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Rationality Proofs by Curve Counting

Anton Mellit

Faculty of Mathematics, University of Vienna, Vienna, Austria

ABSTRACT
We propose an approach for showing rationality of an algebraic variety X. We try to cover X by
rational curves of certain type and count how many curves pass through a generic point. If the
answer is 1, then we can sometimes reduce the question of rationality of X to the question of
rationality of a closed subvariety of X. This approach is applied to the case of the so-called Ueno-
Campana manifolds. Assuming certain conjectures on curve counting, we show that the previously
open cases X4,6 and X5,6 are both rational. Our conjectures are evidenced by computer experi-
ments. In an unexpected twist, existence of lattices D6, E8, and K10 turns out to be crucial.

KEYWORDS
Rationality; Ueno-Campana
varieties; counting
rational curves

1. Introduction

In November 2014, F. Catanese gave a talk at ICTP, Trieste
about Ueno-Campana varieties. In particular, he spoke
about the following open problem. Let E be the elliptic

curve over C with complex multiplication by 1þ ffiffiffiffiffi�3
p
2 or the

curve with complex multiplication by
ffiffiffiffiffiffiffi�1

p
: Let C ’ Z=cZ

be the group of automorphisms of E or its subgroup with
c � 3: So we have1 c¼ 3, c¼ 4 or c¼ 6 and c determines E
uniquely. Let Xn, c ¼ En=C, the quotient of En by the diag-
onal action of C. It is well-known that En=C is rational for
n¼ 1, 2. Ueno first studied these varieties in [12] and
showed that En=C cannot be rational for n � c ¼ jCj:
Campana asked [1] the following question:

Problem. For which c, n is Xn, c rational?

An introduction to the problem and the state of the art is
given in [2]. In particular, unirationality of X3, 4 was proved in
[4]. Then rationality of X3, 4 was proved in [3]. Rationality of X3, 6

was proved in [9]. Then [2] established unirationality of X4,6.
Rationality of X4,6 and unirationality of X5,6 are still open.

In this paper we give evidence towards rationality of X4,6

and X5,6. Below we will explain a certain curve counting
problem. We could only solve this problem by a certain
computer-based heuristic approach and our answer is not
rigorously justified. So we formulate results of these compu-
tations as Conjectures 6.2, 6.3, 6.4.

Theorem 1.1. If Conjecture 6.2 is true, then X4,6 is rational.

Theorem 1.2. If Conjecture 6.3 is true, then X5,6 is unira-
tional. If moreover Conjecture 6.4 is true and X4,6 is rational,
then X5,6 is rational.

As a summary of all the known results we conclude:

Corollary 1.3. Suppose Conjectures 6.2, 6.3, 6.4 are true. Let E
be an elliptic curve over C and let C be a subgroup of the auto-
morphism group of E. Let n be an integer such that 0 < n < jCj.
Then the quotient of En by the diagonal action of C is rational.

It would be interesting to try to apply our methods to
some other abelian varieties or other group actions.

Hopefully, the corresponding curve counting can be
achieved by some clever enumerative geometry techniques.
This would turn our “heuristic proofs” into real proofs.

2. The main idea

The Mori program teaches us that birational properties of vari-
eties are very much controlled by rational curves on them. Let us
try to be not too precise and make a guess, how existence of
curves (or rather families of curves) would prove rationality of
X5,6 for us? It would be a good situation if some family of rational
curves fCsgs2S existed such that the base S is rational and such
that exactly one curve passes through a generic point of X5,6. It
turns out that just having the latter property is enough for estab-
lishing unirationality of X5,6. To see this, consider an embedding
i : X4, 6,!X5, 6: If through a generic point of the image of i we
have exactly one curve from our family, we are done, because
then the curves can be parametrized by X4,6, so we obtain a dom-
inant rational map X4, 6,!S and unirationality of X5,6 as a conse-
quence. Now notice that the union of images of all embeddings
X4, 6,!X5, 6 is Zariski dense in X5,6, so i with the required prop-
erty exists. A more careful analysis leads to the following lemma:

Lemma 2.1. Let X be an irreducible algebraic variety of
dimension n over C, and let C ¼ fCsgs2S be an algebraic
family of rational curves in X. Suppose for a generic point

CONTACT Anton Mellit anton.mellit@univie.ac.at Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
1We include the case c¼ 3 for completeness and because it helps to illustrate our techniques.
� 2019 The Author(s). Published with license by Taylor & Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

EXPERIMENTAL MATHEMATICS
https://doi.org/10.1080/10586458.2019.1691088

http://crossmark.crossref.org/dialog/?doi=10.1080/10586458.2019.1691088&domain=pdf&date_stamp=2019-12-11
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/10586458.2019.1691088
http://www.tandfonline.com


x 2 X there is exactly one curve from C containing x. Let Z �
X be an irreducible closed subvariety of dimension n – 1 such
that for a generic point x 2 Z there is exactly one curve from
C containing x. Suppose the curves from C are not contained
in Z. Then the following holds:

(i) If Z is unirational, then X is unirational.
(ii) If moreover Z is rational and there exists open V � Z

such that any curve from C intersects V in no more
than one point, then X is rational.

Proof. Denote the total space of the family of curves also by
C: It comes with maps p : C ! S and f : C ! X: Let L be
the locus of points x 2 X such that there is exactly one
curve from C containing x. This is a constructible algebraic
subset of X. By the assumptions, dimðX n LÞ � n� 1:

Therefore, dimððX n LÞ n ðX n LÞÞ � n� 2: Let U ¼
X n ðX n LÞ: Since dimðZ \ LÞ ¼ n� 1, we also have
dimðZ \ UÞ ¼ n� 1: Let s : U ! S be the algebraic map
which sends a point x 2 U to the unique sðxÞ 2 S such that
x 2 CsðxÞ: The pullback s�C of the original family of curves
to U \ Z has a natural section: for any x 2 U \ Z the curve
CsðxÞ contains x. Therefore over a non-empty open subset
W � U \ Z this family is trivial. We obtain a map

f 0 : W � P1 � s�C ! C ! X:

If Z is unirational, then W is unirational. Hence W � P1

is unirational. The image of f 0 is irreducible and contains
W. Thus it is either contained in �W ¼ Z, or has dimension
n. The former is not possible because curves from C are not
contained in Z. Thus the image of f 0 has dimension n.
Therefore f 0 is dominant and X is unirational. The first
statement has been proved.

To prove the second statement, we assume without loss of
generality that W � V: If Z is rational, then W, and hence
also W � P1 is rational. So it is enough to show that a generic
point of X has not more than one preimage under f 0: Suppose
x 2 U has at least two preimages. This means there are
ðv1, t1Þ, ðv2, t2Þ 2 W � P1 that go to x. Since there is exactly
one curve from C passing through x, and that curve can inter-
sect W in at most one point, we obtain v1 ¼ v2. On the other
hand, for each v 2 W there is at most finitely many values of t
such that there exist t0 such that f 0ðv, tÞ ¼ f 0ðv, t0Þ: So the
dimension of such pairs (v, t) is at most n – 1, and therefore
the dimension of the space of such x is also at most n – 1. So a
generic x has no more than one preimage. w

Although the proof of Lemma 2.1 is essentially trivial, we see
that proving unirationality/rationality of X is reduced to unira-
tionality/rationality of Z, and a purely curve counting question.

A similar idea appeared in [10], where the authors show
that existence of a unique quasi-line passing through two
general points implies rationality.

2.1. Counting curves on a computer

The families of curves we will be dealing with are such that one
can write down explicitly a system of equations whose solutions
correspond to curves passing through a given point. So we can

implement the following strategy. Pick a big prime number, for
instance p¼ 1,000,003 or p¼ 1,000,033. We will work over F ¼
GFðpÞ: Generate a random point x 2 XðFÞ: Compute the num-
ber of curves passing through x by counting solutions over �F of
the corresponding system of equations by the standard
Gr€obner basis techniques.2 If this number is k, p is large and x
is “sufficiently random,” then we expect x to behave like a gen-
eric point, so the number of curves for a generic point over the
complex numbers should also be k. More precisely, by the Weil
conjectures the probability of hitting the bad locus where the
statement is not true is roughly c/p where c is the number of
geometric components of the bad locus defined over F. In our
10,000 trials for the Conjectures 6.3 and 6.4 we witnessed 1–2
failures, which gives an estimate on the number of components
of the bad locus at the order of � 100: The bad locus at least
has to contain the divisors Dv for vectors v ofH-norm 12 whose
number 336=6 ¼ 56 is of similar order, see Section 6.3.3

3. Rational curves

There are exactly three pairs E,C where E is an elliptic curve
over C and C is a subgroup of the group of automorphisms of
E with jCj > 2: Consider an elliptic curve E of the form x2 �
y3 ¼ z6 in Pð3, 2, 1Þ or x2 � y4 ¼ z4 in Pð2, 1, 1Þ or x3 � y3 ¼
z3 in Pð1, 1, 1Þ ¼ P2: The equation of the curve in all cases is
xa � yb ¼ zc in P c

a ,
c
b , 1

� �
: We choose (1, 1, 0) as the zero

point on E. There are gcdða, bÞ points with z¼ 0, which we call
“points at infinity”. Let f be a primitive root of unity of order
c. The group C of the roots of unity of order c acts on E by

fðx, y, zÞ ¼ ðx, y, fzÞ:
We construct rational curves in En=C as follows. Let k �

1 be an integer, and let R(t, u) be a homogeneous polyno-
mial of degree ck. For each i ¼ 1, 2, :::, n let Piðu, vÞ,Qiðu, vÞ
be relatively prime homogeneous polynomials of degrees
kc
a ,

kc
b respectively satisfying

Pa
i � Qb

i ¼ R: (1)

Let eC be the curve given by equation Rðu, vÞ ¼ wc in

Pð1, 1, kÞ: The group C acts on eC by fðu, v, cÞ ¼ ðu, v, fcÞ andeC=C ¼ P1: For each iwe have aC-equivariant map fi : eC ! E by

ðu, v,wÞ ! ðPiðu, vÞ,Qiðu, vÞ,wÞ:
Quotienting out by C we obtain a commutative diagram

3.1. Discrete invariants

To every such curve we associate discrete invariants as
follows. For each i 6¼ j we have

2In our computations we used SAGE [11], which delegates Gr€obner basis
computations to Singular [6] and certain lattice algorithms to GAP [8].
3We thank the anonymous referee for this observation.
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Pai � Qb
i ¼ Pa

j � Qb
j :

Thus we haveYa�1

l¼0

Pi � f
lc
aPj

� �
¼
Yb�1

r¼0

Qi � f
rc
bQj

� �
:

Denote

Gl, r
i, j ¼ gcd Pi � f

lc
aPj,Qi � f

rc
bQj

� �
,

Ml, r
i, j ¼ degGl, r

i, j ð0 � l < a, 0 � r < bÞ:
Using the assumption that Pi and Qi are relatively prime

and considering contribution of an arbitrary linear form in
u, v to various Ml, r

i, j , we establish the following:

kc
a
¼ deg Pi � f

lc
aPj

� �
¼
Xb�1

r¼0

Ml, r
i, j ,

kc
b
¼ deg Qi � f

rc
aQj

� �
¼
Xa�1

l¼0

Ml, r
i, j :

Note that gcdðGl, r
i, j ,G

l0 , r0
i, j Þ ¼ 1 whenever l 6¼ l0 and r 6¼ r0

because otherwise all the four polynomials Pi, Pj,Qi,Qj have
a common divisor.

3.2. Cohomology classes

It is useful to match the discrete invariantsM to the homology

classes of the strict pullbacks of our curves in H2ð gEn=C,ZÞ,
where gEn=C is the blowup of En=C in the fixed points of C. It
is possible to describe this homology group explicitly, but we
will not do this. Instead we will think of the homology class of
a rational curve as above consisting of two pieces of data:

(i) The homology class of eC in H2ðEn,ZÞ:
(ii) For each C-fixed point x 2 En the intersection number

of the strict pullback of eC to the blowup of En in x
with the exceptional divisor. This, roughly speaking,
counts how may points on eC go to x.

Furthermore, the homology class of eC in H2ðEn,ZÞ can
be specified by the following data.

Proposition 3.1. For each curve eC � En there exists a unique

n� n Hermitian matrix HðeCÞ with entries in Q½f	 such that
for any vector v 2 Z½f	n we have

v�HðeCÞv ¼ Dv 
 eC,
where Dv is the divisor class given by the pullback of 0 2 E to En

via the map pv : En ! E given by ðx1, x2, :::, xnÞ !
P

i vixi,
and v� denotes the conjugate transpose of v.

Proof. It is well-known that the function v ! Dv 
 eC is quad-
ratic in v. Thus there exists a unique symmetric Q-bilinear

form B : Q½f	n �Q½f	n ! Q such that Bðv, vÞ ¼ Dv 
 eC for all
v. But we have Dfv ¼ Dv: This implies Bðfv, fvÞ ¼ Bðv, vÞ,
hence Bðfv, fv0Þ ¼ Bðv, v0Þ for any pair of vectors v, v0: Let

HðeCÞ : Q½f	n ! Q½f	n be the uniqueQ-linear map such that

Bðv, v0Þ ¼ Reðv�HðeCÞv0Þ for all pairs v, v0 2 Q f½ 	n:
We have

Reðv�HðeCÞfv0Þ ¼ Bðv, fv0Þ ¼ Bð�fv, v0Þ ¼ Reðv�fHðeCÞv0Þ:
Since this holds for all v, v0 the map HðeCÞ must be

Q½f	-linear. So it can be represented by a matrix with entries
in Q½f	, and that matrix must be Hermitian because the
form B was symmetric. w

It is clear that the diagonal entries of HðeCÞ are simply

the degrees of the components fi of f, fi : eC ! E: Let us cal-
culate the degree of these components for our construction.
Consider the function

x

z
c
a
:

This is a rational function of degree b on E because for a
generic t 2 C there are exactly b solutions to x

z
c
a
¼ t corre-

sponding to the bth roots of ta � 1: Its pullback to eC is the
function

Piðu, vÞ
wc=a

:

Now the equation Piðu, vÞ
wc=a ¼ t has ck 
 ca solutions: ck values

of u/v obtained by solving Piðu, vÞa ¼ tRðu, vÞ, and c/a val-
ues of w=vk for each of these. Thus the degree of fi is

ck 
 ca
b

¼ kc2

ab
:

A recipe to calculate the off-diagonal entries from
the matrices Mi, j will be given in the next section on a case-
by-case basis.

3.3. Calculating k

Finally, we calculate the value of k as a function of n for which
we expect to have finite number of our curves passing through
a generic point of En. The first coefficient of R(u, v) can be
normalized to 1, and we have kc remaining coefficients. A gen-
eric point is given by pairs xi, yi satisfying xai � ybi ¼ 1, and we
can parametrize our curve so that the point ðu, v,wÞ ¼
ð1, 0, 1Þ goes to ðxi, yi, 1Þ: This fixes the first coefficient of Pi
and Qi. Then the condition for a polynomial R to be of the
form Pa � Qb is of codimension k c� c

a � c
b

� �
: Thus the

expected dimension of the space of solutions is kc�
nk c� c

a � c
b

� �
: We want this number to be equal to 2 because

there is a two-dimensional group of translations and rotations
acting on solutions that needs to be gauged out. Thus we have

2 ¼ kc� nk c� c
a
� c
b

� �
:

Note that we have 1
a þ 1

b þ 1
c ¼ 1 in all the three cases, so

we obtain

k ¼ 2
c� n

:

EXPERIMENTAL MATHEMATICS 3



3.4. Summary of the approach

We summarize our strategy for proving rationality of vari-
eties of the form En=C corresponding to triples ða, b, cÞ ¼
ð3, 3, 3Þ, ða, b, cÞ ¼ ð2, 4, 4Þ, ða, b, cÞ ¼ ð2, 3, 6Þ and n< c.

� Calculate k ¼ 2
c�n : Suppose it is an integer.4

� List possible a�b matrices M and figure out which matri-
ces correspond to which off-diagonal values of H. Obtain a
list of possible off-diagonal entries h ¼ fh1, h2, . . . , hmg:

� List possible n�n matrices H up to integral change of basis
which are positive-definite, have kc2

ab on the diagonal, and
have only off-diagonal entries from the list h1, h2, . . . , hm:

� For each n�n matrix H list the degrees Ml, r
i, j :

� For a point p ¼ ðp1, p2, . . . , pnÞ 2 En, pi ¼ ðxi, yi, 1Þ try to
compute how many curves with discrete invariants Ml, r

i, j
pass through p. A curve is determined by a sequence of
homogeneous polynomials Gl, r

i, j ðu, vÞ with first coefficient
1 of degrees Ml, r

i, j : These polynomials must satisfy
gcdðGl, r

i, j ,G
l0 , r0
i, j Þ ¼ 1 whenever l 6¼ l0 and r 6¼ r0, and the

equations obtained by elimination of P1, . . . ,Pn and
Q1, . . . ,Qn from the following (i, j ¼ 1, . . . , n, l ¼ 0, . . . ,
a� 1, r ¼ 0, . . . , b� 1) system of main equations:

Pi � f
lc
aPj ¼ xi � f

lc
axj

� �Yb�1

r¼0

Gl, r
i, j ,

Qi � f
rc
bQj ¼ yi � f

rc
b yj

� �Ya�1

l¼0

Gl, r
i, j :

(2)

� If we are lucky and the answer to the previous step is 1 for
a generic point p, then try to construct a vector v 2 Z½f	n
such that for a generic point p 2 Dv the number of curves
is also one, and the number of intersection points of
Dv=C \ C outside the set of fixed points of C is at most 1.

4. Example for ða,b, cÞ5ð3, 3, 3Þ
In this case the group C has order c¼ 3, so we have only one
case n¼ 2, k¼ 2. The discrete invariant has the form of a matrix

M ¼
M0, 0 M0, 1 M0, 2

M1, 0 M1, 1 M1, 2

M2, 0 M2, 1 M2, 2

0@ 1A
of non-negative integers with all the row and column sums

equal 2. To calculate the 2� 2 matrix HðeCÞ we already
know that the diagonal entries are 2. Let

H ¼ 2 h1, 2
h1, 2 2

� �
One can relate h1, 2 to M by the following. Let D � E� E

be the diagonal. Then we have

Proposition 4.1.

D 
 eC ¼ 2þM0, 0 þM1, 2 þM2, 1:

Proof. Consider curves El, r � E� E defined by equations on
ðxi, yi, ziÞ 2 E (i¼ 1, 2):

x1
z1

¼ fl
x2
z2
,

y1
z1

¼ fr
y2
z2
:

It turns out, that E0, 0,E1, 2, E2, 1 do not intersect.
Therefore they have the same homology class. So, by count-
ing the intersection points

E0, 0 
 eC ¼ 1
3
ðE0, 0 þ E1, 2 þ E2, 1Þ
eC � M0, 0 þM1, 2 þM2, 1 þ 2:

Analogously,

E0, 1 
 eC � M0, 1 þM1, 0 þM2, 2 þ 2,

E0, 2 
 eC � M0, 2 þM2, 0 þM1, 1 þ 2:

The divisor ½E0, 0	 þ ½E0, 1	 þ ½E0, 2	 is linearly equivalent to
½E� D	 þ ½D� E	 where D is the divisor at infinity of E,
which has degree 3. Thus we obtain

ðE0, 0 þ E0, 1 þ E0, 2Þ 
 eC ¼ 12:

Hence the inequalities are equalities. w

The diagonal corresponds to the vector ð1, � 1Þ: This gives us
4� h1, 2 � �h1, 2 ¼ 2þM0, 0 þM1, 2 þM2, 1:

Similarly we obtain the evaluation for the vector ðf, � 1Þ,
which corresponds to the curve E1, 1 :

4� �fh1, 2 � f�h1, 2 ¼ 2þM1, 1 þM0, 2 þM2, 0,

which allows to calculate h1, 2 :

h1, 2 ¼ 2þ 2fþ f2ðM1, 1 þM0, 2 þM2, 0Þ �M0, 0 �M1, 2 �M2, 1

1� f
:

Going over the set of possible M we find the set of
possible values of h1, 2 :

h1, 2 2 f0, 1, f, f2, � 1, � f, � f2g:
Up to a integral change of basis (a matrix g 2 GL2ðZ½f	Þ

sends H to g�Hg) we have two possible matrices, with
determinants 3 and 4:

H3 ¼ 2 �1
�1 2

� �
, H4 ¼ 2 0

0 2

� �
:

For H3 we have three possible matrices M:

M ¼
2 0 0
0 1 1
0 1 1

0@ 1A, M ¼
1 0 1
1 0 1
0 2 0

0@ 1A, M ¼
1 1 0
0 0 2
1 1 0

0@ 1A:

For H4 we have six possible matrices M:
2 0 0

0 2 0

0 0 2

0B@
1CA,

0 0 2

2 0 0

0 2 0

0B@
1CA,

0 2 0

0 0 2

2 0 0

0B@
1CA

1 1 0

0 1 1

1 0 1

0B@
1CA,

1 0 1

1 1 0

0 1 1

0B@
1CA,

0 1 1

1 0 1

1 1 0

0B@
1CA

Some matrices do not produce any curves passing
through generic points, for instance the first three matrices

4The only cases with n> 1 when this number is not an integer are ða, b, cÞ ¼ ð2, 3, 6Þ
with n¼ 2, 3. In these cases the method can still be applied. The curve eC should pass
through C-fixed points of orders different from 6, which implies a slightly different
general shape of the Equation (1). We do not include these situations here because it
would complicate the notations, and because these cases are already known to be
rational anyway.
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corresponding to H4. To illustrate our method we give here
an explicit parametrization of the curves corresponding
to H3:

4.1. H3 curves

It is enough to consider only the first matrix, because the
other 2 can be obtained from it by automorphisms:

M ¼
2 0 0
0 1 1
0 1 1

0@ 1A, H ¼ 2 �1
�1 2

� �
:

We want to determine how many curves pass through a
given point. Take pi ¼ ðxi, yi, 1Þ for i¼ 1, 2 points on E. If a

curve eC passes through p ¼ ðp1, p2Þ then we can choose the
coordinates u, v such that p is at v¼ 0. We can still apply
affine transformations ðu, vÞ ! ðauþ bv, vÞ: Such a curve is
then completely determined by the homogeneous polyno-
mials Gl, rðu, vÞ of degrees Ml, r with first coefficient 1 satisfy-
ing the following equations, which follow fromP2

l¼0 f
lðP1 � flP2Þ ¼ 0 and a similar equation for Q:X2

l¼0

flðx1 � fly1Þ
Y2
r¼0

Gl, r ¼ 0,
X2
r¼0

flðx2 � fly2Þ
Y2
l¼0

Gl, r ¼ 0:

In our situation, we have one polynomial of degree 2 and
four polynomials of degree 1:

ðx1 � y1ÞG0, 0 þ ðfx1 � f2y1ÞG1, 1G1, 2 þ ðf2x1 � fy1ÞG2, 1G2, 2,

ðx2 � y2ÞG0, 0 þ ðfx2 � f2y2ÞG1, 1G2, 1 þ ðf2x2 � fy2ÞG1, 2G2, 2:

The polynomial of degree 2 is G0, 0: Note that x1 � y1 6¼ 0
and x2 � y2 6¼ 0: So we can eliminate G0, 0 from the
equations:

G1, 1

�
ðx2 � y2Þðfx1 � f2y1ÞG1, 2 � ðx1 � y1Þðfx2 � f2y2ÞG2, 1

�
,

¼ G2, 2

�
ðx1 � y1Þðf2x2 � fy2ÞG1, 2 � ðx2 � y2Þðf2x1 � fy1ÞG2, 1

�
:

The polynomials G1, 1,G2, 2 must be relatively prime, for
otherwise P1,Q1, P2,Q2 would all share a factor. This implies

ð2fþ 1Þðx2y1 � x1y2ÞG1, 1

¼
�
ðx1 � y1Þðf2x2 � fy2ÞG1, 2 � ðx2 � y2Þðf2x1 � fy1ÞG2, 1

�
,

ð2fþ 1Þðx2y1 � x1y2ÞG2, 2

¼
�
ðx2 � y2Þðfx1 � f2y1ÞG1, 2 � ðx1 � y1Þðfx2 � f2y2ÞG2, 1

�
:

Assume x2y1 � x1y2 6¼ 0: Then we uniquely reconstruct
G1, 1,G2, 2 from G1, 2,G2, 1: Again G1, 2,G2, 1 are relatively
prime, and by applying affine transformations we can move
them to an arbitrary pair of distinct linear polynomials with
first coefficient 1, for instance u, u – v. So under our
assumptions there is at most one curve passing through p.
Vice versa, to show that the curve exist we just need to
make sure that in our construction the pairs
ðG0, 0,G1, 2Þ, ðG0, 0,G2, 1Þ, ðG0, 0,G1, 1Þ, ðG0, 0,G2, 2Þ, ðG1, 1,G2, 2Þ,

ðG1, 2,G2, 1Þ are relatively prime. This requires another condi-
tion: x1x2 � y1y2 6¼ 0:

So we have shown that the curve is unique provided

z1 6¼ 0, z2 6¼ 0, x2y1 � x1y2 6¼ 0, x1x2 � y1y2 6¼ 0:

This means we have to remove the divisors given by vec-
tors ð1,6fiÞ, (0, 1), (1, 0). Taking any other divisor class we
will satisfy conditions for part (i) of Lemma 2.1. To show
rationality we need to satisfy the assumptions of part (ii). So

we need a divisor with small intersection number with eC,
that is a vector not of the form ð6fi, 0Þ, ð0,6fiÞ, ð6fi,6fjÞ
whose length is small with respect to the form H. Take v ¼
ð1, 2þ fÞ, which corresponds to the divisor Dv consisting of
ðp1, p2Þ 2 E2 such that p1 þ 2p2 þ fp2 ¼ 0: We have v�Hv ¼
5: So there is at most 5 points of intersection in Dv \ eC:
Going down to E2=C we obtain at most b53c ¼ 1 of points of
intersection ðDv=CÞ \ C satisfying zi 6¼ 0: Clearly, Dv=C is
rational. So the conditions of Lemma 2.1 are satisfied.

4.2. H4 curves

In this case computer experiments showed that there are
three curves passing through a generic point for each of the
last three matrices M. However these curves can be distin-
guished by their incidence information with the C-fixed
points, so probably it is possible to use these curves for an
alternative rationality proof.

4.3. Total curve count

In total we obtain three curves for H3 and nine curves for
H4. However, these curves can be distinguished by our dis-
crete invariants and by their intersections with z1 ¼ z2 ¼ 0:

5. Examples for ða,b, cÞ5ð2, 4, 4Þ
If ða, b, cÞ ¼ ð2, 4, 4Þ, we can have n¼ 2 or n¼ 3. Here f ¼ffiffiffiffiffiffiffi�1
p

: For n¼ 2 we obtain k¼ 1. For n¼ 3 we obtain k¼ 2.
The matrices Mi, j are 2� 4 with column sums k and row
sums 2k. The matrices H have 2k on the diagonal.

Proposition 5.1. The intersection number of the diagonal

D � E� E and eC is given by

D 
 eC ¼ 2kþ 2M0, 0 þ 2M1, 0:

Proof. We have curves El, r � E� E given by equations
(l¼ 0, 1, r ¼ 0, 1, 2, 3)

x1
z21

¼ ð�1Þl x2
z22

,
y1
z1

¼ fr
y2
z2
:

The pairs representing the same homology class are listed
as follows ðE0, 0, E1, 2Þ, ðE0, 1, E1, 3Þ, ðE0, 2,E1, 0Þ, ðE0, 3, E1, 1Þ: So

E0, 0 
 eC ¼ 1
2
ðE0, 0 þ E1, 2Þ 
 eC � 2M0, 0 þ 2M1, 2 þ 2k:

This is because each root of gcdðP1 � P2,Q1 � Q2Þ has

multiplicity 4 in E0, 0 
 eC, and there are further kc ¼ 4k
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points with w¼ 0 on eC which map to the points with z1 ¼
z2 ¼ 0: Producing similar inequality for E1, 0 and adding to
the one above we obtain

ðE1, 0 þ E0, 0Þ 
 eC � 8k:

On the other hand, E1, 0 þ E0, 0 is equivalent to E� Dþ
D� E, where D is the divisor at infinity consisting of two
points. So the intersection equals 8k. Therefore our inequal-
ities must be equalities. w

This allows us to compute hi, j as a function of the entries of
Mi, j: The diagonal corresponds to the vector ei � ej, so we have

4k� hi, j � �hi, j ¼ 2kþ 2M0, 0
i, j þ 2M1, 2

i, j :

Hence Re hi, j ¼ k�M0, 0
i, j �M1, 2

i, j : The vector ei � fej cor-

responds to the curve E1, 3, so the corresponding intersec-
tion number is

4k� fhi, j � �f�hi, j ¼ 2kþ 2M1, 3
i, j þ 2M0, 1

i, j :

We obtain Im hi, j ¼ �kþM0, 1
i, j þM1, 3

i, j : Thus

hi, j ¼ kð1� fÞ �M0, 0
i, j �M1, 2

i, j þ fM0, 1
i, j þ fM1, 3

i, j :

5.1. The case k5 1, n5 2

There are two H-matrices (up to automorphisms) for n¼ 2,
k¼ 1, of determinants 2 and 4:

H2 ¼ 2 f� 1
�f� 1 2

� �
, H4 ¼ 2 0

0 2

� �
:

For H2 there is only one matrix M:

M ¼ 1 1 0 0
0 0 1 1

� �
:

For H4 there are two matrices:

M ¼ 1 0 1 0
0 1 0 1

� �
, M ¼ 0 1 0 1

1 0 1 0

� �
:

It is not so difficult to check that each of the three
matrices M leads to a good family of curves.

5.2. The case k5 2, n5 3

With n¼ 3 the set of possibilities is much bigger. We have
19 possible matrices M. They produce the following list of
13 possible off-diagonal entries for H:

0,62,62f,62f62,6f61:

To construct a curve we need to choose three of them to get
Mi, j with ði, jÞ ¼ ð1, 2Þ, ð1, 3Þ, ð2, 3Þ: So there are 193 ¼ 6859
possibilities. Classifying all the possible positive definite 3� 3matri-
cesH up to GL3ðZ½f	Þ action produces 14 cases with determinants

8, 16, 16, 24, 32, 32, 32, 36, 40, 44, 48, 48, 56, 64:

Counting curves on a computer produces Table 1.5

The H-matrices with 0 curves are the following matrices
with determinants 8 resp. 16:

4 �2f� 2 �2
2f� 2 4 �f� 1
�2 f� 1 4

0@ 1A,
4 �2 �2
�2 4 �f� 1
�2 f� 1 4

0@ 1A:

It turns out that nonexistence of these curves is explained
by the fact that the matrices can be conjugated to

4 2 0
2 4 �fþ 3
0 fþ 3 4

0@ 1A,
4 2 fþ 3
2 4 fþ 1

�fþ 3 �fþ 1 4

0@ 1A,

which contain forbidden off-diagonal entries fþ 3:
Note that for each matrix H there are several triples of

matrices Mi, j: The table was obtained by adding the point
counts for all triples. In some situations the total number
of curves can be greater than 1, but for some individual
triples Mi, j the number is 1. We will work with the
matrix of determinant 16 which gives one curve. The
matrix is

H16 ¼
4 2 2f
2 4 2

�2f 2 4

0@ 1A:

The matrices Mi, j are as follows:

M1, 2 ¼
0 1 2 1

2 1 0 1

 !
, M1, 3 ¼

1 2 1 0

1 0 1 2

 !
,

M2, 3 ¼
0 1 2 1

2 1 0 1

 !
:

Computer experiments show that exactly one curve
passes through a generic point of E3. To apply Lemma 2.1
in full generality we need to choose a divisor. So we look
for a vector v whose H-norm v�Hv is small, but not too
small. All vectors of norm 4 do not produce good divisors:
through a generic point of such divisor there are no curves
of our type. There are no vectors of norms between 4 and 8.
There are 252 vectors of norm 8. Let AutðHÞ be the group
of matrices g 2 GL3ðZ½f	Þ such that g�Hg ¼ H: The vectors
of norm 8 form 3 AutðHÞ-orbits. Some of these vectors are
also such that through a generic point of the corresponding
divisor there are no curves. In the orbit of v ¼ ð1, � 2, 1Þ,
which consists of 192 vectors, for 168 vectors6 the curve
count is 1 and for the remaining 24 it is 0. This vector pro-
duces a divisor Dv=C satisfying the conditions of Lemma

2.1. We have Dv 
 eC ¼ 8, so if we show that at least one
intersection point is at infinity, we obtain that the number

Table 1. Curve counts for ða, b, cÞ ¼ ð2, 4, 4Þ, n¼ 3, k¼ 2.

detðHÞ 8 16 24 32 36 40 44 48 56 64

#C 0 0,1 4 8,10,18 8 20 24 48,60 80 212

5The values in the table are conjectural, they were obtained by testing on random
points over the finite field GF1, 000, 033, see Section 2.1. We used exactly the same
computer program as for testing Conjectures 6.2, 6.3, 6.4 below.

6Elements of AutðHÞ acting on E3 do not change H, but they still permute the
8 points at infinity. So the true symmetry group of the system is not AutðHÞ,
but a certain congruence subgroup. This explains why we obtain different
curve counts for vectors of the same AutðHÞ-orbit.
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of finite intersection points of Dv=C with C is at most b74c ¼
1: The points at infinity of Dv are four points out of the
total 23 ¼ 8 points at infinity on E3. These are the points
ðp1, p2, p3Þ satisfying p1 � 2p2 þ p3 ¼ 0: The points at infin-
ity are of order 2, so this condition is equivalent to p1 ¼ p3.

Let C0 be the projection of eC � E� E� E to E� E using
coordinates 1, 3. So it is enough to show that C0 intersects D
at infinity. The intersection number is 8, but there are only
four finite intersection points because M0, 0

1, 3 ¼ 1: Thus there
must be intersections at infinity.

6. Examples for ða,b, cÞ5ð2, 3, 6Þ
Finally, we turn to the most interesting example, which
includes open cases. We have ða, b, cÞ ¼ ð2, 3, 6Þ and n¼ 4 or
n¼ 5. Here f ¼ e

2pi
6 : For n¼ 4 we obtain k¼ 1. For n¼ 5 we

obtain k¼ 2. The matrices Mi, j are 2� 3 with column sums 2k
and row sums 3k. The matrices H have 6k on the diagonal.
Some things are simpler because there is only one point at
infinity, and the correspondence between M-matrices and the
off-diagonal entries of the H-matrix are bijective.

Proposition 6.1. The intersection number of the diagonal

D � E� E and eC is given by

D 
 eC ¼ 6kþ 6M0, 0:

Proof. We have curves El, r � E� E given by equations
(l¼ 0, 1, r¼ 0, 1, 2)

x1
z31

¼ ð�1Þl x2
z32

,
y1
z21

¼ f2r
y2
z22
:

We have

E0, 0 
 eC � 6M0, 0 þ 6k:

This is because each root of gcdðP1 � P2,Q1 � Q2Þ has

multiplicity 6 in E0, 0 
 eC, and there are further kc ¼ 6k

points with w¼ 0 on eC which map to the points with z1 ¼
z2 ¼ 0: Producing similar inequality for E1, 0 and adding to
the one above we obtain

ðE1, 0 þ E0, 0Þ 
 eC � 24k:

On the other hand, the divisor of the rational function
y1
z21
� y2

z22
is

E1, 0 þ E0, 0 � 2ðE� Dþ D� EÞ,
where D is the point at infinity. Therefore

ðE1, 0 þ E0, 0Þ 
 eC ¼ 2ðE� Dþ D� EÞ 
 eC ¼ 24k:

Therefore our inequalities must be equalities. w

This allows us to compute hi, j as a function of the entries
of Mi, j: The diagonal corresponds to the vector ei � ej, so
we have

12k� hi, j � �hi, j ¼ 6kþ 6M0, 0
i, j :

The vector ei � fej corresponds to the curve E1, 2, so the
corresponding intersection number is

12k� fhi, j � �f�hi, j ¼ 6kþ 6M1, 2
i, j :

So we can recover hi, j :

hi, j ¼ ð4� 2fÞk� ð2þ 2fÞM0, 0
i, j þ ð4f� 2ÞM1, 2

i, j :

6.1. The case k5 1, n5 4

The diagonal entries of H are 6 and the possible off-diagonal
entries are in the set

h ¼ f0, 2f� 4, 2fþ 2, 4f� 2, � 4fþ 2, � 2f� 2, � 2fþ 4g:

We classified all matrices H up to GL4ðZ½f	Þ-equivalence
satisfying the following conditions:

(i) H is positive definite.
(ii) Hi, i ¼ 6 for i ¼ 1, 2, 3, 4:
(iii) There is no vector v 2 Z½f	4 such that v�Hv < 6:
(iv) For any v1, v2 2 Z½f	4 such that v�i Hvi ¼ 6 we

have v1Hv2 2 h:

It turns out there are five matrices with determinants
144, 432, 576, 864, 1296 :

H144 ¼

6 2f� 4 0 0

�2f� 2 6 2f� 4 0

0 �2f� 2 6 2f� 4

0 0 �2f� 2 6

0BBBB@
1CCCCA,

H432 ¼

6 2f� 4 0 0

�2f� 2 6 2f� 4 0

0 �2f� 2 6 0

0 0 0 6

0BBBB@
1CCCCA,

H576 ¼

6 2f� 4 0 0

�2f� 2 6 0 0

0 0 6 2f� 4

0 0 �2f� 2 6

0BBBB@
1CCCCA,

H864 ¼

6 2f� 4 0 0

�2f� 2 6 0 0

0 0 6 0

0 0 0 6

0BBBB@
1CCCCA,

H1296 ¼

6 0 0 0

0 6 0 0

0 0 6 0

0 0 0 6

0BBBB@
1CCCCA,

Note that the off-diagonal values 0 resp. 2f� 4 corres-

pond to Mi, j ¼ 1 1 1
1 1 1

� �
,Mi, j ¼ 2 1 0

0 1 2

� �
: The curve

Table 2. Curve counts for ða, b, cÞ ¼ ð2, 3, 6Þ, n¼ 4, k¼ 1.

detðHÞ 144 432 576 864 1296

#C 1 6 12 0 72
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counts are given in Table 2.7 It is not clear why curves cor-
responding to H864 do not pass through generic points.

We turn our attention to the matrix H ¼ H144, which
already implies unirationality of X4,6 and will also imply
rationality if we find a “good” divisor class. The group

AutðHÞ ¼ fg 2 GL4ðZðfÞÞ j g�Hg ¼ Hg
has order 155,520 and acts transitively on the 240 vectors of
H-norm 6 and on the 2160 vectors of H-norm 12. Vectors
of norm 6 intersect C only at infinity, so we pick a vector of
norm 12. Some of the vectors of norm 12 correspond to the
“diagonals,” for instance v ¼ ð1, 0, 1, 0Þ: For this vector we
obtained 0 curves. However picking v ¼ ð0, 1, 2, 1Þ, and any
other vector not of the form ð0, 0, fi, fjÞ for some i, j or a
permutation of such, we obtain 1 curve.

Note that for any v of norm 12 and any curve C of our
kind the number of intersection points #ðC \ Dv=CÞ outside

of the C-fixed points is at most 1. This is true because eC 

Dv ¼ 12, and the intersection Dv \ C contains at least one
point at infinity.

So we make the following Conjecture, which by Lemma
2.1 implies rationality of X4,6:

Conjecture 6.2. For p 2 E4 denote by #ðpÞ the number of

curves eC of our type corresponding to the matrix H144 and
containing p. Then for a generic point p 2 E4 we have
#ðpÞ ¼ 1: Moreover, for a generic point p 2 D0, 1, 2, 1 we have
#ðpÞ ¼ 1, where

D0, 1, 2, 1 ¼ fðp1, p2, p3, p4Þ 2 E4 j p2 þ 2p3 þ p4 ¼ 0g:
We verified this conjecture by testing the statement on

10,000 random points on D0, 1, 2, 1 and 10,000 random points
on E4 over the field GF1, 000, 003: Only 1 point got “unlucky”
and the number of curves was 0. For every other point the
number was 1. Counting the curves took � 0:05 s per point
on an ordinary laptop.

6.2. The case k5 2, n5 5

Finally we turn to the most interesting case. The diagonal
entries of H are 12 and the possible off-diagonal entries are
in the set

h ¼ f0, � 4fþ 8, 2f� 4, 6, 4f� 8, � 2fþ 4, 2fþ 2,

� 4f� 4, � 4fþ 2, 4f� 2,

� 6f, 6f� 6, 4fþ 4, � 6fþ 6, � 2f� 2, 6f,

� 8fþ 4, � 6, 8f� 4g:

We could not classify all such matrices H up to
GL5ðZ½f	Þ-equivalence because the set of possibilities is too
big. However the following matrix seems to be the only
matrix up to GL5ðZ½f	Þ-equivalence of the smallest possible
determinant 243 ¼ 13824:

H13824 ¼

12 4fþ 4 4fþ 4 4fþ 4 4fþ 4

�4fþ 8 12 4fþ 4 4fþ 4 4fþ 4

�4fþ 8 �4fþ 8 12 4fþ 4 6

�4fþ 8 �4fþ 8 �4fþ 8 12 6

�4fþ 8 �4fþ 8 6 6 12

0BBBBBB@

1CCCCCCA
We consider H ¼ H13824: Note that the off-diagonal value

Hi, j ¼ 4fþ 4 resp. Hi, j ¼ 6 corresponds to Mi, j ¼
0 4 2
4 0 2

� �
resp. Mi, j ¼ 0 3 3

4 1 1

� �
: There are exactly

336 vectors of H-norm 12. Since every curve eC has 12 points at
infinity, these curves cannot pass through generic points of
divisors corresponding to these vectors. Just for reference we
mention that the size of the group AutðHÞ ¼ fg 2
GL5ðZ½f	Þ j g�Hg ¼ Hg is 6912. The vectors of H-norm 12
form three orbits of sizes 48, 192, 96, represented by the basis
vectors e1, e3, e5. The next possible H-norm is 18, and there are
768 vectors of norm 18 forming a single AutðHÞ-orbit. For
such a vector v we have Dv 
 eC ¼ 18, and at least 12 points of
intersection are at infinity. Therefore jDv=C \ Cj � 1: Some
vectors represent “generalized diagonals,” for instance
ð0, 0, 1, 0, � fÞ: We found that our curves do not pass through
generic points on the corresponding divisors. Taking any vec-
tor different from those do seem to produce good divisors, for
instance we take v ¼ ð1, 0, f, 0, � 1Þ:

The following conjecture implies unirationality of X5,6 by
part (i), Lemma 2.1:

Conjecture 6.3. For p 2 E5 denote by #ðpÞ the number of

curves eC of our type corresponding to the matrixH13824 and con-
taining p. Then for a generic point p 2 E5 we have #ðpÞ ¼ 1:

The following conjecture together with rationality of X4,6

implies rationality of X5,6 by Lemma 2.1:

Conjecture 6.4. With #ðpÞ defined in Conjecture 6.3, for a
generic point p 2 D1, 0, f, 0,�1 we have #ðpÞ ¼ 1, where

D1, 0, f, 0,�1 ¼ fðp1, p2, p3, p4, p5Þ 2 E5 j p1 þ fp3 ¼ p5g:

6.3. Computations for n5 5

The computations in these cases take much more time than
in the n¼ 4 case. It can probably be explained by the fact
that the set of divisors where the number of curves is not 1
is huge: for instance, it must contain all divisors Dv corre-
sponding to the 336 vectors v of H-norm 12. Another issue
is that when we create the ideal parametrizing our curves,
we have besides equations also inequalities of the form

resultant ðPi,QiÞ 6¼ 0 ð1 � i � 5Þ: (3)

Each inequality is imposed by adding an extra variable Ji
and an extra equation

Ji resultant ðPi,QiÞ ¼ 1 ð1 � i � 5Þ: (4)

Note that the degrees of Pi and Qi are 6 and 4 respect-
ively, so the resultant has degree 24 and these extra

7Similarly to Table 1, the values in Table 2 are conjectural, they were obtained
by testing on random points over the finite field GF1, 000, 003, see Section 2.1.
The same computer program was used.
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equations are very long. On the other hand, when we tried
to keep only the equations without the inequalities the
length of the scheme of solutions grew up to 99. The
scheme turned out to contain a single isolated point and
several very fat points failing the conditions gcdðPi,QiÞ ¼ 1:

The computation with the inequalities (3) takes � 1 hour
15min on an ordinary laptop (for each random point on
E5). It turns out, it is better to extend the set of inequalities
that translate to Equation (4) by a much larger set of 32
inequalities

resultant ðGl, r
i, j ,G

l0 , r0
i, j Þ 6¼ 0

ð1 � i < j � 5, 0 � l < l0 � 1, 0 � r, r0 � 2 :

r 6¼ r0,Ml, r
i, j 6¼ 0,Ml0, r0

i, j 6¼ 0Þ: :

(5)

For each inequality we have to create a new variable and
a new equation as in (4). These inequalities formally follow
from (3) as explained in Section 3.1, but their degrees are
much smaller. On the other hand, inequalities 5 do not
seem to imply 3. Thus we must additionally test that every
solution we find satisfies 3.

It turns out, that it is faster to build the ideal step-by-
step. On each step we add some new equations and recom-
pute the Gr€obner basis. In the very beginning we choose a
cell of the cell decomposition of the weighted projective
space we do computations in. The total number of variables
is 120 (we have 10 pairs 1 � i < j � 5 and for each pair i, j
we have six polynomials Gl, r

i, j whose degrees are given by the

entries of Mi, j). Among these variables 42 have weight 1, 38
have weight 2, 22 have weight 3, and 18 have weight 4. We
order the variables by weight, and if the weights agree by
the degree of the polynomial they are coefficients of.
Because we should consider the solutions up to translation,
we set the very first variable to 0. The choice of a cell in the
weighted projective space means we set the first r variables
to 0, the rþ 1st variable to 1. We need to do this for every
r, 1 � r � 119: Then we have three steps (for each r):

i. Add equations coming from elimination of Pi, Qi from
the main Equation (2).

ii. Add variables and equations representing Equation (5).
iii. Add variables and equations representing Equation (3).

Then we compute the dimension over the base field of
the quotient ring with respect to the ideal obtained in the
final step. This number divided by the weight of the variable
we made equal to 1 is the number of points in the given
cell. If after some step we obtain the ideal Equation (1), this
means there are no solutions in a given cell, so we abort
and pass to the next cell, that is next value of r. In all situa-
tions we encountered, all the solutions belonged to the big-
gest cell.

Complete computation for each point p 2 E5ðGF1, 000, 003Þ
takes � 3 min on an ordinary laptop. Initially, we made 10
trials for each of the Conjectures 6.3, 6.4, and obtained
exactly 1 curve in all cases. The referee suggested that a
more extensive testing would provide more evidence for the
conjectures, so we ran 10,000 trials for each of the
Conjectures 6.3, 6.4 on a cluster (200 cores, � 5 h). We

found two failures of Conjecture 6.3 and one failure of
Conjecture 6.4, which we believe is a convincing evidence,
see Section 2.1. The source code and the output logs are
available online at https://mellit.xyz/post/rationality/.

Remark 6.1. The quadratic form induced by H13,824 on the
rank 10 lattice Z½f	5 is proportional to the so-called lami-
nated lattice K10, see [5]. We discovered this fact with the
help of OEIS ([7], sequence A006909) by searching for the
sequence of numbers of vectors of given norm, which begins
as follows: 1, 0, 336, 768: In fact, the matrix H144 from
Section 6.1 in a similar way corresponds to the lattice E8.
The matrix H16 from Section 5.2 corresponds to the lat-
tice D6.
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