
FAITHFUL TROPICALIZATION OF HYPERTORIC VARIETIES

by

MAX B. KUTLER

A DISSERTATION

Presented to the Department of Mathematics
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2017



DISSERTATION APPROVAL PAGE

Student: Max B. Kutler

Title: Faithful Tropicalization of Hypertoric Varieties

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Mathematics
by:

Nicholas Proudfoot Chair
Alexander Polishchuk Core Member
Vadim Vologodsky Core Member
Benjamin Young Core Member
Hank Childs Institutional Representative

and

Scott L. Pratt Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded June 2017

ii



c© 2017 Max B. Kutler

iii



DISSERTATION ABSTRACT

Max B. Kutler

Doctor of Philosophy

Department of Mathematics

June 2017

Title: Faithful Tropicalization of Hypertoric Varieties

The hypertoric variety MA defined by an arrangement A of affine hyperplanes

admits a natural tropicalization, induced by its embedding in a Lawrence toric variety.

In this thesis, we explicitly describe the polyhedral structure of this tropicalization

and calculate the fibers of the tropicalization map. Using a recent result of Gubler,

Rabinoff, and Werner, we prove that there is a continuous section of the tropicalization

map.
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CHAPTER I

INTRODUCTION

In this dissertation, we study the tropicalization of the hypertoric variety MA

defined by an arrangement A of affine hyperplanes. Hypertoric varieties were first

studied by Bielawski and Dancer [BD00]. They are “hyperkähler analogues” of toric

varieties, and examples of conical symplectic resolutions. The relationship between

the variety MA and the arrangement A is analogous to that between a semiprojective

toric variety and its polyhedron. See, e.g., [Pro08] for an overview of this relationship.

The hypertoric variety MA is not, in general, a toric variety. However, it is naturally

defined as a closed subvariety of a toric variety, the Lawrence toric variety BA. The

Lawrence embedding allows us to define a tropicalization of MA.

Given a closed embedding of a variety X in a toric variety, there is a

corresponding tropicalization Trop(X), which is the continuous image of the

Berkovich space Xan under the tropicalization map. The tropicalization may be

endowed with the structure of a finite polyhedral complex. A single variety X may

yield many distinct tropicalizations, each given by a different choice of embedding

into a toric variety. When we speak of the tropicalization of X, it is always with

respect to a chosen embedding.

By a result of Foster, Gross, and Payne [FGP14, Pay09], if X has at least one

embedding into a toric variety, then the inverse system of all such embeddings induces

an inverse system of tropicalizations, and the limit of this system in the category

of topological spaces is Xan. This raises the question of how well a particular

tropicalization approximates the geometry of the analytic space. To this end, a

tropicalization is said to be faithful if the tropicalization map Xan → Trop(X)
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admits a continuous section, realizing Trop(X) as (homeomorphic to) a closed subset

of Xan.

If X is embedded in a torus, then Trop(X) is the support of a finite polyhedral

complex, which is balanced when the polyhedra are weighted by tropical multiplicity.

Gubler, Rabinoff, and Werner have proved that such a tropicalization is faithful if all

tropical multiplicities are equal to one [GRW16]. Moreover, in this case, the section

of tropicalization is uniquely defined. This generalizes work of Baker, Payne, and

Rabinoff, who obtained the first results on faithful tropicalization in the case where

X is a curve [BPR16].

In the more general situation where X is embedded in a toric variety, Trop(X) is

the union of the tropicalizations Trop(X∩O) as O ranges over all torus orbits. In this

case, tropical multiplicity one is no longer sufficient to imply faithfulness: it is possible

that the continuous sections defined on each of the strata Trop(X ∩O) do not glue to

a continuous section on the entire tropicalization [GRW15, Example 8.11]. However,

Gubler, Rabinoff, and Werner [GRW15, Theorem 8.14] have recently proved that if X

is embedded in a toric variety with dense torus T , then the resulting tropicalization

is faithful, with uniquely defined continuous section, if certain conditions on the

embedding and the polyhedral structure of the resulting tropicalization are satisfied.

We state a simplified version of this result as Theorem 5.1. While the first results on

faithful tropicalizations [CHW14, DP16], required careful study of Berkovich spaces

and their skeleta, that analysis is now absorbed into the proof of this theorem,

so that faithfulness may be checked by exclusively working “downstairs,” with the

tropicalization.

In this thesis, we apply this this theorem of Gubler, Rabinoff, and Werner

to prove that an arbitrary hypertoric variety MA is faithfully tropicalized by its

2



embedding in the Lawrence toric variety MA. We thus obtain many new examples,

in every even dimension, of varieties which are faithfully tropicalized by a “natural”

embedding into a toric variety. These examples include the cotangent bundle of

projective space and the cotangent bundle of a product of projective spaces, as well

as many singular varieties. To our knowledge, this is the first application of Gubler,

Rabinoff, and Werner’s theorem to a class of tropicalizations for which faithfulness

was previously unknown.

Furthermore, we shall see that, in all but the most trivial case, the hypertoric

variety MA in its Lawrence embedding does not meet all torus orbits in the expected

dimension (Corollary 2.12). This is in contrast to several other known examples

of “nice” tropicalizations, including the moduli space M0,n of stable rational curves

[GM10, Tev07], some alternate compactifications of M0,n [CHMR16], and the space of

logarithmic stable maps to a projective toric variety [Ran15]. By [GRW15, Corollary

8.15], a variety which meets all torus orbits in the expected dimension, or not at all,

is faithfully tropicalized if it has multiplicity one everywhere. Since this result is not

available to us, we must find a polyhedral structure on Trop(MA) to work with. Our

first main result describes such a polyhedral structure in terms of the combinatorics

of the defining arrangement A.

Theorem 4.1. The tropicalization Trop(MA) of the hypertoric variety is the union

of cones C
(F,R)
F indexed by a flat F of M, a face R of the localization AF , and a flag

of flats F in the restriction MF . These cones satisfy

dimC
(F,R)
F = d− codimR+ `(F).
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This gives Trop(MA) the combinatorial structure of a finite polyhedral complex, under

the closure relation

C
(F ′,R′)
F ′ ⊆ C

(F,R)
F (1.1)

if and only if the following conditions hold:

– F ⊆ F ′;

– R′ ⊆ R;

– F ′ is a flat in F , and truncF ′(F) is a refinement of F ′.

Moreover, this gives each stratum Trop(MA)∩ ÑR(σF,R) the structure of a polyhedral

fan, which is balanced when all cones are given weight one.

Equipped with Theorem 4.1, we can describe the interplay between the fan of

the toric variety BA and the fan Trop(MA ∩ T̃ ), where T̃ is the dense torus of BA.

The cones of each of these two fans are described in terms of the combinatorics of

the arrangement A. By examining these combinatorics, we see that the conditions of

Theorem 5.1 are satisfied, proving the tropicalization is faithful.

Theorem 5.4. There is a unique continuous section of the tropicalization map

Man
A → Trop(MA).

The rest of the dissertation is outlined as follows. In Chapter II, we recall basic

facts about toric geometry and hyperplane arrangements, and we define the Lawrence

toric variety and hypertoric variety associated to an arrangement. We also prove some

technical lemmas. Chapter III serves as a brief overview of non-Archimedean analytic

spaces and tropicalization. We describe the tropicalization of a linear space (Example

3.1), which we will later use to define the polyhedral structure on Trop(MA). In
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Chapter IV, we prove Theorem 4.1. We calculate the fibers of tropicalization, and

show that they are affinoid subdomains of Man
A containing a unique Shilov boundary

point. Finally, in Chapter V we state Theorem 5.1, due to Gubler, Rabinoff, and

Werner, and use it to prove Theorem 5.4.
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CHAPTER II

TORIC VARIETIES AND HYPERTORIC VARIETIES

In this chapter, we briefly review the theories of toric varieties and hyperplane

arrangements, and we set notation and definitions we will use in the sequel. We define

the Lawrence toric variety and the hypertoric variety associated to an arrangement.

We note that the Lawrence toric variety is defined here in terms of its fan, whereas

typically in the literature it is defined as a GIT quotient. The equivalence of our

approach with the standard definition follows from Lemmas 2.6, 2.7, and 2.8. For

further background reading on these topics, the interested reader is referred to [Ful93]

and [CLS11] on toric varieties; [Oxl11] on matroids; [BD00] and [HS02] on Lawrence

toric varieties and hypertoric varieties; and [PW07] and [Pro08] on the relationship

between these varieties and the associated hyperplane arrangements.

Throughout the remainder of this dissertation, we fix a lattice M ∼= Zd and an

algebraically closed field K, complete with respect to a non-Archimedean valuation

ν : K → R ∪ {∞}, which may be trivial. The dual lattice to M is N = Hom(M,Z),

and we set MR = M ⊗Z R and NR = N ⊗Z R = Hom(M,R). Let T = SpecK[M ] be

the split K-torus with character lattice M and cocharacter lattice N .

2.1. Toric varieties

Let Σ be a (pointed) rational polyhedral fan in NR. Each cone σ ∈ Σ defines an

affine toric variety Yσ = SpecK[σ∨ ∩M ] with dense torus T . For τ ≺ σ in Σ, Yτ

is naturally an open subvariety of Yσ. Gluing along these identifications, we obtain

the T -toric variety YΣ =
⋃
σ∈Σ Yσ defined by Σ.
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The action of T partitions YΣ into torus orbits. These orbits are in bijection with

cones in Σ, with σ ∈ Σ corresponding to the orbit O(σ) = SpecK[σ⊥∩M ]. The orbit

O(σ) is a torus of dimension equal to codimσ, with character lattice M(σ) = σ⊥∩M

and cocharacter lattice N(σ) = N/(〈σ〉 ∩N), where 〈σ〉 = Rσ is the linear span of σ

in NR. We have the set-theoretic decomposition YΣ =
⊔
σ∈Σ O(σ).

We set MR(σ) = M(σ) ⊗Z R and NR(σ) = N(σ) ⊗Z R. If τ ≺ σ, then we have

the projection NR(τ)→ NR(σ), which by abuse of notation we denote πσ. For a cone

τ ∈ Σ, the orbit closure O(τ) is a toric variety with dense torus O(τ). Its fan is the

set of cones star(τ) = {πτ (σ) | σ � τ} in NR(τ).

A homomorphism of tori φ : T → T ′ is uniquely determined by the corresponding

homomorphism φ∗ : M ′ → M of character lattices, or equivalently by the dual

homomorphism φ∗ : N → N ′ of cocharacter lattices. Note that φ is injective if and

only if φ∗ is surjective (if and only if φ∗ is injective). Dually, φ is surjective if and

only if φ∗ is injective (if and only if φ∗ is surjective). We say that an injective or

surjective morphism of tori is split if the corresponding map of character lattices (or,

equivalently, of cocharacter lattices) is split.

If Σ and Σ′ are fans in NR and N ′R, respectively, then a homomorphism φ : T → T ′

extends to an equivariant morphism of toric varieties YΣ → YΣ′ if and only if for each

cone σ ∈ Σ there exists σ′ ∈ Σ′ such that φ∗(σ) ⊆ σ′.

Following [Gro15], we define a linear subvariety L of the torus T to be a

subvariety in some choice of torus coordinates. That is, there exists an isomorphism

M ∼= Zd, inducing K[M ] ∼= K[Zd] = K[x±1
1 , . . . , x±1

d ], such that the ideal of L is

generated by linear forms in the xi.

Lemma 2.1. If φ : T → T ′ is a split surjection of tori, and L ⊆ T ′ is a linear

subvariety, then φ−1(L) is a linear subvariety of T with codimT φ
−1(L) = codimT ′ L.
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Proof. Let {x1, . . . , xd} be an integral basis of M ′. Then {φ∗(x1), . . . , φ∗(xd)} is

linearly independent in M because φ∗ is injective, and each φ∗(xi) is primitive because

xi is primitive and φ∗ is split. Therefore, {φ∗(x1), . . . , φ∗(xd)} may be extended to an

integral basis of M .

If the ideal of L is generated by linear forms in the variables xi, then the ideal of

φ−1(L) is generated by linear forms in the variables φ∗(xi). This shows that φ−1(L) is

a linear subvariety of T . Moreover, by injectivity of φ∗, the ideal of φ−1(L) is generated

by the same number of independent linear forms as is the ideal of L, proving that

codimT φ
−1(L) = codimT ′ L.

2.2. Hyperplane arrangements and matroids

Given a finite set E, a tuple a = (ae) ∈ NE of nonzero primitive elements, and

r = (re) ∈ ZE, we define the corresponding arrangement A = A(a, r) to be the

multiset of affine integral hyperplanes

He = {m ∈MR | 〈m, ae〉+ re = 0} (e ∈ E)

in MR. If a generates the lattice N , then a is a primitive spanning configuration.

Each hyperplane He is cooriented by the integral normal vector ae, with “positive”

and “negative” closed halfspaces,

H+
e = {u ∈MR | 〈u, ae〉+ re ≤ 0}

and

H−e = {u ∈MR | 〈u, ae〉+ re ≤ 0},
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respectively.

The arrangement A is simple if the intersection of any k hyperplanes is either

empty or has codimension k, and A is unimodular if every collection of d linearly

independent normal vectors {ae1 , . . . , aed} is an integral basis of N . An arrangement

which is both simple and unimodular is smooth.

If r = 0, so that each hyperplane He is a linear subspace of MR, then we call the

arrangement central. Given A = A(a, r), we let A0 = A(a, 0) be the centralization

of A. We denote by (He)0 the translation of He to the origin.

For each relation
∑

e∈E ceae in N satisfied by the configuration a, we have the

corresponding linear form

∑
e∈E

cexe ∈ K[xe | e ∈ E].

We let L = L(a) be the d-dimensional linear subspace of AE defined by the vanishing

of these linear forms. The dependencies among points in the configuration a are

encoded in the underlying matroid M = M(a) on E. A matroid on E is a

combinatorial structure, defined by declaring a collection of subsets of E to be

independent (the subsets which are not independent are called dependent). The

collection of independent subsets must satisfy certain axioms inspired by the linear

algebraic notion of linear independence.

The rank function of M defines the rank rkS of a subset S ⊆ E to be the

dimension of the subspace of NR spanned by {ae | e ∈ S}. Equivalently, the rank of

S is equal to the codimension of the intersection
⋂
e∈S(He)0 of all central hyperplanes

indexed by S. Observe that the rank of M, defined to be rkE, is equal to d if and

only if a is a primitive spanning configuration.
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A subset F ⊆ E is a flat of M if it is maximal for its rank; that is, if S ⊇ F ,

then either S = F or rkS > rkF . A flag of flats in M is a chain

F = (∅ = F0 ( F1 ( · · · ( Fk−1 ( Fk = E)

where each Fi is a flat. The length of such a flag, denoted `(F), is the number k

of nonempty flats in F . Since the rank must increase at each step, a maximal flag

of flats will have length equal to the rank of M. By inserting flats, any flag may be

refined into a maximal flag.

It is clear from the definition that the collection of all flats is uniquely determined

by the rank function. It is a basic result of matroid theory that the reverse is true,

and that the rank function and the lattice of flats each individually determines the

collection of all independent sets. Thus, a matroid may be “cryptomorphically”

defined in terms of either its rank function or its flats, with each of these structures

being subject to appropriate axioms. See [Oxl11] for these axioms and other

equivalent characterizations of matroids.

Given a flat F of M, we define the restriction of the central arrangement A0

to F , denoted AF0 , to be the arrangement of hyperplanes {(He)0∩HF | e /∈ F} in the

vector space HF =
⋂
e∈F (He)0. We let LF ⊆ AErF denote the corresponding linear

subspace, obtained from L by setting xe = 0 for all e ∈ F . The underlying matroid

of AF0 , denoted MF , is the matroid on E r F obtained from M by deleting F . The

flats ofMF are precisely the sets F ′rF for F ′ ⊇ F a flat ofM; we therefore identify

flats of MF with flats of M which contain F , and flags of flats in MF with flags in

M which begin at F .

As a dual construction, we define the localization of the arrangement A at any

subset S ⊆ E to be the arrangement of hyperplanes {He | e ∈ S} in the vector space

10



MR. The centralization of AS is (A0)S, and we writeMS for its underlying matroid.

The ground set of MS is S, and its flats are precisely those flats of M which are

contained in S.

Remark 2.2. There are notable differences in our definitions of restriction and

localization.

(1) While it is possible to define the restriction to a non-flat S, the resulting matroid

will contain loops. In this document, we shall only need to restrict to flats, and

so we will limit our attention to that case. On the other hand, in order to

combinatorially describe the fan of the Lawrence toric variety in Section 2.3, it

will be necessary to localize A at every subset S ⊆ E.

(2) There is no canonical way to lift the construction of the restriction AF0 to

the non-central arrangement A, which is why we defined restriction on the

centralization. By contrast, the localization of A0 at S uniquely determines the

localization of A at S.

Remark 2.3. We have defined localization so that AS is an arrangement in MR.

As a result, the normal vectors of the hyperplanes in AS do not necessarily span N ,

even if the original arrangement A was defined by a primitive spanning configuration.

Alternatively, one may wish to define AS to be an arrangement in MR/HS; the normal

vectors of this arrangement will then be spanning if the normal vectors of A are

spanning (see, e.g., [PW07, §2]). However, it will be convenient for our purposes to

have all localizations living in the same vector space MR.
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An arrangement A assigns a sign vector sgnA(m) ∈ {+, 0,−}E to each m ∈MR,

via

sgnA(m)e =



+ if m ∈ H+
e rHe,

0 if m ∈ He,

− if m ∈ H−e rHe.

A nonempty fiber of sgnA : MR → {+, 0,−}E is called a face of the arrangement

A. A vertex of A is a face consisting of a single point. Each face R defines sets

E+(R) = {e ∈ E | R ⊆ H+
e } and E−(R) = {e ∈ E | R ⊆ H−e }. Note that

E = E+(R) ∪ E−(R). We set E0(R) = E+(R) ∩ E−(R) = {e ∈ E | R ⊆ He}.

Notice that the closure of a face is the intersection of all halfspaces which contain

it:

R =
( ⋂
e∈E+(R)

H+
e

)
∩
( ⋂
e∈E−(R)

H−e

)
. (2.1)

It follows that the codimension of R in MR is the codimension of the intersection of

all hyperplanes containing it:

codimR = codim
⋂

e∈E0(R)

He = codim
⋂

e∈E0(R)

(He)0 = rkME0(R). (2.2)

The above discussion of faces applies to localizations of A as well. If S ⊆ E is

any subset, then a face R of AS determines sets S+(R), S0(R), and S−(R), with

S = S+(R) ∪ S−(R) and S0(R) = S+(R) ∩ S−(R). Furthermore, R and codimR

are computed as in (2.1) and (2.2), respectively, with E replaced by S.

Lemma 2.4. Let S ⊆ E. If R is a face of A and R′ is a face of the localization AS,

then R ⊆ R′ if and only if E+(R) ⊇ S+(R′) and E−(R) ⊇ S−(R′).

12



Proof. Suppose R ⊆ R′. Since the halfspaces H+
e and H−e are closed, any halfspace

which contains R′ also contains R′, hence contains R. That is, E+(R) ⊇ S+(R′) and

E−(R) ⊇ S−(R′)

Conversely, suppose E+(R) ⊇ S+(R′) and E−(R) ⊇ S−(R′). Then for each

e ∈ S+(R′), we also have e ∈ E+(R) and therefore R ⊆ H+
e . Similarly, R ⊆ H−e

for each e ∈ S−(R′). By the formula (2.1) applied to the face R′, we conclude that

R ⊆ R′.

2.3. The Lawrence toric variety of an arrangement

We now describe how an arrangement A = A(a, r) in MR, where a is a primitive

spanning configuration, gives rise to a toric variety BA, called the Lawrence toric

variety. While we continue to fix the torus T = SpecK[M ], the variety BA is not a

T -toric variety; rather, it is a T̃ -toric variety, where T̃ is a (split) extension of GE
m by

T .

The configuration a defines a homorphism ZE → N , where the generator δe is

mapped to ae. This map is surjective because a is spanning, and its kernel Λ is a

lattice because a is primitive.

Let ∆: ZE → ZE ⊕ ZE denote the antidiagonal embedding: If we denote by δ+
e

the generators of the first copy of ZE and by δ−e the generators of the second copy

of ZE, then ∆(δe) = δ+
e − δ−e . The composition of ∆ with the ι : Λ → ZE gives an

inclusion of Λ into ZE⊕ZE. Let Ñ denote the quotient, so that we have the following

commutative diagram with exact rows.

0 Λ ZE N 0

0 Λ ZE ⊕ ZE Ñ 0

id

ι

∆

a

(2.3)
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The images ρ+
e and ρ−e in Ñ of the generators δ+

e and δ−e , respectively, provide a

natural spanning set of Ñ . Note that Ñ is a lattice of rank |E|+ d, and we have the

short exact sequence

0 N Ñ ZE 0 (2.4)

where N → Ñ is the vertical map from (2.3) and Ñ → ZE is defined by ρ±e 7→ δe. In

particular, for each relation
∑

e∈E ceae = 0 in N , we have

∑
e∈E

ce(ρ
+
e − ρ−e ) = 0

in Ñ , and these are all relations among the generators ρ±e .

For each pair (S,R), where S ⊆ E and R is a face of the localization AS, define

σS,R to be the cone in ÑR with rays generated by the integral vectors

{ρ+
e | e ∈ S+(R)} ∪ {ρ−f | f ∈ S

−(R)}.

Let ΣA = {σS,R | S ⊆ E and R is a face of AS} be the collection of all such cones.

Lemmas 2.6, 2.7, and 2.8 establish that ΣA is a fan in ÑR, called the Lawrence fan,

whose maximal cones are precisely the (|E| + d)-dimensional cones σE,ξ indexed by

vertices ξ of A. Let M̃ be the dual lattice to Ñ , and let T̃ = SpecK[M̃ ] be the

Lawrence torus. Then the T̃ -toric variety BA = YΣA is called the Lawrence toric

variety associated to A.

Remark 2.5. In the literature, BA is usually defined as the GIT quotient of the

cotangent bundle T ∗AE ∼= AE×AE by G = SpecK[Λ∨] with respect to the character

α = ι∗(r) ∈ Λ∨. Hausel and Sturmfels [HS02, Proposition 4.3] identify the fan of this
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GIT quotient as the collection of cones σE,ξ together with all of their faces. Hence,

this fan is ΣA.

However, the maximal cones in [HS02] are indexed not by vertices of A, but by

bases of the dual matroid ofM. Given such a basis, the intersection of all hyperplanes

He indexed by the dual basis of M yields a vertex of A. Every vertex arises in this

way, but unless A is simple, one vertex may arise from multiple bases. (In the extreme

example where A is central, there may be many bases, but each produces the single

vertex of A.) Therefore, it is more natural to index the maximal cones by vertices of

the arrangement, as we do here.

To our knowledge, no description of the non-maximal cones of ΣA appears in the

literature.

Lemma 2.6. The cone σS,R has dimension |S|+ codimR.

Proof. It suffices to prove this in the case S = E.

The dimension of σE,R is equal to the dimension of its real span 〈σE,R〉 ⊆ ÑR.

Define

V1 = R〈ρ+
i , ρ

−
j | i ∈ E+(R) r E0(R), j ∈ E−(R) r E0(R)〉

and

V2 = R〈ρ+
i , ρ

−
j | i, j ∈ E0(R)〉.

Then we clearly have 〈σE,R〉 = V1 + V2.

Since every relation among the elements ρ±e is of the form

∑
e∈E

ce(ρ
+
e − ρ−e ) = 0,
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any nontrivial linear dependence among the generators of σE,R must occur among the

vectors {ρ+
i , ρ

−
j | i, j ∈ E0(R)} generating V2. It follows that dimV1 = |E r E0(R)|

and 〈σE,R〉 = V1 ⊕ V2.

Choose any basis B ⊆ E0(R) of the matroid ME0(R). We claim that

{ρ+
i , ρ

−
j | i ∈ B, j ∈ E0(R)} (2.5)

is a basis for V2. Indeed, any nontrivial linear dependence among these generators

must occur among the subset {ρ+
i , ρ

−
j | i, j ∈ B}, but any such dependence must be

trivial because B is independent. Thus, the set in (2.5) is linearly independent. On

the other hand, for any i ∈ E0(R) r B, there is a unique expression ai =
∑

b∈B cbab,

where cb ∈ Z. This implies

ρ+
i = ρ−i +

∑
b∈B

cb(ρ
+
b − ρ

−
b ),

and therefore the set in (2.5) spans V2. By (2.2), we have codimR = rkME0(R).

Therefore,

dimV2 = |B|+ |E0(R)| = rkME0(R) + |E0(R)| = codimR+ |E0(R)|,

and hence

dimσE,R = dimV1 + dimV2 = codimR+ |E|.

Lemma 2.7. Every face of σS,R is of the form σS′,R′, and we have the face relations

σS′,R′ ≺ σS,R if and only if S ⊇ S ′ and R ⊆ R′.
16



Proof. Again, we may assume that S = E and R is a face of A.

Suppose τ ≺ σE,R is a face. Then τ = u⊥ ∩ σE,R for some u ∈ σ∨E,R ⊆ M̃R. We

also know that τ is generated by a subset of the rays of σE,R. That is, τ is the cone

generated by

{ρ+
i | i ∈ I} ∪ {ρ−j | j ∈ J}

for some subsets I ⊆ E+(R) and J ⊆ E−(R). Set S ′ = I ∪ J .

Note that the dual ∆∗ of the antidiagonal map of (2.3) maps M̃R onto MR. Fix

any point p ∈ R. Set

m = ∆∗(εu) + p ∈MR,

where ε > 0 will be fixed shortly. Observe that

〈m, ae〉+ re = ε〈u,∆(ae)〉+ 〈p, ae〉+ re = ε(〈u, ρ+
e 〉 − 〈u, ρ−e 〉) + (〈p, ae〉+ re)

for any e ∈ E. Since the sign of 〈p, ae〉 + re for each e is determined by R, and E is

a finite set, it is possible to choose ε > 0 sufficiently small so that

sgnAS′ (m)e =



+ if e ∈ I r (I ∩ J),

0 if e ∈ I ∩ J,

− if e ∈ I r (I ∩ J).

That is, m lies in a face R′ of AS′ such that S ′+(R′) = I and S ′−(R′) = J . This

shows that τ = σS′,R′ . Since I ⊆ E+(R) and J ⊆ E−(R), Lemma 2.4 implies that

R ⊆ R′.
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Conversely, let S ′ ⊆ E and let R′ be a face of AS′ with R ⊆ R′. We shall

show that σS′,R′ is a face of σE,R. By Lemma 2.4, we have E+(R) ⊇ S ′+(R′) and

E−(R) ⊇ S ′−(R′).

Fix some p ∈ R and m ∈ R′, and for each k ∈ E r S ′, choose positive real

numbers ck and dk such that ck − dk = 〈m− p, ak〉. Define a functional on ZE ⊕ ZE

by

u =
∑

i∈S′−(R′)

〈m− p, ai〉x+
i −

∑
j∈S′+(R′)rS′0(R′)

〈m− p, aj〉x−j +
∑

k∈ErS′
(ckx

+
k − dkx

−
k ),

where {x±e } is the dual basis to {δ±e }. A priori, u ∈ R〈x±e 〉. However, we have defined

u so that

〈∆∗(u), δe〉 = 〈u,∆(δe)〉 = 〈u, δ+
e − δ−e 〉

is equal to 〈m − p, ae〉 for all e ∈ E. Since {ae, e ∈ E} spans NR, it follows that

∆∗(u) = m− p ∈MR, and therefore u ∈ M̃R. By construction, we have u ∈ σ∨E,R and

u⊥ ∩ σE,R = σS′,R′ , proving that σS′,R′ ≺ σE,R.

Lemma 2.8. If ξ and ζ are two vertices of A, then σE,ξ ∩ σE,ζ is a cone of the form

σS,R. Moreover, every cone σS,R is the face of σE,ξ for some vertex ξ.

Proof. We say that a hyperplane He separates the vertices ξ and ζ if ξ and ζ lie in

opposite halfspaces of He and neither lies on He. Let S ⊆ E be the set of all e such

that He does not separate ξ and ζ. Then there is a unique face R of AS such that

R contains every point in the interior of the line segment connecting ξ and ζ, and

σE,ξ ∩ σE,ζ = σS,R.

Conversely, if σS,R is any cone in ΣA, then R is a union of faces of A. Since a

is spanning, each face of A contains at least one vertex in its closure, so R has this
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property as well. Let ξ be any vertex of A contained in R. Therefore σS,R ≺ σE,ξ by

Lemma 2.7.

2.4. The hypertoric variety of a an arrangement

Consider the surjection Ñ → ZE in (2.4). Tensoring with R, we obtain a linear

map Φ∗ : ÑR → RE with Φ∗(σS,R) = RS
≥0. We thus obtain a surjective map of toric

varieties Φ: BA → AE. We define the hypertoric variety of the arrangement

A, denoted MA, to be the preimage of the linear space L under the map Φ. It is

irreducible of dimension 2d.

Remark 2.9. Since ZE⊕ZE surjects onto Ñ (cf. (2.3)), the map Φ lifts to a surjection

T ∗(AE) ∼= AE ×AE → AE (this is the moment map for the hamiltonian action of GE
m

on AE). If we work over K = C, then the complex points of AE/L can be identified

with the dual Lie algebra of the torus G = SpecK[Λ∨], and the composition of Φ with

the projection AE → AE/L is then the moment map µ for the hamiltonian action

of G on T ∗AE. This endows MA = µ−1(0) �α G with a canonical Poisson structure.

Arbo and Proudfoot have proved that this Poisson structure makes MA a symplectic

variety in the sense of Beauville [AP16, Proposition 4.14]. The torus T acts on MA

via its antidiagonal embedding in the Lawrence torus T̃ . This action is hamiltonian

with moment map Φ|MA .

By [BD00, Theorems 3.2 & 3.3], the hypertoric variety MA has at worst orbifold

singularities if and only if the arrangement A is simple, and is smooth if and only if

A is smooth. The variety MA0 is affine, and if A is simple then MA → MA0 is an

orbifold resolution of singularities. By [HP04, Lemma 2.2], MA is independent of the

coorientations of the hyperplanes in A.
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Example 2.10. If A is the arrangement of coordinate hyperplanes in MR, then the

associated hypertoric variety is MA ∼= T ∗Ad ∼= A2d. The polytope of Pd is a d-

simplex in MR cut out by d+ 1 affine hyperplanes. The hypertoric variety associated

to the arrangement consisting of these hyperplanes is isomorphic to T ∗Pd. The

same procedure realizes the cotangent bundle of a product of projective spaces as

a hypertoric variety. In general, if Y is a projective toric variety with polyhedron P ,

then the arrangement of hyperplanes cutting out P defines a hypertoric variety which

contains T ∗Y as a dense open subset [BD00, Theorem 7.1].

Since Φ∗(σS,R) = RS
≥0, the restriction of Φ to O(σS,R) is a surjection onto the

torus orbit GErS
m in AE. This surjection is split because T̃ → GE

m is split. Moreover,

Φ−1(GErS
m ) =

⊔
R

O(σS,R),

where the (set-theoretic) disjoint union is taken over all faces R of AS.

Proposition 2.11. Let F ⊆ E be a subset and let R be a face of AF . The intersection

MA∩O(σF,R) is nonempty if and only if F is a flat ofM, in which case it is a linear

subvariety of O(σF,R) of dimension 2d−rkF −codimR. In particular, MA∩O(σF,R)

is irreducible when it is nonempty.

Proof. Because MA ∩ O(σF,R) is the preimage of L ∩ GErF
m under the surjection

Φ|O(σF,R) : O(σF,R)→ GErF
m , we have MA ∩O(σF,R) 6= ∅ if and only if L∩GErF

m 6= ∅,

and this occurs if and only if F is a flat of M.

Suppose then that F is a flat of M. Since L ∩ GErF
m is a linear subvariety

of GErF
m and Φ|O(σF,R) is a split surjection, we may apply Lemma 2.1 to conclude

that MA ∩ O(σF,R) is a linear subvariety of O(σF,R) of codimension equal to the

codimension of L ∩GErF
m in GErF

m .
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Since dim(L ∩GErF
m ) = dimLF = rkMF = d− rkF , we have

codimO(σF,R)(MA ∩O(σF,R)) = |E r F | − d+ rkF.

By Lemma 2.6,

dim(MA ∩O(σF,R)) = dimO(σF,R)− (|E r F | − d+ rkF )

= (d− codimR+ |E r F |)− (|E r F | − d+ rkF )

= 2d− rkF − codimR.

In general, if X is a subvariety of a toric variety, then the expected dimension of

the intersection of X with a torus orbit O(σ) is dimX − dimσ. If the dimension of

the intersection is equal to the expected dimension, then we say that X intersects the

torus orbit properly. Proposition 2.11 implies that a hypertoric variety does not, in

general, intersect all Lawrence torus orbits properly.

Corollary 2.12. The hypertoric variety MA does not meet each torus orbit of BA

properly unless MA ∼= A2d.

Proof. Let F be a flat ofM, so that MA ∩O(σF,R) is nonempty. By Lemma 2.6, the

expected dimension of this intersection is

dimMA − dimσF,R = 2d− |F | − codimR.

By Proposition 2.11, dim(MA ∩ O(σF,R)) agrees with the expected dimension if and

only if |F | = rkF . This will hold for every flat ofM if and only if |E| = d andM is
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the uniform matroid of rank d. In this case, the primitive spanning configuration a

will be an integral basis for N , and therefore MA ∼= A2d.
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CHAPTER III

ANALYTIFICATION AND TROPICALIZATION

This chapter contains a brief overview of Berkovich’s theory of non-Archimedean

analytic spaces, and the definition of the (Kajiwara-Payne) tropicalization of

subvarieties of a toric variety. We include Example 3.1, describing the tropicalization

of a linear space, which will be of use to us in describing the tropicalization of the

hypertoric variety MA in Chapter IV. For further reading, see [Ber90] for foundations

of Berkovich spaces, [CHW14, Section 5] for a practical discussion of affinoid algebras,

[MS15] for a general treatment of tropicalizations, and [Gub13] for a comprehensive

treatment of tropicalization from the perspective of non-Archimedean geometry.

Write T = R ∪ {∞}, which we shall consider as a monoid under addition and

as a topological space homeomorphic to (0, 1]. Recall that our ground field K is

equipped with a non-Archimedean valuation ν : K → T. Let | · | = exp(−ν( · )) be

the associated norm on K.

3.1. Affinoid algebras and analytic spaces

For r = (r1, . . . , rn) ∈ Rn
>0, we have the weighted Gauss norm || · ||r on the

polynomial ring K[x1, . . . , xn], defined by

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Nn

cux
u

∣∣∣∣∣
∣∣∣∣∣
r

= max
u∈N
|cu|ru
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(where cu = 0 for all but finitely many u, and ru = ru11 · · · runn ). The completion of

K[x1, . . . , xn] with respect to || · ||r is the generalized Tate algebra

K〈r−1
1 x1, . . . , r

−1
n xn〉 =

{ ∑
u∈Nn

cux
u
∣∣∣ |cu|ru → 0 as |u| → ∞

}

which can be thought of as the ring of convergent power series on the polydisc of

radius r in An. It is a Banach algebra, equipped with the norm || · ||r.

A K-affinoid algebra is a Banach algebra (A , || · ||), where A is isomorphic

to a quotient K〈r−1
1 x1, . . . , r

−1
n xn〉/I and || · || is equivalent to the quotient norm.

The Berkovich spectrum M (A ) of a K-affinoid algebra A is the set of bounded

multiplicative seminorms γ on A , equipped with the coarsest topology such that

eva : M (A )→ R≥0, γ 7→ γ(a) is continuous for every a ∈ A .

Similar to the construction of the generalized Tate algebra, we may complete the

Laurent polynomial ring K[x±1
1 , . . . , x±1

n ] with respect to || · ||r to obtain

K〈r−1
1 x1, r1x

−1
1 . . . , r−1

n xn, rnx
−1
n 〉 =

{∑
u∈Zn

cux
u
∣∣∣ |cu|ru → 0 as |u| → ∞

}
,

which is also a K-affinoid algebra.

Given a K-affinoid algebra A , with norm || · ||, and s ∈ R>0, define

A 〈s−1x, sy〉 =

{∑
i,j≥0

cijx
iyj
∣∣∣ cij ∈ A , ||cij||si−j → 0 as i+ j →∞

}
.

For any element f ∈ A , we can then define the affinoid algebra

A 〈s−1f, sf−1〉 = A 〈s−1x, sy〉/(x− f, fy − 1).
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Iterating this construction, given s1, . . . , sn ∈ R>0 and f1, . . . , fn ∈ A , we

may define the affinoid algebra A 〈s−1
1 f1, s1f

−1
1 , . . . , s−1

n fn, snf
−1
n 〉. Its Berkovich

spectrum M (A 〈s−1
1 f1, s1f

−1
1 , . . . , s−1

n fn, snf
−1
n 〉) includes into M (A ) as the set of

all seminorms γ such that γ(fi) = si for i = 1, . . . , n.

A Berkovich K-analytic space is, roughly speaking, a topological space

equipped with a sheaf of analytic functions which is locally isomorphic to the

Berkovich spectrum of a K-affinoid algebra, where the ring of analytic functions

on M (A ) is A . For details, see [Ber90, Chapters 2 & 3].

Given a K-variety X, there is an analytification functor which associates to X a

K-analytic space Xan. As a topological space, Xan can be described without reference

to Berkovich spectra or affinoid algebras. If X = SpecA is affine, then Xan is the set

of ring valuations A→ T extending the valuation ν on K (or, equivalently, as the set

of multiplicative seminorms on A extending | · |). We give Xan the coarsest topology

such for every a ∈ A, the evaluation map eva : Xan → T, val 7→ val(a) is continuous.

For general X, we may take a cover of X by affine open subschemes {Ui}, and the

analytifications Uan
i glue to form Xan. (Equivalently, Xan can be expressed as a set

of equivalence classes of L-valued points, as L varies over all valued field extensions

of K [Gub13, Remark 2.2].)

The functor X → Xan possesses many nice properties [Ber90, Sections 3.4 & 3.5].

For instance, Xan is compact if and only if X is proper, and the topological dimension

of Xan is equal to the algebraic dimension of X. If ϕ : X → Y is a morphism of K-

varieties, then many properties (e.g. smooth, étale, flat, finite) of ϕ are inherited by

ϕan. Of particular use to us is that ϕan is a closed (resp. open) immersion if and only

if ϕ is.
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3.2. Tropicalization

Let Σ be a fan in NR, as in Section 2.1. For a cone σ ∈ Σ, we define N
σ

R to

be the set of monoid homomorphisms Hom(σ∨ ∩M,T). We give N
σ

R the topology of

pointwise convergence. If τ ≺ σ, then N
τ

R is naturally identified with the open subset

of N
σ

R consisting of maps which are finite on τ⊥ ∩ σ∨ ∩M (in particular, NR = N
{0}
R

is an open subset of each N
σ

R). Gluing along these identifications, we obtain N
Σ

R, a

partial compactification of NR. This mirrors the construction of the toric variety YΣ:

we have a decomposition N
Σ

R =
⋃
σ∈Σ N

σ

R analogous to the decomposition of YΣ into

affine toric varieties, and a (set-theoretic) decomposition N
Σ

R =
⊔
σ∈Σ N(σ) analogous

to the decomposition of YΣ into torus orbits. These two constructions are related by

the process of tropicalization.

The tropicalization map on the torus T = SpecK[M ] is the continuous

surjection

trop: T an → NR

which takes a valuation val : K[M ] → T to its restriction val |M : M → R. More

generally, for a cone σ ∈ Σ, we have a tropicalization map

trop: Y an
σ → N

σ

R = Hom(σ∨ ∩M,T)

which similarly maps a valuation val : K[σ∨ ∩M ] → T to its restriction to σ∨ ∩M .

These maps glue to give a tropicalization map trop: Y an
Σ → N

Σ

R. This map is a

continuous and proper surjection, which has the property that its restriction to each

torus orbit is the usual tropicalization O(σ)an → NR(σ) for a torus.

Given a closed subvariety X ⊆ YΣ, the analytification Xan is a closed subspace

of Y an
Σ . The tropicalization Trop(X) ⊆ N

Σ

R of X defined by its embedding in YΣ
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is the image of Xan under trop. If X is a subvariety of the torus T , then Trop(X)

may be given the structure of a finite polyhedral complex, which is a (not necessarily

pointed) fan if X is defined over a subfield of K having trivial valuation. Moreover,

this polyhedral complex is of pure dimension dimX and is equipped with a positive

integer-valued weight function, the tropical multiplicity, with respect to which the

complex is balanced [MS15, Theorem 3.3.5].

We refer the interested reader to [OP13, Section 2] for a discussion of tropical

multiplicities. The basic idea is as follows. Each w ∈ NR defines a scheme T w over

the valuation ring of K with generic fiber T . We think of this as a degeneration of

T . The closure of X ⊆ T in T may or may not intersect the special fiber. This

intersection is a scheme over the residue field, called the initial degeneration inwX

of X at w. Part of the so-called Fundamental Theorem of Tropical Geometry [MS15,

Theorem 3.2.5] states that w ∈ Trop(X) if and only if inwX is nonempty. In this

case, the tropical multiplicity of Trop(X) at w is the multiplicity of inwX, i.e., its

number of irreducible components, counted with multiplicity.

In the general setting where X is a subvariety of a toric variety, Trop(X)

may be computed orbit-by-orbit: Trop(X) ∩ NR(σ) = Trop(X ∩ O(σ)). The

multiplicity of Trop(X) at w ∈ Trop(X) ∩NR(σ) is equal to the tropical multiplicity

of Trop(X ∩O(σ)) at w. Thus, Trop(X) is a partial compactification of the balanced

finite polyhedral complex Trop(X∩T ) by lower-dimensional balanced finite polyhedral

complexes. If X = X ∩ T (in particular, if X is irreducible and X ∩ T is nonempty),

then Trop(X) is the closure of Trop(X ∩ T ) in N
σ

R [MS15, Corollary 6.2.16].

Tropicalization is functorial with respect to toric morphisms. Let f : YΣ → YΣ′

be such a map. For σ ∈ Σ, there exists σ′ ∈ Σ′ such that f∗(σ) ⊆ σ′. For such a σ′,

the restriction of f ∗ gives a map M(σ′) → M(σ), inducing N
σ

R → N
σ′

R . These maps
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glue to give a map N
Σ

R → N
Σ′

R , denoted Trop(f). See [Pay09] for details. By [MS15,

Corollary 6.2.15], if X ⊆ YΣ, then Trop(f)(Trop(X)) = Trop(f(X)).

Example 3.1. Of particular importance to us will be the tropicalization of a linear

space. As in Section 2.2, let A be an arrangement, with associated linear space

L ⊆ AE = SpecK[xe | e ∈ E] and underlying matroid M.

The torus orbits of AE are indexed by subsets S ⊆ E, where S corresponds to the

torus GErS
m ⊆ AE defined by xe = 0 if and only if e ∈ S. The intersection L ∩GErS

m

of L with one of these orbits is nonempty if and only if S is a flat of M, in which

case it is the intersection of the restriction LS ⊆ AErS with the torus GErS
m .

Given a flat F of M, we define δF =
∑

e∈F δe ∈ RE ⊆ TE, where δe ∈ RE is the

basis vector corresponding to e ∈ E. For a flag of flats

F = (∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fk−1 ⊂ Fk = E),

we have the cone

βF = R≥0〈δF1 , · · · , δFk−1
,±δE〉 ⊆ RE,

where dim βF = `(F) = k. We have βF ≺ βF ′ if and only if F ′ is a refinement of F .

The collection of cones βF defines a fan in RE, called the Bergman fan ofM (with

the fine fan structure of [AK06]), with support equal to Trop(L∩Gm). As discussed

in [DP16, Section 2], every initial degeneration of L is also a linear space. Therefore,

the Bergman fan ofM is a pure polyhedral fan of dimension rkM, which is balanced

when each cone is assigned weight one.

Note that every cone βF in the Bergman fan contains the diagonal copy of R, the

span of δE. Many authors take the quotient by this lineality space, which is equal to

the tropicalization of the projectivization of L. We shall not adopt this convention.
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If F is a flat, then Trop(L ∩ GErF
m ) is the support of the Bergman fan of the

restriction MF . Its cones, denoted β
(F )
F , are in correspondence with flags F of flats

in MF (such a flag is identified with a flag of flats in M beginning at F ). The full

tropicalization Trop(L) ⊆ TE, together with the fan structures on each of its strata,

is the extended Bergman fan of A. It is equal to the closure of

Trop(L ∩GE
m) = Trop(L) ∩ RE

in TE.
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CHAPTER IV

THE TROPICALIZATION OF A HYPERTORIC VARIETY

In this chapter, we describe the structure of the tropicalization of a hypertoric

variety induced by its canonical embedding in the Lawrence toric variety. The main

result is Theorem 4.1, which describes a polyhedral structure on the tropicalization.

We also calculate the fibers of the tropicalization map. The main tool to obtain

these results is the moment map Φ, which by functoriality of tropicalization gives

a map from the tropicalization of the hypertoric variety to the Bergman fan of the

underlying matroid of the arrangement.

Fix an arrangement A = A(a, r) in MR, where a is a primitive spanning

configuration. As in Section 2.2, let L ⊆ AE be the associated linear space and

M the underlying matroid.

4.1. Description of the tropicalization

Let Φ: BA → AE be the moment map from Section 2.4. By definition of MA, Φ

maps MA onto L, and by functoriality of tropicalization, Trop(Φ) gives a surjection

Trop(MA)→ Trop(L). Given a flat F ofM, the stratum Trop(L∩GErF
m ) of Trop(L)

is the Bergman fan of the restrictionMF . As noted in example 3.1, this fan has cones

β
(F )
F indexed by flags F of flats inMF . Given such a flag F , let C

(F,R)
F be the preimage

of β
(F )
F under the surjection Trop(MA ∩ O(σF,R)) → Trop(L ∩ GErF

m ). Since every

Bergman fan is balanced when every maximal cone is given weight one, each stratum

Trop(MA ∩ O(σF,R)) = Trop(MA) ∩ ÑR(σF,R) inherits this structure of a balanced

polyhedral fan with cones C
(F,R)
F and all weights equal to one. Our main theorem

describes how these fans are pieced together.
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Theorem 4.1. The tropicalization Trop(MA) of the hypertoric variety is the union

of cones C
(F,R)
F indexed by a flat F of M, a face R of the localization AF , and a flag

of flats F in the restriction MF . These cones satisfy

dimC
(F,R)
F = d− codimR+ `(F).

This gives Trop(MA) the combinatorial structure of a finite polyhedral complex, under

the closure relation

C
(F ′,R′)
F ′ ⊆ C

(F,R)
F (4.1)

if and only if the following conditions hold:

– F ⊆ F ′;

– R′ ⊆ R;

– F ′ is a flat in F , and truncF ′(F) is a refinement of F ′.

Moreover, this gives each stratum Trop(MA)∩ ÑR(σF,R) the structure of a polyhedral

fan, which is balanced when all cones are given weight one.

Given a flat F and a face R of AF , there are two fans which live in

Trop(O(σF,R)) = ÑR(σF,R): the fan Trop(MA) ∩ ÑR(σF,R) and the fan of the orbit

closure O(σF,R). The former fan has cones C
(F,R)
F indexed by flags of flats in MF ,

while the latter consists of the projections of the cones σS,R′ with σS,R′ � σF,R (by

Lemma 2.7, this is equivalent to S ⊇ F and R′ ⊆ R). The following lemma relates

these two fans.
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Lemma 4.2. Let F be a flat of M and R a face of AF . Given a set S ⊆ E which

contains F and a face R′ of AS contained in R, the intersection

C
(F,R)
F ∩ relint(πσF,R(σS,R′)),

for F a flag of flats inMF , is nonempty if and only if S is a flat ofM which appears

in the flag F . In this case,

C
(F,R)
F ∩ ÑR(σS,R′) = C

(S,R′)
truncS(F).

Proof. First, because Φ(σF,R) = RF
≥0, we have that

Trop(Φ)|ÑR(σF,R) : ÑR(σF,R) = Trop(O(σF,R))→ RErF = RE/RF

is given by [v] 7→ [Φ(v)]. (Here we are identifying RE/RF , the vector space spanned by

the cocharacter lattice of O(RF
≥0) = GErF

m ⊆ AE with RErF primarily for notational

convenience.) In other words, the square

ÑR RE

ÑR(σF,R) RErF

Trop(Φ)

πσF,R

Trop(Φ)

(4.2)

commutes.

Now, suppose v ∈ C
(F,R)
F ∩ relint(πσF,R(σS,R′)) ⊆ ÑR(σF,R). Every vector in

σS,R′ can be written as a linear combination, with non-negative coefficients, of the

generators ρ+
e , ρ

−
f for e ∈ S+(R′), f ∈ S−(R′). Then v is the image of such a

vector under πσF,R , which kills all generators of σS,R′ indexed by elements of F (since
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F±(R) ⊆ S±(R′) by Lemma 2.4). In order for v to be in the relative interior of

πσF,R(σS,R′), therefore, it must be that coefficient of ρ+
e (resp. ρ−f ) is positive for

e ∈ S+(R′)rF+(R) (resp. f ∈ S−(R′)rF−(R)). Since the square (4.2) commutes,

it follows that Trop(Φ)(v) ∈ RErF will lie in RSrF
>0 ∩ β

(F )
F . By the definition of β

(F )
F

(cf. Example 3.1), this intersection is nonempty if and only if S is a flat in the flag

F .

Conversely, suppose S is a flat in F . For e ∈ S r F , define

ve =



1
2
(ρ+
e + ρ−e ) if e ∈ S0(R′),

ρ+
e if e ∈ S+(R) r S0(R′),

ρ−e if e ∈ S−(R) r S0(R′),

and let v =
∑

e∈SrF ve. Then, by design, we have v ∈ relint(πσF,R(σS,R′)) and

Trop(Φ)(v) = δSrF ∈ βF . , it follows that v ∈ Trop(Φ)−1(βF) = C
(F,R)
F , and therefore

C
(F,R)
F ∩ relint(πσF,R(σS,R′)) 6= ∅.

For the final part of the lemma, we assume that S is a flat in the flag F . We

have

C
(F,R)
F ∩ ÑR(σS,R′)) = πσS,R′ (C

(F,R)
F )

by [OR13, Lemma 3.9], so we need only prove that this projection coincides with

C
(S,R′)
truncS(F). The square

ÑR(σF,R) RErF

ÑR(σS,R′) RErS

Trop(Φ)

πσS,R′

Trop(Φ)

commutes for the same reason that that (4.2) commutes. Thus, we see that Trop(Φ)

maps πσS,R′ (C
(F,R)
F ) onto β

(S)
truncS(F), which shows that πσS,R′ (C

(F,R)
F ) ⊆ C

(S,R′)
truncS(F).
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On the other hand, if w ∈ C(S,R′)
truncS(F) and v is a preimage of w under πσS,R′ , then

Trop(Φ)(v) need not lie in β
(F )
F , so that v need not be in C

(F,R)
F . However, we can

choose η ∈ RSrF so that Trop(Φ)(v) + η ∈ β
(F )
F . Since η ∈ RSrF , there exists a

preimage v′ ∈ ÑR(σF,R) of η under Trop(Φ), such that v′ is expressed as a sum of

generators ρ+
e and ρ−f with e, f ∈ S r F . Then πσS,R′ (v

′) = 0, and therefore v + v′ ∈

C
(F,R)
F projects to w. This shows the reverse inclusion C

(S,R′)
truncS(F) ⊆ πσS,R′ (C

(F,R)
F ).

We are now ready to prove the main theorem.

Proof of Theorem 4.1. Suppose that C
(F ′,R′)
F ′ ⊆ C

(F,R)
F . Then necessarily the

intersection C
(F,R)
F ∩ ÑR(σF ′,R′) is nonempty. By Lemma 4.2, this implies F ′ ⊇ F is

a flat in F and R′ ⊆ R. In this case,

C
(F,R)
F ∩ ÑR(σF ′,R′) = C

(F ′,R′)
truncF F

will contain C
(F ′,R′)
F ′ as a face if and only if truncF ′(F) is a refinement of F ′.

Let C
(F,R)
F be a cone in Trop(MA) ∩ ÑR(σF,R). Since

Trop(Φ): NR(σF ,R)→ RErF

is a linear surjection of relative dimension d − codimR, and C
(F,R)
F is defined to be

the preimage of β
(F )
F , it follows that

dimC
(F,R)
F = d− codimR+ dim β

(F )
F = d− codimR+ `(F).
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Remark 4.3. By Theorem 4.1, a cone C
(F,R)
F is inclusion-maximal in the stratum

Trop(MA) ∩ ÑR(σF,R) if and only if the flag F is maximal. A maximal flag in MF

has length rkMF = d− rkF , so that

dimC
(F,R)
F = d− codimR+ `(F) = 2d− rkF − codimR.

Thus dimC
(F,R)
F agrees with dim(MA ∩ O(σF,R)) = dim(Trop(MA) ∩ ÑR(σF,R)) by

Proposition 2.11. This shows that the inclusion-maximal cones in each stratum of

Trop(MA) are precisely the dimension-maximal cones, which should be expected

because tropicalizations are always pure-dimensional.

4.2. Fibers of tropicalization

In this section, we calculate the fiber of the tropicalization map MA → Trop(MA)

over a point θ ∈ Trop(MA), following the approach of [CHW14]. Suppose that

θ ∈ Trop(MA) ∩ ÑR(σF,R) for some flat F of M and face R of the localization

AF . We shall write trop−1(θ) ⊆ O(σF,R)an to denote the fiber over θ of the map

trop: O(σF,R)an → ÑR(σF,R), and trop−1
MA

(θ) = trop−1(θ) ∩Man
A for the fiber over θ

of Man
A → Trop(MA). Let η = (ηe) ∈ RErS be the image of θ under Trop(Φ).

We defined the moment map Φ: BA → AE as an extension to BA of a split

surjection of tori T̃ → GE
m. This surjection is given by the map Ñ → ZE from (2.4)

or equivalently by an injection of characters Φ∗ : ZE → M̃ . The image under Φ∗ of

a generator xe ∈ ZE is the primitive diagonal element x+
e + x−e ∈ M̃ ⊆ ZE ⊕ ZE.

Inspired by the standard notation for the homogeneous coordinate ring of BA, we

denote by zewe the monomial in K[M̃ ] corresponding to x+
e + x−e .
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The diagonal element x+
e + x−e is in M̃(σF,R) if and only if e ∈ E r F , and the

restriction of Φ to O(σF,R) is given by restricting Φ∗ to obtain ZErF → M̃(σF,R).

We may extend the set {x+
e + x−e | e ∈ E r F} to an integral basis of M̃(σF,R). By

Lemma 2.6 we must add d− codimR = dimR primitive elements ui. We write yi for

the monomial corresponding to ui, so that

K[O(σF,R)] = K[M̃(σF,R)] ∼= K[(zewe)
±1, y±1

i | e ∈ E r F, i = 1, . . . , dimR].

An element of ÑR(σF,R) = Hom(M̃(σF,R),R) is uniquely determined by its values on

the integral basis {x+
e +x−e , ui | e ∈ ErF, i = 1, . . . , dimR} of M̃(σF,R). In particular,

a valuation val ∈ O(σF,R)an lies in trop−1(θ) if and only if val(zewe) = 〈x+
e +x−e , θ〉 = ηe

for all e ∈ E r F and val(yi) = 〈ui, θ〉 for all i = 1, . . . , dimR.

Let B be a basis of MF which has maximal η-weight; that is,
∑

e∈B ηe is

maximized at B, and consider the subring

A = K[(zewe)
±1, (yi)

±1 | e ∈ B, i = 1, . . . , dimR]

of K[O(σF,R)]. Since B is a basis ofMF , for each f ∈ E r (F ∪B), there is a unique

element

pf =
∑
e∈B

ce(zewe) ∈ A

such that pf − zfwf ∈ K[O(σF,R)] lies in the ideal of MA ∩ O(σF,R). Since these

relations generate the ideal, this shows that A is isomorphic to the coordinate ring

K[MA ∩O(σF,R)]. Furthermore, because the basis B is η-maximal, any valuation val

on A with val(zewe) = ηe for every e ∈ B must necessarily satisfy val(pf ) = ηf for all

f ∈ E r (F ∪ B) as well.
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We can therefore identify trop−1
MA

(θ) with the set of valuations on A such that

val(zewe) = ηe for all e ∈ B and val(yi) = 〈ui, θ〉 for i = 1, . . . , dimR. This is a

satisfying description of the fiber; however, it is useful to identify this fiber with the

Berkovich spectrum of a particular K-affinoid algebra.

Set re = exp(−ηe) and si = exp(−〈ui, θ〉). Define the affinoid algebras

A = K〈r−1
e (zewe), re(zewe)

−1, s−1
i yi, siy

−1
i | e ∈ B, i = 1, . . . , dimR〉.

and

B = A 〈r−1
f pf , rfp

−1
f | f ∈ E r (F ∪ B)〉.

Then by construction, each seminorm γ ∈M (B) restricts to a seminorm on A with

γ(zewe) = re and γ(yi) = si for all e ∈ E r F and i = 1, . . . , dimR. (Equivalently,

− log γ(−) is a valuation on A with − log γ(zewe) = ηe and − log γ(yi) = 〈ui, θ〉.)

In fact, this is a bijective correspondence, and any such seminorm on A extends

uniquely to B. We will not prove this statement, but we refer the reader to the proof

of [CHW14, Proposition 5.6], which can be adapted to prove the following.

Proposition 4.4. The fiber trop−1
MA

(θ) is M (B) ⊆Man
A .

It turns out that M (B) has a unique Shilov boundary point: a seminorm

γ ∈M (B) such that evb : M (B)→ R≥0 is maximized at γ for every b ∈ B. Again,

we shall not prove this, but we refer to [CHW14, Theorem 5.8 & Corollary 5.9] for

an outline.

The significance of this result is that the section Trop(MA)→Man
A which we will

construct in Chapter V will map each θ ∈ Trop(MA) to the unique Shilov boundary

point of trop−1
MA

(θ).
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CHAPTER V

FAITHFUL TROPICALIZATION

In this chapter, we prove that each hypertoric variety is faithfully tropicalized by

its Lawrence embedding. We do so by using Theorem 4.1 to show that the conditions

of a theorem of Gubler, Rabinoff, and Werner are satisfied.

5.1. The theorem of Gubler-Rabinoff-Werner

Let X be a suvariety of a torus. Gubler, Rabinoff, and Werner have shown that

there exists a unique continuous section to the tropicalization map Xan → Trop(X)

if Trop(X) has tropical multiplicity one at every point [GRW16, Theorem 10.6].

In the general case, where X is a subvariety of a toric variety YΣ which is not

necessarily a torus, we can apply the above result on each torus orbit: If Trop(X) has

multiplicity one at every point, then there is a unique section of tropicalization which

is continuous on Trop(X ∩ O(σ)) = Trop(X) ∩NR(σ) for each σ ∈ Σ. However, this

section may fail to be continuous on all of Trop(X). An example of an irreducible

hypersurface in A3 for which this section is not continuous is given in [GRW15,

Example 4.9].

In [GRW15], Gubler, Rabinoff, and Werner provide the following sufficient

criteria for continuity of this section.

Theorem 5.1 ([GRW15, Proposition 8.8 & Theorem 8.14]). Let Σ be a pointed

rational fan in NR, and let X ⊆ YΣ be a subvariety. Suppose that

(1) X ∩ T is dense in X;
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(2) for all σ ∈ Σ, the subscheme X ∩ O(σ) is either empty or equidimensional of

dimension dσ;

(3) Trop(X) has tropical multiplicity one at every point;

(4) Trop(X) ∩ NR can be covered by finitely many d0-dimensional polyhedra with

the following property: If the recession cone of P meets the relative interior of

σ, then πσ(P ) = P ∩NR(σ) has dimension dσ.

Then there is a unique continuous section of the tropicalization map Xan → Trop(X).

Remark 5.2. It follows from [GRW15, Proposition 8.3] that for each point in the

tropicalization of multiplicity one, the fiber of the tropicalization map over that point

contains a unique Shilov boundary point. The section produced by Theorem 5.1 maps

each point of Trop(X) to the unique Shilov boundary point in its fiber.

Although the proof of Theorem 5.1 requires careful study of the analytification

Xan, the criteria (1)–(4) can be checked purely by inspecting Trop(X) (and X

itself). We remark that while Theorem 5.1 is a powerful tool, it does not trivialize

the problem of finding a faithful tropicalization of X. Indeed, it does not give

any indication as to how to find a faithful tropicalization of X, nor does it imply

that one must even exist. Rather, Theorem 5.1 transforms a difficult problem in

non-Archimedean geometry—that of verifying that a particular tropicalization is

faithful—into a difficult combinatorics problem. For example, as outlined in [GRW15,

Example 8.16], Theorem 5.1 can be used to prove that the Plücker embedding yields

a faithful tropicalization of Gr(2, n); however, many ingredients of the original proof

in [CHW14] remain necessary to establish conditions (2)–(4).

Remark 5.3. Faithful tropicalization is easy to verify in one situation. If X is

irreducible and intersects each torus orbit properly or not at all, then by [GRW15,
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Theorem 8.15] the resulting tropicalization is faithful if Trop(X) has multiplicity one

everywhere. By Corollary 2.12, a hypertoric variety MA fails to possess this nice

property outside of the trivial case MA = A2d. (The Grassmannian Gr(2, n) also

does not intersect torus orbits properly.)

5.2. Faithful tropicalization of hypertoric varieties

Let MA be any hypertoric variety. As in section 4.1, let Trop(MA) denote the

tropicalization induced by the Lawrence embedding MA ⊆ BA. We now use Theorem

5.1 to prove that this is a faithful tropicalization.

Theorem 5.4. There is a unique continuous section of the tropicalization map

Man
A → Trop(MA).

Proof. We shall show that the four conditions of Theorem 5.1 hold. The intersection

MA ∩ T̃ is nonempty, and therefore dense in MA because MA is irreducible. By

Proposition 2.11, the intersection of MA with any torus orbit in BA is either empty

or it is a linear space. In particular, each of these intersections (when nonempty) is

equidimensional and the tropical multiplicity of Trop(MA) is one at every point.

It remains to show that (4) holds. We equip Trop(MA) with the polyhedral

structure described in Theorem 4.1. Then Trop(MA) ∩ ÑR is covered by the 2d-

dimensional cones C
(∅,M̃R)
F , where F is a maximal flag of flats inM. For convenience,

we will write CF instead of C
(∅,M̃R)
F . By Lemma 4.2, the cone CF meets the relative

interior of a Lawrence cone σF,R if and only if F is a flat of M which appears in the

flag F . In this case, Lemma 4.2 gives

πσF,R(CF) = CF ∩ ÑR(σF,R) = C
(F,R)
truncF (F).
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Now, truncF (F) is a maximal flag of flats in MF , and therefore C
(F,R)
truncF (F) is an

inclusion-maximal cone of the fan Trop(MA)∩ ÑR(σF,R). It follows (cf. Remark 4.3)

that C
(F,R)
truncF (F) has dimension equal to dim(MA ∩O(σF,R)). We may therefore apply

Theorem 5.1 to conclude that there is a unique continuous section of tropicalization

defined on all of Trop(MA).

Remark 5.5. We conclude by noting that there is a more general notion of hypertoric

variety than we have discussed in this dissertation. Arbo and Proudfoot [AP16] have

recently shown how to construct a hypertoric variety from a zonotopal tiling T . Such

a hypertoric variety is also embedded in a (generalized) Lawrence toric variety, and

agrees with the variety constructed in Section 2.4 in the case where T is a regular

tiling and hence normal to some affine arrangement. We suspect that Theorem 5.4

remains true in this more general setting.
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