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Discovering and Proving Infinite Pochhammer Sum Identities

Jakob Ablinger

Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria

ABSTRACT
We consider nested sums involving the Pochhammer symbol at infinity and rewrite them in
terms of a small set of constants, such as powers of p; log ð2Þ; or zeta values. In order to
perform these simplifications, we view the series as specializations of generating series. For
these generating series, we derive integral representations in terms of root-valued iterated
integrals or directly in terms of cyclotomic harmonic polylogarithms. Using substitutions, we
express the root-valued iterated integrals as cyclotomic harmonic polylogarithms. Finally, by
applying known relations among the cyclotomic harmonic polylogarithms, we derive expres-
sions in terms of several constants. We provide an algorithimic machinery to prove identities
which so far could only be proved using classical hypergeometric approaches. These meth-
ods are implemented in the computer algebra package HarmonicSums.
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1. Infinite nested Pochhammer sums

The goal of this article is to find and prove identities
of the following form:
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where ðxÞn denotes the Pochhammer symbol,
lk :¼ logðkÞ;fk :¼

P1
n¼1

1
nk ; and C denotes

Catalan’s constant.
Note that similar identities were given in [Ablinger 17,

Liu and Wang 19]. Such identities are of interest in phys-
ics: In particular, such sums have been studied in order
to perform calculations of higher-order corrections to
scattering processes in particle physics [Ablinger et al. 14,
Davydychev and Kalmykov 01, 04, Fleischer et al. 99,
Jegerlehner et al. 03, Kalmykov and Veretin 00,
Kalmykov et al. 07, Ogreid and Osland 98, Weinzierl 04].
Moreover, similar identities were also considered
[Borwein et al. 01, Borwein and Lison�ek 00, Lehmer 85,
Zhi-Wei 11, Zucker 85], and there is a connection to
Ap�ery’s proof of the irrationality of fð3Þ (see [Borwein
and Borwein 87]) [Weinzierl 04, Zhi-Wei 11, Zucker 85].

While [Ablinger 17] basically deals with sums of
the form

X1
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1
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n

n!
f nð Þ and
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n

n!
f nð Þ;

we are going to consider a much wider class of sums
in the frame of this paper. In addition, we will state a
general computer algebra method to evaluate a large
class of sums in terms of nested integrals. Moreover,
we will be able to prove a structural theorem, about

CONTACT Jakob Ablinger jablinge@risc.jku.at Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria.
Supplemental data for this article is available online at https://doi.org/10.1080/10586458.2019.1627254.

� 2019 The Author(s). Published with license by Taylor & Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

EXPERIMENTAL MATHEMATICS
https://doi.org/10.1080/10586458.2019.1627254

http://crossmark.crossref.org/dialog/?doi=10.1080/10586458.2019.1627254&domain=pdf&date_stamp=2019-06-29
https://doi.org/10.1080/10586458.2019.1627254
http://creativecommons.org/licenses/by/4.0/
https://doi.org./10.1080/10586458.2019.1627254
http://www.tandfonline.com


when such a sum can be expressed in terms of the so-
called cyclotomic polylogarithms.

The main purpose of this article is to present meth-
ods which can be automated; hence, not all identities
presented in this paper are new identities. To make
more precise which class of sums we are considering,
some definitions are in place. Let r 2 N and let
ai; ci 2 N and bi 2 N0 for 16i6r then we call
Sða1;b1;c1Þ;:::;ðar ;br ;crÞðnÞ defined as

S a1;b1;c1ð Þ;:::; ar ;br ;crð Þ nð Þ

:¼
Xn
i1¼1

1

a1i1 þ b1ð Þc1
Xi1
i2¼1

1

a2i2 þ b2ð Þc2 � � �
Xir�1

ir¼1

1

arir þ brð Þcr

(1–1)

a cyclotomic harmonic sum (compare [Ablinger and
Bl€umlein 13, Ablinger et al. 11, 14, Ablinger 13]) of
depth r. Note that if ai¼ 1 and bi¼ 0 for 16 i6 r we
write

Sc1;c2;:::;cr nð Þ :¼ S 1;0;c1ð Þ; 1;0;c2ð Þ;:::; 1;0;crð Þ nð Þ; (1–2)

and we call Sc1;c2;:::;crðnÞ a multiple harmonic sum (see,
e.g., [Ablinger et al. 13, Ablinger 13, Bl€umlein and
Kurth 99, Bl€umlein 00, Vermaseren 99]).

The sums we are considering take the formX1
n¼1

pð Þn
anþ bð Þc nþ dð Þ! f nð Þ (1–3)

where a; b; c; d 2 N0; p 2 R; and f(n) is a cyclotomic
harmonic sum. We will refer to (1–3) as
Pochhammer sum.

We are going to find representations of these
Pochhammer sums in terms of special classes of inte-
grals (that are similar to the iterated integrals in
[Ablinger et al. 14] and correspond to the iterated inte-
grals in [Ablinger 17]). These classes of integrals are
iterated integrals over hyperexponential functions. More
precisely a function f(x) is called hyperexponential if

f 0 xð Þ
f xð Þ ¼ q xð Þ

where q(x) is a rational function in x.
Then, an iterated integral over the hyperexponential

functions f1ðxÞ; f2ðxÞ; :::; fkðxÞ is defined recursively by

G f1 sð Þ; f2 sð Þ; :::; fk sð Þ; xð Þ ¼
ðx
0
f1 s1ð ÞG f2 sð Þ; :::; fk sð Þ; s1ð Þds1;

with the special case GðxÞ ¼ 1: Since some letters
might have a non-integrable singularity at the base
point x¼ 0 we consistently define

G f sð Þ; xð Þ :¼
ðx
0

f tð Þ � c
t

� �
dt þ c log xð Þ;

where c takes the unique value such that the integrand
on the right hand side is integrable at t ¼ 0: It is

important to note that this definition preserves the
derivative d

dxGðf ðsÞ; xÞ ¼ f ðxÞ: In general, we set

G f1 sð Þ; :::; fj sð Þ; x� �
:¼
ðx
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iþ 1

log xð Þiþ1;

where k and c0; :::; ck are chosen to remove any non-
integrable singularity. Again the result is unique and
retains

d
dx

G f1 sð Þ; :::; fj sð Þ; x� � ¼ f1 xð ÞG f2 sð Þ; :::; fj sð Þ; x� �
:

In the following, we will define a subclass of iter-
ated integrals (compare [Ablinger et al. 11]). For a 2
N and b 2 N; b<uðaÞ; where u denotes Euler’s
totient function, we define

f ba : 0; 1ð Þ 7!R

f ba xð Þ ¼
1
x
; if a ¼ b ¼ 0

xb

Ua xð Þ ; otherwise;

8>>><
>>>:

where UaðxÞ denotes the ath cyclotomic polynomial,
e.g., the first cyclotomic polynomials are given by

U1 xð Þ ¼ x�1
U2 xð Þ ¼ x þ 1
U3 xð Þ ¼ x2 þ xþ 1
U4 xð Þ ¼ x2 þ 1
U5 xð Þ ¼ x4 þ x3 þ x2 þ xþ 1 etc:

Now, let mi ¼ ðai; biÞ 2 N
2; bi <uðaiÞ; for x 2

ð0; 1Þ; we define cyclotomic polylogarithms recursively
as follows (compare, e.g., [Ablinger et al. 11]):

H xð Þ ¼ 1;

Hm1;:::;mk xð Þ ¼
1
k!

log xð Þk; if mi ¼ 0; 0ð Þ

Ð x
0 f

b1
a1 yð ÞHm2;:::;mk yð Þdy; otherwise:

8>><
>>:

We call k the weight of a cyclotomic polylogarithm
and in case the limit exists we extend the definition to
x¼ 1 and write

Hm1;:::;mk 1ð Þ :¼ lim
x!1

Hm1;:::;mk xð Þ:

Note that restricting the alphabet to the letters
ð0; 0Þ; ð1; 0Þ; and (2,0) leads to harmonic polylogar-
ithms [Remiddi and Vermaseren 00].
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The proposed strategy to prove and find
Pochhammer sum identities reads as follows and fol-
lows the method proposed in [Ablinger 17]):

Step 1: Rewrite the sums in terms of nested integrals.
Step 2: Rewrite the integrals in terms of cyclotomic

polylogarithms (see [Ablinger 17, Section 4]).
Step 3: Provide a sufficiently strong database to eliminate

relations among these cyclotomic polylogarithms
and find reduced expressions (see Section 4).

This article focuses on Step 1, and we will present
three different possibilities to find integral representa-
tions of Pochhammer sums. In order to accomplish
this task, we view infinite sums as specializations of
generating functions [Ablinger 17, Ablinger et al. 14].
Namely, if we are given an integral representation of
the generating function of a sequence, then we can
obtain an integral representation for the infinite sum
over that sequence if the limit x ! 1 can be carried
out. This approach to infinite sums can be summar-
ized by the following formula:X1

i¼1

f ið Þ ¼ lim
x!1

X1
i¼1

xif ið Þ:

For details on Step 2 (implemented in the com-
mand SpecialGLToH in HarmonicSums) and on
Step 3 we refer to [Ablinger 17]. It has to be men-
tioned that we computed and used relation tables of
harmonic polylogarithms at one up to weight 12, for
cyclotomic polylogarithms of cyclotomy 4 and 6 we
computed and used relation tables of cyclotomic poly-
logarithms at 1 up to weight 6. The size of these tables
amounts to several gigabytes. Note that the full strat-
egy has been implemented in the Mathematica pack-
age HarmonicSums1 [Ablinger 14].

To complete this introduction we define a number
of constants that will appear throughout this article:

Here, we extend the definition (1–2) to negative
indices by

Sc1;c2;:::;cr nð Þ

:¼
Xn
i1¼1

sign c1ð Þi1
ji1jc1

Xi1
i2¼1

sign c2ð Þi2
ji2jc2 � � �

Xir�1

ir¼1

sign cr1ð Þir
jirjcr :

Note that these constants do not possess any further
relations induced by the algebraic properties given in
Ablinger [Ablinger 17, Section 4], namely shuffle, stuf-
fle, multiple argument, and duality relations, but it is
presently not known, whether these constants obey fur-
ther algebraic equations or not. In few of this question
corresponding to logarithms of integers, we refer to
Baker’s theorem [Baker 66]. Note that for the subclass
of multiple zeta values and Euler sums, we use the
slightly different, but equivalent, set of constants com-
pared to [Bl€umlein et al. 10]. For details on how the
constants of [Bl€umlein et al. 10] can be rewritten in
terms of the constants given above, we refer to the
accompanying Mathematica notebook.

In the following sections, we will use different
methods to compute integral representations of the
generating function. In Section 2, we will use holo-
nomic closure properties, while in sections 3 and 4 we
will use rewrite rules. In Section 4, we will consider a
subclass of Pochhammer sums, for which we can dir-
ectly find representations in terms of cyclotomic poly-
logarithms, i.e., we do not have to deal with Step 2 of
the proposed strategy.

2. Using closure properties of holonomic
functions to derive generating functions

In the following, we repeat important definitions
and properties (compare [Ablinger 16, Ablinger
et al. 14, Kauers and Paule 11]). Let K be a field of
characteristic 0. A function f ¼ f ðxÞ is called holo-

nomic (or D-finite) if there exist polynomials
pdðxÞ; pd�1ðxÞ; :::; p0ðxÞ 2 K½x� (not all pi being 0)
such that the following holonomic differential equa-
tion holds:

l2 :¼ log ð2Þ l3 :¼ log ð3Þ f3 :¼ S3ð1Þ;
f5 :¼ S5ð1Þ; f7 :¼ S7ð1Þ; f9 :¼ S9ð1Þ;
f11 :¼ S11ð1Þ; C :¼ Catalan; p4 :¼ Li4ð12Þ;
p5 :¼ Li5ð12Þ; p6 :¼ Li6ð12Þ; p7 :¼ Li7ð12Þ;
p8 :¼ Li8ð12Þ; p9 :¼ Li9ð12Þ; s1 :¼ S�5;�1ð1Þ;
s2 :¼ S5;�1;�1ð1Þ; s3 :¼ S�5;1;1ð1Þ; s4 :¼ S5;3ð1Þ;
s5 :¼ S�7;�1ð1Þ; s6 :¼ S�5;�1;�1;�1ð1Þ; s7 :¼ S�5;�1;1;1ð1Þ;
h1 :¼ Hð3;0Þ;ð0;0Þð1Þ; h2 :¼ Hð3;0Þ;ð0;0Þ;ð1;0Þð1Þ; h3 :¼ Hð3;0Þ;ð0;0Þ;ð0;0Þ;ð0;0Þð1Þ;
h4 :¼ Hð3;0Þ;ð0;0Þ;ð1;0Þ;ð1;0Þð1Þ; h6 :¼ Hð5;1Þð1Þ; h6 :¼ Hð5;3Þð1Þ;
h7 :¼ Hð5;1Þ;ð0;0Þð1Þ; h8 :¼ Hð5;2Þ;ð0;0Þð1Þ;

1The package HarmonicSums (Version 1.0 16/05/19) together with a
Mathematica notebook containing a list of illustrative examples can be
downloaded at http://www.risc.jku.at/research/combinat/software/
HarmonicSums.
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pd xð Þf dð Þ xð Þ þ � � � þ p1 xð Þf 0 xð Þ þ p0 xð Þf xð Þ ¼ 0:

(2–1)

We emphasize that the class of holonomic func-
tions is rather large due to its closure properties.
Namely, if we are given two such differential equa-
tions that contain holonomic functions f(x) and g(x)
as solutions, one can compute holonomic differential
equations that contain f ðxÞ þ gðxÞ; f ðxÞgðxÞ; orÐ x
0 f ðyÞdy as solutions. In other words, any compos-
ition of these operations over known holonomic func-
tions f(x) and g(x) is again a holonomic function h(x).
In particular, if for the inner building blocks f(x) and
g(x), the holonomic differential equations are given,
also the holonomic differential equation of h(x) can
be computed.

Of special importance is the connection to recur-
rences. A sequence ðfnÞnP0 with fn 2 K is called holo-
nomic (or P-finite) if there exist polynomials
pdðnÞ; pd�1ðnÞ; :::; p0ðnÞ 2 K½n� (not all pi being 0)
such that the holonomic recurrence

pd nð Þfnþd þ � � � þ p1 nð Þfnþ1 þ p0 nð Þfn ¼ 0 (2–2)

holds for all n 2 N (from a certain point on). In the
following, we utilize the fact that holonomic functions
are precisely the generating functions of holonomic
sequences: if f(x) is holonomic, then the coefficients fn
of the formal power series expansion

f xð Þ ¼
X1
n¼0

fnx
n

form a holonomic sequence. Conversely, for a given
holonomic sequence ðfnÞnP0; the function defined by
the above sum (i.e., its generating function) is holo-
nomic (this is true in the sense of formal power series,
even if the sum has a zero radius of convergence).
Note that given a holonomic differential equation for
a holonomic function f(x), it is straightforward to
construct a holonomic recurrence for the coefficients
of its power series expansion. For a recent overview of
this holonomic machinery and further literature, we
refer to [Kauers and Paule 11].

Since cyclotomic sums are holonomic sequences
with respect to n and the iterated integrals we con-
sider are holonomic functions with respect to x, we
can use holonomic closure properties to derive inte-
gral representations of Pochhammer sums: Given a
Pochhammer sumX1

n¼1

pð Þn
anþ bð Þc nþ dð Þ! g nð Þ;

where g(n) is a cyclotomic sum. We proceed as pro-
posed in on page 3: define

fn :¼
pð Þn

anþ bð Þc nþ dð Þ! g nð Þ

and try to find an iterated integral representation of

f xð Þ :¼
X1
n¼1

xnfn

using the following steps:

1. Compute a holonomic recurrence equation
for ðfnÞnP0:

2. Compute a holonomic differential equation for f ðxÞ:
3. Compute initial values for the differen-

tial equation.
4. Solve the differential equation to get a closed

form representation for f ðxÞ:

This procedure is implemented in the packages
HarmonicSums and can be called by

ComputeGeneratingFunction

Pochhammer p; n½ �
anþ bð Þc nþ dð Þ! g n½ �; x; n; 1;1f g

" #
:

We will succeed in finding a closed form representa-
tion for f(x) in terms of iterated integrals, if we can find
a full solution set of the derived differential equation.
The command ComputeGeneratingFunction

internally uses the differential solver implemented in
HarmonicSums, which finds all solutions of holo-
nomic differential equations that can be expressed in
terms of iterated integrals over hyperexponential alpha-
bets [Ablinger 16, Ablinger et al. 14, Bronstein 92,
Petkov�sek 92, Hendriks and Singer 99]; these solutions
are called d’Alembertian solutions [Abramov and
Petkov�sek 94], in addition for differential equations of
order two it finds all solutions that are Liouvillian
[Ablinger 17a, Kovacic 86, Hendriks and Singer 99].

If we succeed in finding a closed form representa-
tion for f(x) in terms of iterated integrals, we proceed
with Step 2 and Step 3 of the proposed strategy.
Hence, we send x ! 1 and try to transform these iter-
ated integrals to expression in terms of cyclotomic
polylogarithms and finally we use relations between
cyclotomic polylogarithms at one to derive an expres-
sion in terms of known constants.

The Pochhammer sum

X1
n¼1

� 1
2

� �
n
S1 nð Þ

3þ nð Þ2 n� 1ð Þ! (2–3)

will deal as a representative example to illustrate all
three different methods that are presented in this
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article. First, we work out the sum using the method
presented above.

Example 1. We consider the sum (2–3) and start to
derive a recurrence for

fn :¼
� 1

2

� �
n
S1 nð Þ

3þ nð Þ2 n� 1ð Þ! ;

we find:

2þ nð Þ 4þ nð Þ2 1þ 2nð Þ 3þ 2nð Þfn�2 1þ nð Þ
5þ nð Þ2 3þ 2nð Þ 5þ 2nð Þfnþ1

þ 4 1þ nð Þ 2þ nð Þ 3þ nð Þ 6þ nð Þ2fnþ2 ¼ 0:

Using the closure properties of holonomic func-
tions, we find the following differential equation

96f xð Þ þ 3 �250þ 343xð Þf 0 xð Þ þ 3 144� 590x þ 481x2ð Þf 00 xð Þ
þ x 352� 942xþ 599x2ð Þf 3ð Þ xð Þ þ 8x2 9� 20xþ 11x2ð Þf 4ð Þ xð Þ
þ 4 �1þ xð Þ2x3f 5ð Þ xð Þ ¼ 0;

satisfied by

X1
n¼1

xn
� 1

2

� �
n
S1 nð Þ

3þ nð Þ2 n� 1ð Þ! :

We can solve this differential equation for example
using the differential equation solver implemented in
HarmonicSums:

SolveDE
	
96f x½ � þ 3 �250þ 343xð Þf 0 x½ �

þ 3 144� 590x þ 481x2ð Þf 00 x½ �
þ x 352� 942xþ 599x2ð Þf 3ð Þ x½ �
þ 8x2 9� 20xþ 11x2ð Þf 4ð Þ x½ �
þ 4 �1þ xð Þ2x3f 5ð Þ x½ � ¼¼ 0; f x½ �; x
:

By checking initial values we find

At this point we send x ! 1 and use the command
SpecialGLToH in HarmonicSums to derive an
expression in terms of cyclotomic polylogarithms
(compare [Ablinger 17, Section 3]). This leads to

� 9367
7350

� 3328H 0;0ð Þ 1ð Þ
3675

þ 8
35

H 0;0ð Þ 1ð Þ2� 64H 2;0ð Þ 1ð Þ
3675

� 32
35

H 2;0ð Þ 1ð Þ2� 16
35

H 0;0ð Þ; 0;0ð Þ 1ð Þ� 32
35

H 0;0ð Þ; 1;0ð Þ 1ð Þ

� 32
35

H 2;0ð Þ; 0;0ð Þ 1ð Þ þ 64
35

H 2;0ð Þ; 1;0ð Þ 1ð Þ þ 64
35

H 2;0ð Þ; 2;0ð Þ 1ð Þ:

Finally, we can use relations between cyclotomic poly-
logarithms at one (compare [Ablinger 17, Section 4]) to
derive

X1
n¼1

� 1
2

� �
n
S1 nð Þ

3þ nð Þ2 n� 1ð Þ! ¼
�9367þ 560p2 þ 6720l22�128l2

7350
:

(2–5)

Note that in the last step of this example we are
actually only dealing with harmonic polylogarithms
(see [Remiddi and Vermaseren 00]).

Let us now list several identities that could be com-
puted using this method:

X1
n¼1

1
3

� �
n
S1;1;1 nð Þ

nþ 1ð Þ! ¼ 18f3�
p3ffiffiffi
3

p ;

X1
n¼1

1
3

� �
n
S2 nð Þ

nþ 1ð Þ! ¼ 5p2

16
þ 27h1

8
þ 3
8

ffiffiffi
3

p
pl3� 27l23

16
;

X1
n¼1

1
4

� �
n
S2 nð Þ

nþ 1ð Þ! ¼ � 16C
3

þ 7p2

18
�6l22 þ 2pl2;

X1
n¼1

1
2

� �
n
S 2;1;1ð Þ nð Þ

2nþ 1ð Þ2n! ¼ 1
4
pl2 3l2�2ð Þ;

X1
n¼1

1
2

� �
n
S 2;1;1ð Þ; 2;1;1ð Þ nð Þ
2nþ 1ð Þ2n!

¼ 1
96

p 4p2l2 � 72l22 þ 56l32 � 9f3
� �

:

1
7350x3

 
�1776þ 808x�319x2�888x3�600x4 þ 6656 G

ffiffiffiffiffiffiffiffiffi
1�s

p

s
; x

� �
�G

1
s
; x

� �" #

þ3360

"
G

1
s
;
1
s
; x

� �
�G

1
s
;

ffiffiffiffiffiffiffiffiffi
1�s

p

s
; x

� �
þ G

ffiffiffiffiffiffiffiffiffi
1�s

p

s
;

1
1� s

; x

� �
þ G

ffiffiffiffiffiffiffiffiffi
1�s

p

s
;
1
s
; x

� �

�G

ffiffiffiffiffiffiffiffiffi
1�s

p

s
;

ffiffiffiffiffiffiffiffiffi
1�s

p

s
; x

� �#
þ 4

ffiffiffiffiffiffiffiffiffi
1�x

p
 

404� 218x � 111x2 � 75x3ð Þ
"
�G

1
1� s

; x

� �

�G
1
s
; x

� �
þ G

ffiffiffiffiffiffiffiffiffi
1�s

p

s
; x

� �#
þ 222 2� x� x2ð Þ

!!
:

(2–4)
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Several formulas that can be found in [Liu and
Wang 19] can be also discovered and proved using
the described method. Here, we are going to list some
of them:

Note that this method can also be used to compute
integral representations of sums of the formX1

n¼1

xn 3ð ÞnS3 nð Þ
n2n!

:

Here, we findX1
n¼1

xn 3ð ÞnS3 nð Þ
n2n!

¼ H 0;0ð Þ; 1;0ð Þ; 0;0ð Þ; 0;0ð Þ; 1;0ð Þ xð Þ

� 3Li2 xð Þ2
4

� Li3 xð Þ
2 �1þ xð Þ

� 3
2
log 1�xð ÞLi3 xð Þ þ 3Li4 xð Þ

2

þ Li5 xð Þ:
and sending for instance x ! 1

2 we get:

X1
n¼1

1
2

� �n
3ð ÞnS3 nð Þ
n2n!

: ¼ � p4

192
�p2l2

12
þ p4l2

288
� 1
16

p2l22

þ l32
6
� 5
72

p2l32 þ
l42
16

þ 11l52
120

þ 3p4
2

þ 3l2p4 þ 4p5 þ 7f3
8

� 7p2f3
48

þ 21l2f3
16

þ 7
8
l22f3�

81f5
64

:

Finally, we consider

X1
n¼1

1
2

� �
n
S11 nð Þ

nþ 1ð Þ! ; (2–6)

proceeding as proposed, we find a differential equa-
tion of order 16:

X1
n¼0

1
2

� �
n S1 nð Þ2 � S2 nð Þ
� �

nþ 1ð Þ! ¼ 8l22 þ
2p2

3
;

X1
n¼0

1
2

� �
n
S1 nð Þ3 � 3S1 nð ÞS2 nð Þ þ 2S3 nð Þ
� �

nþ 1ð Þ! ¼ 24f3 þ 16l32 þ 4p2l2;

X1
n¼0

1
4

� �
n
S1 nð Þ3 � 3S1 nð ÞS2 nð Þ þ 2S3 nð Þ
� �

nþ 1ð Þ! ¼ �96Cl2 þ 16pC þ 72f3 þ 36l32�18pl22

þ 13p2l2� 9p3

2
;

X1
n¼0

1
4

� �
n
S1 nð Þ2 � S2 nð Þ
� �

nþ 1ð Þ! ¼ 288Cl2 þ 48pC þ 216f3 þ 108l32 þ 54pl22

þ 39p2l2 þ 27p3

2
;

X1
n¼0

1
4

� �
n
S1 nð Þ2 � S2 nð Þ
� �

nþ 1ð Þ! ¼ � 32C
3

þ 12l22�4pl2 þ 13p2

9
;

X1
n¼0

3
4

� �
n S1 nð Þ2 � S2 nð Þ
� �

nþ 1ð Þ! ¼ 32C þ 36l22 þ 12pl2 þ 13p2

3
;

X1
n¼1

1
2

� �
n�1

S1 nð Þ2 � 2S1 nð Þ þ S2 nð Þ
� �

n!
¼ 8:
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Solving this differential equation is possible but
takes quite some time, so this indicates that we might
look for more feasible methods to find generating
function representations for Pochhammer sums of
that kind. In the following sections, we will introduce
rewrite rules, which will allow to compute generating
function representations of Pochhammer sums with-
out having to solve differential equations.

3. Using rewrite rules to derive generating
functions

In this section, we are going to state rewrite rules
which will allow us to find integral representations of
the generating functions of Pochhammer sums with-
out having to solve differential equations. We will
summarize these rewrite rules in the following lem-
mas. We start with the base cases where there is no
inner sum present:

Lemma 2. Let K be a field of characteristic 0. Then,
the following identities hold in the ring K½½x�� of formal
power series with a; c 2 N and b; d 2 Z :

X1
n¼1

xn
pð Þn

nþ dð Þ! ¼
1�xð Þd�p

xd
pð Þ�d

; d< 0; (3–1)

X1
n¼1

xn
pð Þn
n

¼ 1�xð Þ�p�1; (3–2)

X1
n¼1

xn
pð Þn

nþ dð Þ! ¼ 1�xð Þd�p p
d!xd

ðx
0
1�tð Þp�d�1tddt; d> 0;

(3–3)X1
n¼1

xn
pð Þn

a nþ bð Þc nþ dð Þ!

¼ x�
b
a

a

ðx
0
t
b
a�1
X1
n¼1

tn
pð Þn

a nþ bð Þc�1 nþ dð Þ!
dt:

(3–4)

In case an inner sum is present, we will make use
of the following three lemmas.

Lemma 3. Let K be a field of characteristic 0 and let
f : N ! K: Then the following identity holds in the
ring K½½x�� of formal power series with d< 0:X1

n¼1

xn
pð Þn

nþ dð Þ!
Xn
i¼1

f ið Þ

¼ 1�xð Þd�p

xd

 
pð Þ�d

X�d

i¼1

f ið Þ þ
ðx
0

1�tð Þp�d�1

t1�d

X1
n¼1

tn
pð Þn

nþ d � 1ð Þ! f nð Þdt
!
:

(3–5)

430080f xð Þ þ 210 �4096þ 1592275xð Þf 0 xð Þ
þ 42 �33554432� 6356812xþ 407269601x2ð Þf 00 xð Þ
þ 671088640� 33746963856x� 8037305736x2 þ 192200072453x3ð Þf 3ð Þ xð Þ
þ x 11047661360� 204994450032x � 61653276602x2 þ 771941124781x3ð Þf 4ð Þ xð Þ
þ 13x2 3812823056� 38280317036x � 13991732902x2 þ 109483643797x3ð Þf 5ð Þ xð Þ
þ 26x3 3555308396� 22952549314x � 9866689087x2 þ 53652573053x3ð Þf 6ð Þ xð Þ
þ 572x4 152216474� 697858881x � 344085550x2 þ 1394066246x3ð Þf 7ð Þ xð Þ
þ 143x5 323583896� 1123610312x � 623388464x2 þ 1975831409x3ð Þf 8ð Þ xð Þ
þ 143x6 103854560� 285705072x � 175728306x2 þ 451597351x3ð Þf 9ð Þ xð Þ
þ 286x7 10492016� 23636810x � 15928139x2 þ 34105982x3ð Þf 10ð Þ xð Þ
þ 3x8 130094536� 246156812x � 180008400x2 þ 328091581x3ð Þf 11ð Þ xð Þ
þ x9 32842216� 53242200x� 41920782x2 þ 66163633x3ð Þf 12ð Þ xð Þ
þ x10 1762640� 2487876x � 2095294x2 þ 2904173x3ð Þf 13ð Þ xð Þ
þ 2x11 28900� 35986x � 32239x2 þ 39703x3ð Þf 14ð Þ xð Þ
þ 4x12 262� 291x� 276x2 þ 305x3ð Þf 15ð Þ xð Þ
þ 8 �1þ xð Þ2x13 1þ xð Þf 16ð Þ xð Þ ¼ 0:
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Proof. Both sides satisfy the following initial value prob-
lem for yðxÞ; which has a unique solution near x ¼ 0:

y0 xð Þ� px�d
1� xð Þx y xð Þ ¼ 1

1� xð Þx
X1
n¼1

xn
pð Þn

nþ d � 1ð Þ! f nð Þ;

y 0ð Þ ¼ 0:
w

Lemma 4. Let K be a field of characteristic 0 and let
f : N ! K: Then the following identity holds in the
ring K½½x�� of formal power series with dP0:

X1
n¼1

xn
pð Þn

nþ dð Þ!
Xn
i¼1

f ið Þ

¼ 1�xð Þd�p

xd

ðx
0
td�1 1�tð Þp�d�1

X1
n¼1

tn
pð Þn

nþ d � 1ð Þ! f nð Þdt:

(3–6)

Proof. Both sides satisfy the following initial value
problem for yðxÞ; which has a unique solution near
x ¼ 0:

y0 xð Þ� p x�d
1� xð Þx y xð Þ ¼ 1

1� xð Þx
X1
n¼1

xn
pð Þn

nþ d � 1ð Þ! f nð Þ;

y 0ð Þ ¼ 0:
w

Lemma 5. Let K be a field of characteristic 0 and let f :
N ! K: Then the following identity holds in the ring
K½½x�� of formal power series with a; c 2 N and b 2 Z:X1

n¼1

xn
pð Þn

a nþ bð Þc nþ dð Þ!
Xn
i¼1

f ið Þ

¼ x�
b
a

a

ðx
0
t
b
a�1
X1
n¼1

tn
pð Þn

a nþ bð Þc�1 nþ dð Þ!
Xn
i¼1

f ið Þdt:

(3–7)

Proof. Both sides satisfy the following initial value
problem for yðxÞ; which has a unique solution near
x ¼ 0:

y0 xð Þ� b
a x

y xð Þ ¼ 1
a x

X1
n¼1

xn
pð Þn

a nþ bð Þc�1 nþ dð Þ!
Xn
i¼1

f ið Þ;

y 0ð Þ ¼ 0:

w

Note that formulas related to the previous lemmas
concerning binomial sums can be found in [Ablinger
et al. 14].

Let us now, for the second time, consider (2–3)
and illustrate how the previous lemmas can be used
as rewrite rules to find integral representations of
Pochhammer sums.

Example 6. We again look for a closed form repre-
sentation in terms of iterated integrals of

X1
n¼1

xn
� 1

2

� �
nS1 nð Þ

3þ nð Þ2 n� 1ð Þ! :

We start by using Lemma 5 twice:

X1
n¼1

xn
� 1

2

� �
n
S1 nð Þ

3þ nð Þ2 n� 1ð Þ!

¼ x�3
ðx
0
t2
X1
n¼1

tn
S1 nð Þ � 1

2

� �
n

3þ nð Þ n� 1ð Þ! dt

¼ x�3
ðx
0
t�1
ðt
0
u2
X1
n¼1

un
S1 nð Þ � 1

2

� �
n

n� 1ð Þ! dudt:

Now we apply Lemma 3 followed by applying
(3–4) and (3–1)

X1
n¼1

xn
� 1

2

� �
n
S1 nð Þ

3þ nð Þ2 n� 1ð Þ!

¼ x�3
ðx
0
t�1
ðt
0

u3ffiffiffiffiffiffiffiffiffi
1�u

p
ðu
0

1

v2
ffiffiffiffiffiffiffiffiffi
1�v

p
X1
n¼1

vn
� 1

2

� �
n

n n� 2ð Þ! dv�
1
2

 !
dudt

¼ x�3
ðx
0
t�1
ðt
0

u3ffiffiffiffiffiffiffiffiffi
1�u

p
ðu
0

1

v2
ffiffiffiffiffiffiffiffiffi
1�v

p
ðv
0

1
w

X1
n¼1

wn � 1
2

� �
n

n� 2ð Þ! dwdv�
1
2

 !
dudt

¼ x�3
ðx
0
t�1
ðt
0

u3ffiffiffiffiffiffiffiffiffi
1�u

p
ðu
0

1

v2
ffiffiffiffiffiffiffiffiffi
1�v

p
ðv
0

�w

4 1�wð Þ32
dwdv� 1

2

 !
dudt:
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At this point, we rewrite the expression in terms of
iterated integrals (this can be done by hand or by
using the command GLIntegrate of
HarmonicSums) and arrive again at (2–4) and
hence we can proceed as in Example 1 to arrive at

X1
n¼1

� 1
2

� �
n
S1 nð Þ

3þ nð Þ2 n� 1ð Þ! ¼
�9367þ 560p2 þ 6720l22�128l2

7350
:

Note that this method is implemented in the pack-
age HarmonicSums using the command
PochhammerSumToGL. Calling

PochhammerSumToGL
Pochhammer � 1

2 ; n
	 


S 1; n½ �
3þ nð Þ2 n� 1ð Þ! ; x; n; 1;1f g

" #

will immediately (after regrouping) give (2–4).
Reconsidering (2–6) we find

Note that all the identities listed in Section 2 can
also be computed using rewrite rules. But using
these rewrite rules turns out to be much more effi-
cient. We are now going to list several additional
identities that could be computed with the help of
this command:

X1
n¼1

1
3

� �
n
S3 nð Þ

nþ 1ð Þ! ¼ � 5p3

32
ffiffiffi
3

p þ 9
16

ffiffiffi
3

p
ph1� 15p2l3

32

� 81h1l3
16

� 9
32

ffiffiffi
3

p
pl23

þ 27l33
32

þ 6f3;

(3–8)

X1
i¼1

1
2

� �
nS1;1;1;1;1 nð Þ
nþ 1ð Þ! ¼ 60f5; (3–9)

X1
i¼1

1
3

� �
n
S1;1;1;1;1 nð Þ
nþ 1ð Þ! ¼ 180f5�

p5ffiffiffi
3

p ; (3–10)

X1
n¼1

1
2

� �
n
S4 nð Þ

n nþ 1ð Þ! ¼ � p4

20
� 2
3
p2l22�

4
9
p2l32 þ

4l42
3

þ 8l52
15

þ 16l2p4

þ 16p5� 7p2f3
12

þ 8l2f3 þ 7l22f3�
63f5
8

;

(3–11)

X1
n¼1

1
2

� �
n
S11 nð Þ

nþ 1ð Þ! ¼ �4G
1
s
;
1
s
;
1
s
;
1
s
;
1
s
;
1
s
;
1
s
;
1
s
;
1
s
;

ffiffiffiffiffiffiffiffiffi
1�s

p �1
s

; 1

� �

þ 2G
1
s
;
1
s
;
1
s
;
1
s
;
1
s
;
1
s
;
1
s
;
1
s
;
1
s
;
1
s
;

ffiffiffiffiffiffiffiffiffi
1�s

p �1
s

; 1

� �

¼ � 677p10l2
475200

� 2339p8l32
680400

� 79p6l52
28350

� 2p4l72
1575

� 4p2l92
8505

þ 16l112
155925

� 2339p8f3
453600

� 79p6l22f3
1890

� 1
15

p4l42f3�
8
135

p2l62f3 þ
8
315

l82f3

� 1
5
p4l2f

2
3�

8
9
p2l32f

2
3 þ

16
15

l52f
2
3�

4p2f33
9

þ 16
3
l22f

3
3�

79p6f5
1260

� 3
5
p4l22f5�

4
3
p2l42f5 þ

16
15

l62f5�8p2l2f3f5 þ 32l32f3f5 þ 24f23f5

þ 72l2f
2
5�

9p4f7
10

�12p2l22f7 þ 24l42f7 þ 144l2f3f7�
170p2f9

9

þ 680
3

l22f9 þ 372f11:
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To conclude this section we consider the sum

X1
n¼1

� 1
2

� �
n
S 3;1;1ð Þ nð Þ

n� 1ð Þ!n :

We find that it equals

Here, we fail to transform the iterated integrals in
terms of cyclotomic polylogarithms; however, since
the integrals are simple enough, we are able to per-
form the integrals in (3–14) for example by using
Mathematica and find the result

X1
n¼1

� 1
2

� �
n
S 3;1;1ð Þ nð Þ

n� 1ð Þ!n ¼ � 4p3=2

27
ffiffiffi
3

p
C 5

3

� �
C 11

6

� � :

X1
n¼1

1
2

� �
n
S3;1 nð Þ

nþ 1ð Þ!n3 ¼ 13p4

180
þ p6

189
þ 199p6l2

7560
� 2
3
p2l22�

4
27

p4l32�
2l42
3

þ 8
45

p2l52

�16p4 þ 16
3
p2l2p4 þ 16p2p5

3
þ 24s1 þ 200l2s1

7
þ 136s2

7

� 200s3
7

� 3p2f3
2

þ 29p4f3
168

þ 4l2f3�3p2l2f3 þ
5
6
p2l22f3

� 3
2
l42f3�36p4f3 þ

9f23
8

� 243
7

l2f
2
3 þ

75f5
4

� 2935p2f5
168

�9l2f5�
111
2

l22f5 þ
12685f7
112

;

(3–12)

X1
n¼1

1
2

� �
n
S3 nð Þ

nþ 1ð Þ!n5 ¼
37p4

360
þ 89p6

5040
� 63031p8

3024000
þ 2
3
p2l2 þ 37

180
p4l2 þ 463p6l2

7560

þ 1
3
p2l22 þ

47
180

p4l22 þ
1079p6l22
7560

� 8l32
3

þ 2
9
p2l32 þ

47
270

p4l32�
l42
3

� 5
18

p2l42 þ
19
180

p4l42�
2l52
15

� 1
9
p2l52 þ

2l62
5
� 1
27

p2l62 þ
4l72
35

þ l82
35

�8p4� 4
3
p2p4 þ 4

9
p4p4 þ 16l22p4 þ 16p5 þ 8

3
p2p5 þ 32l2p5

�32l22p5�
16
3
p2p6�128l2p6 þ 64l22p6�128p7 þ 384l2p7

þ 1100s5� 134
3

p2s1�32l2s1�104l22s1 þ
6939
40

s4�16s3

þ 32s2�64l2s2 þ 128s680s7�4f3 þ
7p2f3
12

� 13p4f3
60

�7l2f3

� 271
90

p4l2f3�7l22f3�
20
9
p2l32f3 þ

4
3
l52f3�160p5f3�

43p2f23
2

�9l2f
2
3 þ 32l22f

2
3�

203f5
8

� 249p2f5
16

� 203
4

l2f5�
361
12

p2l2f5

� 203
4

l22f5 þ
201
2

l32f5 þ
393f3f5

8
þ 3955f7

16
� 11533

16
l2f7

þ 640p8 þ 48l2s3:

(3–13)

1�2G
ffiffiffiffiffiffi
1�s

p
1�s1=3

; 1
� �

þ 2G
ffiffiffiffiffiffi
1�s

p
1þs1=3þs2=3

; 1
� �

�33G
ffiffiffiffiffiffiffiffiffi
1�s

p
s1=3; 1

� �
�2G

ffiffiffiffiffiffi
1�s

p
s1=3

1þs1=3þs2=3
; 1

� �
45

: (3–14)
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Another example where we fail to transform the
iterated integrals in terms of cyclotomic polylogar-
ithms but still can do the integrals is

X1
n¼1

1
3

� �
n
S 3;1;1ð Þ nð Þ � S 3;2;1ð Þ nð Þ� �

nþ 1ð Þ! ¼ � 3
4
þ pffiffiffi

3
p �

ffiffiffiffiffi
3p

p
C 5

6

� �
ffiffiffiffiffi
23

p
C 1

3

� � :
In the following section, we will consider a subclass

of Pochhammer sums, for which we will always be
able to derive a representation in terms of cyclotomic
polylogarithms.

4. Using rewrite rules to directly derive generating
functions in terms of cyclotomic polylogarithms

In this section, we will deal with a subclass of the
Pochhammer sums, namely we restrict the inner sum
to be a multiple harmonic sum and we set p ¼ 1=q
with q 2 Z n f0g and a¼ 1 in (1–3), i.e., we are con-
sidering sums of the formX1

n¼1

pð Þn
nþ bð Þc nþ dð Þ! Sc1;c2;:::;cr nð Þ; (4–1)

where c; ci 2 N; b; d 2 Z and p ¼ 1
q with q 2 Z n f0g:

Considering a Pochhammer sum in this subclass we
could again use the rewrite rules presented in Section
3 to find an integral representation, however we can

also use the following lemmas. These new rewrite
rules will directly lead to cyclotomic polylogarithms.
We again start with the base cases where no inner
sum is present (compare Lemma 2):

Lemma 7. Let K be a field of characteristic 0. Then,
the following identities hold in the ring K½½x�� of formal
power series with c 2 N and b; d 2 Z :

X1
n¼1

xn
pð Þn

nþ dð Þ! ¼ � 1�xð Þd�px�d

jpj d!
ð 1�xð Þjpj

1

1�t
1
jpj

� �d
t1�sign pð Þt

d
jpj
dt; d> 0;

(4–2)X1
n¼1

xn
pð Þn

nþ bð Þc nþ dð Þ!

¼ �1
jpj xb

ð 1�xð Þjpj

1

1� t
1
jpj

� �b�1

t1�
1
jpj

X1
n¼1

pð Þn 1� t
1
jpj

� �n
nþ bð Þc�1 nþ dð Þ!

dt:

(4–3)

In the cases where there is an inner multiple har-
monic sum present we can refine the Lemmas 3, 4,
and 5 and get the following result.

Lemma 8. Let K be a field of characteristic 0 and let
f : N ! K: Then the following identities hold in the
ring K½½x�� of formal power series with c 2 N; b; d 2 Z

and Sm1;:::;mrðnÞ a multiple harmonic sum:

c ¼ 0; d< 0 :

X1
n¼1

xn
pð Þn

nþ dð Þ! Sm1;:::;mr nð Þ ¼

1�xð Þd�p

xd
pð Þ�d

s �dð Þ � 1
jpj
ð 1�xð Þjpj

1

1� t
1
jpj

� �d�1

t1�sign pð Þt
d
jpj

X1
n¼1

1� t
1
jpj

� �n
pð Þn

nþ d � 1ð Þ!nm1
�s nð Þdt

0
@

1
A;

(4–4)

c ¼ 0; dP0 :

X1
n¼1

xn
pð Þn

nþ dð Þ! Sm1;:::;mr nð Þ ¼

� 1�xð Þd�px�d

jpj
ð 1�xð Þjpj

1

1� t
1
jpj

� �d�1

t1�sign pð Þt
d
jpj

X1
n¼1

1� t
1
jpj

� �n
pð Þn

nþ d � 1ð Þ!nm1
�s nð Þdt;

(4–5)

c> 0 :

X1
n¼1

xn
pð Þn

nþ bð Þc nþ dð Þ! Sm1;:::;mr nð Þ ¼

� x�b

jpj
ð 1�xð Þjpj

1
t
1
jpj�1 1� t

1
jpj

� �b�1X1
n¼1

1� t
1
jpj

� �n pð Þn
nþ bð Þc�1 nþ dð Þ!

s nð Þdt:

(4–6)
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Here, we use the abbreviations sðnÞ :¼ Sm1;:::;mrðnÞ
and �sðnÞ :¼ Sm2;:::;mrðnÞ:

Proof. For all these equalities, it is possible to find an
initial value problem, which has a unique solution
near x¼ 0 and is satisfied by both sides of the respect-
ive equation. w

Note that the polynomials arising in the left hand
sides of the equations in Lemmas 7 and 8 are of the
form ti or ð1�tiÞk for i; k 2 Z; hence integrating over
these integrands will lead to cyclotomic polylogarithms.
Therefore, the Pochhammer sums of the form (4–1) will
be expressible in terms of cyclotomic polylogarithms,
and we can state the following structural theorem.

Theorem 9. Any sum of the form

X1
n¼1

1
q

� �
n

nþ bð Þc nþ dð Þ! Sc1;c2;:::;cr nð Þ; (4–7)

where c; ci 2 N; b; d 2 Z and q 2 Z n f0g; can be
expressed in terms of cyclotomic polylogarithms
at one.

Let us now, for the third time, consider (2–3) and
illustrate how the previous lemmas can be used as
rewrite rules to directly find a representation in terms
of cyclotomic polylogarithms.

Example 10. We seek a closed form representation in
terms of cyclotomic polylogarithms of

X1
n¼1

xn
� 1

2

� �
n
S1 nð Þ

3þ nð Þ2 n� 1ð Þ! ;

so we use (4–6) twice:

X1
n¼1

xn
� 1

2

� �
n
S1 nð Þ

3þ nð Þ2 n� 1ð Þ!

¼ � 2
x3

ð ffiffiffiffiffiffi1�x
p

1
t 1� t2ð Þ2X1

n¼1

1� t2ð Þn � 1
2

� �
n
S1 nð Þ

3þ nð Þ n� 1ð Þ! dt

¼ 4
x3

ð ffiffiffiffiffiffi1�x
p

1

t
1� t2

ðt
1
u 1� u2ð Þ2

X1
n¼1

1� u2ð Þn � 1
2

� �
nS1 nð Þ

n� 1ð Þ! du dt:

Now, we apply (4–4) followed by applying (4–3)
and (3–1):

Now, we can send x ! 1 and rewrite this expres-
sion directly in terms of cyclotomic harmonic polylo-
garithms (again this can be done by hand or by using
the command GLIntegrate of HarmonicSums)
and arrive again at

� 9367
7350

� 64H 2;0ð Þ 1ð Þ
3675

� 32
35

H 0;0ð Þ; 1;0ð Þ 1ð Þ

� 32
35

H 2;0ð Þ; 0;0ð Þ 1ð Þ þ 64
35

H 2;0ð Þ; 1;0ð Þ 1ð Þ:
(4–8)

Finally, we can again use relations between cyclo-
tomic polylogarithms at one to derive (2–5).

Note that this is implemented in the command
PochhammerSumToH, so calling

PochhammerSumToH

Pochhammer � 1
2 ; n

	 

S 1; n½ �

nþ 3ð Þ2 n� 1ð Þ! ; x; n; 1;1f g
" #

will immediately give (after pretty printing)

X1
n¼1

xn
� 1

2

� �
n
S1 nð Þ

3þ nð Þ2 n� 1ð Þ!

¼ � 4
x3

ð ffiffiffiffiffiffi1�x
p

1

t
1� t2

ðt
1
1� u2ð Þ3 2

ðu
1

P1
n¼1

1�v2ð Þn �1
2ð Þn

n n�2ð Þ!
1� v2ð Þ2 dvþ 1

2

0
@

1
A

du dt

¼ 4
x3

ð ffiffiffiffiffiffi1�x
p

1

t
1� t2

ðt
1
1� u2ð Þ3

ðu
1

Ð v
1

4w
P1

n¼1

1�w2ð Þn �1
2ð Þn

n�2ð Þ!
1�w2 dw

1� v2ð Þ2 dv� 1
2

0
B@

1
CA du dt

¼ 4
x3

ð ffiffiffiffiffiffi1�x
p

1

t
1� t2

ðt
1
1� u2ð Þ3

ðu
1

Ð v
1

w2�1
w2 dw

1� v2ð Þ2 dv� 1
2

 !
du dt:

12 J. ABLINGER



�11856þ 2552x þ 537x2�600x3

7350x3
þ 4

ffiffiffiffiffiffiffiffiffi
1�x

p
1482þ 107xþ 75x3ð Þ

3675x3

þ 64
3675x3

þ 4
ffiffiffiffiffiffiffiffiffi
1�x

p
1276þ 218x þ 111x2 þ 75x3ð Þ

3675x3

� �
H�1

ffiffiffiffiffiffiffiffiffi
1�x

p� �
� 4

ffiffiffiffiffiffiffiffiffi
1�x

p
1276þ 218x þ 111x2 þ 75x3ð ÞH0

ffiffiffiffiffiffiffiffiffi
1�x

p� �
3675x3

þ H�1 1ð Þ � 64
3675x3

� 4
ffiffiffiffiffiffiffiffiffi
1�x

p
1276þ 218xþ 111x2 þ 75x3ð Þ

3675x3
þ 64H1

ffiffiffiffiffiffiffiffiffi
1�x

p� �
35x3

� �

� 96H�1;0 1ð Þ
35x3

þ 32H�1;0
ffiffiffiffiffiffiffiffiffi
1�x

p� �
35x3

� 64H�1;1 1ð Þ
35x3

� 64H0;�1 1ð Þ
35x3

þ 32H0;1 1ð Þ
35x3

� 64H1;�1
ffiffiffiffiffiffiffiffiffi
1�x

p� �
35x3

þ 32H1;0
ffiffiffiffiffiffiffiffiffi
1�x

p� �
35x3

:

Sending s ! 1 will give (4–8).
To conclude we are going to list several identities

that could be computed with the help of this com-
mand (note that these identities could have also be
computed using the methods presented in the previ-
ous sections):

X1
n¼1

1
5

� �
n
S1 nð Þ

nþ 1ð Þ! ¼ 25h6
4

; (4–9)

X1
n¼1

1
5

� �
n
S2 nð Þ

nþ 1ð Þ! ¼ 875h26
48

þ 125
12

ffiffiffi
5

p
h26 þ

125h7
16

þ 125h8
8

; (4–10)

X1
n¼1

1
2

� �
n
S2;2;2 nð Þ
nþ 1ð Þ! ¼ 2p6

189
� 9f23

4
� 15l2f5

2
; (4–11)

X1
n¼1

1
2

� �
n
S2;2 nð Þ

nþ 2ð Þ! ¼ 2p2

9
þ p4

45
� 8l22

3
�f3�2l2f3; (4–12)

X1
n¼1

1
2

� �
n
S2;2 nð Þ

n nþ 2ð Þ! ¼ �p2

9
� 2p4

45
þ 4l22

3
þ f3

2
þ 4l2f3 þ

15f5
16

; (4–13)

X1
n¼1

1
3

� �
n
S2;2 nð Þ

nþ 3ð Þ! ¼ 9
320

þ 3
ffiffiffi
3

p
p

320
þ 51p2

512
þ 11p3

128
ffiffiffi
3

p þ 91p4

5760
þ 1377h1

1280

� 27
128

ffiffiffi
3

p
ph1� 135p2h1

128
þ 243h2

64
þ 27
64

ffiffiffi
3

p
ph2 þ 1539h3

128

� 243h4
16

� 27l3
320

þ 153
ffiffiffi
3

p
pl3

1280
þ 11p3l3
128

ffiffiffi
3

p � 27
128

ffiffiffi
3

p
ph1l3

þ 243h2l3
64

� 1377l23
2560

� 81f3
64

þ 39
64

ffiffiffi
3

p
pf3�

81l3f3
64

:

(4–14)
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