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ABSTRACT
The design objective of the 4G and beyond networks is not only to provide high data rate
services but also ensure a good subscriber experience in terms of quality of service. However,
the main challenge to this objective is the growing size and heterogeneity of these networks.
This paper proposes a genetic-algorithm-based approach for the self-optimization of
interference mitigation parameters for downlink inter-cell interference coordination parameter
in Long Term Evolution (LTE) networks. The proposed algorithm is generic in nature and
operates in an environment with the variations in traffic, user positions and propagation
conditions. A comprehensive analysis of the obtained simulation results is presented, which
shows that the proposed approach can significantly improve the network coverage in terms of
call accept rate as well as capacity in terms of throughput.
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1. Introduction

The 4G and beyond mobile access technology promises
to deliver high data rates from 100 Mbps to 1Gbps
along with a high quality-of-service (QoS) provision for
a variety of applications [1,2]. However, the increase in
the size and the heterogeneity of these networks has
given a strong impetus to the research in self-organizing
networks [3]. Self-organization targets to reduce the
capital expenditure (CAPEX) as well as operational
expenditure (OPEX) of these networks. While at the
same time, the QoS constraints on various telecom serv-
ices in terms of coverage and capacity must also be sat-
isfied. The autonomic self-organization functions
comprise of self-configuration, self-optimization and
self-healing. This work focuses on self-optimization
where performance measurements from the network
known as key performance indicators (KPIs) are used
to optimize the radio resource management (RRM)
parameters. This leads to an optimal network perfor-
mance. Hence, autonomic self-optimization reduces
OPEX of the network by reducing the workload of the
site survey and network performance analysis teams.

The industry and academia have done some signifi-
cant work on the self-optimization in radio access net-
works (RANs) during the last decade [4,5]. In spite of
the early research work and industrial interest in self-
optimization of GSM andUMTS [6–7], self-optimization
was not included as a part of these standards. Later, the
focus of research shifted towards self-optimization in het-
erogeneous networks using load balancing [8]. With the

advent of Long Term Evolution (LTE), the research on
LTE self-optimization involves RRM parameters like
interference mitigation using inter-cell interference coor-
dination (ICIC) [9,10], load balancing [11,12] and band-
width allocation [13].

Recently, reinforcement (machine) learning tech-
nique of fuzzy Q-learning (FQL) has been used for the
optimization of RRM parameters in LTE. FQL has
been used for the optimization of mobility parameters
of both GSM Edge Radio Access Networks (GERAN)
[14] and LTE network [15]. More recently, FQL has
been used for coverage/capacity optimization of LTE
networks by adjusting the vertical tilt angle of the
antenna employed at eNodeB (eNB) [16–18]. Despite
the widespread use of FQL, all these works lack any
discussion on the criteria when to switch from explora-
tion to exploitation mode. This problem is known as
exploration/exploitation dilemma. Furthermore, FQL
algorithm is quite susceptible to trapping in local
minima.

GA is a machine learning technique that has been
used in many different fields to solve the complex opti-
mization problems [19]. It is an efficient stochastic
search technique that has the tendency to quickly
attain optimal/near-optimal solution in large solution
spaces. With appropriate fitness function defined and
right parameters taken into consideration, this solution
could be generalized. GA is an evolutionary algorithm
that models the biological processes of evolution,
through successive selective breeding over generations
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[20]. It is a gradient-free technique that is very robust
against getting stuck in the local optima. Owing to
these reasons, we choose GA to solve the LTE network
optimization problem by optimizing the inter-cell
interference mitigation parameters.

The proposed scheme is valid both for LTE as well
as LTE-Advanced (LTE-A) as it is implemented in the
management plane of the network. The basic network
architecture of LTE and LTE-A is the same apart from
some new features in LTE-A-like carrier aggregation,
enhanced MIMO and Co-ordinated Multipoint
(CoMP) Transmission. The self-optimization algo-
rithms can be implemented in the operation and main-
tenance centre (OMC) of a network. In the paper, an
eNB and a base station represent one and the same
thing, and will be used interchangeably.

The paper is organized as follows: Section 2 presents
LTE ICIC model used in our case study. Section 3
presents the proposed GA-based self-optimization
framework. Section 4 deals with the simulation envi-
ronment and provides the numerical results of the pro-
posed scheme. Section 5 concludes this paper by
presenting conclusion and future directions.

2. System model

Consider a downlink OFDMA-based cellular network
with ICIC. The system uses a frequency reuse factor of
1. Hence, all the available bandwidths are reused in
each cell. Physical resource block (PRB) is the smallest
time-frequency resource unit that can be allocated to a
user.

Figure 1 presents a seven-adjacent-cell layout. The
frequency in each cell is subdivided into three sub-
bands. One is the edge band and the other two are the
centre bands. The users with worst channel quality are
allocated at the edge band/protected band. These users
are mostly located at cell edges but could also be closer
to the base station and experiencing deep fading condi-
tions. If the edge band of a cell is completely occupied,
the remaining users are allocated PRBs in the centre
bands. As evident from Figure 1, the main interference
is between the edge band users of a cell with centre
band users of the neighbouring cells. P is the maxi-
mum transmit power for each sub-carrier. However,
the transmit power in the centre band is reduced to
aP, in order to reduce interference with the neighbour-
ing edge bands. A priority scheme is used to allocate
the PRBs to the users on the edge band. This priority
scheme is based upon the calculation of a quality met-
ric as explained here. For a user u with the serving base
station b, the quality metric hu is calculated using pilot
channel signal strengths:

hu ¼ PrbuP
b
0 6¼b

Pr
b
0
u
þ s2

n
(1)

where Prbu and Prb 0 u represent the mean pilot signal
power received by u from the base stations b and b

0
,

respectively. The users with the worst quality metric hu
are allocated resources from the edge band, and hence
they get benefit of maximal transmission power P of
base stations. When the edge sub-band is full, the users
are allocated resources from the centre band. The
handover for the users from one base station to the
other is dependent on the received power-level differ-
ence between the two base stations. For a user u,
hard handover will be performed to move from the
serving base station b to b

0
, if the following condition

is satisfied:

Prb 0 u � Prbu >Thyst (2)

where Thyst is the fixed hysteresis margin for all the
base stations and is set to 6 dB in this study.

3. Proposed architecture

In the proposed scheme, we exploit the hidden depen-
dencies present in the RRM parameters, and optimize
them in order to improve the KPIs of the network. The
RRM parameters optimized in this case are the
a-parameters of individual eNBs. The KPIs optimized
are called accept rate, file transfer time (FTT) and the
average bit rate (ABR) of all the mobiles in the net-
work. Owing to the mobility of mobiles, their changing
distribution, fading phenomenon and interference etc.,

Figure 1. System model.
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the KPIs are a nonlinear function of a. Furthermore,
this relationship is not available in a closed form.
Hence, we have chosen GA to achieve our optimiza-
tion objective. Figure 2 shows the the generalized dia-
gram for the proposed approach. As shown, the
proposed optimization method consists of two main
steps: the training phase, followed by the testing phase.
In the training phase, the a parameters are optimized
using GA. The dimension of a chromosome depends
upon the number of genes, where each gene uniquely
represents the a parameter of an individual eNB. The
total number of genes in a chromosome equals the
number of base stations. The population size deter-
mines the number of chromosomes in a generation.
These populations are scored and sorted based upon
their individual fitness values. The next generation is
evolved by employing genetic operators of cross-over,
mutation and replication on the best performing indi-
viduals in the previous generation (see Table 1 for
algorithm details). The process continues till the termi-
nation criterion is reached, which may be based on
time limit, number of generations or a predefined
acceptable fitness value. The termination criteria in
this case are the number of generations. The optimum

values retained are then used in testing phase to vali-
date the generalization for real-world applications.

3.1. GA control parameters

The convergence of selective breeding is governed by
an application-oriented predefined fitness function.
Other factors contributing to the decreased time of
convergence are different control parameters custom-
ized for a typical application. The control parameters
in our GA simulations are population and generation
sizes, selection method, cross-over and mutation prob-
abilities, and termination criteria, etc. In addition,
probabilities of genetic operators of replication, cross-
over and mutation are repeatedly used to optimize a
highly complex cost function.

3.1.1. Population initialization
Initially, the population is initialized by pseudo-ran-
dom values drawn from the standard normal distribu-
tion assuring ramped half and half strategy. A random
number is picked between the minimum and maxi-
mum possible values for each decision variable, where
decision variables are the mean fitness values, obtained
by simulating concerned chromosome using LTE
simulator.

3.1.2. Termination criterion
In GA, termination criterion for simulations can be
based upon the number of generations or on some
threshold of fitness level or on some predefined time
limit. In our case, we have limited the simulations by
specifying maximum numbers of generations to be 30.
The best evolved solution is saved.

3.1.3. Fitness function
The fitness function score of the chromosomes is used
to select the best performing chromosomes in a popu-
lation. We have used mean ABR of all mobiles in the

Figure 2. Proposed architecture.

Table 1. RRM parameter optimization using genetic algorithm.
Step 1: Create z randomly generated solutions to form first generation P1.

FOR each Ps: s = 1,…, v and
Step 1.1: Compute fitness value of all individuals
in Ps using LTE simulator.
Step 1.2: Evaluate fitness using the predefined
fitness function.
Step 1.3: Check the following conditions:
IF Termination Criteria is reached, go to step 2.
ELSE Create new generations using genetic
operations

Step 1.3.1 Crossover
Step 1.3.2 Mutation
Step 1.3.3 Replication
Step 1.3.4 Select solutions based on their
fitness using genetic operators and assign
them to Ps + 1. Delete the low-ranked
individuals.

END IF
END
Step 2: Save the best evolved Solution and terminate
the procedure.

50 A. KASHAF ET AL.



network as the fitness function, given as:

U ¼
Xn
i¼0

ABRi

n
(3)

where ABRi denotes the average bit rate of all mobiles
in communication with the ith base station at that
instant. The improvement of mean ABR is directly cor-
related with the improvement/reduction of overall
FTTs in the network. Consequently, the accept rate of
network improves. ABRi is a function of ai:

ABRi ¼ f aið Þ (4)

Hence our optimization objective can be given as

ai ¼ argmax
a
0
i

U a
i
0

� �
(5)

The settings for the control parameters of GA given in
Table 2. In Figure 2, it can be seen that the LTE simula-
tions run at two times: first, when calculating mean fit-
ness values for each genome in GA during the training
phase; second, when the KPIs are averaged for the
optimized and non-optimized cases during the testing
phase. The simulations for calculating each chromo-
some’s mean fitness value run for 30 sec. Hence, the
total time required to obtain optimized a distribution
is 30 £ 80 £ 30 sec = 72,000 sec or 20 hr). While for
averaging KPIs during testing phase, the simulations
run for 2000 sec for both self-optimized and non-
optimized cases.

4. Numerical results

4.1. Simulation environment

The simulations have been performed using the down-
link LTE MATLAB simulator as described in [11]. The
network diagram of the simulated system is shown in
Figure 3.

The simulator performs correlated Monte Carlo
snapshots with the resolution of 1 sec to account for
the time evolution of the network. At the end of each
time-step mobile positions are updated, HO events are
processed, new mobiles are admitted according to the
access conditions and some other users leave the net-
work (end their communications or are dropped).
Traffic model used to simulate the arrival of new

mobile users is Poisson process with a certain arrival
rate λ (arrivals/sec). The time difference between two
simulation time steps is 1 sec. Hence, the probability
Pr of generation of k mobiles during each simulation
time step is given as

Pr kð Þ ¼ λke�λ

k!
(6)

Poisson distribution approximation of binomial distri-
bution is used to calculate k for each simulation time
step [21]. The network simulation parameters are
listed in Table 3.

Reference solution
Reference solution is the default optimal a value for

all eNBs. Its value has been chosen as 0.5 as deter-
mined in [22].

4.2. Simulation results

Performance obtained using adaption of a-parameters
using GAs is compared with the reference solution.

Table 2. Genetic algorithm simulation parameters.
Parameters Settings

Fitness function Given as Equation (3)
Selection Generational
Population size 80
Survival mechanism Keep best
Termination 30 generations
Selection method Roulette wheel selection method

Figure 3. The network diagram of the simulated system.

Table 3. The system-level simulation parameters.
Parameters Settings

System bandwidth 5 MHz
Cell layout 30 eNBs, single sector
Maximum eNB transmit
power

32 dBm

Inter-site distance 1.5–2 km
Subcarrier spacing 15 kHz
PRBs per eNB 24 (8 in each sub-band) + 1 for pilot

channel
Path loss L=128.1+37.6 log10(R), R in kilometers
Thermal noise density ¡173 dBm/Hz
Shadowing standard
deviation

6 dB

Traffic model FTP
File size 6300 Kbits
PRBs assigned per mobile 1–4 (first-come, first-serve basis)
Mobility of mobiles 10%
Mobile speed 8.33 m/sec
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As mentioned earlier, the network performance is eval-
uated in terms of three KPIs: call accept rate, FTT and
ABR of mobile stations. Figure 4 presents a compari-
son between the FTT of the two systems relative to
traffic arrival rate. It can be observed that for the traffic
value of 1 arrivals/sec, the improvement is only mar-
ginal. This is due to the fact that the number of mobiles
entering the network is not large enough. Conse-
quently, due to low interference and allocation of
PRBs in the edge band, the mobiles quickly download
the file and leave the network. Therefore, the employ-
ment of self-optimization mechanism does not signifi-
cantly improve the mean FTT value. The same holds
true for the case of the traffic values of 2 and 3 arrivals/-
sec. However, for traffic value of 4 arrivals/sec, and
onwards, we can see a clear improvement in the FTT.
As the number of mobiles present in the network
increases, they stay longer in the network due to con-
gestion and are also allocated PRBs in the centre band.
Hence, adaptation of a leads to greater improvement.
Overall, the FTT increases, but when comparing the
two systems, it can be concluded that the proposed
model is better to be used for high traffic rate
situations.

For a traffic value of 5 arrivals/sec we see a maxi-
mum comparative decrease/improvement of 25% in
FTT. Overall, the greater FTT value shows that the net-
work has taken more time for these transfers.

Figure 5 compares mean ABR of mobile stations of
two systems. It is evident that the proposed algorithm
performs better than the non-optimized one at all traf-
fic values considered. Same as other KPI values, it
shows greater improvement at traffic values of 4 and
5 arrivals/sec. For a traffic value of 5, we see a 25%
increase in the ABR. After that, it tends to decrease but
even then the results are better than the non-optimized
case.

From Figure 6, it is seen that the call accept rate for
both the cases is approximately same for traffic values
of 1 and 2 arrivals/sec. This is due to the fact that ini-
tially there are less number of mobiles in network. So,
the mobiles are served quickly. While as the traffic

increases accept rate decreases, but at the same time,
the self-optimization algorithm becomes more effective
due to congestion. Hence, for a traffic value of 5 arriv-
als/sec, we see an 8% increase in the call accept rate.

Figures 7–12 compare the CDF plots of the ABR
of mobiles of two systems for traffic values of
3–8 arrivals/sec, respectively.

Figure 4. The mean FTT as a function of traffic intensity for the
optimized and non-optimized case.

Figure 5. The mean ABR as a function of traffic intensity for the
optimized and non-optimized cases.

Figure 6. The accept rate as a function of traffic intensity for
the optimized and non-optimized cases.

Figure 7. CDF of individual ABR values for all mobiles in the
network for traffic intensity of 3 arrivals/sec, with and without
optimization.
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Figure 7 shows that for traffic value of 3 arrivals/sec
the optimized system performs better. As shown, more
than 60% mobiles have ABR values greater than
1500 Kbits/sec in the optimized case. While in the
non-optimized case, 60% mobiles have ABR values
greater than 1300 Kbits/sec. We see a greater improve-
ment for traffic value of 4 arrivals/sec, as shown in
Figure 8. Here 70% mobiles have ABR less than
1750 Kbits/sec for optimized case, while for non-
optimized, 70% are with ABR values less than
1500 Kbits/sec. So, for both traffic values, 3 and 4 arri-
vals/sec, optimized case shows greater improvement in
mobile ABR. The same is true for traffic value of 5 as
shown in Figure 9. The results for the traffic values of
6–8 arrivals/sec are shown in Figures 10–12, respec-
tively. However, the improvements tend to decrease.
This is due to the fact that now the increasing conges-
tion has increased interference to such a point that
optimizing a has very little effect. For example, for the

Figure 8. CDF of individual ABR values for all mobiles in the
network for traffic intensity of 4 arrivals/sec, with and without
optimization.

Figure 9. CDF of individual ABR values for all mobiles in the
network for traffic intensity of 5 arrivals/sec, with and without
optimization.

Figure 10. CDF of individual ABR values for all mobiles in the
network for traffic intensity of 6 arrivals/sec, with and without
optimization.

Figure 11. CDF of individual ABR values for all mobiles in the
network for traffic intensity of 7 arrivals/sec, with and without
optimization.

Figure 12. CDF of individual ABR values for all mobiles in the
Network for traffic intensity of 8 arrivals/sec, with and without
optimization.
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traffic of 7 arrivals/sec, 30% of mobiles have ABR val-
ues less than 350 Kbits/sec for the self-optimized case.
While for non-optimized case, 38% of mobiles have
ABR values less than 350 Kbits/sec. Similarly, for traffic
value of 8 arrivals/sec, 60% of mobiles have ABR values
greater than 400 Kbits/sec. While for the non-
optimized case, 35% of mobiles have an ABR value
greater than 400 Kbits/sec.

5. Conclusion

Interference mitigation is a challenging issue in mod-
ern wireless communication systems. Our main focus
in this proposed work is on the self-optimization part
of SONs. The objective was to reduce interference in
LTE networks and simultaneously improve network
performance by self-optimization of related RRM
parameters. In turn, this automated management will
reduce OPEX of the network. By comparing all the
results for optimized and non-optimized cases, a quite
significant improvement in network KPIs is observed.
The proposed self-optimization model can easily be
extended to other RRM parameters like mobility load
balancing and packet scheduling.
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