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ABSTRACT 

THE EFFECTS OF AUTOMATION TRANSPARENCY AND ETHICAL OUTCOMES ON 
USER TRUST AND BLAME TOWARDS FULLY AUTONOMOUS VEHICLES 

 
Nathan Andrew Hatfield 

Old Dominion University, 2018 
Director: Dr. Bryan Porter 

 
 

 
The current study examined the effect of automation transparency on user trust and blame 

during forced moral outcomes. Participants read through moral scenarios in which an 

autonomous vehicle did or did not convey information about its decision prior to making a 

utilitarian or non-utilitarian decision. Participants also provided moral acceptance ratings for 

autonomous vehicles and humans when making identical moral decisions.  

It was expected that trust would be highest for utilitarian outcomes and blame would be 

highest for non-utilitarian outcomes. When the vehicle provided information about its decision, 

trust and blame were expected to increase. Results showed that moral outcome and transparency 

did not influence trust independently. Specifically, trust was highest for non-transparent non-

utilitarian outcomes and lowest for non-transparent utilitarian outcomes. Blame was not found to 

be influenced by either transparency, moral outcome, or their combined effects. Interestingly, 

acceptance was determined to be higher for autonomous vehicles that made the same utilitarian 

decision as humans, though no differences were found for non-utilitarian outcomes.  

This research draws on the importance of active and passive harm and suggests that the 

type of automation transparency conveyed to an operator may be inappropriate in the presence of 

actively harmful moral outcomes. Theoretical insights into how ethical decisions are evaluated 

when different agents (human or autonomous) are responsible for active or passive moral 

decisions are discussed. 
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I. INTRODUCTION 

In recent news, fully autonomous vehicles have been faced with real-world moral 

scenarios similar to those posed by the trolley problem. As of the writing of this thesis, Uber has 

garnered national coverage after its self-driving vehicle failed to detect a pedestrian crossing the 

road, resulting in the death of the pedestrian. The self-driving vehicle was occupied with a 

passenger who experienced the vehicle’s failure to swerve, in which it is plausible that the 

passenger’s attitudes toward the self-driving vehicle—to include trust and blame— changed as a 

direct result of the incident. Similarly, a passenger traveling in Tesla’s Model X engaged the 

adaptive cruise control feature during transport. While in an automated state, the vehicle 

conveyed multiple visual warnings to the driver before crashing into a barricade, causing the 

death of the single driver (Brown, 2018). Further inspection of the crash revealed that the driver 

did not reassume control of the vehicle prior to the collision. Both accidents indicate that 

autonomous vehicles have the potential to make costly errors with moral significance. Thus, 

understanding how conveyed system information in the context of moral outcomes can impact 

attitudes towards autonomous vehicles is critical.  

The invention of the automobile has transformed the way humans travel and continues to 

be a growing area for applied psychological research (e.g., Adrian, Postal, Moessinger, Rascal, & 

Charles, 2011; Hennessy & Wiesenthal, 1999; Ross, et al., 2015; Stokols, Novaco, Stokols, & 

Campbell, 1978). The American Automobile Association Foundation for Traffic Safety 

(AAAFTS) reported that American drivers spend 46 minutes traveling each day, amounting to 

nearly 10,700 accrued miles annually (Triplett, Santos, & Rosenbloom, 2015). Since 1991, 

aggregate commute time and mileage have steadily increased (Travel Volume Trends, Federal 
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Highway Administration, 2016); as a result, social and economic risks—such as fatalities and 

carbon emissions—have increased (Blincoe et al., 2002; National Safety Council, 2017), 

garnering attention from policy makers, researchers, and others impacted by such risks. 

The World Health Organization (2013) reported that 1.25 million fatalities in 2013 were a 

result of automobile accidents, making it the 9th leading contributor of death globally. In the 

United States alone, 2015 federal crash data revealed the largest year-to-year percent increase in 

motor vehicle deaths in nearly 50 years, resulting in 35,092 fatalities, and economic costs of 

$242 billion dollars (NHTSA, 2015). The National Highway Traffic Safety Administration 

(NHTSA)—after reviewing results from the National Motor Vehicle Crash Causation Survey—

concluded that 93% of automobile accidents are a result of human error (Bellis & Page, 2008; 

see also Singh, 2015). With these factors in mind, automobile manufacturers and policy makers 

have pursued initiatives to offset the staggering number of life-threatening safety hazards, 

recently with the goal of minimizing the role of the human operator through the advent of 

autonomous vehicle technologies. 

Autonomous Vehicle Technologies 

Autonomous vehicle (AV) technologies have rapidly evolved in the 21st century, giving 

the driver more flexibility, while minimizing routine-driving tasks normally reserved for the 

human operator (Kiernan, 2015). AVs are expected to increase public safety by reducing 

automobile accidents related to deliberate and even unintentional hazardous driving behaviors 

(Fagnant & Kockelman, 2015; WHO, 2013). In addition, AV technologies have the potential to 

bolster cost savings up to $5,000 a year by reducing travel times, carbon emissions, and fuel 

consumption (Fagnant & Kockelman, 2015). These technologies are designed to navigate a 
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traffic environment with limited human intervention via a suite of onboard computing settings 

that analyze traffic-relevant data to make goal-oriented decisions on behalf of the driver. 

To fully harness the benefits of AV technologies, NHTSA (2017) released a compendium 

of guidelines to educate state policy makers on how to safely integrate AVs for testing on public 

roadways. The guidelines feature a classification scheme for levels of automation adopted from 

the Society of Automotive Engineers (2016), ranging from: no automation (Level 0), driver-

assistance automation (Level 1), partial automation (Level 2), conditional automation (Level 3), 

high automation (level 4) and full automation (Level 5).  

After partitioning these levels in terms of human involvement, Levels 4 and 5 differ from 

Levels 0 through 3 by assuming all control of performance-based safety functions, with no 

expectation for the driver to intervene under any circumstance, though the option may be 

available. As a consequence, however, it is inevitable that fully autonomous vehicles (i.e., levels 

4 and 5) will be exposed to crash scenarios whereby decisions must be made on behalf of the 

driver without the driver’s knowledge or consent. Crash scenarios may have moral implications, 

like deciding who lives and dies in an unavoidable crash, and research is needed to determine 

how drivers will respond to such decisions carried out by fully autonomous vehicles.  

Autonomous Ethics 

Ethics is concerned with the governing principles or systems of thought that lead to 

subsequent actions and behaviors (Kiernan, 2015). Ethics, according to the Human Factors and 

Ergonomics Society (2005), is relevant to the safety of human operators, though research in this 

field is limited when it comes to fully autonomous vehicles (Kumfer, Levulis, Olson & Burgess, 

2016). More recently, some attention has been given to the role of ethics in designing 

autonomous vehicles, with a specific emphasis on philosophical theories about right and wrong 
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actions (Kumfer, Levulis, Olson, & Burgess, 2016). For example, to ensure an occupant’s safety, 

instances may arise in which autonomous vehicles will need to abandon the roadway to avoid 

accidents with other vehicles or pedestrians. Because fully autonomous vehicles are able to 

perform actions without human intervention, rapid moral decisions will need to be made 

independent of the driver. As expected, autonomous decisions pose real threats to drivers and 

innocent bystanders, while also introducing potential shifts in accountability for the 

consequences associated with the decision (Coeckelbergh, 2016). 

According to Goodall’s (2014) developmental work in autonomous vehicle ethics, 

scenarios that require ethical decisions from the autonomous vehicle have presented researchers 

with a series of challenges: first, to understand how to program vehicles to make ethical 

decisions that will not always have known outcomes; second, to ensure that cultural values and 

laws are embedded within the programming framework; and third, to confirm decisions are 

objective across a range of scenarios. These challenges will ultimately influence the way a 

vehicle decides to navigate potential accidents, as well as deciding who lives and dies in a fatal 

traffic scenario (Wallach & Allen, 2008). Greene, Rossi, Venable, and Tasioulas (2016) 

suggested that before embedding governing principles into autonomous agents it is critical to 

understand how to model such guidelines after human ethics, and thus referred to three schools 

of thought —deontology, utilitarianism, and virtue— to inform how autonomous systems ought 

to act. All three domains of thought have offered insight into machine ethics, though specific 

attention has been given to utilitarianism when considering the complex and often multi-layered 

scenarios that arise in traffic environments. 

Utilitarianism, also known as consequentialism, is an approach to moral reasoning that 

places emphasis on maximizing an optimal decision; and moral decisions are right to the degree 
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in which the common good is promoted (Mill, 1901). Experimental ethics is a data-driven 

approach that enables researchers to quantify and understand moral intuitions. The Trolley 

Problem, originally designed by Foot (1978), has been used as such a method, and has helped 

researchers to better understand the cognitive and neural mechanisms involved in moral 

decision-making processes (Greene, Morelli, Lowenberg, Nystrom, & Cohen, 2008; Greene, 

Nystrom, Engell, Darley, & Cohen, 2004), while also illuminating discussions about how to 

program autonomous vehicles (Nyholm & Smids, 2016). 

The Trolley Problem has taken on many permutations since its inception, though the 

footbridge and switch scenarios have become more popularized in discussions about 

deontological (some actions are always wrong, regardless of their consequences) and utilitarian 

(an action is wrong in proportion to its consequence) ethics. The footbridge scenario describes a 

runaway trolley heading towards a group of people. Participants are presented with an option to 

save the group of people by pushing a man off of an overhanging footbridge and onto a track 

below, subsequently stopping the trolley and saving a group of five people in the trolley’s 

onward path. The switch scenario is a modified version of the footbridge scenario and provides 

participants with the option of flipping a switch to divert the trolley onto a separate track on 

which one person is standing, ultimately taking the person’s life. Both scenarios present 

participants with a trade-off between sacrificing one life to save a group of lives or allowing the 

group to perish by not intervening. Results have found that participants deem the switch option 

to be more morally acceptable than pushing a man off of a footbridge (Cushman, Young, & 

Hauser, 2006) due to a dichotomy that exists between personal and impersonal harm similar to 

Milgram’s (1974) work.  Though some have argued that the Trolley Problem is too far removed 

to make noteworthy contributions for understanding autonomous ethics (Nyholm & Smids, 
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2016), until more sophisticated methods become available (Cushman & Greene, 2012), the 

Trolley Problem remains a viable method to pioneer questions about driver attitudes towards 

autonomous vehicles. 

        Bonnefon, Shariff, and Rahwan (2016), for example, designed scenarios that mirrored the 

type of moral dilemmas featured in the Trolley Problem but revamped them to fit traffic 

scenarios including autonomous vehicles. Participants were surveyed to determine how ethical 

dilemmas influenced attitudes towards owning an AV. In general, participants thought it was 

morally acceptable for an AV to sacrifice a passenger if it meant pedestrians could be saved, 

though they were unwilling to purchase such an AV for themselves. These results highlight the 

value users place on autonomous systems to carry out decisions that align with users’ ethical 

preferences, and also highlight how ethical decisions can differ based on personal or impersonal 

involvement with an autonomous vehicle (Greene et al., 2009).  

Though Bonnefon et al. (2016) were the first to consider ethical dilemmas in terms of 

autonomous vehicle technologies from a survey standpoint, Wintersberger, Frison, Riener, and 

Boyle (2016) altered the switch Trolley Problem to better fit into a traffic context that was 

appropriate for a driving simulator. The switch scenario required participants either to select a 

switch in the driving simulator to reroute the vehicle thereby killing a group of pedestrians, or to 

refrain from selecting the switch whereby the vehicle would stay on its projected course, 

ultimately leading to self-inflicted harm. The participants were always presented with the option 

of selecting the switch to make the AV swerve, though information about the type and quantity 

of victim varied. In addition, each participant was given a percentage about their own life 

expectancy to help the researchers determine the maximum threshold value in which they would 

agree to stay the course and not swerve. The results revealed a significant effect of knowledge 
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about life expectancy on deciding to swerve or stay—with participants being willing to risk their 

own life to save the lives of others even when the probability of surviving the crash was low. In 

addition, as the number of potential pedestrian causalities increased, the likelihood of the 

participant allowing the vehicle to risk their life also increased. 

 Taken together, these studies reveal that data-driven techniques can be used to measure 

decisions about usually abstract thoughts, which can be used to explore attitudes towards AVs 

that make utilitarian or non-utilitarian decisions. The Trolley Problem may also provide a 

framework to explore the effects of design features, such as automation transparency, on user 

attitudes towards impending autonomous decisions. For example, if information about the 

vehicle’s performance is withheld from the driver or if the vehicle’s actions deviate from the 

driver’s expectations, the driver may express different attitudes, such as trust and blame, towards 

the vehicle, potentially and significantly altering the driver-vehicle relationship.  

Automation Transparency  

An important factor of well-designed automation is the ability for automation to provide 

feedback to the user about its performance state. Disclosing information to the user about the 

system’s purpose, underlying processes, intent, future actions, or reasoning processes is 

considered automation transparency (Endsley, Bolstad, & Jones, 2003; see also: Lee, 2012; 

Mercado et al., 2016, p. 402). Ultimately, automation transparency serves to furnish the user with 

an understanding of the automation’s internal operations and logic (Seong & Bisantz, 2008), 

with the goal of supporting supervisory control or manual intervention (Ososky et al., 2014; 

Sanders et al., 2014). Automation transparency can eliminate speculation about poor 

performance originating from a system’s design, leading to increased trust (Chen, Barnes, & 

Harper-Sciarini, 2011; Glass, McGuinness, & Wolverton, 2008; Lyons et al., 2017; Wang, 
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Jamieson, & Hollands, 2009), engagement (Wright, 2015; Lyons, 2013), and understanding 

(Körber, Prasch, & Bengler, 2018) when interacting with low and intermediate levels of 

automation (Ensdley, 2017).  

Adaptive cruise control (ACC), for example, is an intermediate automation setting that 

enables the driver to select a desirable speed to be implemented by the vehicle’s throttle-

accelerator. ACC is not fully autonomous and therefore relies on the driver to shift between 

manual and intermediate automation settings. ACC collects data from the driving environment 

and makes automated speed adjustments to maintain appropriate distance from a lead vehicle. 

The system may request the driver to reassume control if performance limitations are exceeded. 

A driver’s ability to understand an ACC system, to include knowing how and when to retake 

control, is critical for avoiding potential crashes. ACC operators generally have difficulty 

understanding how the system operates due to a lack of conveyed system information (Jenness et 

al., 2008; Körber, Prasch, & Bengler, 2018; Stanton & Marsden, 1996), potentially interfering 

with their ability to anticipate and retake control of the vehicle in a skilled manner (see Seppelt 

& Lee, 2007). In contrast, ACC systems that display a continuous stream of real-time 

information about the system’s performance can assist the operator with calibrating appropriate 

user reliance, intervention and following strategies, and faster brake response times compared to 

ACC systems that do not provide such information (Seppelt & Lee, 2007).  

Trust in Automation 

Trust in automation has been investigated in many contexts and has been found to mirror 

social trust (Nass, Fogg, & Moon, 1996). Trust in automation is best captured during scenarios 

characterized by uncertainty and vulnerability (Lee & See, 2004), whereby the user evaluates the 

automation based on predefined expectations of how the automation is expected to act. Several 
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models of trust have been proposed (Barber, 1983; Lee & Moray, 1994; Muir, 1994), with Ajzen 

and Fishbein’s (1980) model being careful not to conflate distinct constructs of trust, such as 

beliefs, intentions, attitudes, and behaviors. In fact, it is on the basis of these theoretical 

components that Lee and See (2004, p. 54) defined trust as “an attitude that an agent will help 

achieve an individual’s goals in a situation characterized by uncertainty and vulnerability.” Lee 

and See (2004) re-emphasized Lee and Moray’s (1992) three-dimensional model of trust that 

includes: performance, process, and purpose. The performance axiom of trust rests on a system’s 

ability to execute actions in a manner that is consistent with a user’s goals; the process axiom of 

trust rests on a system’s capability for completing an action given certain situational contexts; 

and the purpose axiom of trust rests on a system’s intentionality for why it was developed.  

Research on trust in automation has also considered the interplay of a system’s reliability 

and human’s expectation of how a system will act (see Hoff & Bashir, 2015; Muir & Moray, 

1996). Moreover, human-operators tend to trust automated systems that are highly reliable (Lee 

& Moray, 1992) and behave according to expectations (Merritt & Ilgen, 2008; Robert, Denis, & 

Hung, 2009), and distrust automated systems that fail to meet expectations (Lee & See, 2004). 

Though many frameworks of trust in automation exist, this thesis operated on Lee and See’s 

(2004) definition of trust and evaluated user’s attitudes towards an autonomous vehicle. 

The level of trust humans place in automation can also influence strategies on how to use 

automation (Lee & Moray, 1994). When humans overtrust a system to perform decisional tasks 

more than themselves, they can become complacent and disengaged, leading to automation bias 

(Mosier et al., 1998; Skitka, Mosier, & Burdick, 1999), poor detection of automation failures 

(Parasuraman, Molloy, & Singh, 1993), and automation misuse (Parasuraman & Riley, 1997). 

Similarly, when automation fails to live up to performance expectations, undertrust and 
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automation disuse can occur (Parasuraman & Riley, 1997), resulting in unnecessary manual 

control (Lee & Moray, 1994). Calibrating an appropriate level of trust is therefore essential for 

furnishing cooperative and productive relationships between humans and automation (Sheridan 

& Henessy, 1984), and is necessary to curtail misuse and disuse of fully autonomous vehicles 

(Lee & See, 2004). When the user is made aware of the system’s inner workings, research 

suggests that trust is better calibrated, and can withstand and recover from automation failure 

(Wang, Jamieson, & Hollands, 2011).  

Relationship Between Transparency and Trust 

More recently, research has focused on the relationship between automation transparency 

and trust, but not explicitly in the context of fully autonomous vehicles (Levels 4 and 5). 

Verberne, Ham, and Midden (2012), for example, examined whether trust and acceptance ratings 

in ACC systems (Levels 2 and 3) varied as a function of the system’s level of transparency. 

Research has revealed that transparency can be broadly operationalized as the presence or 

absence of information (e.g. Lyons et al. 2017).  For example, Sheridan and Verplank’s (1978) 

10-level automation classification scheme can be understood in terms of transparency, with low 

automation (levels 1-5) providing information to the user without taking action on the user’s 

behalf, intermediate automation (levels 6-7) providing information to the user while also taking 

action on the user’s behalf, and full automation (levels 8-10) taking over complete control 

without providing information to the user about its actions. Verberne and colleagues (2012) 

found that ACC systems that provide information about driving tasks in the form of pictorial 

icons (information present) are more trusted and accepted than ACC systems that do not provide 

information (information absent). Moreover, trustworthiness was higher for ACC systems that 
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provided information to the user without taking action, an important finding when considering 

fully autonomous vehicles.  

Similarly, Beller, Heesen, and Vollrath (2013) investigated whether changes in the 

driver-vehicle relationship occurred when uncertainty warnings about the ACC’s performance 

were issued to the driver via a graphical modality displayed on the dashboard. The icon was used 

to give the driver an indication of the vehicle’s uncertainty in times of inadequate self-

performance, a form of automation transparency (Mercado et al., 2016). Uncertainty warnings 

resulted in higher subjective trust scores compared to non-warnings. Other research suggests that 

using textual (Chen et al., 2014) or auditory (Forster, Naujoks, & Neukum, 2017) explanations 

can increase trust so long as the system’s decision-making processes are conveyed to the user 

(see Northdurft & Minker, 2016; Oduor &Wiebe, 2008; Sanders, Wixon, Schafer, Chen, & 

Hancock, 2014).  

Blaming Automation 

It is plausible that shared social norms between technology and humans (Nass, Fogg, & 

Moon, 1996) will lead to instances where the user will not only trust (Nass & Lee, 2001; Reeves 

& Nass, 1996) a system but also blame a system for not conforming to performance 

expectations, especially if nonconformities are perceived to be intentional (Malle, Monroe, & 

Guglielmo, 2014). Blame evaluations, according to Malle, Guglielmo, and Monroe (2012), can 

be divided into three categories: affirming norms, evaluating events, and evaluating agents. 

Affirming norms is the process by which norms are evaluated against other norms; evaluating 

events is the process by which observers appraise the outcome of an event against a set of norms; 

and evaluating agents is the process by which observers assign moral consequences, such as 
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blame, to agents that contributed to a negative event outcome (Malle, Guglielmo, & Monroe, 

2014).  

Before blame can be ascribed to the agent for a negative outcome, the individual first 

considers whether the outcome was intentional (Malle, Guglielmo, & Monroe, 2012). If the 

negative outcome is deemed to be intentional, the individual then determines whether the agent 

was justified in making the decision based on the reasons leading up to the outcome—whereby 

blame is less severe if the agent’s reasons are justifiable (Malle, Guglielmo, & Monroe, 2014). 

Intentionality is a primary criterion for which blame is assigned to an agent (Alicke, 2000), and 

research suggests that humans consider agents, such as computers, to be intentional (Friedman & 

Millet, 1995).  

In terms of automation research, blame has received little attention, but may be intimately 

related to trust in automation. Research has found that automation transparency, when presented 

in the form of system reasoning, increases subjective trust ratings (Glass, McGuiness, & 

Wolverton, 2008). Because automation transparency conveys a system’s reasoning to the 

operator, the operator may also be in a position to evaluate the system’s reasoning against the 

system’s performance outcomes and assign blame when optimal outcomes are violated. In fact, 

Gray and colleagues (2007) found that technology with a conveyed state of mindfulness can 

make users more prone to blame systems for wrong actions, giving credence to the system being 

perceived as a responsible moral agent (Waytz, Heafner, & Epley, 2010). The relationship 

between automation transparency, trust, and blame therefore introduces the possibility of an 

automation irony (see Bainbridge, 1983). Specifically, automation transparency can be used to 

communicate a system’s reasoning processes: leading to increased trust. In contrast, automated 

systems without transparency can make users less trusting, but the system should not be 
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perceived as an intentional agent with an independent mind worthy of blame to the same degree 

as a transparent system. Therefore, designing systems that are more transparent may increase 

trust while simultaneously increasing the opportunity for blame due to increased intentionality.  

Relationship Between Transparency and Blame 

Automated systems that possess anthropomorphic qualities, such as rational thought and 

expressive emotion, have been found to affect the way users trust and blame technologies (Gray, 

Gray, & Wegner, 2007).  Waytz, Heafner, and Epley (2010), for example, investigated user-trust 

and blame assignment for anthropomorphic and non-anthropomorphic autonomous vehicles. The 

results found that anthropomorphic vehicles that possessed a name, gender, and voice were better 

trusted than vehicles that did not have such qualities. The study also found that participants were 

less likely to assign blame to anthropomorphic autonomous vehicles that were struck by another 

vehicle than agentic vehicles. Though the authors were unable to pinpoint why blame scores 

differed between autonomous vehicle conditions, they drew on the role human-like qualities 

played in diminishing the perceived responsibility attributed to the anthropomorphic vehicle. If 

the anthropomorphic autonomous vehicles were at fault for the accident, however, 

anthropomorphic qualities might also elicit more blame from the user due to perceived reasoning 

abilities, a precursor for ascribing blame (Malle, Guglielmo, & Monroe, 2014).  

Similarly, Kim and Hinds (2006) explored blame and credit assignment in low and high 

autonomous robots. The study hypothesized that highly autonomous robots would receive higher 

blame scores than low autonomous robots, due to the perceived level of intention inherent in 

highly autonomous robots, such as conveyed information about performance and actions.  

Robots were considered transparent if an explanation was given for an unexpected behavior and 

non-transparent if not. The results confirmed that higher blame scores were assigned to highly 
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autonomous robots as compared to low autonomous robots. The results did not find the 

transparent manipulation to explain blame beyond the automation condition, arguably because 

the autonomy manipulation was already inherently transparent or non-transparent. These results 

indicate that fully autonomous robots might be perceived as transparent and therefore worthy of 

blame when performance information is conveyed to the user.   

Malle, Schuetz, Arnold, Voiklis, and Cusimano (2015) investigated the degree to which 

blame assignment differed between a human or robot character when presented with the same 

moral dilemma. The dilemma was a classic utilitarian tradeoff in which a human or robot took 

action or remained inactive when determining the direction of a trolley. Acceptance ratings for 

taking action to produce a utilitarian outcome were higher for the robot than the human, 

suggesting that participants expected robots to make these decisions slightly more than humans. 

Conversely, when the robot character did not intervene to produce a utilitarian outcome, 

participants assigned more blame to the robot than the human character that made the exact same 

decision. The results highlight differences in moral expectations for humans and robots, with 

robots being held more accountable than humans for not intervening to produce a utilitarian 

outcome and also being held less accountable than humans for intervening to produce a 

utilitarian outcome. Moreover, though not measured in this study, the authors suggested that trust 

might be affected when robots deviate from expected outcomes, in which robots will need to 

offer reasoning for their decisions to maintain trust. 

Human Factors, Ethics, and Autonomous Vehicles 

Autonomous vehicles that are forced to make ethical decisions might be a strong avenue 

for exploring whether blame and trust assignment varies as a function of high or low 

transparency. Because humans and automated technologies share social norms during interaction 



15 
 

(Reeves & Nass, 1996), understanding the types of norms humans expect autonomous vehicles 

to uphold warrants the need for further investigation and presents a unique avenue for marrying 

ethics and human factors research. 

Where prior research has looked at trust and blame separately, this thesis combined both 

constructs and included morality and transparency in the experimental design. Moreover, this 

thesis served to determine how autonomous vehicles are evaluated when making optimal or non-

optimal moral decisions. This was an important extension to past research, in that evaluations 

would not only be made on the basis of a moral outcome but also the agent performing the 

outcome. Participants who are more morally accepting of optimal moral decisions were expected 

to be more trusting of autonomous vehicles that executed optimal moral decisions, especially 

when the autonomous vehicle’s rationale supported such decisions. Moreover, rationale for 

optimal moral decisions might further increase trust than optimal moral decisions that lack 

rationale. Including a layer of system transparency in the experimental methodology may further 

support what is known about trust in automation. Yet, it remains unknown how system 

transparency will also influence blame ascription when non-optimal moral outcomes occur. This 

thesis examined potential changes in blame ascription when an autonomous vehicle was directly 

responsible for a moral outcome, dissimilar from Waytz, Hefner, and Epley’s (2014) 

methodology that assessed blame when another vehicle was at fault.  

Lastly, this thesis sought to explore potential discrepancies between Malle et al’s (2015) 

and Bonnefon et al.’s (2015) findings. Bonnefon et al’s (2015) research indicated that moral 

permissibility is highest for utilitarian autonomous vehicles that do not sacrifice the driver. Malle 

et al’s (2015) research found that moral preference differs for humans and robots faced with the 

same moral scenario, with robots being expected to make utilitarian decisions more than humans. 
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Malle’s experiment separated robot actions from human actions, whereas the nature of 

Bonnefon’s study requires autonomous vehicles to perform actions on behalf of humans.  Thus, 

exploring potential differences in moral permissibility when a human does or does not have 

control of the vehicle was expected to introduce dissimilarities in moral norms. 

Therefore, the current study examined the following hypotheses: 

Hypothesis 1 

Trust and blame scores would differ between the transparent condition and the non-transparent 

condition, with trust and blame scores being higher in the transparent condition. 

Hypothesis 2  

Trust and blame scores would differ between utilitarian outcomes and non-utilitarian outcomes, 

with trust scores being higher in the utilitarian condition and blame scores being higher in the 

non-utilitarian condition. 

Exploratory Interaction 

 Trust scores would decrease in the non-utilitarian non-transparent condition and increase in the 

utilitarian transparent condition. In addition, blame scores would increase in the non-utilitarian 

transparent condition and decrease in the utilitarian transparent condition. 

Exploratory Question:  

Moral acceptance ratings would be higher, in general, for AV outcomes than for synonymous 

human outcomes. 
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II. METHOD 

Sample Estimate and Experimental Design 

        An a priori power analysis was conducted using a statistical power analysis software, 

G*Power 3.1 (Faul, Erdfelder, Lang, & Buchner, 2007). The analysis assumed a power of .80 for 

the main effects and interaction. Given the 2 X 2 Analysis of Variance being conducted for trust 

and blame, results from the power analysis for the main effects and the interaction term were the 

same, due to the same degrees of freedom for each term. A conservative effect size of .05 partial 

eta squared was chosen for this study, with an alpha level set at .05. The power analysis indicated 

152 participants were needed to detect the proposed effect. Thus, a minimum of 38 participants 

were needed for each condition of the 2 (transparent vs non-transparent) X 2 (utilitarian vs non-

utilitarian) between-subjects design. 

Participants 

Undergraduate psychology students (N = 186, Mage = 23.5 years, SD = 6.57, age range: 

18-51 years) were recruited from Old Dominion University’s SONA participant pool: male (N = 

43, Mage = 22.54) and female (N = 142, Mage = 23.20). Each participant was awarded .5 

research credit after completing the study (for work expected to require less than 30 minutes). 

The only criterion for participation in this study was for students to have a valid driver’s license 

and be at least 18 years of age.  

Materials 

Two scenarios provided the framework for each of the four separate conditions featured 

in this thesis (see Appendix A for each scenario). Following Greene, Morelli, Lowenberg, 

Nystrom, and Cohen’s (2008) and Malle et al.’s (2015) methodology, we required participants to 
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read about an autonomous vehicle faced with a moral dilemma in which the autonomous vehicle 

made a utilitarian or non-utilitarian decision. Participants were then instructed to answer a moral 

acceptance scale based on the autonomous vehicle making a utilitarian decision. The moral 

acceptance scale required participants to answer “yes” or “no” about the moral acceptability of 

the autonomous vehicle, and were then required to rate the moral acceptability of the action on a 

nine-point Likert scale (1 = completely unacceptable, 9 = completely acceptable). At the end of 

the study, participants rated the moral acceptability of a similar moral dilemma, only this time a 

human driver was making the moral decision and not an autonomous vehicle.  

        Trust in automation was measured by a 12-item questionnaire developed by Jian, Bisantz, 

and Drury (2000) (see Appendix B). Each item was measured using a seven-point Likert scale (1 

= totally disagree, 7 = totally agree). Each item of the scale was adapted so that the word 

“system” was replaced with “autonomous vehicle”, similar to that of Verberne, Ham, Midden’s 

(2012) questionnaire. Responses for each item (e.g., “I would be confident in the autonomous 

vehicle if it were my own.”) were recorded so that higher scores represented higher trust in 

automation. According to the reliability analysis conducted, the data revealed moderate 

reliability (Cronbach’s alpha = .77).  

Blame was assessed using Waytz, Heafner, and Epley’s (2014) Blame for vehicle 

measure. The measure is comprised of 8 items using a ten-point Likert scale (0 = not at all, 10 = 

very much) (see Appendix C). Questions measured participants’ blame for the transparent or 

non-transparent vehicle’s decision as well as the passenger of the vehicle (e.g., “How much is the 

car itself at fault?”). In total, six of eight items constituted a single composite score for blame 

ratings toward the self-driving vehicle, indicating strong internal consistency reliability 

(Cronbach’s alpha = .87). 
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Procedure 

Before soliciting participants, the study was approved by Old Dominion University’s 

Institutional Review Board (IRB). Participants registered to complete the experiment via the 

department’s SONA platform; the survey itself was administered via Qualtrics.  Participants 

were given a brief overview of the study’s purpose and a notification sheet describing the study. 

The experiment lasted approximately 15 minutes. Qualtrics randomly assigned participants to the 

conditions of a 2 (transparency level: transparent vs non-transparent) x 2 (driving outcome: 

utilitarian vs non-utilitarian) between-subjects experimental design, and counterbalanced the 

presentation of one of four driving scenarios. Each driving scenario included a brief description 

of the autonomous vehicle’s capabilities before further manipulations (i.e., transparency or moral 

outcome) were made. Participants first provided a moral acceptance rating for the autonomous 

vehicle’s initial moral dilemma, and then continued reading the scenario in which transparency 

and moral outcome were manipulated. For each moral outcome, participants were presented with 

a manipulation check in which they were asked if the autonomous vehicle provided any 

information about why it decided to pursue a particular course of moral action. After reading the 

final outcome, participants’ attitudes of blame and trust were measured. Participants were then 

asked to complete the same moral acceptance scale but for a human who was faced with the 

exact same dilemma as the autonomous vehicle. Upon completing all three scales, demographic 

information was collected from each participant (see Appendix D). 
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III. RESULTS 

Of the 186 participants, 35% incorrectly answered the manipulation check. The 

manipulation check was designed to assess participants’ attention to each scenario and 

understanding of the vehicle’s conveyed information. For the transparency condition, the vehicle 

provided information to participants about its course of action, in which participants should have 

indicated that the vehicle did in fact provide information. Similarly, for the non-transparent 

condition, participants should have answered “no” when asked if the vehicle provided 

information about its course of action, because no information was provided to the participant. 

Removing participants who failed the manipulation check from the sample resulted in unequal 

sample sizes across conditions. Therefore, the results and conclusions were interpreted with 

caution for those who incorrectly answered the manipulation check.  

All analyses were conducted with a standard alpha level set at .05, using R (R Core 

Team, 2017). Data for blame and trust were analyzed separately in a 2 (transparency, no 

transparency) x 2 (utilitarian, non-utilitarian) between-subjects ANOVA. The data were first 

analyzed to ensure the assumptions of ANOVA were not violated. Subsequently, all effects—

main and interaction—were tested, and Bonferroni’s adjustment was used for post-hoc analyses 

to maintain familywise alpha at .05. 
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Table 1  
 
Means, standard deviations, and correlations with confidence intervals 
  

Variable M SD 1 2 3 
      
1. Mean blame 6.97 2.47       
            
2. Mean trust 3.29 0.91 .27**     
      [.13, .39]     
            
3. Human accept 3.15 2.22 -.18* .11   
      [-.31, -.04] [-.04, .25]   
            
4. AV accept 3.34 2.20 -.19* .01 .71** 
      [-.32, -.04] [-.14, .15] [.63, .77] 
            

 
Note. * indicates p < .05; ** indicates p < .01. M and SD are used to represent mean and standard deviation, 
respectively. Values in square brackets indicate the 95% confidence interval for each correlation.  
 

Trust 

Average mean trust scores were submitted to a 2 x 2 between subjects ANOVA, with 

transparency and moral outcome as fixed, between subjects factors. Mean trust scores were 

normally distributed as evidenced by skewness (.220) and kurtosis (.785) values falling below 

recommended cutoff values of ± 2 (Gravetter & Wallnau, 2014). Levene’s test indicated that 

homogeneity of variance was not violated, F(3, 182) = 1.84, p = .142. Averaging across moral 

outcome, a significant main effect for transparency was not found, F(1, 182) =  .657, p = . 419, 

partial h2 = .004, indicating that a vehicle communicating its rationale may not increase trust any 

more than a vehicle not communicating its rationale, refuting Hypothesis 1 that argued more 

communication would increase trust. Averaging across transparency, there was no significant 

main effect for moral outcome, F(1, 182) =  2.29, p = . 132, partial  h2 = .012, suggesting that 
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utilitarian moral decisions may not increase trust any more than non-utilitarian moral decisions, 

refuting Hypothesis 2 that argued utilitarian decisions would increase trust more than non-

utilitarian decisions. The interaction of transparency and moral outcome was significant F(1, 

182) = 4.96, p = .027, partial η2 = .03. Post-hoc comparisons using Bonferroni’s familywise 

adjustment (see Maxwell & Delaney, 2003, p. 308) explored the interaction by examining the 

simple effect of A within specific levels of B (𝛼 = .%&
'
= 	 .025). Post hoc analyses revealed that 

mean trust scores for the non-utilitarian non-transparent condition (M = 3.59, SD = 1.06) were 

significantly higher than the utilitarian non-transparent condition (M = 3.10, SD = .86), t(90)= -

2.44, p =.017, d= .51. Such findings indicate that differences in trust for non-utilitarian moral 

decisions depends on the absence of communication to the driver. This finding departed from the 

proposed direction of the Exploratory Interaction that transparent AVs would receive more trust 

when making utilitarian decisions than non-transparent AVs making non-utilitarian decisions. 

No other significant simple effects were observed.  

 
Table 2 
  
Fixed-Effects ANOVA results using Mean Trust as the criterion 
  

Predictor 
Sum 
of 

Squares 
df Mean 

Square F p partial η2 
partial η2  
95% CI 

[LL, UL] 
(Intercept) 2019.10 1 2019.10 2511.00 <.001   

moral 1.84 1 1.84 2.29 .132 .01 [.00, .06] 
transp 0.53 1 0.53 0.66 .419 .00 [.00, .04] 

moral x 
transp 3.98 1 3.98 4.96 .027 .03 [.00, .09] 

Error 146.35 182 0.80     
 
Note. LL and UL represent the lower-limit and upper-limit of the partial η2 confidence interval, respectively. 
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Figure 1. The difference in mean trust scores between utilitarian and non-utilitarian conditions as a function of 
transparency. Error bars represent 95% between-subject confidence intervals. 
 
 
Table 3 
 
Bonferroni Comparison for Mean Trust  

     
95% CI of the 

Difference 
Comparisons  Mean Trust 

Difference  
Std. Error 
Difference 

p Lower 
Bound 

Upper 
Bound 

Trans vs Non-Trans    
   (level: Util) 

.19 0.18 .311  -0.17       0.55 

Trans vs Non-Trans 
   (level: Non-Util) 

         -.39        0.19 .038  -0.78     -0.02 

Util vs. Non-Util 
   (level: Trans) 
Util vs. Non-Util 
   (level: Non-Trans) 

.09 
 
         -.49 

0.17 
 
 0.20 

.582 
 
           .017* 

-0.24 
 
    -0.89 

       .43 
 
       -.09 

* p < 0.025 (Bonferroni correction for significant interaction requires an examination of the simple effect 
of A within specific levels of B and vice versa. To maintain familywise alpha at .05: 𝛼 = .%&

-
= .%&

'
=

	.025. ).  
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Blame 

Average mean blame scores were submitted to a 2 x 2 between subjects ANOVA, with 

transparency and moral outcome as fixed, between-subjects factors. Mean blame scores were 

normally distributed as evidenced by skewness (-.936) and kurtosis (.343) values falling below 

recommended cutoff values of  ±	2  (Gravetter & Wallnau, 2014). Levene’s test indicated that 

homogeneity of variance was not violated, F(3, 182) = .182, p = .909. All of the proposed effects 

were not significant, refuting Hypotheses 1, Hypothesis 2, and the Exploratory Interaction. These 

findings suggest that utilitarian and non-utilitarian moral outcomes—as well as the vehicle’s 

communication strategy—do not influence blame towards autonomous vehicles independently or 

jointly.  

 
Table 4 
 
Fixed-Effects ANOVA results using Mean Blame as the criterion 
  

Predictor 
Sum 
of 

Squares 
df Mean 

Square F p partial η2 
partial η2  
95% CI 

[LL, UL] 
(Intercept) 9022.27 1 9022.27 1464.02 <.001   

moral 5.99 1 5.99 0.97 .326 .01 [.00, .05] 
transp 0.30 1 0.30 0.05 .825 .00 [.00, .02] 

moral x transp 0.17 1 0.17 0.03 .867 .00 [.00, .02] 
Error 1121.60 182 6.16     

 
Note. LL and UL represent the lower-limit and upper-limit of the partial η2 confidence interval, respectively. 
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Figure 2. The difference in mean blame scores between utilitarian and non-utilitarian conditions as a function of 
transparency. Error bars represent 95% between-subject confidence intervals. 
 

Acceptance 

Lastly, two paired-samples t-tests were conducted to compare moral acceptance scores 

towards human drivers and autonomous vehicles for each moral outcome type. The results 

indicated that for utilitarian outcomes, mean moral acceptance scores were significantly higher 

for autonomous vehicles (M = 3.33, SD = 2.2) than for humans (M = 2.9, SD = 2.16), t(93) = 

2.75, p = .007, d = .28. This finding suggests that humans may hold other humans to higher 

moral standards than vehicles when an actionable decision must be made. Moral acceptance 

scores for autonomous vehicles (M = 3.35, SD = 2.21) were not significantly different from 

humans (M = 3.39, SD = 2.27) when making a synonymous non-utilitarian decision, t(91) = -.23, 

p = .82, d = .02, indicating that moral standards may be similar for both agents when the 
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outcome is a result of inaction. See figures 3 and 4, respectively. Taken together, the results 

partially support the Exploratory Question that AVs would receive higher acceptance ratings 

than humans for synonymous moral outcomes. 

 
 

Figure 3: Note. The difference in mean acceptance scores between humans and autonomous vehicles making the 
same utilitarian decision. Error bars represent 95% confidence intervals. 
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Figure 4: Note. The difference in mean acceptance scores between humans and autonomous vehicles making the 
same non-utilitarian decision. Error bars represent 95% confidence intervals. 
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IV. DISCUSSION 

The effect of autonomous vehicle transparency on trust and blame has not been 

investigated in moral contexts, where conveyed information may or may not interact with a 

moral outcome. To explore these constructs, the current study required participants to read 

through a moral scenario that resulted in an autonomous vehicle making a utilitarian or non-

utilitarian decision with or without information to support its decision.  

Overview of Findings and Theoretical Implications 

Trust in automation has been found to vary as a function of transparency (Lyons et al., 

2017; Verberne, Ham, & Midden, 2012), with trust increasing for systems that convey 

information to the user during performance. Blame has also been found to increase in the 

presence of automation transparency (Kim & Hinds, 2006). Unexpectedly, automation 

transparency did not result in significantly higher trust or blame scores independent of moral 

outcome, contesting Hypothesis 1. A potential lack of manipulation saliency may have interfered 

with the expected transparency effect when acting independently. When, however, the 

transparency manipulation was coupled with non-utilitarian outcomes, trust in automation 

increased (Exploratory Interaction). Subsequently, the effects of transparency and moral outcome 

did not influence blame as expected. It is difficult to pinpoint an explanation for these results— 

because blame ascription, in part, requires an agent to intentionally violate a user’s expectation, 

and moral expectations were not explicitly balanced in the experimental procedures—a 

limitation of the study. 

Second, utilitarian moral outcomes were expected to result in higher user trust and lower 

user blame, due to partiality given to five-for-one tradeoffs that mediate moral action through 

some other device (in this case the vehicle) (Hauser, Cushman, Young, Jin, & Mikhail, 2007; 
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Moore, Clark, & Kane, 2008). The results do not support this hypothesis and indicate that moral 

outcomes may not be assessed solely on aggregate loss and gains, but rather other factors, such 

as intentionality (Greene et al, 2009) and direct or indirect harm (Aquinas, 1988; Greene et al., 

2001).  

Literature on the Doctrine of Doing and Allowing (Quinn, 1989; Rickless, 1997) may 

provide insight into why higher trust was found for non-utilitarian outcomes in the presence of 

non-transparency. The automaticity hypothesis suggests that moral actions are evaluated 

implicitly, in which active harm is less morally acceptable than passive harm (Cushman et al., 

2006; Gleicher et al., 1990; Spranca, Minsk, & Baron, 1991). The practice of allowing harm to 

occur is known as an omission bias, whereas doing harm is known as a commission bias (Baron 

& Ritov, 2004). Engaging in an act that results in a negative outcome as a means to prevent a 

more widespread negative outcome is more morally salient, and thereby less morally acceptable 

(Ritov & Baron, 1990). Moreover, a vehicle remaining on course and allowing five pedestrians 

to die is more acceptable (omission bias) than choosing to kill one pedestrian actively 

(commission bias), because adverse emotions are more salient for action than for inaction 

(Bartels, 2008; Greene et al., 2008).  

Though the optimal decision in a moral dilemma would be to ensure the least amount of 

aggregate loss, the vehicle would have to actively inflict harm in order to do so, perhaps 

activating strong emotional responses and perceived responsibility for such decisions (see 

Greene et al., 2001; Ritov & Baron, 1990). Considering that both outcomes resulted in death, it is 

plausible that participants supported the vehicle’s omission, leading to higher trust than vehicles 

that made a commission (active response), thereby supporting the Doctrine of Doing and 

Allowing and discrediting traditional consequentialist beliefs. Taken together, consequentialism 
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should not serve as a panacea for autonomous vehicle programming guidelines but rather a 

starting point. To increase trust, manufacturers should better understand the diverse nature of 

human moral preferences and how autonomous systems can be designed to execute actions in 

alignment with such preferences.  

The transparency manipulation in this thesis can be understood in terms of messages that 

contain how information or a combination of how and why information.  Participants assigned to 

the transparency condition, for example, were provided with information about how and why the 

autonomous vehicle took a specific course of action (how and why manipulation), while 

participants in the non-transparent condition were only informed about the vehicle’s course of 

action without the vehicle’s rationale (how without why manipulation). Paralleling Koo and 

colleague’s (2015) findings, those that were provided with how and why information (the 

transparency manipulation) were less trusting of the autonomous vehicle, perhaps due to an 

additional need for cognitive resources to comprehend the vehicle’s rationale. Further 

examination of the manipulation check supports this assumption, with 24% of the total fail rate 

occurring in the transparency condition.  

In extension, this study suggests that a failure to describe an autonomous vehicle’s 

rationale for an omission outcome may have contributed to higher trust ratings. When decision 

rationale is not provided by a vehicle, users may not assign intent or evaluate the vehicle’s 

rationale against their own preferences as would be expected for a transparent autonomous 

vehicle (see Spranca, Minsk, & Baron, 1991). Automation transparency can be thought of in 

terms of its influence on perceived vehicle agency. The transparency condition may have led to 

higher perceptions of vehicle agency due to the vehicle’s capability for reason (Waytz, Heafner, 

& Epley, 2010), and agency implies that a system is an animate object capable of personal 
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preference and intent (transparency manipulation) (see, for example, Bandura, 2006), rather than 

an impersonal machine operating from a set of opaque, binary programs (no- transparency 

manipulation) (see Pacherie, 2008). That is, when an autonomous vehicle provides information 

about how and why it will respond to a moral decision, participants may be less approving of 

actions due to a higher degree of intentionality inherent in the transparency manipulation.  

The positive correlation between trust and blame may indicate a connection between 

vehicle action and vehicle responsibility. Specifically, because the passenger is not responsible 

for the vehicle’s decision, the passenger is fully capable of trusting the vehicle while also 

blaming the vehicle for the damage that occurred, a type of moral scapegoating. Rothschild, 

Landau, Sullivan, and Keefer (2012), for example, found that people tend to preserve their moral 

identity by relegating responsibility for harmful actions onto a third party. In this thesis the 

passenger did not have to make a moral decision (i.e., swerve or not swerve), indicating that they 

trust the vehicle’s decision while simultaneously blaming the vehicle for the harm committed.  

Lastly, it was expected that when the same moral outcome was performed by a human 

and an autonomous vehicle, the autonomous vehicle would receive higher acceptance scores. 

The results suggest that humans may hold machines and humans to different moral standards 

depending on the moral outcome and the agent responsible for the outcome. Specifically, moral 

acceptance was higher for autonomous vehicles that made the same utilitarian decision as 

humans. When, however, autonomous vehicles and humans made non-utilitarian decisions, 

acceptance scores did not differ. In light of the doctrine of Doing and Allowing, the findings 

suggest that when active harm needs to be taken (commission bias), it is more morally acceptable 

for an autonomous vehicle to make the moral decision than a human. In contrast, and unique to 

this study, when a passive, non-utilitarian decision was made, participants did not hold humans 
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or autonomous vehicles to different moral standards.  This finding may suggest that when 

passive harm is taking place, it makes no difference who is behind the wheel.  

In the case of fully autonomous vehicles, scenarios may arise in which philosophy and 

human factors collide at the level of system design and personal ethics, in which the Trolley 

Problem can help explore the effects of automation transparency and ethical outcomes on user 

trust and blame. Because autonomous vehicles will make decisions on behalf of the driver, it 

may be important for the driver to be informed of how and why an action will be executed, 

especially when such actions are morally charged. In fact, Greene and colleagues (2016, p. 4147) 

stated that: “humans would accept and trust more machines that behave as ethically as other 

humans in the same environment.” 

Limitations  

The larger body of research suggests that transparency manipulations hinge on the 

presence (transparent) or absence (non-transparent) of information, and operational definitions of 

transparency are lacking in several regards. Presence of information about a system’s 

performance-state, for example, does not imply that users will draw correct conclusions about 

what the system is meaning to convey. When a system provides information to a user, it 

showcases its potential for performing an action—but determining why an action is being 

performed may be cognitively demanding and lost in translation on the user depending on the 

message’s content (Koo et al., 2016).  

The transparency manipulation employed in this thesis operated on the presence or 

absence of information paradigms currently used in the literature (Beller, Heesen, &Vollrath, 

2013; Kim & Hinds, 2006; Verberne, Ham, & Midden, 2012), when transparency may not be 

manipulated as casually. More recently, presence of information has been parsed into several 
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constituent parts, such as why, how, and a combination of why and how a system intends to 

perform an action (Koo et al., 2016), and starker contrasts between each construct may better 

elicit differences in trust and blame. The manipulation check in this experiment could have 

captured additional information about the transparency manipulation if participants rated each 

constituent construct along a continuum.  

After reflection, the scenarios in this thesis always resulted in the vehicle swerving into 

one pedestrian to avoid five pedestrians, and never vice versa. If the vehicle had to swerve to kill 

five pedestrians, subsequently saving the one pedestrian, the automaticity hypothesis would 

suggest that the outcome makes no difference because active harm is required. Scenarios that 

include both swerve combinations will better assess if traditional consequential beliefs bend in 

the presence of omission and commission biases, while further isolating the effects of 

transparency and moral outcomes on trust and blame. Measuring participants’ moral preferences 

prior to manipulating the moral outcome would also provide additional experimental utility. It 

should be noted that it is difficult to draw specific conclusions when moral violations were not 

specifically measured or balanced in this study. Though a utilitarian outcome seems like an 

optimal moral decision, the influence of active and passive harm may interfere with accepting 

such an outcome. Thus, creating instances in which the moral outcome violates or agrees with 

participants’ moral preferences is needed, especially considering how perceived intentional 

violations can influence blame assignment (Shaver, 1985).  

Future Research 

This study can be extended by creating moral scenarios for a driving simulator. A driving 

simulator would enable additional behavioral data to be collected, such as eye movements and 

brake response times—two variables that could provide further detail about higher order moral 
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processing. Eye tacking helps identify where attentional resources are distributed and would be a 

useful method for determining if drivers’ eye movements can be mapped to moral dispositions. 

For example, if a driver adheres to consequentialist beliefs, attentional resources may only be 

reserved for making utilitarian decisions, as indicated by fixations directed toward one person 

instead of five leading up to a moral outcome. When paired with a transparent autonomous 

vehicle, it is plausible that fixations will be directed towards the vehicle’s upcoming decision—

or redistributed to unrelated driving tasks— so long as the driver perceives the vehicle’s 

algorithm to be in concert with his or her moral preference. From this perspective, incongruence 

between the driver’s moral preference and the vehicle’s rationale may be reflected in the driver’s 

fixations, scan patterns (i.e., vertical and horizontal standard deviations), and manual 

interventions. That is, drivers that disagree with the vehicle’s rationale may attempt to intervene 

by depressing the brake pedal or fixating less frequently on the outcome in protest to the 

vehicle’s decision.  

Including different levels of automation, ranging from no automation (manual control), 

intermediate automation (i.e., ACC), and full automation, would also inform the field’s 

knowledge of moral human-automation interaction. When automation leverages human 

performance instead of fully replacing human performance, a greater distribution of 

responsibility across the human-automation partnership is expected to follow. When two parties 

are equally responsible for moral outcomes, trust and blame may vary as a function of 

responsibility, adding to the overall conversation of legal liability.  

Conclusion 

The current study examined the effects of automation transparency and moral outcome on 

user trust and blame towards fully autonomous vehicles. The results suggest that participants are 
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more trusting of vehicles that make non-utilitarian decisions without explanations than utilitarian 

decisions without explanations. The results also found no significant effects of moral outcome or 

transparency on blame, leading to speculation about the saliency of the transparency 

manipulation and the importance of measuring moral expectations prior to manipulating moral 

outcomes. Moral acceptance ratings favored autonomous vehicles that made utilitarian decisions 

more than humans that made the same decision, but the same effect was not found for non-

utilitarian decisions. These findings suggest that moral norms may differ depending on who is 

performing the action (or inaction). The current research can offer insight regarding the nature of 

ethical dilemmas on public roadways and carve out a path for future research to explore the 

ramifications of automated moral decisions.   
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APPENDIX A 

AUTONOMOUS VEHICLE ATTITUDE’S SURVEY 
 
There has been a need to understand how peoples’ attitudes towards autonomous vehicles can 
differ based on the vehicle’s automation setting. I want to explore how these attitudes can vary 
amongst a sample of students. 
 
I am writing to ask for your help with my research effort.  As a master’s student in Experimental 
Psychology, I am pursuing this topic as part of my research fundamentals requirement.  I am 
completing my thesis under the supervision of Dr. Bryan Porter, Associate Dean of the Graduate 
School. 
 
Attached is a brief survey to collect information about user attitudes towards autonomous 
vehicles and how they may or may not be affected by certain driving scenarios. Survey responses 
are anonymous.  Personally-identifiable data will not be collected. In addition, survey questions 
will be randomized into block groupings, with each participant receiving one randomly assigned 
block of questions. Therefore, I will be unable to share any individual’s data with his/her 
program.  You will earn 0.5 credits to be used toward your research participation requirement in 
your psychology course. 
 
If you have questions, do not hesitate to contact me at 757-812-9813 or at my email: 
nhatf001@odu.edu.  
 
Thank you very much for considering my request.  I look forward to hearing from you should the 
need arise.   
 
Sincerely,  
 
Nathan Hatfield| nhatf001@odu.edu 
Researcher | Masters Candidate, Experimental Psychology 
Old Dominion University 
Norfolk, Virginia 23259 
757-812-9813 
 
Supervisor: 
Bryan E. Porter, Ph.D. | bporter@odu.edu 
Associate Dean, the Graduate School 
Old Dominion University 
Norfolk, Virginia 23259 
757-683-3259  
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AUTONOMOUS VEHICLE ATTITUDE SURVEY 
  
Directions (Please read carefully) 
  
Thank you for participating in our survey.  The data we collect from you will be anonymous and 
completely confidential, and will be used to support data collection efforts to satisfy thesis 
requirements.  
  
On the following page you will be presented with a description of a situation and an action that 
an autonomous vehicle in that situation might perform in response to that situation.  Your job is 
to tell us (1) whether you think it would be morally acceptable for the autonomous vehicle to 
perform this action, (2) how morally acceptable/ unacceptable this action would be, (3) followed 
by questions to gauge your attitude towards the vehicle based on its decision.  
  
The questions concern the action’s moral acceptability, and not what yourself or anyone else 
would actually do in the situation described. 
  
You might feel that the situation as we describe it is not realistic.  For example, it might say that 
if the autonomous vehicle does X, then Y will happen, and you might think that this is not 
realistic, that Y might not necessarily happen if the autonomous vehicle does X.  If you find 
yourself having these sorts of doubts, “suspend disbelief” just as you would at an unrealistic 
movie and assume that this situation really is the way it’s described. 
  
Likewise, you may feel that you need more information than is provided about the situation 
before you can give your answer.  If this happens, you should make your best guess about what 
you think the situation is like without making any unnecessary assumptions.   
  
Do you have any questions?  If so, please ask the experimenter by emailing 
nhatf001@odu.edu.  Otherwise, please proceed to the next page. 
 

Thank you in advance for your time, interest, and support. 

Nathan Hatfield 
Nhatf001@odu.edu 
757-812-9813 
Old Dominion University 
Norfolk, Virginia 
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No Transparency Scenario w/ Utilitarian Outcome 
 
You have been assigned to a random block of questions as related to autonomous vehicles. 
Please read the following scenario and provide a response to the questions or items below: 
 
On the roadway is a self-driving car. The self-driving car is capable of performing all driving 
functions under all conditions.  The self-driving car can change lanes, turn, use signals, break, 
accelerate, and monitor the roadway without the need for human intervention, which means that 
the occupant does not have any control of the vehicle.  
 

 
 
 
A passenger is riding in a self-driving car that is quickly approaching an intersection. In the 
middle of the intersection is a group of five pedestrians legally crossing the road.  On the 
sidewalk, however, is a single pedestrian. 
  
The self-driving car is faced with two options: continue straight through the intersection where it 
will kill 5 pedestrians, or swerve to the right where it will kill one pedestrian.  
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Is it morally acceptable for the self-driving car to direct itself toward the single pedestrian?  
 

• Please circle one answer:  YES / NO 
• To what extent is this action morally acceptable? 

o  (Completely unacceptable)   1   2   3   4  5   6   7   8   9   (Completely acceptable) 
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The self-driving car directed itself toward the single pedestrian. 
 

 
 

• Blame scale (Scale titles will not be placed in document that participants see) 
o Example question: “How much is the self-driving car itself at fault?” 

 
Now imagine that this accident had occurred in the real world: 

• Second part of blame scale 
 
Based on what you know about the self-driving car’s capabilities and performance, please 
answer the following questions: 

• Trust scale (Scale titles will not be placed in document that participants see) 
o Example question: “The autonomous vehicle is deceptive.” 
o Manipulation check: did the self-driving car provide you with an explanation for 

why it made the decision it did? Y/N 
Now imagine that a human driver is in control of the vehicle, recognizes the same facts, and 
faces the same decision.  
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“Is it morally acceptable for the driver to direct the car toward the single pedestrian?” 

• Please circle one answer:  YES / NO 
 (Completely unacceptable)   1   2   3   4  5   6   7   8   9   (Completely acceptable) 

 
No Transparency Scenario w/ Non Utilitarian Outcome 
 
You have been assigned to a random block of questions as related to autonomous vehicles. 
Please read the following scenario and provide a response to the questions or items below: 
 
On the roadway is a self-driving car. The self-driving car is capable of performing all driving 
functions under all conditions.  The self-driving car can change lanes, turn, use signals, break, 
accelerate, and monitor the roadway without the need for human intervention, which means that 
the occupant does not have any control of the vehicle. 
 

 
 
 
A passenger is riding in self-driving car that is quickly approaching an intersection. In the middle 
of the intersection is a group of five pedestrians legally crossing the road.  On the sidewalk, 
however, is a single pedestrian. 
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The self-driving car is faced with two options: continue straight through the intersection where it 
will kill 5 pedestrians, or swerve to the right where it will kill one pedestrian.  
 

 
 

Is it morally acceptable for the self-driving car to direct itself toward the single pedestrian?  
• Please circle one answer:  YES / NO 
• To what extent is this action morally acceptable? 

o  (Completely unacceptable)  1   2   3   4  5   6   7   8   9   (Completely acceptable) 
 
The self-driving car directed itself towards the five pedestrians.  
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• Blame scale (Scale titles will not be placed in document that participants see) 
 
Now imagine that this accident had occurred in the real world: 

• Second part of blame scale 
 

Based on what you know about the self-driving car’s capabilities and performance, please 
answer the following questions: 
 

• Trust scale (Scale titles will not be placed in document that participants see) 
 

• Manipulation check: did the self-driving car provide you with an explanation for why it 
made the decision it did? Y/N 
 

Now imagine that a human driver is in control of the vehicle, recognizes the same facts, and 
faces the same decision.  
 
“Is it morally acceptable for the driver to not direct the car toward the single pedestrian?” 

• Please circle one answer:  YES / NO 
 (Completely unacceptable)   1   2   3   4  5   6   7   8   9   (Completely acceptable) 
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High Transparency Scenario w/ Utilitarian Outcome 
 
You have been assigned to a random block of questions as related to autonomous vehicles. 
Please read the following scenario and provide a response to the questions or items below: 
 
On the roadway is a self-driving car. The self-driving car is capable of performing all driving 
functions under all conditions.  The self-driving car can change lanes, turn, use signals, break, 
accelerate, and monitor the roadway without the need for human intervention, which means that 
the occupant does not have any control of the vehicle. 
 

 
 
A passenger is riding in self-driving car that is quickly approaching an intersection. In the middle 
of the intersection is a group of five pedestrians legally crossing the road.  On the sidewalk, 
however, is a single pedestrian. 
  
The self-driving car is faced with two options: continue straight through the intersection where it 
will kill 5 pedestrians, or swerve to the right where it will kill one pedestrian.  
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Is it morally acceptable for the self-driving car toward the single pedestrian?  
 

• Please circle one answer:  YES / NO 
• To what extent is this action morally acceptable? 

o  (Completely unacceptable)   1   2   3   4  5   6   7   8   9   (Completely acceptable) 
 
Before the self-driving car acted, it informed the occupant that an ensuing crash was getting 
ready to occur. This information was provided to the occupant via an icon warning on the self-
driving car’s dashboard. In addition to the icon warning, the self-driving car further notified the 
passenger that it would direct itself toward the single pedestrian to ensure the least amount of 
damage occurred.  
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• Blame scale (Scale titles will not be placed in document that participants see) 
 

Now imagine that this accident had occurred in the real world: 
• Second part of blame scale 

 
Based on what you know about the self-driving car’s capabilities and performance, please 
answer the following questions: 
 

• Trust scale (Scale titles will not be placed in document that participants see) 
 

• Manipulation check: did the self-driving car provide you with an explanation for why it 
made the decision it did? Y/N 

 
Now imagine that a human driver is in control of the vehicle, recognizes the same facts, and 
faces the same decision.  
“Is it morally acceptable for the driver to direct the car toward the single pedestrian?” 

• Please circle one answer:  YES / NO 
 (Completely unacceptable)   1   2   3   4  5   6   7   8   9   (Completely acceptable) 
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High Transparency Scenario w/ Non-Utilitarian Outcome 

You have been assigned to a random block of questions as related to autonomous vehicles. 
Please read the following scenario and provide a response to the questions or items below: 
 
On the roadway is a self-driving car. The self-driving car is capable of performing all driving 
functions under all conditions.  The self-driving car can change lanes, turn, use signals, break, 
accelerate, and monitor the roadway without the need for human intervention, which means that 
the occupant does not have any control of the vehicle. 
  

 
 
The self-driving car is quickly approaching an intersection. In the middle of the intersection is a 
group of five pedestrians legally crossing the road.  On the sidewalk, however, is a single 
pedestrian.  
 
The self-driving car is faced with two options: continue straight through the intersection where it 
will kill 5 pedestrians, or swerve to the right where it will kill one pedestrian.  
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Is it morally acceptable for the self-driving car to direct itself toward the single pedestrian?  
 

• Please circle one answer:  YES / NO 
• To what extent is this action morally acceptable? 

o  (Completely unacceptable)   1   2   3   4  5   6   7   8   9   (Completely acceptable) 
 
Before the self-driving car acted, it informed the occupant that an ensuing crash was getting 
ready to occur. This information was provided to the occupant via an icon warning on the self-
driving car’s dashboard. In addition to the icon warning, the self-driving car notified the 
passenger that it would direct itself toward the five pedestrians to ensure the least amount of 
damage occurred.  
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• Blame scale (Scale titles will not be placed in document that participants see) 
 
Now imagine that this accident had occurred in the real world: 

• Second part of blame scale 
 
Based on what you know about the self-driving car’s capabilities and performance, please 
answer the following questions: 
 

• Trust scale (Scale titles will not be placed in document that participants see) 
 

• Manipulation check: did the self-driving car provide you with an explanation for why it 
made the decision it did? Y/N 
 
 

Now imagine that a human driver is in control of the vehicle, recognizes the same facts, and 
faces the same decision.  
“Is it morally acceptable for the driver to not direct the car toward the single pedestrian?” 

• Please circle one answer:  YES / NO 
o  (Completely unacceptable)   1   2   3   4  5   6   7   8   9   (Completely acceptable) 
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APPENDIX B 

TRUST IN AUTOMATION SCALE 

1. The autonomous vehicle is deceptive 

2. The autonomous vehicle behaves in an underhanded manner 

3. I am suspicious of the autonomous vehicle's intent, action or outputs. 

4. I am wary of the autonomous vehicle. 

5. The autonomous vehicle will have a harmful or injurious outcome. 

6. I would be confident in the autonomous vehicle if it were my own. 

7. The autonomous vehicle provides security. 

8. The autonomous vehicle has integrity 

9. The autonomous vehicle is dependable. 

10. The autonomous vehicle is reliable. 

11. I would trust the autonomous vehicle if it were my own. 

12. I am familiar with the autonomous vehicle's system 
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APPENDIX C 
 

VEHICLE BLAME SCALE 
 

Please consider the accident that just occurred and answer these questions about responsibility. 
              
        Not at All-----------------------------Very Much 

 

1 How much is the passenger at fault? 
 0----1----2----3----4----5----6----7----8----9----10 

2 How much is the self-driving car itself at fault? 
 0----1----2----3----4----5----6----7----8----9----10 

3 
How much are the people who designed the self-driving 

car at fault? 
 

0----1----2----3----4----5----6----7----8----9----10 

4 
How much is the company that developed the self-driving 

car at fault? 
 

 
0----1----2----3----4----5----6----7----8----9----10 

 
Now imagine that this accident had occurred in the real world, with another driver driving the 
car. 

             
Not at All-----------------------------Very Much 

1 How strongly do you feel that the passenger of the car 
should be sent to jail? 

0----1----2----3----4----5----6----7----8----9----10 

2 How strongly do you feel that the self-driving car should 
be destroyed? 

0----1----2----3----4----5----6----7----8----9----10 

3 How strongly do you feel that the engineer who designed 
the self-driving car should be punished? 0----1----2----3----4----5----6----7----8----9----10 

4 
How strongly do you feel that the company who designed 

the self-driving car should be punished financially? 
 

0----1----2----3----4----5----6----7----8----9----10 

 
Note: Items 2-4 in first and second section constitute the composite for blame toward the car for 
the accident. 
 
Waytz, A., Heafner, J., & Epley, N. (2014). The mind in the machine: Anthropomorphism increases trust in an 
autonomous vehicle. Journal of Experimental Social Psychology, 52, 113-117. 
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APPENDIX D 
 

DEMOGRAPHIC QUESTIONS 
 

Please indicate you gender: 
o Female  
o Genderqueer/Gender Non-conforming  
o Male  
o Transgender Male  
o Transgender Female  
o Preferred identity (in addition to or not listed above):     
o Prefer not to state 
 

 
Are you of Hispanic, Latino, or Spanish origin? 

o Yes 
o No 
o Prefer not to state 

 
Please indicate your race/ ethnicity: 

o White 
o Black or African American 
o American Indian or Alaska Native 
o Asian Indian 
o Chinese 
o Filipino 
o Japanese 
o Korean 
o Vietnamese 
o Native Hawaiian 
o Guamanian or Chamorro 
o Samoan 
o Other Pacific Islander 
o Other Asian 
o Other:      
o Prefer not to state  

 
Citizenship: 

o US 
o Non-US(please specify home country):_____________ 

 
Do you commute to ODU? (Choices) Yes, No 

 (Follow up) If so, how long is your average commute in minutes? (Fill in) ___ 
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How many years have you had your driver’s license? Please put 0 for less than a year, and 

N/A if you do not have a driver’s license. (Fill in)____ 

How often do you drive your motor vehicle in a week? (Choices) Everyday, 3-5 times a week, 

Once or twice a week, I rarely drive, I do not drive/I do not have a car 

(Follow up) Estimate miles driven per week. (Fill in) ___  

Have you ever received a ticket for a driving violation? (Choices) Yes, No 

Have you ever been involved in a traffic accident? (Choices) Yes, No 

Have you ever had an accident or near-accident due to sleepiness? (Choices) Never, within 

the last 6 months, within the last year, within the last 5 years 

 
Thank you for completing this survey! 
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