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ABSTRACT 
 

ESTIMATION OF CORRELATION CONFIDENCE INTERVALS  
VIA THE BOOTSTRAP: 

NON-NORMAL DISTRIBUTIONS 
 

John Mart V. DelosReyes 
Old Dominion University, 2019 
Director: Dr. Miguel A. Padilla 

 
 
 

Estimating confidence intervals (CIs) for the correlation has been a challenge. The 

challenge stems from the metamorphic nature of the sampling distribution of the correlation 

being bound by 1 1   . The nonparametric nature of the bootstrap makes it a good option for 

estimating correlation CIs. However, there have been mixed results about the robustness of 

bootstrap CIs for the correlation with non-normal data. This had led the literature to suggesting 

the use of transformation methods to estimate correlation CIs. However, transformation methods 

carry a risk of the original data being misrepresented. Thus, further investigation of bootstrap CIs 

for the correlation is necessary to provide pertinent information in choosing a correlation CI. 

Here, the coverage probability of non-bootstrap and bootstrap CIs for the correlation are 

investigated. This was done with a simulation that has condition parity with previous research 

yet expands upon these conditions. The non-bootstrap CIs investigated were the Fisher 

z-transformation, Spearman rank-order, and ranked inverse normal (RIN) Transformation. The 

bootstrap CIs investigated were the percentile bootstrap (PB), bias-corrected and accelerated 

bootstrap (BCa), and highest probability density interval (HPDI). All CIs were assessed for 95% 

coverage probability and the corresponding correlation estimates were assessed with 

standardized bias. The PB and BCa CIs were the focus of the study and were found to have good 

coverage probability overall. 
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CHAPTER I 

INTRODUCTION 

 Scientific research is conducted to create a deeper understanding of a discipline for its 

advancement. In the behavioral sciences, this means creating theories that allow for a better 

understanding of human behavior and potentially making it predictable. A way to find support 

for the validity of these theories is to demonstrate consistent result replication across research. 

However, a collaboration of researchers that attempted to replicate 100 scientific studies found a 

less than 50% replication rate (Collaboration, 2015). Specifically, the replication rate was 36% 

for studies that used p-values and 47% for studies that used effect sizes with confidence intervals 

(CIs). These results are far from ideal and do not garner much confidence. 

There are many potential causes for the low replication rate in the Collaboration (2015) 

study; however, the authors suggest that publication, selection, and reporting biases are major 

contributors. In this sense, the results reflect a research climate that incentivizes research that is 

“statistically significant,” which creates a bias on what kind of research is conducted and how it 

is reported (Ioannidis, 2005). There have been multiple suggestions to address these issues, but 

they have been met with some contention and other issues. One suggestion is to further lower the 

p-value threshold for declaring statistical significance to curb researchers from gaming the 

system for specific outputs (Benjamin, 2017). However, technological advancements have made 

gathering large samples much easier than what was possible in the past. As such, lowering the 

p-value criteria for statistical significance may not be enough. Another approach would be to 

instead directly address the tools and methods used. 

An upfront suggestion from this approach would be to use effect sizes in addition to 

statistical significance (Cohen, 1990). As shown from the 36% to 47% replication rate jump in 
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the Collaboration (2015) study, this latter approach shows promise. Even so, this suggestion can 

further be enhanced by including confidence intervals (CIs) for effect sizes to provide precision 

information. 

Along this line of discussion, a popular statistic that can also play the role of an effect 

size is the correlation. In fact, the correlation was the effect size measure used in the majority of 

studies in the Collaboration (2015) study. The correlation can take on several forms, but the 

original Pearson product-moment correlation (henceforth referred to as the correlation) is the 

most iconic with over 100 years of use (Hald, 2007). Additionally, the correlation is foundational 

to many other statistics and statistical models like the t-test, regression, MANOVA, etc. Given 

the ubiquity of the correlation, its importance to other statistics, and its use as an effect size, CI 

research about the correlation is essential. This is especially true if effect sizes are being 

proposed as a method to help with research replication. 

However, CI research about the correlation is limited with contradictory results. Some 

research shows that the correlation and its CIs are robust to non-normal data and others 

demonstrate the opposite. The focus on non-normal data is important as there is evidence to 

suggest that non-normal data is common (Blanca et al., 2013). Furthermore, much of the research 

is focused on the null hypothesis of when the correlation is zero ( 0)  . This kind of 

information is not entirely relevant to situations that call for the use of the correlation as an effect 

size; i.e., situations where the correlation does not equal zero ( 0)  . Therefore, the research 

here will address this gap by investigating bootstrap CIs for the correlation when 0  , 0  , 

and non-normal data. This will also include an exploration of a CI method that has not been 

previously explored. However, this discussion begins with concept of “statistical significance” 

and its relation to CIs. 
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Null Hypothesis Significance Testing 

 The most prevalent form of hypothesis testing is null hypothesis significance testing 

(NHST). In fact, the 36% replication rate for p-values of studies in the Collaboration (2015) 

study is based on NHST. Classically and at its simplest, NHST is conducted by setting up two 

opposing hypotheses: the null  0H  and alternative  AH  hypotheses. In NHST, 0H  is assumed 

to be true (e.g., no effect or no relationship), but data is used to test this claim (Perezgonzalez, 

2016). This process requires selecting a criterion (α) that establishes a low probability 

threshold within 0H  occurring and compares this criterion to the probability of obtaining an 

effect (p-value) from the data. Within this context, α is the probability of rejecting a true 0H  (i.e., 

the probability of a type I error). If the p-value is less than α, then 0H  is rejected in support of 

AH  (e.g., the effect is statistically significant). As such, the principle idea of statistical 

significance is to demonstrate that obtaining an observed effect would be highly unlikely if 0H  is 

true (Fisher, 1929). 

Since NHST only establishes the probability of obtaining an effect when assuming that 

0H  is true, it restricts p-values to only being able to infer the compatibility of an effect to 0H . A 

common misconception is that the p-value is the probability of 0H  being true given an effect 

(Cohen, 1994). This confusion is further compounded by the misinterpretation that the 

complement of the p-value (1 )p  is the probability of AH being true (Nickerson, 2000). This 

has led to inaccurate reporting of p-values such that there is a belief that a p   is associated 

with a greater than 100(1 )%  chance of AH  being true. For example, a .05p   is interpreted 

as a greater than 95% chance of AH  being true. While these misinterpretations may not be 
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directly caused by NHST, they illustrate the downward spiral of confusion that results from 

misunderstanding a tool (e.g., NHST in this context). 

This is not to say that NHST is limited strictly due to misconceptions or less than noble 

intentions. Another way to think about NHST is that it only informs researchers how well an 

effect relates to a hypothesis in terms of probability. For example, say that a test for mean 

difference has a .03p  . If .05  , then the test is statistically significant. However, if .01  , 

the test is not statistically significant. Thus, the results of NHST can change depending on the α 

level used to analyze an effect (Wasserstein & Lazar, 2016). Additionally, 0H  is assumed to be 

equal to a specific value (e.g., 0 1 2: 0H    ), and any deviation from this value would 

demonstrate that 0H  is not true. 

Consider a test of mean difference (i.e., the effect) between a group of participants before 

and after a treatment where 0H  is stated as “There is no mean difference before and after a 

treatment” (i.e., 0D  ) and .05  . The descriptive statistics for this example are: 10n  , 

mean difference is 3DM  , and the variance of the difference is 2 225S  . A related-samples 

t-test of this data would be 
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where the denominator is the standard error (SE). This effect is not statistically significant at 

.05   which has 2.2622critt  . If this example were modified by increasing n to 100 (i.e., 

100n  ), the new result would be 



5 
 

 
2

3
2

225

100

D

D

M
t

S

n

   .  (1.2) 

This is statistically significant at .05   which now has 1.9842critt  . This demonstrates that by 

increasing the sample size, statistical significance can be obtained by way of decreasing the 

associated critical value. Note that this occurred despite no change in the mean difference (i.e., 

the effect) or the variance of the difference. Although presented in an idealistic manner, sample 

size can impact statistical significance in other ways. For example, increasing the sample size 

typically decreases variance, which in turn again increases statistical significance. Even so, 

statistical significance can be obtained by simply increasing the sample size because it decreases 

the corresponding critical value; a relationship that holds for any form of NHST. This is key as 

modern technological advancements make obtaining larger sample sizes, and by extension 

statistical significance, easier than what was possible in the past. Furthermore, the results of 

statistical significance do not inform in terms of precision and a standard (or common) scale, 

which makes interpretations of NHST results even more cumbersome. To address the precision 

limitations of statistical significance, interval estimation should be used about the parameter of 

interest in NHST. 

Interval Estimation and Confidence Intervals 

 There are two general methods for estimating a parameter: point and interval. A point 

estimate uses a single value for a parameter estimate. Examples of point estimates are the mean 

and variance for the difference (e.g., DM and 2
DS ). A point estimate is useful for establishing a 

best guess for a parameter but does not account for sampling error (or variability) about the 

parameter estimate. However, an interval estimate consists of a range of possible values that are 
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likely to contain the population parameter. Interval estimates manifest this range by accounting 

for error to provide precision information about estimating the parameter of interest. 

A common application of interval estimation is the confidence interval (CI). Assuming a 

random sample from a given distribution, a CI is formed by creating an error structure around a 

point estimate based on the standard error (SE) of the corresponding distribution with a 

confidence level (Hogg, Tanis, & Zimmerman, 2015). A confidence level indicates the 

consistency of a parameter estimate and is denoted as 100(1 )%  where α represents the 

probability of making a type I error. In the context of a CI with .05   , a 95% CI indicates an 

expectation that 95% of all CIs created in the same way will contain the corresponding 

population parameter. 

Besides providing information about the precision of a parameter estimate, CIs also have 

utility in hypothesis testing. In these cases, statistical significance is met when the parameter 

specified under 0H  is not within the bounds of the CI. Conversely, having a CI that contains the 

parameter for 0H  indicates support for 0H . 

 A CI for a related-samples t-test can be constructed as follows: 
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and 

 1df n    (1.6) 

where /2t  refers to the t-critical value associated with probability of making a type I error 

divided by 2. The division of α by 2 is used in this context to create a CI with endpoints around 

the estimate. 

Continuing with the previous two related-samples t-test examples. The first example has

10n   with 9df   and the corresponding 95% CI using equation 1.5 is estimated as 
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  (1.7) 

and  7.7296,13.7296 . The second example has 100n   with 99df   and the corresponding 

95% CI using equation 1.5 is  
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3 1.984
100

 
   

 
  (1.8) 

and  0.0240, 5.9760 . In the first case, since the CI includes 0H  (i.e., 0D  ), the result is not 

significant. In the second case, the CI does not include 0H  and is significant. In terms of 

statistical significance, these CIs provide the same information as the original examples. 

However, because CIs incorporate sampling error through the SE, precision information 

regarding the parameter is provided ( D  in this case). Nevertheless, the limitation with respect to 

replication is that CIs are not in a standard (or common) scale because the parameter (or effect) 

is not in standard scale. 

NHST only establishes if a parameter (or effect) is significant with respect to a 

hypothesis, and a CI provides the same information but adds precision information about the 
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parameter (or effect). Neither lends credence as to whether the effect is meaningful; only that an 

effect is detected and how well it is estimated. When statistical significance is found under 

NHST, effects of 1, 10, .001, etc. can all hold equal value to the result (Tukey, 1991). This is 

because there is no sense of scale inherit to NHST due to the binary nature of the result; it only 

matters that the effect is different from what is stated in 0H . A CI only adds precision 

information about the effect; i.e., it gives information about how well the parameter is estimated. 

So while an effect of .001 may be statistically significant and may be estimated well, it is 

difficult to judge if this effect has more real-world weight compared to similar effects from 

different research (i.e., practically significant). These limitations in clarity demonstrate that other 

methods should be used that can better demonstrate the utility of an effect. This leads to effect 

sizes. 

Effect Sizes 

 An effect size is a statistic that measures the magnitude of an effect. The utility of an 

effect size over NHST is that it explains an effect in terms of a standard (or common) scale rather 

than the original units of measurement (Cohen, 1988). This means that regardless of the 

statistical significance of an effect and/or how well it is estimated, the effect can be easily and 

consistently understood. For example, an effect size that ranges from 0 to 1 can be understood to 

have greater effect as the effect approaches 1. Furthermore, this process can be extended to 

compare studies in terms of effect size magnitudes. The utility has been acknowledged and has 

led to the consideration of reporting effect sizes as a standard (Wilkenson, 1999). 

 Consider again the previous two mean difference examples. One kind of effect size 

appropriate here is Cohen’s d (Cohen, 1988). Cohen suggests the following guidelines for 
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judging the magnitude of d: 0.20, 0.50, and 0.80 are small, medium, and large effects, 

respectively. In this situation, the effect size is  
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which is considered a small effect. The key thing to notice is that, regardless of statistical 

significance and precision, both examples have the same effect size. This occurs because 

Cohen’s d only compares the ratio of the effect to error (or variance) without considering sample 

size. Unlike statistical significance and precision, sample size has little or no impact on effect 

sizes (Sullivan & Richard, 2012). Therefore, a strict reliance on “statistical significance” does 

not provide enough information to make proper conclusions about an effect and the example 

highlights the difference between statistical and practical significance. However, this issue can 

be alleviated through effect size use. 

 At this point, it is clear why some researchers suggest using effect sizes in additional to 

statistical significance (Cohen, 1990). An effect size is less impacted by sample size and puts the 

effect on a standard (or common) scale. Additionally, they can be used to compare the results 

from different studies (e.g., meta-analysis). As such, effect sizes help provide a more complete 

picture for the results found in hypothesis testing. However, effect sizes would have more utility 

if they had precision information. This can be achieved by forming effect size CIs and would 

allow researchers to know how well their effects are estimated. Of current contention related to 

this are CIs about the correlation as CI research regarding the correlation is limited and mixed. 

The Pearson Correlation as an Effect Size 

As aforementioned, the Pearson product-moment correlation (or correlation for short) is a 

popular statistic that can also play the role of an effect size. The popularity and importance of the 
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correlation stems from its over 100 years of use and its contribution as a foundational piece to 

other statistics and statistical models like the t-test, regression, MANOVA, etc. (Hald, 2007). 

Additionally, the correlation was the effect size used in most of the replication studies in the 

Collaboration (2015) study. Like any effect size, sample size has little to no impact on the 

correlation and a CI for it would also let researchers know how well the correlation was 

estimated. However, CI research for the correlation is sparse with varied results. Therefore, the 

research here will address this gap by evaluating non-bootstrap and bootstrap CIs for the 

correlation. 

The correlation is a method used to measure the linear relationship between two 

variables. In population settings, the correlation for variables x and y is defined as 

 xy
xy

x y




 
   (1.10) 

where, and xy  is the covariance between x and y, and x  and y  are the standard deviations 

for the x and y, respectively. When dealing with samples, the parameters are replaced with their 

respective estimates and equation 1.10 becomes 
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With this structure, it can be understood that the correlation is a ratio between how the x and y 

variables vary together. Another way to think of this is how much the variation in x is related to 

variation in y and vice versa. 

The correlation has a range of 1 1   . This results in a standard (or common) scale 

where a correlation of 1 indicates a perfect-positive relationship, -1 a perfect-negative 

relationship, 0 no relationship, and anything in-between as some variation of the previous 
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interpretations. In this context, “perfect-positive” indicates that as one variable increases the 

other variable will invariably match that increases in the same direction while a 

“perfect-negative” indicates that as one variable increases the other will invariably match that 

increase in the opposite direction. Cohen (1988) suggested the following guidelines for judging 

the magnitude of r: 0.10 , 0.30 , 0.50  are small, medium, and large effects, respectively. The 

simplicity in implementation and interpretation lends to the correlation’s popularity and allows 

the correlation to serve as a scaffolding piece to other statistics like the coefficient of 

determination. 

The coefficient of determination  2r  is another effect size directly related to correlation 

as it is just the correlation squared and is defined as 
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depending on whether populations or samples are used, respectively. Like the correlation, r2 can 

be thought of as a proportion. In this case, it is the proportion of variance in either variable that is 

accounted for by the other (Cohen, 1988). This concept can be extended to linear models. For 

example, r2 is the amount of variability in the outcome (y) accounted for by a linear regression 

model. The purpose of making this connection is to note that the correlation is integral to other 

statistics and that correlation’s qualities and interpretations will propagate to those other statistics 

that are dependent on the correlation. 
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To summarize, replication of research findings is a concern in scientific research 

(Collaboration, 2015). In response, one suggestion is to lower the p-value threshold for declaring 

statistical significance (Benjamin, 2017). However, modern technological advancements (e.g., 

statistical computing, online surveys, etc.) have made gathering large amounts of data easy. 

Therefore, in addition to reporting statistically significant findings, researchers have also 

suggested reporting effect size measures as they are minimally impacted by sample size (Cohen, 

1990). This suggestion shows promise as effect sizes had a higher replication rate than statistical 

significance in a collaborative study (Collaboration, 2015). Even so, this suggestion can further 

be enhanced by including CIs for effect sizes to provide effect size precision information. One 

common effect size is the correlation (ρ) and was in fact the effect size used in the majority of 

the studies in the collaborative study. However, CI research about the correlation or its 

robustness is limited, and in some cases conflicting. Research regarding the robustness of 

correlation is now discussed. 

Robustness of the Correlation t-test 

 Early research regarding the robustness of the correlation primarily focused on the 

application of the t-test for testing 0  . An early study of this kind of robustness was done by 

Blair and Lawson (1982). The authors main contention with previous work was its limitations to 

familiar distribution shapes that may not be reflective of “actual research contexts” where 

non-normal data is more common (Kowalski, 1972; Norris & Hjelm, 1961; Pearson & 

Adyanthaya, 1929). As such, the authors investigated a severely non-normal distribution (i.e., the 

Bradley distribution with skew = 3 and kurtosis = 17). For distribution shape, the distribution 

was the same for both variables. This simulation study investigated the impact of (a) distribution 

shape (normal and Bradley) and (b) sample size ( 5, 30, 50,100)n   on the type I error rate of the 



13 
 

correlation t-test for testing 0  . Results were based on 5,000 simulation replications and 

.005, .01, .025, and .05  . The results indicated that the correlation t-test type I error rate was 

accurate under the normal distribution but had inflated type I error rate under the Bradley 

distribution. Additionally, increasing the sample size did not help and appeared to make the 

situation worse for the Bradley distribution. Results across α were generally consistent. 

In a subsequent study, Edgell and Noon (1984) examined the type I error rate for the 

correlation t-test when testing 0  . This was done by investigating (a) distribution shape, (b) 

distribution pairing, and (c) sample size ( 5,10,15, 20, 30, 50,100)n   for .01and .05  . The 

primary interest of this research was to determine how the correlation t-test responds to 

non-normal distributions. The distributions investigated were: 

 Normal (skewness = 0, kurtosis = 0) 

 Uniform (skewness = 0, kurtosis = -1.2) 

 Exponential (skewness = 2.07, kurtosis = 6.56) 

 Cauchy Form 1 (skewness = 21.56, kurtosis = 2171) 

 Cauchy Form 2 (skewness = 49.8, kurtosis = 2817.9) 

These distributions were then either paired with themselves or with another distribution (i.e., all 

pairwise combinations) resulting in a total of 15 distribution pairing being explored. Results were 

based on 10,000 simulation replications. The results of this study showed that the t-test for 

testing 0   is robust at controlling type I error at .05   and when 5n  . However, it was not 

robust for extreme distributions (e.g., Cauchy) at .01  . 

Early research on the robustness of the correlation is limited and mixed. According to 

some of the research, the correlation t-test is robust when testing that the population correlation 
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is zero ( 0)  . However, some of the research indicates that this is not the case when working 

with severely non-normal data. This is concerning as data typically encountered in research 

environments is non-normal (Blanca et al., 2013). Furthermore, even if the research showed clear 

evidence that the correlation t-test is robust to distributional assumptions when testing that 

0  , these results would bear little information about estimating the correlation when 0  . 

When the correlation hypotheses are of the form H0: 0   vs. HA: 0  , rejecting H0 only 

indicates that 0   is an unlikely event and provides no information about estimating 0  . As 

such, if using the correlation as an effect size is of interest, then testing 0   has little utility. It 

would be of greater interest to investigate the correlation across its range ( 1 1)   . A way to 

investigate this is through CIs for the correlation. 

Confidence Interval Research About the Correlation 

One early attempt to investigate estimating correlation CIs when 0   was the Fisher 

z-transformation (Fisher, 1915). The Fisher z-transformation is defined as 
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This allows for a 100(1 )%  CI to be defined as 

  /2z z SE z  ,  (1.15) 
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is the estimated standard error of z. 
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Zeller and Levine (1974) evaluated the performance of the Fisher z-transformation CI for 

the correlation from equations 1.14 to 1.16 under several simulation conditions. The authors 

investigated the (a) distribution shape, (b) correlation strength ( 0, .32, .71, .95)  , and (c) 

sample size ( 15, 50,100)n   for .01and .05  . For distribution shape, the distribution was the 

same for both variables and the authors investigated the normal, uniform, J, bimodal, and a 

leptokurtic, but provided no skewness and kurtosis details for these distributions. Results were 

based on 3,000 simulation replications. One consistent finding was that the estimate of the 

correlation from equation 1.11 slightly underestimated the true correlation, but this was 

ultimately negligible when 15n  . In addition, the correlation CI from equation 1.15 was shown 

to be robust to the mild non-normal distributions investigated (e.g., uniform, J, bimodal, and 

leptokurtic). These results were consistent for .01and .05  . 

Additional research on the robustness of the Fisher z-transformation CI for the correlation 

was conducted by Berry and Mielke (2000). The authors investigated (a) distribution shape, (b) 

correlation strength ( 0, .4, .6, .8)  , and (c) sample size ( 10, 20, 40,80)n   for 

.10 .05, and .01  . For distribution shape, the distribution was the same for both variables and 

the authors investigated were the normal, 3 generalized logistic, and 3 symmetric kappa 

distributions. The generalized logistic distributions were defined by 
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where 1,.1,.01  . In this context, 1   results in negative skew and 1   results in positive 

skew. The symmetric kappa distribution was defined by 
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where 2,3,25  . In this context, 2   represents a distribution similar to a t distribution with 

2 degree of freedom, 3   a distribution with heavy tailed distribution, and 25   is similar to 

a uniform distribution with thin tails. The authors provided no skewness and kurtosis details for 

these distributions. Results were based on 1,000,000 simulation replications. The results showed 

that Fisher z-transformation CIs have appropriate coverage probability when .05   and 0   

for all distribution shapes. However, the coverage probability was consistently underestimated 

when distribution shapes are non-normal and 0  . Furthermore, these problems were not 

remedied with increased sample size but made more severe. These results were consistent for 

.01.05, and .10    This discrepancy in the literature about the efficacy of correlation CI 

methods indicate the need for additional research on the matter. 

The issue with correlation CI research is the 1 1    range restriction on the 

correlation (See Figure 1; Blanca et al., 2013). This range restriction makes estimating the 

correlation when 0   difficult as the correlation becomes more skewed as it approaches ±1. In 

fact, the only time the correlation is symmetric is when 0  . As such, it is apparent that 

estimating the correlation CIs is difficult when 0  . However, the bootstrap is a powerful 

method that can be used for CI estimation of the correlation without making distributional 

assumptions. 
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Figure 1. The range restriction effect on the distribution of the correlation.  

 

 

Bootstrap Method 

Bootstrapping is a statistical technique that uses data to create simulations for 

statistical inference (Efron & Tibshirani, 1993). This method generates the sampling 

distribution of a parameter estimate through sampling with replacement from a sample. 

This generated sampling distribution can be used to obtain SEs, CIs, and do hypothesis 

testing. The bootstrap method has two distinct advantages over parametric methods. 

First, it is a robust alternative used when parametric based inference is in doubt (e.g., 

the normality assumption is in doubt). Second, bootstrapping is a good alternative when 

parametric inference is impossible or requires very complicated equations for 

calculating SEs (e.g., the sampling distribution is unknown). 
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An important detail about the bootstrap method is that it can be used to estimate the 

sampling distribution of almost any statistic without any prior knowledge of its sampling 

distribution. To understand this, consider the Central Limit Theorem (CLT) and the mean (μ). 

The CLT states that regardless of the population distribution of a sample, the sampling 

distribution of the sample mean (M) will approach normality as n approaches infinity. In this 

case, the bootstrap method can simulate the CLT by providing an estimate of the sampling 

distribution of the statistic (i.e., the empirical sampling distribution or ESD). This also allows for 

SE estimates (i.e., the standard deviation of the sampling distribution) once the ESD is generated. 

This means that the bootstrap method can be used as a brute force way to estimate the SE of 

almost any statistic. 

Consider an example where a sample x is obtained of size n and the mean is of interest. 

This sample is defined as  1 2, , ..., nx x x x . The bootstrap is then performed in three steps. First, 

obtain the thb  random sample with replacement from x; i.e.,         1 , 2 ,...,b b b b
nx x x x . Second, 

compute and store the thb  estimate of the mean   bM  from  bx . Third, compile the stored 

estimates (1) (2) ( ), , , BM M M  to create the ESD of M for the 1, 2, ...,b B   bootstrap samples. 

The bootstrap estimate of the SE is defined as 
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is the mean of the ESD. The implication of this example is that this process can be extended to 

other statistics without knowledge of the corresponding sampling distributions (e.g., the 

correlation). 

As aforementioned, the bootstrap method can be used to estimate the SE and that allows 

for CI estimation. Using the previous example, a CI for the mean can be estimated by 

  /2M z SE M .  (1.21) 

Note the similarities between equations 1.5 and 1.21. A limitation of equation 1.21 is that it 

requires knowledge of the sampling distribution; in this case, knowledge that the sampling 

distribution is normal. The bootstrap overcomes this limitation by offering two alternative CIs 

that do not require this knowledge; the percentile and bias-corrected and accelerated CIs. 

Percentile Bootstrap CI 

 The percentile bootstrap (PB) CI is a distribution-free method for constructing bootstrap 

CIs based on the percentiles of the ESD. In the context of the previous mean example, the PB CI 

is defined as 

  1 /2( /2) ,B BM M   
    (1.22) 

where ( /2)
BM   and (1 /2)

BM   are the α/2 and 1 / 2  percentiles from the ESD and α is the 

probability of type I error. For example, with 1000 bootstrap samples and .05  , 25 and 975 

would serve as the percentiles of the ESD. The utility of the PB CI is that it is easy to understand 

and transformation respecting. This means that for a CI of ( /2) (1 /2),B BM M     for µ, a 

transformation  t   will have a corresponding CI of    ( /2) (1 /2),B Bt M t M    . 
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Bootstrap Bias-Corrected and Acceleration CI 

 Another distribution-free method for creating bootstrap CIs is the bias-corrected and 

accelerated (BCa) method. This is like the PB CI method but also adjusts for bias and 

acceleration. In this context, bias refers to the discrepancy between the bootstrap statistics and 

the corresponding sample statistic and acceleration refers to skew. If bias and acceleration are 

non-issues, then the PB and the BCa CIs methods yield similar results. This method also benefits 

from being transformation respecting but is also first and second order accurate. First and second 

order accurate means for a sample size n, the CI will have error that tends to zero at a rate of 

1/ n  and 1/ n , respectively. 

Continuing with the mean example, the BCa CI for M is defined as 

 1 2( ) ( ),M M      (1.23) 

where 

 
 
0 ( )

1 0

0 ( )

ˆ
ˆ

ˆ ˆ1

z z
z

a z z





 
   
   

, (1.24) 

 
 
0 (1 )

2 0

0 (1 )

ˆ
ˆ

ˆ ˆ1

z z
z

a z z




 



 
   
   

, (1.25) 

Φ is the standard normal cumulative distribution function, 0̂z is bias, â  is acceleration, and ( )z   

and (1 )z   are the percentile cutoffs from the standard normal distribution. Bias is defined as 
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 , (1.26) 
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where  1 .  is the inverse standard normal cumulative distribution function, I(.) is the 

indicator function, and M is the mean of the original data. Acceleration is accounted for by 

jackknife resampling where data are resampled by removing one observation per resample. 

Given data  1 2, , ..., nx x x x , the ith jackknife sample for 1, 2, ...,i n  is 

  ( ) 1 2 1 1, , ..., , , ...,i i i nx x x x x x    (1.27) 

with the thi  data point removed. Acceleration is defined as 
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  (1.28) 

where 

 ( ) ( )
1

1 n

i
i

M M
n



    (1.29) 

and ( )iM is the mean estimate that excludes the thi  data point. Acceleration in this form is simply 

the skewness multiplied by 1/6 and serves as a skewness correction factor. 

An early application of the bootstrap CI for the correlation was presented by Lunneborg 

(1985). Lunneborg explored the potential of the bootstrap for estimating correlation CIs using 

SAT verbal and math scores from a pseudorandom sample of 25 college freshman. In this study, 

the PB CI, based on 500 bootstrap samples, was compared to the Fisher z-transformation CI 

from equation 1.14 and α was not disclosed. The SAT scores were used because (a) they are real 

data, (b) the verbal and math scores are known to be bivariate normal, and (c) the verbal-math ρ 
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is large enough so that useful CIs can be estimated for the small pseudorandom sample ( 25)n  . 

The CIs from both methods were similar under bivariate normality. 

An early simulation study of the bootstrap CI for the correlation was conducted by 

Rasmussen (1987). Of interest was the impact of a non-normal distribution on the bootstrap CI 

for testing 0  . This was done by investigating (a) distribution shape (normal and lognormal) 

and (b) sample size ( 5,15, 30, 60)n   for .01and .05  . For distribution shape, the variable 

pairings for ρ took the following two forms: normal-normal or normal-lognormal. The PB CI, 

based on 500 bootstrap samples, was compared to the Fisher z-transformation CI. Results were 

based on 1,000 simulation replications. The results ran counter to Lunneborg’s research (1985) 

as they showed a lack of parity between the Fisher z-transformation and the PB CI. In this case, 

the PB CIs demonstrated an overall increase in type I error rate and restrictive CIs compared to 

the Fisher z-transformation CI under all conditions, including when the variable pairing was 

normal-normal. Going from .05   to .01   further highlights this issue. In addition, 

Rasmussen noted that the situation did improve as sample size with larger sample sizes but was 

not able to explore this due to costs in computational power at the time. 

In two recent studies, Padilla and Veprinksy (2012, 2014) developed PB and BCa CIs for 

the deattenuated correlation for .05  . An estimated correlation can become weaker 

(attenuated) than what may be true in the population due to measurement error (Spearman, 

1904). Spearman (1904) developed a correction for this attenuation known as the deattenuated 

(or disattenuated) correlation (Muchinsky, 1996), but research on this correlation and its 

corresponding CI is rare. Padilla and Veprinsky (2012, 2014) address this gap by investigating 

the bootstrap CIs for the deattenuated correlation under four simulation conditions: the (a) 

distribution shape, (b) strength of the correlation ( .10, .20, .30, .40, .50)  , (c) reliability of both 
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variables in the correlation ( .50, .60, .70, .80, .90)ij  , (d) and sample size 

( 50,100,150, 200, 250, 300)n  . All bootstrap CIs were based on 2,000 bootstrap samples. For 

distribution shape, both variables had the same distribution from the following distributions 

investigated:  

 Normal (skewness = 0, kurtosis = 0) 

 Uniform (skewness = 0, kurtosis = -1.20) 

 Triangular (skewness = 0, kurtosis = -0.60) 

 Beta (skewness = -0.85, kurtosis = 0.22) 

 Laplace (skewness = 0, kurtosis = 3) 

 Pareto (skewness = 2.81, kurtosis = 14.83) 

Results were based on 1,000 simulation replications. Overall, the PB and BCa CIs had good 

coverage under all simulation conditions with negligible differences between the two CIs. Even 

so, the BCa CI tended to have slightly better coverage than the PB CI. The one exception was 

that neither CI performed well with the Pareto distribution. However, the Pareto distribution 

investigated was skewed and highly peaked (kurtosis = 14.83). Such distributions have range 

restrictions, and it is well known that distributions with range restrictions attenuate the 

correlation due to less variability. 

In a subsequent study, Bishara and Hittner (2017) investigated several CIs for the 

correlation. Of interest was the impact of various types and combinations of distributions on the 

correlation CIs. The following correlation CIs were investigated: the 1) Fisher z-transformation, 

2) Spearman rank-order with Fieller’s SE, 3) Spearman rank-order with Wright’s SE, 4) 

Box-Cox transformation, 5) ranked inverse normal transformation, 6) nonparametric bootstrap, 

7) nonparametric bootstrap with asymptotic adjustment (AA), 8) nonparametric bootstrap BCa, 
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9) observed imposed bootstrap, 10) observed imposed bootstrap with AA, and 11) observed 

imposed bootstrap with BCa. All bootstrap CIs were based on 9,999 bootstrap samples. The 

performance of the CIs was investigated through a simulation with the following four conditions: 

(a) distribution shape, (b) distribution pairing, (d) correlation strength ( 0, .5)  , and (c) sample 

size ( 10, 20, 40, 80,160)n   for .05  . The distributions investigated were a result of a 

combination of population skewness 1( 4, 3, 2, 1, 0,1, 2, 3, 4)       and kurtosis 

2( 1, 0, 2, 4, 6, 8,10, 20, 30, 40)    whose feasibility was limited by the lower bound of kurtosis 

being determined by the squared skewness 

 2
2 1 2   . (1.30) 

This resulted in 46 skewness and kurtosis combinations being investigated. The distribution 

pairing investigated either had both variables come from the same distribution or had one 

variable come from a normal distribution and the other from a non-normal distribution. Overall, 

920 simulation scenarios were investigated. Results were based on 10,000 simulation 

replications. 

The primary findings were that the RIN followed by the Spearman rank-order with 

Fieller’s SE CIs had the best performance when data are non-normal. Of the remaining CI 

methods, only the observed imposed bootstrap with BCa had good enough performance when 

data was non-normal. However, it tended to exceed 95% coverage by generating somewhat long 

CIs. The advantage it has is that it keeps the correlation in the scale of the original variables. This 

is not the case for the RIN and Spearman rank-order with Fieller’s SE as both transform the 

original variables. All the remaining methods did not have good CI coverage when data were 
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non-normal with the Fisher z-transformation CI having the least favorable performance, and the 

situation was made worse by increasing the sample size when .5  .  

When the variable pairing included a normal distribution, all CIs generally performed 

better. However, the transformation methods still outperformed the bootstrap methods in this 

case. The only bootstrap CI methods that was comparable to the transformation methods’ 

performance were the observed imposed bootstrap with AA and observed imposed bootstrap 

with BCa. 

Like research on the robustness of the correlation t-test when testing 0  , CI research 

on estimating the correlation when 0   is also limited and mixed. According to some research, 

the Fisher z-transformation, PB, and BCa CIs are robust when estimating the correlation. The 

caveat to the PB and BCa CI research is that the main interest was on the deattenuated 

correlation (i.e., correlation corrected for attenuation). However, subsequent research indicates 

that correlation CIs may not be robust when working with severely non-normal distributions. In 

fact, in such cases only CIs based on transformation methods showed robustness. Therefore, it is 

logical to investigate the promising non-transformation CIs from previous research to clearly 

understand under which situations the correlation CI is robust. 

Confidence Interval Estimation 

 Fisher z-transformation CI. CIs constructed via the Fisher z-transformation (1915) are 

defined in equations 1.14 – 1.16. 

Spearman Rank-Order CI. CIs constructed via the Spearman Rank-Order (1904) have 

1ix  and 2ix  separately transformed into ascending ranks. From here, the correlation is computed. 

Confidence intervals are then be constructed by the Fisher z-transformation defined by equations 
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1.14 – 1.16. To draw parity with Bishara and Hittner’s work, Fieller’s (1957) standard error will 

be used defined as 

 
1.03

( )
3

SE z
n




.  (1.31) 

 This approach has a robust aspect in that outliers do not heavily affect it. This is because 

data in ranked form attenuates the differences between any two data points. For example, a 

sprinter who runs a 100 m dash in 9.58 seconds is faster than another sprinter who runs the 100 

m in 12.43 seconds by 2.85 seconds. If this data were ranked, it is known that the first sprinter is 

faster than the second sprinter but not to what degree. 

RIN Transformation CI. In this method, 1ix  and 2ix  are separately transformed through 

Bliss’s (1967) rankit transformation defined as 

 1 .5
( ) rx

f x
n

     
 

  (1.32) 

where 
1  is the inverse cumulative distribution function and rx  is the ascending rank of each ix  

value. The CI for the correlation is then computed through Fisher’s z-transformation with 

equations 11.14 – 1.16. The utility of this process is that it will convert data into an 

approximately normal distribution. 

Bootstrap for the Correlation 

The bootstrapped correlation for a pair of variables x and y can be outlined in three steps. 

Suppose the observed data is  1 2, , , nX x x x  where  ,i i ix yx  is the pair of variables. 

First, obtain the bth bootstrap sample with replacement from X; i.e.,  ( ) ( ) ( ) ( )
1 2, , ,b b b b

nX x x x . 

Second, the bth estimate of the correlation from ( )bX  is computed as 
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   (1.33) 

and stored. Third, compile the stored estimates 
(1) (2) ( ), , ..., B
xy xy xyr r r  to create the ESD of rxy for 

1, 2, ...,b B  bootstrap samples. The ESD can then be summarized to obtain statistical quantities 

for inference about xyr . 

PB CI. In this method, the percentile bootstrap CI is estimated by obtaining the / 2  

and 1 / 2  percentiles from the xyr  ESD where α is the significance levels (i.e., probability of 

Type I error). For example, with .05   the percentiles are then .025 and .975. 

BCa CI. This method follows the same process as the PB CI method apart from how the 

CI bounds are defined. In this case, the bounds are adjusted according to equations 1.23 – 1.29. 

This can be interpreted as adjusting the bounds for the bias and skewness (or acceleration) of the 

xyr  ESD. 

Highest Probability Density Interval (HPDI). Another method that can be used to form 

a CI from a distribution but has very limited research is the highest probability density interval 

(HPDI; Casella and Berger, 2002). If the distribution is unimodal, the HPDI is the narrowest 

interval that contains the specified probability of the confidence level (1  ). In terms of the 

bootstrap, let  ˆ |p  x  be the ESD for ̂  given the data x. A 100(1 )%  HPDI for ̂  is a 

subset c  defined as 

   ˆ ˆ: |c p k  x   (1.34) 

where k is the largest number such that 
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  ˆ ˆ| 1
c

p d    x   (1.35) 

The principal idea is that k represents a horizontal line that shifts vertically down through 

the distribution until its intersections with the distribution capture the region with probability 

1  . This results in the region being projected upon the x-axis as an interval. Another way to 

think about the HPDI is that it is the narrowest interval because it is optimized based on where 

the data gather most frequently or is most dense. Additionally, the HPDI has two advantages. 

First, like the bootstrap CIs, the HPDI is also distribution-free. Second, no region outside of the 

interval will have higher probability than any region inside the interval. Figure 2 illustrates the 

difference between the HPDI and percentile-based CIs. 

 

 

 

Figure 2. Comparison between HPDI and Percentile-Based CIs 
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Note that the inclusion of the HPDI is supplemental to the study. The main purpose for 

including it is was a research question on whether it can be used on the ESD from a parameter of 

interest. 

Rationale 

As aforementioned, there is currently a concern in the literature regarding replicability 

(Collaboration, 2015). One methodological suggestion to help address the issue is to use the 

correlation as an effect size (Cohen, 1990). Even so, this suggestion can be enhanced by 

including a correlation CI to provide precision information. However, CI research about the 

correlation is limited and mixed. Therefore, the aim here is to shed further light and verify the 

limitations of the bootstrap CI for estimating the correlation. Given that various conditions can 

impact the performance of CI estimation (e.g., sample size, data distribution, etc.), a simulation 

study is considered. 

This simulation study aims to compare the most promising correlation CIs used in 

previous research. Two classes of CIs will be investigated: non-bootstrap and bootstrap. 

The non-bootstrap CIs are the Fisher z-transformation, Spearman rank-order with Fieller’s SE, 

and RIN. The bootstrap CIs include the PB, BCa, and HPDI. The bootstrap CI methods are the 

primary focus of the research, but non-bootstrap methods were included for comparison 

purposes. Additionally, condition parity will be drawn between the previous bootstrap CI 

research so that results can be directly compared. All CIs were compared in terms of coverage 

probability. By comparing the performance of these CI estimation methods in different 

conditions, it is hoped that the findings will benefit applied researchers in choosing the 

appropriate CI for the correlation, particularly in applications that call for the correlation to be 

used as an effect size. 
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Based on the literature review, the following are expected from the correlation CIs: 

1. When data for both variables are normally distributed (multivariate normal), all CI 

estimation method will perform well in terms of coverage probability. This expectation is 

based on the assumptions of the correlation (Padilla, 2017) 

2. When multivariate normality does not hold, the Spearman and RIN CIs will have the best 

performance in terms of coverage probability; followed by the HPDI, BCa, PB, and 

Fisher z-transformation CIs. However, the HPDI and BCa CI will perform comparable to 

one another. This expectation is based on the previous findings from Bishara and Padilla 

as well as the properties of the HPDI (Bishara & Hittner, 2017; Casella & Berger, 2002; 

Padilla, 2012, 2014). 

3. As the degree of non-normality increases, coverage probability of the Fisher 

z-transformation and PB CIs will perform worse, while the remaining methods will be 

robust. This expectation is based on the previous findings from Bishara and Padilla as 

well as the properties of the HPDI. 

4. When the correlation is zero, coverage probability for all CI estimation methods will 

perform equally well. This expectation is based on previous findings regarding CI 

estimation methods when the correlation is zero (Berry & Mielke, 2000; Bishara & 

Hittner, 2017; Zeller & Levine, 1974). 

5. As the correlation moves away from zero, coverage probability of the Fisher 

z-transformation and PB CIs will perform worse, while the remaining methods will be 

robust. This expectation is based on the previous findings from Bishara and Padilla as 

well as the properties of the HPDI. 

  



31 
 

CHAPTER II 

METHOD 

A Monte Carlo simulation is a suitable option for investigating the performance of a 

statistical method when analytical methods are not available (Yung & Bentler, 1996). It provides 

insight into the performance of a statistical method wherein established properties and 

assumptions may not hold (Bandalos & Leite, 2013). Given that comparisons of the correlation 

CI estimation methods cannot be achieved through analytical methods, and because the 

assumptions of the correlation may not be met in applied settings, a simulation study is used to 

investigate the performance of the correlation CIs. 

Data Generation 

A Monte Carlo simulation was used to investigate and compare the properties of the 

correlation CI estimation methods under different simulation conditions. This simulation was 

structured in a 6 (correlation magnitude) × 11 (sample size) × 23 (distribution pairings) 

simulation design for a total of 1518 conditions. For each simulation condition, 1,000 data 

replications were obtained. Data were simulated in three steps as follows. First, generate normal 

and non-normal data according to Headrick (2002) as follows 
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0 5, ...,c c  are constants (See Table 27), and 
*
ij  is the intermediate correlation. The idea is to 

determine the constants and intermediate correlation to obtain the variables in equation 2.1. The 

unique aspect of this method is that it allows for correlation amongst non-normal data with the 

use of extra moments. Second, estimate the correlation CIs for each data replication in equation 

2.1. Third, determine if the CIs contain the population correlation (ρ). The following simulation 

conditions were investigated. 

Conditions 

 Sample Size (n). Sample size was included because CI estimation is impacted by sample 

size. The following sample sizes will be investigated: n = 20, 30, 40, 50, 100, 150, 200, 250, 300, 

350, 400 as they will draw parity with the previous research on the correlation CIs (Bishara & 

Hittner, 2017; Padilla, 2012, 2014). The granularity used here is due to previous research 

suggesting that bootstrap CIs cease to function if sample size is too small (Rasmussen, 1987). 

Correlation Magnitude (ρ). Correlation magnitude was considered because the 

distribution of the correlation changes when 0   and becomes more skewed as it approaches 

±1 (see Figure 1). The correlation measures the magnitude of the linear relationship between two 

continuous variables and can be interpreted as an effect size. Cohen (1988) advises that 

correlation coefficients equal to .10, .30, and .50 represent small, moderate, and strong 

correlations, respectively. The present investigation will utilize correlation coefficients ranging 

from .00 to .50 in increments of .10 to address Cohen’s standards but to also gain further insight 

on a wider range of effects. It is expected that the CIs will perform better the closer the 

correlation coefficient is to zero. 

Distribution Pairings (xij). The degree of non-normality was the focus in the distribution 

pairings because the Fisher method assumes multivariate normality while the bootstrap methods 
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do not. Additionally, non-normal data is common in applied settings and there is a lack of 

consensus in the literature on how to approach the correlation when non-normality occurs. The 

selected distributions fall into the general categories of symmetric and non-symmetric and were 

investigated in previous research (Bishara & Hittner, 2017; Padilla, 2012, 2014). The symmetric 

distributions were as follows: Normal, Triangular, Uniform, and Laplace. The non-symmetric 

distribution were as follows: Beta ( 4, 1.25)   , Beta ( 4, 1.25)   , Chi-Square 

( 16)df  , Chi-Square ( 4)df  , Chi-Square ( 3)df  , Chi-Square ( 2)df  , Chi-Square 

( 1)df  , and Pareto. Figure 3 shows the graphical representation of these distributions.  

Investigation of the distributions considered the pairwise nature of the variables involved 

in the correlation. This dictated four main types of distribution pairings. In the first pairing, the 

variables had the same symmetric distribution (e.g., both variables were Uniform). Similarly, in 

the second pairing, the variables had the same non-symmetric distribution (e.g., both variables 

were Pareto). In the third pairing, one variable was always normal and other was symmetric (e.g., 

one variable was Normal and the other Laplace); a normal-normal paring was not included. 

In the fourth pairing, one variable was always Normal and the other was non-symmetric (e.g., 

one variable was Normal and the other Pareto).  
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Figure 3. Distributions considered for this study. 
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Figure 3 Continued. Distributions considered for this study. 
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Analysis 

The 100(1 )%  CIs were estimated with .05  . CIs that involved using the bootstrap 

were estimated from a total of 2,000 bootstrap samples. To evaluate the performance of each CI, 

two criteria were used: coverage probability and bias. 

Coverage probability is defined as the proportion of times the estimated CI contain the 

true population correlation ρ. Bradley’s (1978) liberal criterion was used to determine acceptable 

coverage, which is defined as *1 1.5 1 1 0.5        were α* is the true probability of Type I 

error. Therefore, acceptable coverage is given by  .925, .975  for .05  . This criterion has 

been used in simulation studies (Padilla, 2012, 2014). 

Although the focus of the study was CI estimation, point estimates were also reported as 

a supplement in evaluating the CIs. For each point estimate, standardized bias was computed as 

 
 

ˆ
ˆ

ˆbias SE

 



   (2.5) 

where ̂  is the point estimate,  ˆSE    is the standard error of ̂ , and   is the population 

parameter, respectively. Standardized bias allows for the standardized comparison of the 

Pearson, Spearman, and RIN point estimates. Given that the Pearson point estimates form the 

ESD of the bootstrap, standardized bias for the bootstrap were not reported. Acceptable bias for a 

point estimate was defined as ˆ .40bias   (Collins et al., 2001). 

To further explore the impact of the simulation conditions, on the performance of the CIs, 

the following models were estimated: logistic regression and 3-way ANOVA. The independent 

variables for the two models were correlation magnitude, sample size, and distribution pairing. 

The main effects and two-way interactions were fitted in the logistic regression and ANOVA 
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models. For the logistic regression, the binary dependent variable indicated if the estimated CI 

covered the population correlation ρ (0 = no; 1 = yes). The Cox-Snell 2
CSR  (effect size) was used 

to examine the contribution of each effect in the logistic models. The 2
CSR  for an effect was 

computed as the difference between the 2
CSR  for the full model (i.e., model with all main effects 

and two-way interactions) and the reduced model (i.e., full model excluding that effect of 

interest). For ANOVA, the dependent variable was standardized bias, and partial eta squared (η2) 

was used to examine the contribution of each effect. 

The logistic regression and ANOVA models were conducted for heuristic and descriptive 

reasons. In simulation work, power and effect size must be considered with care for two reasons. 

First, simulation work is based on specified population parameters and the estimation 

methodology must achieve those parameters. To reduce sampling variability and assure the 

precision of the estimation under investigation, the number of simulation replications need to be 

large. Regardless of the estimation methodology being investigated, simulation replications start 

with a minimum of 1,000; i.e., the number of replications for this simulation study. With such 

large simulation replications, any small deviation will be declared as statistically significant; i.e., 

simulation work is overpowered. Second, simulation replications and estimation methodology 

are not human participants or human behavior. As such, using effect size criteria for the 

behavioral/social sciences to judge the magnitude of an effect size in simulation work must be 

done with care. Even so, effect sizes ( 2
CSR and η2) were used to examine the contribution of an 

effect in the logistic and ANOVA models in a descriptive manner to help with the overall 

analysis.  
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CHAPTER III 

RESULTS 

 Data for the simulation were generated using the R statistical package 3.0.2. The 6 

(correlation magnitude) × 11 (sample size) × 23 (distribution pairings) simulation design was 

analyzed using SAS software 9.4. Overall, 1518 simulated conditions for the correlation and its 

corresponding CIs (i.e., Fisher’s z-transformation, Spearman Rank-order, RIN, PB, BCa, and 

HPDI) were investigated. The Bootstrap CIs used 2000 bootstrap samples. Performance for the 

correlation CIs and corresponding point estimates were primarily accessed with Bradley’s (2015) 

criterion and standardized bias, respectively. Further analysis of the simulation conditions on the 

performance of the CIs was done via logistic regression and 3-way ANOVA. The forthcoming 

sections discuss the results for each condition combination. Coverage probabilities related to the 

Spearman Rank-order and RIN are not discussed due to consistent coverage near the target of .95 

within Bradley’s criterion; which was expected. 

Coverage Probability 

Table 1 presents the Cox-Snell 2
CSR  (effect size) of the logistic regression for coverage 

probability for each of non-bootstrap CIs. The Spearman and RIN CIs were not impacted by any 

of the simulation conditions; the largest 2 0.0002CSR   or .02%. However, the Fisher 

z-transformation CI was slightly impacted by the simulation conditions. In particular, the Fisher 

z-transformation CI was slightly impacted by sample size (n) and correlation strength (ρ) main 

effects; 2 0.0099CSR   and 2 0.0091CSR  , respectively. The other effects and interactions did not 

have as strong impact. 

Table 2 presents the Cox-Snell 2
CSR  (effect size) of the logistic regression for coverage 

probability for each of bootstrap CIs. In general, all three bootstrap CIs had very small main 
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effects. Even so, they were all most impacted by correlation strength (ρ). This was followed by 

distribution pairing (d) and sample size (n), respectively, for the PB CI and HPDI. However, for 

the BCa CI, the order was switched: sample size (n) and distribution pairing (d), respectively. 

Affect sizes for statistical performance must be interpreted with caution. The first thing to 

realize is that although the effect sizes in Tables 1 and 2 appear small, recall that human behavior 

is not being analyzed. Instead, the performance of statistics is being analyzed. In particular, the 

performance of coverage probability for CIs. In this context, even a trivially small effect size 

may reveal unacceptable performance by a statistic. For example, the magnitude of Bradley’s 

(1978) acceptable performance is .975 .925 .05  . Therefore, all effects of the simulation 

conditions on coverage probability were investigated and presented in Tables 4 26  and Figures 

4 35.  Note that Tables 4 26  present the interaction of correlation magnitude and sample size 

for each distribution pairing; individual tables for each simulation condition main effect are not 

presented. 

Coverage for Correlation Magnitude 

 Figure 4 shows the CI coverage for correlation magnitude. In general, most CIs tended to 

have acceptable coverage   i.e., .925, .975  across the correlations. Even so, there was a clear 

order of CI coverage performance. The BCa and PB CIs had consistent acceptable coverage that 

was similar to each other. The Fisher z-transformation CI and HPDI followed, respectively. The 

Fisher z-transformation CI tended to become worse (wider box plots with more outliers) as the 

correlation increased. However, the HPDI tended to have the most unacceptable coverage. 

Coverage for Sample Size 

Figure 5 shows the CI coverage for sample size. Generally, most CIs tended to have 

acceptable coverage   i.e., .925, .975  across the sample sizes. Furthermore, this coverage 
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improved as sample size increased. Still, there was a clear order of CI coverage performance in 

this case. The Fisher z-transformation CI had consistent acceptable coverage. This was followed 

by the BCa CI. The PB CI then follows but struggles to maintain adequate coverage when 

30n  . The HPDI had the weakest performance as it does not have adequate coverage until 

50n  . However, all CIs maintain adequate coverage once sample sizes are 50n  . 

Additionally, the coverage improves (narrower box plots) for all the CIs as the sample size 

increases. The exception is the Fisher z-transformation CI, which had more outliers as the sample 

size increased. 

Coverage for Distribution Pairing 

 Symmetric w/ Symmetric. Figure 6 shows the CI coverage for a symmetric with 

symmetric variable pairing. In general, most CIs tended to have acceptable coverage 

  i.e., .925, .975 . However, there was a clear order of CI coverage performance in this case. 

The Fisher z-transformation CI had consistent acceptable coverage. This was followed by the 

BCa CI and PB CI coverage, respectively. However, in the Laplace variable pairing, the PB CI 

coverage outperforms the BCa CI. The HPDI had the weakest performance with more instances 

of unacceptable coverage. 

Non-Symmetric w/ Non-Symmetric. Figure 7 shows the CI coverage for a 

non-symmetric with non-symmetric variable pairing. In general, CIs had coverage issues with 

 2 1 4df    and Pareto variable pairings; i.e., when skewness 1.41  for both variables. This 

becomes more profound as skewness increased for the paired variables. The Fisher 

z-transformation CI was most impacted with more unacceptable coverage (wider box plots). This 

was followed by the HPDI, BCa CI, and PB CI; respectively. 
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Most CIs had good coverage with  eta 4, 1.25 1.5a b     and  2 16df   variable 

pairings; i.e., when skewness .71  for both variables. In these cases, the Fisher 

z-transformation, BCa, and PB CIs had similar coverage. The HPDI consistently had coverage 

that was behind in these instances. 

Symmetric w/ Normal. Figure 8 shows the CI coverage for a symmetric with normal 

variable pairing. Coverage in this situation was similar to that of the symmetric with symmetric 

variable pairing (see Figure 6). 

Non-Symmetric w/ Normal. Figure 9 shows the CI coverage for a non-symmetric with 

normal variable pairing. Generally, most CIs tended to have acceptable coverage 

  i.e., .925, .975 . However, there was a clear order of CI coverage performance in this case. 

The Fisher z-transformation CI had consistent acceptable coverage. The PB and BCa CIs then 

follow with coverage that tended to be similar to each other. The HPDI had the weakest 

performance with the most instances of unacceptable coverage. 

Coverage for Sample Size by Correlation Magnitude 

 Sample Size by Correlation Magnitude. Figures 10 and 11 show the CI coverage for 

sample size by correlation magnitude. In general, most CIs tended to have adequate coverage 

  i.e., .925, .975 . Additionally, coverage improved as the sample size increased. Still, there was 

a clear order CI coverage performance. The Fisher z-transformation CI had the most consistent 

acceptable coverage across all sample sizes and correlation magnitudes. However, the Fisher 

z-transformation CI also had some severe outliers across all sample sizes. This performance was 

then followed by the BCa CI and PB CI, respectively. However, the PB CI had coverage issues 

when 30n  . The HPDI had the weakest performance as it required 100n   to maintain 
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adequate coverage. In fact, all CIs maintain adequate coverage once 100n   and improve as the 

sample size increases. 

Coverage for Distribution Pairing by Correlation Magnitude 

 Symmetric w/ Symmetric by Correlation Magnitude. Figures 12 and 13 show the CI 

coverage for a symmetric with symmetric variable pairing by correlation magnitude. In general, 

most CIs have tended to have acceptable coverage   i.e., .925, .975  across all correlation 

magnitudes. However, was a clear order of CI coverage performance. The Fisher 

z-transformation CI had consistent acceptable coverage across all distribution pairing and 

correlation magnitudes. This was followed by the BCa and PB CIs, which tended to have similar 

coverage. However, the PB CI is more robust in the Laplace distribution pairing. The HPDI had 

the weakest performance as it tended to have more instances of unacceptable coverage. 

 Non-Symmetric w/ Non-Symmetric by Correlation Magnitude. Figure 14 shows the 

CI coverage for a non-symmetric with non-symmetric variable pairing by correlation magnitudes 

of 0 0.2 . Generally, the CIs tended to have to have coverage issues with the  2 1df   and 

Pareto distribution pairing; i.e., the CIs had coverage issues when skewness 2.811  for both 

variables. In fact, all CIs tended to struggle maintaining acceptable coverage   i.e., .925, .975 . 

In these cases, the PB and BCa CIs have about equal performance and are followed by the HPDI, 

and Fisher z-transformation CI; respectively. The Fisher z-transformation CI noticeably performs 

worse as correlation magnitude increases. 

Most CIs had good coverage with  eta 4, 1.25 1.5a b     and  2 2 4,16df    

variable pairings; when skewness 1.63 . In this case the Fisher z-transformation CI had the 

best coverage, followed by the BCa CI, PB CI, and HPDI. Additionally, this performance tended 
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to remain the same across correlation magnitudes. The exception to this was the Fisher 

z-transformation CI for  2 2df   when .2  . 

Figure 15 shows the CI coverage for a non-symmetric with non-symmetric variable 

pairing by correlation magnitudes of 0.3 0.5 . Generally, the CIs had coverage issues with 

 2 1 4df    and Pareto distribution pairings; i.e., the CIs had coverage issues when 

skewness 1.41  for both variables. In fact, all CIs tended to struggle maintaining acceptable 

coverage   i.e., .925, .975 . In these cases, the PB CI had the best coverage. The BCa CI and 

HPDI then follow with similar performance to one another. Finally, the Fisher z-transformation 

CI had the weakest coverage performance. Additionally, the Fisher z-transformation CI had 

notably worse performance as correlation magnitude increased. 

Most CIs had good coverage with  eta 4, 1.25 1.5a b     and  2 16df   variable 

pairings; i.e., had good coverage when skewness .848  for both variables. In this case the BCa 

CI had the best coverage, followed by the PB CI, Fisher z-transformation CI, and HPDI. 

Additionally, the Fisher z-transformation CI was notably negatively impacted in the 

 eta 4, 1.25a b    variable pairing when correlation magnitude increased. 

Symmetric w/ Normal by Correlation Magnitude. Figures 16 and 17 show the CI 

coverage for a symmetric with normal variable pairing by correlation magnitude. In general, 

most CIs have tended to have acceptable coverage   i.e., .925, .975  across all correlation 

magnitudes. However, there was a clear order of CI coverage performance. The Fisher 

z-transformation CI had consistent acceptable coverage across all distribution pairing and 

correlation magnitudes. This was followed by the BCa and PB CIs, which tended to have similar 
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coverage. The HPDI had the weakest performance as it tended to have more instances of 

unacceptable coverage. 

Non-symmetric w/ Normal by Correlation Magnitude. Figures 18 and 19 show the CI 

coverage for a non-symmetric with normal variable pairing for correlation magnitudes. In 

general, most CIs tended to have adequate coverage   i.e., .925, .975 . There was a clear order 

of performance. The Fisher z-transformation CI had the best performance with consistent 

acceptable coverage. This was followed by the BCa CI and PB CI, respectively. The HPDI had 

the weakest performance with more instances of unacceptable coverage. 

Coverage for Distribution Pairing by Sample Size 

Symmetric w/ Symmetric by Sample Size. Figures 20 23 show the CI coverage for a 

symmetric with symmetric variable pairing by sample size. In general, the CIs tended to have 

acceptable coverage   i.e., .925, .975 . In addition, coverage improved as the sample size 

increased. Still, there was a clear order of CI coverage performance. The Fisher z-transformation 

CI had consistent acceptable coverage across all distribution pairings and sample sizes. The BCa 

CI had the next best performance but had some coverage difficulty with coverage with the 

Laplace distribution pairing when 100n  . The PB CI had the next acceptable coverage and has 

a dip in performance with the Laplace distribution pairing. The HPDI had the weakest 

performance with a tendency for unacceptable coverage across all distribution pairings. 

However, all CIs tended to have acceptable coverage as sample increased. However, all CIs 

tended to have acceptable coverage as sample size increased. 

Non-Symmetric w/ Non-Symmetric by Sample Size. Figures 24 and 25 shows the CI 

coverage for a non-symmetric with non-symmetric variable pairing by sample sizes 20 150 . In 

general, the CIs tended to have coverage issues with  2 1 4df    and Pareto variable pairings; 



45 
 

i.e., the CIs had coverage issues when skewness 1.41  for both variables. This became more 

profound as the skewness increased for the paired variables. Even though increasing the sample 

size improved coverage (made box plots narrower), coverage still tended to be outside of 

acceptability   i.e., .925, .975 . The Fisher z-transformation CI is the sole exception in that 

increasing sample size worsened coverage (wider box plots). 

Most CIs had good coverage with  eta 4, 1.25 1.5a b     and  2 16df   variable 

pairings; i.e., had good coverage when skewness .848  for both variables. In this case the 

Fisher z-transformation CI had the best coverage, followed by the BCa CI, PB CI, and HPDI. 

However, CI coverage improves as sample size increases and all CIs tended to have acceptable 

coverage when 100n  . 

Figures 26 and 27 show the CI coverage for a non-symmetric with non-symmetric 

variable pairing by sample sizes of 200 400 . In general, the CIs tended to have coverage issues 

with  2 1df   and Pareto variable pairings; i.e., when skewness 2.811  for both variables. 

Here, the PB CI maintains the best coverage. This was followed by the HPDI and BCa CI, 

respectively. The Fisher z-transformation CI did not have acceptable coverage and increasing 

sample size only resulted in decreased coverage (wider box plots). 

However, the PB CI, BCa CI, and HPDI had good coverage with eta 4,a 

1.25 1.5b    and  2 2 4,16df    variable pairings; i.e., when skewness 2 for both paired 

variables. In this case the PB CI had the best performance, followed by the BCa CI, HPDI, and 

Fisher z-transformation CI. The Fisher z-transformation CI only had good coverage when in 

eta 4,a  1.25 1.5b    and  2 16df  ; i.e., when skewness .71 . When skewness was 
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greater, the fisher z-transformation CI had problems maintaining acceptable coverage regardless 

of sample size. 

Symmetric w/ Normal by Sample Size. Figures 28 31  shows the CI coverage for a 

symmetric with normal variable pairing by sample size. In general, the CIs tended to have 

acceptable coverage   i.e., .925, .975 . In addition, coverage improved as the sample size 

increased. In this situation, there was a clear order of CI coverage performance. The Fisher 

z-transformation CI had consistent acceptable coverage across all distribution pairings and 

sample sizes. For the most part, the BCa CI tended to have consistent acceptable coverage across 

all distribution pairings and sample sizes. The only exception for the BCa CI was that it had 

coverage difficulty with the Laplace distribution pairing when 40n  . The PB CI had the next 

best performance. The HPDI had the weakest overall performance and struggled with coverage 

when 50n  . Even so, all coverage improved (narrower box plots) with the increase in sample 

size.  

Non-Symmetric w/ Normal by Sample Size. Figures 32 35  show the CI coverage for 

a non-symmetric with normal variable pairing by sample size. In general, most of the CIs tended 

to have acceptable coverage   i.e., .925, .975 . Additionally, coverage improved as the sample 

size increased. Here, there was a clear order of CI performance. The Fisher z-transformation CI 

had consistent acceptable coverage across all distribution pairings and sample sizes. The BCa CI 

follows but has coverage difficulty when one of the variables was  2 1 2df    or Pareto. The 

PB CI had the next best acceptable coverage. The HPDI had the weakest performance with a 

tendency for unacceptable coverage across all distribution pairings when 50n  . Even so, CI 

coverage improved as sample size increased. Likewise, coverage improved (narrower box plot) 

as sample size increased.  
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Standardized Bias 

 Given that CI coverage was impacted by the simulation conditions, parameter bias was 

also investigated via standardized bias. Table 3 presents the η2 (effect size) of the ANOVA for 

standardized bias for each correlation estimate. The Pearson, Spearman, and RIN were not 

impacted by any of the of the simulation conditions or their interactions; the largest 2 .0020   

or .2%. As aforementioned, while these effect sizes are trivial, they may reveal unacceptable 

performance for a statistic. Therefore, all effects of the simulation conditions on standardized 

bias were investigated and presented in Figures 36 67.  Tables for standardized bias are not 

presented as all estimates had acceptable bias.  

Standardized Bias for Correlation Magnitude 

 Figure 36 shows the standardized bias for correlation magnitude. Generally, all estimates 

had acceptable standardized bias  i.e., .40bias  . However, there was a clear order of 

performance. The Pearson had the best performance as it had the least variation from the 

parameter. However, as correlation magnitude increased, the Pearson developed more severe 

outliers. Following that is the Spearman which varied more from the parameter as correlation 

magnitude increased. The RIN is the weakest performer as it had the most variation. In general, 

all methods increased in variation and outliers as the correlation magnitude increased. 

Standardized Bias for Sample Size 

 Figure 37 shows the standardized bias for sample size. Generally, all estimates had 

acceptable standardized bias  i.e., .40bias  . However, there was a clear order of performance. 

The Pearson had the best performance as it was closer to the parameter and had the least 

variation. The Spearman and RIN followed, respectively. Additionally, increasing in sample size 
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resulted in closer estimates to the parameter with reduced variation for standardized bias for all 

methods (narrower box plots). 

Standardized Bias for Distribution Pairing 

 Symmetric w/ Symmetric. Figure 38 shows the standardized bias for a symmetric with 

symmetric variable pairing. Generally, all estimates had acceptable standardized bias 

 i.e., .40bias  . Even so, it was evident that Pearson has the best performance as it had the 

least variation. Following this are the Spearman and RIN, respectively. Additionally, all 

estimates tended to have a few outliers that underestimated the parameter. 

 Non-Symmetric w/ Non-Symmetric. Figure 39 shows the standardized bias for a 

non-symmetric with non-symmetric variable pairing. In general, all estimates had acceptable 

standardized bias  i.e., .40bias  . Even so, there was a clear order of performance. The 

Pearson is the most precise around the parameter. Following this are the Spearman and RIN, 

respectively. Additionally, all estimates tended to have outliers that underestimated the 

parameter. 

 Symmetric w/ Normal. Figure 40 shows the standardized bias for a symmetric with 

normal variable pairing. Standardized bias in this situation was similar to that of symmetric with 

symmetric variable pairing (see Figure 38). 

Non-Symmetric w/ Normal. Figure 41 shows the standardized bias for a non-symmetric 

with normal variable pairing. Standardized bias in this situation was similar to that of 

non-symmetric with non-symmetric variable pairing (see Figure 39) with slightly more variation. 

Standardized Bias for Sample Size by Correlation Magnitude 

 Figures 42 and 43 show the standardized bias for sample size by correlation magnitude. 

Generally, all estimates had acceptable standardized bias  i.e., .40bias  . Even so, there was a 
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clear order of performance. The Pearson had the best performance, followed by the Spearman 

and RIN. All estimates tended to become less biased as sample size increased. Additionally, 

increased sample size tended to result in less variation (narrower box plots). However, increases 

in correlation magnitude tended to result in more biased estimates. 

Standardized Bias for Distribution Pairing by Correlation Magnitude 

 Symmetric w/ Symmetric by Correlation Magnitude. Figures 44 and 45 show the 

standardized bias for a symmetric with symmetric variable pairing by correlation magnitude. In 

generally, all estimates had acceptable standardized bias  i.e., .40bias  . Even so, a correlation 

magnitude and sample size had an impact (see Figure 51). In particular, when .30 .50    and 

20n   all the estimates were further from the parameter and had noticeable variation. However, 

there was a clear order of performance. The Pearson had the best performance, followed by the 

Spearman and RIN. In addition, all the estimates got closer to the parameter and had less 

variation as the sample size increased. 

 Non-Symmetric w/ Non-Symmetric by Correlation Magnitude. Figures 46 and 47 

show the standardized bias for a non-symmetric with non-symmetric variable pairing by 

correlation magnitude. Generally, all estimates had acceptable standardized bias 

 i.e., .40bias  . Even so, a correlation magnitude had an impact (see Figure 51). In particular, 

when .50   the Spearman and RIN were further from the parameter and had noticeable 

variation. However, there was a clear order of performance. The Pearson had the best 

performance, followed by the Spearman and RIN. Variation among the estimates tended to 

increase as correlation magnitude increased (wider box plots). Increases in correlation magnitude 

also resulted in more outliers. 
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Symmetric w/ Normal by Correlation Magnitude. Figures 48 and 49 show the 

standardized bias for a symmetric with normal variable pairing by correlation magnitude. 

Generally, all estimates had acceptable standardized bias  i.e., .40bias  . Even so, there was a 

clear order of performance. The Pearson had the best performance, followed by the Spearman 

and RIN. Estimate variation tended to increase as correlation magnitude increased (wider box 

plots). 

Non-symmetric w/ Normal by Correlation Magnitude. Figures 50 and 51 show the 

standardized bias for a non-symmetric with normal variable pairing by correlation magnitude. In 

general, all estimates had acceptable standardized bias  i.e., .40bias  . Even so, a correlation 

magnitude had an impact (see Figure 51). In particular, when .50   the Spearman and RIN 

were further from the parameter and had noticeable variation. However, there was a clear order 

of performance. The Pearson had the best performance, followed by the Spearman and RIN. 

Variation among the estimates tended to increase as correlation magnitude increased (wider box 

plots). Increases in correlation magnitude also resulted in more outliers. 

Standardized Bias for Distribution Pairing by Sample Size 

 Symmetric w/ Symmetric by Sample Size. Figures 52 55  show the standardized bias 

for a symmetric with symmetric variable pairing by sample size. Generally, all estimates had 

acceptable standardized bias  i.e., .40bias  . However, a small sampled had an impact (see 

Figure 52). In particular, when 20n   all estimates were further from the parameter and had 

noticeable variation. Even so, there was a clear order of performance. The Pearson had the best 

performance, followed by the Spearman and RIN. Additionally, increases in sample size resulted 

in less bias and more precision (narrower box plots). 
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 Non-Symmetric w/ Non-Symmetric by Sample Size. Figures 56 59  show the 

standardized bias for a non-symmetric with non-symmetric variable pairing by sample size. In 

general, all estimates had acceptable standardized bias  i.e., .40bias  . Even so, a small 

sampled had an impact (see Figure 56). In particular, when 20n   all estimates were further 

from the parameter and had noticeable variation. However, there was a clear order of 

performance. The Pearson had the best performance, followed by the Spearman and RIN. 

Additionally, increases in sample size resulted in less bias and more precision (narrower box 

plots). 

 Symmetric w/ Normal by Sample Size. Figures 60 63  show the standardized bias for 

a symmetric with normal variable pairing by sample size. Generally, all estimates had acceptable 

standardized bias  i.e., .40bias  . Even so, a small sampled had an impact (see Figure 60). In 

particular, when 20n   all estimates were further from the parameter and had noticeable 

variation. However, there was a clear order of performance. The Pearson had the best 

performance, followed by the Spearman and RIN. Additionally, increases in sample size resulted 

in less bias and more precision (narrower box plots). 

 Non-Symmetric w/ Normal by Sample Size. Figures 64 67  show the standardized 

bias for a non-symmetric with normal variable pairing by sample size. Generally, all estimates 

had acceptable standardized bias  i.e., .40bias  . However, a small sample had an impact (see 

Figure 64). In particular, when 20n   all the estimates were further from the parameter and had 

noticeable variation. Evens so, there was a clear order of performance. The Pearson had the best 

performance, followed by the Spearman and RIN. Additionally, increase in sample size tended to 

result in less bias and less variability (narrower box plots).  
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Summary of Expected Results 

Several important finding can be summarized from the results of the study in conjunction 

with the study expectations. The major findings are presented below.  

First, it was expected that when data for both variables are normally distributed, all CI 

estimation methods would perform well in terms of coverage probability. Results from the study 

partially support this expectation. According to the results, coverage probabilities were 

acceptable for most of the methods for normally distributed data (see Table 1 and Figures 6, 

12 13 , 20 23 ). The exception was the HPDI, which lingered behind the others. 

In fact, the results indicate that only one variable is required to be normally distributed 

for most CI estimation methods to perform well (see Tables 16 26  and Figures 8 9 ). The 

exception was when one of the variables was distributed as  2 1df  . Evens so, this result was 

consistent regardless of the correlation magnitude (see Tables 16 26  and Figures 16 19 ). In 

terms of sample size, this result was consistent only when the sample size was 50 or more (see 

Tables 16 26  and Figures 28 35 ). Again, the HPDI lingered behind the other CI estimation 

methods. 

Second, it was expected that when that when multivariate normality does not hold, 

coverage probability would be best for the BCa CI followed by the PB and Fisher 

z-transformation CIs, respectively. Results from the study partially support this expectation. 

According to the results, coverage probabilities were acceptable for most of the methods for 

non-normally  i.e., skewness .71  distributed data when both variables were Beta 

 4, 1.25 1.5a b    to  2 16df   (see Tables 8 10  and Figure 7). Even so, this result was 

consistent regardless of the correlation magnitude (see Tables 8 10  and Figures 14 15 ). In 

terms for sample size, this result was consistent only when sample size was 30 or more (See 
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Tables 8 10  and Figures 24 27 ). The only caveat is that the CI methods were comparable in 

this situation. As in previous instances, the HPDI seemed to slightly linger behind. 

Third, as the degree of non-normality increases, coverage probability of the Fisher 

z-transformation and PB CIs will perform worse, while the remaining methods will be robust. 

This expectation was partially supported as all methods were not robust when both variables 

were  2 1 3df    or Pareto  i.e., skewness 1.63 . Additionally, it held if the correlation 

was greater than 0.1 (see Tables 12 15  and Figures 14 15 ). On the other hand, this held for the 

Fisher z-transformation CI method regardless of sample size. The other CI methods improved 

with increased sample size; achieving adequate coverage when the sample size was 200 or 

greater (see Tables 12 15  and Figures 24 27 ). 

Fourth, when the correlation is zero, coverage probability for all CI estimation methods 

will perform well. In general, the results support this expectation (see Tables 4 26  and Figure 

4). However, sample size and the distribution of the variables had a slight impact. Only the BCa 

and Fisher z-transformation CIs had adequate coverage across all the sample sizes, and the PB CI 

and HPDI began to have adequate coverage with a sample size of 100 or more (see Tables 

4 26  and Figure 10). The BCa and PB CIs did not have adequate coverage when both variables 

were  2 1df   or Pareto  i.e., skewness 2.811 . Interestingly, the Fisher z-transformation 

CI always had acceptable coverage when the correlation was zero (see Tables 4 26  and Figures 

12, 14, 16, 18). 

Fifth, as the correlation moves away from zero, coverage probability of the Fisher 

z-transformation and PB CIs will perform worse, while the remaining methods will be robust. In 

general, the results support this expectation with the exception that the Fisher z-transformation 

CI was also robust (see Tables 4 26  and Figure 4). However, sample size and the distribution 
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of the variables had an impact. The Fisher z-transformation and BCa CIs had adequate coverage 

across all the sample sizes, but the PB CI had adequate coverage when the sample size was 50 or 

more (see Tables 4 26  and Figures 10 11 ). All methods had inadequate coverage when both 

variables were  2 1 3df    or Pareto  i.e., skewness 0.71  and get worse as the correlation 

increases (see Tables 12 15  and Figures 14 15 ). In all other instances, the Fisher 

z-transformation, BCa, and PB CIs had adequate coverage, respectively (see Tables 4 11 , 

16 26  and Figures 12 13 , 16 19 ). It is interesting to note that the Fisher z-transformation CI 

method tended to be the most robust unless skewness 0.71  for both variables. As before, the 

HPDI tended to linger behind the other methods. 
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PART IV 

DISCUSSION 

A core facet of scientific research is to understand and find truth in nature and/or a 

phenomenon. This is typically done through identification and replication of an effect. However, 

replication appears to be a concern as a collaboration of researchers achieved a 36% 47%  

replicate rate of 100 studies they attempted to replicate (Collaboration 2015). One way to address 

this issue would be to change the criteria in which studies are evaluated. One suggestion is to 

make the criteria for NHST more stringent (i.e., lowering α; Benjamin, 2017). However, this 

suggestion may not be entirely viable as modern-day technology makes it feasible to gather large 

sample sizes to overcome the more stringent criteria (e.g., more power by lowering critical 

value). Another suggestion to address the replication issue is to utilize effect sizes in conjunction 

with NHST (Cohen, 1990). 

The most fundamental tool in scientific research is NHST as it informs researchers of the 

presence of a potential effect given 0H . Although useful, NHST is ultimately limited as it offers 

no information regarding the magnitude and scale of the effect. Researchers can address this 

limitation by also using effect sizes as they contextualize the magnitude of an effect to a standard 

scale. Using effect sizes in conjunction with NHST allows researchers a simple way to gauge the 

practical significance of a statistically significant effect. However, NHST and effect sizes can 

still be enhanced by providing precision information about the effect size. 

 A way to provide precision information about a statistic is through interval estimation. 

The most common way to implement interval estimation is through confidence intervals (CIs).  

CIs provide precision information about a statistic (or effect). As such, combining CIs with effect 

sizes allows researchers to gauge an effect in a way that is easily understood, comparable to 



56 
 

other research, and gives precision information. Effect size CIs can also be used to conduct 

NHST. In the current study, the focus was on CIs for the correlation because it can be used as an 

effect size. 

The Pearson product-moment correlation (henceforth, the correlation) is a statistic that is 

simultaneously well-known yet not entirely understood. It is the baseline method used to 

determine the linear relationship of two variables and is near ubiquitous due to its ease of use, 

ease of interpretation, and age (Hald, 2007). Early research conducted on the correlation t-test 

revealed that it was robust when 0   (Blair & Lawson, 1982; Edgell & Noon, 1984). This is 

not surprising as the sampling distribution of the correlation is a t distribution when 0   and 

the t-test is known to be robust to non-normality because of the CLT. These early results were 

interpreted as the correlation being generally robust to non-normality, which includes 0  . 

However, this is not necessarily accurate as the sampling distribution of the correlation is not t 

distributed when 0   (see Figure 1). The lack of exploration of ρ raises concerns about its 

robustness when 0  . 

Understanding the correlation when 0   is meaningful but not appropriate for all 

applications. One of the more prominent exceptions is when using the correlation as an effect 

size as effects of 0 (i.e., no effect) are generally not desired in research. Older research typically 

focused on 0   due to complications in simulating the correlation and the sampling 

distribution of the correlation being non-normal when 0   (see Figure 1). However, 

advancements in both the literature (Headrick, 2002) and computing power have made it feasible 

to investigate the correlation when 0  . 

Research on correlation CIs was difficult to do in the past due to the metamorphic nature 

of the sampling distribution of the correlation. However, the bootstrap method can overcome this 
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challenge as it does not require assumptions of the sampling distribution (Efron & Tibshirani, 

1993). Generally speaking, a population parameter and how sample estimates differ from this 

population are not always known (i.e., the true variance is unknown). In the bootstrap, a sample 

serves as a psuedo-population to the ESD through repeated sampling with replacement. As such, 

one can infer how well the ESD represents the sample. By extension, this results in being able to 

infer how well the sample represents the population. Ultimately, the result is that bootrsap 

provides an aproximation of the sampling distribution of a population parameter from which a CI 

can be constructed (esimated). 

Two pertinent CIs are the PB and BCa CIs. These are theoretically robust as they also do 

not require any assumptions regarding the distribution of the statistic. Research by Padilla and 

Veprinsky (2012, 2014) supports this quality as they found the deanenuated correlation PB and 

BCa CIs to have good coverage in all the distributions they investigated but the most skewed and 

kurtotic distributions (e.g., Pareto). However, research by Bishara and Hittner (2017) ran counter 

to those previous findings. In fact, they found that the PB, BCa, and many other bootstrap CIs 

are not robust to non-normal data and ultimately concluded that ranked transformation methods 

were the best way to create correlation CIs. This inconsisntency raises issues on how to best 

construct correlation CIs. This is important to address given the need to create accurate 

correlation CIs for applied research and verify the theoretical implications of the bootstrap. The 

present study aimed to address these inconsistencies such that there is a better understanding of 

the peformance of the bootstrap CIs.  

In the present study, a Monte Carlo simulation was used to generate data with the 

following conditions: sample size, correlation magnitude, and distribution pairing. Distribution 

pairing considered the pairwise nature of the variables and dictated four main types of 
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distribution pairings: 1) symmetric with symmetric, 2) non-symmetric with non-symmetric, 3) 

symmetric with normal, and 4) non-symmetric with normal. For each combination of conditions, 

the following CIs were estimated: Fisher z-transformation, Spearman rank-order with Fieller’s 

SE, RIN, PB, BCa, and HPDI. The primary focus of the present study was the bootstrap CIs 

(e.g., PB, BCa, and HPDI). However, non-bootstrap CIs (e.g., Fisher z-transformation, 

Spearman, and RIN) were included for comparison purposes. Standardized bias for the point 

estimates of the respective CIs were also estimated to supplement CI findings. 

To begin, the current study had similar findings with the study conducted by Bishara and 

Hittner (2017) regarding the Spearman and RIN CIs. The two CIs had consistently good 

coverage probability across all conditions for both studies. However, caution is advised when 

using the Spearman and RIN CIs as they both use transformations that irreversibly alter the scale 

of the data. This means that the Spearman and RIN CIs based on the transformed data may not 

be representative of the original data. Through ranked transformation, these methods attempt to 

capture the linear monotonicity of the relationship. However, the linear monotonicity may not be 

necessarily reflective of the of the actual relationship. An example that comes to mind is a 

relationship where there is a plateau. As such, some reservation should be used when using and 

interpreting the Spearman and RIN CIs. 

The current study also shared similar findings with Bishara and Hittner (2017) regarding 

the Fisher z-transformation CI. However, those findings were not discussed in detail in their 

research. Generally, the Fisher z-transformation CI had excellent coverage probability so long as 

one of the paired variables was normal. If this was not the case, the coverage probability 

performance broke down. This indicates that the Fisher z-transformation CI is sensitive to 

non-normality. In the present study, this is most apparent when a distribution has 
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skewness 1.41 . The sensitivity to skew is also made apparent by noticing that the correlation 

sampling distribution becomes more skewed the closer the correlation gets to one (see Figure 1). 

It is also worth noting that in these such cases, increases in sample size do not alleviate the 

situation but instead make it worse. It is therefore unwise to use the Fisher z-transformation CI if 

the correlated variables are non-normal. 

The present study also finds more nuance into the qualities of the PB CI. As it stands, the 

PB CI does have issues maintaining adequate coverage probability when both variables are 

non-normal and when sample sizes are small. However, this appears to be a non-issue when 

sample size 200n  . This quality was not captured in Bishara and Hittner’s study as 160 was the 

largest sample size they investigated. Additionally, the required sample size for adequate 

coverage probability is lowered to 100n   if there is a normal variable. This is also consistent 

regardless of correlation magnitude. These findings agree with previous research that suggested 

bootstrap estimations work better with increased sample size (Rasmussen, 1987). 

The present study similarly sheds light onto the qualities of the BCa CI. Like the PB CI, 

the BCa CI has issues maintaining adequate coverage probability when both variables are 

non-normal and when sample size is small. This becomes a non-issue when sample size 200n  . 

Furthermore, the required sample size for adequate coverage probability is lowered to 100n   if 

there is a normal variable. Again, this quality may have not been captured in Bishara and 

Hittner’s (2017) study as 160 was the largest sample size they investigated. It is worth noting 

that the BCa CI performed better than the PB CI when sample sizes are smaller, but the PB CI 

outperformed the BCa CI as sample sizes further increase. 

Finally, the current study looked at the HPDI as a research question. The HPDI is defined 

as the smallest interval that contains the probability of the confidence level (1  ). This 
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bootstrap CI was not investigated by either Bishara and Hittner (2017) or Padilla and Verprinksy 

(2012, 2014) but is of interest due to the principals of its implementation being used for credible 

intervals for Bayesian methods. Furthermore, CI research is generally limited and the hope with 

investigating the HPDI was to further expand the pool of knowledge regarding potential CIs 

available to researchers. It was found that the HPDI tended to have problems maintaining 

acceptable coverage probability but becomes more stable as sample size increased. When 

considering only the sample size condition, the HPDI had acceptable coverage probability when 

100n  . However, when considering the sample size and distribution pairing conditions 

together, the HPDI had acceptable coverage when 300n  . Of note is that when both variables 

were non-symmetric, the speed of this convergence depended on the skew of the data such that 

higher skews resulting in slower convergence (i.e., needed a larger sample). Conversely, this 

convergence accelerated if one of the paired variables was normal (i.e., needed a smaller 

sample). Nonetheless, the HPDI never outperformed the PB or BCa CIs. 

Standardized bias was also investigated to supplement any findings regarding the 

correlation CIs. As CIs generally center around an estimate, it was of interest to investigate if 

poor CI coverage was due to bias in the correlation estimates (e.g., Pearson, Spearman, and RIN 

correlations). Generally, bias was not an issue as every correlation estimate was within 

ˆ .40bias   (Collins et al., 2001). However, this is not to say that the correlation estimates were 

not influenced by the simulation conditions. The correlation estimates were impacted as the 

corresponding standardized bias got closer to ±.40 and become more variable as the correlation 

magnitude increased (see Figure 36). As such, the correlation CIs struggled because of 

complications in accounting for the variability in sampling distribution of the correlation and not 

necessarily because of issues with the point estimate. This means that while the correlation was 
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generally estimated well, there were instances in the variability of the estimate that impacted CI 

coverage. 

Despite the findings gathered in the current study, there are still refinements that could be 

made to further advance the literature. Like the Bishara and Hittner (2017), the current study had 

a condition where a normal variable was paired with another variable. In the current study, such 

pairings typically achieved adequate coverage. In future research, it may be of interest to explore 

if using a non-normal symmetric variable paired with another variable will have adequate 

coverage. If this is the case, it would afford researchers more flexibility in utilizing bootstrap 

CIs. It may also be of interest to combine the bootstrap with the Fisher z-transformation. The 

Fisher z-transformation CI had excellent coverage performance when at least one variable was 

normal. Additionally, increased sample size tended to improve coverage performance for the 

bootstrap CIs. Combining these properties of the Fisher z-transformation and bootstrap may 

yield CIs that have adequate coverage performance even when both paired variables are highly 

skewed  i.e., skewness 1.41 .  

Further improvements can be made by expanding the pool of conditions explored. Given 

that the distribution of the correlation becomes more skewed as it gets closer to one (see Figure 

1), it may be fruitful to investigate the bootstrap CI coverage when the correlation is greater 

than .50  i.e., .50  . Also, the bootstrap CIs generally had acceptable coverage when 200n   

with improved performance as sample size increased. Therefore, it may be of interest to explore 

when exactly coverage is maximized (i.e., reaches a point of diminishing returns) and how larger 

sample sizes impact the correlation when it is greater than .50. As such, further exploration of the 

bootstrap may yield more promising results. 
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In summary, the correlation CIs investigated in the current study generally had adequate 

coverage probability performance but there are some considerations to keep in my mind. The 

RIN and Spearman CIs both had consistently good performance across all conditions but risk 

misinterpretation as they involve irreversibly transforming the original data; which is not an 

issue for the other CIs. The Fisher z-transformation CI had excellent performance when at least 

one of the paired variables was normal regardless of the sample size investigated. However, the 

performance of the Fisher z-transformation CI was shown to break down when the paired 

variables had skewness 1.41  and increasing the sample size made the performance worse. The 

PB and BCa CIs generally had adequate performance when sample sizes were 200,n  and the 

HPDI when 300n  . The sample size needed for adequate performance for the PB CI, BCa CI, 

and HPDI reduced to 100n   each if one of the paired variables was normal. Additionally, the 

BCa CI has better performance than the PB CI when sample sizes were smaller and the PB CI 

has better performance than the BCa CI when sample sizes were larger. Given these findings, 

one can confidently use the Fisher z-transformation CI with 20n   in the following two 

situations: when one of the paired variables is normal or if the paired variables have 

skewness 1 . If the paired variables are non-normal  i.e., skewness 1 , the PB and BCa CIs 

generally performed well with 200n  , but the PB is recommended as it had better performance 

for more extreme non-normal paired variables  i.e., skewness 2 . 
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APPENDIX A 
 

TABLES 
 

 
Table 1 
Logistic Model Effect Sizes for Non-Bootstrap Correlations: CI Coverage 

 
Source 

 
df 

 
Fisher: 

Cox-Snell r2 
 

 
Spearman: 

Cox-Snell r2 
 

 
RIN: 

Cox-Snell r2 

 
sample size (n)  
correlation (ρ) 
distribution (d) 

n  ρ 
n  d 
ρ  d 

 

 
10 
5 

22 
50 

220 
110 

 
.0099 
.0091 
.0030 
.0022 
.0021 
.0001 

 
.0002 
.0001 
.0002 
.0000 
.0000 
.0000 

 
.0001 
.0001 
.0001 
.0001 
.0001 
.0000 

Note. Fisher = Fisher z-transformation; Spearman = Spearman rank-order; RIN = ranked 
inverse normal transformation. 
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Table 2 
Logistic Model Effect Sizes for Bootstrap Correlation: CI Coverage 

 
Source 

 
df 

 
PB: 

Cox-Snell r2 
 

 
BCa: 

Cox-Snell r2 
 

 
HPDI: 

Cox-Snell r2 
 

 
sample size (n)  
correlation (ρ) 
distribution (d) 

n  ρ 
n  d 
ρ  d 

 

 
10 
5 

22 
50 

220 
110 

 
.0003 
.0015 
.0012 
.0000 
.0000 
.0000 

 
.0014 
.0018 
.0006 
.0001 
.0000 
.0000 

 
.0006 
.0036 
.0030 
.0000 
.0000 
.0000 

Note. PB = percentile bootstrap; BCa = bias-corrected and accelerated bootstrap; HPDI = 
highest probability density interval. 
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Table 3 
ANOVA Effect Sizes for Standardized Correlation Estimate: Standardized Bias 

 
Source 

 
df 

 
Pearson: η2 

 
Spearman: η2 

 
RIN:  η2 

 
 

sample size (n)  
correlation (ρ) 
distribution (d) 

n  ρ 
n  d 
ρ  d 

 

 
10 
5 

22 
50 

220 
110 

 
0.0000 
0.0000 
0.0001 
0.0000 
0.0001 
0.0001 

 
0.0010 
0.0000 
0.0001 
0.0006 
0.0000 
0.0002 

 
0.0020 
0.0000 
0.0001 
0.0000 
0.0000 
0.0003 

Note. Spearman = Spearman rank-order; RIN = ranked inverse normal transformation. 
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Table 4 
95% Coverage Probabilities for paired Normal Distributions  
(Skewness = 0, Kurtosis = 0) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.943 

.945 

.950 

.913 

.929 

.893 
 

.951 

.950 

.957 

.927 

.935 

.915 
 

.953 

.948 

.951 

.915 

.930 

.892 
 

.951 

.955 

.958 

.916 

.930 

.891 
 

.954 

.938 

.940 

.930 

.945 

.916 
 

.955 

.958 

.951 

.931 

.941 

.911 

.938 

.937 

.940 

.918 

.918 

.899 
 

.960 

.954 

.959 

.936 

.941 

.920 
 

.952 

.951 

.952 

.925 

.934 

.914 
 

.953 

.960 

.954 

.940 

.942 

.926 
 

.943 

.950 

.952 

.933 

.939 

.914 
 

.946 

.943 

.953 

.927 

.936 

.910 

.950 

.948 

.950 

.938 

.941 

.916 
 

.949 

.948 

.953 

.920 

.930 

.911 
 

.958 

.949 

.957 

.940 

.952 

.925 
 

.960 

.960 

.960 

.934 

.946 

.929 
 

.942 

.936 

.939 

.920 

.927 

.909 
 

.941 

.940 

.937 

.921 

.926 

.915 

.948 

.943 

.957 

.941 

.940 

.926 
 

.946 

.952 

.958 

.941 

.940 

.925 
 

.954 

.944 

.947 

.935 

.935 

.919 
 

.950 

.946 

.954 

.930 

.938 

.917 
 

.957 

.962 

.962 

.942 

.948 

.940 
 

.949 

.950 

.941 

.936 

.946 

.919 

.950 

.948 

.953 

.942 

.974 

.931 
 

.965 

.964 

.962 

.949 

.952 

.942 
 

.952 

.952 

.953 

.952 

.953 

.936 
 

.952 

.948 

.959 

.943 

.943 

.933 
 

.954 

.950 

.962 

.944 

.943 

.940 
 

.954 

.956 

.947 

.947 

.948 

.934 

.959 

.960 

.961 

.947 

.948 

.940 
 

.952 

.952 

.958 

.943 

.946 

.939 
 

.951 

.953 

.959 

.946 

.946 

.940 
 

.958 

.959 

.956 

.954 

.956 

.943 
 

.943 

.943 

.952 

.943 

.941 

.937 
 

.940 

.940 

.937 

.934 

.937 

.922 

.956 

.948 

.965 

.950 

.951 

.945 
 

.946 

.952 

.947 

.948 

.949 

.942 
 

.947 

.948 

.950 

.941 

.945 

.940 
 

.941 

.947 

.954 

.942 

.943 

.938 
 

.952 

.955 

.953 

.943 

.944 

.941 
 

.954 

.959 

.955 

.953 

.953 

.950 

.945 

.942 

.945 

.939 

.938 

.931 
 

.956 

.954 

.962 

.952 

.949 

.948 
 

.944 

.943 

.953 

.940 

.938 

.932 
 

.958 

.955 

.957 

.955 

.960 

.950 
 

.947 

.943 

.950 

.944 

.943 

.933 
 

.949 

.951 

.954 

.946 

.950 

.940 

.945 

.947 

.957 

.946 

.944 

.937 
 

.954 

.958 

.956 

.950 

.952 

.942 
 

.949 

.954 

.957 

.948 

.944 

.941 
 

.962 

.964 

.967 

.958 

.959 

.953 
 

.944 

.945 

.948 

.943 

.941 

.936 
 

.959 

.962 

.949 

.961 

.962 

.953 

.959 

.956 

.966 

.956 

.953 

.951 
 

.955 

.953 

.955 

.954 

.957 

.953 
 

.953 

.958 

.955 

.951 

.952 

.948 
 

.950 

.953 

.951 

.944 

.949 

.942 
 

.946 

.948 

.948 

.945 

.945 

.942 
 

.942 

.947 

.948 

.941 

.944 

.943 

.949 

.953 

.954 

.953 

.951 

.948 
 

.957 

.952 

.957 

.954 

.954 

.951 
 

.952 

.952 

.948 

.950 

.945 

.945 
 

.958 

.965 

.958 

.959 

.959 

.950 
 

.941 

.938 

.943 

.945 

.941 

.935 
 

.947 

.950 

.945 

.942 

.940 

.940 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 5 
95% Coverage Probabilities for Paired Triangular Distributions  
(Skewness = 0, Kurtosis = -.06) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.943 

.949 

.949 

.921 

.935 

.910 
 

.938 

.938 

.934 

.908 

.925 

.896 
 

.945 

.943 

.946 

.919 

.932 

.900 
 

.949 

.956 

.959 

.930 

.936 

.907 
 

.953 

.956 

.960 

.931 

.947 

.905 
 

.945 

.953 

.958 

.937 

.948 

.912 

.936 

.939 

.939 

.911 

.922 

.896 
 

.954 

.953 

.957 

.938 

.946 

.922 
 

.948 

.953 

.953 

.933 

.939 

.920 
 

.949 

.944 

.954 

.928 

.937 

.911 
 

.948 

.945 

.947 

.921 

.931 

.901 
 

.946 

.944 

.948 

.921 

.933 

.909 

.943 

.947 

.952 

.926 

.933 

.914 
 

.953 

.955 

.958 

.943 

.951 

.930 
 

.943 

.943 

.949 

.928 

.935 

.916 
 

.947 

.949 

.954 

.934 

.934 

.925 
 

.948 

.950 

.949 

.931 

.946 

.920 
 

.952 

.958 

.946 

.936 

.945 

.920 

.953 

.953 

.950 

.934 

.934 

.918 
 

.950 

.952 

.959 

.944 

.950 

.934 
 

.954 

.963 

.968 

.947 

.952 

.935 
 

.941 

.947 

.951 

.935 

.937 

.924 
 

.955 

.947 

.958 

.946 

.949 

.933 
 

.935 

.939 

.937 

.933 

.938 

.924 

.950 

.951 

.963 

.951 

.954 

.944 
 

.953 

.958 

.958 

.958 

.960 

.943 
 

.963 

.962 

.962 

.956 

.962 

.949 
 

.953 

.948 

.958 

.947 

.952 

.943 
 

.944 

.949 

.944 

.939 

.943 

.935 
 

.954 

.952 

.944 

.948 

.952 

.936 

.947 

.944 

.953 

.933 

.940 

.929 
 

.954 

.957 

.959 

.951 

.952 

.946 
 

.944 

.948 

.950 

.943 

.944 

.939 
 

.951 

.953 

.955 

.946 

.952 

.939 
 

.955 

.959 

.954 

.953 

.956 

.946 
 

.943 

.945 

.943 

.942 

.939 

.937 

.946 

.954 

.960 

.948 

.953 

.944 
 

.961 

.962 

.963 

.953 

.956 

.945 
 

.956 

.961 

.959 

.954 

.959 

.953 
 

.951 

.954 

.959 

.953 

.953 

.947 
 

.950 

.951 

.949 

.947 

.946 

.945 
 

.950 

.954 

.953 

.954 

.957 

.950 

.954 

.959 

.958 

.952 

.957 

.950 
 

.956 

.960 

.959 

.950 

.955 

.948 
 

.940 

.942 

.951 

.933 

.942 

.933 
 

.955 

.957 

.962 

.952 

.954 

.951 
 

.953 

.951 

.953 

.946 

.947 

.944 
 

.944 

.948 

.942 

.938 

.942 

.930 

.946 

.945 

.950 

.938 

.940 

.935 
 

.946 

.946 

.956 

.945 

.942 

.940 
 

.955 

.950 

.962 

.949 

.947 

.950 
 

.948 

.946 

.951 

.944 

.944 

.939 
 

.950 

.949 

.957 

.940 

.943 

.934 
 

.945 

.947 

.950 

.946 

.949 

.940 

.953 

.951 

.955 

.947 

.951 

.944 
 

.945 

.942 

.946 

.943 

.946 

.938 
 

.941 

.942 

.953 

.941 

.941 

.939 
 

.941 

.939 

.947 

.932 

.933 

.931 
 

.960 

.964 

.959 

.955 

.954 

.953 
 

.960 

.959 

.956 

.960 

.958 

.956 

.945 

.947 

.948 

.942 

.942 

.944 
 

.953 

.957 

.960 

.952 

.951 

.948 
 

.950 

.953 

.955 

.948 

.945 

.952 
 

.949 

.951 

.956 

.951 

.953 

.948 
 

.953 

.950 

.945 

.947 

.950 

.944 
 

.954 

.951 

.948 

.948 

.952 

.948 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 6 
95% Coverage Probabilities for Paired Uniform Distributions  
(Skewness = 0, Kurtosis = -1.20) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.947 

.950 

.956 

.916 

.934 

.896 
 

.935 

.950 

.947 

.906 

.926 

.880 
 

.945 

.943 

.949 

.920 

.941 

.898 
 

.942 

.949 

.946 

.913 

.945 

.895 
 

.937 

.956 

.946 

.916 

.941 

.899 
 

.932 

.950 

.944 

.906 

.933 

.886 

.952 

.953 

.960 

.942 

.951 

.922 
 

.951 

.950 

.951 

.928 

.943 

.912 
 

.945 

.943 

.946 

.933 

.948 

.918 
 

.944 

.957 

.956 

.929 

.949 

.920 
 

.939 

.949 

.945 

.913 

.932 

.890 
 

.945 

.959 

.953 

.931 

.948 

.927 

.945 

.955 

.957 

.934 

.945 

.921 
 

.957 

.961 

.960 

.942 

.958 

.930 
 

.946 

.944 

.955 

.930 

.949 

.916 
 

.948 

.960 

.959 

.937 

.954 

.929 
 

.959 

.955 

.959 

.952 

.960 

.940 
 

.953 

.959 

.955 

.937 

.952 

.924 

.949 

.953 

.949 

.936 

.949 

.924 
 

.941 

.946 

.949 

.931 

.943 

.923 
 

.959 

.961 

.963 

.948 

.962 

.934 
 

.944 

.948 

.949 

.937 

.947 

.926 
 

.943 

.949 

.949 

.938 

.945 

.928 
 

.940 

.953 

.945 

.934 

.944 

.922 

.953 

.952 

.958 

.949 

.954 

.937 
 

.951 

.946 

.957 

.951 

.955 

.940 
 

.952 

.959 

.959 

.950 

.955 

.943 
 

.944 

.943 

.942 

.942 

.949 

.937 
 

.956 

.954 

.956 

.950 

.958 

.940 
 

.934 

.957 

.943 

.929 

.937 

.924 

.945 

.944 

.955 

.946 

.947 

.940 
 

.951 

.950 

.961 

.953 

.961 

.946 
 

.944 

.942 

.950 

.938 

.943 

.931 
 

.941 

.952 

.950 

.937 

.940 

.934 
 

.940 

.946 

.946 

.939 

.945 

.925 
 

.958 

.964 

.964 

.957 

.964 

.954 

.956 

.952 

.960 

.955 

.957 

.951 
 

.947 

.946 

.953 

.946 

.951 

.945 
 

.942 

.946 

.950 

.936 

.943 

.932 
 

.952 

.957 

.954 

.960 

.958 

.956 
 

.959 

.956 

.966 

.957 

.963 

.957 
 

.946 

.957 

.956 

.950 

.955 

.948 

.949 

.949 

.956 

.947 

.947 

.949 
 

.953 

.946 

.955 

.951 

.953 

.944 
 

.940 

.942 

.943 

.942 

.942 

.930 
 

.955 

.953 

.960 

.954 

.957 

.949 
 

.945 

.956 

.947 

.943 

.947 

.938 
 

.951 

.964 

.956 

.950 

.955 

.948 

.954 

.954 

.958 

.949 

.952 

.950 
 

.951 

.941 

.957 

.951 

.949 

.945 
 

.956 

.953 

.959 

.955 

.953 

.948 
 

.949 

.948 

.956 

.951 

.952 

.941 
 

.946 

.959 

.950 

.950 

.951 

.948 
 

.948 

.956 

.951 

.947 

.946 

.946 

.948 

.949 

.958 

.946 

.949 

.945 
 

.938 

.949 

.943 

.934 

.934 

.933 
 

.957 

.956 

.964 

.954 

.954 

.952 
 

.958 

.963 

.960 

.956 

.961 

.955 
 

.949 

.955 

.955 

.947 

.948 

.947 
 

.949 

.959 

.947 

.949 

.952 

.946 

.950 

.948 

.957 

.946 

.947 

.942 
 

.950 

.947 

.959 

.949 

.952 

.946 
 

.944 

.954 

.950 

.943 

.943 

.941 
 

.946 

.956 

.953 

.949 

.947 

.944 
 

.950 

.952 

.956 

.952 

.954 

.949 
 

.943 

.960 

.946 

.948 

.946 

.935 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 7 
95% Coverage Probabilities for Paired Laplace Distributions  
(Skewness = 0, Kurtosis = 3) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.945 

.952 

.951 

.911 

.927 

.891 
 

.938 

.939 

.942 

.912 

.916 

.879 
 

.949 

.955 

.956 

.917 

.925 

.888 
 

.941 

.941 

.939 

.921 

.916 

.894 
 

.950 

.943 

.946 

.921 

.915 

.902 
 

.948 

.960 

.956 

.937 

.929 

.905 

.940 

.941 

.946 

.910 

.919 

.887 
 

.946 

.952 

.957 

.939 

.938 

.924 
 

.942 

.947 

.956 

.916 

.917 

.897 
 

.955 

.942 

.947 

.926 

.920 

.917 
 

.952 

.961 

.954 

.919 

.923 

.907 
 

.934 

.939 

.943 

.919 

.903 

.896 

.960 

.955 

.961 

.937 

.932 

.922 
 

.947 

.950 

.960 

.926 

.925 

.909 
 

.948 

.949 

.953 

.924 

.921 

.911 
 

.951 

.954 

.962 

.940 

.943 

.928 
 

.955 

.956 

.954 

.935 

.930 

.921 
 

.934 

.946 

.946 

.928 

.923 

.920 

.938 

.934 

.947 

.923 

.917 

.912 
 

.953 

.951 

.958 

.932 

.923 

.921 
 

.947 

.953 

.953 

.923 

.925 

.915 
 

.948 

.957 

.961 

.935 

.931 

.924 
 

.949 

.955 

.963 

.945 

.934 

.930 
 

.924 

.938 

.936 

.906 

.905 

.896 

.945 

.954 

.963 

.930 

.917 

.920 
 

.944 

.953 

.967 

.926 

.921 

.922 
 

.951 

.960 

.962 

.939 

.936 

.935 
 

.948 

.948 

.950 

.944 

.933 

.937 
 

.939 

.946 

.942 

.933 

.927 

.923 
 

.935 

.945 

.936 

.938 

.935 

.932 

.949 

.947 

.953 

.938 

.926 

.933 
 

.961 

.953 

.955 

.947 

.939 

.944 
 

.950 

.953 

.963 

.939 

.934 

.934 
 

.960 

.957 

.953 

.946 

.938 

.939 
 

.944 

.950 

.948 

.944 

.940 

.937 
 

.949 

.964 

.961 

.950 

.938 

.944 

.962 

.961 

.956 

.957 

.954 

.952 
 

.942 

.945 

.955 

.941 

.934 

.934 
 

.947 

.946 

.953 

.939 

.931 

.938 
 

.941 

.941 

.950 

.933 

.931 

.925 
 

.943 

.950 

.947 

.944 

.936 

.942 
 

.915 

.932 

.935 

.918 

.910 

.909 

.935 

.936 

.954 

.937 

.931 

.929 
 

.940 

.948 

.958 

.942 

.937 

.930 
 

.950 

.948 

.948 

.941 

.938 

.941 
 

.937 

.940 

.945 

.932 

.920 

.923 
 

.947 

.952 

.953 

.947 

.940 

.939 
 

.951 

.962 

.951 

.949 

.944 

.944 

.929 

.942 

.955 

.928 

.922 

.917 
 

.949 

.959 

.956 

.951 

.946 

.945 
 

.955 

.958 

.958 

.952 

.945 

.947 
 

.936 

.942 

.950 

.938 

.937 

.930 
 

.941 

.947 

.952 

.942 

.937 

.935 
 

.949 

.960 

.951 

.954 

.950 

.951 

.943 

.950 

.958 

.947 

.943 

.940 
 

.952 

.951 

.961 

.952 

.944 

.945 
 

.939 

.939 

.946 

.940 

.933 

.938 
 

.956 

.958 

.957 

.963 

.958 

.962 
 

.933 

.946 

.950 

.933 

.928 

.930 
 

.937 

.951 

.956 

.946 

.939 

.936 

.952 

.949 

.958 

.947 

.944 

.945 
 

.960 

.957 

.958 

.958 

.952 

.951 
 

.945 

.948 

.951 

.942 

.945 

.938 
 

.944 

.946 

.949 

.940 

.939 

.938 
 

.939 

.941 

.946 

.946 

.945 

.940 
 

.941 

.951 

.942 

.943 

.939 

.940 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 8 
95% Coverage Probabilities for Paired Beta Distributions 
 (a = 4, b = 1.25, Skewness = -.848, Kurtosis = .221 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.957 

.954 

.954 

.926 

.945 

.905 
 

.944 

.950 

.944 

.909 

.924 

.878 
 

.942 

.954 

.960 

.928 

.942 

.904 
 

.917 

.941 

.947 

.911 

.913 

.873 
 

.939 

.958 

.950 

.918 

.934 

.902 
 

.936 

.951 

.959 

.926 

.937 

.909 

.951 

.949 

.968 

.935 

.945 

.911 
 

.941 

.943 

.949 

.911 

.922 

.897 
 

.946 

.948 

.949 

.928 

.938 

.910 
 

.930 

.940 

.960 

.930 

.935 

.911 
 

.943 

.947 

.954 

.929 

.928 

.904 
 

.926 

.959 

.955 

.919 

.929 

.907 

.941 

.945 

.947 

.920 

.929 

.905 
 

.941 

.940 

.947 

.933 

.939 

.920 
 

.949 

.953 

.955 

.944 

.942 

.928 
 

.931 

.941 

.948 

.923 

.928 

.911 
 

.947 

.957 

.956 

.940 

.943 

.927 
 

.920 

.949 

.946 

.925 

.925 

.910 

.955 

.958 

.963 

.935 

.935 

.925 
 

.942 

.952 

.960 

.929 

.929 

.914 
 

.952 

.962 

.966 

.939 

.948 

.928 
 

.942 

.956 

.955 

.939 

.945 

.924 
 

.918 

.945 

.942 

.918 

.918 

.905 
 

.933 

.952 

.954 

.927 

.926 

.916 

.940 

.942 

.950 

.943 

.940 

.928 
 

.943 

.953 

.953 

.940 

.942 

.936 
 

.940 

.944 

.952 

.942 

.939 

.937 
 

.932 

.946 

.948 

.937 

.937 

.930 
 

.933 

.948 

.951 

.938 

.935 

.932 
 

.924 

.957 

.959 

.942 

.942 

.938 

.952 

.956 

.951 

.948 

.953 

.940 
 

.955 

.954 

.957 

.946 

.952 

.944 
 

.931 

.935 

.953 

.933 

.933 

.926 
 

.927 

.944 

.949 

.935 

.932 

.928 
 

.929 

.950 

.948 

.940 

.942 

.937 
 

.923 

.948 

.952 

.930 

.933 

.925 

.939 

.940 

.944 

.929 

.932 

.920 
 

.938 

.948 

.948 

.933 

.939 

.930 
 

.953 

.957 

.954 

.951 

.951 

.942 
 

.929 

.949 

.954 

.944 

.945 

.936 
 

.938 

.954 

.961 

.949 

.946 

.948 
 

.933 

.942 

.941 

.952 

.949 

.944 

.959 

.951 

.957 

.957 

.959 

.946 
 

.945 

.948 

.952 

.945 

.941 

.934 
 

.951 

.956 

.962 

.959 

.959 

.952 
 

.941 

.951 

.952 

.956 

.953 

.949 
 

.935 

.946 

.944 

.947 

.947 

.943 
 

.932 

.951 

.953 

.940 

.937 

.936 

.960 

.965 

.966 

.960 

.959 

.955 
 

.943 

.949 

.960 

.950 

.943 

.938 
 

.934 

.950 

.953 

.944 

.947 

.937 
 

.943 

.954 

.952 

.951 

.948 

.944 
 

.932 

.942 

.930 

.944 

.947 

.938 
 

.935 

.941 

.951 

.944 

.945 

.940 

.947 

.953 

.953 

.946 

.946 

.940 
 

.952 

.946 

.954 

.952 

.951 

.947 
 

.953 

.962 

.959 

.961 

.962 

.955 
 

.933 

.950 

.955 

.949 

.943 

.947 
 

.928 

.940 

.943 

.935 

.935 

.927 
 

.929 

.944 

.944 

.948 

.948 

.943 

.945 

.946 

.955 

.943 

.943 

.937 
 

.937 

.950 

.958 

.936 

.940 

.931 
 

.941 

.951 

.953 

.947 

.950 

.943 
 

.935 

.945 

.952 

.947 

.946 

.940 
 

.944 

.960 

.955 

.950 

.954 

.946 
 

.931 

.943 

.942 

.941 

.944 

.935 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 9 
95% Coverage Probabilities for Paired Beta Distributions 
(a = 4, b = 1.5, Skewness = -.694, Kurtosis = -.069) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.941 

.948 

.951 

.922 

.936 

.900 
 

.945 

.955 

.958 

.921 

.936 

.898 
 

.952 

.953 

.964 

.924 

.931 

.899 
 

.941 

.944 

.946 

.923 

.935 

.904 
 

.944 

.946 

.951 

.929 

.941 

.902 
 

.938 

.952 

.950 

.925 

.935 

.898 

.950 

.947 

.950 

.932 

.939 

.910 
 

.943 

.946 

.947 

.915 

.927 

.899 
 

.941 

.950 

.952 

.932 

.940 

.916 
 

.938 

.948 

.944 

.931 

.943 

.910 
 

.946 

.955 

.957 

.932 

.942 

.916 
 

.943 

.946 

.946 

.935 

.938 

.911 

.950 

.951 

.960 

.943 

.946 

.927 
 

.961 

.960 

.961 

.948 

.952 

.936 
 

.938 

.940 

.942 

.928 

.931 

.915 
 

.939 

.937 

.939 

.931 

.936 

.917 
 

.937 

.949 

.952 

.931 

.936 

.914 
 

.945 

.962 

.954 

.936 

.932 

.924 

.940 

.944 

.953 

.942 

.940 

.922 
 

.943 

.955 

.955 

.941 

.940 

.927 
 

.938 

.946 

.955 

.934 

.931 

.920 
 

.944 

.950 

.948 

.948 

.949 

.934 
 

.933 

.955 

.945 

.931 

.933 

.920 
 

.935 

.949 

.950 

.936 

.941 

.926 

.948 

.941 

.952 

.941 

.937 

.935 
 

.950 

.946 

.956 

.944 

.951 

.937 
 

.953 

.956 

.955 

.956 

.947 

.944 
 

.942 

.949 

.953 

.937 

.943 

.933 
 

.940 

.951 

.948 

.943 

.941 

.937 
 

.938 

.955 

.953 

.941 

.939 

.938 

.957 

.956 

.956 

.951 

.956 

.943 
 

.958 

.957 

.960 

.956 

.956 

.949 
 

.948 

.957 

.963 

.951 

.951 

.945 
 

.940 

.952 

.961 

.949 

.953 

.945 
 

.931 

.952 

.955 

.945 

.937 

.930 
 

.929 

.943 

.938 

.935 

.935 

.929 

.943 

.945 

.957 

.938 

.941 

.930 
 

.937 

.942 

.943 

.933 

.935 

.934 
 

.941 

.944 

.948 

.939 

.937 

.931 
 

.941 

.940 

.949 

.948 

.955 

.943 
 

.947 

.958 

.957 

.952 

.952 

.942 
 

.949 

.963 

.954 

.949 

.951 

.945 

.945 

.943 

.944 

.937 

.939 

.937 
 

.966 

.968 

.965 

.958 

.959 

.957 
 

.940 

.950 

.960 

.946 

.945 

.935 
 

.948 

.957 

.958 

.956 

.958 

.951 
 

.935 

.940 

.934 

.938 

.939 

.933 
 

.940 

.954 

.950 

.945 

.948 

.946 

.932 

.942 

.953 

.933 

.931 

.930 
 

.950 

.947 

.958 

.950 

.953 

.948 
 

.948 

.957 

.959 

.950 

.953 

.948 
 

.929 

.953 

.953 

.948 

.946 

.940 
 

.945 

.945 

.940 

.947 

.951 

.940 
 

.942 

.949 

.955 

.953 

.952 

.944 

.943 

.947 

.950 

.938 

.939 

.935 
 

.955 

.944 

.959 

.957 

.958 

.950 
 

.944 

.945 

.950 

.941 

.940 

.930 
 

.932 

.947 

.954 

.946 

.946 

.940 
 

.944 

.957 

.950 

.947 

.954 

.943 
 

.935 

.950 

.947 

.944 

.944 

.939 

.948 

.956 

.959 

.944 

.946 

.941 
 

.957 

.949 

.959 

.955 

.956 

.949 
 

.949 

.955 

.968 

.950 

.950 

.948 
 

.940 

.952 

.955 

.952 

.950 

.948 
 

.929 

.950 

.950 

.940 

.941 

.937 
 

.931 

.941 

.943 

.943 

.946 

.940 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 10 
95% Coverage Probabilities for Paired Chi-Square Distributions 
(df = 16, Skewness = .71, Kurtosis = .75) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.942 

.942 

.939 

.895 

.910 

.875 
 

.950 

.951 

.956 

.935 

.949 

.916 
 

.949 

.953 

.962 

.932 

.942 

.912 
 

.939 

.944 

.945 

.923 

.926 

.895 
 

.940 

.952 

.951 

.929 

.940 

.903 
 

.932 

.939 

.940 

.906 

.933 

.880 

.955 

.957 

.962 

.933 

.942 

.921 
 

.954 

.953 

.964 

.943 

.948 

.925 
 

.952 

.953 

.960 

.933 

.938 

.923 
 

.955 

.951 

.955 

.937 

.944 

.919 
 

.950 

.941 

.945 

.929 

.926 

.908 
 

.925 

.951 

.958 

.917 

.919 

.904 

.954 

.952 

.959 

.942 

.947 

.927 
 

.953 

.954 

.957 

.945 

.943 

.936 
 

.943 

.948 

.949 

.933 

.931 

.918 
 

.941 

.947 

.954 

.924 

.924 

.904 
 

.935 

.948 

.953 

.924 

.926 

.911 
 

.951 

.959 

.958 

.943 

.936 

.927 

.951 

.952 

.961 

.942 

.943 

.930 
 

.949 

.957 

.957 

.942 

.938 

.931 
 

.947 

.947 

.956 

.937 

.937 

.925 
 

.944 

.953 

.958 

.930 

.935 

.925 
 

.960 

.959 

.957 

.943 

.945 

.933 
 

.946 

.959 

.954 

.939 

.944 

.929 

.945 

.948 

.957 

.940 

.941 

.930 
 

.937 

.945 

.953 

.934 

.930 

.929 
 

.950 

.950 

.958 

.947 

.941 

.945 
 

.942 

.943 

.942 

.935 

.943 

.926 
 

.949 

.949 

.951 

.951 

.947 

.943 
 

.938 

.955 

.956 

.945 

.941 

.937 

.931 

.935 

.944 

.926 

.924 

.920 
 

.954 

.958 

.957 

.946 

.949 

.944 
 

.937 

.941 

.958 

.932 

.929 

.931 
 

.928 

.937 

.936 

.922 

.928 

.918 
 

.935 

.946 

.953 

.950 

.949 

.943 
 

.936 

.942 

.938 

.939 

.938 

.938 

.960 

.957 

.958 

.961 

.962 

.955 
 

.951 

.954 

.960 

.951 

.952 

.949 
 

.951 

.954 

.949 

.953 

.956 

.946 
 

.937 

.938 

.952 

.936 

.934 

.930 
 

.948 

.951 

.960 

.958 

.954 

.950 
 

.944 

.948 

.943 

.947 

.947 

.945 

.948 

.951 

.963 

.942 

.940 

.936 
 

.946 

.955 

.955 

.936 

.936 

.934 
 

.932 

.934 

.950 

.938 

.938 

.928 
 

.946 

.949 

.960 

.945 

.946 

.935 
 

.945 

.956 

.953 

.942 

.934 

.937 
 

.950 

.957 

.946 

.950 

.950 

.945 

.946 

.953 

.962 

.937 

.938 

.932 
 

.955 

.952 

.960 

.958 

.959 

.948 
 

.941 

.946 

.958 

.940 

.940 

.939 
 

.933 

.945 

.953 

.934 

.933 

.932 
 

.943 

.952 

.956 

.954 

.953 

.947 
 

.937 

.941 

.934 

.945 

.943 

.940 

.944 

.947 

.943 

.937 

.937 

.929 
 

.943 

.957 

.961 

.945 

.940 

.939 
 

.941 

.946 

.953 

.939 

.938 

.928 
 

.937 

.935 

.950 

.938 

.937 

.938 
 

.946 

.959 

.954 

.953 

.949 

.943 
 

.947 

.954 

.950 

.951 

.949 

.950 

.949 

.949 

.958 

.948 

.947 

.944 
 

.953 

.952 

.958 

.959 

.956 

.954 
 

.942 

.943 

.953 

.944 

.938 

.940 
 

.936 

.938 

.948 

.940 

.941 

.937 
 

.948 

.957 

.954 

.954 

.953 

.952 
 

.949 

.948 

.956 

.953 

.953 

.953 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 11 
95% Coverage Probabilities for Paired Chi-Square Distributions  
(df = 4, Skewness = 1.41, Kurtosis = 3) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.941 

.937 

.946 

.926 

.932 

.904 
 

.950 

.954 

.958 

.927 

.945 

.907 
 

.929 

.930 

.934 

.912 

.922 

.894 
 

.927 

.940 

.944 

.917 

.926 

.899 
 

.926 

.959 

.962 

.926 

.923 

.905 
 

.924 

.958 

.951 

.938 

.927 

.903 

.944 

.941 

.939 

.925 

.928 

.908 
 

.943 

.951 

.946 

.925 

.936 

.910 
 

.932 

.945 

.950 

.921 

.920 

.903 
 

.927 

.952 

.957 

.932 

.926 

.912 
 

.917 

.945 

.949 

.918 

.912 

.891 
 

.905 

.942 

.943 

.916 

.903 

.899 

.949 

.957 

.958 

.931 

.932 

.916 
 

.940 

.952 

.950 

.932 

.925 

.918 
 

.941 

.951 

.959 

.930 

.919 

.914 
 

.923 

.943 

.952 

.927 

.924 

.905 
 

.905 

.945 

.943 

.927 

.909 

.904 
 

.907 

.940 

.950 

.929 

.918 

.907 

.944 

.937 

.936 

.912 

.919 

.901 
 

.950 

.961 

.962 

.935 

.932 

.917 
 

.940 

.956 

.966 

.946 

.938 

.927 
 

.937 

.952 

.956 

.932 

.922 

.919 
 

.921 

.945 

.944 

.933 

.919 

.916 
 

.923 

.954 

.946 

.939 

.924 

.928 

.951 

.949 

.956 

.935 

.931 

.924 
 

.947 

.948 

.951 

.946 

.940 

.934 
 

.946 

.956 

.954 

.943 

.943 

.935 
 

.932 

.949 

.945 

.946 

.946 

.942 
 

.926 

.964 

.959 

.946 

.933 

.937 
 

.930 

.956 

.954 

.947 

.944 

.941 

.938 

.941 

.956 

.938 

.925 

.925 
 

.954 

.964 

.961 

.957 

.948 

.947 
 

.926 

.948 

.962 

.933 

.924 

.921 
 

.913 

.953 

.959 

.933 

.927 

.922 
 

.917 

.951 

.941 

.936 

.927 

.928 
 

.896 

.952 

.949 

.929 

.927 

.920 

.949 

.949 

.948 

.948 

.943 

.941 
 

.945 

.957 

.966 

.945 

.935 

.941 
 

.940 

.950 

.956 

.943 

.941 

.939 
 

.906 

.949 

.946 

.932 

.931 

.927 
 

.920 

.949 

.944 

.949 

.937 

.943 
 

.894 

.955 

.956 

.936 

.920 

.923 

.953 

.946 

.954 

.942 

.939 

.936 
 

.953 

.957 

.964 

.955 

.950 

.947 
 

.935 

.955 

.959 

.947 

.947 

.944 
 

.909 

.948 

.946 

.933 

.922 

.928 
 

.910 

.952 

.945 

.935 

.934 

.933 
 

.910 

.939 

.941 

.941 

.933 

.938 

.942 

.948 

.959 

.942 

.935 

.935 
 

.942 

.943 

.950 

.951 

.948 

.941 
 

.921 

.945 

.950 

.932 

.925 

.927 
 

.922 

.942 

.961 

.943 

.935 

.936 
 

.910 

.944 

.954 

.939 

.936 

.934 
 

.892 

.959 

.949 

.939 

.932 

.934 

.944 

.940 

.949 

.942 

.935 

.937 
 

.934 

.950 

.957 

.942 

.934 

.934 
 

.933 

.951 

.958 

.943 

.940 

.940 
 

.933 

.956 

.963 

.953 

.949 

.944 
 

.903 

.951 

.954 

.940 

.929 

.934 
 

.911 

.961 

.955 

.945 

.939 

.940 

.953 

.942 

.946 

.947 

.945 

.944 
 

.943 

.947 

.960 

.943 

.936 

.938 
 

.942 

.952 

.953 

.954 

.955 

.952 
 

.917 

.956 

.956 

.938 

.937 

.933 
 

.923 

.950 

.949 

.951 

.947 

.947 
 

.905 

.945 

.956 

.942 

.938 

.939 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 12 
95% Coverage Probabilities for Paired Chi-Square Distributions 
(df = 3, Skewness = 1.63, Kurtosis = 4) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.960 

.950 

.956 

.915 

.944 

.895 
 

.931 

.946 

.946 

.913 

.925 

.890 
 

.931 

.946 

.949 

.918 

.935 

.896 
 

.943 

.955 

.958 

.925 

.929 

.900 
 

.913 

.933 

.937 

.920 

.909 

.896 
 

.893 

.945 

.943 

.904 

.906 

.874 

.952 

.953 

.959 

.917 

.933 

.900 
 

.932 

.940 

.951 

.918 

.928 

.902 
 

.907 

.936 

.953 

.911 

.914 

.895 
 

.930 

.954 

.963 

.931 

.928 

.913 
 

.917 

.962 

.961 

.927 

.913 

.905 
 

.910 

.946 

.937 

.934 

.922 

.912 

.950 

.940 

.945 

.922 

.934 

.910 
 

.947 

.958 

.970 

.923 

.923 

.907 
 

.930 

.954 

.957 

.939 

.932 

.922 
 

.920 

.944 

.948 

.931 

.920 

.902 
 

.903 

.960 

.955 

.935 

.926 

.921 
 

.898 

.954 

.952 

.917 

.911 

.896 

.937 

.936 

.947 

.924 

.919 

.904 
 

.930 

.938 

.953 

.919 

.920 

.903 
 

.924 

.947 

.954 

.932 

.919 

.917 
 

.920 

.943 

.952 

.932 

.917 

.911 
 

.912 

.954 

.953 

.933 

.922 

.919 
 

.897 

.954 

.949 

.932 

.910 

.907 

.948 

.955 

.962 

.931 

.932 

.919 
 

.953 

.954 

.958 

.936 

.937 

.929 
 

.925 

.958 

.958 

.941 

.933 

.933 
 

.907 

.946 

.954 

.925 

.917 

.913 
 

.916 

.950 

.946 

.935 

.926 

.925 
 

.892 

.958 

.957 

.942 

.917 

.930 

.950 

.948 

.954 

.934 

.931 

.930 
 

.926 

.946 

.953 

.930 

.924 

.926 
 

.925 

.953 

.958 

.942 

.938 

.935 
 

.908 

.942 

.941 

.929 

.919 

.924 
 

.887 

.941 

.946 

.915 

.907 

.909 
 

.877 

.937 

.950 

.909 

.896 

.905 

.955 

.954 

.956 

.933 

.935 

.926 
 

.946 

.961 

.965 

.950 

.942 

.941 
 

.915 

.939 

.943 

.930 

.924 

.919 
 

.916 

.946 

.940 

.947 

.937 

.939 
 

.912 

.954 

.946 

.941 

.930 

.935 
 

.899 

.939 

.936 

.939 

.932 

.930 

.951 

.953 

.955 

.943 

.941 

.937 
 

.930 

.949 

.950 

.942 

.937 

.937 
 

.929 

.956 

.967 

.943 

.937 

.934 
 

.900 

.942 

.934 

.935 

.933 

.933 
 

.901 

.946 

.953 

.927 

.924 

.922 
 

.910 

.944 

.944 

.957 

.945 

.948 

.929 

.935 

.949 

.929 

.919 

.923 
 

.943 

.949 

.955 

.941 

.944 

.934 
 

.926 

.957 

.959 

.950 

.943 

.944 
 

.922 

.949 

.959 

.950 

.944 

.949 
 

.902 

.950 

.948 

.941 

.938 

.938 
 

.895 

.961 

.950 

.941 

.936 

.934 

.962 

.956 

.955 

.955 

.950 

.949 
 

.948 

.956 

.959 

.951 

.948 

.941 
 

.932 

.955 

.962 

.948 

.941 

.942 
 

.897 

.939 

.941 

.935 

.927 

.926 
 

.899 

.945 

.944 

.937 

.933 

.930 
 

.872 

.950 

.943 

.936 

.923 

.928 

.958 

.946 

.950 

.945 

.942 

.945 
 

.943 

.944 

.949 

.941 

.942 

.935 
 

.942 

.962 

.965 

.956 

.949 

.947 
 

.923 

.950 

.949 

.941 

.942 

.941 
 

.897 

.954 

.953 

.945 

.936 

.941 
 

.886 

.953 

.953 

.945 

.934 

.933 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 13 
95% Coverage Probabilities for Paired Chi-Square Distributions  
(df = 2, Skewness = 2, Kurtosis = 6) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.939 

.939 

.945 

.918 

.942 

.888 
 

.943 

.948 

.954 

.919 

.934 

.893 
 

.916 

.940 

.938 

.918 

.925 

.886 
 

.915 

.940 

.954 

.925 

.925 

.892 
 

.906 

.952 

.951 

.920 

.923 

.891 
 

.902 

.945 

.935 

.926 

.912 

.899 

.954 

.957 

.967 

.930 

.937 

.903 
 

.947 

.959 

.959 

.915 

.913 

.893 
 

.930 

.955 

.952 

.931 

.921 

.916 
 

.903 

.932 

.928 

.909 

.895 

.890 
 

.893 

.942 

.943 

.924 

.919 

.904 
 

.881 

.937 

.946 

.926 

.904 

.901 

.944 

.954 

.962 

.927 

.933 

.906 
 

.937 

.942 

.950 

.927 

.928 

.906 
 

.940 

.953 

.964 

.932 

.926 

.914 
 

.887 

.943 

.943 

.922 

.905 

.903 
 

.903 

.958 

.958 

.928 

.915 

.914 
 

.877 

.948 

.941 

.924 

.907 

.894 

.953 

.945 

.953 

.918 

.924 

.910 
 

.940 

.950 

.955 

.939 

.942 

.929 
 

.915 

.943 

.960 

.916 

.906 

.898 
 

.918 

.949 

.955 

.937 

.918 

.921 
 

.875 

.936 

.936 

.919 

.896 

.895 
 

.878 

.957 

.944 

.942 

.923 

.920 

.956 

.948 

.957 

.929 

.934 

.917 
 

.935 

.958 

.955 

.930 

.922 

.911 
 

.908 

.951 

.959 

.921 

.915 

.910 
 

.887 

.959 

.951 

.925 

.913 

.914 
 

.892 

.953 

.957 

.929 

.921 

.914 
 

.864 

.949 

.952 

.925 

.902 

.910 

.955 

.954 

.958 

.942 

.941 

.933 
 

.931 

.946 

.948 

.928 

.922 

.917 
 

.911 

.940 

.956 

.935 

.929 

.924 
 

.891 

.949 

.955 

.936 

.925 

.917 
 

.870 

.943 

.947 

.920 

.903 

.912 
 

.882 

.951 

.954 

.938 

.922 

.928 

.950 

.959 

.965 

.946 

.939 

.938 
 

.925 

.943 

.954 

.934 

.924 

.925 
 

.925 

.960 

.958 

.939 

.930 

.931 
 

.902 

.942 

.953 

.947 

.940 

.940 
 

.873 

.942 

.949 

.937 

.918 

.927 
 

.874 

.963 

.956 

.951 

.929 

.935 

.961 

.955 

.959 

.941 

.948 

.932 
 

.931 

.942 

.945 

.932 

.930 

.929 
 

.904 

.958 

.960 

.935 

.932 

.928 
 

.893 

.954 

.956 

.945 

.936 

.937 
 

.881 

.953 

.955 

.943 

.942 

.937 
 

.881 

.945 

.946 

.946 

.933 

.933 

.959 

.954 

.967 

.943 

.941 

.940 
 

.935 

.959 

.958 

.949 

.943 

.939 
 

.907 

.937 

.941 

.933 

.932 

.926 
 

.902 

.954 

.951 

.945 

.938 

.943 
 

.853 

.946 

.944 

.914 

.907 

.912 
 

.864 

.942 

.945 

.940 

.933 

.934 

.952 

.932 

.946 

.939 

.938 

.936 
 

.939 

.949 

.958 

.940 

.936 

.930 
 

.900 

.951 

.962 

.941 

.935 

.929 
 

.893 

.939 

.952 

.929 

.922 

.923 
 

.866 

.948 

.951 

.926 

.917 

.917 
 

.874 

.944 

.952 

.952 

.938 

.945 

.951 

.956 

.953 

.937 

.937 

.924 
 

.912 

.946 

.945 

.930 

.924 

.925 
 

.916 

.951 

.964 

.945 

.943 

.940 
 

.884 

.950 

.955 

.949 

.940 

.943 
 

.902 

.955 

.947 

.951 

.948 

.945 
 

.853 

.953 

.949 

.942 

.927 

.933 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 14 
95% Coverage Probabilities for paired Chi-Square Distributions  
(df = 1, Skewness = 2.83, Kurtosis = 12) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.943 

.939 

.946 

.879 

.916 

.856 
 

.914 

.947 

.955 

.907 

.928 

.880 
 

.889 

.948 

.952 

.906 

.916 

.876 
 

.863 

.952 

.959 

.919 

.915 

.885 
 

.848 

.953 

.947 

.922 

.901 

.869 
 

.822 

.952 

.948 

.918 

.882 

.885 

.943 

.945 

.963 

.887 

.916 

.863 
 

.927 

.950 

.950 

.909 

.903 

.874 
 

.901 

.951 

.956 

.916 

.907 

.885 
 

.879 

.961 

.958 

.922 

.894 

.886 
 

.851 

.959 

.956 

.927 

.903 

.896 
 

.813 

.953 

.945 

.903 

.879 

.872 

.947 

.950 

.961 

.896 

.907 

.872 
 

.943 

.951 

.952 

.911 

.920 

.889 
 

.895 

.942 

.945 

.912 

.919 

.898 
 

.875 

.953 

.960 

.919 

.898 

.899 
 

.834 

.943 

.946 

.924 

.905 

.893 
 

.809 

.968 

.956 

.921 

.899 

.891 

.956 

.933 

.948 

.888 

.896 

.863 
 

.919 

.949 

.958 

.912 

.908 

.885 
 

.879 

.953 

.957 

.911 

.898 

.886 
 

.880 

.940 

.941 

.919 

.901 

.902 
 

.821 

.948 

.937 

.926 

.893 

.889 
 

.826 

.964 

.956 

.929 

.894 

.904 

.957 

.950 

.955 

.923 

.921 

.910 
 

.913 

.950 

.948 

.924 

.914 

.916 
 

.880 

.946 

.953 

.916 

.897 

.894 
 

.859 

.950 

.957 

.929 

.897 

.909 
 

.829 

.953 

.943 

.922 

.906 

.913 
 

.784 

.958 

.950 

.928 

.903 

.912 

.951 

.940 

.946 

.910 

.919 

.895 
 

.904 

.944 

.946 

.930 

.932 

.909 
 

.895 

.948 

.950 

.925 

.916 

.915 
 

.835 

.953 

.952 

.926 

.912 

.908 
 

.827 

.949 

.940 

.933 

.913 

.923 
 

.786 

.953 

.941 

.932 

.912 

.909 

.961 

.947 

.947 

.930 

.942 

.922 
 

.913 

.944 

.947 

.929 

.926 

.919 
 

.898 

.955 

.956 

.943 

.931 

.934 
 

.863 

.957 

.957 

.944 

.927 

.931 
 

.804 

.952 

.948 

.930 

.904 

.913 
 

.791 

.963 

.951 

.935 

.903 

.921 

.960 

.947 

.958 

.933 

.936 

.916 
 

.913 

.948 

.956 

.924 

.921 

.914 
 

.897 

.953 

.960 

.935 

.935 

.923 
 

.847 

.955 

.956 

.941 

.932 

.935 
 

.807 

.962 

.957 

.932 

.917 

.919 
 

.787 

.948 

.945 

.936 

.917 

.925 

.962 

.959 

.958 

.920 

.931 

.915 
 

.914 

.959 

.954 

.945 

.933 

.935 
 

.861 

.951 

.958 

.928 

.927 

.920 
 

.835 

.943 

.940 

.930 

.921 

.921 
 

.805 

.959 

.960 

.921 

.906 

.909 
 

.780 

.962 

.951 

.929 

.911 

.920 

.945 

.956 

.968 

.932 

.931 

.926 
 

.912 

.959 

.965 

.934 

.927 

.926 
 

.887 

.955 

.960 

.944 

.934 

.938 
 

.826 

.957 

.958 

.935 

.921 

.928 
 

.799 

.956 

.961 

.940 

.916 

.927 
 

.783 

.945 

.945 

.925 

.905 

.918 

.950 

.957 

.963 

.926 

.931 

.917 
 

.912 

.937 

.946 

.935 

.931 

.929 
 

.884 

.946 

.941 

.948 

.938 

.938 
 

.821 

.961 

.960 

.942 

.926 

.932 
 

.814 

.945 

.960 

.924 

.909 

.915 
 

.787 

.959 

.954 

.935 

.920 

.915 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 15 
95% Coverage Probabilities for paired Pareto Distributions  
(Skewness = 2.811, Kurtosis = 14.828) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.946 

.950 

.951 

.907 

.943 

.885 
 

.923 

.946 

.949 

.904 

.922 

.873 
 

.913 

.939 

.951 

.913 

.910 

.881 
 

.897 

.948 

.949 

.925 

.918 

.887 
 

.865 

.953 

.955 

.910 

.901 

.873 
 

.868 

.952 

.950 

.931 

.914 

.904 

.950 

.947 

.956 

.921 

.932 

.898 
 

.906 

.938 

.943 

.906 

.910 

.879 
 

.926 

.952 

.954 

.925 

.921 

.898 
 

.886 

.948 

.945 

.911 

.895 

.886 
 

.856 

.952 

.952 

.917 

.904 

.880 
 

.843 

.958 

.957 

.916 

.890 

.887 

.955 

.950 

.954 

.918 

.931 

.901 
 

.919 

.950 

.949 

.906 

.908 

.881 
 

.913 

.964 

.965 

.940 

.927 

.921 
 

.883 

.959 

.955 

.918 

.900 

.896 
 

.879 

.960 

.954 

.928 

.914 

.905 
 

.853 

.956 

.936 

.922 

.903 

.895 

.951 

.949 

.960 

.903 

.910 

.888 
 

.938 

.949 

.957 

.927 

.930 

.913 
 

.899 

.951 

.949 

.911 

.902 

.892 
 

.872 

.953 

.952 

.920 

.917 

.903 
 

.889 

.966 

.959 

.943 

.914 

.917 
 

.820 

.941 

.939 

.920 

.886 

.895 

.961 

.949 

.952 

.921 

.928 

.905 
 

.914 

.936 

.942 

.914 

.906 

.895 
 

.903 

.938 

.957 

.935 

.907 

.917 
 

.868 

.948 

.953 

.927 

.906 

.908 
 

.843 

.953 

.949 

.931 

.902 

.908 
 

.826 

.956 

.958 

.939 

.909 

.920 

.951 

.948 

.952 

.932 

.929 

.923 
 

.921 

.942 

.944 

.919 

.913 

.910 
 

.882 

.944 

.960 

.924 

.916 

.911 
 

.861 

.950 

.954 

.921 

.901 

.907 
 

.829 

.953 

.953 

.916 

.902 

.908 
 

.819 

.946 

.946 

.932 

.905 

.921 

.957 

.946 

.956 

.926 

.932 

.921 
 

.906 

.925 

.936 

.913 

.903 

.904 
 

.908 

.957 

.957 

.941 

.923 

.929 
 

.884 

.939 

.952 

.927 

.921 

.920 
 

.839 

.957 

.953 

.938 

.922 

.920 
 

.816 

.956 

.941 

.940 

.914 

.926 

.950 

.945 

.958 

.933 

.936 

.925 
 

.927 

.956 

.957 

.932 

.928 

.920 
 

.891 

.960 

.957 

.931 

.925 

.922 
 

.850 

.944 

.954 

.929 

.914 

.916 
 

.824 

.952 

.947 

.928 

.907 

.920 
 

.815 

.960 

.946 

.942 

.920 

.935 

.953 

.948 

.953 

.933 

.936 

.929 
 

.900 

.945 

.951 

.920 

.919 

.912 
 

.872 

.935 

.945 

.930 

.918 

.919 
 

.879 

.960 

.962 

.942 

.937 

.940 
 

.827 

.950 

.948 

.931 

.912 

.917 
 

.807 

.952 

.942 

.940 

.907 

.932 

.953 

.947 

.969 

.926 

.928 

.922 
 

.921 

.954 

.946 

.942 

.937 

.935 
 

.902 

.954 

.960 

.941 

.933 

.938 
 

.847 

.956 

.959 

.934 

.916 

.921 
 

.824 

.943 

.950 

.945 

.931 

.938 
 

.813 

.955 

.953 

.932 

.914 

.924 

.956 

.953 

.959 

.927 

.926 

.923 
 

.910 

.951 

.957 

.936 

.934 

.933 
 

.879 

.946 

.942 

.935 

.925 

.936 
 

.858 

.946 

.945 

.941 

.925 

.934 
 

.931 

.962 

.963 

.934 

.916 

.926 
 

.798 

.954 

.954 

.925 

.905 

.917 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 16 
95% Coverage Probabilities for Normal Distribution Paired with Triangular Distribution 
(Skewness = 0, Kurtosis = -.06) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.958 

.960 

.965 

.935 

.954 

.903 
 

.943 

.942 

.948 

.914 

.932 

.892 
 

.957 

.947 

.947 

.921 

.938 

.893 
 

.952 

.945 

.952 

.928 

.944 

.905 
 

.948 

.950 

.950 

.909 

.931 

.892 
 

.945 

.949 

.951 

.916 

.929 

.903 

.951 

.951 

.955 

.922 

.937 

.909 
 

.956 

.954 

.962 

.941 

.943 

.922 
 

.956 

.961 

.955 

.938 

.945 

.918 
 

.956 

.946 

.948 

.930 

.939 

.913 
 

.958 

.955 

.958 

.938 

.948 

.918 
 

.955 

.954 

.953 

.940 

.942 

.923 

.959 

.966 

.964 

.946 

.947 

.933 
 

.952 

.955 

.953 

.942 

.950 

.932 
 

.943 

.945 

.952 

.937 

.942 

.918 
 

.940 

.941 

.951 

.928 

.937 

.914 
 

.954 

.955 

.954 

.935 

.936 

.918 
 

.944 

.943 

.943 

.936 

.945 

.917 

.947 

.946 

.952 

.931 

.939 

.918 
 

.949 

.945 

.945 

.935 

.945 

.924 
 

.939 

.948 

.940 

.918 

.926 

.902 
 

.952 

.948 

.958 

.941 

.951 

.931 
 

.967 

.964 

.956 

.949 

.956 

.933 
 

.947 

.946 

.954 

.939 

.942 

.930 

.938 

.937 

.951 

.933 

.933 

.928 
 

.947 

.945 

.953 

.937 

.943 

.932 
 

.955 

.955 

.962 

.947 

.950 

.940 
 

.962 

.956 

.963 

.951 

.957 

.948 
 

.936 

.942 

.951 

.934 

.937 

.928 
 

.953 

.945 

.953 

.944 

.946 

.944 

.950 

.947 

.955 

.947 

.947 

.944 
 

.959 

.957 

.964 

.949 

.955 

.950 
 

.956 

.961 

.971 

.951 

.952 

.943 
 

.946 

.946 

.948 

.948 

.953 

.944 
 

.951 

.948 

.946 

.949 

.949 

.938 
 

.952 

.939 

.952 

.944 

.942 

.936 

.951 

.956 

.961 

.943 

.945 

.934 
 

.945 

.948 

.961 

.940 

.943 

.934 
 

.955 

.951 

.958 

.954 

.954 

.952 
 

.955 

.956 

.957 

.954 

.956 

.945 
 

.962 

.959 

.965 

.963 

.963 

.957 
 

.949 

.947 

.948 

.943 

.947 

.943 

.954 

.952 

.958 

.951 

.950 

.945 
 

.955 

.953 

.960 

.956 

.957 

.948 
 

.950 

.945 

.950 

.946 

.946 

.943 
 

.945 

.947 

.947 

.941 

.938 

.937 
 

.957 

.951 

.960 

.943 

.949 

.941 
 

.941 

.944 

.945 

.937 

.939 

.930 

.952 

.953 

.950 

.947 

.947 

.936 
 

.938 

.940 

.952 

.940 

.939 

.937 
 

.959 

.956 

.955 

.952 

.951 

.944 
 

.939 

.937 

.947 

.936 

.941 

.932 
 

.953 

.946 

.949 

.945 

.949 

.937 
 

.959 

.957 

.958 

.958 

.958 

.950 

.952 

.952 

.959 

.954 

.951 

.946 
 

.951 

.955 

.952 

.947 

.946 

.939 
 

.949 

.953 

.958 

.952 

.952 

.948 
 

.949 

.953 

.954 

.942 

.943 

.944 
 

.960 

.963 

.957 

.954 

.959 

.947 
 

.948 

.947 

.947 

.944 

.943 

.938 

.949 

.953 

.961 

.953 

.952 

.950 
 

.939 

.941 

.943 

.935 

.939 

.931 
 

.948 

.951 

.956 

.948 

.947 

.945 
 

.951 

.946 

.956 

.947 

.947 

.942 
 

.947 

.952 

.952 

.946 

.948 

.941 
 

.963 

.958 

.951 

.958 

.960 

.950 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 17 
95% Coverage Probabilities for Normal Distribution Paired with Uniform Distribution  
(Skewness = 0, Kurtosis = -1.2) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.947 

.946 

.944 

.907 

.929 

.886 
 

.954 

.953 

.952 

.937 

.951 

.918 
 

.958 

.961 

.959 

.920 

.937 

.900 
 

.944 

.959 

.960 

.926 

.943 

.897 
 

.957 

.960 

.956 

.920 

.942 

.890 
 

.953 

.957 

.951 

.906 

.936 

.880 

.945 

.945 

.947 

.931 

.949 

.921 
 

.940 

.938 

.945 

.915 

.933 

.898 
 

.947 

.950 

.962 

.927 

.941 

.913 
 

.957 

.954 

.957 

.939 

.949 

.926 
 

.958 

.960 

.959 

.926 

.944 

.918 
 

.959 

.958 

.964 

.941 

.954 

.925 

.966 

.960 

.966 

.958 

.962 

.944 
 

.964 

.956 

.965 

.945 

.950 

.932 
 

.944 

.945 

.951 

.924 

.938 

.912 
 

.956 

.957 

.959 

.938 

.949 

.920 
 

.942 

.946 

.950 

.926 

.941 

.920 
 

.954 

.955 

.946 

.935 

.943 

.922 

.949 

.953 

.963 

.939 

.952 

.928 
 

.948 

.945 

.955 

.937 

.944 

.926 
 

.945 

.954 

.953 

.933 

.946 

.926 
 

.959 

.957 

.961 

.946 

.951 

.934 
 

.961 

.959 

.957 

.951 

.960 

.932 
 

.961 

.960 

.959 

.948 

.951 

.937 

.950 

.947 

.952 

.938 

.940 

.932 
 

.945 

.943 

.956 

.939 

.943 

.934 
 

.949 

.948 

.950 

.942 

.943 

.937 
 

.956 

.954 

.958 

.953 

.953 

.945 
 

.948 

.952 

.955 

.932 

.944 

.931 
 

.951 

.955 

.944 

.941 

.951 

.932 

.945 

.952 

.957 

.945 

.949 

.940 
 

.953 

.944 

.953 

.947 

.952 

.944 
 

.944 

.940 

.947 

.939 

.939 

.931 
 

.960 

.955 

.955 

.949 

.957 

.942 
 

.951 

.948 

.950 

.944 

.947 

.932 
 

.958 

.957 

.947 

.948 

.952 

.943 

.954 

.953 

.958 

.947 

.954 

.944 
 

.958 

.963 

.963 

.958 

.963 

.948 
 

.942 

.947 

.950 

.940 

.943 

.938 
 

.956 

.955 

.961 

.950 

.958 

.951 
 

.971 

.971 

.965 

.962 

.963 

.952 
 

.963 

.959 

.952 

.957 

.960 

.955 

.941 

.936 

.951 

.937 

.942 

.922 
 

.959 

.958 

.963 

.957 

.958 

.952 
 

.947 

.949 

.955 

.945 

.947 

.939 
 

.945 

.953 

.942 

.941 

.943 

.937 
 

.945 

.943 

.944 

.942 

.944 

.938 
 

.947 

.955 

.950 

.939 

.941 

.938 

.947 

.952 

.950 

.948 

.951 

.942 
 

.938 

.938 

.948 

.935 

.939 

.929 
 

.947 

.953 

.951 

.945 

.950 

.943 
 

.964 

.955 

.961 

.958 

.954 

.955 
 

.953 

.954 

.956 

.949 

.951 

.946 
 

.960 

.961 

.952 

.951 

.951 

.942 

.942 

.936 

.947 

.938 

.937 

.934 
 

.957 

.952 

.960 

.953 

.958 

.947 
 

.965 

.961 

.958 

.957 

.956 

.957 
 

.945 

.948 

.948 

.943 

.949 

.943 
 

.946 

.943 

.949 

.940 

.946 

.936 
 

.951 

.956 

.945 

.945 

.948 

.942 

.956 

.954 

.959 

.953 

.956 

.948 
 

.962 

.954 

.963 

.959 

.956 

.950 
 

.946 

.948 

.947 

.946 

.947 

.940 
 

.944 

.946 

.945 

.938 

.936 

.936 
 

.961 

.960 

.948 

.952 

.951 

.947 
 

.952 

.951 

.946 

.938 

.942 

.933 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 18 
95% Coverage Probabilities for Normal Distribution Paired with Laplace Distribution  
(Skewness = 0, Kurtosis = 3) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.948 

.944 

.954 

.926 

.937 

.893 
 

.942 

.949 

.957 

.914 

.924 

.894 
 

.934 

.938 

.955 

.902 

.915 

.888 
 

.951 

.961 

.964 

.935 

.937 

.908 
 

.945 

.951 

.955 

.925 

.934 

.900 
 

.944 

.946 

.942 

.918 

.936 

.900 

.944 

.952 

.955 

.925 

.930 

.910 
 

.946 

.949 

.953 

.920 

.921 

.907 
 

.952 

.946 

.949 

.932 

.931 

.912 
 

.963 

.963 

.969 

.943 

.950 

.928 
 

.953 

.951 

.951 

.922 

.928 

.917 
 

.959 

.950 

.953 

.929 

.931 

.914 

.943 

.948 

.951 

.920 

.925 

.904 
 

.950 

.946 

.953 

.934 

.933 

.921 
 

.944 

.947 

.959 

.922 

.920 

.911 
 

.949 

.951 

.947 

.928 

.927 

.917 
 

.960 

.958 

.965 

.936 

.942 

.923 
 

.943 

.945 

.943 

.925 

.912 

.904 

.939 

.946 

.951 

.929 

.933 

.918 
 

.954 

.954 

.952 

.936 

.938 

.927 
 

.938 

.942 

.944 

.925 

.919 

.915 
 

.954 

.953 

.958 

.938 

.933 

.924 
 

.945 

.949 

.959 

.935 

.928 

.913 
 

.955 

.951 

.953 

.938 

.933 

.926 

.949 

.944 

.946 

.933 

.933 

.925 
 

.950 

.955 

.967 

.945 

.941 

.940 
 

.952 

.949 

.957 

.935 

.937 

.928 
 

.946 

.945 

.952 

.936 

.931 

.929 
 

.960 

.954 

.957 

.946 

.941 

.935 
 

.956 

.948 

.948 

.939 

.944 

.926 

.959 

.958 

.962 

.955 

.958 

.948 
 

.955 

.947 

.957 

.939 

.938 

.931 
 

.947 

.946 

.954 

.943 

.944 

.940 
 

.954 

.961 

.962 

.939 

.942 

.935 
 

.950 

.946 

.952 

.949 

.939 

.940 
 

.968 

.971 

.959 

.960 

.960 

.956 

.950 

.947 

.958 

.952 

.949 

.946 
 

.952 

.946 

.951 

.943 

.938 

.940 
 

.945 

.946 

.952 

.949 

.943 

.945 
 

.952 

.944 

.952 

.938 

.937 

.935 
 

.951 

.951 

.961 

.950 

.947 

.944 
 

.955 

.955 

.943 

.941 

.939 

.935 

.956 

.952 

.965 

.945 

.944 

.939 
 

.940 

.940 

.950 

.933 

.928 

.926 
 

.944 

.946 

.952 

.941 

.940 

.937 
 

.943 

.936 

.946 

.941 

.937 

.927 
 

.945 

.944 

.942 

.943 

.935 

.937 
 

.959 

.950 

.951 

.948 

.947 

.940 

.946 

.950 

.952 

.943 

.940 

.939 
 

.937 

.941 

.950 

.934 

.934 

.929 
 

.947 

.941 

.949 

.948 

.944 

.941 
 

.953 

.954 

.963 

.951 

.953 

.944 
 

.954 

.953 

.954 

.951 

.949 

.944 
 

.957 

.959 

.959 

.955 

.948 

.948 

.945 

.940 

.946 

.943 

.940 

.938 
 

.951 

.949 

.959 

.945 

.944 

.942 
 

.953 

.951 

.962 

.951 

.945 

.945 
 

.941 

.947 

.956 

.935 

.935 

.934 
 

.958 

.958 

.955 

.954 

.952 

.949 
 

.954 

.953 

.951 

.947 

.951 

.946 

.958 

.950 

.951 

.946 

.947 

.942 
 

.954 

.947 

.954 

.948 

.947 

.944 
 

.948 

.952 

.969 

.949 

.947 

.946 
 

.964 

.957 

.961 

.955 

.952 

.953 
 

.954 

.953 

.952 

.946 

.947 

.943 
 

.954 

.956 

.942 

.950 

.951 

.950 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 19 
95% Coverage Probabilities for Normal Distribution Paired with Beta Distribution 
(a = 4, b = 1.25, Skewness = -.848, Kurtosis = .221) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.960 

.961 

.963 

.941 

.945 

.909 
 

.940 

.943 

.942 

.908 

.928 

.892 
 

.956 

.947 

.947 

.916 

.929 

.899 
 

.952 

.952 

.956 

.922 

.937 

.899 
 

.955 

.960 

.963 

.927 

.942 

.909 
 

.947 

.947 

.941 

.919 

.929 

.894 

.942 

.948 

.944 

.918 

.925 

.895 
 

.950 

.954 

.957 

.928 

.939 

.914 
 

.953 

.955 

.965 

.938 

.942 

.917 
 

.956 

.951 

.955 

.937 

.941 

.917 
 

.950 

.947 

.955 

.930 

.940 

.912 
 

.952 

.950 

.951 

.928 

.936 

.908 

.942 

.944 

.957 

.928 

.932 

.914 
 

.948 

.941 

.958 

.934 

.940 

.926 
 

.951 

.949 

.956 

.936 

.937 

.923 
 

.956 

.948 

.946 

.937 

.944 

.929 
 

.959 

.963 

.963 

.939 

.940 

.921 
 

.944 

.955 

.951 

.939 

.937 

.928 

.953 

.953 

.952 

.939 

.944 

.926 
 

.941 

.943 

.949 

.930 

.931 

.919 
 

.948 

.944 

.950 

.937 

.939 

.930 
 

.942 

.951 

.943 

.931 

.930 

.917 
 

.958 

.950 

.950 

.942 

.944 

.930 
 

.963 

.948 

.943 

.945 

.948 

.943 

.951 

.955 

.957 

.944 

.944 

.940 
 

.952 

.945 

.959 

.935 

.941 

.925 
 

.941 

.952 

.949 

.932 

.934 

.928 
 

.958 

.961 

.963 

.955 

.956 

.949 
 

.956 

.945 

.947 

.946 

.947 

.936 
 

.946 

.942 

.933 

.938 

.941 

.930 

.949 

.958 

.962 

.949 

.949 

.938 
 

.937 

.943 

.956 

.931 

.931 

.924 
 

.948 

.944 

.959 

.942 

.944 

.940 
 

.934 

.934 

.948 

.928 

.928 

.924 
 

.953 

.947 

.954 

.940 

.941 

.932 
 

.958 

.950 

.948 

.953 

.952 

.940 

.952 

.945 

.962 

.950 

.954 

.946 
 

.955 

.951 

.960 

.950 

.951 

.943 
 

.953 

.948 

.955 

.949 

.948 

.944 
 

.954 

.954 

.957 

.950 

.952 

.947 
 

.951 

.950 

.943 

.942 

.946 

.942 
 

.954 

.947 

.945 

.945 

.945 

.935 

.956 

.964 

.958 

.952 

.952 

.945 
 

.950 

.948 

.954 

.946 

.946 

.941 
 

.951 

.948 

.957 

.944 

.948 

.939 
 

.937 

.931 

.943 

.937 

.936 

.928 
 

.946 

.947 

.951 

.942 

.941 

.941 
 

.948 

.948 

.947 

.935 

.936 

.931 

.952 

.945 

.955 

.946 

.948 

.949 
 

.949 

.946 

.959 

.946 

.944 

.939 
 

.950 

.946 

.960 

.940 

.942 

.938 
 

.950 

.948 

.957 

.949 

.950 

.946 
 

.954 

.954 

.957 

.952 

.951 

.950 
 

.952 

.940 

.948 

.939 

.943 

.934 

.946 

.946 

.953 

.940 

.942 

.938 
 

.957 

.956 

.957 

.958 

.957 

.955 
 

.958 

.956 

.960 

.957 

.954 

.951 
 

.950 

.952 

.946 

.948 

.943 

.943 
 

.951 

.950 

.961 

.947 

.948 

.947 
 

.956 

.962 

.944 

.947 

.944 

.941 

.940 

.940 

.948 

.936 

.935 

.931 
 

.954 

.948 

.961 

.948 

.948 

.945 
 

.952 

.946 

.948 

.947 

.948 

.941 
 

.948 

.951 

.959 

.951 

.951 

.944 
 

.954 

.944 

.951 

.950 

.948 

.945 
 

.957 

.949 

.945 

.952 

.953 

.946 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 20 
95% Coverage Probabilities for Normal Distribution Paired with Beta Distribution  
(a = 4, b = 1.5, Skewness = -.694, Kurtosis -.069) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.944 

.947 

.952 

.923 

.929 

.905 
 

.937 

.931 

.949 

.910 

.920 

.878 
 

.952 

.955 

.960 

.923 

.941 

.897 
 

.959 

.962 

.961 

.927 

.938 

.911 
 

.953 

.955 

.942 

.922 

.943 

.896 
 

.956 

.949 

.955 

.921 

.941 

.898 

.941 

.942 

.946 

.914 

.928 

.904 
 

.961 

.949 

.954 

.920 

.934 

.899 
 

.947 

.956 

.958 

.927 

.936 

.901 
 

.944 

.947 

.949 

.924 

.922 

.909 
 

.943 

.942 

.943 

.916 

.928 

.896 
 

.953 

.949 

.950 

.937 

.937 

.916 

.948 

.960 

.956 

.923 

.940 

.908 
 

.953 

.952 

.956 

.939 

.944 

.926 
 

.949 

.938 

.949 

.927 

.930 

.914 
 

.937 

.929 

.929 

.912 

.919 

.896 
 

.951 

.955 

.944 

.932 

.938 

.925 
 

.947 

.948 

.950 

.929 

.941 

.922 

.951 

.945 

.949 

.930 

.931 

.918 
 

.950 

.947 

.952 

.933 

.937 

.925 
 

.953 

.950 

.963 

.937 

.946 

.926 
 

.953 

.948 

.965 

.939 

.940 

.929 
 

.959 

.957 

.949 

.947 

.949 

.929 
 

.953 

.948 

.948 

.936 

.946 

.928 

.958 

.955 

.966 

.951 

.955 

.943 
 

.966 

.967 

.970 

.955 

.957 

.949 
 

.947 

.940 

.944 

.939 

.941 

.929 
 

.957 

.954 

.955 

.950 

.954 

.939 
 

.943 

.943 

.947 

.941 

.933 

.934 
 

.960 

.955 

.953 

.947 

.946 

.938 

.951 

.950 

.958 

.950 

.949 

.944 
 

.941 

.943 

.945 

.943 

.941 

.938 
 

.941 

.941 

.945 

.936 

.936 

.935 
 

.950 

.952 

.949 

.947 

.944 

.935 
 

.951 

.951 

.946 

.948 

.948 

.942 
 

.956 

.952 

.944 

.949 

.949 

.943 

.941 

.946 

.946 

.939 

.938 

.933 
 

.947 

.945 

.955 

.936 

.935 

.931 
 

.956 

.954 

.962 

.945 

.949 

.949 
 

.962 

.959 

.957 

.952 

.956 

.950 
 

.958 

.958 

.955 

.951 

.952 

.940 
 

.947 

.948 

.949 

.940 

.946 

.932 

.950 

.958 

.961 

.948 

.951 

.946 
 

.953 

.951 

.950 

.953 

.948 

.943 
 

.940 

.938 

.948 

.943 

.949 

.938 
 

.955 

.952 

.949 

.952 

.947 

.944 
 

.948 

.951 

.959 

.945 

.949 

.938 
 

.950 

.940 

.940 

.939 

.940 

.934 

.952 

.943 

.959 

.951 

.951 

.946 
 

.946 

.951 

.943 

.944 

.945 

.945 
 

.942 

.936 

.946 

.945 

.949 

.939 
 

.947 

.948 

.947 

.948 

.952 

.937 
 

.956 

.954 

.956 

.954 

.953 

.949 
 

.936 

.941 

.931 

.934 

.935 

.929 

.939 

.933 

.947 

.933 

.931 

.932 
 

.957 

.957 

.967 

.952 

.952 

.945 
 

.940 

.941 

.946 

.934 

.934 

.933 
 

.959 

.958 

.962 

.956 

.956 

.954 
 

.940 

.950 

.953 

.935 

.941 

.930 
 

.949 

.950 

.946 

.941 

.940 

.937 

.952 

.951 

.960 

.949 

.950 

.944 
 

.950 

.946 

.955 

.951 

.953 

.944 
 

.958 

.951 

.958 

.955 

.953 

.953 
 

.938 

.942 

.944 

.934 

.935 

.928 
 

.958 

.946 

.954 

.956 

.951 

.941 
 

.956 

.953 

.960 

.950 

.953 

.946 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 21 
95% Coverage Probabilities for Normal Distribution Paired with Chi-Square Distribution  
(df = 16, Skewness = .71, Kurtosis = .75) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.937 

.945 

.950 

.919 

.935 

.886 
 

.937 

.940 

.945 

.906 

.923 

.876 
 

.951 

.956 

.952 

.924 

.933 

.896 
 

.950 

.946 

.955 

.920 

.932 

.899 
 

.948 

.950 

.951 

.907 

.923 

.889 
 

.957 

.957 

.951 

.923 

.934 

.902 

.945 

.943 

.952 

.931 

.938 

.919 
 

.945 

.945 

.940 

.927 

.931 

.904 
 

.957 

.948 

.948 

.935 

.946 

.921 
 

.956 

.959 

.961 

.930 

.942 

.919 
 

.950 

.964 

.958 

.930 

.936 

.911 
 

.936 

.936 

.934 

.927 

.921 

.906 

.959 

.969 

.969 

.955 

.951 

.943 
 

.953 

.947 

.952 

.927 

.928 

.912 
 

.951 

.948 

.952 

.926 

.930 

.918 
 

.948 

.943 

.949 

.933 

.936 

.910 
 

.944 

.949 

.954 

.932 

.936 

.925 
 

.948 

.943 

.951 

.929 

.940 

.920 

.944 

.956 

.959 

.927 

.927 

.920 
 

.937 

.940 

.949 

.926 

.928 

.916 
 

.942 

.943 

.943 

.933 

.936 

.920 
 

.946 

.946 

.945 

.923 

.929 

.911 
 

.941 

.940 

.942 

.933 

.940 

.923 
 

.954 

.959 

.959 

.939 

.942 

.926 

.947 

.951 

.961 

.936 

.937 

.933 
 

.948 

.952 

.967 

.947 

.946 

.941 
 

.949 

.950 

.957 

.943 

.941 

.938 
 

.952 

.958 

.957 

.946 

.947 

.940 
 

.954 

.952 

.953 

.942 

.944 

.930 
 

.948 

.949 

.947 

.939 

.942 

.932 

.949 

.946 

.951 

.948 

.948 

.943 
 

.946 

.947 

.951 

.938 

.944 

.937 
 

.958 

.954 

.955 

.949 

.949 

.942 
 

.943 

.954 

.959 

.944 

.943 

.935 
 

.940 

.948 

.951 

.943 

.945 

.932 
 

.947 

.944 

.951 

.941 

.941 

.932 

.951 

.956 

.954 

.941 

.939 

.931 
 

.957 

.952 

.962 

.953 

.955 

.951 
 

.954 

.953 

.956 

.952 

.953 

.946 
 

.949 

.943 

.953 

.941 

.941 

.936 
 

.957 

.954 

.948 

.944 

.948 

.945 
 

.946 

.948 

.955 

.942 

.941 

.938 

.953 

.956 

.953 

.952 

.950 

.944 
 

.959 

.957 

.962 

.956 

.952 

.953 
 

.948 

.955 

.955 

.948 

.944 

.933 
 

.944 

.937 

.937 

.939 

.938 

.934 
 

.957 

.947 

.955 

.947 

.946 

.948 
 

.960 

.959 

.954 

.951 

.950 

.947 

.953 

.945 

.959 

.951 

.951 

.947 
 

.947 

.944 

.953 

.946 

.949 

.947 
 

.965 

.963 

.965 

.963 

.958 

.955 
 

.961 

.957 

.969 

.958 

.956 

.950 
 

.952 

.951 

.957 

.946 

.947 

.943 
 

.946 

.944 

.938 

.943 

.942 

.940 

.950 

.946 

.964 

.953 

.953 

.943 
 

.953 

.950 

.956 

.949 

.946 

.947 
 

.951 

.950 

.956 

.950 

.952 

.943 
 

.945 

.944 

.953 

.937 

.941 

.933 
 

.951 

.953 

.958 

.951 

.950 

.946 
 

.956 

.953 

.953 

.955 

.950 

.950 

.963 

.958 

.964 

.961 

.960 

.958 
 

.961 

.962 

.976 

.962 

.960 

.953 
 

.941 

.945 

.944 

.940 

.937 

.934 
 

.952 

.949 

.950 

.944 

.945 

.941 
 

.948 

.947 

.950 

.939 

.939 

.941 
 

.959 

.955 

.948 

.954 

.951 

.946 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 22 
95% Coverage Probabilities for Normal Distribution Paired with Chi-Square Distribution  
(df = 4, Skewness = 1.41, Kurtosis = 3) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.943 

.943 

.958 

.911 

.929 

.889 
 

.943 

.945 

.952 

.917 

.929 

.889 
 

.954 

.967 

.964 

.933 

.945 

.910 
 

.937 

.948 

.950 

.908 

.919 

.877 
 

.962 

.961 

.959 

.914 

.930 

.891 
 

.960 

.957 

.956 

.926 

.937 

.905 

.946 

.958 

.957 

.928 

.932 

.909 
 

.954 

.954 

.959 

.942 

.950 

.923 
 

.964 

.963 

.968 

.935 

.947 

.910 
 

.959 

.952 

.949 

.922 

.936 

.910 
 

.954 

.949 

.956 

.929 

.936 

.916 
 

.962 

.953 

.950 

.931 

.942 

.918 

.947 

.951 

.956 

.938 

.938 

.924 
 

.945 

.948 

.958 

.937 

.939 

.924 
 

.955 

.950 

.952 

.938 

.938 

.929 
 

.943 

.944 

.947 

.923 

.924 

.905 
 

.955 

.950 

.952 

.931 

.934 

.925 
 

.949 

.944 

.952 

.929 

.936 

.920 

.939 

.942 

.952 

.931 

.934 

.922 
 

.937 

.938 

.948 

.924 

.926 

.908 
 

.947 

.943 

.952 

.933 

.937 

.918 
 

.936 

.940 

.947 

.921 

.926 

.912 
 

.954 

.952 

.963 

.933 

.938 

.926 
 

.952 

.940 

.935 

.925 

.927 

.905 

.950 

.945 

.950 

.933 

.924 

.924 
 

.947 

.941 

.951 

.929 

.926 

.918 
 

.944 

.949 

.948 

.925 

.927 

.920 
 

.954 

.956 

.959 

.942 

.943 

.937 
 

.946 

.948 

.954 

.934 

.936 

.928 
 

.958 

.946 

.948 

.940 

.937 

.931 

.943 

.956 

.963 

.943 

.942 

.940 
 

.955 

.951 

.963 

.950 

.946 

.940 
 

.954 

.957 

.960 

.945 

.935 

.930 
 

.952 

.953 

.950 

.943 

.939 

.934 
 

.963 

.959 

.961 

.956 

.952 

.949 
 

.952 

.948 

.934 

.940 

.941 

.935 

.953 

.954 

.962 

.942 

.938 

.938 
 

.950 

.943 

.951 

.941 

.939 

.938 
 

.963 

.965 

.964 

.961 

.961 

.954 
 

.957 

.959 

.958 

.955 

.953 

.949 
 

.955 

.950 

.957 

.945 

.941 

.946 
 

.958 

.942 

.947 

.944 

.936 

.939 

.956 

.951 

.958 

.950 

.951 

.941 
 

.946 

.943 

.950 

.938 

.940 

.936 
 

.947 

.952 

.952 

.946 

.939 

.937 
 

.959 

.956 

.958 

.953 

.953 

.944 
 

.957 

.943 

.950 

.945 

.943 

.935 
 

.968 

.953 

.952 

.960 

.959 

.956 

.942 

.949 

.949 

.944 

.948 

.939 
 

.953 

.950 

.954 

.943 

.936 

.943 
 

.956 

.960 

.957 

.954 

.949 

.947 
 

.950 

.943 

.946 

.944 

.940 

.938 
 

.957 

.949 

.943 

.950 

.951 

.943 
 

.954 

.944 

.942 

.943 

.947 

.940 

.948 

.950 

.963 

.940 

.942 

.936 
 

.949 

.938 

.953 

.941 

.940 

.939 
 

.947 

.943 

.948 

.947 

.948 

.945 
 

.959 

.957 

.962 

.953 

.956 

.951 
 

.948 

.950 

.948 

.937 

.938 

.934 
 

.945 

.946 

.938 

.935 

.932 

.934 

.946 

.948 

.950 

.941 

.936 

.934 
 

.949 

.948 

.954 

.948 

.944 

.941 
 

.950 

.948 

.957 

.945 

.940 

.943 
 

.950 

.943 

.948 

.951 

.950 

.948 
 

.954 

.949 

.955 

.950 

.950 

.949 
 

.961 

.958 

.947 

.949 

.946 

.947 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 23 
95% Coverage Probabilities for Normal Distribution Paired with Chi-Square Distribution  
(df = 3, Skewness = 1.63, Kurtosis = 4) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.932 

.946 

.947 

.907 

.930 

.887 
 

.949 

.945 

.950 

.921 

.944 

.901 
 

.945 

.958 

.961 

.919 

.932 

.905 
 

.949 

.947 

.957 

.916 

.935 

.899 
 

.952 

.950 

.948 

.914 

.938 

.893 
 

.947 

.939 

.936 

.893 

.924 

.869 

.950 

.949 

.963 

.933 

.942 

.917 
 

.949 

.944 

.948 

.928 

.932 

.902 
 

.958 

.951 

.957 

.941 

.945 

.930 
 

.956 

.951 

.954 

.917 

.925 

.912 
 

.951 

.954 

.969 

.926 

.934 

.906 
 

.955 

.943 

.944 

.923 

.922 

.908 

.946 

.941 

.950 

.919 

.924 

.904 
 

.959 

.953 

.965 

.947 

.944 

.935 
 

.955 

.940 

.949 
927 
.935 
.915 

 
.950 
.946 
.954 
.932 
.935 
.918 

 
.942 
.945 
.948 
.928 
.930 
.913 

 
.946 
.936 
.926 
.922 
.921 
.900 

.955 

.947 

.958 

.946 

.950 

.934 
 

.962 

.954 

.963 

.946 

.947 

.932 
 

.956 

.946 

.955 

.933 

.936 

.918 
 

.952 

.947 

.963 

.933 

.926 

.928 
 

.951 

.945 

.943 

.920 

.929 

.913 
 

.954 

.959 

.943 

.929 

.934 

.920 

.956 

.952 

.951 

.943 

.945 

.937 
 

.949 

.945 

.953 

.937 

.937 

.923 
 

.950 

.949 

.959 

.945 

.938 

.940 
 

.947 

.926 

.936 

.911 

.913 

.901 
 

.952 

.937 

.948 

.930 

.928 

.923 
 

.956 

.944 

.941 

.932 

.934 

.932 

.942 

.951 

.951 

.937 

.931 

.933 
 

.943 

.944 

.958 

.945 

.936 

.935 
 

.953 

.958 

.955 

.950 

.949 

.938 
 

.949 

.950 

.953 

.935 

.936 

.933 
 

.948 

.941 

.937 

.942 

.936 

.935 
 

.961 

.953 

.947 

.936 

.940 

.930 

.940 

.951 

.956 

.930 

.927 

.921 
 

.938 

.948 

.947 

.935 

.933 

.927 
 

.955 

.954 

.956 

.945 

.941 

.938 
 

.945 

.944 

.945 

.939 

.936 

.932 
 

.968 

.953 

.959 

.960 

.953 

.954 
 

.967 

.958 

.951 

.950 

.949 

.941 

.942 

.940 

.944 

.937 

.933 

.928 
 

.960 

.967 

.969 

.953 

.952 

.942 
 

.955 

.950 

.953 

.948 

.949 

.947 
 

.958 

.950 

.958 

.948 

.948 

.943 
 

.954 

.952 

.958 

.953 

.948 

.946 
 

.947 

.945 

.942 

.935 

.928 

.928 

.945 

.946 

.955 

.942 

.942 

.938 
 

.956 

.954 

.948 

.946 

.944 

.944 
 

.958 

.953 

.960 

.951 

.951 

.948 
 

.956 

.954 

.955 

.948 

.943 

.943 
 

.959 

.961 

.957 

.948 

.943 

.941 
 

.957 

.950 

.950 

.949 

.945 

.940 

.964 

.970 

.971 

.961 

.959 

.958 
 

.948 

.943 

.950 

.941 

.941 

.937 
 

.956 

.957 

.956 

.950 

.950 

.946 
 

.944 

.949 

.952 

.940 

.935 

.933 
 

.949 

.947 

.959 

.933 

.928 

.930 
 

.958 

.954 

.946 

.950 

.953 

.948 

.938 

.951 

.957 

.938 

.937 

.934 
 

.954 

.953 

.952 

.955 

.953 

.952 
 

.948 

.939 

.954 

.948 

.945 

.942 
 

.952 

.945 

.954 

.943 

.940 

.942 
 

.947 

.943 

.954 

.942 

.937 

.931 
 

.955 

.950 

.944 

.942 

.942 

.938 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 24 
95% Coverage Probabilities for Normal Distribution Paired with Chi-Square Distribution  
(df = 2, Skewness = 2, Kurtosis = 6) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.949 

.952 

.949 

.929 

.944 

.907 
 

.931 

.940 

.942 

.910 

.923 

.884 
 

.935 

.934 

.933 

.903 

.927 

.881 
 

.953 

.948 

.953 

.929 

.943 

.907 
 

.948 

.953 

.956 

.921 

.936 

.896 
 

.953 

.950 

.958 

.916 

.925 

.900 

.959 

.951 

.957 

.920 

.925 

.904 
 

.943 

.947 

.954 

.921 

.928 

.897 
 

.949 

.944 

.950 

.931 

.930 

.915 
 

.958 

.950 

.946 

.933 

.939 

.914 
 

.961 

.948 

.955 

.933 

.937 

.912 
 

.955 
.955. 
959 
.928 
.931 
.906 

.945 

.943 

.948 

.928 

.932 

.914 
 

.934 

.931 

.949 

.920 

.920 

.895 
 

.956 

.951 

.956 

.934 

.934 

.924 
 

.959 

.947 

.952 

.936 

.943 

.922 
 

.959 

.959 

.957 

.947 

.937 

.931 
 

.960 

.943 

.941 

.926 

.927 

.916 

.937 

.940 

.943 

.914 

.915 

.897 
 

.943 

.948 

.957 

.941 

.939 

.931 
 

.947 

.954 

.958 

.931 

.931 

.922 
 

.954 

.955 

.960 

.932 

.933 

.920 
 

.952 

.947 

.939 

.923 

.919 

.907 
 

.959 

.954 

.956 

.930 

.925 

.913 

.954 

.955 

.962 

.932 

.937 

.930 
 

.958 

.948 

.960 

.937 

.932 

.924 
 

.943 

.941 

.944 

.924 

.927 

.917 
 

.950 

.946 

.952 

.946 

.939 

.939 
 

.959 

.942 

.943 

.941 

.935 

.929 
 

.960 

.961 

.961 

.933 

.936 

.928 

.956 

.961 

.964 

.947 

.942 

.942 
 

.952 

.951 

.960 

.941 

.936 

.933 
 

.952 

.950 

.952 

.942 

.937 

.938 
 

.938 

.925 

.936 

.920 

.919 

.916 
 

.949 

.946 

.947 

.937 

.934 

.925 
 

.957 

.956 

.950 

.938 

.939 

.933 

.958 

.958 

.959 

.951 

.947 

.946 
 

.952 

.950 

.948 

.940 

.937 

.936 
 

.957 

.960 

.964 

.946 

.943 

.942 
 

.941 

.955 

.963 

.940 

.930 

.932 
 

.949 

.935 

.941 

.932 

.925 

.925 
 

.953 

.943 

.938 

.939 

.934 

.931 

.940 

.951 

.955 

.941 

.941 

.933 
 

.951 

.954 

.960 

.945 

.942 

.940 
 

.936 
9.45 
.953 
.933 
.925 
.921 

 
.960 
.951 
.957 
.946 
.951 
.946 

 
.957 
.952 
.948 
.946 
.943 
.941 

 
.968 
.951 
.942 
.951 
.951 
.949 

.946 

.935 

.950 

.937 

.935 

.934 
 

.950 

.947 

.963 

.944 

.942 

.939 
 

.946 

.951 

.957 

.939 

.933 

.937 
 

.940 

.941 

.945 

.937 

.940 

.936 
 

.964 

.957 

.947 

.950 

.949 

.947 
 

.959 

.949 

.950 

.948 

.948 

.941 

.954 

.962 

.959 

.943 

.941 

.939 
 

.948 

.947 

.954 

.941 

.936 

.937 
 

.956 

.952 

.955 

.946 

.944 

.941 
 

.972 

.964 

.967 

.967 

.964 

.961 
 

.960 

.957 

.946 

.956 

.953 

.952 
 

.960 

.943 

.935 

.937 

.931 

.932 

.947 

.950 

.959 

.949 

.943 

.940 
 

.951 

.950 

.958 

.948 

.947 

.942 
 

.943 

.953 

.962 

.951 

.946 

.949 
 

.962 

.945 

.952 

.947 

.954 

.941 
 

.956 

.956 

.951 

.940 

.937 

.940 
 

.944 

.933 

.938 

.928 

.927 

.922 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 25 
95% Coverage Probabilities for Normal Distribution Paired with Chi-Square Distribution  
(df = 1, Skewness = 2.83, Kurtosis = 12) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.961 

.947 

.955 

.934 

.957 

.913 
 

.957 

.952 

.953 

.919 

.935 

.892 
 

.947 

.952 

.950 

.915 

.929 

.901 
 

.946 

.942 

.948 

.918 

.943 

.902 
 

.958 

.957 

.954 

.928 

.941 

.908 
 

.966 

.961 

.958 

.924 

.935 

.910 

.957 

.961 

.967 

.941 

.936 

.921 
 

.941 

.931 

.945 

.917 

.919 

.905 
 

.945 

.954 

.953 

.923 

.920 

.903 
 

.968 

.968 

.962 

.929 

.930 

.910 
 

.960 

.952 

.950 

.919 

.917 

.900 
 

.962 

.965 

.948 

.925 

.918 

.906 

.955 

.946 

.944 

.921 

.919 

.911 
 

.942 

.941 

.942 

.919 

.923 

.906 
 

.949 

.947 

.957 

.936 

.932 

.920 
 

.962 

.963 

.959 

.932 

.928 

.926 
 

.957 

.957 

.952 

.932 

.921 

.911 
 

.955 

.954 

.946 

.918 

.927 

.909 

.945 

.952 

.953 

.925 

.919 

.911 
 

.956 

.942 

.958 

.917 

.918 

.903 
 

.941 

.950 

.948 

.919 

.913 

.906 
 

.957 

.952 

.951 

.927 

.922 

.914 
 

.950 

.950 

.943 

.908 

.904 

.893 
 

.956 

.963 

.949 

.933 

.921 

.928 

.957 

.947 

.956 

.940 

.931 

.930 
 

.960 

.966 

.972 

.943 

.938 

.935 
 

.956 

.951 

.956 

.945 

.937 

.939 
 

.953 

.948 

.953 

.931 

.920 

.922 
 

.966 

.954 

.959 

.945 

.938 

.936 
 

.956 

.955 

.948 

.937 

.928 

.934 

.949 

.950 

.956 

.935 

.930 

.929 
 

.958 

.957 
.966. 
944 
.932 
.930 

 
.957 
.957 
.959 
.947 
.937 
.943 

 
.953 
.953 
.955 
.941 
.927 
.936 

 
.955 
.958 
.953 
.941 
.929 
.931 

 
.962 
.957 
.948 
.929 
.920 
.923 

.961 

.955 

.969 

.944 

.935 

.938 
 

.955 

.947 

.949 

.943 

.932 

.937 
 

.950 

.949 

.952 

.930 

.929 

.923 
 

.947 

.948 

.952 

.933 

.929 

.927 
 

.949 

.941 

.942 

.929 

.920 

.922 
 

.967 

.959 

.945 

.952 

.952 

.951 

.957 

.957 

.961 

.950 

.948 

.945 
 

.941 

.949 

.957 

.926 

.919 

.926 
 

.943 

.950 

.951 

.931 

.921 

.921 
 

.956 

.956 

.954 

.941 

.934 

.936 
 

.964 

.954 

.947 

.940 

.934 

.932 
 

.964 

.958 

.948 

.950 

.943 

.937 

.947 

.949 

.957 

.948 

.940 

.937 
 

.948 

.946 

.959 

.940 

.942 

.938 
 

.957 

.950 

.962 

.947 

.944 

.937 
 

.961 

.949 

.963 

.945 

.935 

.938 
 

.970 

.959 

.958 

.964 

.955 

.961 
 

.967 

.961 

.952 

.952 

.946 

.945 

.951 

.952 

.963 

.945 

.939 

.941 
 

.949 

.958 

.959 

.946 

.947 

.945 
 

.948 

.953 

.951 

.945 

.940 

.936 
 

.948 

.954 

.956 

.937 

.928 

.932 
 

.959 

.948 

.953 

.950 

.946 

.943 
 

.959 

.959 

.951 

.943 

.932 

.938 

.955 

.964 

.968 

.950 

.942 

.946 
 

.963 

.945 

.959 

.947 

.944 

.946 
 

.967 

.950 

.954 

.954 

.948 

.949 
 

.956 
.95 

.959 

.945 

.938 

.946 
 

.961 

.961 

.959 

.944 

.941 

.937 
 

.951 

.954 

.950 

.934 

.925 

.930 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 26 
95% Coverage Probabilities for Normal Distribution Paired with Pareto Distribution  
(Skewness = 2.811, Kurtosis =14.828) 

ρ n 20 30 40 50 100 150 200 250 300 350 400 
0 
 
 
 
 
 
 

0.10 
 
 
 
 
 
 

0.20 
 
 
 
 
 
 

0.30 
 
 
 
 
 
 

0.40 
 
 
 
 
 
 

0.50 

FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 
 
FISHER 
RIN 
SPEAR 
PB 
BCA 
HPDI 

.938 

.945 

.950 

.923 

.937 

.904 
 

.947 

.949 

.954 

.925 

.931 

.902 
 

.943 

.947 

.951 

.910 

.924 

.888 
 

.962 

.958 

.959 

.929 

.939 

.905 
 

.965 

.960 

.954 

.920 

.932 

.910 
 

.952 

.941 

.946 

.902 

.913 

.877 

.952 

.956 

.966 

.929 

.941 

.914 
 

.955 

.958 

.953 

.917 

.924 

.904 
 

.943 

.959 

.957 

.929 

.930 

.916 
 

.958 

.945 

.955 

.922 

.931 

.899 
 

.958 

.955 

.960 

.914 

.919 

.891 
 

.959 

.946 

.930 

.901 

.904 

.883 

.948 

.945 

.954 

.927 

.929 

.918 
 

.941 

.937 

.947 

.907 

.914 

.894 
 

.959 

.949 

.948 

.929 

.925 

.913 
 

.953 

.950 

.947 

.930 

.925 

.911 
 

.959 

.955 

.952 

.922 

.920 

.900 
 

.962 

.959 

.955 

.931 

.931 

.916 

.956 

.954 

.956 

.936 

.940 

.923 
 

.953 

.952 

.954 

.934 

.936 

.918 
 

.947 

.951 

.952 

.932 

.927 

.919 
 

.951 

.945 

.949 

.920 

.922 

.903 
 

.963 

.949 

.947 

.933 

.932 

.922 
 

.954 

.958 

.954 

.928 

.929 

.914 

.954 
 .958 
.953 
.947 
.940 
.936 

 
.941 
.946 
.955 
.934 
.926 
.927 

 
.953 
.955 
.964 
.937 
.932 
.934 

 
.950 
.948 
.949 
.928 
.922 
.923 

 
.966 
.958 
.956 
.946 
.933 
.933 

 
.970 
.960 
.941 
.940 
.939 
.929 

.947 

.953 

.955 

.945 

.937 

.943 
 

.959 

.960 

.952 

.951 

.948 

.947 
 

.950 

.946 

.957 

.939 

.930 

.936 
 

.953 

.949 

.952 

.939 

.929 

.935 
 

.957 

.961 

.957 

.939 

.926 

.929 
 

.963 

.963 

.966 

.942 

.935 

.927 

.939 

.957 

.959 

.933 

.935 

.925 
 

.953 

.945 

.951 

.947 

.945 

.942 
 

.949 

.961 

.969 

.939 

.930 

.933 
 

.953 

.947 

.946 

.948 

.941 

.937 
 

.959 

.963 

.956 

.948 

.942 

.943 
 

.966 

.957 

.953 

.943 

.939 

.936 

.947 

.960 

.967 

.938 

.936 

.936 
 

.950 

.950 

.953 

.947 

.940 

.940 
 

.956 

.959 

.964 

.938 

.931 

.930 
 

.955 

.961 

.962 

.945 

.938 

.943 
 

.960 

.948 

.942 

.937 

.941 

.936 
 

.943 

.951 

.946 

.927 

.914 

.920 

.955 

.957 

.969 

.941 

.939 

.934 
 

.936 

.945 

.951 

.934 

.927 

.922 
 

.954 

.948 

.951 

.948 

.941 

.943 
 

.948 

.953 

.963 

.943 

.935 

.941 
 

.963 

.947 

.951 

.945 

.943 

.936 
 

.963 

.959 

.942 

.947 

.934 

.942 

.953 

.960 

.957 

.948 

.944 

.948 
 

.947 

.951 

.963 

.938 

.937 

.936 
 

.940 

.950 

.960 

.933 

.924 

.925 
 

.952 

.949 

.954 

.945 

.938 

.944 
 

.966 

.954 

.949 

.945 

.939 

.942 
 

.964 

.956 

.951 

.939 

.936 

.932 

.957 

.961 

.959 

.953 

.949 

.952 
 

.947 

.948 

.955 

.944 

.937 

.938 
 

.964 

.960 

.958 

.953 

.948 

.951 
 

.965 

.947 

.951 

.952 

.950 

.952 
 

.963 

.943 

.943 

.950 

.941 

.937 
 

.957 

.939 

.936 

.929 

.922 

.927 
Note. Unacceptable coverage is bolded and outside [.925, .975]. FISHER = Fisher z-transformation; 
RIN = ranked inverse normal transformation; SPEAR = Spearman rank-order with Fieller’s SE ; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; HPDI = highest probability density interval. 
Bootstrap methods based on 2,000 bootstrap samples. 
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Table 27 
Constants for Headrick’s (2002) fifth-order polynomial transformation method 

Distribution Skew Kurtosis 0c  1c 2c  3c  4c  5c  

Normal 
Triangular 
Uniform 
Laplace 
Beta (a=4, b=1.25) 
Beta (a=4, b=1.5) 
Chi-Square (df=16) 
Chi-Square (df=4) 
Chi-Square (df=3) 
Chi-Square (df=2) 
Chi-Square (df=1) 
Pareto 

.000 

.000 

.000 

.000 
-.848 
-.694 
.710 

1.410 
1.630 
2.000 
2.830 
2.811 

.000 
-.600 

-1.200 
3.000 

.221 

.069 

.750 
3.000 
4.000 
6.000 

12.000 
14.828 

.000 

.000 

.000 

.000 

.199 

.163 
-.117 
-.228 
-.259 
-.308 
-.398 
-.346 

1.000 
1.081 
1.347 
0.728 
1.071 
1.089 

.976 

.901 

.867 

.801 

.621 

.712 

.000 

.000 

.000 

.000 
-.229 
-.187 
.117 
.232 
.265 
.319 
.417 
.347 

.000 
-.029 
-.140 
.096 

-.041 
-.044 
.004 
.015 
.021 
.034 
.068 
.028 

.000 

.000 

.000 

.000 

.010 

.008 

.000 
-.001 
-.002 
-.004 
-.006 
.000 

.000 
-.002 
.002 

-.002 
.001 
.001 
.000 
.000 
.000 
.000 
.000 
.004 
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APPENDIX B 

FIGURES 

 
Figure 4. Distribution of 95% CI coverage for correlation magnitude. Fisher z-transformation 
(FSH), percentile bootstrap (PB), bias-corrected and accelerated bootstrap (BCa), and highest 
probability density interval (HPDI). Bootstrap methods (PB, BCa, HPDI) were based on 2,000 

bootstrap samples. The dashed line is at .95 and the solid lines are at  .925, .975 ; acceptable 

coverage. 
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Figure 5. Distribution of 95% CI coverage for sample size. Fisher z-transformation (FSH), 
percentile bootstrap (PB), bias-corrected and accelerated bootstrap (BCa), and highest 
probability density interval (HPDI). Bootstrap methods (PB, BCa, HPDI) were based on 2,000 

bootstrap samples. The dashed line is at .95 and the solid lines are at  .925, .975 ; acceptable 

coverage. 
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Figure 6. Distribution of 95% CI coverage for symmetric with symmetric distribution pairings. 
Fisher z-transformation (FSH), percentile bootstrap (PB), bias-corrected and accelerated 
bootstrap (BCa), and highest probability density interval (HPDI). Bootstrap methods (PB, BCa, 
HPDI) were based on 2,000 bootstrap samples. The dashed line is at .95 and the solid lines are at

 .925, .975 ; acceptable coverage. 

  



98 
 

 
Figure 7. Distribution of 95% CI coverage for non-symmetric with non-symmetric distribution 
pairings. Fisher z-transformation (FSH), percentile bootstrap (PB), bias-corrected and accelerated 
bootstrap (BCa), and highest probability density interval (HPDI). Bootstrap methods (PB, BCa, 
HPDI) were based on 2,000 bootstrap samples. The dashed line is at .95 and the solid lines are at

 .925, .975 ; acceptable coverage. 
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Figure 8. Distribution of 95% CI coverage for symmetric with normal distribution pairings. 
Fisher z-transformation (FSH), percentile bootstrap (PB), bias-corrected and accelerated 
bootstrap (BCa), and highest probability density interval (HPDI). Bootstrap methods (PB, BCa, 
HPDI) were based on 2,000 bootstrap samples. The dashed line is at .95 and the solid lines are at

 .925, .975 ; acceptable coverage. 
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Figure 9. Distribution of 95% CI coverage for non-symmetric with normal distribution pairings. 
Fisher z-transformation (FSH), percentile bootstrap (PB), bias-corrected and accelerated 
bootstrap (BCa), and highest probability density interval (HPDI). Bootstrap methods (PB, BCa, 
HPDI) were based on 2,000 bootstrap samples. The dashed line is at .95 and the solid lines are at

 .925, .975 ; acceptable coverage. 
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Figure 10. Distribution of 95% CI coverage for sample size by correlation magnitudes of 0 .2 . 
Fisher z-transformation (FSH), percentile bootstrap (PB), bias-corrected and accelerated 
bootstrap (BCa), and highest probability density interval (HPDI). Bootstrap methods (PB, BCa, 
HPDI) were based on 2,000 bootstrap samples. The dashed line is at .95 and the solid lines are at

 .925, .975 ; acceptable coverage. 
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Figure 11. Distribution of 95% CI coverage for sample size by correlation magnitudes of .3 .5 . 
Fisher z-transformation (FSH), percentile bootstrap (PB), bias-corrected and accelerated 
bootstrap (BCa), and highest probability density interval (HPDI). Bootstrap methods (PB, BCa, 
HPDI) were based on 2,000 bootstrap samples. The dashed line is at .95 and the solid lines are at

 .925, .975 ; acceptable coverage. 
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Figure 12. Distribution of 95% CI coverage for symmetric with symmetric distribution pairings 
by correlation magnitudes of 0 .2 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 

  



104 
 

 
Figure 13. Distribution of 95% CI coverage for symmetric with symmetric distribution pairings 
by correlation magnitudes of .3 .5 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 14. Distribution of 95% CI coverage for non-symmetric with non-symmetric distribution 
pairings by correlation magnitudes of 0 .2 . Fisher z-transformation (FSH), percentile bootstrap 
(PB), bias-corrected and accelerated bootstrap (BCa), and highest probability density interval 
(HPDI). Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The 

dashed line is at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 15. Distribution of 95% CI coverage for non-symmetric with non-symmetric distribution 
pairings by correlation magnitudes of .3 .5 . Fisher z-transformation (FSH), percentile bootstrap 
(PB), bias-corrected and accelerated bootstrap (BCa), and highest probability density interval 
(HPDI). Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The 

dashed line is at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 16. Distribution of 95% CI coverage for symmetric with normal distribution pairings by 
correlation magnitudes of 0 .2 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 17. Distribution of 95% CI coverage for symmetric with normal distribution pairings by 
correlation magnitudes of .3 .5 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 18. Distribution of 95% CI coverage for non-symmetric with normal distribution pairings 
by correlation magnitudes of 0 .2 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 19. Distribution of 95% CI coverage for non-symmetric with normal distribution pairings 
by correlation magnitudes of .3 .5 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 20. Distribution of 95% CI coverage for symmetric with symmetric distribution pairings 
by sample size of 20 40 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 21. Distribution of 95% CI coverage for symmetric with symmetric distribution pairings 
by sample size of 50 150 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 22. Distribution of 95% CI coverage for symmetric with symmetric distribution pairings 
by sample size of 200 300 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 23. Distribution of 95% CI coverage for symmetric with symmetric distribution pairings 
by sample size of 350 400 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 24. Distribution of 95% CI coverage for non-symmetric with non-symmetric distribution 
pairings by sample size of 20 40 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 25. Distribution of 95% CI coverage for non-symmetric with non-symmetric distribution 
pairings by sample size of 50 150 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 26. Distribution of 95% CI coverage for non-symmetric with non-symmetric distribution 
pairings by sample size of 200 300 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 27. Distribution of 95% CI coverage for non-symmetric with non-symmetric distribution 
pairings by sample size of 350 400 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 28. Distribution of 95% CI coverage for symmetric with normal distribution pairings by 
sample size of 20 40 . Fisher z-transformation (FSH), percentile bootstrap (PB), bias-corrected 
and accelerated bootstrap (BCa), and highest probability density interval (HPDI). Bootstrap 
methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is at .95 and 

the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 29. Distribution of 95% CI coverage for symmetric with normal distribution pairings by 
sample size of 50 150 . Fisher z-transformation (FSH), percentile bootstrap (PB), bias-corrected 
and accelerated bootstrap (BCa), and highest probability density interval (HPDI). Bootstrap 
methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is at .95 and 

the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 30. Distribution of 95% CI coverage for symmetric with normal distribution pairings by 
sample size of 200 300 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 31. Distribution of 95% CI coverage for symmetric with normal distribution pairings by 
sample size of 350 400 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 

  



123 
 

 
Figure 32. Distribution of 95% CI coverage for non-symmetric with normal distribution pairings 
by sample size of 20 40 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 33. Distribution of 95% CI coverage for non-symmetric with normal distribution pairings 
by sample size of 50 150 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 34. Distribution of 95% CI coverage for non-symmetric with normal distribution pairings 
by sample size of 200 300 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 35. Distribution of 95% CI coverage for non-symmetric with normal distribution pairings 
by sample size of 350 400 . Fisher z-transformation (FSH), percentile bootstrap (PB), 
bias-corrected and accelerated bootstrap (BCa), and highest probability density interval (HPDI). 
Bootstrap methods (PB, BCa, HPDI) were based on 2,000 bootstrap samples. The dashed line is 

at .95 and the solid lines are at  .925, .975 ; acceptable coverage. 
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Figure 36. Distribution of standardized bias for correlation magnitude. Ranked inverse normal 

(RIN). The dashed line is at 0 and the solid lines are at  .40, .40 ; acceptable bias. 
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Figure 37. Distribution of standardized bias for sample size. Ranked inverse normal (RIN). The 

dashed line is at 0 and the solid lines are at  .40, .40 ; acceptable bias. 
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Figure 38. Distribution of standardized bias for symmetric with symmetric distribution pairings. 

Ranked inverse normal (RIN). The dashed line is at 0 and the solid lines are at  .40, .40 ; 

acceptable bias. 
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Figure 39. Distribution of standardized bias for non-symmetric with non-symmetric distribution 
pairings. Ranked inverse normal (RIN). The dashed line is at 0 and the solid lines are at 

 .40, .40 ; acceptable bias. 
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Figure 40. Distribution of standardized bias for symmetric with normal distribution pairings. 

Ranked inverse normal (RIN). The dashed line is at 0 and the solid lines are at  .40, .40 ; 

acceptable bias. 
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Figure 41. Distribution of standardized bias for non-symmetric with normal distribution pairings. 

Ranked inverse normal (RIN). The dashed line is at 0 and the solid lines are at  .40, .40 ; 

acceptable bias. 
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Figure 42. Distribution of standardized bias for sample size by correlation magnitude of 0 .2 . 

Ranked inverse normal (RIN). The dashed line is at 0 and the solid lines are at  .40, .40 ; 

acceptable bias. 
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Figure 43. Distribution of standardized bias for sample size by correlation magnitude of .3 .5 . 

Ranked inverse normal (RIN). The dashed line is at 0 and the solid lines are at  .40, .40 ; 

acceptable bias. 
  



135 
 

 
Figure 44. Distribution of standardized bias for symmetric with symmetric distribution pairings 
by correlation magnitude of 0 .2 . Ranked inverse normal (RIN). The dashed line is at 0 and the 

solid lines are at  .40, .40 ; acceptable bias. 
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Figure 45. Distribution of standardized bias for symmetric with symmetric distribution pairings 
by correlation magnitude of .3 .5 . Ranked inverse normal (RIN). The dashed line is at 0 and the 

solid lines are at  .40, .40 ; acceptable bias. 
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Figure 46. Distribution of standardized bias for non-symmetric with non-symmetric distribution 
pairings by correlation magnitude of 0 .2 . Ranked inverse normal (RIN). The dashed line is at 

0 and the solid lines are at  .40, .40 ; acceptable bias. 
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Figure 47. Distribution of standardized bias for non-symmetric with non-symmetric distribution 
pairings by correlation magnitude of .3 .5 . Ranked inverse normal (RIN). The dashed line is at 

0 and the solid lines are at  .40, .40 ; acceptable bias. 
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Figure 48. Distribution of standardized bias for symmetric with normal distribution pairings by 
correlation magnitude of 0 .2 . Ranked inverse normal (RIN). The dashed line is at 0 and the 

solid lines are at  .40, .40 ; acceptable bias. 
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Figure 49. Distribution of standardized bias for symmetric with normal distribution pairings by 
correlation magnitude of .3 .5 . Ranked inverse normal (RIN). The dashed line is at 0 and the 

solid lines are at  .40, .40 ; acceptable bias. 
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Figure 50. Distribution of standardized bias for non-symmetric with normal distribution pairings 
by correlation magnitude of 0 .2 . Ranked inverse normal (RIN). The dashed line is at 0 and the 

solid lines are at  .40, .40 ; acceptable bias. 
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Figure 51. Distribution of standardized bias for non-symmetric with normal distribution pairings 
by correlation magnitude of .3 .5 . Ranked inverse normal (RIN). The dashed line is at 0 and the 

solid lines are at  .40, .40 ; acceptable bias. 
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Figure 52. Distribution of standardized bias for symmetric with symmetric distribution pairings 
by sample size of 20 40 . Ranked inverse normal (RIN). The dashed line is at 0 and the solid 

lines are at  .40, .40 ; acceptable bias. 
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Figure 53. Distribution of standardized bias for symmetric with symmetric distribution pairings 
by sample size of 50 150 . Ranked inverse normal (RIN). The dashed line is at 0 and the solid 

lines are at  .40, .40 ; acceptable bias. 
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Figure 54. Distribution of standardized bias for symmetric with symmetric distribution pairings 
by sample size of 200 300 . Ranked inverse normal (RIN). The dashed line is at 0 and the solid 

lines are at  .40, .40 ; acceptable bias. 
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Figure 55. Distribution of standardized bias for symmetric with symmetric distribution pairings 
by sample size of 350 400 . Ranked inverse normal (RIN). The dashed line is at 0 and the solid 

lines are at  .40, .40 ; acceptable bias. 
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Figure 56. Distribution of standardized bias for non-symmetric with non-symmetric distribution 
pairings by sample size of 20 40 . Ranked inverse normal (RIN). The dashed line is at 0 and the 

solid lines are at  .40, .40 ; acceptable bias. 
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Figure 57. Distribution of standardized bias for non-symmetric with non-symmetric distribution 
pairings by sample size of 50 150 . Ranked inverse normal (RIN). The dashed line is at 0 and 

the solid lines are at  .40, .40 ; acceptable bias. 
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Figure 58. Distribution of standardized bias for non-symmetric with non-symmetric distribution 
pairings by sample size of 200 300 . Ranked inverse normal (RIN). The dashed line is at 0 and 

the solid lines are at  .40, .40 ; acceptable bias. 
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Figure 59. Distribution of standardized bias for non-symmetric with non-symmetric distribution 
pairings by sample size of 350 400 . Ranked inverse normal (RIN). The dashed line is at 0 and 

the solid lines are at  .40, .40 ; acceptable bias. 
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Figure 60. Distribution of standardized bias for symmetric with normal distribution pairings by 
sample size of 20 40 . Ranked inverse normal (RIN). The dashed line is at 0 and the solid lines 

are at  .40, .40 ; acceptable bias. 
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Figure 61. Distribution of standardized bias for symmetric with normal distribution pairings by 
sample size of 50 150 . Ranked inverse normal (RIN). The dashed line is at 0 and the solid lines 

are at  .40, .40 ; acceptable bias. 
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Figure 62. Distribution of standardized bias for symmetric with normal distribution pairings by 
sample size of 200 300 . Ranked inverse normal (RIN). The dashed line is at 0 and the solid 

lines are at  .40, .40 ; acceptable bias. 
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Figure 63. Distribution of standardized bias for symmetric with normal distribution pairings by 
sample size of 350 400 . Ranked inverse normal (RIN). The dashed line is at 0 and the solid 

lines are at  .40, .40 ; acceptable bias. 
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Figure 64. Distribution of standardized bias for non-symmetric with normal distribution pairings 
by sample size of 20 40 . Ranked inverse normal (RIN). The dashed line is at 0 and the solid 

lines are at  .40, .40 ; acceptable bias. 
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Figure 65. Distribution of standardized bias for non-symmetric with normal distribution pairings 
by sample size of 50 150 . Ranked inverse normal (RIN). The dashed line is at 0 and the solid 

lines are at  .40, .40 ; acceptable bias. 

  



157 
 

 
Figure 66. Distribution of standardized bias for non-symmetric with normal distribution pairings 
by sample size of 200 300 . Ranked inverse normal (RIN). The dashed line is at 0 and the solid 

lines are at  .40, .40 ; acceptable bias. 
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Figure 67. Distribution of standardized bias for non-symmetric with normal distribution pairings 
by sample size of 350 400 . Ranked inverse normal (RIN). The dashed line is at 0 and the solid 

lines are at  .40, .40 ; acceptable bias. 
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APPENDIX C 

SOURCE CODE 

This appendix includes source code for the calculation of the 95% confidence intervals. 
All code was written in R. 
 
Core Code 
 
# Package for Fisher z transformation CI and Spearman CI 
library(Desctools); 
 
# Package for ranked inverse normal transformation 
library(RNOmni); 
 
# package for highest probability density interval package 
library(HDinterval); 
 
# Package for data generation via Headrick’s method 
library(SimMultiCorrData) 
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#Function for bootstrap, percentile bootrstrap IC and bias-
corrected and accelerated CI 
 
boot_fun=function(X,stat,B=1000,prb=.05,qtype=6,rngs=NULL, 
stat_out=0,out=0) { 
 
#----------------------------------------------------# 
# INPUT ARGUMENTS                                    # 
#                                                    # 
# X= input data                                      # 
# stat= a function of the input data that            # 
#       returns a 1xK vector of the stat/parameter   # 
#       of interest; K= # of stat/parameter          # 
# B= # of bootstrap replicates                       # 
# prb= alpha for 100(1-alpha)% confidence interval   # 
# qtype= quantile type; see R for details            # 
# rngs= random number generator seed                 # 
# stat_out= CIs to output                            # 
#           0= percentile CI (default)               # 
#           1= percentile & BCa CIs                  # 
# out= output BxK matrix of Bootstraped              # 
#      parameter estimates                           # 
#      0= no (default)                               # 
#      1= yes                                        # 
#----------------------------------------------------# 
# OUTPUT                                             # 
#                                                    # 
# list with CIs & bootstrap parameter estimates      # 
#----------------------------------------------------# 
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bc_a= function(x,stat,th_,th_0,prb=.05) { 
 
#-----------------------------------------------# 
# INPUT ARGUMENTS                               # 
#                                               # 
# x=  input data                                # 
# stat= a function of the input data that       # 
#       returns a 1xK vector the stat/parameter # 
#       of interest; K= # of stat/parameter     # 
# th_= BxK matrix of Bootstraped parameter      # 
#      estimates; B= # of bootstrap replicates  # 
# th_0= 1xK or Kx1 vector of observed parameter # 
#       estimates                               # 
# conf= 100(1-alpha)% confifence interval       # 
#-----------------------------------------------# 
# OUTPUT                                        # 
#                                               # 
# list with BCa CIs & adjusted alpha            # 
#-----------------------------------------------# 

 
   N= dim(x)[1]; 
   b_rep= dim(th_)[1]; 
   K= dim(th_)[2]; 
    
   if (K!=length(th_0)) { 
      stop("th_ & th_0 column dimension do not match"); 
   } 
    
   th_0= matrix(th_0,byrow=TRUE,b_rep,K); 
    
   # Bias correction factor 
   z0= qnorm(apply(th_ < th_0,2,sum)/b_rep); 
    
   jck_th= matrix(NA,N,K); 
   for (i in 1:N) { 
      jck_th[i,]= stat(x[-i,]); 
   } 
    
   L= matrix(apply(jck_th,2,mean),byrow=TRUE,N,K) - jck_th; 
   # Acceleration correction factor 
   a= apply(L^3,2,sum)/(6*apply(L^2,2,sum)^1.5); 
    
   alph= c(prb,1 + (1 - prb))/2; 
   z_a= qnorm(alph); 
    
   adj_alph= matrix(NA,K,length(z_a)); 
   limit= matrix(NA,K,length(z_a)); 
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   for (k in 1:K) { 
      adj_alph[k,]<- pnorm(z0[k] + (z0[k]+z_a)/(1-
a[k]*(z0[k]+z_a))); 
      limit[k,]= quantile(th_[,k], adj_alph[k,], type=qtype); 
   } 
    
   name_c= c("bca_lci","bca_uci","adj_a_lci","adj_a_uci"); 
   limit= cbind(limit,100*adj_alph) 
   colnames(limit)= name_c; 
    
   return(list(limit=limit)); 
    
}   # End for bc_a 
 
   n= dim(X)[1]; 
    
   parm_est= as.matrix(stat(X)); 
   KK= dim(parm_est)[2]; 
    
   b_tht= matrix(NA,B,KK); 
    
   if (!(is.null(rngs))) { 
         set.seed(rngs); 
   } 
    
   for (b in 1:B) { 
      i= sample(1:n,size=n,replace=TRUE); 
      b_tht[b,]= stat(X[i,]); 
   } 
    
   lo= prb/2; 
   up= 1-lo; 
    
   b_mean= colMeans(b_tht); 
   b_std= apply(b_tht,2,sd); 
   bias= (b_mean - parm_est); 
   ratio= abs(bias)/b_std; 
   rownames(bias)= "bias"; 
   rownames(parm_est)= "parm_est"; 
   rownames(ratio)= "ratio"; 
   b_mu_ci= apply(b_tht,2,quantile,prob=c(lo,.5,up),type=qtype); 
   name_r= c("p_lci","b_med","p_uci"); 
   rownames(bias)= "bias"; 
   rownames(parm_est)= "parm_est"; 
   rownames(ratio)= "ratio"; 
   rownames(b_mu_ci)= name_r; 
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   b_mu_ci= 
t(rbind(parm_est,b_mean,bias,b_std,ratio,prb,B,b_mu_ci)); 
    
   if (stat_out==1) { 
      bca_parm= 
bc_a(x=X,stat=stat,th_=b_tht,th_0=parm_est,prb=prb); 
      b_mu_ci= cbind(b_mu_ci,bca_parm$limit); 
   } 
    
   if (out==0) { 
      return( list(b_mu_ci=b_mu_ci) ); 
   } 
    
   if (out==1) { 
      return( list(b_mu_ci=b_mu_ci,b_tht=b_tht) ); 
   } 
    
}   # End for boot_fun 
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