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ABSTRACT
In an application of map labelling to air-traffic control, labels should
beplacedwith as fewoverlaps as possible since labels include impor-
tant information about airplanes. Motivated by this application, de
Berg and Gerrits (Comput. Geom. 2012) proposed a problem of max-
imizing the number of free labels (i.e. labels not intersecting with
any other label) and developed approximation algorithms for their
problem under various label-placement models. In this paper, we
propose an alternative problem of minimizing a degree of overlap
at a point. Specifically, the objective of this problem is to minimize
the maximum of λ(p) over p ∈ R

2, where λ(p) is defined as the
sum of weights of labels that overlap with a point p. We develop
a 4-approximation algorithm by LP-rounding under the 4-position
model. We also investigate the case when labels are rectangles with
bounded height/length ratios.
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1. Introduction

In map labelling, we are given (i) a set of graphical features (such as regions, rivers and
stations) represented as points, polylines or polygons, and (ii) a set of labels which include
texts or symbols to indicate information about the graphical features. The goal of map
labelling is to place labels so that the graphical features can be understood on a specified
map.Map labelling hasmany applications including geographic information system (GIS),
cartography and graph drawing.

This paper is motivated by an application of map labelling to air-traffic control where
controllers use the results of map labelling to guide airplanes. In this application, labels
indicate important information about airplanes (such as altitude and velocity), and hence
it is desirable to place all the given labels so that there are as few overlaps as possible. This
contrasts with the ordinary settings of map labelling where labels must not overlap each
other (and to this end, some labels can be omitted or shrunken). The point is how to mea-
sure the degree of overlap; if some labels overlap, then controllers need to rearrange some
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Figure 1. Optimal solutions of (a) FREELABELMAX and (b) POINTOVERLAPMIN for the same instance under the
4-position model.

labels by hand to read unreadable labels. This task is often time-consuming and hence can
be an obstacle to controller’s operation.

Motivated by this application, de Berg andGerrits [6] proposed the free-label maximiza-
tion problem (denoted as FreeLabelMax in this paper). In this problem, given a set of n
sites and its n labels in the planeR

2, we want to place the n labels so that the number of free
labels (i.e. labels not intersecting any other label) is maximized. They developed constant-
factor approximation algorithms and PTASs for this problemwith unit-square labels under
various label-placement models.

Figure 1(a) shows an instance of FreeLabelMax and its optimal solution under the 4-
position model where each site must lie at one of the four corners of its label. The optimal
value of FreeLabelMax for this instance is 5 since there are five free labels. On the other
hand, we observe that the remaining four non-free labels overlap each other. Onemay need
to spend a long time making these four non-free labels readable by hand when required.

1.1. Main contribution

In this paper, as an alternative to FreeLabelMax, we propose the following problem:

Definition 1.1 (PointOverlapMin): An instance I consists of a set P of n sites in the
plane R

2, denoted by p1, p2, . . . , pn. Each site pi has an axis-parallel rectangular label �i
and a positive weight wi. Let [n] = {1, 2, . . . , n}. For any i ∈ [n], site pi must lie at one of
the four corners of label �i. Let � be the set of all possible placements of {�1, �2, . . . , �n},
and for any placement π ∈ �, let π(i) denote the set of all points covered by �i (including
its boundary). For a point p ∈ R

2 under a given placement π ∈ �, let λ(p,π) denote the
sum of weights of labels that overlap with p, i.e.

λ(p,π) ≡
∑

i∈[n]: p∈π(i)

wi.

The problem is to find a placement π ∈ � that minimizes the maximum of λ(p,π) over
all p ∈ R

2, i.e. maxp∈R2 λ(p,π).

In what follows, we say that wi is the weight of label �i, as well as the weight of site pi for
simplicity. When all labels are unweighted (i.e. wi = 1 for any i ∈ [n]), the value of λ(p,π)
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is exactly the number of labels that overlap with p for any placement π ∈ �. We note that
PointOverlapMin is NP-hard even when all labels are unit-squares; see e.g. [9,19] for
problems that reduce to our problem.

Remark 1.1: Different from [6] where various label-placement models are discussed, we
consider only the 4-position model (i.e. each site pi must lie at one of the four corners of
label �i) as stated in Definition 1.1. Extending our results for other label-placement models
is left as future work.

Figure 1(b) shows an optimal solution of PointOverlapMin for the same instance
used in Figure 1(a) where labels are unweighted. We see that in this optimal solution, all
the nine labels are almost free (thanks to the novel objective function)meanwhile the num-
ber of free labels is only two. This toy example suggests that PointOverlapMin can be a
promising alternative to FreeLabelMax.

We develop a 4-approximation algorithm for PointOverlapMin by LP-rounding. We
also analyse the approximation ratio of a naive algorithm when the height/length ratios of
labels are bounded.

1.2. Related work

Two typical problem settings of map labelling are the label number maximization and the
label size maximization, see e.g. [20]. The former is to find a placement of a subset of
labels with maximum cardinality, where the label sizes are fixed. The latter is to find a
placement of all the labels so that their sizes are maximized under a global scale factor.
In contrast, in FreeLabelMax and PointOverlapMin, all the labels need to be placed
without changing the label sizes.

There are several models of how to place the labels. The 4-position model is one of the
standards and is a special case of the fixed-position model [9]. In a fixed-position model, a
finite number of label candidates are given for each site. Another important model is the
slider model [19] which generalizes the fixed-position model. In a slider model, each label
can slide as long as its specified sides touch the corresponding site. Extending our results
for other label-placement models is left as future work.

Map labelling is known to be computationally hard in most problem settings. For this
reason, as in this study, approximation algorithms have been studied extensively so far;
see e.g. [1,9,14,19]. Most of these studies treat unweighted unit-square or unit-height rect-
angular labels. In contrast, our 4-approximation algorithm is applicable to any weighted
rectangular labels. We note that label weights are a natural requirement in practice (e.g.
labels of cities can have priority over those of towns). For studies that treat the weighted
case, we refer to [8,17].

Our algorithm makes use of an integer programming formulation. We note that the
integer programming is a common approach in map labelling, see, e.g. [13,15,23]. We also
note that as in this study, LP-rounding approaches have been discussed so far, see e.g. [4,5].

Finally, we note that the dynamic problem has attracted attention in the past decade
due to its increasing importance in several applications such as personal mapping sys-
tems. We refer to [2,10–12,16,21,22] for problems with static sites and a dynamic map,
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Figure 2. Label candidates.

and Buchin and Gerrits [3] for their hardness results. De Berg and Gerrits [7], on the other
hand, discussed a trade-off between label speed and label overlap.

2. An approximation algorithm for arbitrary rectangular labels

In this section, we first formulate PointOverlapMin as an integer programming (IP)
problem. We then describe a 4-approximation algorithm which solves a linear program-
ming (LP) relaxation problem of this IP and rounds the resulting optimal solution in a
natural way.

2.1. IP formulation

For each site pi, let Sij denote jth position on which label �i can be placed, where the four
positions, upper right, upper left, lower left and lower right are indexed as 1, 2, 3 and 4,
respectively; see Figure 2. Let J = {1, 2, 3, 4}. Let xij be a 0–1 variable that takes one if label
�i is placed on Sij, and zero otherwise.

To make the formulation polynomial size, we introduce a cell defined as follows. Draw
horizontal lines through the top and bottom sides of each label candidate. These lines par-
tition the plane into horizontal strips, which we call slabs; see Figure 3. Then, for each
slab, draw vertical lines through left and right sides of each label candidate intersecting the
slab. A cell is then defined as a region between consecutive vertical lines. The set of cells is
denoted by C. Note that |C| = O(n2) since the number of slabs is O(n) and the number of
cells in a slab is O(n).

Using these notations, PointOverlapMin can be formulated as an IP as follows:

(IP) minimize λ

subject to
∑

i∈[n], j∈J

{
wixij | Sij ∩ C �= ∅} ≤ λ (C ∈ C),

∑

j∈J
xij = 1 (i ∈ [n]),

xij ∈ {0, 1} (i ∈ [n], j ∈ J).

Recall that the objective function of PointOverlapMin is the maximum of λ(p,π) over
all p ∈ R

2, and λ(p,π) is defined as the sum of weights of labels that overlap with p under
placement π . Thus, by the definition of the cells, λ(p,π) remains unchanged for p ∈ C for
anyC, implying that IP correctly formulates our problem.Wenote that IP resembles the one
employed in [4,5] for developing approximation algorithms for themaximum independent
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Figure 3. Slabs and cells.

set of rectangles problem. Observe that IP has O(n) variables and O(n2) constraints. We
also consider the following LP relaxation problem of IP:

(LP) minimize λ

subject to
∑

i∈[n], j∈J

{
wixij | Sij ∩ C �= ∅} ≤ λ (C ∈ C),

∑

j∈J
xij = 1 (i ∈ [n]),

xij ≥ 0 (i ∈ [n], j ∈ J).

2.2. A 4-approximation algorithm

Let I be the set of instances of PointOverlapMin for the 4-position model. For a given
instance I ∈ I and an algorithm ALG, let ALG(I) denote the objective value of the solution
obtained by ALG. Similarly, let OPT(I) denote the optimal value of this instance. Now, let
us consider the following algorithm:

LP-Rounding (LPR)
Step 1. Find an optimal solution x̄ to LP.
Step 2. For each site pi, pick one variable xij such that x̄ij ≥ 1

4 and set it to 1. All other
variables are set to 0. Output the 0–1 vector x constructed as above.

The following is readily obtained.

Theorem 2.1: For any instance I ∈ I , we have LPR(I) ≤ 4 OPT(I).

Proof: Any output of the LPR algorithm is a feasible solution of IP because in Step 2 only
one label is placed for each site. We now estimate the objective value LPR(I) of the output
x of the LPR algorithm. If we denote by OPTLP(I) the optimal value of LP, then LPR(I) is at
most 4OPTLP(I) because xij is at least 1

4 for each site pi. As OPTLP(I) ≤ OPT(I), we have
that LPR(I) ≤ 4 OPT(I). �

Theorem 2.1 implies that the LPR algorithm gives a 4-approximation for PointOver-
lapMin under the 4-position model.
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The following shows that the integrality gap of LP is 4, whichmatches the approximation
ratio of the LPR algorithm.

Remark 2.1: Let I be an instance consisting of only one site p1 with weight 1. Clearly,
OPT(I) = 1 while OPTLP(I) = 1

4 as one can set x11, x12, x13, x14 = 1
4 in LP. Hence,

4OPTLP(I) = OPT(I).

The time complexity of the LPR algorithm can be estimated as follows. The construction
of C takesO(n2) time. One can solve LP inO((N + M)1.5NL) time whereN andM are the
number of variables and constraints, respectively, and L is a parameter defined based on
the input length [18]. As for LP,N = O(n) andM = O(n2). Thus Step 1 takesO(n4L) time.
As Step 2 takesO(n) time, the LPR algorithm runs inO(n4L) time. This time complexity is
weakly polynomial for the weighted case and strongly polynomial for the unweighted case
since, in this case, L = O(n log n).

3. An analysis of a naive algorithm for labels with bounded height/length
ratios

In this section, we consider the case when labels are rectangles with bounded height/length
ratios. For a label �i, let hi and li denote its height and length, respectively. For a given set
of n labels, let

hmin = min
i∈[n]

hi, hmax = max
i∈[n]

hi, lmin = min
i∈[n]

li, lmax = max
i∈[n]

li.

We call a set of labels (α,β)-rectangular labels if hmax ≤ αhmin and lmax ≤ βlmin hold. By
the definitions, α and β are both greater than or equal to 1. Note that the case of unit-
square labels is a special one of (α,β)-rectangular labels with α = β = 1. In this case, we
show that a naive linear time algorithm achieves a good approximation ratio. We call this
algorithm the PUL algorithm (where PUL stands for ‘place upper left ’). Namely, the PUL
algorithm places the label of each site at the upper left position. We prove the following
theorem.

Theorem 3.1: The PUL algorithm is an (	α
 + 1)(	β
 + 1)-approximation algorithm for
PointOverlapMin with (α,β)-rectangular labels.

Proof: Fix an arbitrary point p ∈ R
2. Let G(p) denote a set of an infinite number of

horizontal parallel lines and vertical parallel lines satisfying the following conditions:

(1) The distance between any two adjacent horizontal lines is hmin.
(2) The distance between any two adjacent vertical lines is lmin.
(3) There exist a horizontal line and a vertical line intersecting at point p.

Figure 4 shows an example of G(p). We say that a point (x, y) is a grid point of G(p) if a
horizontal line and a vertical line of G(p) intersect at (x, y). We also let

H = 	α
hmin, L = 	β
lmin.

Note that hmax ≤ H and lmax ≤ L by the definitions of α and β .
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Figure 4. G(p) (dotted lines), S(p) (shaded area) and Q(p) (solid points). In the figure, labels �i and �j
overlap with p and label �k does not while all the corresponding three sites pi , pj and pk are in S(p). The
labels whose sites are outside S(p), like �l and �m in the figure, cannot overlap with p.

Let S(p) denote the rectangle (including the boundary and the interior points) with the
four corners p + (L, 0), p, p + (0,−H) and p + (L,−H), see Figure 4. LetQ(p) denote a set
of all the grid points of G(p) in S(p). Clearly,

|Q(p)| = (	α
 + 1)(	β
 + 1). (1)

Observe that if some label �i overlaps with p under πPUL(I), then the corresponding site
pi must be contained in S(p) since hmax ≤ H and lmax ≤ L as shown in Figure 4. Therefore
it holds

λ(p,πPUL(I)) ≤
∑

i∈[n]
{wi | pi ∈ S(p)}. (2)

Now, let us consider the optimal placement πPUL(I). We clearly have

λ(q,πOPT(I)) ≤ OPT(I) (∀q ∈ Q(p)). (3)

On the other hand, under πOPT(I), any label �i with pi ∈ S(p) must overlap with at least
one of the points of Q(p), which implies

∑

i∈[n]
{wi | pi ∈ S(p)} ≤

∑

q∈Q(p)

λ(q,πOPT(I)). (4)

Combining (1), (2), (3) and (4), we obtain

λ(p,πPUL(I)) ≤ (	α
 + 1)(	β
 + 1) · OPT(I),
which implies PUL(I) ≤ (	α
 + 1)(	β
 + 1)· OPT(I). This concludes the proof. �

For the case with unit-square labels (i.e. α = β = 1), we can obtain the following
immediately from Theorem 3.1.
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Corollary 3.2: The PUL algorithm is a 4-approximation algorithm for PointOverlapMin
with unit-square labels.

4. Conclusion

We proposed a map labelling problem called the point-overlap minimization problem,
denoted as PointOverlapMin, with a view to its application to air-traffic control. We
believe that our problem can be a promising alternative to the free-label maximization
problem introduced by de Berg and Gerrits [6].

We developed a 4-approximation algorithm for PointOverlapMin. This algorithm is
based on LP-rounding and runs in weakly polynomial and strongly polynomial time for
the weighted and unweighted cases, respectively. We also presented an analysis of a naive
algorithm when all labels are rectangles with bounded height/length ratio.

Extending our results to other label-placement models (such as the slider model), and
developing combinatorial algorithms (e.g, by using the primal–dual method) that are as
good as the 4-approximation algorithm are left as open problems.
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