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ABSTRACT
We develop new multi-factor dynamic copula models with time-varying factor loadings and observation-
driven dynamics. The new models are highly flexible, scalable to high dimensions, and ensure positivity
of covariance and correlation matrices. A closed-form likelihood expression allows for straightforward
parameter estimation and likelihood inference. We apply the new model to a large panel of 100 U.S. stocks
over the period 2001–2014. The proposed multi-factor structure is much better than existing (single-factor)
models at describing stock return dependence dynamics in high-dimensions. The new factor models also
improve one-step-ahead copula density forecasts and global minimum variance portfolio performance.
Finally, we investigate different mechanisms to allocate firms into groups and find that a simple industry
classification outperforms alternatives based on observable risk factors, such as size, value, or momentum.

ARTICLE HISTORY
Received February 2019
Accepted April 2020

KEYWORDS
Factor copulas; Factor
structure; Multivariate
density forecast;
Score-driven dynamics

1. Introduction

Copulas are a key ingredient in many current applications in
economics and finance (see, e.g., Patton 2009; Cherubini et al.
2011; Fan and Patton 2014; McNeil, Frey, and Embrechts 2015).
In particular, time-varying copulas have turned out to be an
important and flexible tool to describe dependence dynamics
in an unstable environment (see Patton 2006; Manner and
Reznikova 2012; Lucas, Schwaab, and Zhang 2014). Most copula
applications deal with a cross-sectional dimension that is small
to moderate (for an overview, see Patton 2013). Applications to
high-dimensional datasets are scarce, mainly due to the “curse of
dimensionality”: the number of parameters grows rapidly when
the dimension increases.

Recently, Creal and Tsay (2015), Oh and Patton (2017, 2018),
and Lucas, Schwaab, and Zhang (2017) put forward a gen-
eral approach to modeling time-varying dependence in high
cross-sectional dimensions using a factor copula structure. The
factor copula structure describes the dependence between a
large number of observed variables by a smaller set of latent
variables (or factors) with time-varying loadings. This allows
one to considerably limit the number of parameters required to
flexibly describe the dynamics of high-dimensional dependence
structures.

Dynamic factor copulas have mainly been implemented for
the single-factor case; see the references above. This is pre-
dominantly driven by computational reasons. Though adding
more factors with dynamic loadings is possible in principle,
it would increase the computational burden substantially. In
the approach of Oh and Patton (2018) this results from the
fact that the densities of the common latent factors and of the
idiosyncratic factors do not convolute easily. The copula density
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is then not available in closed form and additional numerical
methods are required for estimation. This requires consider-
able computational effort, particularly if multiple factors are
used. Creal and Tsay (2015) faced a different challenge as they
used a standard parameter driven recurrence equation for the
factor loadings dynamics. This introduces additional stochastic
components into the model that need to be integrated out (see
also Hafner and Manner 2012). Bayesian simulation techniques
are used for this integration step, which again becomes com-
putationally expensive as the number of factors with dynamic
loadings grows.

Though it is understandable from a computational point of
view to restrict oneself to a single factor, it seems too restric-
tive for most empirical applications. For instance, for panels of
equity returns a minimum of three to five factors seems to be the
standard (see Fama and French 1993, 2016). A computationally
simple yet flexible approach that can easily deal with both the
multi-factor setting and dynamic loadings thus seems to be
called for.

In this article, we develop exactly such a multi-factor copula
model with dynamic loadings. For this purpose, we assume
that the cross-sectional units can be grouped using observable
characteristics, such as the industry of the firm, its headquarters
location, or risk characteristics such as firm size, its book-to-
market value, etc. Each of these groups is possibly subject to one
or more common factors as well as to group-specific factors.
We limit the number of parameters in the model by assuming
that all units in a particular group have identical factor loadings.
We allow the loadings for each of the factors to vary over time
using score-driven dynamics as introduced by Creal, Koop-
man, and Lucas (2013) and Harvey (2013). Using appropriate
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distributional assumptions for the latent common and group-
specific factors as well as for the idiosyncratic components, we
obtain a model with a tractable, closed-from likelihood expres-
sion. Hence, parameter estimation and inference are straightfor-
ward using maximum likelihood (ML) and the computational
burden is kept to a minimum. In particular, a two-step targeting
approach that combines a moment-based estimator and the ML
approach leads to fast estimation of the parameters in our most
flexible multi-factor copula model. The new multi-factor model
can be implemented without any difficulty for high dimensions.
In addition, the model easily allows for the inclusion of exoge-
nous variables that help to describe the dynamics of the factor
loadings.

As a typical high-dimensional financial dataset, we consider
a panel of 100 U.S. daily equity returns across 10 different
industries over the period 2001–2014. We group the stocks
according to industry, and consider various single- and multi-
factor specifications, with Gaussian and Student’s t copulas. We
compare the factor copula models with three popular multivari-
ate GARCH (MGARCH) models: the cDCC model of Engle
(2002) and Aielli (2013), and the DECO and block DECO
models of Engle and Kelly (2012). Our comparison is based on
in-sample and out-of-sample (density) forecasts. For the latter
forecasts, we use the model confidence set (MCS) approach of
Hansen, Lunde, and Nason (2011). In addition, we consider the
economic performance of the models when used for construct-
ing global minimum variance portfolios (GMVPs).

We find that for our panel of equity returns, both within-
industry and between-industry dependence dynamics are key
data features that need to be accommodated. Single-factor mod-
els and the standard DECO model have difficulty matching
these two types of dependence dynamics simultaneously. Our
multi-factor specification with Student’s t copula, by contrast,
outperforms all benchmarks considered in terms of density fore-
casts, both in-sample and one-step-ahead out-of-sample. When
considering the joint lower tail of the multivariate distribution,
we again find that the multi-factor Student’s t copula model
always belongs to the MCS.

For economic criteria, simpler models prevail, though the
multi-factor model still belongs to the MCS. Meanwhile, our
one-factor specification with heterogeneous dynamic loadings
has the best ex-post GMVP performance. We attribute this
difference to the character of the global minimum variance
criterion: differences in minimum variance are harder to obtain
and typically smaller, such that the increased flexibility of more
complex models does not offset the associated estimation risk of
the additional parameters used. This contrasts with the criterion
based on the full density forecasts, where all dynamics play a
more dominant role and the multi-factor specifications work
best in-sample and out-of-sample.

As a final novelty in this article, we investigate whether
industry classification provides the best grouping structure.
We consider alternative classifications based on observable risk
characteristics such as firm size, value, or momentum. This
provides a further modeling challenge, as the group structure
is allowed to vary over time, with corresponding changes in
the factor loadings matrix. We find that group classifications
based on observable risk characteristics do not outperform the
simpler, static classification based on industry.

This article relates to various strands of the literature. First,
there is an extensive literature on factor models and the estima-
tion of large covariance matrices (see, e.g., Fan, Fan, and Lv 2008;
Fan, Liao, and Mincheva 2011; Fan, Liao, and Liu 2016). Engle,
Ng, and Rothschild (1990) developed factor ARCH models with
an application to asset pricing with many assets. Factor copulas
vis-à-vis factor ARCH models, however, offer more flexibility
in choosing the factor structure and distributional assump-
tions with respect to both the marginals and the dependence
structure. Second, factor copulas have recently been introduced
by Krupskii and Joe (2013), Creal and Tsay (2015), Oh and
Patton (2017), among others. Oh and Patton (2018) and Lucas,
Schwaab, and Zhang (2017) are the first to introduce the score-
driven framework of Creal, Koopman, and Lucas (2013) within
factor copulas. Compared to their work, we consider specifica-
tions that yield closed-form densities and use a parameterization
that is easily scalable to many factors and high cross-sectional
dimensions. Third, we relate to a strand of literature on copula-
MGARCH models, such as Christoffersen et al. (2012, 2014),
who combine a skewed Student’s t copula with a DCC model
to study diversification benefits in a panel of more than 200
asset returns. These models suffer in general from the curse of
dimensionality mentioned earlier and also require the repeated
inversion of (large) covariance or correlation matrices during
parameter estimation, which becomes computationally cumber-
some and numerically problematic in high dimensions.

The rest of this article is organized as follows. Section 2
presents the multi-factor copula model with dynamic loadings.
We carefully lay out the different aspects of our modeling
approach, including various possible common factor specifica-
tions and the loadings dynamics. We also discuss important
details concerning parameter estimation, using either full like-
lihood estimation, a two-step targeting approach, or composite
likelihood (CL) methods. Section 3 studies the performance of
the multi-factor copula models in a controlled environment.
Section 4 provides the results for the empirical application.
Section 5 concludes. An online appendix to this article provides
more details on the derivations, as well as more empirical and
simulation results for the new models.

2. The Modeling Framework

In this section, we develop the class of closed-form dynamic
multi-factor copulas with score-driven loadings. The approach
allows for time-varying dependence that remains tractable yet
versatile in high-dimensional settings. Our aim is to character-
ize the conditional joint distribution Ft(yt) of the vector yt =
(y1,t , . . . , yN,t)� ∈ RN of asset returns in period t, t = 1, . . . , T,
where the cross-sectional dimension N is possibly large. We
decompose Ft(yt) into N marginals and a conditional copula as
in Patton (2006),

yt|Ft−1 ∼ Ft(yt) (1)

= Ct
(

F1,t(y1,t ; θM,1,t) , . . . , FN,t(yN,t ; θM,N,t) ; θC,t
)

,

where Ct( · ; θC,t) is the conditional copula given the informa-
tion set Ft−1 = σ(yt−1, yt−2, . . .) and the time-varying copula
parameter vector θC,t , and Fi,t(yi,t ; θM,i,t), i = 1, . . . , N, denotes
the conditional marginal distribution of asset i given Ft−1 and
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the time-varying marginal distribution parameter vector θM,i,t .
We return to the choice of the marginals later. Note that the
conditional copula Ct( · ; θC,t) can also be interpreted as the
conditional distribution Ct(ut ; θC,t) of the probability integral
transforms (PITs) ut = (u1,t , . . . , uN,t)� of yt , where ui,t ≡
Fi,t(yi,t ; θM,i,t) for i = 1, . . . , N.

As is well known, decomposing the multivariate (condi-
tional) distribution Ft(yt) into its marginals and copula has sev-
eral advantages. Particularly when the cross-sectional dimen-
sion N is large, splitting the modeling task into specifying the
marginals and the copula may substantially reduce the compu-
tational burden as parameters can be estimated using a two-step
approach. As modeling the univariate marginal distributions is
relatively simple and fast even for large N, the main remaining
challenge is to parsimoniously specify the conditional copula
Ct( · ; θC,t). This can be done using factor copulas or multivari-
ate GARCH models like the DCC or DECO models.

2.1. Observation-Driven Dynamic Factor Copulas

The general literature on copula modeling is extensive (see, e.g.,
Patton 2009, 2013; Fan and Patton 2014 for partial overviews).
However, the literature on how to deal with copulas in large
cross-sectional dimensions is rather scarce. The main challenge
in high dimensions is to keep the parameter space manageable,
but at the same time to allow for sufficient flexibility in the
dependence structure. To strike this balance, we use a multi-
factor copula structure that we endow with score-driven param-
eter dynamics. Furthermore, we assume that the N asset returns
can be clustered into G groups, with assets in the same group
having identical factor loadings.

We start from the factor copula structure

ui,t = Dx,i(xi,t ; λ̃i,t , σi,t , ψC), i = 1, . . . , N, (2)

xi,t = λ̃
�
i,tzt + σi,tεi,t ,

zt
iid∼ Dz(zt | ψC), εi,t

iid∼ Dε(εi,t | ψC),

where λ̃i,t is a k × 1 vector of scaled factor loadings, zt is a
k × 1 vector of common latent factors and εi,t is an idiosyn-
cratic shock. In addition, zt and εi,t are cross-sectionally and
serially independent with distributions Dz and Dε , respectively,
depending on a static shape parameter vector ψC. Furthermore,
Dz and Dε have zero mean and unit (co)variance (matrix).
Finally, Dx,i( · ) denotes the implied marginal distribution of xi,t
(see Creal and Tsay 2015). We define the vector λ̃i,t and scalar
σi,t as

λ̃i,t = λi,t√
1 + λ�

i,tλi,t

, σ 2
i,t = 1

1 + λ�
i,tλi,t

(3)

for an unrestricted k × 1 vector λi,t , such that xi,t has zero
mean and unit variance by design. Further parameterization
details can be added to ensure for instance that some elements
of λi,t are positive by design, for example, by taking exponential
transformations or a multinomial logit parameterization. The
copula parameter vector gathers all free parameters in θ�

C,t =
(λ�

1,t , . . . , λ�
N,t , ψ

�
C ).

The correlation matrix of xt = (x1,t , . . . , xN,t)� equals

Rt = L̃�
t L̃t + Dt ,

L̃t = (
λ̃1,t , . . . , λ̃N,t

)
,

Dt = diag
(
σ 2

1,t , . . . , σ 2
N,t

)
, (4)

which satisfies all requirements of a correlation matrix, namely
positive semidefiniteness and ones on the diagonal.

The factor copula structure in (2) comes with an important
computational advantage (see also Creal and Tsay 2015), namely
that the inverse and determinant of Rt are available in closed
form as

R−1
t = D−1

t − D−1
t L̃�

t

(
Ik + L̃tD−1

t L̃�
t

)−1
L̃tD−1

t ,

|Rt| =
∣∣∣Ik + L̃tD−1

t L̃�
t

∣∣∣ · |Dt|, (5)

where Ik denotes the k-dimensional identity matrix and Dt a
diagonal matrix. Computing the inverse of Ik + L̃tD−1

t L̃�
t is

relatively easy for two reasons. First, computing the inverse of
a diagonal matrix Dt is straightforward, and the subsequent
matrix multiplications are sparse. In particular, L̃tD−1

t can be
computed directly by dividing each column of L̃t by the cor-
responding diagonal element of Dt . Second, as the number of
common latent factors k is typically much smaller than the
number of observed assets N, computing the inverse of the k×k
matrix Ik + L̃tD−1

t L̃�
t is much faster than computing the inverse

of the N × N matrix Rt .
The class of factor copulas is very flexible. We can vary the

number and types of factors, the distributional assumptions of
the common factors zt and idiosyncratic shocks εi,t , and the
dynamics of the factor loadings λi,t . The following subsections
discuss each of these choices in more detail.

2.1.1. The Factor Structure
Our main goal in this article is to develop feasible dependence
structures that allow for multiple factors in a flexible, dynamic
way while still giving rise to a closed-form likelihood expression.
With our focus on multiple factors, we extend earlier articles
that emphasize single-factor implementations, such as Oh and
Patton (2018) and Creal and Tsay (2015).

A key aspect of our approach is the assumption that we
can split the N assets into G groups according to an observed
characteristic such as industry, region, or riskiness, etc. Each
group may be subject to several factors, where all assets within a
specific group are assumed to have identical factor loadings. As
in the block DECO model of Engle and Kelly (2012), this implies
that (i) all assets within a group share the same dependence
structure, and (ii) the dependence between any pair of assets
in two specific, different groups is also the same (but varying
across group combinations). This yields a flexible, yet highly
parsimonious set-up.

For the sake of exposition, we take the example of G = 4
groups with 2 firms in each group throughout this subsection.
In reality, of course, the number of groups and the number of
firms per group is typically much larger. For instance, in our
application in Section 4 we have G = 10 groups with up to 19
firms per group.
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In our most general specification the loadings matrix is
obtained from a lower-triangular matrix with columns contain-
ing group-specific loadings. The loadings matrix then takes the
form

L̃�
t =

⎛
⎜⎜⎝

λ̃1,1,t 0 0 0
λ̃1,2,t λ̃2,2,t 0 0
λ̃1,3,t λ̃2,3,t λ̃3,3,t 0
λ̃1,4,t λ̃2,4,t λ̃3,4,t λ̃4,4,t

⎞
⎟⎟⎠ ⊗

(
1
1

)
, (6)

where ⊗ denotes the Kronecker product. The first column
vector can be interpreted as a common-factor with group-
specific loadings, like different market betas. Overall, the load-
ings matrix could also be seen as a Cholesky decomposition of
a 4 × 4 “quasi correlation” matrix containing the within and
between group correlations. The number of unique factor load-
ings equals G(G + 1)/2. Note that the Cholesky decomposition
could be sensitive to the different ordering of the groups. We
show in Section 4 that in our empirical application this effect
is small: estimated dependence measures hardly change when
we reorder the variables. We label the model with the factor
structure in (6) as the multi-factor lower-triangular (MF-LT)
copula model.

A second, much more restricted version of our general speci-
fication combines a single common factor with (common) equi-
loadings, and a set of G group-specific factors with correspond-
ing group-specific loadings. This results in a loadings matrix
with G + 1 unique factor loadings

L̃�
t =

⎛
⎜⎜⎝

λ̃1,t λ̃2,1,t 0 0 0
λ̃1,t 0 λ̃2,2,t 0 0
λ̃1,t 0 0 λ̃2,3,t 0
λ̃1,t 0 0 0 λ̃2,4,t

⎞
⎟⎟⎠ ⊗

(
1
1

)
. (7)

For G ≥ 3 and at least 2 firms in each group, this model meets
the necessary requirement for identification. To see this, note
that the correlation matrix Rt for G = 3 has 3 within-group
correlations and 3 between-group correlations, hence 6 free
positions for the 4 different parameters in L̃t . For more groups
and firms, the number of positions in Rt increases quadratically,
whereas the number of parameters in L̃t increases linearly,
thus allowing for overidentification. The first (equi)factor with
common loadings λ̃1,t affects both the within-group and the
between-group correlations. The group-specific factors with
their group-specific loadings, on the other hand, only affect
the within-group correlations and not the between-group cor-
relations. We label this model as the multi-factor (MF) copula
model.

A third specification is obtained by replacing the group-
specific factors in (7) with a common factor with group-specific
loadings. The loadings matrix L̃�

t is then given by

L̃�
t =

⎛
⎜⎜⎝

λ̃1,t λ̃2,1,t
λ̃1,t λ̃2,2,t
λ̃1,t λ̃2,3,t
λ̃1,t λ̃2,4,t

⎞
⎟⎟⎠ ⊗

(
1
1

)
. (8)

From an asset pricing point of view, this second common factor
has different betas for each group. Although there are again G+1
unique factor loadings, there is now less freedom to capture the

differences between within-group and between-group effects.
Note that λ̃2,1,t cannot be rotated to zero without destroying the
equi-loading structure of the first column of L̃�

t , illustrating that
the model is identified. We label the model in Equation (8) the
2-Factor (2F) copula model. Omitting the factor corresponding
to λ̃1,t in (8) leads to the 1-Factor-Group (1F-Gr) model, which
consists of a single factor but with G different group loadings.
The 1F-Gr model has also been used in Lucas, Schwaab, and
Zhang (2017) and Oh and Patton (2018). Similarly, if instead
we drop the factor corresponding to λ̃2,g,t in (8), we obtain a
single-factor model with common loadings. We label this special
case the 1F-Equi copula model; see also the single-factor copula
structures of Oh and Patton (2018) and Creal and Tsay (2015).
It corresponds to a DECO correlation structure as in Engle and
Kelly (2012), where each pairwise asset correlation is assumed to
be the same. From an asset pricing perspective, the single factor
can be seen as the market factor with identical betas for all assets.

Table 1 lists all the factor structures considered in this article
with their corresponding properties and dimensions.

2.1.2. Distributional Assumptions
Given the various factor structures proposed in Section 2.1.1,
the next step is to specify a distribution for the common, group-
specific, and idiosyncratic factors in (2). Oh and Patton (2018)
assumed a skewed and symmetric Student’s t density for the
common factor zt and the idiosyncratic shock εi,t , respectively.
As a result, their copula density for xi,t is not available in closed-
form. Hence, likelihood evaluation and parameter estimation
become computationally involved. Also Creal and Tsay (2015)
did not have a likelihood in closed form due to their choice of
a new stochastic component in the transition equation for the
factor loading λi,t . They solve the issue by employing Bayesian
(numerical) techniques to estimate the parameters. Again, this
is computationally costly for increasing dimensions, particularly
in multi-factor settings.

In contrast to the above approaches, we retain tractability of
the model and a closed form of the likelihood by two particular
choices. First, we make convenient distributional assumptions
for the factors zt and εi,t . Second, we consider a score-driven
transition equation for the factor loadings λi,t . We discuss the
latter in the next subsection.

To model zt and εi,t , we use the Student’s t copula,

ui,t = T(xi,t ; νC), i = 1, . . . , N, (9a)

xi,t = √
ζt

(
λ̃

�
i,tzt + σi,tεi,t

)
, zt ∼ N(0, Ik),

εi,t ∼ N(0, 1), (9b)
ζt ∼ Inv-Gamma (νC/2, νC/2) . (9c)

where T( · ; νC) denotes the cdf of the univariate Student’s t
distribution with νC degrees of freedom, location zero, and
unit scale, and ζt denotes an independent inverse-gamma dis-
tributed random variable. Note that—in contrast to Creal and
Tsay (2015) and Oh and Patton (2018)—our proposed factor
structures of the previous subsection easily fit into the distribu-
tional framework above, while the copula density (and thus the
likelihood) retains its analytical closed-form expression. For the
special case νC → ∞, we obtain ζt ≡ 1 and a Gaussian copula
setting. The Gaussian copula, however, has no tail dependence
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Table 1. Various factor structures and their properties.

Name # factors # unique Common factor Common factor Group factors dim L̃�
t

factor with (equi) with with
loadings common loading group loadings group loadings

1F-Equi 1 1 Yes No No N × 1
1F-Group 1 G No Yes No N × 1
2F 2 G + 1 Yes Yes No N × 2
MF G + 1 G + 1 Yes No Yes N × (G + 1)

MF-LT G G(G + 1)/2 No Yes Yes N × G

NOTE: This table summarizes the various factor structures that are proposed given that there are N assets allocated to G different groups. We show the number of factors,
the number of unique factor loadings in L̃�

t , the dimension of the scaled factor loadings matrix and the existence of an equi-factor, group-specific factors and/or group-
specific loadings.

(see McNeil, Frey, and Embrechts 2015) and may therefore be
less suitable to describe the dependence structure in empirical
applications involving financial data.

The copula in (9a)–(9c) is symmetric. Oh and Patton (2017,
2018), by contrast, developed a 1-Factor asymmetric copula
model that allows for skewness. By adding an additional term
γ ζt for γ ∈ RN to the right-hand side of (9b) and letting
ζt be generalized inverse Gaussian, we obtain the generalized
hyperbolic (GH) copula class with skewness parameter γ . A
special case is the GH skewed Student’s t copula as used in,
for instance, Lucas, Schwaab, and Zhang (2014, 2017). Such a
generalization would come at a substantial increase in compu-
tational burden as the copula requires the numerical inversion
of the marginal cdfs at each point in time for all coordinates.
Preliminary experiments for the simplest model structures and
a skewed t copula did not result in major in-sample likelihood
increases or in substantial changes in the paths of the fitted
dynamic dependence parameters. Therefore, we leave such fur-
ther generalizations for future research and concentrate in this
article on the value-added of the multi-factor structures.

2.1.3. Score-Driven Factor Loading Dynamics
To complete our dynamic factor copula specification, we for-
mulate the dynamics of the unique factor loadings within the
matrix L̃�

t . We gather these unique time-varying parameters
in the vector f t , whose dimension and content varies across
different factor model structures, see Table 1.

In general, there are two approaches to model time-variation
in f t . The first approach is parameter-driven and assumes f t
evolves as a stochastic process driven by its own innovation.
This leads to so-called stochastic copula models as in Hafner
and Manner (2012) and Creal and Tsay (2015). Estimating
such models is typically computationally involved and requires
integrating out the random innovations of the time-varying
parameters in a numerically efficient way. The second approach
is observation-driven and assumes the factor loadings depend
on functions of past observables. Our proposal falls into this
latter category and uses score-driven dynamics as introduced by
Creal, Koopman, and Lucas (2013); see also Harvey (2013) and
Oh and Patton (2018). As mentioned before, an advantage of the
observation-driven approach is that the likelihood is available
in closed-form via a standard prediction error decomposition.
This substantially reduces the computational burden compared
to a parameter-driven approach.

Score-driven dynamics use the score of the conditional cop-
ula density to drive f t . Intuitively, this adjust the loadings in

a steepest ascent direction using the local log-likelihood fit at
time t as the criterion function. The approach has information
theoretic optimality properties as argued in Blasques, Koopman,
and Lucas (2015) and its generalizations in Creal et al. (2018). As
an example in our context, consider a 1-Factor equicorrelation
copula, such that L̃�

t = λ̃tιN for a scalar parameter λ̃t =
λt/

√
1 + λ2

t and ft = λt , such that λ̃t ∈ [−1, 1] by design,
where ιN denotes an N × 1 vector filled with ones. Then the
score-driven dynamics for ft are given by ft+1 = ω + A st + B ft ,
with st = ∂ log c(xt ; λ̃t , νC)/∂ft , and c( · ; λ̃t , νC) the Student’s
t copula density. We assume the same type of factor loading
dynamics for vector-valued f t . In that case we allow the intercept
vector ω to have unit or group-specific elements, while we
continue to treat A and B as scalars. Extensions to non-scalar
A or B are straightforward, and some of these are investigated
in the empirical application later on. Following Oh and Patton
(2018), we use unit scaling for the score st in the sense of Creal,
Koopman, and Lucas (2013) to reduce the computational bur-
den of estimating a separate scaling function. As an alternative,
the score could be scaled with the Information matrix. Explicit
expressions for the score and Information matrix for all factor
copula specifications used in our article are provided in online
Appendix A.7.

2.2. Benchmarks, Marginals, and Parameter Estimation

We compare the dynamic factor copula models developed above
against MGARCH alternatives, in particular the cDCC model
(Engle 2002; with the correction of Aielli 2013) and the (block)
DECO model of Engle and Kelly (2012); see online Appendix C
for the implementation details of these models in our setting.
To maintain a fair comparison in high dimensions, we also
consider the MGARCH models in a copula framework and use
the same marginal models for the MGARCH and multi-factor
score-driven copulas.

For the marginal distributions, we use the univariate t-GAS
volatility model of Creal, Koopman, and Lucas (2011, 2013).
We also perform a robustness check with other marginals, such
as univariate GARCH models with skewed t innovations. The
results are qualitatively similar. For more details on the estima-
tion results for the marginal models or for the copula results
based on PITs from skewed marginal distributions, see online
Appendices D and E, respectively.

Parameter estimation requires some further details, both
for the factor copula and the MGARCH copula models. To
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estimate the model parameters, we use a two-step likelihood
based approach. First, we estimate the parameters of each of the
marginals (separately). Second, we estimate the copula param-
eters conditional on the marginal parameter estimates. This
approach follows directly from decomposing the joint likeli-
hood as

L(θ) ≡
T∑

t=1
log f t(yt ; θ t) =

N∑
i=1

T∑
t=1

log fi,t(yi,t ; θM,i,t)

+
T∑

t=1
log ct

(
F1,t(y1,t ; θM,1,t), . . . ,

FN,t(yN,t ; θM,N,t); θC,t

)
(10)

with fi,t(·; θM,i,t) denoting the conditional marginal density cor-
responding to F1,t(·; θM,i,t), and θ t = {θM,t , θC,t}. According
to Patton (2013), the implied efficiency loss of the two-step
approach compared to the one-step approach is small.

We assume a Student’s t and Gaussian copula to model the
dependence, as discussed before. For the factor copula specifi-
cations, inverses and determinants of Rt are given in closed form
by (5), which substantially reduces the computational burden in
high dimensions. This enables us to estimate these models by
maximum likelihood.

In case of our most general multi-factor copula model (the
MF-LT), we potentially have G(G + 1)/2 different elements in
the vector of intercepts ω in the score-driven dynamics of the
factor loadings. A computational challenge may then arise if G
becomes large. In that case, we suggest to estimate the copula
parameters using the following two-step procedure. Assuming
that the loading process is covariance stationary, and defining
the unconditional mean of f t as f̄ , we have

f̄ = E[f t+1] = ω + BE[f t] ⇔ f̄ = (1 − B)−1 ω. (11)

In the first step, we match f̄ to the empirical within-group and
between-group correlations using a moment estimator. We do
so as follows. Let RM denote the G × G “quasi unconditional
correlation matrix” based on xit = 	−1(uit). The off-diagonal
elements RM,g,h equal the average correlation between all asset
pairs from group g and h g, h = 1, . . . , G, g �= h, respectively.
The diagonal element RM,g,g holds the average of pairwise corre-
lations within group g. The moment estimator is then obtained
by minimizing

LM = vech(RM − ¯̃L ¯̃L�)� vech(RM − ¯̃L ¯̃L�), (12)

with ¯̃L� a G×G lower triangular matrix as in (6) depending on f̄
via the same nonlinear transformation that maps f t into λi,t and
subsequently into λ̃i,t as in (3). In a second step, we estimate
the remaining parameters A and B keeping f̄ fixed and setting
ω = (1 − B)f̄ . This two-step targeting procedure substantially
decreases the computational burden. The moment estimator in
the first step is computed quickly, while in the second step we
only need to estimate the two remaining parameters A and B.
Note that in the first step RM is based on the inverse normal
cdf in case of the Gaussian copula. For the Student’s t copula,
we could use the inverse Student’s t cdf, but we show in the

next section that the normal inverse cdf also works well for the
Student’s t copula case in the moments estimator.

In contrast to the multi-factor models, inverses and deter-
minants of Rt are not available in closed form for the block
DECO and cDCC specifications. We therefore estimate the
cDCC model by means of the CL method of Pakel et al. (2020).
This technique is based on maximizing the sum of bivariate
(copula) log-likelihood values to estimate A and B (and νC). In
a second step the matrix � is estimated by its sample analogue.

Finally, we also use a CL approach for the block DECO model
of Engle and Kelly (2012) by extending their proposal from the
Gaussian to the Student’s t case. They consider the joint log-
likelihood of all the firms in two separate groups g �= h, with
g, h ∈ {1 . . . , G}, that is,

LStud
g,h =

T∑
t=1

[
−1

2
log |Rt| − ν + ng + nh

2
log

(
1 + x�

t R−1
t xt

ν − 2

)]
,

(13)

where |Rt| and R−1
t are given analytically for the 2-block case

by Lemma 3.1 in Engle and Kelly (2012). The CL method now
maximizes the sum of all log-likelihoods of each pair of blocks
g > h,

maxLCL = max
∑
g>h

LStud
g,h , (14)

where the intercept � is estimated by the unconditional cor-
relation matrix of xt . Note that for ν → ∞, we recover the
Gaussian block DECO model, which is the specification used in
most of the literature. As argued before, however, the Gaussian
copula lacks tail dependence and may therefore be less suitable
for financial data.

3. Simulation Experiment

We briefly report the results of three Monte Carlo experiments,
conducted to study the properties of the new method. Full
details can be found in the online Appendix B.2.

In the first experiment, we investigate the accuracy of esti-
mation and inference in the new model. Panel A of Table 2
presents the outcomes for a set-up with an N = 100 dimensional
time series of length T = 1000 with G = 10 equally sized
groups holding N/G = 10 individual cross-sectional units each.
These settings roughly correspond to the data dimensions in our
empirical application. The data-generating process (DGP) is the
MF copula model from Equation (7). We only report results for
A, B, and νC. Results for ω and for smaller sample sizes can
be found in the online appendix and are qualitatively similar.
We find that all parameters are estimated near their true values.
Comparing results over sample sizes (in the online appendix),
we see that the standard deviation decreases approximately with
a factor

√
2. By comparing the Monte Carlo standard error of the

estimates (std column in Table 2) with the mean of the estimated
standard error over all replications (mean(SE) column), we
find that our computed standard errors fairly reflect estimation
uncertainty. Overall, Panel A shows that the parameters and
standard errors of the Gaussian and Student’s t factor copulas
with score-driven dynamic factor loadings can be accurately
estimated if the model is correctly specified.
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Table 2. Monte Carlo results of parameter estimates of the multi-factor copula.

Normal Student’s t

Coef. True Mean Std Mean(SE) Mean Std Mean(SE)

Panel A: MF, T = 1000

Aeq(N) 0.0085 0.0085 0.0009 0.0008
Agr,f (N) 0.0095 0.0093 0.0018 0.0018
Aeq(t) 0.0150 0.0149 0.0020 0.0019
Agr,f (t) 0.0100 0.0096 0.0016 0.0016

B(N) 0.8700 0.8626 0.0221 0.0248
B(t) 0.9200 0.9149 0.0129 0.0126
νC 35.00 35.1760 1.8629 1.8821

Panel B: MF-LT, T = 1000

A 0.015 0.0161 0.0006 0.0006 0.0161 0.0007 0.0006
B 0.970 0.9700 0.0025 0.0023 0.9697 0.0024 0.0024
νC 35.00 35.06 1.862 1.846

NOTE: This table provides Monte Carlo results of parameter estimates using the multi-factor (MF) Gaussian and t-copula model as given in (7), and the MF-LT model based
on (6). For full details, see the online Appendix B.2. B(N) and B(t) denote the value of B in case of the Gaussian (N) and Student’s t (t) factor copula model, respectively.
The table reports the mean and standard deviation of the estimated coefficients, as well as the mean of the computed standard error. Results are based on 1000 Monte
Carlo replications.

Panel B of Table 2 shows results for the MF-LT model from
Equation (6). The results for A, B, and νC are similar to those
of the MF model. Our two-step targeting approach for ω thus
appears to work well both for estimation and inference. The
estimates of ω as shown in the online appendix reveal that
the standard deviations of moment-based estimators for ωi are
higher than the standard errors of the ML estimators for A,
B, and νC. The two-step estimator thus implies a large com-
putational gain at the expense of some efficiency loss in the
estimation of ω. The assumed distribution does not appear to
have a major impact on the performance.

Finally, we investigate the impact of misspecification of the
factor structure on the estimated dependence structure. In this
third experiment, we consider a DGP with N = 25, T = 1000,
and the MF factor structure, using Student’s t(35) distributed
errors (with νC = 35 based on the empirical application) for
G = 5 different groups, each containing N/G = 5 units.
Using different (possibly mis-specified) factor copula models,
we compute the time average of the squared Frobenius norm
of ˆ̂Rt − Rt , which is a consistent loss function according to
Laurent, Rombouts, and Violante (2013). The results in Table 3
clearly indicate that underestimating the number of factors
causes substantial discrepancies between the true and the fitted
dependence dynamics, particularly for one-factor models with
an equi-loading structure, or for the multi-factor models that
ignore the different between-group dependencies. This holds
irrespective of the distribution used.

4. Empirical Application

4.1. Data

In our high-dimensional empirical application, we investigate
the daily open-to-close returns of 100 randomly chosen con-
stituents of the S&P 500 index during the period January 2, 2001
until December 31, 2014 (T = 3521 days). Table B.1 in the
online appendix provides an overview of the ticker symbols of

Table 3. Performance of misspecified factor copulas.

MF-LT MF 2F 1F-Group 1F-Equi

Student’s t 0.058 1.692 1.600 0.891 2.541
(0.023) (0.266) (0.222) (0.107) (0.308)

Gaussian 0.080 1.699 1.567 0.914 2.559
(0.023) (0.263) (0.205) (0.109) (0.312)

NOTE: This table summarizes the mean and standard deviation of the average
Euclidian distance between a simulated correlation matrix Rt (t = 1, . . . , 1000)

from the MF-LT model with t(35)-distributed errors and the estimated R̂t based
on one, two, or multi-factor copula models with either Gaussian or a Student’s t
distributions. All results are based on 1000 replications.

all stocks. The same table shows the classification of the stocks
into 10 groups based on the industry of the firm. In our sample,
financials form the largest group with 19 firms, followed by
consumer services and energy, respectively. Each industry group
includes at least four firms.

To model the marginal characteristics of daily stock returns,
we estimate univariate t-GAS volatility models as given in Equa-
tions (D.1) and (D.2) in the online Appendix D. For the condi-
tional mean, we find at most two significant autoregressive (AR)
lags. We therefore use an AR(2) conditional mean specification
in the marginal models for all 100 stocks. Estimation results
are summarized in Table D.1 in online Appendix D. We find
that the mean of the estimated degrees of freedom parameter
ν of the Student’s t distribution equals 8.22, underlining the fat-
tailed nature of daily stock returns even after filtering for time-
varying volatility. The mean estimate of β (0.991) reflects the
usual strong persistence in volatility.

We follow Creal and Tsay (2015) and evaluate the fit of
the marginal distributions by transforming the PITs ûi,t into
Gaussian variables x̂i,t = 	−1(ûi,t), t = 1, . . . , T. We subse-
quently test each series x̂i,t for normality using the Kolmogorov–
Smirnov test. Across the 100 firms, we only reject the null
hypothesis of normality for 5 series at the 5% significance level.
We conclude that the marginal models are adequate for our
subsequent analysis.
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As a robustness check, we also estimated univariate GARCH
models with the skewed Student’s t distribution of Hansen
(1994) and compared this to GARCH-t models for all assets.
The results for the skewed Student’s t GARCH models are
reported in online Appendix D. The comparison indicates that
the average increase in the maximized log-likelihood relative
to GARCH t models is a modest 1.3 points. Given this weak
evidence for the presence of skewness, we therefore stick to the
standard Student’s t distribution for our main analysis.

4.2. Full-Sample Copula Comparisons

After estimating the parameters of the marginal distributions,
we proceed to estimate the parameters of the score-driven factor
copula models and the benchmark MGARCH copula models
using the full sample of 3521 observations. The factor copu-
las are based on grouping firms into industries as laid out in
Table B.1 of the online appendix.

Table 4 shows the parameter estimates and maximized log-
likelihood values for all models. Panels A.1 and A.2 contain
results for Gaussian and t factor copula specifications, respec-
tively: a one-factor copula with homogeneous (1F-Equi) or with
industry-specific (1F-Group) loadings, a two-factor copula (2F)
with one factor with homogeneous loadings and one factor
with industry-specific loadings, a multi-factor copula (MF) with
10 industry factors, and a multifactor model (MF-LT) with a
triangular loadings matrix. Panels B.1 and B.2 contain results for
Gaussian and t benchmark copulas from the MGARCH class:
the cDCC, DECO, and block DECO models. In both multi-
factor copula models, we assume that the B parameter in the
GAS transition equation is the same for all factor loadings. For
the MF-LT model we assume a common scalar A, while A is
allowed to differ between the common factor and the industry-
specific factors in the MF model. In the 2F model, we also
allow for different A values for the two common factors, while
assuming the same B value. Finally, for the 1F-Gr model we

Table 4. Parameter estimates of the full sample.

Model ωeq Aeq Agr B νC LogL AIC � para

Panel A.1: Gaussian factor copulas

1F-Equi 0.017 0.005 0.975 65,934 −131,862 3
(0.002) (0.000) (0.003)

1F-Group 0.007 0.970 68,086 −136,148 12
(0.001) (0.006)

2F 0.047 0.012 0.013 0.941 71,667 −143,306 14
(0.006) (0.000) (0.001) (0.009)

MF 0.042 0.012 0.014 0.930 81,827 −163,626 14
(0.005) (0.000) (0.001) (0.009)

MF-LT 0.009 0.964 83,226 −166,339 57
(0.001) (0.005)

Panel A.2: t-factor copulas

1F-Equi 0.062 0.012 0.918 36.52 69,679 −139,350 4
(0.013) (0.001) (0.016) (1.52)

1F-Group 0.005 0.986 31.87 72,293 −144,560 13
(0.000) (0.001) (1.11)

2F 0.004 0.009 0.006 0.993 38.57 77,828 −155,627 15
(0.002) (0.001) (0.001) (0.002) (1.64)

MF 0.033 0.012 0.012 0.957 44.98 84,858 −169,687 15
(0.002) (0.001) (0.001) (0.002) (1.78)

MF-LT 0.004 0.990 36.22 86,433 −172,749 58
(0.000) (0.002) (1.38)

Panel B.1: Gaussian copula-MGARCH models

cDCC (CL) 0.017 0.968 74,263 −138,623 4952
(0.001) (0.003)

DECO 0.071 0.929 64,474 −119,044 4952
(0.001) (0.001)

Block DECO 0.030 0.957 83,087 −156,270 4952
(0.002) (0.003)

Panel B.2: t copula-MGARCH models

cDCC (CL) 0.018 0.968 14.17 82,688 −155,470 4953
(0.001) (0.002) (0.58)

DECO 0.106 0.894 34.43 69,314 −128,721 4953
(0.000) (0.000) (0.80)

Block DECO 0.032 0.955 22.51 86,222 −162,537 4953
(0.002) (0.003) (0.60)

NOTE: This table reports maximum likelihood parameter estimates of various factor copula models, the (block) DECO model of Engle and Kelly (2012) and the cDCC model
of Engle (2002), applied to daily returns of 100 stocks included in the S&P 500 index. We consider five different factor copula models, see Table 1 for the definition of
their abbreviations. Panel A.1 presents the factor models with a Gaussian copula density, Panel A.2 presents the parameter estimates corresponding with the Student’s
t copula. Panel B.1 and B.2 present the estimates of the MGARCH class of models. In case of the cDCC and block DECO models, the table shows parameters estimates
obtained by the composite likelihood (CL) method. Standard errors are provided in parenthesis and based on the (sandwich) robust covariance matrix estimator. We
report the copula log-likelihood, the Akaike information criteria (AIC) as well as the number of estimated parameters for all models. The sample comprises daily returns
from January 2, 2001 until December 31, 2014 (3521 observations).
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assume a common A and B parameter for all different groups.
To save space, we do not report all the different intercepts ωg for
all groups for the factor copulas with group-specific loadings.
These detailed results are provided in the online Appendix E.
Standard errors are based on the sandwich (robust covariance
matrix) estimator Ĥ−1

0 Ĝ0Ĥ−1
0 with Ĥ0 the inverse Hessian of

the likelihood, and Ĝ0 the outer product of gradients.
Five interesting results emerge from Table 4. First, in terms

of the statistical fit, the MF-LT t model outperforms the other
factor-copula models, as well as the MGARCH-copula models
(cDCC, DECO and block DECO). The MF-LT model not only
achieves the highest total log-likelihood value, but also performs
best in terms of AIC, which takes into account the number of
estimated parameters.

Second, multi-factor models provide a much better fit than
one-factor copula models. For example, the log-likelihood dif-
ference between the MF-LT t copula and the 1F-Equi t copula
is more than 15,000 points. The largest gain with respect to
the factor structure is obtained by including industry factors,
that is, extending the 1F-Equi model to the MF specification.
This increases the log-likelihood by 15,000 points in both the
Gaussian and Student’s t case. Note that allowing for industry
specific loadings in the single-factor model leads to a much
more modest improvement in the log-likelihood of 2500 points.
Extending the single-factor model with a second factor with
industry-specific loadings performs better, but the increase in
the log-likelihood is still only half of the improvement achieved
by the MF specification.

Third, the Student’s t factor copulas fit considerably bet-
ter than their Gaussian counterparts. Log-likelihood differ-
ences range between 3000 and 6000 points, depending on the
specification. Differences for the multi-factor specifications are

typically at the lower end of this range. This underlines that
allowing for more than one factor also takes care of part of the
tail clustering.

Fourth, we find strong persistence in the time-varying factor
loadings with a value of B ≈ 0.97 for most of the estimated
(t-)factor copula models. This finding, as well as the previous
one, confirms the empirical results of Oh and Patton (2018)
using an entirely different dataset of log-differences of U.S. CDS
spreads.

Finally, we note that the estimated degrees of freedom param-
eter νC is (much) lower for the block DECO t and cDCC t
specifications than for the MF-LT t model or the DECO model.
It seems that there is empirically some bias effect due to the
use of the composite versus the ML approach to parameter
estimation.

Our main results are robust against two variations in the
estimation set-up. First, we re-estimate all models based on PITs
obtained from estimating a skewed Student’s t GARCH model
for the marginals. Second, we investigate the sensitivity of the
MF-LT t model with respect to the ordering of the industries by
re-estimating the MF-LT t model for 50 different random indus-
try orderings. Online Appendix E shows the results for both
robustness checks and confirms that our conclusions continue
to hold.

Figure 1 shows an example of within and between indus-
try correlation differences for two industries. For clarity, each
panel compares the MF-LT t model to one of its competitors.
The upper-left and lower-right panels show that the 1-Factor
specifications under-estimate within correlation levels, as they
have to compromise within and between correlations using the
same dynamic loadings. The upper panels also show that the
MF-LT model results in much less noisy correlation estimates,

Figure 1. In-sample within and between industry correlations of the MF-LT t copula. This figure shows the fitted within industry correlations of financials and energy, as
well as their between industry correlations. The panels compare the MF-LT t model output to that of the 1F-Equi t, 1F-Group t, and MF t model, respectively. The sample
spans the period from January 2, 2001 until December 31, 2014 (T = 3521 days).
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both with respect to the MF and the 1F-Eq model. The main
take-away is that our multi-factor models pick up the within
industry specific correlations that cannot be captured by a single
factor model. This ability of the MF and MF-LT models explains
their substantial increases in statistical fit as shown before.

4.3. Alternative Groups Based on Dynamic Risk Factors

So far, we have allocated firms into groups using their indus-
try classification. Alternative group allocations are of course
possible. Here we investigate an obvious alternative by form-
ing groups based on key asset pricing risk factors, including
firm size (market capitalization), value (book-to-market), and
momentum (see Fama and French 1993; Carhart 1997). Due
to data availability, this reduces the sample from 100 to 90
assets. For the size and value factors, we form 10 new groups in
July each year based on deciles of sorted market capitalization
and book-to-market values of the previous fiscal year. Similarly,
for momentum we sort stocks into deciles in January each
year based on their sorted past 12-month returns. This mimics
the way these factors are constructed in typical asset pricing
studies. Using risk factors of this type to form groups comes
with an additional challenge, namely that group composition
can now change from one period to the next. This can easily
be accommodated in the factor copula approach introduced
in this article by a straightforward but tedious bookkeeping
exercise to account for possible switches in factor loadings of
firms depending on their group allocation at time t. The use of
such grouping criteria in a dynamic factor copula framework is
new and can be seen as a separate contribution of this article.

Table 5 shows the estimation results for our preferred in-
sample model, the MF-LT copula, using different grouping
criteria. Given the time-varying group composition, we alter
our targeting approach for ω by each year using the moment
estimator (12) based on the unconditional correlation matrix
RM of x̂it = 	−1(ûit) for the 250 daily observations of the
upcoming year. This smaller targeting sample may of course
influence the accuracy of the estimates of ω. In a second step,
we estimate the parameters A and B. The results show that
the models with dynamic groups based on risk factors achieve
a considerably worse statistical fit than the model with static

industry groups. The minimum loss in log-likelihood exceeds
14,000 points. Among the three risk factors, momentum seems
to perform best, but differences with size and value are small.
The conclusions on the preferred grouping structure do not
depend on the distributional assumption, and are similar for the
Gaussian and the Student’s t case.

4.4. Multivariate Density Forecasts

As we have closed-form copula density expressions, a natural
way to compare the out-of-sample (OOS) forecasting perfor-
mance of factor copula models and copula MGARCH models
is to consider multivariate density forecasts as in Salvatierra and
Patton (2015). Because we use the same marginal distributions
in all models, the density forecast comparison actually boils
down to an evaluation and comparison of the OOS copula
density forecasts.

We use a moving estimation window of 1000 observations
(or roughly four calendar years), which leaves P = 2521
observations for the out-of-sample period, starting December
28, 2004. Hence, the OOS period includes the Great Financial
Crisis. We re-estimate the parameters in all models after each
50 observations (or roughly 10 calendar weeks) and construct a
one-step ahead copula density forecast each day.

We evaluate the copula density forecasts using two scoring
rules. First, we consider accuracy using the densities’ full sup-
port by means of the log scoring rule (see Mitchell and Hall 2005;
Amisano and Giacomini 2007)

Sl,t(ût , Mj) = log ct(ût | θ̂C,t , Mj), (15)

where ct(· | θ̂C,t , Mj) is the Gaussian or Student’s t conditional
copula density obtained from model Mj and ût denotes the vec-
tor of corresponding PITs. Note that the PITs in ut are based on
the same marginal distributions for both model specifications
in any log score comparison, and that the marginal densities
therefore drop out from a difference in log scores between two
models. We therefore omit the marginals from the log score
expression in (15). This underlines that we are really comparing
the forecasting quality of the copula part.

Second, we focus on the joint lower region of the copula
support by using the conditional likelihood (cl) scoring rule

Table 5. Forming groups in the MF-LT model.

Gaussian copula t copula

A B LogL A B νC LogL

Value 0.009 0.965 61,025 0.004 0.995 29.16 64,950
(0.001) (0.005) (0.000) (0.001) (0.98)

Size 0.010 0.904 60,955 0.003 0.966 28.58 64,953
(0.001) (0.010) (0.001) (0.011) (0.92)

Momentum 0.009 0.963 61,368 0.003 0.992 29.33 65,144
(0.001) (0.003) (0.001) (0.002) (1.01)

Industry 0.010 0.964 76,531 0.005 0.989 34.49 79,458
(0.001) (0.006) (0.000) (0.002) (1.22)

NOTE: This table reports maximum likelihood parameter estimates of the multi-factor copula model, applied to daily equity returns of 90 assets listed at the S&P 500 index.
The 10 groups associated with the models are formed based on different risk-factors, such as the book-to-market ratio, size and momentum. In addition, we consider the
model based on industry groups. Standard errors are provided in parenthesis and based on the (sandwich) robust covariance matrix estimator. We report only the A and
B of all estimated parameters (hence omitting the intercepts) and the copula log-likelihood for all models. The sample comprises daily returns from January 2, 2001 until
December 31, 2014 (3521 observations).
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proposed by Diks et al. (2014),

Scl,t(ût , Mj) =
(

log ct(ût | θ̂C,t , Mj) − log Ct(q | θ̂C,t , Mj)
)

× I[ût < q], (16)
where q is an N × 1 vector and Ct( · | θ̂C,t , Mj) is the conditional
copula function, and I[ût < q] = ∏N

i=1 I[ûi,t < qi] with
qi ∈ [0, 1], i = 1, . . . , N. Hence, (16) is the log-likelihood of
model Mj conditional on ut < q (element-wise). For any q =
(q1, . . . , qN) this boils down to the joint lower region [0, q1] ×
· · · × [0, qN]. Obviously, when qi = 1 for all i, we recover the
log scoring rule. We use a time-varying threshold vector qt =
(q̄t , . . . , q̄t), where q̄t is such that 1

1000
∑1000

j=1 I[ût−j < qt] = q,
with q = 0.01 or 0.05, for each t in the (rolling) estimation
sample. We thus compare the copula density forecasts in the
joint empirical lower 1% or 5% tail.

For both scoring rules, models that deliver higher values are
preferred. We can test whether differences in the scoring rule
values for models Mi and Mj are significant by defining the score
differential

dx,ij,t = Sx,t(ût , Mi) − Sx,t(ût , Mj), with x = l, cl. (17)
The null hypothesis of equal predictive ability is equivalent to
H0 : E[dx,ij,t] = 0, which can be tested using a standard Diebold
and Mariano (1995) test statistic. Since we deal with a substantial
number of different models and factor structures and hence
many different copula density forecasts, we consider the MCS
of Hansen, Lunde, and Nason (2011). The MCS automatically
accounts for the dependence between model outcomes given
that all models are based on the same data.

Table 6 shows the results of the copula density forecast evalu-
ation. We report the mean of the log scores and the conditional
likelihood scores, as well as the p-values of the MCS.

The table shows three interesting results. First, in line with
our full-sample results, the MF-LT t model performs best in
terms of predictive ability when evaluated over the full copula
support using the log scoring rule. The same pattern emerges
from the MCS. The MCS p-value equals 1 for the MF-LT t,
whereas that of all other models is below 0.01. Second, similar to
the in-sample results, most of the gain for the factor copulas is
obtained by allowing for industry-specific factors. For example,
changing the equifactor from fixed (1F-Equi t) to industry-
specific loadings (1F-Group t) increases the average log-score
by only 0.75 points (from 21.08 to 21.83). Allowing for different
industry factors (MF t), however, implies an additional increase
of almost 4 points to an average log-score of 25.60. Allowing
for cross-exposures in the MF-LT specification results in yet a
further increase by 0.5 points. Third, when we consider density
forecasts in the joint lower tail, the MF-LT model is always part
of the MCS. In that case, however, also the MGARCH specifica-
tions perform well and are included in the MCS, in particular
the block DECO-t model. The differences in the conditional
likelihood scores are small in these cases, however, and below
0.015 points.

Overall, we conclude that the flexibility provided by the new
MF-LT t model is also important out of sample using density
forecast criteria. The more flexible parameterization allows for
a larger class of dependence matrices than more restrictive one-
factor models. This extension appears to be empirically impor-
tant in high dimensions.

Table 6. One-step ahead copula density forecasts.

Full 1% tail 5% tail

Model Sls,t(p-val) Scl,t (p-val) Scl,t (p-val)

1F-Equi 20.07 (0.00) 1.401 (0.00) 4.022 (0.00)
1F-Equi t 21.08 (0.00) 1.443 (0.00) 4.142 (0.00)
1F-Group N 20.73 (0.00) 1.411 (0.00) 4.045 (0.00)
1F-Group t 21.83 (0.00) 1.445 (0.00) 4.177 (0.00)

2F N 22.52 (0.00) 1.436 (0.00) 4.138 (0.00)
2F t 23.53 (0.00) 1.469 (0.01) 4.267 (0.00)

MF N 24.95 (0.00) 1.466 (0.00) 4.284 (0.00)
MF t 25.60 (0.00) 1.494 (0.22) 4.373 (0.04)
MF-LT N 25.32 (0.00) 1.469 (0.00) 4.291 (0.00)
MF-LT t 26.10 (1.00) 1.500 (0.40) 4.400 (0.36)

cDCC N 22.42 (0.00) 1.501 (0.50) 4.369 (0.36)
cDCC t 24.37 (0.00) 1.509 (1.00) 4.384 (0.36)
DECO N 19.76 (0.00) 1.415 (0.00) 4.020 (0.00)
DECO t 21.01 (0.00) 1.447 (0.00) 4.143 (0.00)
Block DECO N 25.24 (0.00) 1.478 (0.03) 4.314 (0.00)
Block DECO t 26.02 (0.01) 1.505 (0.76) 4.415 (1.00)

NOTE: This table evaluates the accuracy of one-step ahead copula density forecasts
(in the left tail) of daily return series for 100 stocks from the S&P500 index,
obtained by various factor copula and copula MGARCH models, assuming a Gaus-
sian or Student’s t distribution (denoted by N or t). We consider a 1-Factor model
with equi-loadings (1F-Equi), a 1-Factor model with group-specific loadings (1F-
Group), a 2-Factor model with one equifactor and an additional factor with group-
specific loadings (2F), a multi-factor copula model with one equi-factor plus G
group-specific factors (MF), and the lower triangular multi-factor model (MF-LT).
In addition, we show the results of the cDCC model of Engle (2002) and the (block)
DECO model of Engle and Kelly (2012). The table presents the mean of the log
score (Sls) and the conditional (tail) likelihood score (Scl) for the lower joint 1%
and 5% tail. We present the p-value associated with the model confidence set
of Hansen, Lunde, and Nason (2011) in parentheses. Bold numbers in this row
represent models that belong to the model confidence set at a significance level
of 5%. The out-of-sample period covers December 28, 2004 until December 31,
2014 and contains 2521 observations.

4.5. Economic Out-of-Sample Performance

Finally, we assess the forecasting performance of the different
models from an economic perspective. We do so by considering
the ex-post variance of the ex-ante GMVP; compare Chiriac and
Voev (2011) and Engle and Kelly (2012), among others. The best
forecasting model should provide portfolios with the lowest ex-
post variance.

Assuming that an investor aims to minimize the 1-step ahead
portfolio volatility at time t subject to being fully invested, the
resulting GMVP weights wt+1|t are obtained as the solution of
the quadratic programming problem

min w�
t+1|t (Ht+1|tR∗

t+1|tHt+1|t) wt+1|t , s.t. w�
t+1|tι = 1,

(18)

with Ht+1|t the 1-step forecasts of the variances based on the
marginal models, and R∗

t+1|t the one-step ahead forecast of the
correlation matrix. As the forecast of the correlation matrix
R∗

t+1|t is not the same as the forecast of the copula dependence
matrix Rt+1|t , we obtain the former by simulating 20,000 returns
from the joint distribution of returns as constructed from the
marginals and the conditional copula. Following Chiriac and
Voev (2011), we assess the predictive ability of the different
models by comparing the results to the ex-post realizations
of the conditional standard deviation σp,t , given by σp,t =√

w�
t+1|tRCt+1wt+1|t , with RCt+1 the realized covariance matrix

obtained using 5-min returns. We decompose this matrix into
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realized variances and a realized correlation matrix, where the
latter is by definition ill-conditioned and not positive definite.
We use the “eigenvalue cleaning” method used by Hautsch, Kyj,
and Oomen (2012) to get a positive definite correlation matrix.
Having constructed the ex-post conditional portfolio standard
deviation, we test the model performance by means of the MCS
approach with a significance level of 5%.

Alongside the GMVP’s volatility, we also calculate a number
of other relevant quantities, such as portfolio turnover (TOt),
concentration (COt), and the total short position (SPt) for each
competing model at time t. Turnover at time t is defined as

TOt =
N∑

i=1

∣∣∣∣∣wi,t+1|t − wi,t|t−1
1 + yi,t

1 + w�
t|t−1yt

∣∣∣∣∣ , (19)

where wi,t|t−1 is the ith element of the weight vector wt|t−1. It
measures the value of the portfolio that is bought/sold when
rebalancing the portfolio to its new optimal position from time
t to t + 1. A model that produces more stable correlation
matrix forecasts implies in general less turnover and hence, less
transaction costs. Portfolio concentration and total portfolio
short position both measure the amount of extreme portfolio
allocations. Again, more stable forecasts of R∗

t+1|t should result
in less extreme portfolio weights. Portfolio concentration is
defined as

COt =
( N∑

i=1
w2

i,t|t−1

)1/2

, (20)

while the total portfolio short position SPt is given by

SPt =
N∑

i=1
wi,t|t−1 · I[wi,t|t−1 < 0], (21)

with I[·] an indicator function that takes the value 1 if the ith
element of the weight vector is lower than zero.

Table 7 reports the economic out-of-sample performance
results. As for the density forecast results, the factor copulas
also perform best in terms of economic performance. Again,
the MF-LT model is included in the MCS. There are, however,
also a number of remarkable differences. In terms of the ex-post
variance of the GMVP, the 1-Factor copulas with industry spe-
cific loadings now perform best. This contrasts with the density
forecast setting, where the MF-LT t model performed best in-
sample and out-of-sample. The multi-factor models also now
still (marginally) outperform the block-DECO model in terms
of ex-post variance of the GMVP. The 1-Factor models, however,
have the best performance, both in terms of ex-post variance,
turnover, concentration, and total short positions. Unlike the
density forecast setting, we also note that the choice of the
distribution plays a less important role in Table 7.

To reconcile the findings in terms of economic performance
with those of the density forecast evaluation from the previous
subsection, it is important to note that the GMVP evaluation
takes a very specific perspective. The GMVP focuses on an area
of the forecast distribution where differences are more concen-
trated by design: all models focus on a portfolio with ex-ante
minimum variance. If the different models are any good, differ-
ences in this concentrated performance measure are harder to

Table 7. Minimum variance portfolio results.

Model σ̄p (p-val) TO CO SP

1F-Equi N 0.527 (0.00) 0.359 0.336 −0.595
1F-Equi t 0.528 (0.00) 0.351 0.339 −0.604
1F-Group N 0.513 (0.97) 0.332 0.307 –0.530
1F-Group t 0.513 (1.00) 0.319 0.310 −0.541

2F N 0.537 (0.00) 0.395 0.339 −0.604
2F t 0.542 (0.00) 0.377 0.343 −0.615

MF N 0.537 (0.00) 0.418 0.357 −0.636
MF t 0.538 (0.00) 0.407 0.359 −0.642
MF-LT N 0.523 (0.07) 0.407 0.353 −0.622
MF-LT t 0.522 (0.11) 0.397 0.353 −0.625

cDCC N 0.556 (0.00) 0.763 0.470 −1.032
cDCC t 0.564 (0.00) 0.774 0.477 −1.054
DECO N 0.525 (0.01) 0.345 0.335 −0.596
DECO t 0.525 (0.00) 0.346 0.335 −0.598
Block DECO N 0.531 (0.00) 0.398 0.352 −0.622
Block DECO t 0.532 (0.00) 0.399 0.352 −0.623

NOTE: This table reports results on a global minimum variance portfolio strategy,
based on 1-step ahead predictions of the daily covariance matrix, according to
four different type of factor copulas, the cDCC model of Engle (2002) and the
(block) DECO model of Engle and Kelly (2012). The columns represent two types
of one-factor copulas (one equi-factor or one factor with group-specific loadings,
denoted by 1F-eq and 1F-gr), one 2-Factor model (one equi-factor plus an addi-
tional factor with group-specific loadings) and two types of multi-factor copula
models (one equi-factor plus G group-specific factors and the MF-LT model).
Each type of model is further discriminated across distribution (Gaussian vs. a
Student’s t) For each model, we show the mean of the ex-post portfolio standard
deviation, the p-value corresponding with the model confidence set of Hansen,
Lunde, and Nason (2011), using a significance level of 5%, and the mean of the
portfolio turnover (TO), concentration (CO) and the total portfolio short positions
(SP). Bold numbers indicate the models that stay within the MCS, or the lowest
(absolute) portfolio turnover, concentration and total portfolio short positions.
The out-of-sample period goes from December 28, 2004 until December 31, 2014
and contains 2521 observations.

obtain. This is corroborated by the results in Table 7: although
the results are sometimes statistically significantly different, they
are all quite close in economic terms (with the possible excep-
tion of the cDCC). Using such a performance measure therefore
benefits more parsimonious models over richly parameterized
models with their associated estimation risk. This may explain
why the simpler 1-Factor models do better here. By contrast, if
the full density or complete tail area is taken into account as in
the previous subsection, the additional flexibility of the more
complex factor models has a beneficial effect on performance,
particularly in the current high-dimensional setting.

5. Conclusions

We introduced factor structures within the class of closed-
form factor copula models for high dimensions. The new factor
copula model is computationally tractable with score-driven
dynamics, implying a closed-form conditional copula density.
Parameters can be estimated in a straightforward way by ML
and/or a fast two-step approach that combines a moment-based
estimator and the ML approach.

Our factor structures are based on group-specific character-
istics such as industry classification. In addition, an important
feature of our model is that it allows for more than one factor.
Extensions to the model are also easily possible, such as the
inclusion of covariates to describe the factor loadings dynamics,
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and different time-varying group structures, such as the risk-
based groups (size, value, momentum) also considered in this
article. This can be done without causing any difficulty for the
positive definiteness of the implied dependence matrix.

Empirically, we modeled the dependence across 100 equity
returns from the S&P 500 index over the period 2001–2014.
We found that our factor copula models outperform multi-
variate GARCH (MGARCH) based counterparts, such as the
(c)DCC and (block) DECO. In-sample, the multi-factor copula
model has a better fit than one-factor models and benchmarks
such as the cDCC and (block-)DECO. Out-of sample, the good
performance of multi-factor copula models persists. A simple
static industry-based group structure for the copula appears
better statistically than risk-based groups based on size, value, or
momentum. Measured in terms of density forecasts, the multi-
factor models perform best, whereas in terms of the GMVP
variance simpler 1-Factor models outperform other models. In
all settings, we thus find score-driven factor copulas to describe
the dynamics of the data well. Given their computational ease
and closed-form likelihood expression, they thus provide a use-
ful tool for modeling high-dimensional dynamic dependence
structures.

Supplementary Materials

The supplementary materials contain a web appendix with derivations of
the score of the proposed multi-factor copula models, and further imple-
mentation details. Second, Matlab code and an associated README file
are provided with testdata in order to estimate the parameters of all factor-
copula models.
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