

µ ◦ (m⊗ idM) = µ ◦ (idA ⊗ µ) ◦ aA,A,M , (2.54)

µ ◦ (η ⊗ idM) = idM . (2.55)
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Definition 2.66. Let C be a fusion category, and A a C-algebra. We define CA

to be the category of right A-modules in C, with morphisms being the A-module

homomorphisms between them.

Example 2.67. Let C be a fusion category, A a C-algebra, and X ∈ C. We can

construct the free A-module X ⊗ A, which has right action morphism

µ : (X ⊗ A)⊗ A
aX,A,A−−−−→ X ⊗ (A⊗ A)

id⊗m−−−→ X ⊗ A. (2.56)

The association X 7→ X ⊗ A defines a functor C → CA left adjoint to the forgetful

functor CA → C [EGNO15, Lemma 7.8.12].

Definition 2.68. Let C be a fusion category, and suppose A and B are C-algebras.

An (A,B)-bimodule in C is a triple (M, p, q) where M is an object in C, p : A ⊗

M → M and q : M ⊗ B → M are morphisms in C, such that (M, p) is a left

A-module, (M, q) is a right B-module, and

p ◦ (idA ⊗ q) ◦ aA,M,B = q ◦ (p⊗ idB) (2.57)

as morphisms (A⊗M)⊗B → M .

Example 2.69. If A is an algebra in C with multiplication map m : A ⊗ A → A,

then the multiplication map m : A ⊗ A → A endows A with the structure of an

(A,A)-bimodule in C.

Definition 2.70. Let C be a fusion category, and suppose A and B are C-algebras.

We denote by ACB the category of (A,B)-bimodules in C, with morphisms being

the (A,B)-bimodule homomorphisms between them.

Connected Étale Algebras. If R is a commutative ring, then the

category of R-modules admits a tensor product. Similarly, if A is a commutative

C-algebra, then the category CA of right A-modules can be equipped with a tensor
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product. There is no guarantee, however, that CA will be a fusion category. In this

section, we recall the definition of a connected étale algebra, a class of algebras

whose category of modules is guaranteed to be a fusion category.

Definition 2.71. An algebra A ∈ C is separable if the multiplication morphism

m : A ⊗ A → A splits as a morphism of A-bimodules. If C is braided, then we say

that an algebra A ∈ C is étale if it is both commutative and separable. We say an

étale algebra is connected if dimHomC(1, A) = 1.

Suppose A is a connected étale algebra in a braided fusion category C.

Given a right A-module (X,µ), the braiding on C allows us to define left A-module

structures on X by

µ+ : A⊗X
cA,X−−→ X ⊗ A

µ−→ X (2.58)

µ− : A⊗X
c−1
X,A−−→ X ⊗ A

µ−→ X (2.59)

making (X,µ±, µ) into an A-bimodule. This defines full embeddings

F± : CA → ACA. (2.60)

The category ACA of A-bimodules has a tensor product, and so we obtain a tensor

product on CA.

Theorem 2.72 ([DMNO13, §3.3 and Lemma 3.11]). Let C be a braided fusion

category, and A ∈ C a connected étale algebra. Then CA is a fusion category, and

FPdim(CA)FPdim(A) = FPdim(C). (2.61)

We recall the following characterization of connected étale algebras from

[DMNO13, §3].
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Definition 2.73. Let C be a braided fusion category, and A a fusion category.

Suppose F : C → A is a tensor functor, then the structure of a central functor on

F is a braided tensor functor F ′ : C → Z(A) whose composition with the forgetful

functor Z(A) → A equals F .

In particular, any braided tensor functor C → A has the structure of a

central functor. Moreover, the following lemma shows that every central functor

gives rise to a connected étale algebra.

Lemma 2.74 ([DMNO13, Lemma 3.5]). Let C be a braided fusion category, A a

fusion category, and F : C → A a central functor. Let I : A → C be the right

adjoint functor of F . Then A = I(1A) has a canonical structure of a connected

étale algebra.

If A ∈ C is a connected étale algebra, then the free module functor − ⊗

A : C → CA (see Example 2.67) admits the structure of a central functor. The

right adjoint functor is the forgetful functor I : CA → C, and I(1CA)
∼−→ A as C-

algebras [DMNO13, Lemma 3.9]. Thus there is an equivalence between connected

étale algebras and central functors.

Local Modules. The following notion is due to Pareigis [Par95].

Definition 2.75. Let C be a braided fusion category, and A a C-algebra. Let

(M,µ) be a right A-module. We say that M is a local A-module if

µ ◦ cA,M ◦ cM,A = µ. (2.62)

Remark 2.76. Pareigis [Par95] refers to local modules as dyslectic modules.

If M is a local A-module, then the embeddings F± : CA → ACA defined using

Eqs. (2.58) and (2.59) coincide.
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Definition 2.77. Let C be a braided fusion category, and A a connected étale

algebra in C. We denote by Cloc
A the category of local A-modules in C.

The tensor product of A-modules in C preserves Cloc
A , and the braiding on C

induces a braiding on C loc
A [Par95, KO02], so Cloc

A is a braided fusion category.

Lemma 2.78 ([DMNO13, Corollary 3.32]). Let A be a connected étale algebra in

a non-degenerate fusion category C. Then C loc
A is a non-degenerate fusion category,

and

FPdim(Cloc
A )FPdim(A)2 = FPdim(C). (2.63)

Deligne Tensor Product of Abelian Categories

Definition 2.79. Let C be a C-linear abelian category. We say C is locally finite if:

(i) for any X, Y ∈ C, dimC HomC(X, Y ) < ∞, and

(ii) every object in C has finite length.

Fusion categories are locally finite. The following notion is due to Deligne

[Del90].

Definition 2.80. Let C and D be two locally finite C-linear abelian categories.

The Deligne tensor product C ⊠ D is an abelian C-linear category, together with a

bifunctor:

⊠ : C × D → C ⊠D

(X,Y ) 7→ X ⊠ Y

(2.64)

which is right exact in both variables, and such that if F : C × D → A is a right

exact in both variables bifunctor, then there exists a unique right exact functor

F : C ⊠D → A such that F ◦⊠ = F .
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The Deligne tensor product C ⊠ D as defined above always exists, and is a

locally finite abelian category. If C and D are fusion categories, then C ⊠ D can be

given a monoidal structure such that:

(X1 ⊠ Y1)⊗ (X2 ⊠ Y2) = (X1 ⊗X2)⊠ (Y1 ⊗ Y2), X1, X2 ∈ C, Y1, Y2 ∈ D, (2.65)

This makes C ⊠D into a fusion category [EGNO15, Corollary 4.6.2].

Module Categories

Definition 2.81. Let C be a monoidal category. A left module category over C is

a category M equipped with an action bifunctor ⊙ : C × M → M, a natural

isomorphism:

mX,Y,M : (X ⊗ Y )⊙M
∼−→ X ⊙ (Y ⊙M), X, Y ∈ C, M ∈ M (2.66)

called the module associativity constraint, and a unit isomorphism ℓM : 1C ⊙M
∼−→

M , subject to the following axioms.

1. The pentagon axiom:

The diagram

((X ⊗ Y )⊗ Z)⊙M

(X ⊗ (Y ⊗ Z))⊙M (X ⊗ Y )⊙ (Z ⊙M)

X ⊙ ((Y ⊗ Z)⊙M) X ⊙ (Y ⊙ (Z ⊙M))

aX,Y,Z⊙idM

mX⊗Y,Z,M

mX,Y ⊗Z,M mX,Y,Z⊗M

idX⊙mY,Z,M

(2.67)

is commutative for all X, Y, Z ∈ C and M ∈ M.

2. The triangle axiom:
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The diagram

(X ⊗ 1C)⊙M X ⊙ (1C ⊙M)

X ⊙M

rX⊗idM

mX,1C ,M

idX⊗ℓM

(2.68)

is commutative for all X ∈ C and M ∈ M.

Remark 2.82. A right C-module category is a left Crev-module category, where Crev

is the category C with reversed tensor product.

Definition 2.83. Let M and N be two module categories over C. A C-module

functor from M to N consists of a functor F : M → N and a natural

isomorphism:

sX,M : F (X ⊙M) → X ⊙ F (M), X ∈ C,M ∈ M, (2.69)

such that the diagrams

F ((X ⊗ Y )⊙M)

F (X ⊙ (Y ⊙M)) (X ⊗ Y )⊙ F (M)

X ⊙ F (Y ⊙M) X ⊙ (Y ⊙ F (M))

F (mX,Y,M )

sX⊗Y,M

sX,Y ⊙M nX,Y,F (M)

idX⊙sY,M

(2.70)

and

F (1C ⊙M) 1C ⊙ F (M)

F (M)

F (ℓM )

s1C ,M

ℓF (M)

(2.71)

commute for all X, Y ∈ C and M ∈ M.

We will always assume that our module categories are semisimple locally

finite abelian categories over C, and that all module functors are C-linear, unless

otherwise stated.
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Definition 2.84. Let C, D be two fusion categories. A (C,D)-bimodule category

is a category M that has left C-module and right D-module category structures

with associativity constraints mX,Y,M : (X ⊗ Y ) ⊙ M
∼−→ X ⊙ (Y ⊙ M) and

nM,W,Z : M ⊙ (W ⊗ Z)
∼−→ (M ⊙W ) ⊙ Z respectively, together with a collection of

natural isomorphisms bX,M,Z : (X⊙M)⊙Z
∼−→ X⊙ (M⊙Z) such that the diagrams:

((X ⊗ Y )⊙M)⊙ Z

(X ⊙ (Y ⊙M))⊙ Z (X ⊗ Y )⊙ (M ⊙ Z)

X ⊙ ((Y ⊙M)⊙ Z) X ⊙ (Y ⊙ (M ⊙ Z))

mX,Y,M⊗idZ

bX⊗Y,M,Z

bX,Y ⊙M,Z mX,Y,M⊙Z

idX⊗bY,M,Z

(2.72)

and

X ⊙ (M ⊙ (W ⊗ Z))

X ⊙ ((M ⊙W )⊙ Z) (X ⊙M)⊙ (W ⊗ Z)

(X ⊙ (M ⊙W ))⊙ Z ((X ⊙M)⊙W )⊙ Z

idX⊗nM,W,Z bX,M,W⊗Z

nX⊙M,W,ZbX,M⊙W,Z

bX,M,W⊗idZ

(2.73)

commute for all X, Y ∈ C, W,Z ∈ D, and M ∈ M.

Remark 2.85. Equivalently, a (C,D)-bimodule is a module category over C ⊠Drev.

The tensor product of module categories was described in [ENO10].

Definition 2.86. Let M be a right C-module category, N be a left C-module

category, and A a semisimple abelian category. Suppose F : M × N → A is

a bifunctor additive in every argument. We say that F is C-balanced if there is a

natural family of isomorphisms:

bM,X,N : F (M ⊙X,N)
∼−→ F (M,X ⊙N), (2.74)
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such that the diagram

F (M ⊙ (X ⊗ Y ), N) F ((M ⊙X)⊙ Y,N)

F (M, (X ⊗ Y )⊙N) F (M ⊙X, Y ⊙N)

F (M,X ⊙ (Y ⊙N))

bM,X⊗Y,N

F (mM,X,Y ,idN )

bM⊙X,Y,N

F (idM ,nX,Y,N )

bM,X,Y ⊙N

(2.75)

commutes for all M ∈ M, N ∈ N , and X, Y ∈ C.

Definition 2.87 ([ENO10, Definition 3.3]). A tensor product of a right C-module

category M and a left C-module category N is an abelian category M ⊠C N ,

together with a C-balanced functor:

BM,N : M×N → M⊠C N (2.76)

such that if F : M × N → A is a C-balanced functor with A an abelian category,

then there exists a unique additive functor F : M⊠C N → A such that F ◦B = F .

In [ENO10, §3.2] (see also [Gre10]), it is shown that the tensor product of

module categories exists.

Remark 2.88. If M is a (A, C)-bimodule category, and N is a (C,D)-bimodule

category, then M⊠CN is a (A,D)-bimodule category. It is universal for C-balanced

(A,D)-bimodule functors M×N → A.

Group Actions on Categories

Definition 2.89 (see e.g. [EGNO15, §2.7]). Let G be a finite group. We denote by

G the monoidal category whose objects are the elements of G, the only morphisms

are the identity homomorphism, and the tensor product is given by multiplication

in G.
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Definition 2.90. Let C be a fusion category. Let Aut⊗(C) denote the monoidal

category of C-linear monoidal autoequivalences of C. An action of G on a fusion

category C is a monoidal functor ϱ : G → Aut⊗(C).

Definition 2.91. Let B be a braided fusion category. Let Autbr⊗ (B) denote the

monoidal category of C-linear braided autoequivalences of B. A braided action of G

on a braided fusion category B is a monoidal functor ϱ : G → Autbr⊗ (B).

Given an action of G on C, let Tg = ϱ(g) for g ∈ G, then the monoidal

structure on ϱ gives an isomorphism γg,h : Tg ◦ Th
∼−→ Tgh for g, h ∈ G.

Definition 2.92. A G-equivariant object in C is a pair (X, u), consisting of an

object X ∈ C and a family of isomorphisms u = {ug : Tg(X)
∼−→ | g ∈ G}, such that

the diagram

Tg(Th(X)) Tg(X)

Tgh(X) X

Tg(uh)

γg,h(X) ug

ugh

(2.77)

commutes for all g, h ∈ G.

Definition 2.93. A G-equivariant morphism (X, u) → (Y, v) is a morphism X →

Y in C such that that the diagram

Tg(X) Tg(Y )

X Y

Tg(f)

ug vg

f

(2.78)

commutes for all g ∈ G.

Definition 2.94. If C is a fusion category with a G-action ϱ : G → Aut⊗(C), then

we can form the category CG of G-equivariant objects in C, with morphisms being

the G-equivariant maps. There is a monoidal structure on CG: the tensor product
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of (X, u) with (Y, v) is X⊗Y with G-equivariant structure given by the composition

Tg(X ⊗ Y )
Jg
X,Y−−−→ Tg(X)⊗ Tg(Y )

ug⊗vg−−−→ X ⊗ Y (2.79)

where Jg
X,Y is the monoidal structure on Tg. This makes CG into a fusion category.

Example 2.95. Any group G has a unique action on Vec, the trivial action. A G-

equivariant object in Vec is therefore a vector space V , together with a collection

of automorphisms ug : V
∼−→ V for g ∈ G satisfying Eq. (2.77). In particular, this

endows V with a G-action, and so VecG
∼−→ Rep(G).

Observe that if G acts on a fusion category C, then we have an embedding

Rep(G)
∼−→ VecG ↪→ CG. The process of taking C to the category CG is known as

equivariantization.

Definition 2.96. Let C be a fusion category, and G be a group. A grading of C by

G is a decomposition:

C =
⊕
g∈G

Cg, (2.80)

where Cg ⊂ C are abelian subcategories, such that the tensor product maps Cg × Ch

to Cgh. The subcategory C1 is monoidal, and we call it the trivial component of the

grading. We say the grading is faithful if Cg ̸= 0 for all g ∈ G.

The following notion is due to Turaev [Tur00].

Definition 2.97. A braided G-crossed fusion category is a fusion category C

equipped with the following structures:

(i) a (not necessarily faithful) grading C =
⊕

g∈G Cg,

(ii) an action g 7→ Tg of G on C such that Tg(Ch) ⊂ Cghg−1 , and
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(iii) a natural collection of isomorphisms, called the G-braiding :

cX,Y : X ⊗ Y
∼−→ Tg(Y )⊗X, X ∈ Cg, g ∈ G and Y ∈ C. (2.81)

satisfying some compatibility conditions which we omit here, see e.g. [EGNO15,

Definition 8.24.1(a)-(c)].

Remark 2.98. The trivial component C1 of a braided G-crossed fusion category is

a braided fusion category with a braided G-action.

Let B be a braided fusion category containing Rep(G) as a symmetric fusion

subcategory. Let A = Fun(G) ∈ Rep(G) ⊂ B, and consider the category BA of right

A-modules in B, then BA is called the de-equivariantization of B. The following

theorem is due to [Kir01] and [Müg04a], though we use the statement of [EGNO15,

Theorem 8.24.3].

Theorem 2.99. The equivariantization and de-equivariantization constructions

establish a bijection between the set of equivalences classes of braided G-crossed

fusion categories and the set of equivalence classes of braided fusion categories

containing Rep(G) as a symmetric fusion subcategory.

Given a braided fusion category B containing Rep(G), the de-

equivariantization BA is a braided G-crossed fusion category such that (BA)
G ∼−→ B.

We have the following useful description of the trivial component of BA.

Proposition 2.100 ([Müg04b]). Let B be a braided fusion category containing

Rep(G) as a symmetric fusion subcategory. Then (BA)1 is the full subcategory of

local A-modules in B, i.e. (BA)1 = Bloc
A .

The following property of de-equivariantization will be useful.
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Proposition 2.101 ([DGNO10, Proposition 4.56(ii)]). Let B be a braided fusion

category containing Rep(G) as a symmetric fusion subcategory. Then B is non-

degenerate if and only if (BA)1 is non-degenerate and the grading on BA is faithful.
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CHAPTER III

FERMIONIC 6J-SYMBOLS IN SUPERFUSION CATEGORIES

Chapter III appeared in [Ush18].

In this chapter, we recall the definitions of the 6j-symbols of a fusion

category, and the fermionic 6j-symbols of a superfusion category. Using a

construction of Brundan and Ellis [BE17], one can describe the underlying fusion

category of a superfusion category. The main goal of this chapter is to derive an

explicit formula for the 6j-symbols of the underlying fusion category in terms of the

fermionic 6j-symbols of the original superfusion category. Using our formula, we

also investigate the special case where our superfusion category is pointed.

6j-symbols in Fusion Categories

We begin by describing how the associator a : (−⊗ −) ⊗− ∼−→ −⊗ (− ⊗−)

in a fusion category can be described in terms of 6j-symbols, closely following the

discussion in [Wan10, Chapter 4], see also [Tur94, Chapter VI].

We begin by introducing some notation. Let A be a fusion category, and Xi,

i ∈ I a complete set of representatives of the isomorphism classes of simple objects

in A. The monoidal structure on A determines the fusion rules of A:

Xi ⊗Xj ≃
⊕
m∈I

N ij
mXm, (3.1)

where

N ij
m = [Xi ⊗Xj : Xm] = dimHomA(Xm, Xi ⊗Xj) = dimHomA(Xi ⊗Xj, Xm). (3.2)

In other words, N ij
m is the multiplicity (see Definition 2.3) of Xm in Xi ⊗Xj.

The notion of admissibility will be useful.

Definition 3.1 (see [Wan10, Definition 4.1]). Let A be a fusion category with

isomorphism classes of simple objects indexed by a set I. We say a quadruple
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(i, j,m, α) ∈ I3 × Z≥0 is admissible if 1 ≤ α ≤ N ij
m . A decuple

(i, j,m, k, n, t, α, β, η, φ) ∈ I6 × Z4
≥0 is admissible if each of the quadruples

(i, j,m, α), (m, k, n, β), (j, k, t, η) and (i, t, n, φ) are admissible.

Unpacking this definition, that a quadruple (i, j,m, α) ∈ I3 × Z≥0 is

admissible means that the simple object Xm occurs in the tensor product Xi ⊗ Xj

with multiplicity at least α. Put another way, if Xm occurs in Xi ⊗Xj, then the set

of admissible triples of the form {(i, j,m, α) | 1 ≤ α ≤ N ij
m} label the occurrences of

Xm in Xi ⊗Xj.

Remark 3.2. A fusion category is called multiplicity-free if N ij
m ∈ {0, 1} for all

i, j,m ∈ I [Wan10, Definition 4.5]. In the multiplicity-free case, an admissible

decuple is completely described by the sextuple (i, j,m, k, n, t), in which case this

definition recovers [Wan10, Definition 4.7].

Example 3.3. Let A be a finite abelian group, then the category Rep(A) of finite-

dimensional representations of A is a multiplicity-free category. In fact, any pointed

fusion category is multiplicity-free.

For each i, j,m ∈ I, choose basis vectors eijm(α) (1 ≤ α ≤ N ij
m) for the

space HomA(Xi ⊗ Xj, Xm). Given this choice, an admissible quadruple (i, j,m, α)

corresponds to the basic vector eijm(α). We wish to describe the associator

a(Xi, Xj, Xk) : (Xi ⊗Xj)⊗Xk → Xi ⊗ (Xj ⊗Xk) (3.3)

in terms of our chosen basis. Indeed, fixing admissible quadruples (i, j,m, α) and

(m, k, n, β), we can form the composition

(Xi ⊗Xj)⊗Xk

eij
m(α)⊗idXk−−−−−−−→ Xm ⊗Xk

emk
n (β)−−−−→ Xn. (3.4)

We will represent this composition graphically by Fig. 1.
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β

α

i j

m

k

n

Figure 1. Graphical representation of the composition (3.4).

Let t ∈ I. If (j, k, t, η) and (i, t, n, φ) are admissible, then we have the

composition

(Xi ⊗Xj)⊗Xk
a(Xi,Xj ,Xk)−−−−−−−→ Xi ⊗ (Xj ⊗Xk)

idXi
⊗ejk

t (η)
−−−−−−−→ Xi ⊗Xt

eit
n (φ)−−−→ Xn. (3.5)

We will represent this composition graphically by Fig. 2.

φ

η

n

t

i j k

a(Xi, Xj, Xk)

Figure 2. Graphical representation of the composition (3.5).

Fix i, j, k, n ∈ I. Taking the direct sum of the above compositions over all

t ∈ I such that (j, k, t, η) and (i, t, n, φ) are admissible gives an isomorphism [Tur94,
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Lemma 1.1.1, Lemma 1.1.2]⊕
t∈I

HomA(Xj ⊗Xk, Xt)⊗ HomA(Xi ⊗Xt, Xn)
∼−→ HomA((Xi ⊗Xj)⊗Xk, Xn)

ejkt (η)⊗ eitn(φ) 7→ eitn(φ) ◦ (idXi
⊗ ejkt (η)) ◦ a(Xi, Xj, Xk)

(3.6)

Expressing (3.4) in terms of this basis determines a constant F ijm,αβ
knt,ηφ ∈ C for each

admissible decuple (i, j,m, k, n, t, α, β, η, φ) in A, defined by the graphical equation

in Fig. 3.

β

α

i j

m

k

n

=
∑
t∈I

Njk
t∑

η=1

N it
n∑

φ=1

F ijm,αβ
knt,ηφ

φ

η

n

t

i j k

a(Xi, Xj, Xk)

Figure 3. Graphical definition of 6j-symbols.

This describes the associator in A as a collection of matrices

F ijm
knt : HomA(Xi ⊗Xj, Xm)⊗ HomA(Xm ⊗Xk, Xn)

→ HomA(Xj ⊗Xk, Xt)⊗ HomA(Xi ⊗Xt, Xn)

(3.7)

whose entries are the constants defined above. The matrices F ijm
knt are called 6j-

symbols, as they depend on six indices. If (i, j,m, k, n, t, α, β, η, φ) is not admissible,

then by convention we set F ijm,αβ
knt,ηφ = 0. The pentagon axiom in A is then equivalent

to the following equation in terms of 6j-symbols.

Lemma 3.4 (Pentagon equation). Let A be a fusion category with simple objects

indexed by a set I. For each i, j,m ∈ I, let N ij
m = dimHomA(Xi ⊗ Xj, Xm), and

choose basis vectors eijm(α) (1 ≤ α ≤ N ij
m) for HomA(Xi ⊗ Xj, Xm). Given these
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choices, if i, j, k, l,m, n, t, p, q, s ∈ I and α, β, η, χ, γ, δ, ϕ ∈ Z≥0, then∑
t∈I

Njk
t∑

η=1

N it
n∑

φ=1

Ntl
s∑

κ=1

F ijm,αβ
knt,ηφ F itn,φχ

lps,κγ F
jkt,ηκ
lsq,δϕ =

Nmq
p∑

ϵ=1

Fmkn,βχ
lpq,δϵ F ijm,αϵ

qps,δγ (3.8)

Example 3.5 (see [EGNO15, Example 2.3.8]). Let G be a finite group, and ω : G×

G × G → C× a 3-cocycle on G (see Example 2.28). Recall that the fusion category

VecωG has pairwise non-isomorphic simple objects Cg, g ∈ G, satisfying Cg ⊗ Ch
∼−→

Cgh. The admissible quadruples in this category are of the form (g, h, gh, 1) for all

g, h ∈ G. Thus given g, h, k ∈ G, we can write

F (g, h, k) := F gh
k ∈ C× (3.9)

for the corresponding 6j-symbol unambiguously. The pentagon equation (3.8) then

reduces to

F (g, h, k)F (g, hk, l)F (h, k, l) = F (gh, k, l)F (g, h, kl) g, h, k, l ∈ G (3.10)

i.e. F is a 3-cocycle on G with values in C× (see Eq. (2.22)).

6j-symbols in Superfusion Categories

Superfusion Categories. In this section, we will recall the definition of

a superfusion category using the language of [BE17], and describe the associator in

a superfusion category in terms of so-called fermionic 6j-symbols, following [GK16].

We begin by describing some basics of super linear algebra.

Definition 3.6. A superspace is a Z/2Z-graded C-vector space V . The parity of a

homogeneous element v ∈ V will be denoted by |v|.

Definition 3.7. Let sVec be the category whose objects are superspaces, and

whose morphisms are even linear maps, i.e. linear maps preserving the grading.
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We can make sVec into a monoidal category by defining the tensor product

of superspaces V and W to be the space V ⊗W with grading

(V ⊗W )0 := (V0 ⊗W0)⊕ (V1 ⊗W1)

(V ⊗W )1 := (V1 ⊗W0)⊕ (V0 ⊗W1),

(3.11)

with the tensor product of morphisms defined in the obvious way.

The braiding

cV,W (v ⊗ w) = (−1)|v||w|w ⊗ v

defined on homogeneous v ∈ V and w ∈ W makes sVec into a symmetric monoidal

category. We denote by sVec ⊂ sVec the full monoidal subcategory of finite-

dimensional superspaces.

Definition 3.8 (see [BE17, Definition 1.1] and [Kel05, Section 1.2] for details). A

supercategory is a sVec-enriched category. A superfunctor between supercategories

is a sVec-enriched functor. A supernatural transformation β : F ⇒ G between

superfunctors F,G : A → B is a collection of morphisms βX : F (X) → G(X)

satisfying a supernaturality condition, see [BE17, Definition 1.1.(iii)] for details. We

say that a supernatural transformation is even if all its component maps are even.

In particular, if A is a supercategory, then HomA(X,Y ) is a superspace for

all X, Y ∈ A, and composition

HomA(Z, Y )⊗ HomA(X,Y ) → HomA(X,Z) (3.12)

is an even linear map for all X, Y, Z ∈ A.

Definition 3.9. A superfunctor F : A → B is a superequivalence if there is a

superfunctor G : B → A such that F ◦ G and G ◦ F are isomorphic to idB

(respectively idA) by even supernatural transformations. As observed in [BE17,

Definition 1.1(iv)], a superfunctor F : A → B is a superequivalence if and only if it
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is full, faithful, and evenly dense, that is, every object of B is evenly isomorphic to

an object in the image of F .

Given supercategories A and B, we can form their tensor product A ⊠ B.

Objects of A⊠B are pairs (X, Y ) with X ∈ A and Y ∈ B. Morphisms in A⊠B are

given by HomA⊠B((X,Y ), (W,Z)) := HomA(X,W )⊗ HomB(Y, Z), with composition

in A⊠ B defined using the braiding in sVec, see [BE17] for details.

Definition 3.10 ([BE17, Definition 1.4]). A monoidal supercategory is a

supercategory D, together with a tensor product superfunctor −⊗− : D⊠D → D, a

unit object 1D, and even supernatural isomorphisms a : (−⊗−)⊗− ∼−→ −⊗(−⊗−),

l : 1D ⊗ − ∼−→ − and r : − ⊗ 1D
∼−→ − satisfying axioms analogous to the ones of

a monoidal category. A monoidal superfunctor between monoidal supercategories

D and E is a superfunctor F : D → E such that F (1D) is evenly isomorphic to

1E , together with even coherence maps J : F (−) ⊗ F (−) → F (− ⊗ −) satisfying

the usual axioms. A monoidal superfunctor F : D → E is said to be a monoidal

superequivalence if it is a superequivalence of supercategories.

An important feature of monoidal supercategories is the super interchange

law

(f ⊗ g) ◦ (h⊗ k) = (−1)|g||h|(f ◦ h)⊗ (g ◦ k) (3.13)

describing the composition of tensor products of morphisms. We recall the

following definitions from [GWW15, Appendix C], which should be compared to

the definition of a (non-super) fusion category (see Definition 2.30).

Definition 3.11. A superfusion category over C is a semisimple rigid monoidal

supercategory C with finitely many isomorphism classes of simple objects, finite

dimensional superspaces of morphisms, and with simple unit object.
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A simple object X ∈ C is bosonic if EndC(X) ≃ C1|0, and Majorana if

EndC(X) ≃ C1|1. A superfusion category is called bosonic if all its simple objects

are bosonic.

We say two superfusion categories are superequivalent if there is a monoidal

superequivalence between them, and we say that two superfusion categories are

equivalent if there is a monoidal superfunctor between them which is an equivalence

of abstract categories.

We will later see examples of superfusion categories that are equivalent but

not superequivalent, and so care must be taken to distinguish the two notions.

Remark 3.12. The superalgebra version of Wedderburn’s theorem says that

there are two families of finite-dimensional simple C-superalgebras, namely Mn,m

and Qn, see e.g. [Kle05, Theorem 12.2.9] for details. Consequently if V is a

finite dimensional simple supermodule over a C-superalgebra A, then EndA(V ) is

isomorphic to either C1|0 or C1|1, in which case V is said to be of type M or of type

Q, respectively. In the literature, one also finds the terminology type M or type Q

used in place of the language bosonic or Majorana adopted here.

Given a superfusion category C, the unit object 1C is always bosonic.

Indeed, since 1C ⊗ 1C ≃ 1C, the tensor product functor induces an even embedding

HomC(1C,1C)⊗ HomC(1C,1C) → HomC(1C ⊗ 1C,1C ⊗ 1C)
∼−→ HomC(1C,1C) (3.14)

which implies HomC(1C,1C) ≃ C1|0.

Remark 3.13. Let C be a superfusion category. The hypothesis that C is rigid

means that for each X ∈ C we have a left dual X∗ ∈ C and a right dual ∗X ∈ C,

together with even morphisms evX : X∗ ⊗ X → 1C, coevX : 1C → X ⊗ X∗,
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ev′X : X ⊗∗ X → 1C, and coev′X : 1C →∗ X ⊗X satisfying the usual equations, see

[EGNO15, Section 2.10] for details.

Fermionic 6j-symbols. In this section we develop a notion of 6j-

symbols for superfusion categories that parallels the notion of 6j-symbols for fusion

categories. Proceeding as before, let C be a superfusion category, and Xi, i ∈ I a

complete set of representatives of the isomorphism classes of simple objects in C.

The monoidal structure on C determines the superfusion rules

Xi ⊗Xj ≃
⊕
m∈I

N ij
mXm (3.15)

where

N ij
m = dimHomC(Xi ⊗Xj, Xm) = dimHomC(Xm, Xi ⊗Xj) ∈ Z≥0 (3.16)

i.e. N ij
m is the (ordinary vector space) dimension of the superspace HomC(Xi ⊗

Xj, Xm). With this notation, our notion of admissible quadruple and decuple

remain the same as in Definition 3.1. As in the fusion category case, for each

i, j,m ∈ I we choose homogeneous basis vectors eijm(α) (1 ≤ α ≤ N ij
m) for the

superspace HomC(Xi ⊗ Xj, Xm). Let s
ij
m(α) = |eijm(α)| denote the parity of the

corresponding basis vector.

Definition 3.14. We say that an admissible decuple (i, j,m, k, n, t, α, β, η, φ) is

parity admissible if

sijm(α) + smk
n (β) = sjkt (η) + sitn(φ). (3.17)

In exactly the same way as in the fusion category case, we have constants

F̃ ijm,αβ
knt,ηφ ∈ C for each admissible decuple (i, j,m, k, n, t, α, β, η, φ) in C, defined by

the graphical equation in Fig. 4.
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=
∑
t∈I

Njk
t∑

η=1
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n∑

φ=1

F̃ ijm,αβ
knt,ηφ

φ

η

n

t

i j k

a(Xi, Xj, Xk)

Figure 4. Graphical definition of fermionic 6j-symbols.

Remark 3.15. We recover the parity admissibility condition (3.17) by comparing

the parity of both sides of the equation in Fig. 4. In particular, the constant

F̃ ijm,αβ
knt,ηφ is non-zero only for parity admissible decuples (i, j,m, k, n, t, α, β, η, φ).

This describes the associativity constraint in C as a collection of matrices

F̃ ijm
knt : HomC(Xi ⊗Xj, Xm)⊗ HomC(Xm ⊗Xk, Xn)

→ HomC(Xj ⊗Xk, Xt)⊗ HomC(Xi ⊗Xt, Xn)

(3.18)

whose entries are the constants defined above.

Definition 3.16. In the situation above, the matrices F̃ ijm
knt are called fermionic 6j-

symbols. If (i, j,m, k, n, t, α, β, η, φ) is not (parity) admissible, then by convention

we set F̃ ijm,αβ
knt,ηφ = 0.

The super pentagon axiom in C is equivalent to the following equation in

terms of fermionic 6j-symbols, called the fermionic pentagon identity in [GWW15].

Lemma 3.17 (Super pentagon equation). Let C be a superfusion category, and

Xi, i ∈ I a complete set of representatives of the isomorphism classes of simple

objects in C. For each i, j,m ∈ I, let N ij
m = dimHomC(Xi ⊗ Xj, Xm), and choose

homogeneous basis vectors eijm(α) (1 ≤ α ≤ N ij
m) for HomC(Xi ⊗ Xj, Xm).

Let sijm(α) = |eijm(α)|. Given these choices, if i, j, k, l,m, n, t, p, q, s ∈ I and
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α, β, η, χ, γ, δ, ϕ ∈ Z≥0, then∑
t∈I

Njk
t∑

η=1

N it
n∑

φ=1

Ntl
s∑

κ=1

F̃ ijm,αβ
knt,ηφ F̃ itn,φχ

lps,κγ F̃
jkt,ηκ
lsq,δϕ = (−1)s

ij
m(α)sklq (δ)

Nmq
p∑

ϵ=1

F̃mkn,βχ
lpq,δϵ F̃ ijm,αϵ

qps,δγ . (3.19)

Let G be a finite group, and ω : G × G × G → C× a 3-cocycle on G with

values in A. We saw in Example 3.5 that the pentagon equation for VecωG said that

the 6j-symbols for VecωG satisfy the 3-cocycle condition. It turns out an analogous

result holds in the superfusion case.

Definition 3.18 (compare to Definition 2.35). We say a superfusion category C is

pointed if any simple object X ∈ C is invertible, that is, there exists Y ∈ C such

that X ⊗ Y
∼−→ Y ⊗X

∼−→ 1C.

Example 3.19. Let C be a bosonic pointed superfusion category, and let G be the

(finite) group of isomorphism classes of simple objects in C. Let Xg, g ∈ G be a

complete set of representatives of the isomorphism classes of simple objects in C.

Then:

Xg ⊗Xh
∼−→ Xgh, for all g, h ∈ G, (3.20)

so admissible quadruples in C are of the form (g, h, gh, 1) for all g, h ∈ G. Let

ω(g, h) denote the parity of the one-dimensional superspace HomC(Xg ⊗ Xh, Xgh),

then the parity admissibility condition (3.17) implies:

ω(g, h) + ω(gh, k) = ω(h, k) + ω(g, hk),

for all g, h, k ∈ G, so ω is a 2-cocycle on G with values in Z/2Z. The super

pentagon equation (3.19) implies:

F̃ (g, h, k)F̃ (g, hk, l)F̃ (h, k, l) = (−1)ω(g,h)ω(k,l)F̃ (gh, k, l)F̃ (g, h, kl),

for all g, h, k, l ∈ G, so following [GWW15] we say F̃ is a 3-supercocycle on G.
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6j-symbols of the Underlying Fusion Category.

Definition 3.20. Let C be a superfusion category, together with an object π and

an odd isomorphism ζ : π
∼−→ 1C. In this situation, we say that (C, π, ζ) is a Π-

complete superfusion category.

In this section, we describe Brundan and Ellis’ construction [BE17] of the

Π-envelope of a superfusion category, and the underlying fusion category of a Π-

complete superfusion category, which is a fusion category over sVec in the sense of

[DGNO10]. Given a superfusion category C, we use these constructions to define

the underlying fusion category of C, and give a formula relating the 6j-symbols of

the underlying fusion category to the fermionic 6j-symbols of C.

Suppose (C, π, ζ) is a Π-complete superfusion category, then every object in

C is the target of an odd isomorphism. It turns out that every superfusion category

is equivalent to a Π-complete superfusion category, by the following construction

described in [BE17].

Definition 3.21 (see [BE17, Definition 1.16]). Let C be a superfusion category.

The Π-envelope of C is the rigid monoidal supercategory Cπ with objects of the

form Xa, where X ∈ C and a ∈ Z/2Z, and morphisms defined by

HomCπ(X
a, Y b)c := HomC(X, Y )a+b+c

If f : X → Y is a homogeneous morphism in C with parity |f |, then let f b
a denote

the corresponding morphism Xa → Y b which has parity a + b + |f | in Cπ. The

composition in Cπ is induced by the composition in C, and the tensor product of

objects and morphisms is defined by

Xa ⊗ Y b := (X ⊗ Y )a+b

f b
a ⊗ gdc := (−1)(c+d+|g|)a+d|f |(f ⊗ g)b+d

a+c

(3.21)
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The unit object of Cπ is 10
C, and the maps a, l, and r in C extend to Cπ in the

obvious way. The left dual of an object Xa ∈ Cπ is given by (X∗)a, where

evaluation and coevaluation morphisms are given by

evXa := (evX)
0
0 : (X

∗)a ⊗Xa → 10

and

coevXa := (coevX)
0
0 : 1

0 → Xa ⊗ (X∗)a

Similarly, the right dual of Xa ∈ Cπ is (∗X)a ∈ Cπ, where ev′Xa := (ev′X)
0
0 and

coev′Xa := (coev′X)
0
0.

The functor J : C → Cπ sending X 7→ X0 and f 7→ (f)00 is full, faithful, and

essentially surjective, so C and Cπ are equivalent as superfusion categories. However

J need not be a superequivalence in general, indeed, in [BE17, Lemma 4.1] it is

shown that J is a superequivalence if and only if C is Π-complete.

Definition 3.22. The superadditive envelope C+
π of a superfusion category C is the

superfusion category obtained by taking the additive envelope of the Π-envelope of

C.

In C+
π we have the odd isomorphism ζ := (id1)

0
1 : 11

C → 10
C, so (C+

π ,1
1, ζ) is a

Π-complete superfusion category.

Definition 3.23 ([DGNO10, Definition 4.16]). A fusion category over sVec is a

fusion category A equipped with a braided functor sVec → Z(A). Equivalently,

this is an object (π, β) in the Drinfeld center Z(A) together with an isomorphism

ξ : π ⊗ π
∼−→ 1 such that

(ξ−1 ⊗ idX) ◦ l−1
X ◦ rX ◦ (idX ⊗ ξ)

= a(π, π,X)−1 ◦ (idπ ⊗ βX) ◦ a(π,X, π) ◦ (βX ⊗ idπ) ◦ a(X, π, π)−1

(3.22)
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for all X ∈ A, and

βπ = −idπ⊗π ∈ HomA(π ⊗ π, π ⊗ π). (3.23)

In this situation we say (A, π, β, ξ) is a fusion category over sVec.

In the language of [BE17], the quadruple (A, π, β, ξ) is an example of a

monoidal Π-category.

Definition 3.24. Let (L, π, ζ) be a Π-complete superfusion category. The

underlying fusion category L of L is the fusion category with the same objects as

L, but only the even morphisms.

That (L, π, ζ) is Π-complete allows us to endow L with the structure of a

fusion category over sVec. Indeed, define the even supernatural transformation

β : −⊗ π
∼−→ π ⊗− by letting βX be the composition

X ⊗ π
idX⊗ζ−−−→ X ⊗ 1

rX−→ X
l−1
X−→ 1⊗X

ζ−1⊗idX−−−−−→ π ⊗X (3.24)

for X ∈ L. It is straightforward to check that β is an even supernatural

transformation, and that (π, β) is an object of the Drinfeld center Z(L) of L. Let

ξ = l1◦(ζ⊗ζ) : π⊗π
∼−→ 1, then ξ is even and thus may be viewed as an isomorphism

π ⊗ π
∼−→ 1 in L. The following is a special case of [BE17, Lemma 3.2].

Lemma 3.25. (L, π, β, ξ) is a fusion category over sVec.

Thus to every Π-complete superfusion category there is a corresponding

fusion category over sVec. In [BE17, §5], the inverse construction is given, which

takes (A, π, β, ξ) a fusion category over sVec to its associated superfusion category

Â, which is a Π-complete superfusion category. The category Â has the same

objects as A, with morphisms defined by HomÂ(X,Y )0 := HomA(X, Y ) and
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HomÂ(X, Y )1 := HomA(X, π ⊗ Y ), with the tensor product of objects being

identical to that in A. We will not describe the composition or tensor product of

morphisms in this category here.

The following follows from [BE17, Lemma 5.4], and will be crucial when we

investigate Ocneanu rigidity for superfusion categories.

Lemma 3.26. Every Π-complete superfusion category is the associated superfusion

category of a fusion category over sVec.

Definition 3.27. Let C be a superfusion category, and let C+
π be the underlying

fusion category of the superadditive envelope of C (see Definitions 3.21 and 3.22).

We call C+
π the underlying fusion category of C.

Our goal is to give an explicit formula for the 6j-symbols of the underlying

fusion category C+
π in terms of the fermionic 6j-symbols of C. Recall that for

X,Y ∈ C and a, b ∈ Z/2Z, we have

HomC+
π
(Xa, Y b) = HomC(X, Y )a+b (3.25)

If f : X → Y is a homogeneous morphism in C and a + b = |f |, then we denote by

f b
a the corresponding morphism Xa → Y b in C+

π . The tensor product of objects and

morphisms in C+
π is defined by

Xa ⊗ Y b := (X ⊗ Y )a+b

f b
a ⊗ gdc := (−1)d|f |(f ⊗ g)b+d

a+c

(3.26)

From Lemma 3.25 we get that (C+
π ,1

1, β, ξ) is a fusion category over sVec,

where

βXa = (−1)a · (l−1
X ◦ rX)a+1

a+1 : X
a ⊗ 11 ∼−→ 11 ⊗Xa, Xa ∈ C+

π (3.27)
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and

ξ = (l1)
0
0 : 1

1 ⊗ 11 ∼−→ 10 (3.28)

Let Xi, i ∈ I be a complete set of representatives of isomorphism classes1 of

simple objects in a superfusion category C. Define

J = {(i, a) ∈ I × Z/2Z such that a = 0 if Xi is Majorana} (3.29)

We denote the element (i, a) ∈ J by ia. The isomorphism classes of simple objects

in C+
π are labeled by J . Indeed, suppose Xi is bosonic, then we have a pair of non-

isomorphic simple objects X0
i and X1

i in C+
π corresponding to the labels i0 and i1

respectively. If Xi is Majorana, then X0
i and X1

i are isomorphic in C+
π , so we choose

X0
i as our representative simple object, and label it by i0.

Remark 3.28. If C is a bosonic superfusion category, then the underlying fusion

category C+
π has twice as many simple objects (up to isomorphism) as C, labeled by

elements of J = I × Z/2Z.

Example 3.29. Let C be a bosonic pointed superfusion category, as in

Example 3.19. The underlying fusion category C+
π is pointed, so let Gω denote the

(finite) group of isomorphism classes of simple objects in C+
π . As a set, we have

Gω = Z/2Z × G, though we would like to describe the group structure on Gω. The

isomorphisms e(g, h) : Xg ⊗Xh
∼−→ Xgh in C induce isomorphisms in C+

π

e(ga, hb) = (e(g, h))
a+b+ω(g,h)
a+b : Xa

g ⊗Xb
h

∼−→ X
a+b+ω(g,h)
gh

for all ga, hb ∈ Gω, and so the group structure on Gω is given by

ga · hb := (gh)a+b+ω(g,h).

1We say that two objects in a superfusion category lie in the same isomorphism class if there is
a (not necessarily even) isomorphism between them.
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Comparing this to Eq. (2.20), we see that Gω is the central extension of G by Z/2Z

determined by the 2-cocycle ω.

Let C be a superfusion category, and let J label the simple objects in C+
π ,

as described in Eq. (3.29). Let ia, jb,mc ∈ J , and suppose that (i, j,m, α) is an

admissible quadruple in C. If c = a + b + sijm(α) then eijm : Xi ⊗Xj → Xm induces a

morphism

Xa
i ⊗Xb

j → Xc
m

in C+
π , in which case (ia, jb,mc, α) is an admissible quadruple in C+

π . This implies

that every admissible quadruple in C+
π can be written unambiguously in the form

(ia, jb,m, α)

where ia, jb,ma+b+sijm(α) ∈ J and (i, j,m, α) is an admissible quadruple in C. In the

same way, every admissible decuple in C+
π can be written unambiguously as

(ia, jb,m, kc, n, t, α, β, η, φ)

where ia, jb, ma+b+sijm(α), tb+c+sjkt (η), na+b+c+sijm(α)+smk
n (β) ∈ J , and

(i, j,m, k, n, t, α, β, η, φ) is a parity admissible decuple in C.

Definition 3.30. Let C be a superfusion category, and C+
π its underlying fusion

category. If (ia, jb,m, kc, n, t, α, β, η, φ) is an admissible decuple in C+
π , let

F iajbm,αβ
kcnt,ηφ := (−1)cs

ij
m(α)F̃ ijm,αβ

knt,ηφ .

If (ia, jb,m, kc, n, t, α, β, η, φ) is not admissible, then let F iajbm,αβ
kcnt,ηφ = 0.

We claim that the symbols defined above are in fact the 6j-symbols of C+
π .

Indeed, they satisfy the following version of the pentagon equation.

Theorem 3.31 (Pentagon equation). Let C be a superfusion category with simple

objects indexed by a set I, and C+
π the underlying fusion category. For each i, j,m ∈
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I, let N ij
m = dimHomC(Xi ⊗ Xj, Xm), and choose a homogeneous basis eijm(α)

(1 ≤ α ≤ N ij
m) for HomC(Xi ⊗Xj, Xm). Let s

ij
m(α) = |eijm(α)|. Given these choices,

we have

∑
t∈I

Njk
t∑

η=1

N it
n∑

φ=1

Ntl
s∑

κ=1

F iajbm,αβ
kcnt,ηφ F iatb+c+s

jk
t (η)n,φχ

ldps,κγ
F jbkct,ηκ
ldsq,δϕ

=

Nmq
p∑

ϵ=1

Fma+b+s
ij
m(α)kcn,βχ

ldpq,δϵ
F iajbm,αϵ

qc+d+sklq (δ)ps,δγ
(3.30)

for all i, j, k, l,m, n, t, p, q, s ∈ I, a, b, c ∈ Z/2Z, and α, β, η, χ, δ, ϕ ∈ Z≥0.

Proof. By combining Definition 3.30 with the super pentagon equation (3.19), we

have the equality

∑
t∈I

Njk
t∑

η=1

N it
n∑

φ=1

Ntl
s∑

κ=1

(−1)cs
ij
m(α)+dsitn (φ)+dsjkt (η)F ijm,αβ

knt,ηφ F itn,φχ
lps,κγ F

jkt,ηκ
lsq,δϕ

= (−1)s
ij
m(α)sklq (δ)

Nmq
p∑

ϵ=1

(−1)ds
mk
n (β)+(c+d+sklq (δ))sijm(α)Fmkn,βχ

lpq,δϵ F ijm,αϵ
qps,δγ

and thus it suffices to show that

csijm(α) + dsitn(φ) + dsjkt (η) = sijm(α)s
kl
q (δ) + dsmk

n (β) + (c+ d+ sklq (δ))s
ij
m(α)

for all admissible decuples (ia, jb,m, kc, n, t, α, β, η, φ) in C+
π . This immediately

reduces to showing that

dsitn(φ) + dsjkt (η) = dsmk
n (β) + dsijm(α)

which holds by the parity compatibility condition (3.17).

Remark 3.32. Our definition of the 6j-symbols in C+
π can be recovered directly

from the construction of C+
π , in which case Theorem 3.31 can be viewed as a

corollary of the pentagon axiom in C+
π . Indeed, for each admissible quadruple
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(ia, jb,m, α) in C+
π , let

ei
ajb

m (α) :=
(
eijm(α)

)a+b+sijm(α)

a+b
: Xa

i ⊗Xb
j → Xa+b+sijm(α)

m (3.31)

For ease of notation, set d = a + b + sijm(α) and e = a + b + csijm(α) + smk
n (β), then

(3.4) is given by

(Xa
i ⊗Xb

j )⊗Xc
k

eiajb

m (α)⊗id
X

c
k−−−−−−−−→ Xd

m ⊗Xc
k

emdkc
n (β)−−−−−→ Xe

n (3.32)

where we have

ei
ajb

m (α)⊗ idX
c
k
= (−1)cs

ij
m(α)

(
eijm(α)⊗ idXk

)c+d

a+b+c
(3.33)

by definition of the tensor product on C+
π . Next, fix an admissible quadruple

(jb, kc, t, η). The composition (3.5) is given by

(Xa
i ⊗Xb

j )⊗Xc
k

a(X
a
i ,X

b
j ,X

c
k)−−−−−−−→ Xa

i ⊗(Xb
j ⊗Xc

k)
id

X
a
i
⊗ejbkc

t (η)

−−−−−−−−→ Xa
i ⊗X

f

t

eiat
f

n (φ)−−−−→ Xe
n (3.34)

where f = b+ c+ sjkt (η). We compute

idX
a
i
⊗ ej

bkc

t (η) =
(
idXi

⊗ ejkt (η)
)a+f

a+b+c
(3.35)

and so the compositions (3.32) and (3.34) in C+
π are induced by the corresponding

compositions (3.4) and (3.5) in C up to a factor of (−1)cs
ij
m(α), as expected.

Example 3.33. Let C be a bosonic pointed superfusion category, as in

Examples 3.19 and 3.29. For all ga, hb, kc ∈ Gω we can unambiguously write

F (ga, hb, kc) ∈ C× for the corresponding 6j-symbol in C+
π . With this notation,

Definition 3.30 implies

F (ga, hb, kc) = (−1)cω(g,h)F̃ (g, h, k)

for all ga, hb, kc ∈ Gω. The pentagon equation (3.30) implies that F is a 3-cocycle

on the central extension Gω with values in C×.

59



Viewing G as the subset of Gω consisting of elements of the form g0, we have

the following corollary.

Corollary 3.34. Let F̃ : G3 → C× be a 3-supercocycle on G with 2-cocycle ω. Then

there exists a 3-cocycle F : G3
ω → C× on Gω such that

F |G3= F̃

In other words, every 3-supercocycle on G arises as the restriction of a 3-

cocycle on a Z/2Z-central extension of G.
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CHAPTER IV

OCNEANU RIGIDITY FOR SUPERFUSION CATEGORIES

Chapter IV appeared in [Ush18].

The following result, known as Ocneanu rigidity, was originally proved by

Ocneanu, Blanchard, and Wassermann (unpublished) in certain cases. The first

published proof was in [ENO05, §7].

Theorem 4.1 (Ocneanu rigidity). (i) The number of fusion categories (up to

equivalence) is countable, and

(ii) The number of fusion categories (up to equivalence) with a given Grothendieck

ring is finite.

The goal of this chapter is to prove a version of Ocneanu rigidity for

superfusion categories. To do this, we must first decide what the Grothendieck

ring of a superfusion category should be. Brundan and Ellis [BE17] suggested the

following definition.

Definition 4.2 (compare with Definition 2.37). Let Zπ := Z[π]/(π2 − 1). The

π-Grothendieck ring sGr(C) is the Zπ-module generated by isomorphism classes of

objects [X] in C subject to the relation that if

0 → X
f−→ Y

g−→ Z → 0 (4.1)

is a short exact sequence with f and g homogeneous morphisms, then

[Y ] = [X]π|f | + [Z]π|g|. (4.2)

The tensor product on C then induces an associative multiplication on sGr(C),

making sGr(C) into a Zπ-algebra.
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With this definition, we prove the following version of Ocneanu rigidity for

superfusion categories, and give some examples of these π-Grothendieck rings.

Theorem 4.3 (Ocneanu rigidity for superfusion categories). (i) The number of

superfusion categories (up to superequivalence) is countable, and

(ii) The number of superfusion categories (up to superequivalence) with a given

π-Grothendieck ring is finite.

Superforms

Let D be a Π-complete superfusion category.

Definition 4.4. A superform of D is a superfusion category C such that C ≃ D are

equivalent (but not necessarily superequivalent) superfusion categories.

Our goal is to prove the following.

Proposition 4.5. A Π-complete superfusion category D has only finitely many

superforms, up to superequivalence of superfusion categories.

To show this, the following notion will be useful.

Definition 4.6. Let C and D be superfusion categories, and F : C → D a tensor

superfunctor. Its even essential image, denoted F (C), is the full subcategory of D

consisting of objects evenly isomorphic to F (X) for some X ∈ C.

Recall that a tensor superfunctor F : C → D is a superfunctor such that

F (1C) is evenly isomorphic to 1D, together with an even natural isomorphism cX,Y :

F (X)⊗ F (Y )
∼−→ F (X ⊗ Y ) satisfying the usual diagram (see e.g. [EGNO15, §2.4]).

Lemma 4.7. Given a tensor superfunctor F : C → D, its even essential image

F (C) is a full tensor subcategory of D.
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Proof. Indeed given Y, Y ′ ∈ F (C), there exists X,X ′ ∈ C such that F (X)
∼−→ Y and

F (X ′)
∼−→ Y ′ are evenly isomorphic. Then F (X ⊗X ′)

∼−→ F (X) ⊗ F (X ′)
∼−→ Y ⊗ Y ′

is an even isomorphism, whence Y ⊗ Y ′ ∈ F (C).

It turns out that if F : C → D is an equivalence of superfusion categories,

then C is determined (up to superequivalence) by F (C). More precisely, we have the

following theorem.

Theorem 4.8. If F : C → D and G : A → D are equivalences of superfusion

categories with G(A) = F (C), then A and C are superequivalent superfusion

categories.

Proof. If X ∈ A, then G(X) ∈ G(A) = F (C), so there exists XC ∈ C such

that F (XC)
∼−→ G(X) are evenly isomorphic. For each X ∈ A, we pick such a

XC ∈ C together with an even isomorphism qX : F (XC)
∼−→ G(X). We define a

superfunctor K : A → C as follows. On objects, let K(X) = XC. On morphisms, if

f ∈ HomA(X, Y ) then let K(f) = F−1(q−1
Y ◦G(f) ◦ qX), i.e. K(f) is the image of f

under the even isomorphism

HomA(X, Y )
G−→ HomD(G(X), G(Y ))

(q−1
Y )∗◦(qX)∗

−−−−−−−→ HomC(F (XC), F (YC))

F−1

−−→ HomC(XC, YC)

(4.3)

Functorality of F and G implies that K is a superfunctor, and it is immediate

that K is full and faithful. As we saw in Definition 3.9, to show that K is a

superequivalence it remains to prove that K(A) = C. Let Y ∈ C, then

F (Y ) ∈ F (C) = G(A) so there exists X ∈ A together with an even isomorphism

G(X)
∼−→ F (Y ), so F (Xc)

∼−→ F (Y ) are evenly isomorphic. This implies that
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K(X) = Xc
∼−→ Y are evenly isomorphic, i.e. Y ∈ K(A). Thus K is a

superequivalence.

It remains to endow K with the structure of a monoidal superfunctor. To

do this, we must define even coherence maps JX,Y : K(X) ⊗ K(Y ) → K(X ⊗ Y )

satisfying the usual axioms. Let c and d denote the coherence maps for F and G

respectively. Let φX,Y : F (XC ⊗ YC)
∼−→ F ((X ⊗ Y )C) be the composition

F (XC ⊗ YC)
c−1
XC ,YC−−−−→ F (XC)⊗ F (YC)

qx⊗qy−−−→ G(X)⊗G(Y )

dX,Y−−→ G(X ⊗ Y )
q−1
X⊗Y−−−→ F ((X ⊗ Y )C)

(4.4)

With this notation, let JX,Y := F−1(φX,Y ). It is straightforward to check

that (K, J) satisfies the axioms for a monoidal superfunctor, and so K is a

superequivalence of superfusion categories.

We are now ready to prove the above proposition.

Proof of Proposition 4.5. Let F : C → D be an equivalence of superfusion

categories, where D is Π-complete. Let Yi, i ∈ I be a complete set of

representatives of simple objects of D. Since F is an equivalence, for each i ∈ I,

there exists an object Xi ∈ C such that F (Xi)
∼−→ Yi. Since D is Π-complete, for

each i ∈ I, there exists Y ′
i ∈ D such that Yi

∼−→ Y ′
i are oddly isomorphic. Fix i ∈ I.

If Yi is Majorana, then HomD(F (Xi), Yi) ≃ C1|1, so Yi ∈ F (C) and Y ′
i ∈ F (C).

If Yi is bosonic, then the space HomD(F (Xi), Yi) is one-dimensional, either even or

odd. So Yi ∈ F (C) or Y ′
i ∈ F (C) (or possibly both). Since the subcategory F (D) is

determined by the choice of Yi or Y
′
i (or both) for all i ∈ I such that Yi is bosonic,

and there are finitely many such choices, there are finitely many possibilities for

F (C). By Theorem 4.8, we are done.

We are now ready to prove the main result of this chapter.
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Proof of Theorem 4.3. For (i), observe that Ocneanu rigidity [ENO05, Theorem

2.28, Theorem 2.31] implies there are countably many fusion categories over sVec.

Since every Π-complete superfusion category is the associated superfusion category

of a fusion category over sVec, there are countably many Π-complete superfusion

categories. Every superfusion category is equivalent to a Π-complete superfusion

category, so Proposition 4.5 implies (i).

For (ii), fix a superfusion category C, and suppose that D is a superfusion

category with sGr(C) ≃ sGr(D). We will show that there are finitely many

possibilities for D, up to superequivalence. Since sGr(C) ≃ sGr(D), the underlying

fusion categories C+
π and D+

π have isomorphic Grothendieck rings. By Ocneanu

rigidity [ENO05, Theorem 2.28], there are finitely many fusion categories with a

given Grothendieck ring, and moreover each of these fusion categories A admits

only finitely many tensor functors sVec → Z(A) [ENO05, Theorem 2.31],

hence there are finitely many fusion categories over sVec with Grothendieck ring

isomorphic to Gr(C+
π ). Since every Π-complete fusion category is the associated

superfusion category of a fusion category over sVec, there are finitely many

possibilities for D+
π up to superequivalence, so by Proposition 4.5 there are finitely

many possibilities for D up to superequivalence.

Examples of π-Grothendieck Rings

In this section, we compute the π-Grothendieck ring of some superfusion

categories.

Example 4.9. Let C = SVec denote the monoidal supercategory of finite

dimensional superspaces, together with all linear maps between them. Let

Cp|q = Cp ⊕ Cq denote the superspace with even part Cp and odd part Cq, then

[Cp|q] = (p+ qπ)[C1|0] in sGr(SVec), where we used that [C0|1] = π[C0|1]. Thus
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sGr(SVec) is a free Zπ-module, generated by [C1|0]. Moreover, the tensor product

on SVec gives

[Cp|q][Cp′|q′ ] = [Cpp′+qq′|pq′+qp′ ], (4.5)

and so sGr(SVec) is free as a Zπ-algebra.

Example 4.10. Let I be an Ising braided category (see Examples 2.46 and 2.51,

and [DGNO10, Appendix B]). Recall that I has three isomorphism classes of

simple objects: the unit object 1, an invertible object π, and a non-invertible object

X, satisfying the fusion rules:

π ⊗ π ≃ 1, π ⊗X ≃ X ≃ X ⊗ π, X ⊗X ≃ 1⊕ π. (4.6)

The fusion subcategory Iad ⊂ I generated by 1 and π is braided equivalent to sVec

[DGNO10, Lemma B.11], and thus I is a fusion category over sVec. Let us consider

the associated superfusion category Î.

The isomorphism π ⊗ π ≃ 1 in I induces an odd isomorphism π
∼−→ 1 in Î.

Similarly, the isomorphism π ⊗ X ≃ X in I induces an odd isomorphism X
∼−→ X

in Î. Thus Î has a bosonic simple object 1
∼−→ π, and a Majorana simple object X.

From the fusion rules, we get the relations

[X] = π[X], [X]2 = (1 + π)[1]

in sGr(Î).

Example 4.11 (see [EGNO15, §8.18.2]). Generalizing the previous example, take

k ≡ 2 mod 4, and let Ck(q) denote the braided fusion category of integrable ŝl2

modules at level k. This category has simple objects Vi, i = 0, . . . , k with unit

object V0 = 1 and fusion rule given by the truncated Clebsch-Gordan rule:

Vi ⊗ Vj ≃
min(i,j)⊕

l=max(i+j−k,0)

Vi+j−2l (4.7)
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The fusion subcategory Dk(q) ⊂ Ck(q) generated by 1 and π := Vk is braided

equivalent to sVec, and so Ck(q) is a fusion category over sVec. Let Ck := Ĉk(q)

denote the associated superfusion category.

Since π ⊗ Vi ≃ Vk−i in Ck(q) for all i = 0, . . . , k, we have Vi
∼−→ Vk−i in Ck.

Thus Ck(q) has k/2 bosonic simple objects V0, V1, . . . , Vk/2−1, and a single Majorana

simple object Vk/2.
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CHAPTER V

COHOMOLOGY OF SYMMETRIC FUSION CATEGORIES

In this chapter we describe a notion of cohomology for symmetric fusion

categories. Recall that a braided fusion category C with braiding cX,Y : X ⊗ Y
∼−→

Y ⊗X is symmetric if:

cX,Y ◦ cY,X = idY⊗X , (5.1)

for all X, Y ∈ C. We saw in Example 2.49) that Rep(G), the category of finite-

dimensional representations of G over C with braiding given by transposition of

factors, is a symmetric fusion category.

Example 5.1. Let sVec be the fusion category of finite-dimensional superspaces

(compare with Definition 3.7). There is a braiding on sVec defined on homogeneous

vectors by:

cV,W (v ⊗ w) = (−1)|v||w|w ⊗ v, v ∈ V, w ∈ W. (5.2)

This braiding makes sVec into a symmetric fusion category.

Example 5.1 is an instance of the following general construction.

Example 5.2. Let G be a finite group and let z ∈ G be a central element such

that z2 = 1. Then there is a braiding on Rep(G) making it into a symmetric fusion

category, defined by the following formula.

czX,Y (x⊗ y) = (−1)mny ⊗ x if x ∈ X, y ∈ Y, zx = (−1)mx and zy = (−1)ny, (5.3)

for irreducible representations X,Y of G.

Let Rep(G, z) denote the category Rep(G) equipped with the braiding of

Example 5.2.
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Definition 5.3. A supergroup is a pair (G, z) with G a group, and z ∈ Z(G) a

central element such that z2 = 1. We say a supergroup is non-trivial if z ̸= 1, and

trivial otherwise.

Let (G, z) be a finite supergroup, then by Example 5.2 we have a symmetric

fusion category Rep(G, z). The following result of Doplicher-Roberts and Deligne

states that every symmetric fusion category arises this way (up to equivalence).

Theorem 5.4 ([DR89, Del02]). Any symmetric fusion category C is braided

equivalent to a category of the form Rep(G, z) with (G, z) a finite supergroup.

Given the connection between symmetric fusion categories and finite

supergroups, we proceed by describing some basic properties of supergroups. Let

(G, z) be a non-trivial supergroup, then we have the following exact sequence of

groups:

1 → ⟨z⟩ ↪→ G → G/⟨z⟩ → 1. (5.4)

In particular, G is a Z/2Z-central extension of the quotient G/⟨z⟩, and so by

Theorem 2.26 determines a cohomology class [G, z] ∈ H2(G, ⟨z⟩,Z/2Z).

Definition 5.5. We say a non-trivial supergroup (G, z) is split if [G, z] = 0 in

H2(G/⟨z⟩,Z/2Z), and non-split otherwise.

In particular, a supergroup (G, z) is split if and only if it can be written as a

product G = G/⟨z⟩ × ⟨z⟩.

Example 5.6. Let z ∈ SL2(F5) denote the non-trivial central element of

SL2(F5), then (SL2(F5), z) is a non-trivial supergroup. In this situation, the central

extension of Eq. (5.4) gives the following:

1 → ⟨z⟩ → SL2(F5) → A5 → 1. (5.5)
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This central extension corresponds to the non-trivial element of H2(A5,Z/2Z)
∼−→

Z/2Z. In other words, (SL2(F5), z) is a non-split supergroup.

Definition 5.7. A supergroup homomorphism (G, z) → (H,w) is a group

homomorphism f : G → H such that f(z) = w.

Remark 5.8. Any non-trivial supergroup is determined by a pair (G,α), where G

is a group and [α] ∈ H2(G,Z/2Z). Indeed, this data describes a central extension

1 → Z/2Z ↪→ G̃ → G → 1 of G by Z/2Z, and so G̃ is a non-trivial supergroup

in the sense of Definition 5.3. From this viewpoint, a supergroup homomorphism

f : (G,α) → (H, β) is a group homomorphism G → H such that f ∗(β) = α.

Remark 5.9. Due to Theorem 5.4, we will restrict our attention to finite

supergroups; whenever we refer to a supergroup from now on, we always mean a

finite supergroup.

Definition 5.10. Let sGrp be the category whose objects are finite supergroups,

and whose morphisms are the supergroup homomorphisms between them. We call

sGrp the category of finite supergroups.

We proceed by describing the functorial nature of the association (G, z) 7→

Rep(G, z). Suppose f : G → H is a group homomorphism. Then f ∗ induces a

braided monoidal functor f ∗ : Rep(H) → Rep(G). Concretely, given V ∈ Rep(H),

let f ∗(V ) = V as a vector space, where the G-action is given by g · v := f(g) · v for

all g ∈ G and v ∈ f ∗(V ). On morphisms, if A : V → V ′ is an H-linear map, then A

is G-linear, considered as a map f ∗(V ) → f ∗(V ′).

Suppose now that f : (G, z) → (H,w) is a supergroup homomorphism. Since

Rep(G) and Rep(G, z) (similarly, Rep(H) and Rep(H,w)) have the same monoidal
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structure, we have a monoidal functor f ∗ : Rep(H,w) → Rep(G, z). It is natural to

ask whether f ∗ is braided.

Lemma 5.11. Suppose f : (G, z) → (H,w) is a supergroup homomorphism. Then

f ∗ : Rep(H,w) → Rep(G, z) is a braided monoidal functor.

Proof. Showing that f ∗ is braided (see Definition 2.52) reduces to showing that:

czf∗(U),f∗(V )(u⊗ v) = f ∗(cwU,V )(u⊗ v) for all u ∈ U, v ∈ V, (5.6)

for irreducible representations U and V of H. This follows immediately from the

requirement that f(z) = w.

The following lemma is obvious.

Lemma 5.12. Let f1 : (G, z) → (H,w) and f2 : (H,w) → (K,x) be supergroup

homomorphisms. Then (f2 ◦ f1)∗ = f ∗
1 ◦ f ∗

2 as functors Rep(K, x) → Rep(G, z).

Lemmas 5.11 and 5.12 together say that the association (G, z) 7→ Rep(G, z)

forms part of a contravariant functor between sGrp and the category of braided

fusion categories.

The First Cohomology Group of a Supergroup

Definition 5.13. Let C be a fusion category. We denote by Inv(C) the (finite)

group of isomorphism classes of invertible objects in C.

If G is a finite group, recall from Example 2.34 that invertible objects of

Rep(G) are precisely the one-dimensional representations of G. This gives an

isomorphism:

Inv(Rep(G))
∼−→ Hom(G,C×). (5.7)
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Recall that H1(G,C×) = Hom(G,C×) for the trivial G-action on C×. Thus we have

an isomorphism:

H1(G,C×)
∼−→ Inv(Rep(G)). (5.8)

This isomorphism motivates the following definition.

Definition 5.14. Suppose E is a symmetric fusion category. We define the first

cohomology of E to be:

H1
sym(E) := Inv(E), (5.9)

the group of invertible objects of E . Given a finite supergroup (G, z), we define the

first cohomology of (G, z) to be:

H1(G, z) := H1
sym(Rep(G, z)) = Inv(Rep(G, z)). (5.10)

We will show that H1 : sGrp → Ab is a contravariant functor. In particular,

given a supergroup homomorphism f : (G, z) → (H,w), we construct an induced

map H1(f) : H1(H,w) → H1(G, z) on first cohomology.

Lemma 5.15. Let f : (G, z) → (H,w) be a supergroup homomorphism. If U ∈

Rep(H,w) is invertible, then so is f ∗(U) ∈ Rep(G, z). In particular, restricting f ∗

to invertible objects determines a homomorphism:

H1(f) : Inv(Rep(H,w)) → Inv(Rep(G, z)). (5.11)

Proof. If U ∈ Rep(H,w) is invertible, then 1 = FPdim(U) = FPdim(f ∗(U)) implies

f ∗(U) is invertible, by Lemma 2.41. Restricting f ∗ to invertible thus determines a

map H1(f) : Inv(Rep(H,w)) → Inv(Rep(G, z)). That f ∗ is monoidal implies H1(f)

is a group homomorphism.

Thus we have the following (obvious) result.
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Theorem 5.16. H1 : sGrp → Ab is a contravariant functor.

Recall that any finite group G can be thought as a trivial supergroup of the

form (G, 1). In this case:

H1(G, 1) = Inv(Rep(G)) = Hom(G,C×) = H1(G,C×). (5.12)

Thus in the case of trivial supergroups, our definition of first cohomology agrees

with ordinary first group cohomology.

Example 5.17. If (G, z) is a non-trivial split supergroup, then Rep(G, z)
∼−→

Rep(G/⟨z⟩)⊠ sVec, so writing G̃ = G/⟨z⟩, we have

Inv(Rep(G, z)) = Inv(Rep(G̃))× Inv(sVec) = H1(G̃,C×)× Z/2Z. (5.13)

The Second Cohomology Group of a Supergroup

If R is a commutative ring, then every left R-module is automatically an

R-bimodule. Similarly, if B is a braided fusion category, then every left B-module

category is automatically a B-bimodule category, and so it makes sense to take the

tensor product of B-module categories (see Definition 2.87).

Definition 5.18 ([ENO10, Definition 4.1]). Let B be a braided fusion category. We

say that a B-module category M is invertible if there exists a B-module category

N such that:

M⊠B N ∼−→ N ⊠B M ∼−→ B (5.14)

as B-module categories.

Definition 5.19 ([ENO10, §4.4]). Let B be a braided fusion category. Let the

Picard group Pic(B) of B be the group of invertible B-module categories.

In [Gre10], Greenough proved that the Picard group of Rep(G) is isomorphic

to H2(G,C×). We proceed by describing this isomorphism in detail.
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Definition 5.20. Let G be a group. A projective representation of G over C is a

C-vector space V , together with a group homomorphism ρ : G → PGL(V ).

Recall that PGL(V ) is the quotient of GL(V ) by the subgroup of non-zero

scalar matrices. Given a projective representation ρ : G → PGL(V ), choose lifts

L(g) ∈ GL(V ) for g ∈ G. These lifts then satisfy:

L(gh) = α(g, h)L(g)L(h), g, h ∈ G, (5.15)

for scalars α(g, h) ∈ C×. A straightforward computation shows that α : G ×

G → C× is a 2-cocycle on G with values in C×. In this situation, we say that V is a

projective representation of G with 2-cocycle α.

Definition 5.21. Suppose G is a finite group, and let (H,α) be a pair with H ≤ G

a subgroup and [α] ∈ H2(H,C×). Let M(H,α) denote the category of projective

representations of H with 2-cocycle α.

The category M(H,α) can be given the structure of a Rep(G)-module

category (see Definition 2.81). Given a projective representation V of H with 2-

cocycle α, and an (ordinary) representation W of G, define W ⊙ V := ResGHW ⊗ V

with diagonal H-action. Then ResGHW ⊗ V is a projective representation of H with

2-cocycle α. This makes M(H,α) into semisimple indecomposable Rep(G)-module

category, and every semisimple indecomposable Rep(G)-module category is of this

form [Ost03, Theorem 3.2] [EGNO15, Corollary 7.12.20].

The following is [Gre10, Corollary 8.11].

Theorem 5.22. Let G be a finite group. The Rep(G)-module categories of the form

M(G,α) with [α] ∈ H2(G,C×) are invertible, and the map

H2(G,C×) → Pic(Rep(G))

[α] 7→ M(G,α),

(5.16)
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is an isomorphism.

Theorem 5.22 suggests the following definition.

Definition 5.23. Suppose E is a symmetric fusion category. We define the second

cohomology of E to be the Picard group of E :

H2
sym(E) := Pic(E). (5.17)

Given a finite supergroup (G, z), we define the second cohomology of (G, z) to be:

H2(G, z) := H2
sym(Rep(G, z)) = Pic(Rep(G, z)). (5.18)

As was the case for first cohomology, we will show that H2 : sGrp → Ab is

a contravariant functor. To define the induced map on second cohomology, we first

describe how a supergroup homomorphism f : (G, z) → (H,w) endows Rep(G, z)

with the structure of a (Rep(G, z),Rep(H,w))-bimodule category.

Lemma 5.24. Let f : (G, z) → (H,w) be a supergroup homomorphism, and let

f ∗ : Rep(H,w) → Rep(G, z) be the braided monoidal functor induced by f . Define a

right action of Rep(H,w) on Rep(G, z) by the formula

X ⊙ V := X ⊗ f ∗(V ), X ∈ Rep(G, z), V ∈ Rep(H,w)

Then Rep(G, z) is a (Rep(G, z),Rep(H,w))-bimodule category.

Proof. The tensor product structure on the contravariant functor f ∗ : Rep(H,w) →

Rep(G, z) ensures that the formula given above endows Rep(G, z) with a right

Rep(H,w)-module category structure. The left and right actions are compatible

via the associativity isomorphism of Rep(G, z).

We will denote by Rep(G, z)f the category Rep(G, z) with the

(Rep(G, z),Rep(H,w))-bimodule category structure induced by f , as described
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in Lemma 5.24. We suggest the following definition for the induced map on second

cohomology.

Definition 5.25. Suppose f : (G, z) → (H,w) is a supergroup homomorphism.

Define H2(f) : Pic(Rep(H,w)) → Pic(Rep(G, z)) by the formula:

H2(f)(M) := Rep(G, z)f ⊠Rep(H,w) M, M ∈ Pic(Rep(H,w)). (5.19)

Remark 5.26. This definition is similar to the notion of Picard induction

described in [MN18, §2.5]. Given a braided fusion category B and a fusion

subcategory D ⊂ B, the Picard induction homomorphism Pic(D) → Pic(B) is

defined by M 7→ B ⊠D M.

Our immediate goal is to prove the following proposition.

Proposition 5.27. Let f : (G, z) → (H,w) be a supergroup homomorphism. Then:

(i) If M ∈ Pic(Rep(H,w)), then H2(f)(M) ∈ Pic(Rep(G, z)), and

(ii) H2(f) : Pic(Rep(H,w)) → Pic(Rep(G, z)) is a group homomorphism.

The following lemma will be useful in the proof of Proposition 5.27.

Lemma 5.28. Let f : (G, z) → (H,w) be a supergroup homomorphism, and let

M,N ∈ Pic(Rep(H,w)). Then we have an equivalence:

H2(f)(M)⊠Rep(G,z) H
2(f)(N )

∼−→ H2(f)(M⊠Rep(H,w) N ) (5.20)

of Rep(G, z)-module categories.
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Proof. We have the following chain of Rep(G, z)-module equivalences:

H2(f)(M⊠Rep(H,w) N )

= Rep(G, z)f ⊠Rep(H,w) (M⊠Rep(H,w) N )

∼−→ (Rep(G, z)f ⊠Rep(H,w) M)⊠Rep(H,w) N

∼−→ (Rep(G, z)f ⊠Rep(H,w) M)⊠Rep(G,z) (Rep(G, z)f ⊠Rep(H,w) N )

= H2(f)(M)⊠Rep(G,z) H
2(f)(N ).

(5.21)

Proof of Proposition 5.27. For both (i) and (ii) we will need that H2(Rep(H,w)) =

Rep(G, z)f ⊠Rep(H,w) Rep(H,w)
∼−→ Rep(G, z) as Rep(G, z)-module categories.

(i) Suppose M is an invertible Rep(H,w)-module category, then there exists a

Rep(H,w)-module category N such that M⊠Rep(H,w) N
∼−→ N ⊠Rep(H,w) M

∼−→

Rep(H,w). By Lemma 5.28, we have:

f 2(M)⊠Rep(G,z) f
2(N )

∼−→ f 2(M⊠Rep(G,z) N )
∼−→ f 2(Rep(H,w))

∼−→ Rep(G, z),

(5.22)

as Rep(G, z)-module categories. A similar computation shows that

f 2(N ) ⊠Rep(G,z) f
2(M)

∼−→ Rep(G, z) as Rep(G, z)-module categories, so

f 2(M) is invertible.

(ii) This follows immediately from Lemma 5.28.

Lemma 5.29. Suppose f : (G, z) → (H,w) and g : (H,w) → (K,x) are supergroup

homomorphisms. Then there is an equivalence

Rep(G, z)f ⊠Rep(H,w) Rep(H,w)g
∼−→ Rep(G, z)gf (5.23)

of (Rep(G, z),Rep(K, x))-bimodule categories.
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Proof. Let the functor F : Rep(G, z)f × Rep(H,w)g → Rep(G, z)gf be given

by F (V,W ) = V ⊗ f ∗(W ), with the obvious map on morphisms. We proceed as

follows.

(i) F is a left Rep(G, z)-module functor.

Let sX,(V,W ) : F (X ⊙ (V,W )) → X ⊙ F (V,W ) be given by sX,(V,W ) = aX,V,f∗(W )

for X, V ∈ Rep(G, z) and W ∈ Rep(H,w). Then s satisfies Eq. (2.67) by the

pentagon axiom, so F is a left Rep(G, z)-module functor.

(ii) F is a right Rep(K, x)-module functor.

Let t(V,W ),X : F ((V,W ) ⊙ X) → F (V,W ) ⊙ X be given by t(V,W ),X =

a−1
V,f∗(W ),(gf)∗(X) for V ∈ Rep(G, z), W ∈ Rep(H,w), and X ∈ Rep(K, x).

Then t satisfies Eq. (2.67) by the pentagon axiom, so F is a right Rep(K, x)-

module functor.

(iii) F is Rep(H,w)-balanced.

Let bV,X,W : (V ⊗ f ∗(X)) ⊗ f ∗(W ) → V ⊗ f ∗(X ⊗ W ) be given by bV,X,W =

aV,f∗(W ),f∗(W ). The pentagon axiom implies that b satisfies Eq. (2.75), so F is

a Rep(H,w)-balanced functor.

Let B : Rep(G, z)f × Rep(H,w)g → Rep(G, z)f ⊠Rep(H,w) Rep(H,w)g be the

canonical Rep(H,w)-balanced functor from Definition 2.87. By (i), (ii), and (iii),

we get a (Rep(G, z),Rep(K, x))-bimodule functor:

F : Rep(G, z)f ⊠Rep(H,w) Rep(H,w)g → Rep(G, z)gf . (5.24)

such that FB = F . Define G : Rep(G, z)fg → Rep(G, z)f ⊠ Rep(H,w)g by

G(X) = B(X,1), then G is a (Rep(G, z),Rep(K, x))-bimodule functor. We have
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natural isomorphisms:

FG(X) = FB(X,1)

= F (X,1)

= X ⊗ f ∗(1)

∼−→ X,

(5.25)

for X ∈ Rep(G, z), and so FG
∼−→ id. On the other hand:

GF (B(V,W )) = GF (V,W )

= G(V ⊗ f ∗(W ))

= B(V ⊗ f ∗(W ),1)

= B(V ⊙W,1)

∼−→ B(V,W ⊙ 1)

∼−→ B(V,W )

(5.26)

for V ∈ Rep(G, z), W ∈ Rep(H,w), and so GF
∼−→ id. Thus (F,G) forms an

equivalence of (Rep(G, z),Rep(K,x))-bimodule categories.

Remark 5.30. In the case where g = idH : (H,w) → (H,w), the above lemma

produces the familiar equivalence:

Rep(G, z)f ⊠Rep(H,w) Rep(H,w)
∼−→ Rep(G, z)f (5.27)

of (Rep(G, z),Rep(H,w))-bimodule categories.

Lemma 5.31. Suppose f : (G, z) → (H,w) and g : (H,w) → (K,x) are supergroup

homomorphisms. Then

H2(g ◦ f) = H2(f) ◦H2(g), (5.28)

as homomorphisms Pic(Rep(K, x)) → Pic(Rep(G, z)).
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Proof. Let M ∈ Pic(Rep(K, x)), then by Lemma 5.29:

(5.29)

(H2(f) ◦H2(g))(M) = Rep(G, z)f ⊠Rep(H,w) (Rep(H,w)g ⊠Rep(K,x) M)
∼−→ (Rep(G, z)f ⊠Rep(H,w) Rep(H,w)g)⊠Rep(K,x) M
∼−→ Rep(G, z)gf ⊠Rep(K,x) M
= H2(g ◦ f)(M),

as required.

Lemma 5.32. Let id = id(G,z) be the identity homomorphism. Then H2(id) =

idH2(G,z).

Proof. Let M ∈ Pic(Rep(G, z)), then H2(id)(M) = Rep(G, z) ⊠Rep(G,z) M
∼−→

M.

Combining Proposition 5.27 and Lemmas 5.31 and 5.32, we get the

following.

Theorem 5.33. H2 : sGrp → Ab is a contravariant functor.

Modular Extensions and the Third Cohomology Group

Our goal in this section is to define the third cohomology group of a finite

supergroup (G, z) as the group of modular extensions of Rep(G, z). The notion

of (minimal) modular extension is to due Müger [Müg03], though we follow the

discussion in [LKW17].

Definition 5.34. Let E be a symmetric fusion category. A modular extension

of E is a non-degenerate braided fusion category M, together with a braided full

embedding ι : E ↪→ M, such that E ′|M= E .

Remark 5.35. Extensions as in the previous definition are typically called non-

degenerate extensions. We will abuse terminology and always refer to them as

modular extensions.
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Theorem 5.36 ([Müg03],[DGNO10]). Let C be a non-degenerate braided fusion

category, and D ⊂ C a fusion subcategory. Then

FPdim(D)FPdim(D′) = FPdim(C). (5.30)

Corollary 5.37. Let E be a symmetric fusion category, M a non-degenerate

braided fusion category, and ι : E ↪→ M a braided full embedding. Then (M, ι)

is a modular extension if and only if FPdim(M) = FPdim(E)2.

In particular, this implies that all non-degenerate extensions of E have the

same Frobenius-Perron dimension, and so E has finitely many non-degenerate

extensions.

Example 5.38. Let E be a symmetric fusion category, and let Z(E) be the

Drinfeld center of E (see Definition 2.58). Let ι0 : E ↪→ Z(E) denote the canonical

braided full embedding X 7→ (X, cX,−). By Theorem 2.59 we know that Z(E) is

a non-degenerate braided fusion category, and FPdim(Z(E)) = FPdim(E)2, so

(Z(E), ι0) is a modular extension of E .

In particular, the set of modular extensions of a fixed symmetric fusion

category E is non-empty.

Definition 5.39 ([LKW17, Definition 4.9]). We say that two modular extensions

(M, ιM), (N , ιN ) of E are equivalent if there is a braided equivalence f : M → N

such that f ◦ ιM ≃ ιN .

Group of Modular Extensions. Let Mext(E) denote the set of

equivalence classes of modular extensions of a symmetric fusion category E , then

we have seen that Mext(E) is non-empty and finite. In [LKW17], Lan, Kong, and
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Wen constructed a multiplication on Mext(E), making it into a finite abelian group.

We proceed by describing this group structure.

Recall that the tensor product functor

⊗ : E ⊠ E → E (5.31)

on a symmetric fusion category E is braided [JS93, Proposition 5.4]. Let I : E →

E ⊠ E denote the right adjoint functor to ⊗, then

LE := I(1E) = ⊕X∈O(E)X ⊠X∗ (5.32)

is a connected étale algebra in E ⊠ E by Lemma 2.74. Observe that LE ∩ (E ⊠ 1E) =

1E ⊠ 1E , so by [LKW17, Proposition 3.4] we obtain a braided full embedding:

ι : E ↪→ (E ⊠ E)LE = (E ⊠ E)locLE

X 7→ (X ⊠ 1E)⊗ LE ,

(5.33)

where (X⊠1E)⊗LE is the free LE -module described in Example 2.67. Theorem 2.72

implies FPdim((E ⊠ E)locLE
) = FPdim(E), so ι is a braided equivalence. We therefore

have a braided embedding:

ιM ⊠E ιN : E = (E ⊠ E)locLE

ιM⊠ιN−−−−→ (M⊠N )locLE
. (5.34)

That M ⊠ N is non-degenerate implies (M ⊠ N )locLE
is non-degenerate [DMNO13,

Corollary 3.30]. We therefore define:

M⊠(ιM,ιN )
E N := ((M⊠N )locLE

, ιM ⊠E ιN ). (5.35)

Theorem 5.40 ([LKW17, Theorem 4.20]). The multiplication ⊠(−,−)
E : Mext(E) ×

Mext(E) → Mext(E) defined above makes Mext(E) into a finite abelian group with

identity element (Z(E), ι0).

The following example will motivate our definition of the third cohomology

of a supergroup.
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Example 5.41 ([LKW17, §4.3]). Let G be a finite group. Suppose (M, ιM) is

a modular extension of Rep(G). Let A = Fun(G) ∈ Rep(G) ⊂ M, then

by Theorem 2.99 the de-equivariantization MA is a braided G-crossed fusion

category. In particular, MA admits a G-grading MA =
⊕

g∈G(MA)g. Since

M is non-degenerate, the trivial component (MA)1 is non-degenerate, and the

G-grading on MA is faithful by Proposition 2.101. Thus FPdim((MA)g) = 1

for all g ∈ G [ENO05, Proposition 8.20], which implies that MA is pointed

with underlying group of simple objects G. Thus MA
∼−→ Vec

ω(M,ιM)

G for some

[ω(M,ιM)] ∈ H3(G,C×), and so we get an isomorphism [LKW17, Theorem 4.22]:

Mext(Rep(G))
∼−→ H3(G,C×)

(M, ιM) 7→ [ω(M,ιM)].

(5.36)

The Third Cohomology Group of a Supergroup.

Definition 5.42. Suppose E is a symmetric fusion category. We define the third

cohomology of E to be

H3
sym(E) := Mext(E), (5.37)

the group of modular extensions of E . Given a finite supergroup (G, z), we define

the third cohomology of (G, z) to be:

H3(G, z) := H3
sym(Rep(G, z)) = Mext(Rep(G, z)). (5.38)

We will show that H3 : sGrp → Ab is a contravariant functor. To define the

induced map on third cohomology, we must first describe some useful properties of

the category Rep(G, z). To simplify our notation, we will sometimes write EG for

the category Rep(G, z). Recall from Example 5.2 that if X,Y are simple objects of

Rep(G, z), then the braiding on Rep(G, z) is given by the formula:

czX,Y (x⊗ y) = (−1)mny ⊗ x, x ∈ X, y ∈ Y, z · x = (−1)mx, z · y = (−1)ny, (5.39)
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with m,n equal to zero or one. Write |x|= m and |y|= n, then czX,Y (x ⊗ y) =

(−1)|x||y|y ⊗ x. The following two lemmas are clear.

Lemma 5.43. Let (G, z) be a supergroup, and X a simple object of Rep(G, z).

Then |g · x|= |x| for all g ∈ G and x ∈ X.

Lemma 5.44. Let (G, z) and (H,w) be supergroups, X a simple object of

Rep(G, z), Y a simple object of Rep(H,w). Then X ⊗C Y is a simple object of

Rep(G×H, (z, w)), and |x⊗ y|= |x|+|y| for all x ∈ X and y ∈ Y .

Proposition 5.45. Let (G, a) and (H, b) be supergroups. Then there is a braided

equivalence

K̃ : Rep(G, z)⊠ Rep(H,w) → Rep(G×H, (z, w)) (5.40)

sending V ⊠W to V ⊗C W .

Proof. Given V ∈ EG,z and W ∈ EH,w, let K̃(V ⊠W ) = V ⊗C W with the obvious

G × H-action. It is well-known that K̃ is an equivalence of abstract categories

(every irreducible representation of G × H is of the form V ⊗C W with V and W

irreducible representations of G and H respectively). We need only show that K̃ is

a braided monoidal functor.

We define a monoidal structure on K̂ by the formula:

JX1⊠X2,Y1⊠Y2 : K̃(X1 ⊠X2)⊗ K̃(Y1 ⊠ Y2) → K̃((X1 ⊗ Y1)⊠ (X2 ⊗ Y2))

(x1 ⊗ x2)⊗ (y1 ⊗ y2) 7→ (−1)|x2||y1|(x1 ⊗ y1)⊗ (x2 ⊗ y2).

(5.41)

That J is G × H-linear follows from a straightforward computation and

Lemma 5.43. That J satisfies the monoidal structure axiom (Definition 2.13)

reduces to showing that

|x2||y1|+|x2 ⊗ y2||z1| ≡ |y2||z1|+|x2||y1 ⊗ z1| (mod 2), (5.42)
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which follows from Lemma 5.44. That K̃ is braided reduces to showing that

|x2||y1|+|x1||y1|+|x2||y2| ≡ |y2||x1|+|x1 ⊗ x2||y1 ⊗ y2| (mod 2), (5.43)

which also follows from Lemma 5.44.

Suppose f : (G, z) → (H,w) be a supergroup homomorphism. We are now

ready to describe the induced map H3(f) : Mext(Rep(H,w)) → Mext(Rep(G, z)).

Let Rf be right adjoint to the braided functor given by the composition:

Rep(H,w)⊠ Rep(G, z)
f∗⊠id−−−→ Rep(G, z)⊠ Rep(G, z)

⊗−→ Rep(G, z). (5.44)

Let Af := Rf (1EG,z
), then Af is a connected étale algebra in Rep(H,w)⊠ Rep(G, z)

(Lemma 2.74) and FPdim(Af ) = |H| ([EGNO15, Lemma 6.2.4]).

Suppose (M, ιM) ∈ Mext(Rep(H,w)). For X ∈ Rep(G, z), we have

HomM(1⊠X,Af )
∼−→ HomRep(G,z)(f

∗(1)⊗X,1)

∼−→ HomRep(G,z)(f
∗(1), X∗)

(5.45)

Since f ∗(1) = 1, we get that 1 ⊠ X is a summand of Af if and only if X = 1, and

so (1⊠ Rep(G, z)) ∩ Af = 1⊠ 1. Thus the free module functor

Rep(G, z) → (Rep(H,w)⊠ Rep(G, z))locAf
= (Rep(H,w)⊠ Rep(G, z))Af

X 7→ (1⊠X)⊗ Af

(5.46)

is a braided full embedding [LKW17, Proposition 3.4]. Moreover,

FPdim((Rep(H,w)⊠ Rep(G, z))Af
) = |G|

= FPdim(Rep(G, z)),

(5.47)

so (1 ⊠ −) ⊗ Af is a braided equivalence Rep(G, z)
∼−→ (Rep(H,w) ⊠ Rep(G, z))locAf

,

and so we obtain a braided full embedding

f ∗(ιM) : Rep(G, z)
(1⊠−)⊗Af−−−−−−→ (Rep(H,w)⊠ Rep(G, z))locAf

ιM⊠ιG−−−−→ (M⊠ Z(Rep(G, z)))locAf
,

(5.48)

where ιG : Rep(G, z) ↪→ Z(Rep(G, z)) is the canonical embedding.

85



Theorem 5.46. Let f : (G, z) → (H,w) be a supergroup homomorphism,

and M a modular extension of Rep(H,w). Then f ∗(M, ιM) := (M ⊠

Z(Rep(G, z)))locAf
, f ∗(ιM)) is a modular extension of Rep(G, z).

Proof. By Lemma 2.78, we have

FPdim((M⊠ Z(Rep(G, z))))locAf
= |G|2= FPdim(Rep(G, z))2, (5.49)

so (M⊠Z(Rep(G, z)))locAf
is a modular extension of Rep(G, z) by Corollary 5.37.

Thus every supergroup homomorphism induces a map between the

corresponding groups of modular extensions:

H3(f) : Mext(Rep(H,w)) → Mext(Rep(G, z))

(M, ιM) 7→ f ∗(M, ιM).

(5.50)

Theorem 5.47. Suppose f : (G, z) → (H,w) is a supergroup homomorphism. Then

H3(f) : Mext(Rep(H,w)) → Mext(Rep(G, z)) (5.51)

is a group homomorphism.

Proof. Let (M, ιM), (N , ιN ) ∈ Mext(EH), then

H3(f)(M)⊠EG H3(f)(N ) = ((M⊠ Z(EG))locAf
⊠ (N ⊠ Z(EG))locAf

)locLEG
(5.52)

Let L1 be the braided functor given by the composition:

EH ⊠ EG ⊠ EH ⊠ EG
f∗⊠id⊠f∗⊠id−−−−−−−→ EG ⊠ EG ⊠ EG ⊠ EG

⊗◦(⊗⊠⊗)−−−−−→ EG, (5.53)

and let L2 be the braided functor given by the composition:

EH ⊠EG⊠EH ⊠EG
id⊠τG,H⊠id
−−−−−−→ EH ⊠EH ⊠EG⊠EG

⊗⊠⊗−−−→ EH ⊠EG
⊗◦(f∗⊠id)−−−−−−→ EG. (5.54)
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Then L1
∼−→ L2. Let R1 and R2 be right adjoint to L1 and L2 respectively, then

((M⊠ Z(EG))locAf
⊠ (N ⊠ Z(EG))locAf

)locLEG

∼−→ (M⊠ Z(EG)⊠N ⊠ Z(EG))locR1(1)

∼−→ (M⊠N ⊠ Z(EG)⊠ Z(EG))locR2(1)

∼−→ ((M⊠N )locEH ⊠ (Z(EG)⊠ Z(EG))locEG)
loc
Af

(5.55)

But (Z(EG)⊠ Z(EG))locEG
∼−→ Z(EG), and so we have

H3(f)(M)⊠EG H3(f)(N )
∼−→ ((M⊠N )locEH ⊠Z(EG))locAf

= H3(f)(M⊠EH N ). (5.56)

Remark 5.48. We outline an alternative proof of Theorem 5.47. Let α : G →

H × G be given by α(x) = (f(x), x), then α allows us to view G as a subgroup of

H × G. Let α∗ : Rep(H × G, (w, z)) → Rep(G, z) be the corresponding restriction

functor, and let Rα be right adjoint to α∗. Then A := Rα(1) is a connected étale

algebra in EH×G, so by [LKW17, Proposition 5.7] the map

α̂ : Mext(Rep(H ×G, (w, z))) → Mext(Rep(H,w))

M 7→ Mloc
A

(5.57)

is a group homomorphism. Observe that the diagram

EH ⊠ EG EH×G

EG ⊠ EG EG

f∗⊠id

∼−→

α∗

⊗

(5.58)

is commutative, so A is the image of Af under the equivalence EH ⊠ EG
∼−→ EH×G.

Thus we get:

H3(f)(M) = (M⊠ Z(EG))locAf

∼−→ (M⊠ Z(EG))locA = α̂(M⊠ Z(EG)). (5.59)

That α̂ is a group homomorphism then implies (after a straightforward

computation) that H3(f) is as well.
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Lemma 5.49. Let (G, z) be a supergroup, then H3(id) : Mext(G, z) → Mext(G, z)

is the identity homomorphism.

Proof. Suppose (M, ιM) ∈ Mext(Rep(G, z)), then Aid = LEG ∈ EG ⊠ EG, and so

H3(id)(M, ιM) = M⊠EG Z(EG)
∼−→ M.

Lemma 5.50. Let f : (G, z) → (H,w) and g : (H,w) → (K, y) be supergroup

homomorphisms, then

H3(g ◦ f) = H3(f) ◦H3(g). (5.60)

Proof. Let (M, ιM) ∈ Mext(Rep(K, y)). Define braided functors Ff := ⊗◦ (f ∗⊗ id),

Fg := ⊗ ◦ (g∗ ⊗ id), and Fgf = ⊗ ◦ ((g ◦ f)∗ ⊗ id). Let L1 be the braided functor

given by the composition

EK ⊠ EH ⊠ EG
id⊠Ff−−−→ EK ⊠ EG

Fgf−−→ EG, (5.61)

and let L2 be the braided functor given by the composition

EK ⊠ EH ⊠ EG
Fg⊠id−−−→ EH ⊠ EG

Ff−→ EG. (5.62)

Observe that L1
∼−→ L2. Let R1 and R2 be right adjoint to L1 and L2 respectively,

then

H3(f) ◦H3(g)(M, ιM) = ((M⊠ Z(EH))locAg
⊠ Z(EG))locAf

∼−→ (M⊠ Z(EH)⊠ Z(EG))locR2(1)

∼−→ (M⊠ Z(EH)⊠ Z(EG))locR1(1)

∼−→ (M⊠ (Z(EH)⊠ Z(EG))locAf
)locAgf

∼−→ (M⊠ Z(EG))locAgf

= H3(g ◦ f)(M, ιM).

(5.63)
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The following is immediate from Theorem 5.47 and Lemmas 5.49 and 5.50.

Theorem 5.51. H3 : sGrp → Ab is a contravariant functor.

Connections and Applications. Suppose (G, z) is a supergroup,

and H ≤ G a subgroup with z ∈ H, then A = Fun(G/H) is a connected étale

algebra in Rep(G, z). If M is a modular extension of Rep(G, z), then MA is a

modular extension of Rep(H, z), so by [LKW17, Proposition 5.7] we have the group

homomorphism

Mext(Rep(G, z)) → Mext(Rep(H, z))

(M, ιM) 7→ (Mloc
A , ιM).

(5.64)

On the other hand, the inclusion homomorphism i : (H, z) → (G, z) induces a

(potentially different) homomorphism H3(i) : Mext(Rep(G, z)) → Mext(Rep(H, z)).

The following proposition says that these homomorphisms are in fact the same.

Proposition 5.52. Suppose (G, z) is a supergroup, and H ≤ G a subgroup with z ∈

H. Let i : (H, z) → (G, z) be the inclusion homomorphism, and A := Fun(G/H) ∈

Rep(G, z). Then

H3(i)(M, ιM) = (Mloc
A , ιM) (5.65)

for all (M, ιM) ∈ Mext(Rep(G, z)).

Proof. Since i is the inclusion of a subgroup, we have i∗ = ResGH . The right adjoint

functor to i∗ is R = HomCH(CG,−), so R(1) = Fun(G/H) = A. Let S be right

adjoint to the braided functor EG ⊠ EH
i∗⊠id−−−→ EH ⊠ EH , then S(1) = A ⊠ 1. In

particular, we get that

(M⊠ Z(EH))locAi

∼−→ (Mloc
A ⊠ Z(EH))locLEH

∼−→ Mloc
A . (5.66)

since Z(EH) is the identity element in Mext(Rep(H, z)).
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Let (G, z) be a non-trivial supergroup, then there is a canonical

homomorphism i : (Z/2Z,−1) → (G, z), so we obtain a group homomorphism

H3(i) : Mext(Rep(G, z)) → Mext(sVec) = Z/16Z. (5.67)

We focus our attention on H3(i). To simplify our notation, we write

Ĝ = G/⟨z⟩. Observe that Rep(G, z) contains Rep(Ĝ) as the fusion subcategory

of representations on which z acts trivially. Let A = Fun(Ĝ) ∈ Rep(Ĝ) ⊂

Rep(G, z). Given a modular extension M ∈ Mext(Rep(G, z)) we can form the

de-equivariantization MA. By Proposition 2.100 the trivial component of MA

is given by Mloc
A . The following properties of MA follow from Theorem 2.99,

Proposition 5.52, and [DGNO10, Proposition 4.30].

Lemma 5.53. Let M ∈ Mext(Rep(G, z)). Then

(i) MA is a faithfully graded braided Ĝ-crossed fusion category,

(ii) the trivial component of the grading (MA)1 = Mloc
A is equivalent to H3(i)(M),

(iii) sVec ⊂ Mloc
A is a Ĝ-stable fusion subcategory, and

(iv) sVecĜ
∼−→ Rep(G, z).

A classification of faithfully graded braided G-crossed fusion categories was

given by Etingof, Nikshych, and Ostrik in [ENO10]. We recall that classification

now.

Theorem 5.54 ([ENO10, Theorem 7.12]). Let B be a braided fusion category.

Equivalence classes of braided G-crossed categories C having a faithful G-grading

with trivial component B are parametrized by triples (c,M, α), where:

(i) c : G → Pic(B) is a group homomorphism,

90



(ii) M belongs to a certain torsor over H2(G, Inv(B)), and

(iii) α belongs to a certain torsor over H3(G,C×),

subject to the requirement that certain obstructions:

(i) O3(c) ∈ H3(G, Inv(B)), and

(ii) O4(c,M) ∈ H4(G,C×),

vanish.

Remark 5.55. Let B be a braided fusion category. Denote by Autbr⊗ (B) the group

of isomorphism classes of braided autoequivalences of B. If B is non-degenerate,

then by [ENO10, Theorem 5.2] we have:

Pic(B) ∼−→ Autbr⊗ (B). (5.68)

Given a homomorphism c : G → Pic(B) ∼−→ Autbr⊗ (B), the first obstruction O3(c) ∈

H3(G, Inv(B)) determines whether c can be lifted to a braided action c : G →

Autbr⊗ (B) as in Definition 2.91.

Let B be a modular extension of sVec equipped with a braided Ĝ-action

such that sVec ⊂ B is Ĝ-stable. Restricting this action to sVec gives a braided

action ϱ : Ĝ → Autbr⊗ (sVec), and so we have natural isomorphisms γg,h : idsVec
∼−→

idsVec for g, h ∈ Ĝ. Let δ ∈ sVec be the non-trivial simple object, then (γg,h)δ =

α(g, h)idδ for some α(g, h) ∈ C×. Since δ ⊗ δ
∼−→ 1sVec, we have α(g, h)2 = 1 so

α(g, h) ∈ Z/2Z. The monoidal structure axiom for ϱ says that α is a 2-cocycle on Ĝ

with values in Z/2Z, so we obtain a cohomology class [ϱ] ∈ H2(Ĝ,Z/2Z).

Definition 5.56. Let ϱ : Ĝ → Autbr⊗ (sVec) be a braided action of Ĝ on sVec. The

class [ϱ] ∈ H2(Ĝ,Z/2Z) described above is called the cohomology class of ϱ.
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Recall from Theorem 2.26 that [ϱ] ∈ H2(Ĝ,Z/2Z) determines a Z/2Z-

central extension G̃ of Ĝ, equivalently, a non-trivial supergroup (G̃, z). On the

other hand, sVecĜ is a symmetric fusion category [DGNO10, Corollary 4.31], so

by Theorem 5.4 is equivalent to the category of finite-dimensional representations of

some supergroup. The following proposition says that this supergroup is (G̃, z).

Proposition 5.57. Let ϱ : Ĝ → Autbr⊗ (sVec) be a braided action of a finite group Ĝ

on sVec. Then there is a braided equivalence

sVecĜ
∼−→ Rep(G̃, z) (5.69)

where G̃ is the Z/2Z-central extension of Ĝ determined by the [ϱ] ∈ H2(Ĝ,Z/2Z) of

ϱ.

Proof. Let (V, u) ∈ sVecG̃. Write V = V0 ⊕ V1, then the Ĝ-equivariance condition

implies we have equations:

u0
gu

0
h = u0

gh, and (5.70)

u1
gu

1
h = α(g, h)u1

gh, (5.71)

where u0
g : V0 → V0 and u1

g : V1 → V1 denote the even and odd components of ug

respectively. Observe that Eq. (5.70) describes a Ĝ-action on V0, and Eq. (5.71)

describes a projective Ĝ-action on V1 with 2-cocycle α. That V1 is a projective

representation of Ĝ with 2-cocycle α is equivalent to saying that V1 is a genuine

representation of the central extension G̃ where z ∈ G̃ acts by −1. We can

also view V0 as a G̃-representation via the homomorphism G̃ → Ĝ, and so

V ∈ Rep(G̃, z). With this G̃-action, a Ĝ-equivariant morphism f : (V, u) → (W, v)

gives a G̃-linear map V → W in Rep(G̃, z), and so we have a (faithful) functor

G : sVecĜ → Rep(G̃, z). (5.72)
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A straightforward computation shows that a G̃-linear morphism f : V → W is

automatically Ĝ-equivariant, so G is full. Comparing the G̃-actions shows that G is

a monoidal functor. Since z ∈ G̃ acts by 1 on V0 and by −1 on V1, G is moreover

braided. Thus G is a fully faithful braided monoidal functor. But FPdim(sVecĜ) =

2|Ĝ|= |G̃|= FPdim(Rep(G̃, z)), so F is a braided equivalence [EO04, Proposition

2.19].

Remark 5.58. The inverse equivalence F : Rep(G̃, z) → sVecĜ can be constructed

explicitly. A representation V ∈ Rep(G̃, z) inherits a Z/2Z-grading with V0 = {v ∈

V | zv = v} and V1 = {v ∈ V | zv = −v} , making V into a superspace.

If φ : G̃ → GL(V ) is the G̃-action on V , then ug = φ(1, g) is a Ĝ-equivariant

structure on V , so define F(V ) = (V, u) ∈ sVecĜ.

This proposition implies the following characterization for when i∗ is

surjective, which was proven independently of us in [GVR17].

Theorem 5.59. Let (G, z) be a finite non-trivial supergroup. The map i :

(Z/2Z, z) → (G, z) splits if and only if i∗ : Mext(Rep(G, z)) → Z/16Z is surjective.

Proof. If i splits, then i∗ is surjective by functorality of H3 : sGrp → Ab. For the

reverse direction, suppose i∗ is surjective. Then there exists a modular extension

M ∈ Mext(Rep(G, z)) with i∗(M)
∼−→ I braided equivalent to an Ising fusion

category. Since any tensor autoequivalence of an Ising category is isomorphic to the

identity functor [DGNO10, Remark B.6 (i)], the restricted Ĝ-action on sVec ⊂ I

corresponds to the trivial element of H2(G/⟨z⟩,Z/2Z), so by Proposition 5.57 we

have Rep(G, z)
∼−→ sVecĜ

∼−→ Rep(Z/2Z × Ĝ, (−1, 1))
∼−→ sVec ⊠ Rep(Ĝ). Thus G

admits a character χ : G → {1,−1} with χ(z) = −1, which is precisely a splitting

of i.
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Proposition 5.57 and Lemma 5.53 imply the following characterization of

when the Ĝ-equivariantization of a faithfully graded braided Ĝ-crossed fusion

category is a modular extension of Rep(G, z).

Corollary 5.60. Let (G, z) be a supergroup, and Ĝ = G/⟨z⟩. Let M be a faithfully

graded braided Ĝ-crossed fusion category such that:

(i) the trivial component M1 is a modular extension of sVec,

(ii) sVec ⊂ M1 is Ĝ-stable, and

(iii) G is the Z/2Z-central extension of Ĝ corresponding to the cohomology class of

the restricted action ϱ : Ĝ → Autbr⊗ (sVec).

Then MĜ is a modular extension of Rep(G, z), and every modular extension of

Rep(G, z) arises in this way.
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[Müg04a] Michael Müger. Galois extensions of braided tensor categories and braided
crossed G-categories. J. Algebra, 277(1):256–281, 2004.
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