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ABSTRACT
Multivariate claim data are common in insurance applications, for example, claims of each policyholder from
different types of insurance coverages. Understanding the dependencies among such multivariate risks is
critical to the solvency and profitability of insurers. Effectively modeling insurance claim data is challenging
due to their special complexities. At the policyholder level, claim outcomes usually follow a two-part mixed
distribution: a probability mass at zero corresponding to no claim and an otherwise positive claim from a
skewed and long-tailed distribution. To simultaneously accommodate the complex features of the marginal
distributions while flexibly quantifying the dependencies among multivariate claims, copula models are
commonly used. Although a substantial body of literature focusing on copulas with continuous outcomes
has emerged, some key steps do not carry over to mixed data. In particular, existing nonparametric copula
estimators are not consistent for mixed data, and thus copula specification and diagnostics for mixed out-
comes have been a problem. However, insurance is a closely regulated industry in which model validation is
particularly important, and it is essential to develop a baseline nonparametric copula estimator to identify
the underlying dependence structure. In this article, we fill in this gap by developing a nonparametric
copula estimator for mixed data. We show the uniform convergence of the proposed nonparametric copula
estimator. Through simulation studies, we demonstrate that the proportion of zeros plays a key role in
the finite sample performance of the proposed estimator. Using the claim data from the Wisconsin Local
Government Property Insurance Fund, we illustrate that our nonparametric copula estimator can assist
analysts in identifying important features of the underlying dependence structure, revealing how different
claims or risks are related to one another.
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1. Introduction

In recent years, insurance companies have increasingly used
bundling to increase market share and foster customers’ loyalty.
For example, commercial insurance companies might offer their
customers insurance coverages in motor vehicles and buildings.
It is thereby natural for insurers to keep track of customers’
claims for multiple coverages, resulting in multivariate claim
data. When an insurer has a collection of multivariate risks,
understanding their dependencies is the foundation for esti-
mating the portfolio distribution, which is critical to firm sol-
vency and profitability (Genest et al. 2009). Apart from different
products, dependence exists in insurance data in other dimen-
sions including temporal (e.g., Shi and Yang 2018), spatial (e.g.,
Gschlößl and Czado 2007), and hierarchical structures (e.g.,
Frees and Valdez 2008), whose efficient quantification is crucial
to routine insurance operations such as experience rating and
risk management.

Characterizing the dependencies in insurance data is
challenging due to their special complexities. At the individual
policyholder level, claim outcomes usually follow a mixed
distribution of a large point mass at zero (frequency component)
which corresponds to the case of no claim and a distribution
with positive support (severity component) which describes the
amount of claims given occurrence. Established multivariate
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models such as multivariate normal distributions cannot
accommodate the mixed feature of claim data.

Copulas have been widely employed to study the depen-
dencies among multiple outcomes in many areas including
insurance (Frees and Valdez 1998); see Joe (2014) for a thorough
summary of copula models. By definition, copulas are multivari-
ate distribution functions for which the marginal distribution
of each variable is uniform. According to Sklar’s theorem (Sklar
1959), for any d-dimensional variable of interest (Y1, . . . , Yd),
whose joint distribution function is denoted as F

(
y1, . . . , yd

)
and marginal distribution functions are F1(y1), . . . , Fd(yd),
there exists a copula C such that

F
(
y1, . . . , yd

) = C
(
F1(y1), . . . , Fd(yd)

)
. (1)

That is, by applying copula models, we can separate the explo-
ration of marginals and dependence structures. Doing so is
useful, as it allows one to use the vast array of tools available
for modeling the margins while simultaneously accounting for
dependencies among the outcomes.

Copula models and Sklar’s theorem are applicable to continu-
ous, discrete, and mixed data. In the literature, mixed data could
refer to combinations of discrete and continuous variables (e.g.,
Song, Li, and Yuan 2009; Zilko and Kurowicka 2016), or mul-
tivariate hybrid data in which each variable is semicontinuous

© 2020 The Authors. Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

https://doi.org/10.1080/07350015.2020.1835668
https://crossmark.crossref.org/dialog/?doi=10.1080/07350015.2020.1835668&domain=pdf&date_stamp=2020-11-16
mailto:luyang@umn.edu
http://www.tandfonline.com/UBES
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 L. YANG

and characterized by both continuous and discrete components
(e.g., Yang and Shi 2019). In this article, to handle multivariate
claims, we refer to mixed data as the latter case. In addition, in
insurance practice, various policyholder characteristics, such as
driver’s age and car model in automobile insurance, are typically
used as rating variables. Under the copula framework, one can
freely employ established regression models (see Section 2.1)
as marginals to account for heterogeneity among policyholders.
In this article, we assume the copula does not change with
covariates for simplicity.

The literature contains scarce applications of copula models
to multivariate claim data. Frees, Lee, and Yang (2016) studied
the dependencies in the frequency and severity parts sepa-
rately. In their framework, one copula is used to model the
dependence in claim frequencies, and another copula quantifies
the dependence in severities. The copula techniques developed
for continuous and discrete outcomes in the literature could
then be applied accordingly. In contrast, Shi (2016) modeled
claims for different types of coverage in automobile insurance
using copula-based multivariate Tweedie models, in which each
marginal is hybrid and one copula is employed to quantify the
dependence structure. In a similar fashion, Shi and Yang (2018)
modeled the time dependence in longitudinal claim data using
vine copulas. In our application, we follow the latter stream of
research, and a single copula is built to parsimoniously charac-
terize the dependence among multivariate claims.

Insurance is a closely regulated industry sector in which
model validation is crucial. When analysts have fit a parametric
copula at hand, it is important to assess the adequacy of the
model. Copula model specification and goodness-of-fit tests can
be conducted by comparing the fitted parametric copula models
with a baseline nonparametric copula estimator (Genest, Rémil-
lard. and Beaudoin 2009). Hence, it is essential to develop a
consistent nonparametric copula estimator. Most existing non-
parametric copula estimators (e.g., Deheuvels 1979; Chen and
Huang 2007; Omelka, Gijbels, and Veraverbeke 2009) are des-
ignated to handle continuous outcomes. Recently, Yang, Frees,
and Zhang (2020) studied nonparametric estimation of copu-
las for discrete outcomes. However, due to the mixed feature,
existing nonparametric copula estimators are not consistent for
insurance claim data, which we will demonstrate theoretically
and empirically in later sections. As a result, copula specification
for mixed data has remained a problem. In current practice,
parametric copula models are fit through maximum likelihood
estimation (MLE), and analysts rely on information criteria such
as AIC and BIC for model selection; see Shi and Yang (2018) for
applications. However, the best model among candidates is not
guaranteed to fit the data sufficiently.

To identify the underlying dependence structure in mixed
data, in this article, we propose a nonparametric copula
estimator, which builds the bridge between copula models
and mixed data. There has not, to the best of our knowledge,
been any investigation of nonparametric copula estimation
for mixed outcomes. The proposed nonparametric copula
estimator can also help analysts who prefer parametric models
choose between different copula options in a principled manner.

The rest of the article is organized as follows. The proposed
nonparametric copula estimator and its asymptotic properties
are presented in Section 2. In Section 3, we evaluate the finite

sample performance of the proposed copula estimator in differ-
ent scenarios by means of a simulation study, and in Section 4,
we demonstrate its usage on a real dataset from the Wisconsin
Local Government Property Insurance Fund (LGPIF). Con-
clusions and comments are provided in Section 5. The online
appendix includes additional simulation results and proofs of
the theoretical results.

2. Methodology

2.1. Marginal Models

For multivariate claim data whose marginal distributions are
complicated, one major advantage of copula models is that they
can separate the investigation of marginals and dependence. Let
Yj follow a univariate mixed distribution. The density of its
severity gj is defined on (0, 8), and pj denotes its probability
mass at zero. Let δ0 be the Dirac measure at 0, and m be the
Lebesgue measure. Then the density of Yj with respect to m+δ0
is

fj(y) =
"

pj y = 0,
(1 ´ pj)gj(y) y ą 0.

Its cumulative distribution function is

Fj(y) =
"

pj y = 0,
pj + (1 ´ pj)Gj(y) y ą 0, (2)

where Gj is the cumulative distribution function corresponding
to gj.

To simultaneously accommodate the mixed distribution of
claims while modeling the relationship between claims and rat-
ing variables, two types of regression models are predominantly
used in insurance applications. The first method is a Tweedie
compound Poisson model (Ohlsson and Johansson 2006) which
assumes the total claim from a customer is generated by a Pois-
son sum of gamma random variables. A Tweedie distribution
belongs to the exponential family. The variance of a Tweedie
variable is related to its mean in the following way

EYj = μj, var Yj = φjμ
πj
j ,

where 1 ă πj ă 2, and φj is the dispersion parameter. The mean
μj is commonly expressed as a simple function of the linear
combination of covariates, for example, μj = exp(X1

jβj), where
Xj is the set of covariates and βj is the vector of coefficients for
Yj. The coefficients can be fit using the generalized linear model
(GLM) framework.

The second method is the frequency-severity, or two-part
approach (Frees 2014), in which the frequency and severity parts
are modeled separately. For example, the probability of zero
claim can be modeled through logistic regression. That is,

log
( pj

1 ´ pj

)
= X1

Fjθj, j = 1, 2,

where XFj is the set of covariates for the frequency part of Yj, and
θj is the corresponding vector of coefficients. Given occurrence,
that is, Yj ą 0, the severity part can be modeled using the
distributions of positive-valued random variables. Long tails are
typically a salient feature of insurance claim severities, and GB2
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distributions (McDonald and Xu 1995) have been increasingly
adopted to model severities. Suppressing the j subscript, the
density of GB2(σ , μS, κ1, κ2) is

g(y) = exp(κ1z)
yσB(κ1, κ2)[1 + exp(z)]κ1+κ2

, (3)

where z = (log y ´ μS){σ , and B(¨, ¨) is the beta function. The
GB2 family has four parameters including the location parame-
ter μS, the scale parameter σ , and the shape parameters κ1 and
κ2, and hence can flexibly capture the long-tailed feature of claim
severities. The location parameter can be further modeled as a
linear combination of covariates, that is, μSj = X1

Sjαj, where XSj
and αj are the covariates and coefficients for the severity part of
Yj, respectively.

Compared with Tweedie models, the frequency-severity
models have the advantage of flexibility. First, they allow dif-
ferent covariates and coefficients for the frequency and severity
parts. Second, they can incorporate flexible distributions such
as GB2, which can better handle long-tailed severities. On the
other hand, Tweedie models are more parsimonious and enjoy
an intuitive interpretation.

To unify the notations, we denote the vector of covariates
as X, which contains Xj for various j. In the frequency-severity
model, XFj and XSj are subsets of Xj. Under regression, we
denote the conditional marginal distribution function in (2) as
Fj(¨|Xj), the density as fj(¨|Xj), the probability of zero as pj(Xj),
and the distribution function of the severity as Gj(¨|Xj).

2.2. Parametric Copula Estimation

Provided marginal models, now we characterize the dependence
using copulas. For ease of presentation, we focus on bivariate
cases. However, our tool is applicable to higher dimensions,
which will be demonstrated empirically in Section 3. The joint
density of a bivariate mixed variable (Y1, Y2) given covariates
X = x is

f
(
y1, y2|x

)

=

$

’

’

&

’

’

%

C
(
p1(x1), p2(x2)

)
y1 = 0, y2 = 0

f1(y1|x1)C1
(
F1(y1|x1), p2(x2)

)
y1 ą 0, y2 = 0

f2(y2|x2)C2
(
p1(x1), F2(y2|x2)

)
y1 = 0, y2 ą 0

f1(y1|x1)f2(y2|x2)c
(
F1(y1|x1), F2(y2|x2)

)
y1 ą 0, y2 ą 0,

where Cj is the partial derivative of the copula C with respect to
the jth argument, and c is the density of the copula. In this article,
we assume the copula C does not change with covariates.

For analysts who prefer parametric copula models, given
a predetermined copula family, the copula parameters can
be estimated straightforwardly through MLE. However, it
has remained a problem to specify which copula family
is appropriate with statistical confidence. To identify the
underlying dependence structure, in the following section,
we study the nonparametric estimation of copulas with mixed
outcomes.

2.3. Nonparametric Copula Estimation

There are established nonparametric copula estimators for con-
tinuous variables. If Y1 and Y2 are continuous, there is a unique

underlying copula C related to (Y1, Y2). For a continuous
random variable Yj, its probability integral transform Fj(Yj|Xj)
is uniformly distributed. Assuming the copula does not change
with covariates, for a fixed point (s, t) P [0, 1]2, a derivation of
(1) yields

C(s, t) = Pr
(
F1(Y1|X1) ď s, F2(Y2|X2) ď t

)
. (4)

That is, the copula of (Y1, Y2) is the joint distribution function
of the bivariate probability integral transform (F1(Y1|X1),
F2(Y2|X2)). Equation (4) is the foundation for copula iden-
tification and estimation with continuous outcomes. Let(
X1

i , Yi1, Yi2
)

, i = 1, . . . , n be an iid sample of (X1, Y1, Y2).
For each of j = 1, 2, one can obtain a sequence of Cox–Snell
residuals (Cox and Snell 1968) F̂j(Yij|Xij), i = 1, . . . , n, where F̂j
is the fitted marginal distribution function of Yj. The empirical
distribution of the bivariate Cox–Snell residuals

Ĉc(s, t) = 1
n

n
ÿ

i=1
1
(

F̂1(Yi1|Xi1) ď s, F̂2(Yi2|Xi2) ď t
)

, (5)

known as the empirical copula estimator (Deheuvels 1979), is a
consistent nonparametric copula estimator for continuous data.

For mixed outcomes, however, the empirical copula estima-
tor (5) is not consistent. For illustration, we include a simu-
lated example of bivariate Tweedie outcomes whose underlying
distribution and simulation procedure is described in online
Appendix A. The left panel of Figure 1 displays the scatterplot
of the bivariate Cox–Snell residuals. The Cox–Snell residuals
of the zero-inflated mixed data are not uniformly distributed,
which is reflected in the marginal histograms. In the right panel
of Figure 1, the contours of the resultant empirical copula esti-
mator (solid line) and the underlying copula (dashed line) are
far apart. For this reason, the empirical copula estimator should
not be directly applied to mixed data in particular when there is
a significant proportion of zeros.

We further analyze the probability integral transform, which
is a building block for copulas. For a mixed variable Yj, since
Fj(Yj|Xj) ě pj(Xj) by (2), the distribution function of Fj(Yj|Xj)
at s P (0, 1) is

Pr(Fj(Yj|Xj) ď s)

=

$

’

&

’

%

0 pj(Xj) ą s
Pr(Yj = 0|Xj)

+ Pr
(

0 ă Yj ď G´1
j

(
s´pj(Xj)
1´pj(Xj)

ˇ

ˇ

ˇ
Xj

)ˇ

ˇ

ˇ
Xj

)
pj(Xj) ď s

=

$

’

’

&

’

’

%

0 pj(Xj) ą s
pj(Xj) + “

1 ´ pj(Xj)
‰

ˆGj
(

G´1
j

( s´pj(Xj)
1´pj(Xj)

ˇ

ˇ

ˇ
Xj

)ˇ

ˇ

ˇ
Xj

)
pj(Xj) ď s

=
"

0 pj(Xj) ą s
s pj(Xj) ď s.

(6)

That is, if pj(Xj) ą s, the equation Pr(Fj(Yj|Xj) ď s) = s
does not hold. Combing the two cases in (6), the probability
integral transform of the mixed variable Yj is not uniformly dis-
tributed overall. Consequently, the joint distribution function of(
F1(Y1|X1), F2(Y2|X2)

)
in (4) is not a copula, whose marginal

distributions are uniform by definition. The empirical version
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Figure 1. Left: Scatterplot and marginal histograms of the bivariate Cox–Snell residuals for simulated bivariate Tweedie data. Right: Contour plot of the empirical copula
estimator (solid lines) compared with the underlying copula (dashed lines).

of (4), the empirical copula estimator (5), is therefore biased as
a copula estimator for mixed data.

Extending (6) to bivariate cases, a similar argument yields
that if p1(X1) ą s or p2(X2) ą t, Pr

(
F1(Y1|X1) ď s,

F2(Y2|X2) ď t
) = 0. Only when p1(X1) ď s and p2(X2) ď t, we

have

Pr
(
F1(Y1|X1) ď s, F2(Y2|X2) ď t|p1(X1) ď s, p2(X2) ď t

)

= Pr
(

Y1 ď G´1
1

(
s ´ p1(X1)

1 ´ p1(X1)

ˇ

ˇ

ˇ

ˇ

X1

)
,

Y2 ď G´1
2

(
t ´ p2(X2)

1 ´ p2(X2)

ˇ

ˇ

ˇ

ˇ

X2

)ˇ

ˇ

ˇ

ˇ

p1(X1) ď s, p2(X2) ď t
)

= C
"

p1(X1) + r1 ´ p1(X1)s

ˆ G1

(
G´1

1

(
s ´ p1(X1)

1 ´ p1(X1)

ˇ

ˇ

ˇ

ˇ

X1

)ˇ

ˇ

ˇ

ˇ

X1

)
,

p2(X2) + r1 ´ p2(X2)s

ˆ G2

(
G´1

2

(
t ´ p2(X2)

1 ´ p2(X2)

ˇ

ˇ

ˇ

ˇ

X2

)ˇ

ˇ

ˇ

ˇ

X2

)*

= C(s, t).
(7)

We aim to develop a consistent nonparametric copula esti-
mator for multivariate mixed data. Suppose we have a sample
(X1

i , Yi1, Yi2), i = 1, . . . , n. When Xi varies across observations,
the probabilities of zero claim

(
p1(Xi1), p2(Xi2)

)
change corre-

spondingly. Motivated by (7), when estimating the copula at a
fixed point (s, t), we focus on the subset of the observations for
which p1(Xi1) ď s, p2(Xi2) ď t holds, instead of using all the
observations as is done in (5). Following the idea, we propose
the “partial” empirical copula estimator

Ĉ(s, t) =
řn

i=1 1
(
F1(Yi1|Xi1) ď s, F2(Yi2|Xi2) ď t

)
řn

i=1 1
(
p1(Xi1) ď s, p2(Xi2) ď t

) .

In practice, the underlying marginal distributions Fj, j = 1, 2
are unknown. We adopt the inference for margin procedure (Joe
2014) to obtain the marginal coefficients estimates β̂ first. When
the parameters are set to be β̂ , denote the resulting marginal
distribution function in (2) as Fj(¨|Xj, β̂) and the probability
of zero as pj(Xj, β̂). Then one can obtain the partial empirical
copula estimator

Ĉ(s, t; β̂) =
řn

i=1 1
(

F1(Yi1|Xi1, β̂) ď s, F2(Yi2|Xi2, β̂) ď t
)

řn
i=1 1

(
p1(Xi1, β̂) ď s, p2(Xi2, β̂) ď t

) .

(8)

The implementation of (8) is straightforward.

2.4. Asymptotic Results

We first show the weak convergence of the proposed nonpara-
metric copula estimator when the underlying parameters in the
marginal models, denoted as β0, are known. Then we analyze
the copula estimator when a

?
n-consistent estimator of β0 is

plugged in, as in (8).
Denote the distribution function of

(
p1(X1), p2(X2)

)
, the

underlying probabilities of zero, as p0(s, t) = Pr(p1(X1) ď

s, p2(X2) ď t), which depends on the distribution of X. Let
V = (m1, 1) ˆ (m2, 1) be a subset of (0, 1)2 such that for
(s, t) P V , p0(s, t) is bounded away from zero.

Theorem 2.1. When β0 is known, the process
?

n(Ĉ ´ C) con-
verges to a centered Gaussian process in l8(V), with covariance
function

C(s ^ s1, t ^ t1)p0
(
s ^ s1, t ^ t1

)
p0(s, t)p0(s1, t1)

´ C(s, t)C(s1, t1),

where s ^ s1 = min(s, s1).
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The proofs of the theoretical results can be found in online
Appendix B. Next, we show the asymptotics when a

?
n-

consistent estimator of β0, denoted as β̂ , is plugged in. Using
P = Pβ0 as the underlying distribution, we denote Pf = ş

f dP
for a given measurable function f.

Assumption 2.1. β̂ is asymptotically efficient. That is,

n1{2(β̂ ´ β0) Ñ N(0, [I(β0)]´1),

where I(β) is the Fisher information matrix P
(

l̇β l̇1β
)

. Moreover,
lβ(x, y1, y2) is the log-likelihood of the marginal models, and
l̇β(x, y1, y2) = Blβ(x, y1, y2){Bβ is the score function.

The maximum likelihood estimator of GLMs satisfies the
asymptotic efficiency assumption under regularity conditions.
This assumption can nevertheless be relaxed to asymptotic
linearity. When the parameters are set to be β , we denote
Fj(¨|Xj, β), pj(Xj, β), and Gj(¨|Xj, β) as the resulting marginal
distribution function, the probability of zero claim, and the dis-
tribution function of the severity, respectively. The distribution
of the probabilities of zero is then p0(s, t; β) = Pr(p1(X1, β) ď

s, p2(X2, β) ď t). The following two assumptions are made to
guarantee that the densities of

(
F1(Y1|X1, β), F2(Y2|X2, β)

)
and(

p1(X1, β), p2(X2, β)
)

are bounded.

Assumption 2.2. The underlying copula C has a bounded den-
sity c on V. Its first-order partial derivatives C1 and C2 are
continuous.

Assumption 2.3. For j = 1, 2, Fj(yj|xj, β) and F1
j (yj|xj, β) are

continuous functions of yj for yj ą 0, where F1
j (yj|xj, β) =

BFj(yj|xj, β){Byj. The distribution of the probabilities of zero
p0(s, t; β) has bounded second-order derivatives and continu-
ous first-order partial derivatives with respect to (s, t).

Assumption 2.4 (Lipschitz condition). There exists a constant α1
such that for β , β1 P B,

ˇ

ˇpj(xj, β) ´ pj(xj, β1)
ˇ

ˇ ď α1
ˇ

ˇβ ´ β1
ˇ

ˇ ,
ˇ

ˇFj(yj|xj, β) ´ Fj(yj|xj, β1)
ˇ

ˇ ď α1
ˇ

ˇβ ´ β1
ˇ

ˇ ,

where B is the space of Euclidean marginal model parameters.

A necessary condition for Assumption 2.4 is that the range of
X is bounded. For notational convenience, denote the function

gs,t,β(x, y1, y2) = 1
(
F1(y1|x1, β) ď s, F2(y2|x2, β) ď t

)
. (9)

Assumption 2.5. Pgs,t,β is differentiable with respect to β for β P

B, and the derivatives are bounded.

A necessary condition for Assumption 2.5 is that pj(xj, β)

and quantile functions G´1
j (s|xj, β) and F´1

j (s|xj, β) are differ-
entiable with respect to β .

Theorem 2.2. Under Assumptions 2.1–2.5, the process
?

n
(

Ĉ(¨; β̂) ´ C
)

converges weakly in l8(V) to the centered
process

1
p0(s, t)

Gfs,t , (s, t) P V

for G a standard Brownian bridge process and fs,t defined as

fs,t(x, y1, y2) = gs,t,β0(x, y1, y2)

+ rI(β0)s
´1 BPgs,t,β

Bβ

ˇ

ˇ

ˇ

ˇ

β=β0

l̇β0(x, y1, y2).

The representation of the limiting process has two parts. The
first part has exactly the same form as the Gaussian process in
Theorem 2.1. The second part comes from the “drift” sequence
?

nP
(

gs,t,β̂ ´ gs,t,β0

)
. The partial derivatives under the Tweedie

and frequency-severity marginal models are provided in the
supplementary materials.

The proposed copula estimator converges uniformly to the
underlying copula in the area V in which p0(s, t) is bounded
away from zero. This is consistent with established theoretical
results on copula identifiability. Sklar (1959) showed that the
uniqueness of copulas is guaranteed in the Cartesian product
of the ranges of marginal distribution functions. For the mixed
type of data, the range of the marginal distribution function
is [pj, 1], j = 1, 2, in the iid case, and hence the copula is
unique in [p1, 1] ˆ [p2, 1]. Under regression, pj(Xj) varies with
the covariates. As we assume the copula does not change with
covariates, the range for copula identifiability widens to V. As a
consequence, the copula can be identified more easily if p1(X1)
and p2(X2) are distributed around small values or spread out,
whereas it can only be identified in a small region if p1(X1) and
p2(X2) concentrate on large values. Numerical evidence of this
will be presented in Section 3.

3. Simulation

In this section, we investigate the performance of the proposed
partial empirical copula estimator via simulated examples. The
aim of the simulation is to evaluate its finite sample estima-
tion properties under varying underlying copula types, levels of
dependence strength, and proportions of zeros.

We consider 2000 policyholders, similar to the LGPIF data,
and each policyholder has two types of insurance coverage j = 1,
2. The probability of making no claim is based on the function

pj(Xj) = logit´1 (
βj0 + βj1Xj1 + βj2Xj2

)
.

For the claim severities, we employ GB2 distributions (3). The
location parameter of the GB2 distribution is further assumed as
a linear combination of covariates, that is, μSj = βj3 + βj4Xj2 +
βj5Xj3, j = 1, 2. We set Xj1 to be a dummy variable with proba-
bility of one as 0.7, Xj2 „ N(0, 1), and Xj3 is a dummy variable
with probability of one as 0.4. The covariates Xj1, Xj2, and Xj3
are independent. In this example, the covariates of the frequency
and severity parts overlap. Our proposed copula estimator has
no inherent restriction to covariates, and is applicable to other
settings of marginal models such as Tweedie GLMs.

To explore the effects of tail dependence, we employ a Gum-
bel copula (with upper tail dependence), a Frank copula (no tail
dependence), and a Clayton copula (with lower tail dependence)
as the underlying copula. The Kendall’s tau is varied from 0.5
(low dependence) to 0.75 (high dependence). Although not
reported here, similar results were obtained with other under-
lying copulas and dependence levels.
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Figure 2. Histogram of p1(X1) (left column) and contour plots of the proposed copula estimator (middle and right columns). The mean of the estimator over 500 replications
is given by the black solid lines, while the blue dash-dot symbols give the corresponding 95% confidence intervals, and the red dashed lines give the underlying copulas.

Meanwhile, we explore the effects of the probabilities of zero.
We focus on three scenarios by controlling the value of βj0, j =
1, 2.

• Many zeros, βj0 = 2, βj1 = ´1, βj2 = ´2, βj3 = 5, βj4 =
1, βj5 = ´1. On average 70% data are zeros.

• Moderate zeros, βj0 = 0, βj1 = ´1, βj2 = ´2, βj3 = 5, βj4 =
1, βj5 = ´1. On average 40% data are zeros.

• Few zeros, βj0 = ´2, βj1 = ´1, βj2 = ´2, βj3 = 5, βj4 =
1, βj5 = ´1. On average 16% data are zeros.

For each experiment, the number of replications is taken to be
500. We evaluate the performance of the estimator via the mean
integrated squared error (MISE).

The results under Frank copulas are summarized graphically
in Figure 2, which contains the histogram of the probabilities
of zero in one randomly selected replication (left panel) and
the contour plots of the proposed copula estimator (middle
and right panels). The unbiasedness of the proposed copula
estimator is apparent in the figure. In all the settings, the mean of
the nonparametric copula estimator (solid lines) is very close to
the underlying copula (dashed lines). The top row corresponds
to the many zeros scenario. One striking impression from the
contour plots in the first row is that the variance of the copula
estimator tends to be large in the lower left corner. We see
from the histogram that p1(X1) is mostly distributed in the
area greater than 0.5. Note that the distribution of p2(X2) is
same as p1(X1). Consequently, p0(s, t) is small in the lower left
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Table 1. MISE (multiplied by 104).

Many zeros Moderate zeros Few zeros

High depend Low depend High depend Low depend High depend Low depend

Frank 13.081 11.873 1.164 1.159 0.305 0.340
Clayton 13.489 13.054 1.187 1.200 0.313 0.334
Gumbel 13.123 11.665 1.152 1.151 0.312 0.348

Table 2. MISE in three dimensions (multiplied by 104).

Many zeros Moderate zeros Few zeros

High Low High Low High Low
depend depend depend depend depend depend

22.383 20.866 1.890 1.760 0.320 0.351

corner and thus relatively few observations in this area satisfy
p1(Xi1) ď s, p2(Xi2) ď t to contribute to the copula estimator,
causing a large variance. This is consistent with Theorem 2.2. As
the proportion of zeros reduces, in the middle and bottom rows,
the variance is clearly smaller. Comparing across the middle
and right columns, the dependence level does not seem to have
an influential effect on the performance of the nonparametric
copula estimator. The graphical results for Gumbel and Clayton
copulas are included in online Appendix A as Figures A1 and
A2, from which one can draw consistent conclusions overall.

Table 1 presents the MISE values of the nonparametric copula
estimator in different scenarios. The integration is calculated
over (0.1, 1) ˆ (0.1, 1), as a subset of V. Results summarized
in Table 1 confirm the important influence of the proportion
of zeros on the performance of the nonparametric copula esti-
mator. When there are many zeros in the data, the estimator
has a large MISE value. It is worth noting that in the many
zeros scenario, the estimator has a bigger MISE value under
Clayton copulas which exhibit lower tail dependence, compared
to Gumbel copulas with upper tail dependence. Meanwhile, the
MISE is slightly bigger under high dependence than under low
dependence. With moderate zeros, the behavior of the estima-
tor is comparable across different underlying copula families
and strengths of dependence. With few zeros, the MISE value
appears to be higher with low dependence.

Our nonparametric copula estimator is applicable to higher
dimensions. The copula estimator (8) can be easily extended

Ĉ(s1, . . . , sd; β̂)

=
řn

i=1 1
(

F1(Yi1|Xi1, β̂) ď s1, . . . , Fd(Yid|Xid, β̂) ď sd
)

řn
i=1 1

(
p1(Xi1, β̂) ď s1, . . . , pd(Xid, β̂) ď sd

) .

We carry out a numerical experiment to assess the performance
of the proposed copula estimator in three dimensions. Table 2
includes the MISE values. Due to the comparable behavior, here
we only report the results under a Frank copula. With moderate
and few zeros, the MISE of the estimator in three dimensions is
comparable to the MISE values in the bivariate case. However,
with many zeros, the MISE values in three dimensions double
the results of the bivariate case. It implies that the curse of
dimensionality is an issue when the proportion of zeros is high
in the data.

Table 3. Sample size, proportion of zeros, and quantiles of severities for each
coverage.

n Zero% 5% 25% 50% 75% 95% Max

BC 5660 0.702 1010 3380 9184 27,310 142,637 12,922,218
MV 2175 0.695 822 2414 6356 20,342 74,138 308,758

Joint 2170

Table 4. Description and summary statistics of covariates.

Variable Description Mean

TypeCity =1 if entity type is city 0.140
TypeCounty =1 if entity type is county 0.058
TypeSchool =1 if entity type is school 0.282
TypeTown =1 if entity type is town 0.173
TypeVillage =1 if entity type is village 0.237
TypeMisc =1 if entity type is other 0.110
AC00 =1 if no alarm credit 0.466
AC05 =1 if 5% alarm credit 0.042
AC10 =1 if 10% alarm credit 0.058
AC15 =1 if 15% alarm credit 0.435
lnCoverageBC Coverage of BC line in logarithmic millions of dollars 2.119

(2.000)

lnCoverageMV Coverage of MV line in logarithmic millions of dollars ´0.798
(1.626)

4. Data Analysis

We apply the proposed nonparametric copula estimator to a
dataset from the LGPIF. The LGPIF was established by the
state of Wisconsin to provide property insurance for local gov-
ernment entities, and it offers different types of coverage. For
example, a county entity may need motor vehicle coverage for
its snow plowing trucks, in addition to building and contents
coverage for its buildings. In our study, we focus on the joint
modeling of claims arising from the building and contents (BC)
coverage and the motor vehicle (MV) coverage.

4.1. Data Summary

Table 3 summarizes the distribution of the claims for each
coverage. There are 5660 policies with coverage in BC and 2175
polices with MV coverage. Jointly, there are 2170 policies with
both coverages, and we use this subset of data for dependence
modeling. There are significant proportions of zeros for both
coverages, around 70%. We also provide the quantiles of the
severities, from which we can clearly see the right skewness and
long tails of the severity distributions. This motivates the usage
of long-tailed distributions such as GB2 to model the claim
severities.

Table 4 includes potential rating variables and their sum-
mary statistics. One rating variable is the entity type indicating
whether the covered buildings or motor vehicles belong to a city,
county, etc. In addition, the fund offers credits for fire alarms.
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Table 5. Marginal coefficients.

Frequency Severity

BC Estimate SE Estimate SE

Intercept 1.894 0.086 7.330 0.141
TypeCity ´0.226 0.107 ´0.202 0.108

TypeCounty ´0.909 0.158 ´0.111 0.130
TypeMisc 0.850 0.147 0.303 0.166

TypeSchool 0.730 0.103 ´0.156 0.110
TypeTown 0.675 0.147 0.248 0.175

AC05 ´0.288 0.164 0.172 0.177
AC10 ´0.281 0.144 ´0.245 0.152
AC15 ´0.259 0.082 ´0.100 0.086

lnCoverageBC ´0.456 0.032 0.544 0.034
σ 0.810 0.111
κ1 1.202 0.251
κ2 0.967 0.195

MV Estimate SE Estimate SE

Intercept 0.790 0.131 8.475 0.217
TypeCity ´0.170 0.201 ´0.263 0.176

TypeCounty ´1.834 0.226 0.658 0.157
TypeMisc 0.892 0.401 0.704 0.427

TypeSchool ´0.414 0.162 0.262 0.161
TypeTown 1.307 0.269 0.237 0.305

lnCoverageMV ´0.728 0.054 0.514 0.049
σ 0.636 0.152
κ1 0.821 0.252
κ2 1.009 0.384

For instance, a policyholder receives a 5% discount in premium
if automatic smoke alarms are installed in some of the main
rooms within the building, a 10% discount if alarms are installed
in all of the main rooms, and a 15% discount if the alarms are
installed and monitored in all the main rooms. We also use the
coverage amounts as covariates in our analysis.

4.2. Marginal Models

Since the severities are heavily skewed and long-tailed, we
employ the frequency-severity approach to characterize the
marginal distributions. For the frequency part, we model the
probability of zero claim using logistic regression. We model
the severity part using a GB2 distribution, as described in
Section 2.1. The coefficients of the marginal models are included
in Table 5. County entities have the smallest probability of
making no claim for both BC and MV coverages. Entities
belonging in the miscellaneous category have the largest severi-
ties on average. Alarm credit is a less important rating variable.
Intuitively, policies with large coverages, or equivalently large
risk exposures, are more likely to have positive claims and more
severe claims given occurrence. The results confirm that our
severity data are long-tailed, since the second moments of the
fitted GB2 distributions do not exist, reflected in the fact that
κ2 ă 2σ for both margins.

4.3. Copula Estimation and Selection

Having fit the marginal models, we then analyze the depen-
dence structure between claims from the two types of insurance
coverage using the proposed nonparametric copula estimator.
The nonparametric estimator is shown in Figure 3 as the solid
curves. Its confidence intervals based on 1000 bootstrap repli-

cations are displayed as the dash-dot curves. Due to the large
proportion of zeros, the estimator is not smooth especially in the
lower left corner, as there are sparse observations in this area.

We now demonstrate copula model selection for mixed data
using our nonparametric copula estimator. We fit a set of com-
monly used parametric copulas through MLE. Then we com-
pare the fitted parametric copulas with our nonparametric esti-
mator. Table 6 includes the parameter estimates for the paramet-
ric copulas. To compare different copulas, we also convert the
copula parameters into Kendall’s τ . It attracts our attention that
the values of Kendall’s τ vary significantly from copula to copula,
even though they are estimated from the same dataset. For
continuous outcomes, in contrast, the Kendall’s τ of the fitted
parametric copulas based on the analytical definition should
all be close to the one of the data based on the probabilistic
definition.

Figure 3 presents the contour plots of the fitted parametric
copulas (dashed lines). We see a relatively large discrepancy
between the Gumbel copula and the nonparametric estimator,
although in general it is hard to make definitive conclusions
based on visual inspection. Hence, we quantify the discrepancy
between a parametric copula and the nonparametric estimator
using the L2-norm distance

d(Ĉ(¨; β̂), C̃γ̂ ) =
"

ż

(Ĉ(s, t; β̂) ´ C̃γ̂ (s, t))2dsdt
*1{2

, (10)

where Ĉ(¨; β̂) is the proposed nonparametric estimator, and C̃γ̂

is the fitted parametric copula. Table 7 presents the distances.
Here, we compute the integration over the range (0.2, 1) ˆ

(0.2, 1) to exclude the areas with sparse data. The standard
deviations of the distances are obtained through bootstrap. The
t copula is seen to outperform other copulas with smallest dis-
tance, followed by the Gaussian and Frank copulas. The Gumbel
and Joe copulas, both with upper tail dependence, do not seem
to fit the data well. We conclude, therefore, that the claims
from the two types of insurance coverage have a symmetric
dependence structure. The fact that the t copula is better than
the Gaussian and Frank copulas suggests tail dependence in the
claims. Nonetheless, tail dependence is less important than the
symmetry, as copulas with asymmetric tail dependence (e.g.,
Clayton, Gumbel, and Joe copulas) do not provide satisfactory
fitting.

5. Conclusions

This article studied the modeling of multivariate insurance
claim data using copulas. Insurance claim data typically follow
a mixed distribution with a point mass at zero corresponding
to the case of no claim and a distribution for positive values
describing the claim amount given occurrence. Our contribu-
tion is the introduction of a nonparametric copula estimator,
which provides the foundation for copula identification
with mixed data. We showed the weak convergence of the
proposed nonparametric copula estimator. The simulation
study indicated that the proportion of zeros plays an important
role in copula identification for mixed data. In particular, it
is difficult to identify the underlying dependence structure
if the probabilities of zero concentrate on large values. We
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Figure 3. Contour plot of the nonparametric copula estimator (black solid lines) and its 90% confidence interval (blue dash-dot symbols) constructed from bootstrap,
compared with fitted parametric copulas (red dashed lines).

Table 6. Parameter estimates of parametric copulas.

Estimate SE Kendall’s τ

t(df = 3) 0.075 0.036 0.048
Gaussian 0.132 0.033 0.084

Frank 0.841 0.204 0.093
Clayton 0.291 0.070 0.127
Gumbel 1.309 0.044 0.236

Joe 1.295 0.054 0.143

Table 7. Distances d(Ĉ(¨; β̂), C̃γ̂ ) of different parametric copulas (multiplied by
100).

Gaussian Frank t Clayton Gumbel Joe

Est. 2.735 2.804 2.377 3.088 4.221 3.293
SD 0.518 0.554 0.457 0.594 0.828 0.679

illustrated the usage of our estimator with a case study on
the LGPIF data from the state of Wisconsin. The proposed
nonparametric copula estimator revealed that the dependence
structure between the claims from the building coverage and
the motor vehicle coverage is symmetric.

Although we focused on insurance applications, the pro-
posed methodology is applicable to other fields with similar
mixed data structures. For instance, in climate research, it can
be adopted to study the correlation among precipitation (e.g.,
rainfall) in multiple regions.

Finally, some improvements can be made on the proposed
method. First, we can smooth the estimator by applying kernel
smoothing methods and introducing tuning parameters. Sec-
ond, we used the L2-norm distance to quantify the discrepancy
between fitted parametric copulas with our nonparametric esti-
mator for model selection. Future work could involve studying
the asymptotic properties of this distance so as to provide formal
goodness-of-fit tests for copulas with mixed data. The uniform
convergence results in this article have provided the essential
foundation for developing goodness-of-fit tests.

Supplementary Materials

The supplementary materials include a description of a simulated example
of bivariate Tweedie outcomes, proofs, and additional derivations of the
theoretical results.
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