The matching number and Hamiltonicity of graphs

Rao Li

To cite this article: Rao Li (2020): The matching number and Hamiltonicity of graphs, AKCE International Journal of Graphs and Combinatorics, DOI: 10.1080/09728600.2020.1769416

To link to this article: https://doi.org/10.1080/09728600.2020.1769416

Published online: 24 Jun 2020.

Submit your article to this journal

Article views: 193

View related articles

View Crossmark data ${ }^{〔}$

The matching number and Hamiltonicity of graphs

Rao Li
Department of Mathematical Sciences, University of South Carolina Aiken, Aiken, SC, USA

ABSTRACT

The matching number of a graph G is the size of a maximum matching in the graph. In this note, we present a sufficient condition involving the matching number for the Hamiltonicity of graphs.

KEYWORDS

Matching number; Hamiltonicity

2010 MATHEMATICS
 SUBJECT
 CLASSIFICATION
 05C70; 05C45

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow those in [1]. Let $G=(V(G), E(G))$ be a graph. A matching M in G is a set of pairwise nonadjacent edges. A maximum matching is a matching that contains the largest possible number of edges. The matching number, denoted $m(G)$, of a graph G is the size of a maximum matching. For a vertex u and a vertex subset U in G, we use $N_{U}(u)$ to denote all the neighbors of u in U. We use $G_{1} \vee G_{2}$ to denote the join of two disjoint graphs G_{1} and G_{2}. We define $\mathcal{F}:=\left\{G: K_{p, q} \subseteq G \subseteq K_{p} \vee\left(q K_{1}\right)\right.$, where $q \geq p+1 \geq 3\}$. A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle.

The purpose of this note is to present a sufficient condition based on the matching number for the Hamiltonicity of graphs. The main result is as follows:
Theorem 1. Let G be a graph of order $n \geq 3$ with matching number m and connectivity $\kappa(\kappa \geq 2)$. If $m \leq \kappa$, then G is Hamiltonian or $G \in \mathcal{F}$.
Proof of Theorem 1. Let G be a graph satisfying the conditions in Theorem 1. Suppose G is not Hamiltonian. Since $\kappa \geq 2, G$ contains a cycle. Choose a longest cycle C in G and give an orientation on C. For a vertex u on C, we use u^{+}to denote the successor of u along the direction of C. u^{+2} is defined as the successor of u^{+}along the direction of C. Since G is not Hamiltonian, there exists a vertex, $x_{0} \in$ $V(G) \backslash V(C)$. By Menger's theorem, we can find $s(s \geq \kappa)$ pairwise disjoint (except for x_{0}) paths $P_{1}, P_{2}, \ldots, P_{s}$ between x_{0} and $V(C)$. Let u_{i} be the end vertex of P_{i} on C, where $1 \leq$ $i \leq s$. Then, a standard proof in Hamiltonian graph theory yields that $S:=\left\{x_{0}, u_{1}^{+}, u_{2}^{+}, \ldots, u_{s}^{+}\right\}$is independent (otherwise G would have cycles which are longer than C). Obviously, the edges of $u_{1} u_{1}^{+}, u_{2} u_{2}^{+}, \ldots$, and $u_{s} u_{s}^{+}$form a matching
in G. Thus, $\kappa \leq s \leq m \leq \kappa$. Therefore, $\kappa=s=m$. The remainder of proofs consists of five claims and their proofs.

Claim 1. Let H be the component in $V(G) \backslash V(C)$ that contains x_{0}. Then, H consists of the singleton x_{0}.

Proof of Claim 1. Suppose, to the contrary, that Claim 1 is not true. Then, we can find an edge, say e, in H. Then, the edges of $e, u_{1} u_{1}^{+}, u_{2} u_{2}^{+}, \ldots$, and $u_{s} u_{s}^{+}$form a matching in G, giving a contradiction of $\kappa+1=s+1 \leq m=\kappa$.

Claim 2. $u_{i+1}=u_{i}^{+2}$ for each i with $1 \leq i \leq s$, where u_{s+1} is regarded as u_{1}, namely $C=u_{1} u_{1}^{+} u_{2} u_{2}^{+} \ldots u_{s} u_{s}^{+} u_{1}$.

Proof of Claim 2. Suppose, to the contrary, that there exists one i with $1 \leq i \leq s$ such that $u_{i+1} \neq u_{i}^{+2}$. Without loss of generality, we assume that $u_{2} \neq u_{1}^{+2}$. Then, the edges of $x_{0} u_{1}, u_{1}^{+} u_{1}^{+2}, u_{2} u_{2}^{+}, u_{3} u_{3}^{+}, \ldots$, and $u_{s} u_{s}^{+}$form a matching in G, giving a contradiction of $\kappa+1=s+1 \leq m=\kappa$.

Claim 3. If $V(G) \backslash\left(V(C) \cup\left\{x_{0}\right\}\right)$ is not empty, then $V(G) \backslash\left(V(C) \cup\left\{x_{0}\right\}\right)$ is an independent set.

Proof of Claim 3. Using the similar arguments as the ones in the proofs of Claim 1, we can prove that Claim 3 is true.

Claim 4. If the independent set $V(G) \backslash\left(V(C) \cup\left\{x_{0}\right\}:=\right.$ $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ is nonempty, then $N_{C}\left(x_{i}\right)=\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$ for each i with $1 \leq i \leq r$.

Proof of Claim 4. Suppose, to the contrary, that there exists one i with $1 \leq i \leq s$ such that $N_{C}\left(x_{i}\right) \neq\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$. Without loss of generality, we assume that $N_{C}\left(x_{1}\right) \neq$ $\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$. Using the similar arguments as the ones in
the proofs of Claim 2, we can prove that $C=$ with $3 \leq j \leq s$ such that $u_{1}^{+} u_{j} \notin E$. Then, $G[V(G) \backslash$ $z_{1} z_{1}^{+} z_{2} z_{2}^{+} \ldots z_{s} z_{s}^{+} z_{1}$, where $N_{C}\left(x_{1}\right)=\left\{z_{1}, z_{2}, \ldots, z_{s}\right\}$. Since $\left.\left\{u_{1}, u_{2}, \ldots, u_{j-1}, u_{j+1}, \ldots, u_{s}\right\}\right]$ is disconnected, contradiction to $N_{C}\left(x_{1}\right) \neq\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$, we must have that $N_{C}\left(x_{1}\right)=$ $\left\{z_{1}, z_{2}, \ldots, z_{s}\right\}=\left\{u_{1}^{+}, u_{2}^{+}, \ldots, u_{s}^{+}\right\}$. In this case, we can easily find a cycle in G which is longer than C, giving a contradiction.

Claim 5. $u_{i}^{+} u_{j} \in E$ for each i with $1 \leq i \leq s$, where u_{s+1} is regarded as u_{1}.

Proof of Claim 5. If $i=1$, it is obvious that $u_{1}^{+} u_{1} \in E$ and $u_{1}^{+} u_{2} \in E$. Suppose, to the contrary, that there exists one j
assumption that the connectivity of G is κ. Similarly, we can prove that $u_{i}^{+} u_{j} \in E$ for each i with $2 \leq i \leq s$, where u_{s+1} is regarded as u_{1}.

Claims $1-5$ imply that $G \in \mathcal{F}$. So we complete the proof of Theorem 1 .

Reference

[1] Bondy, J. A., Murty, U. S. R. (1976). Graph Theory with Applications. London: Macmillan.

