



ISSN: 0972-8600 (Print) 2543-3474 (Online) Journal homepage: https://www.tandfonline.com/loi/uakc20

The matching number and Hamiltonicity of graphs

Rao Li

To cite this article: Rao Li (2020): The matching number and Hamiltonicity of graphs, AKCE International Journal of Graphs and Combinatorics, DOI: 10.1080/09728600.2020.1769416

To link to this article: <u>https://doi.org/10.1080/09728600.2020.1769416</u>

9

© 2020 The Author(s). Published with license by Taylor & Francis Group, LLC

Published online: 24 Jun 2020.

🕼 Submit your article to this journal 🗹

Article views: 193

View related articles 🗹

View Crossmark data 🗹

👌 OPEN ACCESS 🔎

Check for updates

The matching number and Hamiltonicity of graphs

Rao Li

Department of Mathematical Sciences, University of South Carolina Aiken, Aiken, SC, USA

ABSTRACT

The matching number of a graph *G* is the size of a maximum matching in the graph. In this note, we present a sufficient condition involving the matching number for the Hamiltonicity of graphs.

KEYWORDS Matching number; Hamiltonicity

2010 MATHEMATICS SUBJECT CLASSIFICATION 05C70; 05C45

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow those in [1]. Let G = (V(G), E(G)) be a graph. A matching M in G is a set of pairwise nonadjacent edges. A maximum matching is a matching that contains the largest possible number of edges. The matching number, denoted m(G), of a graph G is the size of a maximum matching. For a vertex u and a vertex subset U in G, we use $N_U(u)$ to denote all the neighbors of uin U. We use $G_1 \lor G_2$ to denote the join of two disjoint graphs G_1 and G_2 . We define $\mathcal{F} := \{G : K_{p,q} \subseteq G \subseteq K_p \lor (qK_1), \text{ where}$ $q \ge p + 1 \ge 3\}$. A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle.

The purpose of this note is to present a sufficient condition based on the matching number for the Hamiltonicity of graphs. The main result is as follows:

Theorem 1. Let G be a graph of order $n \ge 3$ with matching number m and connectivity κ ($\kappa \ge 2$). If $m \le \kappa$, then G is Hamiltonian or $G \in \mathcal{F}$.

Proof of Theorem 1. Let G be a graph satisfying the conditions in Theorem 1. Suppose G is not Hamiltonian. Since $\kappa \ge 2$, G contains a cycle. Choose a longest cycle C in G and give an orientation on C. For a vertex u on C, we use u^+ to denote the successor of u along the direction of C. u^{+2} is defined as the successor of u^+ along the direction of C. Since G is not Hamiltonian, there exists a vertex, $x_0 \in V(G) \setminus V(C)$. By Menger's theorem, we can find $s \ (s \ge \kappa)$ pairwise disjoint (except for x_0) paths P_1, P_2, \ldots, P_s between x_0 and V(C). Let u_i be the end vertex of P_i on C, where $1 \le i \le s$. Then, a standard proof in Hamiltonian graph theory yields that $S := \{x_0, u_1^+, u_2^+, \ldots, u_s^+\}$ is independent (otherwise G would have cycles which are longer than C). Obviously, the edges of $u_1u_1^+, u_2u_2^+, \ldots$, and $u_su_s^+$ form a matching

in *G*. Thus, $\kappa \le s \le m \le \kappa$. Therefore, $\kappa = s = m$. The remainder of proofs consists of five claims and their proofs.

Claim 1. Let *H* be the component in $V(G) \setminus V(C)$ that contains x_0 . Then, *H* consists of the singleton x_0 .

Proof of Claim 1. Suppose, to the contrary, that Claim 1 is not true. Then, we can find an edge, say *e*, in *H*. Then, the edges of *e*, $u_1u_1^+$, $u_2u_2^+$, ..., and $u_su_s^+$ form a matching in *G*, giving a contradiction of $\kappa + 1 = s + 1 \le m = \kappa$.

Claim 2. $u_{i+1} = u_i^{+2}$ for each *i* with $1 \le i \le s$, where u_{s+1} is regarded as u_1 namely $C = u_1 u_1^+ u_2 u_2^+ \dots u_s u_s^+ u_1$.

Proof of Claim 2. Suppose, to the contrary, that there exists one *i* with $1 \le i \le s$ such that $u_{i+1} \ne u_i^{+2}$. Without loss of generality, we assume that $u_2 \ne u_1^{+2}$. Then, the edges of $x_0u_1, u_1^+u_1^{+2}, u_2u_2^+, u_3u_3^+, \ldots$, and $u_su_s^+$ form a matching in *G*, giving a contradiction of $\kappa + 1 = s + 1 \le m = \kappa$.

Claim 3. If $V(G) \setminus (V(C) \cup \{x_0\})$ is not empty, then $V(G) \setminus (V(C) \cup \{x_0\})$ is an independent set.

Proof of Claim 3. Using the similar arguments as the ones in the proofs of Claim 1, we can prove that Claim 3 is true. \Box

Claim 4. If the independent set $V(G)\setminus (V(C)\cup \{x_0\} := \{x_1, x_2, ..., x_r\}$ is nonempty, then $N_C(x_i) = \{u_1, u_2, ..., u_s\}$ for each *i* with $1 \le i \le r$.

Proof of Claim 4. Suppose, to the contrary, that there exists one *i* with $1 \le i \le s$ such that $N_C(x_i) \ne \{u_1, u_2, ..., u_s\}$. Without loss of generality, we assume that $N_C(x_1) \ne \{u_1, u_2, ..., u_s\}$. Using the similar arguments as the ones in

CONTACT Rao Li 🔯 raol@usca.edu 💽 Department of Mathematical Sciences, University of South Carolina Aiken, Aiken, SC 29801, USA.

© 2020 The Author(s). Published with license by Taylor & Francis Group, LLC

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

the proofs of Claim 2, we can prove that $C = z_1 z_1^+ z_2 z_2^+ \dots z_s z_s^+ z_1$, where $N_C(x_1) = \{z_1, z_2, \dots, z_s\}$. Since $N_C(x_1) \neq \{u_1, u_2, \dots, u_s\}$, we must have that $N_C(x_1) = \{z_1, z_2, \dots, z_s\} = \{u_1^+, u_2^+, \dots, u_s^+\}$. In this case, we can easily find a cycle in *G* which is longer than *C*, giving a contradiction.

Claim 5. $u_i^+ u_j \in E$ for each *i* with $1 \le i \le s$, where u_{s+1} is regarded as u_1 .

Proof of Claim 5. If i = 1, it is obvious that $u_1^+ u_1 \in E$ and $u_1^+ u_2 \in E$. Suppose, to the contrary, that there exists one j

with $3 \leq j \leq s$ such that $u_1^+ u_j \notin E$. Then, $G[V(G) \setminus \{u_1, u_2, ..., u_{j-1}, u_{j+1}, ..., u_s\}]$ is disconnected, contradiction to the assumption that the connectivity of *G* is κ . Similarly, we can prove that $u_i^+ u_j \in E$ for each *i* with $2 \leq i \leq s$, where u_{s+1} is regarded as u_1 .

Claims 1–5 imply that $G \in \mathcal{F}$. So we complete the proof of Theorem 1.

Reference

[1] Bondy, J. A., Murty, U. S. R. (1976). *Graph Theory with Applications*. London: Macmillan.