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Numerical Verification of the Birch and Swinnerton-Dyer Conjecture for
Hyperelliptic Curves of Higher Genus over Q up to Squares

Raymond van Bommel

Mathematisch Instituut, Universiteit Leiden, Leiden, The Netherlands

ABSTRACT
The Birch and Swinnerton-Dyer conjecture has been numerically verified for the Jacobians
of 32 modular hyperelliptic curves of genus 2 by Flynn, Lepr�evost, Schaefer, Stein, Stoll and
Wetherell, using modular methods. In the calculation of the real period, there is a slight
inaccuracy, which might give problems for curves with non-reduced components in the spe-
cial fiber of their N�eron model. In this present article, we explain how the real period can
be computed, and how the verification has been extended to many more hyperelliptic
curves, some of genus 3, 4, and 5, without using modular methods.
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1. Introduction

In [Birch and Swinnerton-Dyer 65], Birch and
Swinnerton-Dyer first stated their famous conjecture,
based on computations with elliptic curves. Later, in
[Tate 66], Tate generalized the conjecture to abelian
varieties of higher dimension.

Conjecture 1 (BSD, [Hindry and Silverman 2000,
Conj. F.4.1.6, p. 462]). Let A=Q be an abelian variety
of dimension d and algebraic rank r. Let L(A, s) be its
L-function, A� its dual, RA its regulator, �ðAÞ its
Tate-Shafarevich group and PA its period. For each
prime p, let cp be the Tamagawa number of A at p.
Then L(A, s) has a zero of order r at s¼ 1 and

lim
s!1

s�1ð Þ�rL A; sð Þ ¼ PARA � j� Að Þj �Qp cp
jA Qð Þtorsj � jA� Qð Þtorsj

:

Remark 2. In Tate’s original version, [Tate 66], the
period, Tamagawa numbers and discriminant are put
in the normalization of the L-function.

Tate stated the conjecture for abelian varieties over
number fields. However, in [Milne 72], Milne proved
that the conjecture is compatible with Weil restriction,
so BSD holds for all abelian varieties overall number
fields if and only if it holds for all abelian varieties
over Q:

Due to work of Kolyvagin [Kolyvagin 89, Kolyvagin
91] and others, a weak version of BSD has been proven

for elliptic curves over Q with analytic rank at most 1.
More precisely, we know that in these cases the alge-
braic rank equals the analytic rank. On the other hand,
on the numerical side, in [Flynn et al. 01] Flynn et al.
numerically verified BSD for the Jacobians of 32 hyper-
elliptic curves of genus 2 with small conductor, using
modular methods for their calculations.

There is, however, a slight inaccuracy in [Flynn et al.
01]. In the calculation of the real period, calculations
seem to be done inside the sheaf of relative differentials,
while they should be done inside the canonical sheaf.
For curves whose N�eron model has non-reduced fibers,
this could cause a problem. For the curves considered, it
did not seem to invalidate the final results.

The goal of this article is twofold. On the one hand,
we will give a more explicit algorithm to compute the
real period, or more specifically, a N�eron differential,
along with the theoretical foundations that are needed
for this. On the other hand, we will present how we
extended the numerical verification of BSD to the
Jacobians of many more hyperelliptic curves of genus 2,
3, 4, and 5 without using modular methods. As far as
the author is aware, this is the first time BSD has been
numerically verified for the Jacobians of curves of genus
3, 4, and 5.

We did not compute, however, the order of �ðAÞ:
Moreover, the verification is only provable up to
squares. That is, all terms but j�ðAÞj are computed,
of which some are only provably correct up to
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squares. Then it is verified that the conjectural order
of �ðAÞ; as predicted by the conjecture, up to a cer-
tain high precision, is a rational square or two times a
rational square, in accordance with the criteria
described in [Poonen and Stoll 99, Sect. 8,
pp. 1125–1126].

The structure of this article is as follows. First we
present our verification results. Then we discuss the
computation of the real period and the theoretical
background needed. Then in the last part we briefly
discuss the computation of the other terms in the
BSD formula.

2. Results

For the Jacobians of the curves listed below, we
numerically verified BSD in the following sense. We
numerically determined the algebraic and analytic
rank, the special value of the L-function, the regulator
(provably only up to squares), the real period, the
Tamagawa numbers, and the size of the torsion sub-
group of the Jacobian, assuming some conjectures
mentioned below. Then the BSD formula was used to
calculate a conjectural order for �; and it was veri-
fied that it is a rational square (which it should be
according to the criteria in [Poonen and Stoll 99]).

In practice this meant that the conjectural order for
� was less than 10�9 away from an integer. Moreover,
for all but one of the curves of genus 2, this conjectural
order was actually equal to 1.000000000.

The conjectural results that we assume to hold for
the verification include the analytic continuation, and
the correctness of the functional equation of the L-
function (see [Hindry and Silverman 2000, Conj.
F.4.1.5, p. 461]). When we computed the analytic
rank, we did this by numerically checking whether the
L-function and its derivatives up to certain order, van-
ish at 1. Even though this does not prove that these
functions vanish, we do assume this to be true.
Moreover, we assume the correctness of Ogg’s for-
mula for the computation of the 2-part of the con-
ductor (for more details, see Remark 15). In a certain
sense, one could say that our verification also provides
evidence for these conjectures.

List of curves

� All elliptic curves of the form y2 ¼ x3 þ axþ b
with a; b 2 f�15; . . . ; 15g; and compared it with
the outcomes of already existing algorithms
in Magma.

� All hyperelliptic curves from [Flynn et al. 01],
comparing it with the outcomes given in
that article.

� All 300 hyperelliptic curves C of genus 2, of the
form

y2 ¼ x5 þ ax4 þ bx3 þ cx2 þ dx þ e;

up to isomorphism, with a; b; c; d; e 2 f�10; :::; 10g
and DðCÞ � 105: About one third of them have
rank 1, the rest are of rank 0. They are all con-
tained in the LMFDB, cf. [Booker et al. 16].

� All six hyperelliptic curves of genus 3, of the form

y2 ¼ x7 þ ax6 þ bx5 þ cx4 þ dx3 þ ex2 þ fxþ g;

with a; b; c; d; e; f ; g 2 f�3; :::; 3g and DðCÞ � 106;
that is, we checked BSD, up to squares, for

� H1 : ða; b; c; d; e; f ; gÞ ¼ ð1;�3; 2; 2;�3; 0; 1; 0Þ;
� H2 : ða; b; c; d; e; f ; gÞ ¼ ð1;�2;�1; 2; 2;�1;�1; 0Þ;
� H3 : ða; b; c; d; e; f ; gÞ ¼ ð1; 0;�3;�2; 2; 3; 1; 0Þ;
� H4 : ða; b; c; d; e; f ; gÞ ¼ ð1; 0;�1; 0;�2; 3;�1; 0Þ;
� H5 : ða; b; c; d; e; f ; gÞ ¼ ð1; 1;�2;�2; 1; 2;�1; 0Þ;
� H6 : ða; b; c; d; e; f ; gÞ ¼ ð1;�3; 2; 0; 1; 0;�1; 0Þ;

and, in order to have an example of rank 1,
the curve

� H7 : ða; b; c; d; e; f ; gÞ ¼ ð1;�3; 1; 3;�2; 0; 1; 0Þ:

As far as we are aware these are the first examples of
curves of genus 3 for which BSD has been numeric-
ally verified. These were the invariants we found:

For the torsion and regulator, points were searched
up to a certain height on the Jacobian. This maximum
search height is considerably smaller than the height

r lims!1 ::: PA RA cp jAðQÞtorsj j�jan
H1 0 0.8006061 51.23879 1 c2 ¼ c5 ¼

c23 ¼ 1
8 1.000000

H2 0 0.7636550 48.87392 1 c2 ¼ c5 ¼
c23 ¼ 1

8 1.000000

H3 0 0.9275079 59.36050 1 c2 ¼ c5 ¼
c23 ¼ 1

8 1.000000

H4 0 0.8087909 51.76262 1 c2 ¼ c5 ¼
c31 ¼ 1

8 1.000000

H5 0 0.9784790 62.62265 1 c2 ¼ c5 ¼
c23 ¼ 1

8 1.000000

H6 0 0.4310775 55.17793 1 c2 ¼ 2;
c5 ¼ c23 ¼ 1

16 1.000000

H7 1 1.953631 50.85263 0.6146799 c2 ¼ c5 ¼
c11 ¼ 1

4 1.000000
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given by the various height bounds in the literature. It
is possible that the size of the torsion subgroups and
the regulator is incorrect, but this would only cause a
rational square error factor for the value of j�jan:

� The curve

y2 þ x5 þ x2ð Þy ¼ x8 þ x7 þ x6 þ 4x5 þ 3x4

þ 2x3 þ 4x2 þ 2x

of genus 4, with discriminant -1,064,000, which was
found by Harrison [Harrison 18]. It has Mordell-
Weil rank 0. We found LðA; 1Þ� 0:09889146;
PA � 178:0046; c2 ¼ 2; cp ¼ 1 for all other p, and
jAðQÞtorsj ¼ 60; yielding j�jan ¼ 1:0000000: Again
the torsion is not computed in a provable way.
However by reducing modulo 3, we found that the
torsion is a divisor of 180. As far as we are aware
this is the first example of a curve of genus 4 for
which BSD has been numerically verified.

� The curve

y2 þ x6 þ x4 þ 1ð Þy ¼ x4 þ x2

of genus 5, with discriminant 116,985,856, found in
the aforementioned list. It has Mordell-Weil rank 0.
We found LðA; 1Þ� 0:1002872; PA � 579:2589; cp ¼
1 for all p, and jAðQÞtorsj ¼ 76; yielding j�jan ¼
1:0000000: As this curve does not have a rational
Weierstraß point (which we actually do assume for
most of the article), the search for torsion points was
much more cumbersome, due to the Mumford rep-
resentation not behaving well in this case. Again it is
not provable; the best upper bound for the torsion
that we found is 304. As far as we are aware this is
the first example of a curve of genus 5 for which
BSD has been numerically verified.

Remark 3. It could be the case that some of these
curves have isomorphic (or isogenous) Jacobians.
Then we actually verified BSD two times for the same
abelian variety. In the verification process, we did not
check for this.

Remark 4. Even though for all our curves the verifi-
cation went well, it should be remarked that problems
are to be expected when trying to verify BSD for
Jacobians of curves with higher discriminant (or
rather, higher conductor). The computation of the L-
function takes much longer in these cases. Also the
computation of the regulator will be harder, as the
heights of the points involved might increase, in par-
ticular in case the Mordell-Weil rank is higher.

It should be feasible to carry out the verification
for more of the small examples from Harrison’s list,
[Harrison 18] of genus 4, as long as the maximum
bad prime is small enough. We also tried the verifica-
tion for some more examples of genus 5, but in these
cases the computation of the special value of the L-
function was taking hours and the computation of the
regular model sometimes did not seem to finish in
reasonable time.

3. Theory of differentials

Let C=Q be a smooth, geometrically irreducible, pro-
jective curve of genus g over Q: Let J=Q be its
Jacobian. The goal of this section is to define the
period of J, and to describe a way to compute it in
the case C is hyperelliptic. We will be following the
algorithm described in [Flynn et al. 01, sect. 3.5].

First we will discuss both the theoretical considera-
tions that are needed for this algorithm.

Throughout the section p will be a prime and S
will be the scheme SpecðZðpÞÞ: The generic point of S
is called g and the special point p.

3.1. Preliminaries

First, for completeness, we will recall the follow-
ing definition.

Definition 5 ([Bosch et al. 90, p. 166]). A (relative)
curve C over S is a normal, proper, flat S-scheme,
such that for all t 2 S; the fiber Ct is of pure dimen-
sion 1. A model of C over S is a relative curve C over
S together with an isomorphism Cg ffi C:

Remark 6. Without the normality assumption, the
special fiber of a curve over S could have embedded
components. In order to be able to use the results
from [Bosch et al. 90], which have been partially
derived from [Raynaud 70], it is necessary to not have
embedded components.

Let J be a N�eron model of J over S, and let C=S
be a regular model of C. Assume that the geometric
multiplicities of the irreducible components of Cp in
Cp have greatest common divisor 1.

Theorem 7 ([Bosch et al. 90, Thm. 4(b), sect. 9.5, p.
267]). Under these conditions, Pic0C=S is a separated
scheme and Pic0C=S coincides with the identity compo-
nent of J :

From [Raynaud 70, Prop. 5.2, p. 46], it now follows
that C=S is cohomologically flat, which we will need
for the next part.

EXPERIMENTAL MATHEMATICS 3



3.2. Differentials of Jacobian and regular model

A classical theorem (see e.g. [Milne 86, Prop. 2.2,
p. 172]) relates the differentials on the Jacobian of a
smooth curve over a field with the differentials on the
curve itself. We will generalize this to J and C:
Definition 8 ([Liu 02, Def. 4.7, sect. 6.4.2, p. 239]).
Let Y/T be a quasi-projective locally noetherian
scheme. Let i : Y ! Z be an immersion into a smooth
scheme Z/T. Then the canonical sheaf of Y/T is
defined to be the OY-module

xY=T :¼ det i� I=I 2
� �� ��	OT i

� det X1
Z=T

� �
;

where I is the sheaf of ideals defining Y in an open
Z0 
 Z containing Y as closed subset. This is inde-
pendent of the choice of Z and i, see loc. cit.

The following lemma generalizes the aforemen-
tioned theorem.

Lemma 9. There are canonical isomorphisms
of OS-modules

Proof. The right hand isomorphism is given by
Grothendieck duality, see [Liu 02, Sect. 6.4.3, p. 243].
The bottom isomorphism, a, is from [Bosch et al. 90,
Thm. 8.4.1, p. 231] (here we use that C=S is cohomo-
logically flat). Getting the left hand isomorphism is a
little bit more involved.

First remark that global differentials on an abelian
variety are translation invariant. As the image of J is
dense in J ; also the differentials in X1

J =SðJ Þ are
translation invariant. Combining this with [Bosch
et al. 90, Prop. 4.2.1, p. 100], we get

XJ =S Jð Þ ¼ X1
J =S Jð Þinv ¼ e�X1

J =S Sð Þ; (3–1)

where e : S ! J is the unit section. Now, by [Liu 02,
Prop. 6.1.24, p. 217], we get an exact sequence of
OS-modules

m=m2 ! e�X1
J =S ! X1

S=S ¼ 0;

where m is the ideal of the schematic image of e
inside J : As both m=m2 and X1

J =S; and hence e�X1
J =S

are locally free of rank g (as J is regular), we get that
the kernel of m=m2 ! e�X1

J =S is torsion. As OS is tor-
sion-free in our case, and hence the locally free mod-
ule m=m2 is torsion-free, we find a canonical
isomorphism of OS-modules

e�X1
J =S ¼ m=m2 ¼ Hom OS Lie Jð Þ;OSð Þ;

which gives, by taking global sections and composing
with Equation (1–3), the construction of the left hand
isomorphism in the diagram. w

Remark 10. Under the natural identifications
X1

J =SðJ Þ	ZðpÞQ ¼ X1
J=QðJÞ and xC=SðCÞ	ZðpÞQ ¼

X1
C=QðCÞ; the isomorphism X1

J =SðJ Þ ffi xC=SðCÞ in the
lemma above is compatible with the aforementioned
classical isomorphism X1

J=QðJÞ ffi X1
C=QðCÞ:

3.3. Algorithm for the real period

Suppose that x1; :::;xg 2 X1
C=QðCÞ are such that, for

every prime p, they form a ZðpÞ-basis of xC=SðCÞ;
under the identification xC=SðCÞ	ZðpÞQ ¼ X1

C=QðCÞ: In
other words, cf. Lemma 9, suppose that x1; :::;xg cor-
respond to generators of X1

J Z=Z
ðJ ZÞ; where J Z=Z is

a N�eron model of J over SpecZ: Moreover, let
c1; :::; c2g 2 H1ðC;ZÞ form a symplectic basis for the
homology. Then the real period can be defined
as follows.

Definition 11. The real period of J is the covolume of
the lattice

Z a1 þ a1ð Þ þ :::þ Z a2g þ a2gð Þ 
 Rg ;

where ai ¼ ðÐcixjÞgj¼1 2 Cg for i ¼ 1; :::; 2g:
Now suppose that we are working with a hyperel-

liptic curve given by y2 ¼ f for some f 2 Q½x�: Then,
due to Van Wamelen there is a procedure in Magma

to compute a symplectic basis of H1ðC;ZÞ as men-
tioned before, and the integrals

Ð
ci

xj�1�dx
y for all i ¼

1; :::; 2g and j ¼ 1; :::; g:
In order to compute the real period, we only need

to find a basis x1; :::;xg as above in terms of the dif-
ferentials xj�1�dx

y : For our purpose, the calculation can
be done for each prime p separately. Fortunately for
us, due to Donnely, Magma also has an algorithm to
compute explicit equations for a regular model C of C
over S. It will represent C=S by giving charts, each of
which is a relative complete intersection. The follow-
ing lemma explicitly gives the isomorphism
xC=SðCÞ 	ZðpÞQ ffi X1

C=QðCÞ that we need to compute
whether a certain differential is vanishing or having a
pole on one of the components of the special fiber
(Step 5 and 6 in Algorithm 13).

Lemma 12. Let X 
 An
S ¼ SpecðZp½x1; :::; xn�Þ be regu-

lar, flat, and of relative dimension 1 over S ¼ SpecZðpÞ.
Suppose that X is a relative complete intersection
inside An

S , given by equations g1 ¼ ::: ¼ gn�1 ¼ 0, with

4 R. VAN BOMMEL



gi 2 ZðpÞ½x1; :::; xn�. Moreover, suppose that the generic
fiber X g is smooth over Q:

Then, on the one hand, after possibly reordering
x1; :::; xn, we may and will assume that X1

kðXgÞ=Q is a
kðXgÞ-vector space of dimension 1 generated by dxn.
This space contains X1

Xg=Q
ðXgÞ. On the other hand, we

can define xX=S using this immersion into An
S (cf. Def.

8). Then xX=S is free of rank 1 and generated by an
element, which we will denote by
ðg1 � :::� gn�1Þ� 	 dx1 � :::� dxn. Then there is a
canonical isomorphism of Q-vector spaces

X1
X g=Q

Xgð Þ!� xX=S Xð Þ	Z pð ÞQ;

which is given by

f � dxn 7! f � det @gi=@xj
� �n�1

i;j¼1 � g1 � :::� gn�1ð Þ�

	 dx1 � :::� dxn:

Proof. On the one hand, we can consider Xg 
 Xg;

on the other hand, we have an embedding X g 
 An
Q:

Both give us a way to construct X1
Xg=Q

; and [Liu 02,
Lem. 6.4.5, p. 238] gives an explicit natural isomorph-
ism between them. What is left to check, is that this
isomorphism is exactly the one described in the state-
ment of Lemma 12.

We will break down the proof of [Liu 02, Lem.
6.4.5, p. 238] to find the map explicitly. In this
lemma, we will take X ¼ Z1 ¼ Xg;Y ¼ SpecQ and
Z2 ¼ An

Q; and we let i2 : Xg ! An
Q be the map

induced by the embedding of X into An
S : The two

exact sequences, induced by [Liu 02, Cor. 6.3.22, p.
233] are

0 ! 0 ! CXg=W ! i�2X
1
An

Q
=Q ! 0 and

0 ! CXg=A
n
Q
! CXg=W ! X1

Xg=Q
! 0;

where W ¼ Xg
QA
n
Q; and the map h : Xg ! W is

given by ðidXg ; i2Þ; and CXg=W ¼ h�Ih=I 2
h and

CXg=A
n
Q ¼ i�2I i2=I 2

i2 with Ih and I i2 the sheaf of
ideals on W and An

q respectively, defining Xg:

We will make the maps in these exact sequences
explicit, starting with the first sequence. Let p1 : W !
Xg and p2 : W ! An

Q be the two projections. We
know that X1

An
Q
=Q is a free sheaf generated by n ele-

ments dx1; :::; dxn: Now X1
W=Xg

is identified with
p�2X

1
An

Q
=Q; and in this identification the differential dxj

is mapped to dzj, where zj ¼ p�2xj: By pulling back
along h, we get an identification h�X1

W=Xg
¼ i�2X

1
An

Q
=Q:

Now the isomorphism CXg=W ! h�X1
W=Xg

is ultim-
ately coming from [Liu 02, Prop. 6.1.8, p. 212]. The
sheaf Ih=I 2

h is generated by zj�yj; for j ¼ 1; :::; n�1;

where yj ¼ p�1i
�
2xj: These are mapped to dðzj�yjÞ ¼ dzj

in h�X1
W=Xg

or to dxj in i�2X
1
An

Q
=Q:

To understand the morphism CXg=A
n
Q
! CXg=W in

the second sequence, we have to go back to [Liu 02,
Cor. 6.3.22]. The sheaf I i2=I 2

i2 is generated by the
functions g1; :::; gn�1: Following the proof of the afore-
mentioned corollary, we consider the following
Cartesian diagram.

Here p1 and p2 are the first and second coordinate
projections Xg
QXg ! X g: The map h : Xg ! W
from the bottom left to the top right, using the uni-
versal property of the product, gives rise to the diag-
onal section D : Xg ! X g
QXg of p1. Then, there is
the identification

CX g=A
n
Q
¼ D�p�1CXg=A

n
Q
¼ D�CXg
QXg=W ;

identifying the functions gi in CXg=A
n
Q
with the func-

tions p�2gi in D�CXg
QXg=W : In other words, if you
express the gi in terms of the variables xj on An

Q; then
you get p�2gi by replacing all the xj’s by zj’s.

The map CXg=W ! X1
Xg=Q

is constructed in an
analogous way to the construction of the map
CXg=W ! i�2X

1
An

Q
=Q: It sends zj�yj to �dwj; where wj ¼

i�2xj; on X1
Xg=Q

:

Now the isomorphism

det CXg=A
n
Q
	 det X1

Xg=Q
! det CXg=W ! det i�2X

1
An

Q
=Q

g1 � :::� gn�1ð Þ 	 dwn 7! p�2g1 � :::� p�2gn�1 � dwn

7! dg1 � :::� dgn�1 � dxn

is constructed cf. [Liu 02, Lem. 6.4.1, pp.. 236–237].
Of course,

dg1 � :::� dgn�1 � dxn ¼ det @gi=@xj
� �n�1

i;j¼1 � dx1 � :::� dxn:

Recall that xX=S ¼ detði�I i=I 2
i Þ�	S i�det X1

X=S;

where i : X ! An
S is the embedding, and I i is the

sheaf of ideals on OAn
S
defining X : After base change

to Q; this becomes ðdet CXg=A
n
Q
Þ�	Qdet i�2X

1
An

Q=Q
: The

result now follows immediately. w

Altogether, this leads to the following algorithm.

Algorithm 13.
Input: monic polynomial f 2 Z½X� of degree 2g þ 1
describing a hyperelliptic curve C of genus g over Q:
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Output: the real period X of its Jacobian J.
Step 1: calculate the so-called big period matrix
ðÐcixjÞi¼1;:::;2g;j¼1;:::g of J, where the notation is as
before, using the Magma command BigPeriodMatrix
(due to Van Wamelen).
Step 2: for each subset I 
 f1; :::; 2gg with jIj ¼ g; cal-
culate the covolume PI :¼ jdetðÐcixj þ

Ð
ci
xjÞi2I;j¼1;:::;g j:

Step 3: use Euclid’s algorithm to find a generator P
for the lattice spanned by the PI.
Step 4: for each bad prime p, calculate a regular model
C=ZðpÞ of C, using the Magma command
RegularModel. This will give us a representation of C
by charts which are relative complete intersections.

Step 5: for each of the differentials x1; :::;xg ; check
if it has a pole on any of the irreducible components
of the special fiber of C: If so, adjust the basis by mul-
tiplying the differential having a pole with p to get a
new basis x0 and apply Step 5 again (until the basis is
not changing anymore).
Step 6: for each ðcjÞgj¼1 2 f0; :::; p�1gg n fð0; 0; :::; 0Þg;
check if

P
j cjxj vanishes on the whole special fiber of

C: If so, adjust the basis x0 by replacing one of the xj

such that cj 6¼ 0 with 1
p

P
j cjxj; then apply Step 6 again

(until the basis is not changing anymore).
Step 7: for each bad prime p compute pa�b; where a is
the number of basis adjustments done in Step 5, and
b is the number of basis adjustments done in Step 6
(this is also the determinant of the change of basis
matrix whose columns express x0 in terms of x).
Then take the product W over p of these determi-
nants, and output W � P:
End.

4. Computation of other terms in BSD formula

Throughout this section, we will use the follow-
ing notation.
Notation 14. We define H=Q to be a hyperelliptic
curve of genus g. When a prime p is introduced,
H=ZðpÞ is a regular model of H over ZðpÞ: The
Jacobian of H is denoted by J, and the N�eron model
of J over Z is called J :

Moreover, we will assume that H is given by a
model of the form y2 ¼ f ðxÞ; where the input polyno-
mial f(x) has odd degree. The reason we assume f(x)
to have odd degree, is twofold. On the one hand, the
existence of a rational Weierstraß point ensures the
conditions of Theorem 7 are met. On the other hand,
the Jacobian arithmetic has not been fully imple-
mented in Magma for hyperelliptic curves without
rational Weierstraß point.

4.1. Torsion subgroup and rank

In order to compute the torsion group and algebraic
rank of J, we will be computing upper and lower bounds.

For the torsion, upper bounds are given by consider-
ing the reduction of J at good primes. For the algebraic
rank, upper bounds are given by considering 2-Selmer
groups. This is already implemented in Magma by Stoll.

To get lower bounds, we try to find as many points
as possible on J. For genus 2, this is already imple-
mented in Magma. For genus 3, 4, and 5, the author
implemented a simple search algorithm for points,
using the Mumford representation that Magma is
using to represent points on J.

In fact, for Jacobians of curves J and J� are iso-
morphic. Hence, in order to verify the BSD conjecture
up to squares in this case, it is actually not necessary
to know the size of the torsion subgroup at all.

4.2. L-function

In this section, we will briefly discuss the computation
of the special value of the L-function associated to the
Jacobian of a hyperelliptic curve. For a complete def-
inition and theoretical background on the L-function,
see [Serre 70].

The idea used to compute the L-function is as fol-
lows. The local L-factors at the good primes p> 2 can
be found by counting points in J ðFpmÞ for sufficiently
many m � 1: In order to find the local L-factors at
the bad places, one uses the functional equation. The
idea is to guess, in a clever way, the conductor and,
for the bad primes, the local L-factors, in such a way
that the L-function obtained satisfies the conjectural
functional equation, see also [Booker et al. 16, sect. 5,
pp. 243–245].

Remark 15. To guess the 2-part of the conductor, the
following naive version of Ogg’s formula is used:

f guess ¼ v Dð Þ�nþ 1:

Here, vðDÞ is the valuation of the (naive) minimal
discriminant, n is the number of geometrically irredu-
cible components in a minimal regular model, and f guess

is our guess for the 2-valuation of the conductor. The
formula, in this shape, does not give the correct 2-valu-
ation of the conductor in general. For curves of genus 2
over a Henselian discrete valuation ring with algebraic-
ally closed residue field, we can deduce the formula

f ¼ v Dð Þ�nþ 1�11 � c Xð Þ;
from [Liu 94], where c(X), as defined in loc. cit., is a
non-negative integer. Over general discrete valuation
rings, the discriminant could change after a quadratic
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field extension, cf. [Liu 96, Prop. 4, p. 4595]. In this
case, it drops by 2ð2g þ 1Þ: So, for genus 2, in case
vðDÞ<10; the discriminant will apparently not change
anymore, and c(X) ¼ 0 must hold for the 2-valuation
f of the conductor to not become negative. Hence, the
naive version of Ogg’s formula holds in this case.

In [Dokchitser 04], Tim Dokchitser describes a
trick with an inverse Mellin transform in order to
actually evaluate the L-function. This has been imple-
mented by him, together with Vladimir Dokchitser, in
Magma. This is the method we used for our calcula-
tions. However, it is useful to remark that the runtime
increases quickly when the conductor increases and
that this could probably by remedied by using the
methods from [Harvey et al. 16].

4.3. Regulator

Using the points on J that we found when computing
the algebraic rank, we will compute the regulator. In
order to do that, we need to calculate the height pair-
ing for several pairs of points.

Due to work of Holmes [Holmes 12] and M€uller
[M€uller 14] it is now known how arithmetic intersection
theory could be used to do this calculation. This has
also been implemented in Magma for Jacobians of
hyperelliptic curves by M€uller, and works in practice for
genus up to 10.

In many cases, especially in genus 3, 4, and 5, the
height bound we use for point finding is not high
enough to provably compute the regulator. The upper
bounds for difference between the naive and canonical
height are quite big in some cases, see for example
[M€uller and Stoll 16] for genus 2. In that case, we can
only obtain a finite index subgroup of the Mordell-
Weil group. Therefore, the regulator that we get might
be a square multiple of the actual regulator of J.
Hence, the conjectural order of �; assuming BSD,
might be a multiple of the order that we compute.

4.4. Tamagawa numbers

Suppose that we have a regular model Hhens of H over
the strict henselization of ZðpÞ: Then in [Bosch and
Liu 99, Thm. 1.1, p. 277], Bosch and Liu give an exact
sequence

0 ! Im �a ! ker �b ! /A Fp

� �
! 0

of GalðFp=FpÞ-modules. Here /AðFpÞ is the geometric
component group of the N�eron model of J : The map
�a : Z

�I ! Z
�I ; with �I indexing the components fCi :

i 2 Ig of the special fiber of Hhens; maps each

component Cj to
P

i2�I e
�1
i hCj;Cii � Ci; where h�; �i is

the intersection pairing and ei is the geometric multi-
plicity of Ci (in itself, which is 1 in our case). The
map �b : Z

�I ! Z maps each component Cj to djej;
where dj is the multiplicity of Cj in the special fiber.
Here, the Galois group GalðFp=FpÞ acts on Z

�I by its
natural action on the components of the special fiber.

Due to Donnely, Magma is able to compute this
geometric component group using this theorem, and
moreover, because explicit equations exist for a regu-
lar model H of H over ZðpÞ; we are able to compute
the action of Frobenius on Im�a and ker�b:

The way regular models are constructed in Magma
is by repeatedly blowing up non-regular points until
the fibered surface is regular. To compute the Galois
action on the components of the special fiber, we
traced down this blow-up procedure, and in each step
we computed the action of Galois on the points
blown-up, and on the new components which
appeared in the special fiber on the new blown-
up charts.

The result is an implementation of a Magma pack-
age on top of the existing regular models package,
which computes the action of the Galois group on
/AðFpÞ; and then computes the Tamagawa number,
the order of /AðFpÞ: The source code for this package
will be released together with this article. It has been
used to compute Tamagawa numbers for the
Jacobians associated to almost all of the 66,158 genus
2 curves present in [LMFDB 00] (see also [Booker
et al. 16]). This computation was finished within a
few hours.

4.5. Tate-Shafarevich group

For our calculations, we do not calculate the order of
the Tate-Shafarevich group. Instead, we only check
whether the conjectural order, given by the BSD con-
jecture, is (up to a certain precision) a rational square
or two times a rational square (with a small denomin-
ator) according to the criteria described in [Poonen
and Stoll 99].
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