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ABSTRACT
In this article, we propose a test for the multivariate regular variation (MRV) model. The test is based on
testing whether the extreme value indices of the radial component conditional on the angular component
falling in different subsets are the same. Combining the test on the constancy across extreme value indices in
different directions with testing the regular variation of the radial component, we obtain the test for testing
MRV. Simulation studies demonstrate the good performance of the proposed tests. We apply this test to
examine two datasets used in previous studies that are assumed to follow the MRV model.
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1. Introduction

We construct a goodness-of-fit test for the multivariate regular
variation (MRV) model. This model has been applied in various
areas without a rigorous validation. We aim to provide an easy to
implement test, yet applicable to higher dimensional data. Next,
we first introduce the notion and relevance of MRV and then
explain the heuristics of our approach.

1.1. Multivariate Regular Variation

Large price fluctuations in finance and large losses in insurance
exhibit power-like tails (see, e.g., Gabaix 2009). The univariate
regular varying distributions are often used to capture such
heavy tailed phenomena. The MRV model generalizes this to the
higher dimensional situation to allow the marginal distributions
to be regularly varying with a flexible tail dependence structure.
Typical examples of MRV include elliptical distributions with
a regularly varying radial component, multivariate Student’s t
distributions, multivariate α-stable distributions, Archimedean
copulas with regularly varying generator and marginals (Weng
and Zhang 2012), among others.

The MRV model is related to multivariate extreme value
theory. Consider independent and identically distributed (iid)
random vectors from an MRV model. Then the component-
wise maxima of these random vectors, with the same normal-
ization for each marginal, weakly converge to a multivariate
extreme value distribution (see, e.g., Resnick 2013 for details).

The MRV model possesses a few convenient theoretical
properties which promote its vast applications in different
areas. For example, stationary solutions to stochastic recur-
rence equations have regularly varying marginals and follow the
MRV model (see, e.g., Kesten 1973). As a consequence, widely
used models in finance for assets returns, such as the ARCH
and GARCH models, have finite-dimensional distributions
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following the MRV model (see, e.g., Davis and Mikosch 1998;
Stărică 1999; Basrak, Davis, and Mikosch 2002a, 2002b). In
addition, as a semiparametric model, the MRV model assumes
only a limit relation in the tail region of a multivariate distribu-
tion. Consequently it allows for a flexible dependence structure
across several heavy-tailed random variables (see, e.g., Lindskog
2004; Resnick 2007 for more details). Due to these modeling
features, in risk management, MRV is often assumed to be the
model for multiple underlying risk factors. The tail behavior of
the aggregated risk based on multiple risk factors satisfying the
MRV model can be explicitly derived (see, e.g., Hauksson et al.
2001; Barbe, Fougeres, and Genest 2006; Embrechts, Lambrig-
ger, and Wüthrich 2009). Furthermore, portfolio diversification
under the MRV model was investigated in Mainik and Rüschen-
dorf (2010), Zhou (2010), and Mainik and Embrechts (2013),
among others. Besides the applications in finance and insurance,
the MRV model is also applied in telecommunications networks
(see, e.g., Resnick and Samorodnitsky 2015; Samorodnitsky et
al. 2016). Here it is important to verify the MRV model for real
data by means of a hypothesis test. Validation of the MRV model
justifies the derivations and conclusions of these studies.

The relevance of the MRV model is among others that the
multivariate outlying regions are homothetic when taking dif-
ferent degrees of outlyingness. This makes extrapolation from
intermediately extreme events to very extreme events possible,
which makes MRV a powerful model (see, e.g., He and Ein-
mahl 2017). Characterizing extreme outlyingness is not only
important to detect outliers or anomalies, but it is also reveals
the joint extreme behavior of multivariate risks, which in turn
can be relevant for defining stress testing scenarios. Clearly a
check on the MRV model is needed to make this often required
extrapolation possible.

In most of the applications, the MRV model is assumed
without a formal validation. This might be due to the fact that
there is no formal goodness-of-fit test of the MRV model in the
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literature. The only exception is Einmahl and Krajina (2020),
which provides a formal test for the MRV model but the test
is restricted to the bivariate case. The approach in there is very
different: it uses empirical likelihood and does not use extreme
value index estimation. In fact, testing whether a higher dimen-
sional dataset follows a MRV model by starting from its very
definition introduced in Section 2 is challenging. This is because
one needs to deal with the dimensionality, and the complex
dependence structures among the dimensions. In this article,
inspired by an important feature of MRV model, we construct
a formal goodness-of-fit test for the MRV model. The heuristics
of the method are explained in the next section. Our proposed
test can be applied in any dimension.

We demonstrate the finite sample performance of the pro-
posed tests through various models that either satisfy the null
hypothesis or fall in the alternative. Especially, simulations
based on three-dimensional MRV models are also performed to
illustrate how our testing procedure works in higher dimension.
We also apply the test to two real datasets: exchange rates (Yen-
Dollar, Pound-Dollar), and stock indices (S&P, FTSE, Nikkei).
Our study shows that these two datasets follow the MRV model,
which implies that the MRV model is indeed a realistic assump-
tion in these applications to financial markets. Besides, it pro-
vides support for the empirical studies in Cai, Einmahl, and De
Haan (2011) and He and Einmahl (2017), in which the MRV
model is assumed without a formal test.

1.2. Heuristics of Our Method

The existing studies employing the MRV model at best apply a
simple, informal, check for the validity of the MRV model. The
simple check is on the equality of all the extreme value indices
of the left and right tails of all marginal distributions implied
by the MRV model. Some other application studies conduct a
more careful test by comparing extreme value indices beyond
the marginals, albeit still informal (see, e.g., Cai, Einmahl, and
De Haan 2011).

Inspired by the informal comparison of extreme value
indices, the rationale behind our formal test is as follows. By
using polar coordinates, random variables following a MRV
model can be mapped into a univariate radial component and a
multivariate angular component. The radius follows a univariate
regular variation model with a positive extreme value index and
is asymptotically independent of the angular component. The
independence in the limit guarantees that the extreme value
index of the radius conditional on the angular component is the
same regardless where the conditioning angular component lies.
The informal test relying on marginals can be viewed as testing
the constancy of extreme value indices in the directions lining
up with the axes in the original coordinate system. We compare
the extreme value indices along other directions beyond the
axes. The proposed test formalizes such a comparison into a
goodness-of-fit test for the MRV model. More specifically, our
proposed test combines testing the constancy of the extreme
value indices of the radii conditional on various directions of
the angular component with testing the regular variation of
the radius. Tests for the latter problem are known but here the
challenge is to combine them with our new test on the extreme
value indices and turn it into one correct formal test. This will

be achieved by proving asymptotic independence of the two test
statistics.

Testing the constancy of extreme value indices in all “direc-
tions” of the angular component is somewhat similar to the
constant extreme value index test in Einmahl, de Haan, and
Zhou (2016); see T3 and T4 therein. In the null hypothesis
therein, the observations are generated from different univariate
distributions with the same extreme value index but different
“scale.” In other words, the extreme value indices are the same at
all locations, while the scale varies according to a fixed covariate
indicating the location. Our test can be viewed as testing the
constancy of the extreme value indices across random covari-
ates, that is, the angular component induces the scale. More
specifically, we employ a test that is similar to the T4 test in Ein-
mahl, de Haan, and Zhou (2016), but with random covariates.
The present approach is, however, substantially different.

The study of estimating the extreme value index with a
random covariate received attention only recently in both para-
metric and nonparametric setups. Much of the work focused
on the case that the conditional distribution of the response
variable belongs to the class of Pareto-type distributions, such as
Wang and Tsai (2009), Daouia et al. (2011), Gardes and Girard
(2012), Wang, Li, and He (2012), Wang and Li (2013), Gardes
and Stupfler (2014), Goegebeur, Guillou, and Schorgen (2014),
and Goegebeur, Guillou, and Stupfler (2015). A few follow-up
works generalize to the complete max-domain of attractions of
the extreme value distribution; see Daouia, Gardes, and Girard
(2013), Stupfler (2013), and Goegebeur, Guillou, and Osmann
(2014). In the current article, we do not impose a parametric
model between the extreme value index and the covariates.
Neither do we emphasize on the estimation of the conditional
extreme value index. Instead, we focus on testing the constancy
of the directional extreme value indices.

In the proposed tests, besides the usual tuning parameter
threshold k, the “number of directions” is used as an extra tuning
parameter. A good choice of that parameter depends on both the
number of observations and the underlying probability distribu-
tion. This introduces a level of subjectivity. In applications, it is
recommended to apply the test with a few values for both tuning
parameters.

The rest of the article is organized as follows. Section 2
provides the main theoretical results: the constancy test of the
directional extreme value indices and how to combine it with
testing the regular variation of the radius. The simulation study
and application can be found in Sections 3 and 4, respectively.
Section 5 concludes the article. The proofs are deferred to
Appendix A.

2. Methodology

We define MRV via a transformation to polar coordinates. For
an arbitrary norm ‖·‖, the polar coordinate transform of a vector
x is defined as

P(x) = (‖x‖ , ‖x‖−1 x
)

, (1)

where ‖x‖ is called the radial component and ‖x‖−1 x is called
the angular component of x. A random vector X with polar
transformationP(X) is said to be multivariate regularly varying,
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if there exists a probability measure � on the Borel σ -algebra
B

(
Sd−1), where Sd−1 = {

s ∈ R
d : ‖s‖ = 1

}
, and γ > 0, such

that, for all x > 0, as t → ∞,

Pr
(‖X‖ > tx, ‖X‖−1 X ∈ ·)

Pr (‖X‖ > t)
v−→ x−1/γ �(·), on B

(
Sd−1

)
,

(2)
where v−→ denotes vague convergence; � is called the spectral
measure.

With a random sample of observations drawn from the dis-
tribution of X, we intend to test whether the underlying distribu-
tion satisfies the MRV model defined by (2). It is straightforward
to derive from (2) that for any Borel set B ∈ B

(
Sd−1), if

�(B) > 0, then

lim
t→∞

Pr
(‖X‖ > tx| ‖X‖−1 X ∈ B

)
Pr

(‖X‖ > t| ‖X‖−1 X ∈ B
) = x−1/γ ,

which implies that ‖X‖ is regularly varying in any “direction”
defined by B. Therefore, we shall estimate the extreme value
index γ = γ (B) using the observations of ‖X‖ conditioning on
‖X‖−1 X ∈ B and further test whether γ (B) is constant across
various (disjoint) sets B with �(B) > 0. Besides, we need to test
whether the radius ‖X‖ possesses a regularly varying tail.

The rest of Section 2 is organized in the following way. First,
in Section 2.1, we establish a test in the two-dimensional setup
for the null hypothesis of having a constant γ (B). Second, testing
the univariate regular variation of ‖X‖ is well established in
the literature. The difficulty here is to avoid a multiple testing
problem, that is, we need to be able to combine the two tests into
one. We shall establish this in Section 2.2. Although these two
subsections focus on the bivariate case, our testing procedure
can be extended to the higher dimensional case. Section 2.3
explains the test for higher dimensional MRV.

2.1. Testing the Bivariate MRV Model

For a bivariate random vector (X, Y)T , consider the following
polar transformation {

X = R cos �,
Y = R sin �. (3)

Then (X, Y)T is one-to-one mapped to (R, �)T with R ≥ 0
and � ∈ [0, 2π ]. With abuse of notation, we regard � as the
distribution function of the spectral measure on [0, 2π ]. For
convenience we assume that FR, the distribution function of R,
is continuous. Write UR = 1/(1 − FR)←, where “←” denotes
the left-continuous inverse function.

Let (X1, Y1)
T , . . . , (Xn, Yn)T be iid observations from the

distribution of (X, Y)T . By the polar transformation (3), we
obtain the transformed pairs (R1, �1)

T , . . . , (Rn, �n)
T , which

is the starting point for constructing the test. We first define the
estimator of the extreme value index γ in a subregion. Order
R1, . . . , Rn as R1,n ≤ · · · ≤ Rn,n and take Rn−k,n (k ∈ {1, . . . , n−
1}) as the common threshold.

For any δ > 0 and 0 ≤ θ1 < θ2 ≤ 2π satisfying �(θ2) −
�(θ1) > δ, we define a Hill estimator γ̂ (θ1, θ2) as the estimator
using the observations corresponding to θ1 < �i ≤ θ2 as

follows

γ̂ (θ1, θ2) =
∑n

i=1(log Ri − log Rn−k,n)1{Ri>Rn−k,n,θ1<�i≤θ2}∑n
i=1 1{Ri>Rn−k,n,θ1<�i≤θ2}

.

Observe that �(θ2) − �(θ1) > δ guarantees∑n
i=1 1{θ1<�i≤θ2}

P→ ∞, as n → ∞. Denote the distribution
function of the spectral measure also with � . A natural
estimator for � (see Einmahl, de Haan, and Huang 1993) is
given by

�̂(θ) = 1
k

n∑
i=1

1{Ri>Rn−k,n,�i≤θ}.

To test the constancy of γ (B), we estimate γ (B) from various
subsamples and compare these estimators. More specifically,
first for a fixed integer m, we split the data with largest k radii
into m disjoint parts with about equal number of observations.
The cutoff points are defined as follows. Denote θj = �←(j/m)

and θ̂j = �̂←(j/m) for j = 0, 1, . . . , m. Clearly θ0 = θ̂0 = 0 and
θm = θ̂m = 2π . Define γ̂j := γ̂ (θ̂j−1, θ̂j) and γ̂all := γ̂ (0, 2π).
In Figure 1, we provide a visualization of the choice of the cutoff
points.

Next, we define the test statistic as

Tn := k
m

m∑
j=1

(
γ̂j

γ̂all
− 1

)2
.

Clearly, it compares all the γ̂j obtained in the m subregions to
γ̂all which uses all peaks over threshold.

To establish the asymptotic theory of the test statistic Tn, we
assume a second-order condition as follows.

Assumption 2.1. There exists a function β such that β(t) → 0
as t → ∞ and for any x0 > 0, as t → ∞,

sup
x>x0,0≤θ≤2π

∣∣∣∣x1/γ Pr(R > tx, � ≤ θ)

Pr(R > t)
− �(θ)

∣∣∣∣ = O(β(t)).

Further assume that � is continuous on [0, 2π ].
Assumption 2.1 requires uniform convergence in the MRV

definition in (2) with some convergence rate β . It is a natural
and rather weak second-order condition imposed on R and
� jointly. Such a second-order condition is standard in the
literature of extreme value statistics (see, e.g., Einmahl, de Haan,
and Huang 1993; De Haan and Ferreira 2006, Condition 7.3.4).
In contrast, in the often used one-dimensional second-order
condition pointwise convergence is considered, which yields
a set of uniform inequalities (see, e.g., Beirlant et al. 2004;
De Haan and Ferreira 2006). Our condition does not require
the existence of a density; see condition (a) in Cai, Einmahl,
and De Haan (2011) where the density is already needed in
the definition of the extreme risk regions studied in there. For
more details about multivariate regular variation of densities,
see De Haan and Resnick (1987). Naturally, when constructing
examples of distributions that satisfy Assumption 2.1 we often
consider distributions that do have densities. A large class of
examples is given by spherical or elliptical distributions, with
the radius R satisfying an appropriate univariate second-order
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Figure 1. The illustration of the choice of cutoff points in constructing the test statistic Tn with four blocks. The red line represents the threshold above which there are 20
points. The blue vertical lines are the cutoff points such that in each block there are 5 points above the red line.

condition such as taking θ = 2π in Assumption 2.1. Exam-
ples in this class are the bivariate (or multivariate) Student’s t
distributions.

Now we are ready to present the asymptotic behavior of Tn
under the null hypothesis; the proof of this theorem is deferred
to Appendix A.1.

Theorem 1. If Assumption 2.1 holds and the sequence k satisfies
k → ∞, k/n → 0 and

√
kβ(UR(n/k)) → 0 as n → ∞, then

for a fixed integer m ≥ 2, we have that as n → ∞,

Tn
d→ χ2

m−1.

Intuitively, the theorem follows from the fact that all γ̂j are
asymptotically normal with iid asymptotic limits, while γ̂all is
the sample mean of γ̂j. Consequently, Tn, as the scaled sample
variance of all γ̂j, is asymptotically chi-squared distributed. The
theoretical conditions on k, which are standard in extreme value
statistics, are to ensure that the γ̂j’s and γ̂all are asymptotically
unbiased. These conditions are crucial for deriving the chi-
squared limit.

2.2. Dealing With the Radial Component

Besides testing for the same extreme value index in every direc-
tion, we also need to test whether the radial component R
possesses a regularly varying tail. We use the PE test in Hüsler
and Li (2006, (1.3)). The test statistic is defined as

Qn = k
∫ 1

0

(
log Rn−[kt],n − log Rn−k,n

γ̂all
+ log t

)2
tηdt. (4)

Under the null hypothesis that R possesses a regularly varying
tail and a restriction on k, Qn

d→ Q as n → ∞, with

Q =
∫ 1

0

(
t−1B(t) + log t

∫ 1

0
s−1B(s)ds

)2
tηdt, (5)

where B is a standard Brownian bridge. According to Hüsler and
Li (2006), η = 0.5 is a good choice.

To avoid a multiple testing problem, we need to investigate
the joint asymptotic behavior of our test statistic Tn in The-
orem 1 and Qn. The following theorem shows that the two
are asymptotically independent. The proof is again deferred to
Appendix A.2.

Theorem 2. Under the conditions of Theorem 1, we have that

(Tn, Qn)
d→ (T, Q), n → ∞,

where T ∼ χ2
m−1 and Q is as in (5), and T and Q are

independent.

Following Theorem 2, we can construct a combined test
based on Tn and Qn. For a significance level α ∈ (0, 1), this
combined test rejects if the test based on Tn or that on Qn
rejects for significance level 1 −√

1 − α. The combined test has
a p-value

1 − (
1 − min(p1, p2)

)2 ,

where p1 and p2 are the p-values of the Tn and Qn tests,
respectively.
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2.3. Dealing With Higher Dimensions

In Sections 2.1 and 2.2, we constructed tests for the bivariate
MRV model. The same method can be applied in higher dimen-
sions. In this section, we discuss the general idea and some
practical suggestions for higher dimensional cases.

Suppose X = (X1, X2, ..., Xd)
T is a d-dimensional random

vector. With the polar transformation (1), we can decompose
X into a radial component ‖X‖ and an angular component
‖X‖−1 X ∈ Sd−1. Testing whether X follows a MRV model
boils down to testing whether ‖X‖ possesses a regularly varying
tail and whether the extreme value indices are the same in any
“direction” specified by a Borel set B ∈ B

(
Sd−1). For the former

testing problem, we refer to the test in Section 2.2. Here we only
focus on the latter.

To construct a test for the constancy of the extreme value
index, we need to divide the unit sphere Sd−1 into m subregions
containing about equal number of exceedances. One can achieve
this by processing the division dimension by dimension. We
illustrate the idea for Dimension 3.

Let (X, Y , Z)T be a three-dimensional random vector. Con-
sider the usual polar coordinates transformation⎧⎨

⎩
X = R cos  cos �,
Y = R cos  sin �,
Z = R sin .

Clearly, its inverse transformation maps any (X, Y , Z)T to
(R, �, )T with R ≥ 0, � ∈ [0, 2π ] and  ∈ [−π/2, π/2].
Suppose we observe an iid sample drawn from the distribution
of (X, Y , Z)T . We transform each observation (Xi, Yi, Zi)T into
the polar coordinates (Ri, �i, i)T for i = 1, 2, . . . , n. Again
order R1, . . . , Rn as R1,n ≤ · · · ≤ Rn,n.

Let m = m1m2 with m1, m2 positive integers. We intend
to find cutoff points θ̂j and ω̂j,l, j = 0, 1, . . . , m1 and l =
0, 1, . . . , m2, to split the observations into m blocks such that
there are about k/m exceedances falling into each block of
the form

{
θ̂j−1 < �i ≤ θ̂j, ω̂j,l−1 < i ≤ ω̂j,l

}
, for any j =

1, 2, . . . , m1 and l = 1, 2, . . . , m2.
Consider the distribution function � of the spectral measure

for θ ∈ [0, 2π ] and ω ∈ [−π/2, π/2]. A natural estimator for �

is

�̂(θ , ω) = 1
k

n∑
i=1

1{Ri>Rn−k,n,�i≤θ ,i≤ω}.

Write �̂�(θ) = �̂(θ , π/2). In the first step, we define the cutoff
points θ̂j = �̂←

� (j/m1), for j = 1, 2, . . . , m1. In the second step,
for each given j = 1, 2, . . . , m1, denote

�̂,j(ω) = �̂(θ̂j, ω) − �̂(θ̂j−1, ω).

Then, the cutoff points are ω̂j,l = �̂←
,j(l/m2), for l =

1, 2, . . . , m2. Lastly, we can construct the extreme value index
estimator in each subregion as

γ̂j,l =
∑n

i=1(log Ri − log Rn−k,n)1{
Ri>Rn−k,n ,θ̂j−1<�i≤θ̂j ,ω̂j,l−1<i≤ω̂j,l

}
∑n

i=1 1{
Ri>Rn−k,n ,θ̂j−1<�i≤θ̂j ,ω̂j,l−1<i≤ω̂j,l

} ,

for all j = 1, 2, . . . , m1 and l = 1, 2, . . . , m2. Simi-
larly, we denote the Hill estimator of the radii with γ̂all =
1
k
∑n

i=1(log Ri − log Rn−k,n)1{Ri>Rn−k,n}. The test statistic Tn in
the three-dimensional case is given by

Tn := k
m

m1∑
j=1

m2∑
l=1

(
γ̂j,l

γ̂all
− 1

)2
.

To establish the asymptotic behavior of Tn, we need a corre-
sponding second-order condition in the three-dimensional case
as follows.

Assumption 2.2. There exists a function β(t) such that β(t) → 0
as t → ∞ and for any x0 > 0, as t → ∞,

sup
x>x0,0≤θ≤2π ,−π/2≤ω≤π/2

∣∣∣∣x1/γ Pr(R > tx, � ≤ θ ,  ≤ ω)

Pr(R > t)

− �(θ , ω)

∣∣∣∣ = O(β(t)).

Further assume that � is continuous on [0, 2π ] × [−π/2, π/2].
Theorem 3. If Assumption 2.2 holds and the sequence k satisfies
k → ∞, k/n → 0 and

√
kβ(UR(n/k)) → 0 as n → ∞, then

for a fixed positive integer m ≥ 2, we have that as n → ∞,

Tn
d→ χ2

m−1.

Moreover the statement of Theorem 2 remains true in Dimen-
sion 3.

Since the proof of this theorem is very much the same as that
of Theorems 1 and 2, we confine ourselves to only stating and
proving the main tool in the proof of Theorem 3, Proposition 1,
in arbitrary Dimension d. This proposition then also shows that
dimensions higher than 3 can be treated in a similar way.

We shall consider the three-dimensional case in the simula-
tion study in detail; see Section 3.

3. Simulation

In this section, we demonstrate the finite sample performance of
our proposed tests for MRV. We simulate l = 1000 samples with
sample size n = 5000. For each sample, we perform the tests for
each (asymptotic) significance level α = 1%, 5%, and 10%. We
report the number of samples for which we reject the null.

3.1. Simulations Under the Null Hypothesis, Dimension 2

We first consider two bivariate distributions under the null
hypothesis.

Distribution 1. Let (X, Y)T follow a centered Student’s t dis-
tribution with ν degrees of freedom and 2 × 2 scale matrix with
1 as diagonal elements and s ∈ (−1, 1) as off-diagonal elements.
Then (X, Y)T follows a MRV distribution with extreme value
index 1/ν and the corresponding spectral measure has a positive
density. We vary the degrees of freedom (ν = 0.5, 2) and take
s = 0.3, 0.7 to examine the impact of these parameters.

Distribution 2. Consider the polar coordinates (R, �)T of
(X, Y)T following the transformation in (3). Assume U and V
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Table 1. The total number of rejections under the null (m = 4).

Distribution k = 250 k = 500

α 10% 5% 1% 10% 5% 1%

D1

s = 0.7, ν = 0.5 95 52 7 98 44 8
s = 0.7, ν = 2 86 47 15 109 54 10
s = 0.3, ν = 0.5 106 55 10 101 50 13
s = 0.3, ν = 2 93 46 9 126 65 16

D2 β1 = 0.5, β2 = 2 100 49 14 102 46 8
β1 = 1, β2 = 3 104 54 4 139 71 18

Table 2. The total number of rejections under the null (m = 6).

Distribution k = 250 k = 500

α 10% 5% 1% 10% 5% 1%

D1

s = 0.7, ν = 0.5 80 46 13 73 32 5
s = 0.7, ν = 2 85 41 6 109 49 10
s = 0.3, ν = 0.5 70 35 7 95 48 9
s = 0.3, ν = 2 64 36 11 108 48 16

D2 β1 = 0.5, β2 = 2 78 36 6 85 39 9
β1 = 1, β2 = 3 75 40 7 143 74 18

are two independent uniform-(0,1) random variables. Let � =
2πV , and

R =
{

F←
1 (1 − U), V ≤ 1/2,

F←
2 (1 − U), 1/2 < V ≤ 1,

with Fi(x) = 1−
(

1
x+1

)βi
for x > 0 and i = 1, 2. If β1 �= β2, then

(X, Y)T follows a MRV distribution that has a spectral measure
with zero density on half of the unit circle. In this distribution
R and � are dependent, but asymptotically independent. We
consider different combinations of the extreme value indices
(β1 = 0.5, β2 = 2 and β1 = 1, β2 = 3).

Since the Qn test has been well studied in the literature, for the
null distributions we only study the Tn test. We choose m = 4
and m = 6 in Tables 1 and 2, respectively.

The Tn test performs well for all 6 distributions under the
null hypothesis. In particular, it performs better when m = 4
than when m = 6 under the current sample size of 5000. When
m = 6, the test performs slightly better for k = 500. For
m = 6 and k = 250, the number of exceedances in each block
is too low to make the asymptotic theory work well. In general,
the test performs well under the null hypothesis if there is fast
convergence in (2) and in Assumption 2.1. In that case the chi-
squared distribution is a good approximation to the distribution
of Tn and hence the size of the test is close to the targeted
significance level.

3.2. Simulations Under The Alternative; Dimension 2

We consider two bivariate distributions under the alternative.
We choose m = 4 below because of the better behavior than
m = 6 under the null. Besides the Tn test, we also check the
performance of the combined test for the alternative distribu-
tions. Recall that to achieve a significance level of α = 1%, 5%,
or 10%, we should reject the combined null if either of the Tn or
Qn test rejects at the level 1 − √

1 − α ≈ 0.5%, 2.5%, or 5.1%,
respectively.

Distribution 3. Consider the polar coordinates (R, �)T of
(X, Y)T following the transformation in (3). Let U and V be

iid uniform-(0,1) and set R = U−1/β , which implies that R is
regularly varying with extreme value index 1/β . Define

� =
{

πV , 1
2n < U ≤ 1

2n−1 with an odd integer n,
π + πV , 1

2n < U ≤ 1
2n−1 with an even integer n.

Then the distribution of (X, Y)T is not MRV. In this distribution,
R and � are not asymptotically independent, which results in a
nontrivial counter-example. We choose β = 0.5, 1.

Distribution 4. Let Z1 and Z2 be iid Pareto with extreme value
index 1/β . We consider two cases.

Distribution 4.1. Let (X, Y)T = (Z1, 2Z2)
T . Then (X, Y)T

possesses a spectral measure with unequal masses 1/(1 + 2β)

and 2β/(1 + 2β) at 0 and π/2, respectively.
Distribution 4.2. Let (X, Y)T = (Z1, Z2)

T . Then (X, Y)T

possesses a spectral measure with mass 1/2 at 0 and at π/2.
For both Distributions 4.1 and 4.2, the spectral measure is
not continuous, which falls in the alternative. These two dis-
tributions are degenerated MRV, which falls outside our null
hypothesis. Again we take β = 0.5, 2.

The simulation results for Distributions 3 and 4 are shown in
Table 3. For data simulated from these alternative distributions,
the powers of both Tn and the combined test are high, except
when using a lower k and α for Distribution 3.

3.3. Dimension 3

In Dimension 3 we consider the following two distributions, one
falls in the null hypothesis, whereas the other one falls in the
alternative. Again we take m = 4 (m1 = m2 = 2).

Distribution 5. Let (X, Y , Z)T follow a centered Student’s t
distribution with ν degrees of freedom and scale matrix

� =
⎛
⎝ 1 s 0

s 1 s
0 s 1

⎞
⎠ ,

with s ∈ (−1, 1). Similar to Distribution 1, this distribution
is MRV with extreme value index 1/ν and the corresponding
spectral measure has a positive density. We choose ν = 0.5, 1
and s = 0.3, 0.7.

Distribution 6. Let X, Y , and Z be three independent ran-
dom variables following Pareto distributions with extreme value
indices 1/β1, 1/β2, and 1/β3, respectively. In this case the
distribution function of the spectral measure is not continuous,
which falls in the alternative.

The simulation results for Distributions 5 and 6 are shown in
Table 4. Again, the numbers of rejections match the significance
levels under the null (Distribution 5) since there is fast enough
convergence in Assumption 2.2. Under Distribution 6 the power
can be seen to be higher for the heavier-tailed distributions:
when the marginal extreme value index is higher, the observa-
tions corresponding to high radius are more concentrated on
the axes, which yields more different estimators (in the blocks)
of the extreme value index.

4. Application

In this section, we test two datasets that are claimed to be MRV
in Cai, Einmahl, and De Haan (2011) and He and Einmahl
(2017), respectively.
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Table 3. The total number of rejections under the alternative.

Distribution k = 250 k = 500

α 10% 5% 1% 10% 5% 1%

D3
β = 0.5 Tn 728 631 403 950 900 793

Combined 657 535 346 911 861 739

β = 1 Tn 741 631 425 955 923 785
Combined 656 555 344 929 881 722

D4.1
β = 0.5 Tn 1000 1000 1000 1000 1000 1000

Combined 1000 1000 1000 1000 1000 1000

β = 2 Tn 977 955 860 1000 1000 1000
Combined 960 929 781 1000 1000 999

D4.2
β = 0.5 Tn 1000 1000 1000 1000 1000 1000

Combined 1000 1000 1000 1000 1000 1000

β = 2 Tn 988 973 886 1000 1000 999
Combined 977 943 841 1000 1000 999

Table 4. The total number of rejections in Dimension 3.

Distribution k = 250 k = 500

α 10% 5% 1% 10% 5% 1%

D5

s = 0.7, ν = 0.5 Tn 99 59 11 98 54 14
s = 0.7, ν = 1 Tn 102 48 11 101 51 12
s = 0.3, ν = 0.5 Tn 99 50 8 104 53 8
s = 0.3, ν = 1 Tn 102 54 11 99 52 14

D6

β1 = β2 = β3 = 0.5 Tn 673 564 319 914 858 676
Combined 586 467 285 867 791 620

β1 = β2 = β3 = 1 Tn 594 481 233 809 722 529
Combined 526 417 226 872 797 608

β1 = β2 = β3 = 2 Tn 448 334 138 708 581 337
Combined 392 300 176 641 545 354

The first dataset we consider is the one used in Cai, Einmahl,
and De Haan (2011): daily exchange rates of Yen-Dollar and
Pound-Dollar from January 4, 1999 to July 31, 2009. Cai, Ein-
mahl, and De Haan (2011) considered daily log returns, that is,

Xi = log
(

Pi+1
Pi

)
,

where Pi is the exchange rate on day i. We obtain the data, which
consist of 2758 observations, from Thomson Reuters. The left
panel of Figure 2 presents the scatterplot of the pair (Yen-Dollar,
Pound-Dollar).

We show the Hill estimates of the extreme value index of the
radius R by varying k, the p-values of our Tn test by varying k,
and the p-values of the combined test (combining Tn and Qn
tests) by varying k. We take 4 blocks (m = 4) in conducting the
Tn test and the combined test.

According to Cai, Einmahl, and De Haan (2011), the esti-
mated extreme value index for R is γ̂R = 0.256, which cor-
responds to a threshold k around 70–80 in the upper graph
of Figure 3. At this level of k, from both Tn and combined
tests we do not reject the null at a significance level of 5%,
see the middle and lower graphs in Figure 3. In general, we
do not reject that (Yen-Dollar, Pound-Dollar) follows an MRV
distribution for a wide range of relevant k less than 200. In other
words, the MRV model is validated and we can proceed with
statistical inference based on the MRV model. In particular, this
supports the extrapolation technique for obtaining the extreme

risk regions in Cai, Einmahl, and De Haan (2011), which yield
an alarm system for risk management.

The second dataset is from He and Einmahl (2017) and con-
sists of daily international market price indices of the Standard
and Poors (S&P) 500 index from the USA, the Financial Times
Stock Exchange FTSE 100 index from the UK and the Nikkei
225 index from Japan. The sample period is from July 2nd, 2001,
to June 29th, 2007. Again, daily log returns are constructed. We
obtain the dataset, which has in total 1564 observations, from
the accompanying file of that article.

We consider the triplet (S&P, FTSE, Nikkei) and test whether
it follows an MRV distribution using our tests. The right panel
of Figure 2 presents the scatterplot of the triplet. Again, our
tests are carried out by plotting the p-values against various
levels of k. Our analysis for the triplet is shown in Figure 4.
In He and Einmahl (2017), when estimating the left and right
extreme value indices of the three series, the threshold k is
chosen at 80. At k = 80, we do not reject the null that the
triplet follows an MRV distribution at the 5% level by both
tests. In general, we do not reject for k less than 150. Thus,
the MRV model is validated. This justifies the approach in He
and Einmahl (2017) for obtaining extreme depth-based quantile
regions which measure the practically relevant outlyingness, as
discussed in Section 1.

One potential drawback of our analysis is that we regard
the observations as independent without accounting for the
potential serial dependence. When the data possess weak serial
dependence, for example, satisfying β-mixing conditions, the
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Figure 2. Scatterplots for (Yen-Dollar, Pound-Dollar) and (S&P, FTSE, Nikkei).
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Figure 3. The pair (Yen-Dollar, Pound-Dollar). The upper graph shows the Hill estimates for the radius R. The middle graph shows the p-values of the Tn test. The lower
graph shows the p-values of the combined test.

test might be still valid subject to some adjustment. More specif-
ically, we conjecture that the statistic Tn/σ 2 converges to the
same χ2

m−1-distribution limit, where σ 2 is an adjusting factor
determined by the serial dependence. Here for “positive” serial
dependence, that is, when extremes are likely to occur on con-
secutive days, we have σ 2 > 1 (see, e.g., Drees 2000), in which
the asymptotic normality of the Hill estimator was studied under
the β-mixing conditions. Intuitively, dependent data contain

less information than the same amount of independent data,
which leads to an increase of estimation error. In that case, the
current test can be regarded as a conservative test: if we do
not reject the null for the data using the current test, we will
not reject the null after adjusting for serial dependence. Given
that for both datasets we consider, we do not reject the null by
regarding the data as independent, we conjecture that a proper
test accounting for serial dependence will not reject the null
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Figure 4. The triplet (S&P, FTSE, Nikkei). The upper graph shows the Hill estimates for the radius R. The middle graph shows the p-values of the Tn test. The lower graph
shows the p-values of the combined test.

either. Had we observed a result rejecting the null, we would
have to account for the impact of serial dependence.

Another way to handle serial dependence without estimating
σ 2 is to consider the observations on even (or odd) days only
and carry out the tests by regarding those observations as inde-
pendent. The almost independence among every other day data
is supported by various empirical studies on the extremal index
for the financial data. They show that the average cluster size of
extremes is around 2 and some even close to 1 (see, e.g., McNeil
1998; Poon, Rockinger, and Tawn 2003; Hamidieh, Stoev, and
Michailidis 2009). We have performed such an analysis and
obtained the same conclusion.

5. Conclusion

In this article, we construct a goodness-of-fit test for the MRV
model. The test is based on comparing the extreme value indices
of the radial component conditional on the angular component
falling in different, disjoint subsets. This results in the Tn test. In
addition, we test whether the radius follows a univariate regular
variation model by the Qn test. The two tests can be easily com-
bined thanks to their asymptotic independence. The proposed
tests can be extended to higher dimensional cases. Simulation
studies for both two-dimensional and three-dimensional cases

show that the Tn test performs well and has good power proper-
ties, especially for the heavier tailed distributions. The combined
test is applied to a few datasets in the literature that are assumed
to be MRV. Our test supports making the MRV assumptions for
these datasets.

As in any test in extreme value analysis, one needs to choose
the tuning parameters. Besides the usual parameter k, here one
also needs to choose the number of blocks m. The higher m,
the more directions are being compared. In practice, one has
to choose a low m to ensure sufficient observations in each
block. A good choice of m depends on both the number of
observations n and the underlying probability distribution. In
applications, it is recommended to choose a few values for both
tuning parameters k and m.

Appendix A: Proofs

A.1. Proof of Theorem 1

We begin with establishing the main tool used in the proof of The-
orem 1, the asymptotic behavior of an appropriate local empirical
process. We provide this main tool in arbitrary Dimension d. In this
way it is useful for proving Theorems 1 and 3 and their higher dimen-
sional generalizations. Without presenting the general transformation
to polar coordinates explicitly, note that the now (d − 1)-variate θ runs
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through Td := [θ , θ ], where θ = (0, −π/2, −π/2, . . . , −π/2)T and
θ = (2π , π/2, π/2, . . . , π/2)T are two vectors in R

d−1. The local
empirical process that we consider is, in the obvious notation,

Sn(x, θ) := √
k
(

1
k

n∑
i=1

1{
Ri>UR

( n
k x

)
,�i≤θ

}

− n
k

Pr
(

R1 > UR
(n

k
x
)

, �1 ≤ θ
) )

,

for x ≥ x1(> 0), θ ∈ Td. We need the generalization of Assumption
2.1.

Assumption A.1. There exists a function β such that β(t) → 0 as t →
∞ and for any x0 > 0, as t → ∞,

sup
x>x0,θ∈Td

∣∣∣∣x1/γ Pr(R1 > tx, �1 ≤ θ)

Pr(R1 > t)
− �(θ)

∣∣∣∣ = O(β(t)).

Proposition 1. If Assumption A.1 holds and the sequence k satisfies
k → ∞, k/n → 0 and

√
kβ(UR(n/k)) → 0 as n → ∞, then,

there exists a sequence of d-variate Wiener processes Wn, defined on
the probability space accommodating (R1, �1), . . . , (Rn, �n), with

Cov(Wn(x1, θ1), Wn(x2, θ2)) = (x1 ∧ x2)�(θ1 ∧ θ2),

such that for any given x1 > 0 and 0 < ζ ≤ 1/2, as n → ∞,

sup
x≥x1,θ∈Td

x1/2−ζ |Sn(x, θ) − Wn(1/x, θ)| P→ 0. (A.1)

Proof of Proposition 1. We start by proving (A.1) without the weight
function x1/2−ζ . This is achieved by applying Lemma 3.1 in Einmahl,
de Haan, and Sinha (1997). Write Ui = 1 − FR(Ri), then U1, . . . , Un
are iid uniform-(0,1). Further write Y(n)

i =
(

n
k Ui, �i

)
and consider

the sets A(y, θ) = [0, y]×[θ , θ ], y ≤ 1/x1, θ ∈ Td. Then we can rewrite
the local empirical process as

Sn (x, θ) = n√
k

(
1
n

n∑
i=1

1{
Y(n)

i ∈A(1/x,θ)
} − Pr

(
Y(n)

1 ∈ A(1/x, θ)
))

.

In order to apply Lemma 3.1 in Einmahl, de Haan, and Sinha (1997),
we only need to check that as n → ∞,

sup
y≤1/x1,θ∈Td

∣∣∣n
k

Pr(Y(n)
1 ∈ A(y, θ)) − μ(A(y, θ))

∣∣∣ → 0, (A.2)

for some finite measure μ.
By taking θ = θ in Assumption A.1, we obtain that as t → ∞,

sup
x>x0

∣∣∣∣Pr(R1 > tx)

Pr(R1 > t)
− x−1/γ

∣∣∣∣ = O(β(t)),

which implies a second order result for the UR function:

sup
x≥x1

∣∣∣∣UR(tx)

UR(t)
− xγ

∣∣∣∣ = O(β(UR(t))), (A.3)

where x1 is any positive constant such that x1 > x1/γ
0 . Replacing t and

tx by UR(n/k) and UR(n/(ky)), respectively, in Assumption A.1, and
by (A.3), we obtain that as n → ∞,

sup
y≤1/x1,θ∈Td

∣∣∣n
k

Pr(U1 < ky/n, �1 ≤ θ) − y�(θ)

∣∣∣
= O(β(UR(n/k))) → 0,

which verifies (A.2) with μ(A(y, θ)) = y�(θ). Consequently, we obtain
that as n → ∞, for any x1 > 0,

sup
x≥x1,θ∈Td

|Sn(x, θ) − Wn(1/x, θ)| P→ 0, (A.4)

where Wn is a sequence of d-variate Wiener processes as in Proposi-
tion 1. (To return to the original probability space of the (Ri, �i), see
Einmahl 1997,p. 52.)

Next, we introduce the weight function and write y = 1/x. Given
(A.4), for a proof of (A.1) it suffices to prove that for any given ε > 0
and 0 < ζ < 1/2, there exists η = η(ε, ζ ) > 0 such that for sufficiently
large n,

Pr

(
sup

y≤η,θ∈Td

y−1/2+ζ
∣∣Sn(1/y, θ)

∣∣ > ε

)
< 3ε, (A.5)

Pr

(
sup

y≤η,θ∈Td

y−1/2+ζ
∣∣Wn(y, θ)

∣∣ > ε

)
< ε. (A.6)

The inequality in (A.6) is well-known (see, e.g., Orey and Pruitt
1973, Theorem 2.2). To prove (A.5), we split the interval (0, η] into
three parts I1 := (0, τ/k], I2 := (τ/k, 1/ka] and I3 := (1/ka, η], with
a = (1 + 2ζ )−1 and τ > 0. We prove that for all i = 1, 2, 3, for large n,

Pr

(
sup

y∈Ii,θ∈Td

y−1/2+ζ
∣∣Sn(1/y, θ)

∣∣ > ε

)
< ε.

First, we deal with y ∈ I1. Observe that if min1≤i≤n Ui > τ/n, then
for y ≤ τ/k we have

∣∣Sn(1/y, θ)
∣∣ ≤ √

ky. Therefore, by choosing τ

small enough

Pr

(
sup

y∈I1,θ∈Td

y−1/2+ζ
∣∣Sn(1/y, θ)

∣∣ > ε

)

≤ Pr

(
sup
y∈I1

√
ky1/2+ζ > ε, min

1≤i≤n
Ui > τ/n

)
+ Pr

(
min

1≤i≤n
Ui ≤ τ/n

)

= Pr
(

min
1≤i≤n

Ui ≤ τ/n
)

< ε.

To deal with I2 and I3, we need the following lemma. Consider the
empirical process

αn(x, θ) = √
n

(
1
n

n∑
i=1

1{Ui≤x,�i≤θ} − Pr(U1 ≤ x, �1 ≤ θ)

)
.

Lemma 4. For 0 < b1 < b2 ≤ 1/4, 0 ≤ ξ ≤ 1/2 and λ ≥ 0,

Pr

(
sup

b1≤x≤b2,θ∈Td

x−1/2+ξ |αn(x, θ)| ≥ λ

)
(A.7)

≤ C
∫ 2b2

b1/2

1
s

exp

(
−λ2

4
1

s2ξ
ψ

(
λ

n1/2b1/2+ξ
1

))
ds,

where C = C(d) > 0 is a constant, and ψ(λ) = 2λ−2[(1 + λ) log(1 +
λ) − λ] is a continuous, decreasing function defined on [−1, ∞).

We will omit the proof of this lemma, but just mention that it
follows that of Inequality (2.6) in Einmahl (1987) for Dimension 1
(since x is one-dimensional), but then uses Inequality (2.5) in there for
Dimension d.
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Next, we deal with y ∈ I2. Since Sn(1/y, θ) =
√

n
k αn

( ky
n , θ

)
, by

applying Lemma 4 with ξ = 0, we have that for large n

Pr

(
sup

y∈I2,θ∈Td

y−1/2+ζ
∣∣Sn(1/y, θ)

∣∣ > ε

)

= Pr

⎛
⎜⎝ sup

τ
n ≤x≤ k1−a

n ,θ∈Td

x−1/2+ζ |αn(x, θ)| > ε

(
k
n

)ζ

⎞
⎟⎠

≤ Pr

⎛
⎜⎝ sup

τ
n ≤x≤ k1−a

n ,θ∈Td

x−1/2 |αn(x, θ)| > εkζa

⎞
⎟⎠

≤C
∫ 2k1−a

n

τ
2n

1
s

ds · exp

(
−1

4
ε2k2ζaψ

(
εkζa

τ1/2

))

≤ C1(log k) exp
(
−kζa

)
< ε,

where C1 is some constant.
Lastly, we deal with y ∈ I3 by directly applying Lemma 4 with ξ = ζ .

We have that

Pr

(
sup

y∈I3,θ∈Td

y−1/2+ζ
∣∣Sn(1/y, θ)

∣∣ > ε

)

= Pr

⎛
⎜⎝ sup

k1−a
n ≤x≤ kη

n ,θ∈Td

x−1/2+ζ |αn(x, θ)| > ε

(
k
n

)ζ

⎞
⎟⎠

≤C
∫ 2ηk

n

0

1
s

exp

(
−ε2k2ζ

4
1

s2ζ n2ζ
ψ

(
εkζ

k(1/2+ζ )(1−a)

))
ds

t= n
k s= C

∫ 2η

0

1
t

exp

(
− ε2

4t2ζ
ψ(ε)

)
dt.

By choosing a sufficiently small η = η(ε, ζ ), this bound is less than
ε.

We now return to the setup of Theorem 1, that is, the two-
dimensional case. By applying Proposition 1 (with d = 2), we prove the
joint asymptotic normality for the estimators of the directional extreme
value indices with fixed cutoff points, γ̂ (θ1, θ2).

Theorem 5. Under the conditions of Theorem 1, with the same
sequence of bivariate Wiener processes Wn as in Proposition 1, for any
δ > 0 and uniformly for all θ1, θ2 satisfying 0 ≤ θ1 < θ2 ≤ 2π and
�(θ2) − �(θ1) > δ, as n → ∞,

√
k
(
γ̂ (θ1, θ2) − γ

) = γ

( ∫ 1

0

Wn(x, θ2) − Wn(x, θ1)
�(θ2) − �(θ1)

dx
x

− Wn(1, θ2) − Wn(1, θ1)
�(θ2) − �(θ1)

)
+ oP(1).

Proof of Theorem 5. We obtain from (A.1) that

sup
x≥x1

x1/2−ζ |(Sn(x, θ2) − Sn(x, θ1)) − (Wn(1/x, θ2) − Wn(1/x, θ1))|

= oP(1), (A.8)

where the oP(1)-term should be read as uniformly for all 0 ≤ θ1 <

θ2 ≤ 2π such that �(θ2) − �(θ1) > δ. In the sequel of the proof all
oP(1)-terms should be read as uniformly for such θ1 and θ2.

Now consider (A.8) with x replaced by k
n

1
1−FR(UR(n/k)u)

, with u ≥
u0 for any u0 > 0. Assumption 2.1 implies that as n → ∞,

u1/γ 1 − FR(UR(n/k)u)

k/n
= 1 + O(β(UR(n/k))) → 1.

Hence, we can replace the weight function in this new version of (A.8)
by u(1/2−ζ )/γ .

For the two Sn terms we have uniformly for all u ≥ u0, as n → ∞,

u(1/2−ζ )/γ

(
Sn

(
k
n

1
1 − FR(UR(n/k)u)

, θ2

)

− Sn

(
k
n

1
1 − FR(UR(n/k)u)

, θ1

))
(A.9)

=u(1/2−ζ )/γ
√

k
(

1
k

n∑
i=1

1{
Ri>UR

( n
k
)
u,θ1<�i≤θ2

}

− n
k

Pr
(

R > UR
(n

k

)
u, θ1 < � ≤ θ2

) )

=u(1/2−ζ )/γ
√

k
(

1
k

n∑
i=1

1{
Ri>UR

( n
k
)
u,θ1<�i≤θ2

}

− u−1/γ (�(θ2) − �(θ1))
)

+ o(1).

Finally, by the modulus of continuity results for Wiener processes
(see Orey and Pruitt 1973, Theorem 2.1) we have that as n → ∞,

sup
u≥u0,0<θ≤2π

u(1/2−ζ )/γ

∣∣∣∣Wn
(n

k
(1 − FR(UR(n/k)u)) , θ

)

− Wn
(

u−1/γ , θ
) ∣∣∣∣ ≤ u(1/2−ζ )/γ (u−1/γ oP(1))1/2−ζ = oP(1).

Together with (A.9), we obtain that the new version of (A.8) now reads
as

sup
u≥u0

u(1/2−ζ )/γ

∣∣∣∣∣
√

k
(

1
k

n∑
i=1

1{
Ri>UR

( n
k
)
u,θ1<�i≤θ2

} − u−1/γ (�(θ2)

(A.10)

−�(θ1))
)

−
(

Wn
(

u−1/γ , θ2
)

− Wn
(

u−1/γ , θ1
))∣∣∣∣ = oP(1).

By taking θ1 = 0 and θ2 = 2π in (A.10) and using the Vervaat (1972)
lemma, we obtain that

√
k

⎛
⎝ Rn−k,n

UR
(

n
k

) − 1

⎞
⎠ = γ Wn(1, 2π) + oP(1). (A.11)

Notice that the result in (A.10) is parallel to Theorem 5.1.4 in De
Haan and Ferreira (2006). Therefore, using (A.10) and (A.11) the proof
of the theorem can be completed along similar lines as in the proof of
Example 5.1.5 (asymptotic normality of the Hill estimator using the tail
empirical process) there.

Finally, we apply Theorem 5 to handle the estimators of the direc-
tional extreme value indices when using estimated cutoff points, that
is, the γ̂j in Section 2.1.

Proof of Theorem 1. By taking u = Rn−k,n
UR

( n
k
) and θ1 = 0 in (A.10), and

further applying (A.11), we obtain that as n → ∞,

sup
θ∈[0,2π ]

∣∣∣√k
(
�̂(θ) − �(θ)

)
− (Wn (1, θ) − �(θ)Wn(1, 2π))

∣∣∣
= oP(1).
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Using this in conjunction with Theorem 5 we have as n → ∞,

√
k
(
γ̂j − γ

) = mγ

( ∫ 1

0
(Wn(x, θ̂j) − Wn(x, θ̂j−1))

dx
x

− (Wn(1, θ̂j)

− Wn(1, θ̂j−1))
)

+ oP(1)

= mγ

( ∫ 1

0
(Wn(x, θj) − Wn(x, θj−1))

dx
x

− (Wn(1, θj)

− Wn(1, θj−1))
)

+ oP(1)

=:
√

mγ Nj + oP(1),

where Nj ∼ N(0, 1) and the second step is due to the uniform
continuity of Wn. Next, by applying Theorem 5 for θ1 = 0 and θ2 =
2π , we obtain that as n → ∞,

√
k
(
γ̂all − γ

) = √
mγ N̄ + oP(1),

with N̄ = 1
m

∑m
j=1 Nj. Hence, we have as n → ∞,

Tn =
m∑

j=1

(
Nj − N̄

)2 + oP(1).

Using the independent increments property of the Wiener processes
Wn we have that N1, . . . , Nm are independent, which yields the stated
χ2

m−1-limit.

A.2. Proof of Theorem 2

Proof of Theorem 2. From the proof of Theorem 1, we obtain that the
limit of Tn depends on the process Wn defined in Proposition 1.
Notice that the limit of the Qn statistics is related to the asymptotic
expansion of the tail quantile process based on R1, . . . , Rn (see, e.g.,
De Haan and Ferreira 2006, Theorem 5.2.12). In our setup, this refers
the approximating univariate Wiener process is Wn(·, 2π). Therefore,
with the same steps as in the proof of Theorem 5.2.12 in De Haan and
Ferreira (2006), we obtain that as n → ∞,∣∣∣∣∣Qn −

∫ 1

0

(
Bn(t, 2π) + log t

∫ 1

0
Bn(s, 2π)ds

)2
tηdt

∣∣∣∣∣ P→ 0,

where

Bn (s, θ) = s−1Wn(s, θ) − Wn (1, θ) .

To prove the theorem, it suffices to show that the constructing
component for the limit of Qn

Ln(t) = Bn (t, 2π) + log t
∫ 1

0
Bn(s, 2π)ds

is independent of the constructing component of Tn in Theorem 1

Mn(θ) =
∫ 1

0
Bn(u, θ)du.

Since (Ln, Mn) is a Gaussian process, it suffices to show that
E [Ln(t)Mn(θ)] = 0, for t ∈ [0, 1], θ ∈ [0, 2π ]. This easily follows
from

E [Bn (s, θ) Bn (u, ζ )] =
( s ∧ u

su
− 1

)
�(θ ∧ ζ ).

Acknowledgments

We thank an associate editor and three referees for their thoughtful com-
ments which greatly helped improving the article.

Funding

John Einmahl holds the Arie Kapteyn Chair 2019–2022 and gratefully
acknowledges the corresponding research support.

References

Barbe, P., Fougeres, A.-L., and Genest, C. (2006), “On the Tail Behavior of
Sums of Dependent Risks,” ASTIN Bulletin: The Journal of the IAA, 36,
361–373. [1]

Basrak, B., Davis, R. A., and Mikosch, T. (2002a), “A Characterization of
Multivariate Regular Variation,” The Annals of Applied Probability, 12,
908–920. [1]

(2002b), “Regular Variation of GARCH Processes,” Stochastic
Processes and Their Applications, 99, 95–115. [1]

Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J. L. (2004), Statistics of
Extremes: Theory and Applications, Chichester: Wiley. [3]

Cai, J. J., Einmahl, J. H. J., and De Haan, L. (2011), “Estimation of Extreme
Risk Regions Under Multivariate Regular Variation,” The Annals of
Statistics, 39, 1803–1826. [2,3,6,7]

Daouia, A., Gardes, L., and Girard, S. (2013), “On Kernel Smoothing for
Extremal Quantile Regression,” Bernoulli, 19, 2557–2589. [2]

Daouia, A., Gardes, L., Girard, S., and Lekina, A. (2011), “Kernel Estimators
of Extreme Level Curves,” Test, 20, 311–333. [2]

Davis, R. A., and Mikosch, T. (1998), “The Sample Autocorrelations of
Heavy-Tailed Processes With Applications to ARCH,” The Annals of
Statistics, 26, 2049–2080. [1]

De Haan, L., and Ferreira, A. (2006), Extreme Value Theory: An Introduc-
tion, New York: Springer-Verlag. [3,11,12]

De Haan, L., and Resnick, S. (1987), “On Regular Variation of Probability
Densities,” Stochastic Processes and Their Applications, 25, 83–93. [3]

Drees, H. (2000), “Weighted Approximations of Tail Processes for β-Mixing
Random Variables,” The Annals of Applied Probability, 10, 1274–1301.
[8]

Einmahl, J. H. J. (1987), Multivariate Empirical Processes, CWI Tract
(Vol. 32), Amsterdam: Stichting Mathematisch Centrum, Centrum voor
Wiskunde en Informatica, available at https://ir.cwi.nl/pub/12752. [10]

(1997), “Poisson and Gaussian Approximation of Weighted Local
Empirical Processes,” Stochastic Processes and Their Applications, 70, 31–
58. [10]

Einmahl, J. H. J., de Haan, L., and Huang, X. (1993), “Estimating a Multi-
dimensional Extreme-Value Distribution,” Journal of Multivariate Anal-
ysis, 47, 35–47. [3]

Einmahl, J. H. J., de Haan, L., and Sinha, A. K. (1997), “Estimating the
Spectral Measure of an Extreme Value Distribution,” Stochastic Processes
and Their Applications, 70, 143–171. [10]

Einmahl, J. H. J., de Haan, L., and Zhou, C. (2016), “Statistics of Het-
eroscedastic Extremes,” Journal of the Royal Statistical Society, Series B,
78, 31–51. [2]

Einmahl, J. H. J., and Krajina, A. (2020), “Empirical Likelihood Based
Testing for Multivariate Regular Variation” (Work in Progress). [2]

Embrechts, P., Lambrigger, D. D., and Wüthrich, M. V. (2009), “Multivari-
ate Extremes and the Aggregation of Dependent Risks: Examples and
Counter-Examples,” Extremes, 12, 107–127. [1]

Gabaix, X. (2009), “Power Laws in Economics and Finance,” Annual Review
of Economics, 1, 255–294. [1]

Gardes, L., and Girard, S. (2012), “Functional Kernel Estimators of Large
Conditional Quantiles,” Electronic Journal of Statistics, 6, 1715–1744. [2]

Gardes, L., and Stupfler, G. (2014), “Estimation of the Conditional Tail
Index Using a Smoothed Local Hill Estimator,” Extremes, 17, 45–75. [2]

Goegebeur, Y., Guillou, A., and Osmann, M. (2014), “A Local Moment Type
Estimator for the Extreme Value Index in Regression With Random
Covariates,” Canadian Journal of Statistics, 42, 487–507. [2]

https://ir.cwi.nl/pub/12752


JOURNAL OF BUSINESS & ECONOMIC STATISTICS 13

Goegebeur, Y., Guillou, A., and Schorgen, A. (2014), “Nonparametric
Regression Estimation of Conditional Tails: The Random Covariate
Case,” Statistics, 48, 732–755. [2]

Goegebeur, Y., Guillou, A., and Stupfler, G. (2015), “Uniform Asymptotic
Properties of a Nonparametric Regression Estimator of Conditional
Tails,” Annales de l’I.H.P. Probabilités et Statistiques, 51, 1190–1213.
[2]

Hamidieh, K., Stoev, S., and Michailidis, G. (2009), “On the Estimation
of the Extremal Index Based on Scaling and Resampling,” Journal of
Computational and Graphical Statistics, 18, 731–755. [9]

Hauksson, H., Dacorogna, M., Domenig, T., Mller, U., and Samorodnitsky,
G. (2001), “Multivariate Extremes, Aggregation and Risk Estimation,”
Quantitative Finance, 1, 79–95. [1]

He, Y., and Einmahl, J. H. J. (2017), “Estimation of Extreme Depth-Based
Quantile Regions,” Journal of the Royal Statistical Society, Series B, 79,
449–461. [1,2,6,7]

Hüsler, J., and Li, D. (2006), “On Testing Extreme Value Conditions,”
Extremes, 9, 69–86. [4]

Kesten, H. (1973), “Random Difference Equations and Renewal Theory
for Products of Random Matrices,” Acta Mathematica, 131, 207–248.
[1]

Lindskog, F. (2004), “Multivariate Extremes and Regular Variation for
Stochastic Processes,” PhD thesis, ETH Zurich. [1]

Mainik, G., and Embrechts, P. (2013), “Diversification in Heavy-Tailed
Portfolios: Properties and Pitfalls,” Annals of Actuarial Science, 7, 26–45.
[1]

Mainik, G., and Rüschendorf, L. (2010), “On Optimal Portfolio Diversifica-
tion With Respect to Extreme Risks,” Finance and Stochastics, 14, 593–
623. [1]

McNeil, A. J. (1998), “Calculating Quantile Risk Measures for Financial
Return Series Using Extreme Value Theory,” Technical Report, ETH
Zurich. [9]

Orey, S., and Pruitt, W. E. (1973), “Sample Functions of the n-Parameter
Wiener Process,” The Annals of Probability, 1, 138–163. [10,11]

Poon, S.-H., Rockinger, M., and Tawn, J. (2003), “Modelling Extreme-Value
Dependence in International Stock Markets,” Statistica Sinica, 13, 929–
953. [9]

Resnick, S., and Samorodnitsky, G. (2015), “Tauberian Theory for Multi-
variate Regularly Varying Distributions With Application to Preferential
Attachment Networks,” Extremes, 18, 349–367. [1]

Resnick, S. I. (2007), Heavy-Tail Phenomena: Probabilistic and Statistical
Modeling, New York: Springer-Verlag. [1]

(2013), Extreme Values, Regular Variation and Point Processes, New
York: Springer-Verlag. [1]

Samorodnitsky, G., Resnick, S., Towsley, D., Davis, R., Willis, A., and Wan,
P. (2016), “Nonstandard Regular Variation of In-Degree and Out-Degree
in the Preferential Attachment Model,” Journal of Applied Probability, 53,
146–161. [1]
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