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Discovering and Proving Infinite Pochhammer Sum Identities

Jakob Ablinger

Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria

ABSTRACT

We consider nested sums involving the Pochhammer symbol at infinity and rewrite them in
terms of a small set of constants, such as powers of «, log (2), or zeta values. In order to
perform these simplifications, we view the series as specializations of generating series. For
these generating series, we derive integral representations in terms of root-valued iterated
integrals or directly in terms of cyclotomic harmonic polylogarithms. Using substitutions, we
express the root-valued iterated integrals as cyclotomic harmonic polylogarithms. Finally, by
applying known relations among the cyclotomic harmonic polylogarithms, we derive expres-
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sions in terms of several constants. We provide an algorithimic machinery to prove identities
which so far could only be proved using classical hypergeometric approaches. These meth-
ods are implemented in the computer algebra package HarmonicSums.

1. Infinite nested Pochhammer sums

The goal of this article is to find and prove identities
of the following form:
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where (x), denotes the Pochhammer
I:=log(k), (k=20 -k, and C
Catalan’s constant.

Note that similar identities were given in [Ablinger 17,
Liu and Wang 19]. Such identities are of interest in phys-
ics: In particular, such sums have been studied in order
to perform calculations of higher-order corrections to
scattering processes in particle physics [Ablinger et al. 14,
Davydychev and Kalmykov 01, 04, Fleischer et al. 99,
Jegerlehner et al. 03, Kalmykov and Veretin 00,
Kalmykov et al. 07, Ogreid and Osland 98, Weinzierl 04].
Moreover, similar identities were also considered
[Borwein et al. 01, Borwein and Lisonék 00, Lehmer 85,
Zhi-Wei 11, Zucker 85], and there is a connection to
Apéry’s proof of the irrationality of {(3) (see [Borwein
and Borwein 87]) [Weinzierl 04, Zhi-Wei 11, Zucker 85].

While [Ablinger 17] basically deals with sums of
the form

symbol,
denotes

we are going to consider a much wider class of sums
in the frame of this paper. In addition, we will state a
general computer algebra method to evaluate a large
class of sums in terms of nested integrals. Moreover,
we will be able to prove a structural theorem, about
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2 J. ABLINGER

when such a sum can be expressed in terms of the so-
called cyclotomic polylogarithms.

The main purpose of this article is to present meth-
ods which can be automated; hence, not all identities
presented in this paper are new identities. To make
more precise which class of sums we are considering,
some definitions are in place. Let r € N and let
ai,¢; € N and bi €Ny for 1<i<r then we «call

.....

i 1 [ 1
N IZ‘T alzl + b] IZ; (a2i2 + bz)cz ; (Llrir + br)C’
(1-1)

a cyclotomic harmonic sum (compare [Ablinger and
Blumlein 13, Ablinger et al. 11, 14, Ablinger 13]) of
depth r. Note that if ;=1 and b;=0 for 1 <i<r we
write

A(10.6) (1), (1-2)

and we call S, ., . (n) a multiple harmonic sum (see,
e.g., [Ablinger et al. 13, Ablinger 13, Bliimlein and
Kurth 99, Bliimlein 00, Vermaseren 99]).

The sums we are considering take the form

= (P)n
D s G

n=1

Sq,c;.,...x,(”) = S(I,O,clj,(l,o,cz),..

(1-3)

where a,b,c,d € Ng,p € R, and f(n) is a cyclotomic
harmonic sum. We will refer to (1-3) as
Pochhammer sum.

We are going to find representations of these
Pochhammer sums in terms of special classes of inte-
grals (that are similar to the iterated integrals in
[Ablinger et al. 14] and correspond to the iterated inte-
grals in [Ablinger 17]). These classes of integrals are
iterated integrals over hyperexponential functions. More
precisely a function flx) is called hyperexponential if

£ _ g
f(®)
where g(x) is a rational function in x.

Then, an iterated integral over the hyperexponential

functions f;(x), f2(x), ..., fk(x) is defined recursively by

G(fl(f):fZ(T)v ""fk(r)a x) = J:fl (TI)G(]CZ(T)a ~--7fk(T); Tl)d'fl,

with the special case G(x) =1. Since some letters
might have a non-integrable singularity at the base
point x= 0 we consistently define

G(1(9)) = || (1105 -+ log (),

where ¢ takes the unique value such that the integrand
on the right hand side is integrable at t =0. It is

important to note that this definition preserves the
derivative £G(f(1),x) = f(x). In general, we set

G(fl T)yoeny J T ,X)
o (“”GWT% (E) - Zﬂ) p

k
+Z +110g< )1+1

where k and c, ..., cx are chosen to remove any non-
integrable singularity. Again the result is unique and
retains

G(fl ),X) = f(x)G(fa(7) 1),X).

In the following, we will define a subclass of iter-
ated integrals (compare [Ablinger et al. 11]). For a €
N and beN, b<@(a), where ¢ denotes Euler’s
totient function, we define

fab :(0,1)—R

1

;, if a = b =0
fab(x) = b

M, otherwise,

where @,(x) denotes the ath cyclotomic polynomial,
e.g., the first cyclotomic polynomials are given by

CI)l(x) =x—1

D, (x) =

) =% a1
Dy(x) =x*+1
Os(x) =x* +x°+x* +x+1 etc

Now, let m; = (a;,b;) € N>, b;< ¢(a;); for xe€
(0,1), we define cyclotomic polylogarithms recursively
as follows (compare, e.g., [Ablinger et al. 11]):

H(x) =1,

o (logx) if m; = (0,0)

Jo £ () Hin,....

We call k the weight of a cyclotomic polylogarithm
and in case the limit exists we extend the definition to
x =1 and write

m(¥)dy, otherwise.

.....

Note that restricting the alphabet to the letters
(0,0),(1,0), and (2,0) leads to harmonic polylogar-
ithms [Remiddi and Vermaseren 00].



The proposed strategy to prove and find
Pochhammer sum identities reads as follows and fol-
lows the method proposed in [Ablinger 17]):

Step 1: Rewrite the sums in terms of nested integrals.

Step 2: Rewrite the integrals in terms of cyclotomic
polylogarithms (see [Ablinger 17, Section 4]).

Step 3: Provide a sufficiently strong database to eliminate
relations among these cyclotomic polylogarithms
and find reduced expressions (see Section 4).

This article focuses on Step 1, and we will present
three different possibilities to find integral representa-
tions of Pochhammer sums. In order to accomplish
this task, we view infinite sums as specializations of
generating functions [Ablinger 17, Ablinger et al. 14].
Namely, if we are given an integral representation of
the generating function of a sequence, then we can
obtain an integral representation for the infinite sum
over that sequence if the limit x — 1 can be carried
out. This approach to infinite sums can be summar-
ized by the following formula:

if (i) = lim Zoc:x’
i=1 =1

For details on Step 2 (implemented in the com-
mand SpecialGLToH in HarmonicSums) and on
Step 3 we refer to [Ablinger 17]. It has to be men-
tioned that we computed and used relation tables of
harmonic polylogarithms at one up to weight 12, for
cyclotomic polylogarithms of cyclotomy 4 and 6 we
computed and used relation tables of cyclotomic poly-
logarithms at 1 up to weight 6. The size of these tables
amounts to several gigabytes. Note that the full strat-
egy has been implemented in the Mathematica pack-
age HarmonicSums' [Ablinger 14].

To complete this introduction we define a number
of constants that will appear throughout this article:

h = log (2) 5 := log
{5 := S5(00); G =5(
(i = S11(00); C:=Cat
ps := Lis(3); pe := Lis
ps := Lig(3); py := Lig
S) = 55‘,11,1 (OO)7 S3 1= S_
S5 1= 577.,1 (OO)7 Se = — S
hy == Hiz0),00)(1); hy :==H,
hq == H(.0),00),01.0).1,0 (1); he :=H
h7 := Hs 1,00 (1); hg :=H

'The package HarmonicSums (Version 1.0 16/05/19) together with a
Mathematica notebook containing a list of illustrative examples can be
downloaded at http://www.risc.jku.at/research/combinat/software/
HarmonicSums.
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Here, we extend the definition (1-2) to negative
indices by

SCI 5€2;5

3

=1

sign(cp )’

iy ICI

i‘: sign(crl)i'
li|*

i=1

sign(c;)”

|io|?

a1

Note that these constants do not possess any further
relations induced by the algebraic properties given in
Ablinger [Ablinger 17, Section 4], namely shulffle, stuf-
fle, multiple argument, and duality relations, but it is
presently not known, whether these constants obey fur-
ther algebraic equations or not. In few of this question
corresponding to logarithms of integers, we refer to
Baker’s theorem [Baker 66]. Note that for the subclass
of multiple zeta values and Euler sums, we use the
slightly different, but equivalent, set of constants com-
pared to [Bliimlein et al. 10]. For details on how the
constants of [Bliimlein et al. 10] can be rewritten in
terms of the constants given above, we refer to the
accompanying Mathematica notebook.

In the following sections, we will use different
methods to compute integral representations of the
generating function. In Section 2, we will use holo-
nomic closure properties, while in sections 3 and 4 we
will use rewrite rules. In Section 4, we will consider a
subclass of Pochhammer sums, for which we can dir-
ectly find representations in terms of cyclotomic poly-
logarithms, i.e., we do not have to deal with Step 2 of
the proposed strategy.

2. Using closure properties of holonomic
functions to derive generating functions

In the following, we repeat important definitions
and properties (compare [Ablinger 16, Ablinger
et al. 14, Kauers and Paule 11]). Let K be a field of
characteristic 0. A function f = f(x) is called holo-

{3 1= S3(00);
(o := So(00);
pa = Lia(3);
p7 == Liz(3);
51 = 5,5',1 (OO)7

(00); s4 := S53(00);

); s7:=S_5_111(00);

h3 := H3,0),00),(0,0),(00)(1);
he == Hs3(1);

(51)(1)'
(5.2).000)(1);

nomic (or D-finite) if there exist polynomials
Pa(x), pa—1(x),...,po(x) € K[x] (not all p; being 0)
such that the following holonomic differential equa-
tion holds:


http://www.risc.jku.at/research/combinat/software/HarmonicSums
http://www.risc.jku.at/research/combinat/software/HarmonicSums
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Pa(x)fD(x) + - + pr(x)f (x) + po(x)f (x) = 0.
(2-1)

We emphasize that the class of holonomic func-
tions is rather large due to its closure properties.
Namely, if we are given two such differential equa-
tions that contain holonomic functions f(x) and g(x)
as solutions, one can compute holonomic differential
equations that contain f(x)+ g(x), f(x)g(x), or
Js f(»)dy as solutions. In other words, any compos-
ition of these operations over known holonomic func-
tions flx) and g(x) is again a holonomic function h(x).
In particular, if for the inner building blocks f(x) and
g(x), the holonomic differential equations are given,
also the holonomic differential equation of h(x) can
be computed.

Of special importance is the connection to recur-
rences. A sequence (f,),, with f, € K is called holo-
nomic (or P-finite) if there exist polynomials
pa(n),pa—1(n),...,po(n) € K[n] (not all p;, being 0)

such that the holonomic recurrence

pa(M)fura + -+ + pr()far1 + po(n)f =0

holds for all n € N (from a certain point on). In the
following, we utilize the fact that holonomic functions
are precisely the generating functions of holonomic
sequences: if flx) is holonomic, then the coefficients f,
of the formal power series expansion

£ = Do

(2-2)

form a holonomic sequence. Conversely, for a given
holonomic sequence (f,),~,, the function defined by
the above sum (i.e., its generating function) is holo-
nomic (this is true in the sense of formal power series,
even if the sum has a zero radius of convergence).
Note that given a holonomic differential equation for
a holonomic function f(x), it is straightforward to
construct a holonomic recurrence for the coefficients
of its power series expansion. For a recent overview of
this holonomic machinery and further literature, we
refer to [Kauers and Paule 11].

Since cyclotomic sums are holonomic sequences
with respect to n and the iterated integrals we con-
sider are holonomic functions with respect to x, we
can use holonomic closure properties to derive inte-
gral representations of Pochhammer sums: Given a
Pochhammer sum

= (p)n
D (an o) (n - ™

n=1

where g(n) is a cyclotomic sum. We proceed as pro-
posed in on page 3: define

(p)n
an+b) (n+d)

f" = ( |g(n)

and try to find an iterated integral representation of
fo) =)
n=1
using the following steps:

1. Compute a holonomic

for (f")n =0

2. Compute a holonomic differential equation for f(x).

3. Compute initial values for the differen-
tial equation.

4. Solve the differential equation to get a closed
form representation for f(x).

recurrence equation

This procedure is implemented in the packages
HarmonicSums and can be called by

ComputeGeneratingFunction

Pochhammer|p, n] )
n .
(an 1 0 n 4t 005 A 1och

We will succeed in finding a closed form representa-
tion for flx) in terms of iterated integrals, if we can find
a full solution set of the derived differential equation.
The command ComputeGeneratingFunction
internally uses the differential solver implemented in
HarmonicSums, which finds all solutions of holo-
nomic differential equations that can be expressed in
terms of iterated integrals over hyperexponential alpha-
bets [Ablinger 16, Ablinger et al. 14, Bronstein 92,
Petkovsek 92, Hendriks and Singer 99]; these solutions
are called d’Alembertian solutions [Abramov and
Petkovsek 94], in addition for differential equations of
order two it finds all solutions that are Liouvillian
[Ablinger 17a, Kovacic 86, Hendriks and Singer 99].

If we succeed in finding a closed form representa-
tion for flx) in terms of iterated integrals, we proceed
with Step 2 and Step 3 of the proposed strategy.
Hence, we send x — 1 and try to transform these iter-
ated integrals to expression in terms of cyclotomic
polylogarithms and finally we use relations between
cyclotomic polylogarithms at one to derive an expres-
sion in terms of known constants.

The Pochhammer sum

= (—3),51(n)
; (3+n)(n—1) (2-3)

will deal as a representative example to illustrate all
three different methods that are presented in this



article. First, we work out the sum using the method
presented above.

Example 1. We consider the sum (2-3) and start to
derive a recurrence for

(=3),51(n)

ey Yk

we find:
(24 n)(4+ n)*(1 4 2n)(3 + 2n)f,—2(1 + n)
(5+n)*(3 +2n)(5 + 2n)fr

+4(1+n)24n)(3+n)(6+n)fus = 0.

Using the closure properties of holonomic func-
tions, we find the following differential equation

96f (x) 4 3(—250 + 343x)f" (x) + 3(144 — 590x + 481x)f" (x)
+ x(352 — 942x + 599:2)f ¥ (x) + 8x*(9 — 20x + 11x*)f ¥ (x)
+4(-1+ x)2x3f<5)(x) =0,
satisfied by
i n Si(n)
P70 | N A
n=1 n — l)

We can solve this differential equation for example
using the differential equation solver implemented in
HarmonicSums:

SolveDE [96f[x] + 3(—250 + 343x)f"[x]
+3(144 — 590x + 481x%)f"[]

+ x(352 — 942x + 599x)f V) [x]

+ 8x%(9 — 20x + 11:3)fW[x]
+4(=1+2)°2f ] == 0,f[x], x].

By checking initial values we find

7350963

1 1—1
—G<—;x>+G< ,x)
T T
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At this point we send x — 1 and use the command
SpecialGLToH in HarmonicSums to derive an
expression in terms of cyclotomic polylogarithms
(compare [Ablinger 17, Section 3]). This leads to

9367 3328Hg,)(1 )+ 8, (1 )2_64H<270)(1)
7350 3675 35 (00) 3675
32 , 16 32

CH,e(1)——H, 1)-22H 1
~35 20(1) 35 00),(00)(1) 35 00),(1,0(1)
32

——H —H 1 —H 1).
35 120), (00)(1 )+35 20,10 )+35 20,20 (1)

Finally, we can use relations between cyclotomic poly-
logarithms at one (compare [Ablinger 17, Section 4]) to
derive

1281,

Z (n)  —9367 + 560n” + 672055~
pr 3+n n—l) 7350
(2-5)
Note that in the last step of this example we are
actually only dealing with harmonic polylogarithms
(see [Remiddi and Vermaseren 00]).

Let us now list several identities that could be com-
puted using this method:

fiiQﬁiﬂﬁﬂzﬂ8@‘ji

‘— (n+1)! V3’
e 2 57I 27h1 27l2
= \/_7T13
; (n+ T6
> (1),S2(n) 16C  7n?
=——+— 6 +2nl
Z 3 + 18 + Ty,
n=1
ad l 211 1
Z 2 _—7'612(312—2),
s 2n+1) n‘ 4

i S, (1)

‘~  (2n+1)’n!

1
= %n(4nzlz — 728 + 5615 — 9¢5).

—1776 + 808x—319x*—888x> —600x* + 6656 | G

11 1 v1-
G(— —,x) G(—, 7:;x)—l-
T'T T 1

+4y/1— x<(404 —218x — 111x% — 75x%)

+222(2 —x— x2)>>.

o L))
:

a

o

<)o)

(2-4)

T
( 1
-G

1—
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Several formulas that can be found in [Liu and
Wang 19] can be also discovered and proved using

the described method. Here, we are going to list some
of them:

3 —38,(n)Sy(n) + 285(n))

£ (n+1)!

(1), (Si(n)* = 381(n)S2(n) + 283(n))

(n+1)!

(1),(S1(n)* = Sx())

(n+1)!

(n+1)!

(2),(S:1(m)* = $2(n))
(n+1)!

OOl
E an

n=1

n!

Note that this method can also be used to compute
integral representations of sums of the form

iX”B)nSs(n)
~  nal
Here, we find
= x"(3),83(n)
ZIT = H0,0),10),(0.0),0.0),(1.0) (%)
3Lip(x)*  Lis(x)
4 2(-1+x)

+ LIS(X)

and sending for instance x — 1 we get:

= 24{3 + 168 + 4n’l,,

= —96Cl, + 16nC + 72(5 + 361,187l

97’
+ 137'(212— 7 y

= 288Cl, + 48nC + 216{5 + 10815 + 547l

,, L 27m
+397°L, + -

32C 137?

__T+1212 —4nl, +=5

1372

= 32C + 3605 + 127, + ——

)’ = 28i(m) + Sa(m)) _

= (3)"(3)85(m) n wh nlh 1,
SWES 2wt L,
i n<n! 192 12 288 16
B 5 L, I 115
2 _ - 13 2 )
ML RS TRETT
+i+3lzp4—|—4p5+é
_77'5 {3 21hL{s _IZC 81(s
48 16 64
Finally, we consider
311
2-6
Z n+1 ’ (2-6)

proceeding as proposed, we find a differential equa-
tion of order 16:
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430080 (x) + 210(—4096 + 1592275x)f" (x)

+ 42(—33554432 — 6356812x + 407269601x)f" (x)

+ (671088640 — 33746963856x — 8037305736x° 4 192200072453x°)f®) (x)

+ x(11047661360 — 204994450032 — 61653276602x> + 771941124781x°)f ¥ (x)

+ 13x%(3812823056 — 38280317036x — 13991732902x> + 109483643797x°)f®
+26x°(3555308396 — 229525493 14x — 9866689087x> + 53652573053x°)f®) (x

(%)
)

+ 572x* (152216474 — 697858881x — 344085550x + 1394066246x°)f 7 (x)
+ 143x°(323583896 — 1123610312x — 623388464x” + 1975831409x°)f®) (x)
+ 143x°(103854560 — 285705072x — 175728306x% + 451597351 ) (x)
+286x7(10492016 — 23636810x — 15928139x% + 34105982x°)f 1% (x)

+ 3x%(130094536 — 246156812x — 180008400x> + 328091581x°)f !V (x)

+ x°(32842216 — 53242200x — 41920782x> + 66163633x° )12 (x)

+ x'°(1762640 — 2487876x — 2095294x% + 2904173x>)f 1) (x)

+ 2x"1(28900 — 35986x — 32239x> + 39703x)f ¥ (x)

+ 4x2(262 —
+8(—1+x)°x3(1 +x)f"9(x) = 0.

Solving this differential equation is possible but
takes quite some time, so this indicates that we might
look for more feasible methods to find generating
function representations for Pochhammer sums of
that kind. In the following sections, we will introduce
rewrite rules, which will allow to compute generating
function representations of Pochhammer sums with-
out having to solve differential equations.

3. Using rewrite rules to derive generating
functions

In this section, we are going to state rewrite rules
which will allow us to find integral representations of
the generating functions of Pochhammer sums with-
out having to solve differential equations. We will
summarize these rewrite rules in the following lem-
mas. We start with the base cases where there is no
inner sum present:

Lemma 2. Let K be a field of characteristic 0. Then,
the following identities hold in the ring K[[x]] of formal
power series with a,c € N and b,d € 7 :

- _ (= x4
Zx n+d ——(P)_pd<0,

n=1

(3-1)

291x — 276x> + 305x° )1 (x)

(1—x)P—1, (3-2)

o0
> o

=1

B

S (n(i)'éz),:u_x)‘* o N R
n=1
(3-3)
S P),
;x (a n+b)(n+d)!
L ) (3-4)
‘ B dt.
,[ ; (a n+b) ' (n+d) t

In case an inner sum is present, we will make use
of the following three lemmas.

Lemma 3. Let K be a field of characteristic 0 and let
f:N—=K. Then the following identity holds in the
ring K|[x]] of formal power series with d <0:

- n (p)n .
;x n—Q—d!.f

xd p—d—1
:(1x) ( de J 1f)d

(P,
Et (n+(d)— 1)!f(”)dt>'

(3-5)
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Proof. Both sides satisfy the following initial value prob-
lem for y(x), which has a unique solution near x = 0:

/ px—d o 1 - n (p)n
Y (x)_ (1 _x)xy(x) - (1 _x)-x;x (}’l—‘rd— 1)!f(”)a
y(0) = 0.

O

Lemma 4. Let K be a field of characteristic 0 and let
f N —=K. Then the following identity holds in the
ring K[[x]] of formal power series with d >0:

o P N
> (n+d)! & 2

n=1

_ (1—x)"" Jx td—1(1_t)pfdflzx:tn

d
X 0 n=1

0 +(I;)"— oy (mét

(3-6)

Proof. Both sides satisfy the following initial value
problem for y(x), which has a unique solution near
x=0:

p x—d 1
(1-— x)xy

¥ (%)~

Lemma 5. Let K be a field of characteristic 0 and let f :
N — K. Then the following identity holds in the ring
K{[[x]] of formal power series with a,c € N and b € Z:

- n (p)n
ZX (a n+b)(n

Lesy

n=1

n

TSV

), -
= +d)‘Zf(z)dt.

- i=1

\
sis

(a n+b)
(3-7)

—— Sl(n)
3+n (n—1)!

>

n=1

Proof. Both sides satisfy the following initial value
problem for y(x), which has a unique solution near
x=0:

Pl S,

(an+b)" (n+d)

|

Note that formulas related to the previous lemmas
concerning binomial sums can be found in [Ablinger
et al. 14].

Let us now, for the second time, consider (2-3)
and illustrate how the previous lemmas can be used
as rewrite rules to find integral representations of
Pochhammer sums.

Example 6. We again look for a closed form repre-
sentation in terms of iterated integrals of

> $1(n)
; 3—|—n

(n—1)!
We start by using Lemma 5 twice:

B " —%nSl(n)
S (2

s (3+n)2(n—1)!
=x J ZZt 1) )dt
_ 3 * —1 ! 2OC nS](l’l)( l)n u
=x Lt Jou;u 7(71_1) dudt.

Now we apply Lemma 3 followed by applying
(3-4) and (3-1)

J v dwdv—— dudt.
04(1—w)2
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At this point, we rewrite the expression in terms of 0 (l)nS3(n) 513 \/_ 15721,
iterated integrals (this can be done by hand or by Z (n+1)! - 323 + 37h— 32
using  the  command GLIntegrate  of =
HarmonicSums) and arrive again at (2-4) and 81k )
hence we can proceed as in Example 1 to arrive at 6 _\/_ L
jf: (=3),S1(n) ::—9367—%560n2+—6720@—1285. 278
‘=~ (34+n)(n—1)! 7350 .+__+6@,
3-8
Note that this method is implemented in the pack- (3-8)
age HarmonicSums  using the command
PochhammerSumToGL. Calling % ( ) Siiia(n)
=060 3-9
Pochhammer[ ] [1,n] Z (l’l + 1)! s, (3-9)
PochhammerSumToGL ,x,{n,1,00} i=1
G+n)M—1)
will immediately (after regrouping) give (2-4). o (%)n51,1,1.,1,1(n) 180 n 3.10
Reconsidering (2-6) we find ; (n+1)! CS_%v (3-10)
Sl _ (11111 V)
c~ (n41)! (A A A T
1111111111 \/1 1
+2G< —————————— ki 1)
R AR A A A AR A AN 1
_ 6777, 23397°E 79n°L 2ntl; 4n’ly 16!
475200 680400 28350 1575 8505 155925
23397%¢;  79n°B(, 1 8
- 2 PTG - Sl + o
453600 1890 15 135 315 2
L 4, o 8 55:0 s 4n2C3 16 2 79785
Ty T gmhh -—lg BS o6
3 412 4 214 16[6 21 ZS 2
57 2C5—§7T 585 + T H0s=8m L {505 + 325 (3(5 + 24(3(5
ot 1707
+ 72,03~ 57 m B0, + 24150, 4+ 144L,00— ]
680
+——F@+3nal
Note that all the identities listed in Section 2 can o /1
: : . (3),S4(n) 2 5, 4 L, 4L 85
also be computed using rewrite rules. But using Z (”Jr T 203 lzf§n lz+?+1—5+1612p4
these rewrite rules turns out to be much more effi- n=t M

cient. We are now going to list several additional
identities that could be computed with the help of
this command:

72 63
C —+8L{ + 712C3 C5

(3-11)
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(3),S2(n)

13z w8 1997°L, 2 ,, 2 8

(n+1)n

189

413 215
e R
3+

200[251

4
37180 7560 3" 2 27"

167T2p5
3

| 1365,

16 4—16 2Ly +
— —7
o 3 2P4 -

31°(5
2
3 4

— 5 12§3—36P4C3 +

111
—9L{5—

+ 24s) +

20053
7

(3-12)

2971
+ MC?+Mgraﬁhg+ 2y,
9¢2 2431 24 75(s
8 26
12685C7

112

29357:255
168

FCs

)

377t 89n° 630317 2 37 463781,

To conclude this section we consider the sum

2 4
L+ 22 g4l
2t g™ 2T

8k
3
215
5

5040 3024000 3"

47
2P R
L+ —n'l; +
+180
19

180

360 3

10797812
7560
25 1

215
15 9

7560

2
9

5
3
5
*35

213 2 413
+270

1 40

27 35

-8 _é 2 é 4 l2 § 2 1
p4 37Tp4+97[p4+162p4+16p5+3ﬂp5+322p5

1
3
5 214 41421 216
18

16
—32@p5—-§4¥p6—1285p64—645p6—128p74-384bp7

(3-13)

134 6939
+ 110055—T7T 51—321251 104l 251 +— 54—1653

77r2C3
12

137I4C3

+ 3252—64[252 + 128568057—4C3 + 60

—7h{;5

>
437°(5
2

2ZZCS

271
27t —7Be -

20 , 2P
90

C3+ le 160ps(5—
203§5 249n2C5

393;'3(5 +

203
_ 12€5

3955@7 11533
16 16

—9L{; + 3255

2 201
A

+ 640])3 + 481253.

h;

Here, we fail to transform the iterated integrals in
terms of cyclotomic polylogarithms; however, since

00 S () the integrals are simple enough, we are able to per-
Z 1)' . form the integrals in (3-14) for example by using
= (=1l Mathematica and find the result

jf:("%)nS@JJJ(")__ 4n’/?
We find that it equals = (-1 27\/-T( )r (1?)
1— 2G(v”;7 )4%2G(f§§;;m; )—33G(¢1_5TU§1)—2G(ﬁ§%§%%;1) 1
. —1

45




Another example where we fail to transform the
iterated integrals in terms of cyclotomic polylogar-
ithms but still can do the integrals is

3, V3

< (3),(Sean() =Span(m) 3w
% V3 V23L()

o (n+1)! 4

In the following section, we will consider a subclass
of Pochhammer sums, for which we will always be
able to derive a representation in terms of cyclotomic
polylogarithms.

4. Using rewrite rules to directly derive generating
functions in terms of cyclotomic polylogarithms

In this section, we will deal with a subclass of the
Pochhammer sums, namely we restrict the inner sum
to be a multiple harmonic sum and we set p =1/g
with g € Z\ {0} and a=1 in (1-3), i.e,, we are con-
sidering sums of the form

Z n+b

n=1

where ¢,c; € N,b,d € Z and p:é with q € Z )\ {0}.
Considering a Pochhammer sum in this subclass we
could again use the rewrite rules presented in Section
3 to find an integral representation, however we can

]’1 + d)' SCl,Cz,..A,cr(n)7 (471)
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also use the following lemmas. These new rewrite
rules will directly lead to cyclotomic polylogarithms.
We again start with the base cases where no inner
sum is present (compare Lemma 2):

Lemma 7. Let K be a field of characteristic 0. Then,
the following identities hold in the ring K[[x]| of formal
power series with c € N and b,d € Z :

ixn (p)n :_(1—x)d—deJ.(1x)P (1—tﬁ)d

dt,d>0
LD‘ d! 1 tlfsign(p)t%‘ t,a>0,
(4-2)
g (n + d)!
-1 J(“‘)P (1—) ™ & @), (1 - )" t
E2 £V S m+b)  (n+d)!
(4-3)

In the cases where there is an inner multiple har-
monic sum present we can refine the Lemmas 3, 4,
and 5 and get the following result.

Lemma 8. Let K be a field of characteristic 0 and let
f:N— K. Then the following identities hold in the
ring K][x]] of formal power series with c € N,b,d € Z
and Sy, .m,(n) a multiple harmonic sum:

aaaaa

c=0,d<0

o (P)
D X S () =

=" (n+d)! (4-4)

el d—
(1-x)"" P o) e ()" P) - :
xd (p)—d ( d) |p| Jl tl sign(p % ; 1’l+d_l lnmls(n)dt )

c=0,d=0

o (P)

x" I Sm1 ..... m,(n) =

; (n+4)! (4-5)

(1 X)d Pxid J(l X)W (1 — t‘/’l) io: (1 — tﬁ)n(p) ( )dt
_ n)at;

Ip| 1 p—sign(p) g 4= (n+d — 1)ln™

c>0

- )

X' ————Su,..m, (1
2 X o e ) (4-6)
b (1 x)‘P‘ . 1)b 1.0
_ o — 1 — £ n)dt.
lp| Jl ; +b)" (n+d) &
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Here, we use the abbreviations s(n) :=
and s(n) := Sy, ._m, (n).

Proof. For all these equalities, it is possible to find an
initial value problem, which has a unique solution
near x= 0 and is satisfied by both sides of the respect-
ive equation. O

Note that the polynomials arising in the left hand
sides of the equations in Lemmas 7 and 8 are of the
form ¢ or (1—t)* for i,k € Z, hence integrating over
these integrands will lead to cyclotomic polylogarithms.
Therefore, the Pochhammer sums of the form (4-1) will
be expressible in terms of cyclotomic polylogarithms,
and we can state the following structural theorem.

(=3),51(n)
(3+n)(n—1)!

[.°]
>

n=1

(5
(n—1)!

du dt.

Now, we apply (4-4) followed by applying (4-3)
and (3-1):

Theorem 9. Any sum of the form

(l>

s | -
nzz:l n + b n + d) Cl,Cz,“.,cr(n) ( )
where ¢,c; e N,b,de€Z and qe€Z)\ {0}, can be

expressed in terms of cyclotomic polylogarithms
at one.

Let us now, for the third time, consider (2-3) and
illustrate how the previous lemmas can be used as
rewrite rules to directly find a representation in terms
of cyclotomic polylogarithms.

Example 10. We seek a closed form representation in
terms of cyclotomic polylogarithms of

™ Si(n)
Zx

| 3+n n—l)

so we use (4-6) twice:

DD 1
2t T D dvg | du dr
1 (1 —42) 2
00 (l—wz)n —%
4WZn:1 2(nfz<)! )n dW
1w 5 dv—=| du dt
(1—12)

Now, we can send x — 1 and rewrite this expres-
sion directly in terms of cyclotomic harmonic polylo-
garithms (again this can be done by hand or by using
the command GLIntegrate of HarmonicSums)
and arrive again at

64H 5 o (1
9367 64H(30)(1) 32H00 ()
7350 3675 35 (00)(10)
2 (4-8)

gH(z,o),(o,o)(l) + gH(z,o),(l,o)(l)-

Finally, we can again use relations between cyclo-
tomic polylogarithms at one to derive (2-5).

Note that this is implemented in the command
Pochhammer SumToH, so calling
PochhammerSumToH

Pochhammer [—1, n|S[1, 7]
(n+3)*(n—1)!

y X5 {l’l, 17 OO}

will immediately give (after pretty printing)



—11856 + 2552x + 537x%—600x3
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64 4/1—x(1276 + 218x +

N 4/1—x(1482 4 107x + 75x°)

3675x3

7350x3
+

3675x3 3675x3

111x% + 75x3))H1 (Vi)

4y/1—x(1276 + 218x + 111x2 + 75x%)Hy (v/1—x)

3675x3

64  4v1—x(1276 + 218x + 111x% + 75x3)  64H; (v/1—x)
+H (1) — — +
3675x3 3675x3 35x3
96H,130(1)+32H,1,0(\/1—x) 64H_1,(1) 64H, (1) 32H,(1)
35x3 353 353 35x3 35x3
64H, _ (v1—x) | 32Hig (vV1=x)
35x3 35x3 '
Sending s — 1 will give (4-8).
To conclude we are going to list several identities
that could be computed with the help of this com-
mand (note that these identities could have also be
computed using the methods presented in the previ-
ous sections):
> 25h
Z Sin)_ 25he (4-9)
| n—l—l 4
o (n) 875h2 125 125h; 125k
he + 4-10
Z w Vs T e (4-10)
n=1
i (), 5222 2_7r6_9_C§_ 1555 (4-11)
L« (n+1)! 189 4 2
>N (3),S22(n)  2n*  mt 8
Z(() =9 s 5 G2k, (4-12)
n=1 1’1+ )
- S22(n n* 2t 4l2 15
2 . ; ') T 9 45 +2 PR 155’ (4-13)
n=1 f’l( + )
i(%) S22(n) _ 9 3v/3n 51n2+ 1173 +917r4 1377h,
£« (n+3)! 320 320 ' 512 ' 128y/3 5760 1280
135nh;  243h, 27 1539h;
nhy— h
128\/_ "8 T Tea o4 \f 28 (4-14)
243h, 271 153 l 11 l 27
_23hy 27k 153y Nwh 27 g
16 320 1280 128\/_ 128
243hyl; 137712 81C3 81l3C3
TT6r 2560 o4 \[ G
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