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Where Do the Maximum Absolute q-Series Coefficients of ð1� qÞð1� q2Þ
ð1� q3Þ:::ð1� qn�1Þð1� qnÞ Occur?
Alexander Berkovicha and Ali Kemal Uncub

aDepartment of Mathematics, University of Florida, Gainesville, FL, USA; bJohann Radon Institute for Computational and Applied
Mathematics, Austrian Academy of Sciences, Linz, Austria

ABSTRACT
We used the MACH2 supercomputer to study coefficients in the q-series expansion of
ð1� qÞð1� q2Þ:::ð1� qnÞ, for all n � 75000. As a result, we were able to conjecture some periodic
properties associated with the before unknown location of the maximum coefficient of these poly-
nomials with odd n. Remarkably, the observed period is 62,624.
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1. Introduction

Let the q-Pochhammer symbol be

ðq; qÞn :¼
Yn
i¼1

ð1� qiÞ ¼
Xnðnþ1Þ=2

i¼0

an, i q
i, (1.1)

for any n 2 Z�0 [ f1g: Euler’s famous pentagonal number
theorem [1] states that infinite product can be written as a
sparse power series with all of its coefficients from the set
f�1, 0, 1g: More precisely:

Theorem 1.1. (Euler’s Pentagonal Number Theorem, 1750).

ðq; qÞ1 ¼
X1

n¼�1
ð�1Þnqnð3n�1Þ=2

¼ 1� q� q2 þ q5 þ q7 � q12 � q15 þ q22 þ ::::

(1.2)
In contrast, it is easy to check that the coefficients of the

finite products ðq; qÞn, for n 2 Z�0, do not share this property
and attain values larger than 1 in size. The authors [2] recently
proved that the only ðq; qÞn’s where the series coefficients stay
in the set f�1, 0, 1g are when n ¼ 0, 1, 2, 3, and 5. The first
maximums of the absolute value of the coefficients are

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 4, 3, 3, 4, 6, 5, 6, 7, 8, 8, 10, 11,

16, 16, 19, 21, 28, 29, 34, ::::

(1.3)
From now on we will use maximum absolute coefficient in
place of the wordy “the maximum of the absolute value of
the coefficients” to simplify our language.

In general, when the coefficients an, i of ðq; qÞn are
studied, we see tame coefficients at both ends of the polyno-
mial ðq; qÞn and a bubble of oscillation involving enormous
integers in the middle. We plot the ordered pairs ði, a250, iÞ
in Figure 1, to show the shape of ðq; qÞ250: This is to give an
idea of the nature of the coefficients of ðq; qÞn: Note that
“tame” coefficients are small only relative to the coefficients
that appear at the oscillation. For example, in Figure 1, the
5000th coefficient of ðq; qÞ250 seems to be close to the x-axis,
but its value a250, 5000 is –7,983,490.

Moreover, Sudler [3,4] showed that the maximum abso-
lute coefficients’ size grows exponentially with n:

logMn ¼ KnþOð log nÞ, (1.4)

where,
Mn :¼ max

0�i�nðnþ1Þ=2
jan, ij:

Sudler and Mr. A. Hurwitz from University of California,
Los Angeles calculated K ’ 0:19861: On top of that, Wright
[5] proved that

eK ¼ lim
n!1

Mn

Mn�1
:

Although research on the size of these coefficients existed
[3,4, 6], there has not been an extensive study of the loca-
tion of the maximum absolute coefficients of ðq; qÞn in the
literature. When one checks the sequence (1.3) in the
Online Encyclopedia of Integer Sequences they are greeted
with the open problem [7] (paraphrased):

If n is even, then Mn is the absolute value of the coefficients of
qbnðnþ1Þ=4Þc and qdnðnþ1Þ=4Þe: If n is odd, it is an open question as
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for which i, jan, ij ¼ Mn, where b�c and d�e are the classical floor
and ceiling functions.

In this work we present an experimental answer to the
question regarding the location of the maximum absolute
coefficients of ðq; qÞn for odd n. Let L(n) denote the lowest
exponent i of q in the ðq; qÞn polynomial, where the coeffi-
cient an, i of qi is the maximum absolute coefficient Mn:
Then, for example, we claim the following.

Conjecture 1.2. For any k � 0, we have

Lð391þ 62624kÞ ¼ 980441344k2 þ 12238861kþ 38194,

Lð5909þ 68324kÞ ¼ 980441344k2 þ 185018477kþ 8728680:

The locations of the largest absolute value of the coefficients
for all n as well as the maximum absolute coefficients for all
n � 75000 are carefully calculated and verified. This task
required painstaking attention to detail, a lot of patience, and a
grand computing power for today’s standards. The supercom-
puter MACH2 was used for this task, which is the largest
European installation of its kind. Even with this computing
power, the computation was challenging due to the number
and the size of the objects that needed to be stored and manip-
ulated at full precision. For perspective, the degree of the poly-
nomial ðq; qÞ75000 is 2,812,537,500 and the absolute maximum
coefficient M75000 has 6,465 digits.

In Section 2, we briefly mention how the calculations are
carried out. All the main results and our conjectures are
presented in Section 3. In Section 4 we shortly discuss some
possible future research directions and some related conjec-
tures that appeared in the literature.

2. A brief note on the calculations

To save memory in calculations, one needs to observe that
an, i, as defined in (1.1), satisfies the relation

an, i ¼ ð�1Þnan, nðnþ1Þ=2�i: (2.1)

Using (2.1), one can reduce the storage to only half of the
coefficients of ðq; qÞn: Another point is that the multiplica-
tion ð1� qnÞðq; qÞn�1 to get ðq; qÞn from ðq; qÞn�1 is the
same as the addition

an, i ¼ an�1, i � an�1, i�n, (2.2)

for all i � n, on the coefficient level. Finally, we note that
the first n – 1 coefficients of ðq; qÞn�1 do not change when
multiplied with ð1� qnÞ: Moreover, they coincide with the
first n – 1 coefficients of (1.2). Since the maximum absolute

coefficients grow (1.4), they would not appear in the first n
– 1 coefficients that are ±1 or 0.

The task of openly multiplying ðq; qÞn and locating the max-
imum of the absolute values of the coefficients started on a rea-
sonably sized RISC server using Maple. One can compute up to
a commendable n¼ 10000 by multiplying these objects using a
modern desktop computer. In our experience, the Maple gives
up around this point. With Mathematica, we were able to take
our calculations to around 15000. This is more or less the upper
limit of what computer algebra systems can handle on a today’s
consumer level computer. Once this natural boundary was
reached we moved on to programing our own versions of the
coefficient level multiplication algorithm; first this was done
with Python, later with Cþþ. Python does arbitrary precision
arithmetics automatically, and Gnu MultiPrecision Library [8]
was used for handling large integers in Cþþ. The calculations
were carried on the MACH2 supercomputer1.

3. The location of the maximum absolute coefficients

Let L(n) denote the lowest exponent i of q in the ðq; qÞn poly-
nomial, where the coefficient of qi is the maximum absolute
coefficient Mn: When explicitly expanding the polynomials
ðq; qÞn, the maximum of the absolute value of the coefficients
starts to appear in one or two places consistently for n � 34:
We would like to start by acknowledging that, for all n �
17, Lð2nÞ ¼ bnðnþ 1Þ=4Þc or, in other words, the maximum
absolute coefficients of ðq; qÞ2n appear as the coefficient(s) of
qbnðnþ1Þ=4Þc and qdnðnþ1Þ=4Þe: Now with our explicit computa-
tions, this claim (which appears in the Online Encyclopedia of
Integer Sequences A160089) extends to all even n � 75000:

For 0 modulo 4 cases the maximum absolute coefficients
are the absolute maximum, and for 2 modulo 4 cases the max-
imum absolute coefficients are the negative of the absolute
minimum of ðq; qÞn: For the odd n, both the maximum of the
absolute value of the coefficients and its negative appear in
ðq; qÞn due to (2.1). Furthermore, we make the claim:

Conjecture 3.1. For n � 35, if n � 1 ðmod 4Þ, absolute
maximum occurs only once as the coefficient of some qi,
where i < nðnþ 1Þ=4 and if n � 3 ðmod 4Þ the absolute
maximum occurs only once as the coefficient of some qi,
where i > nðnþ 1Þ=4:

There are some initial cases where the maximum absolute
coefficient appears as the polynomial coefficients of ðq; qÞn
more than twice. For example, in the n¼ 33 case the abso-
lute maximum coefficient 56 appears as the coefficients of

Figure 1. Coefficients a250, i plotted on a number line.

1See https://www.risc.jku.at/projects/mach2.
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q270 and q272 and the absolute minimum coefficient –56
appears as the coefficients of q289 and q291, so the maximum
absolute coefficient appears a total of 4 times as a coefficient
of the polynomial ðq; qÞ33: We see that for n � 35, the max-
imum absolute coefficient appears as coefficients of only two
terms in the q-series expansion of the rising factorial.

We will split the cases for the odd values of n in two
groups modulo 4. Before doing so, we define the Dn as the
half difference between the two locations of the maximum
absolute coefficients for a given odd n � 35: This is the
same as saying how far off the maximum absolute coeffi-
cient is from the half degree nðnþ 1Þ=4 of the polynomial
ðq; qÞn: Hence, knowing this value and n is enough to
recover the location of the maximum absolute coefficients.
Also we define the canonical difference

En :¼ Dn � Dn�4,

for all odd n � 35:
Let n � 35 be an odd integer, and assume that all neces-

sary Ei and a Dm value for some m � n, with n � m mod-
ulo 4 are given. Then, one can recover the location of the
maximum absolute coefficients for ðq; qÞn as

LðnÞ ¼ nðnþ 1Þ
4

� Dm þ
Xðn�mÞ=4

i¼1

Emþ4i

0
@

1
A, (3.1)

where an, i is defined as in (1.1).
The first observation we have made and confirmed for

n � 75000 is:

Conjecture 3.2. For all odd n � 35,En 2 f0, 1, 2g.
Furthermore, En > 0 for all odd n � 61:

By looking at the values n � 57 and � 87 for 1 and 3 mod-
ulo 4, we list En’s. The patterns starting from these beginning
points look highly periodic with period 19, although this is
sadly not the case. The 19 length patterns of 1’s and 2’s that
En’s change slightly as the calculations are carried. We match
the 19 length patterns that the calculations yield with letters
and form an alphabet with 20 letters. The letters that we see in
the calculations and their 19 consecutive En value equivalents
are given in Table 1.

Note that each letter represents 19 consecutive En values (1
or 2) written together without commas to keep the notation sim-
ple. The calculation of any letter requires the expansion of
19� 4¼ 76 consecutive ðq; qÞn polynomials and finding the
location of the maximum absolute coefficient and its location of
each odd index n. This alphabet makes it possible to find the
individual En values. Furthermore, together with (3.1), this makes
it possible to find the locations of the maximum absolute coeffi-
cients. Also note that a and k are symmetric with respect to their
centers and a is also special that it is the only letter with six 2
values, whereas all the other words come with five 2 values. It is
easy to see that the letters b, c, d, e, f , g, h, i, and j read from
right to left are the letters t, s, r, q, p, o, n,m, and l, respectively.

These letters are observed to be generating almost periodic
words starting from n � 209 and � 391 for 1 and 3 modulo 4
values, respectively. We will write exponents of the letters
defined in Table 1 to indicate the number of times a letter has

occurred consecutively. From the said starting point we see
that the 1 modulo 4 differences give rise to the string

a1b4c4d4e4f 3g4h5i4j4k3l4m4n4o5p3q4r4s4t3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
word 1

a1b4c4d4e4f 3g4h4i5j4k3:::|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
word2, etc:

:

We see that the letter a appears a single time in each word.
This phenomenon is the same for the 3 modulo 4 case. We
break this string into words for 1 and 3 mod 4 to start every
line with an a and write the words in Table 2; 1 and 3 mod 4
cases on the left side and the right side, respectively. In Table
2, we also include a line to break period blocks of the size
11� 20 box both odd residue classes mod 4.

What one can observe from the encoding of Table 2 is
that there is the base word

a1b3c4d4e4f 3g4h4i4j4k3l4m4n4o4p3q4r4s4t3 (3.2)

in each line and an overlying, moving perturbation. It is
observed that the first line of the 1 modulo 4 case does not
fit any period block and stays as an outlier. We interpret
this as the asymptotic behavior of the perturbation kicking
in action a little later than the 3 modulo 4 case. More
importantly, this perturbation is observably periodic. To
express the observed structure better, we represent the base
word (3.2) as a vector, where we write the frequencies of the
letters as a vector of 20 entries

B ¼ ð1, 3, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3Þ: (3.3)

Then Table 2 can be expressed as adding some perturbation
vectors to B. We define the perturbation vectors for the 1
and 3 modulo 4 classes side-by-side in Table 3.

Notice that u11 and v7 are the only two vectors that have
two 1’s and all the rest include three 1’s. The first compo-
nent is always 0. There is a clear pattern in the perturba-
tions and how the motion of the perturbation is from one
vector to the following. We have indicated the observed pat-
tern of 1 or 2 repetitions of the perturbations using red and
blue (resp.) in Table 3. Both in the 1 and 3 mod 4 cases,
there are 6 red 1’s which correspond to a letter’s extra
appearance as perturbance only a single time in the period.
The blue 1’s in the components indicate that the corre-
sponding letter occurs as a part of the perturbation twice.
After these observations, the periodicity of this perturbation
becomes clearer in vector form.

We claim the following:

Table 1. The selected alphabet associated with the Em values.

a =

19
︷ ︸︸ ︷

2112111211121112112, k =

19
︷ ︸︸ ︷

1211121112111211121,

b = 1112111211121112112, l = 1211121112111211211,

c = 1112111211121121112, m = 1211121112112111211,

d = 1112111211211121112, n = 1211121121112111211,

e = 1112112111211121112, o = 1211211121112111211,

f = 1121112111211121112, p = 2111211121112111211,

g = 1121112111211121121, q = 2111211121112112111,

h = 1121112111211211121, r = 2111211121121112111,

i = 1121112112111211121, s = 2111211211121112111,

j = 1121121112111211121, t = 2112111211121112111.
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Conjecture 3.3. For any i > j � 1, the i-th and j-th row that
appears in Table 2 and beyond can be associated with the
vectors Bþ uði�1 ðmod 11ÞÞ and Bþ vðj ðmod 11ÞÞ for 1 and 3
modulo 4 words, respectively.

Moreover, we claim, with these two essential periods for
the perturbation, that we can locate the maximum absolute
coefficients’ locations for any ðq; qÞn with odd n.

The base word associated with B has 72 letters, each let-
ter representing 19 consecutive En values, where each of
these values are an additional 4 index n shifts of ðq; qÞn:
There are 11 base words corresponding to both odd residue
classes mod 4. This translates to shifts of the n of ðq; qÞn by
72� 19� 4� 11 ¼ 60, 192: On top of that, the total amount
of perturbation is 32 letters, reflecting another 2,432 to the
shifts of the subindex of ðq; qÞn, respectively. All together,
the period of En’s is conjectured to be 62,624. Lastly, the
sum of En’s is 19,787. Now we can start stating our conjec-
tures for the maximum absolute coefficients’ location, using
(3.1). Our first example is Conjecture 1.2 that is represented
in a simplified fachion in the introduction.

Conjecture 1.2. We have,

Lð5909þ 68324kÞ ¼ ð5909þ 62624kÞð5910þ 62624kÞ
4

� 3735
2

� 19787k,

Lð391þ 62624kÞ ¼ ð391þ 62624kÞð392þ 62624kÞ
4

� 124� 19787k,

for any k � 0:

Note that D5909 ¼ 3735=2 and D391 ¼ 124: Although
these formulas might seem limited, one can easily use
these explicit values with En’s as represented in Table 2
to find the location of the maximum coefficient of
any odd value greater than 5909. The location calcula-
tions for the n � 5000 already exist in the Online
Encyclopedia of Integer Sequences, under the sequence
number A160089 [7], and one can easily recover the
gap between 5000 and 5909, by our above mentioned
calculations.

We list similar conjectures that correspond to the start of
each word of the periods of 1 and 3 modulo 4 cases:

Conjecture 3.4. For any k � 0, r ¼ 0, 1, 2, :::10, let

Aðk, rÞ ¼ 5700r þ 62624k� 76 dr, 11, and

Bðk, rÞ ¼ 5700r þ 62624k� 76 dr�7,

where di, j is the Kronecker delta and di�j yields 1 if i � j,
and 0, otherwise. Then,

Lð5909þ Aðk, rÞÞ ¼ ð5909þ Aðk, rÞÞð5910þ Aðk, rÞÞ
4

� D5909þAð0, rÞ � 19787k,

Lð391þ Bðk, rÞÞ ¼ ð391þ Bðk, rÞÞð392þ Bðk, rÞÞ
4

� D391þBð0, sÞ � 19787k,

where the full list of needed seed values of Dn’s are

Table 2. The words for n � 1 and 3 mod 4 cases associated with the alphabet of Table 1.

a1 b4 c4 d4 e4 f3 g4 h5 i4 j4 k3 l4 m4 n4 o5 p3 q4 r4 s4 t3

11

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 b4 c4 d4 e4 f3 g4 h4 i5 j4 k3 l4 m4 n4 o5 p3 q4 r4 s4 t3

a1 b3 c5 d4 e4 f3 g4 h4 i5 j4 k3 l4 m4 n4 o4 p4 q4 r4 s4 t3

a1 b3 c5 d4 e4 f3 g4 h4 i4 j5 k3 l4 m4 n4 o4 p4 q4 r4 s4 t3

a1 b3 c4 d5 e4 f3 g4 h4 i4 j5 k3 l4 m4 n4 o4 p3 q5 r4 s4 t3

a1 b3 c4 d5 e4 f3 g4 h4 i4 j4 k4 l4 m4 n4 o4 p3 q4 r5 s4 t3

a1 b3 c4 d4 e5 f3 g4 h4 i4 j4 k3 l5 m4 n4 o4 p3 q4 r5 s4 t3

a1 b3 c4 d4 e4 f4 g4 h4 i4 j4 k3 l5 m4 n4 o4 p3 q4 r4 s5 t3

a1 b3 c4 d4 e4 f4 g4 h4 i4 j4 k3 l4 m5 n4 o4 p3 q4 r4 s5 t3

a1 b3 c4 d4 e4 f3 g5 h4 i4 j4 k3 l4 m5 n4 o4 p3 q4 r4 s4 t4

a1 b3 c4 d4 e4 f3 g5 h4 i4 j4 k3 l4 m4 n5 o4 p3 q4 r4 s4 t4

a1 b3 c4 d4 e4 f3 g4 h5 i4 j4 k3 l4 m4 n5 o4 p3 q4 r4 s4 t3

a1 b4 c4 d4 e4 f3 g4 h4 i5 j4 k3 l4 m4 n4 o5 p3 q4 r4 s4 t3

a1 b3 c5. . .

a1 b3 c4 d5 e4 f3 g4 h4 i4 j4 k4 l4 m4 n4 o4 p3 q5 r4 s4 t3

a1 b3 c4 d4 e5 f3 g4 h4 i4 j4 k4 l4 m4 n4 o4 p3 q4 r5 s4 t3

a1 b3 c4 d4 e5 f3 g4 h4 i4 j4 k3 l5 m4 n4 o4 p3 q4 r4 s5 t3

a1 b3 c4 d4 e4 f4 g4 h4 i4 j4 k3 l4 m5 n4 o4 p3 q4 r4 s5 t3

a1 b3 c4 d4 e4 f3 g5 h4 i4 j4 k3 l4 m5 n4 o4 p3 q4 r4 s4 t4

a1 b3 c4 d4 e4 f3 g5 h4 i4 j4 k3 l4 m4 n5 o4 p3 q4 r4 s4 t4

a1 b3 c4 d4 e4 f3 g4 h5 i4 j4 k3 l4 m4 n5 o4 p3 q4 r4 s4 t3

a1 b4 c4 d4 e4 f3 g4 h5 i4 j4 k3 l4 m4 n4 o5 p3 q4 r4 s4 t3

a1 b4 c4 d4 e4 f3 g4 h4 i5 j4 k3 l4 m4 n4 o4 p4 q4 r4 s4 t3

a1 b3 c5 d4 e4 f3 g4 h4 i4 j5 k3 l4 m4 n4 o4 p4 q4 r4 s4 t3

a1 b3 c4 d5 e4 f3 g4 h4 i4 j5 k3 l4 m4 n4 o4 p3 q5 r4 s4 t3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

11

a1 b3 c4 d5 e4 f3 g4 h4 i4 j4 k4 l4 m4 n4 o4 p3 q5 r4 s4 t3

a1 b3 c4 d4 e5 f3 g4 h4 i4 j4 k4 l4 m4 n4 o4 p3 q4 r5 s4 t3

a1 b3 c4. . .

Table 3. The perturbation vectors of a full observed period for 1 and 3 modulo 4 cases side-by-side.

u1 = (0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0), v1 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0),
u2 = (0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0), v2 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0),
u3 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0), v3 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0),
u4 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0), v4 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0),
u5 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0), v5 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1),
u6 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0), v6 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1),
u7 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0), v7 = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),
u8 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0), v8 = (0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),
u9 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1), v9 = (0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),
u10 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1), v10 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),
u11 = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0). v11 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0).

4 A. BERKOVICH AND A. K. UNCU



In Conjecture 3.4, A(k, r) and B(k, r) are used to move to
the start of any word. The variable r is used to move within
the periods, and k is used for going over full periods.
Conjecture 3.4 reduces to Conjecture 1.2 for r¼ 0. One
important note we need to make is the use of the correc-
tional d functions. The number 76, as explained after the
introduction of the chosen alphabet, corresponds to the
number of consecutive n’s needed to expand ðq; qÞn for
forming a single letter. We have already observed that two
words in Table 2 (one for each case) in the period have one
less letter than the others. The d functions are introduced
only to address this issue.

4. Future directions

We have handled the odd cases in two groups correspond-
ing to residue classes modulo 4. We can also start with a
uniform approach. For all odd n � 35, let

~En ¼ 2ðDn � Dn�2Þ:

It is clear that one can define a formula for L(N), which
would be an analog of (3.1), using these ~En values and the
Dn’s. The period in this unified approach seems to be much
larger than 11. Nevertheless, one intriguing claim analogous
to Conjecture 3.2 is:

Conjecture 4.1. Let n be an odd number � 61, then ~En ¼ 1
or 3.

Using the last maximum absolute coefficients we can
note that

M75000=M74999 ¼ 1:2197054247521000707::::

Moreover,

M75000ð Þ1=75000 ¼ 1:2195493261856946041:::,

which is a closer estimate than Finch’s [6] approximation
for this value, but it neither supports nor disproves
Kotesovec’s [7] conjecture:

lim
n!1

ffiffiffiffiffiffiffiffiffiffiffi
Mnn

p
¼ lim

n!1

ð1
0

Yn
j¼1

4 sin 2ðpjzÞdz
 ! 1

2n

¼ 1:21971547612163368901359933:::: (4.1)

We also checked the possible fitting functions and their
limits using our data to understand these constants better.
We assume that these sequences look like

a0 þ a1
n
þ :::,

for large n where the major contribution comes from the
first two coefficients. Starting from n¼ 50000, we fitted the
function Mn=Mn�1 to understand their asymptotic behav-
ior better. We use the Aitken’s delta-squared series acceler-
ation method [9] that eliminates the a1 term in the
asymptotics in estimating this limit. Then the approximation
for the limiting constant a0 is

lim
n!1Mn=Mn�1 � 1:2197154761199955231::::

This estimated limit matches Kotesovec’s conjecture (4.1)
in 10 decimal digits.
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