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A model-based approach to predict neuromuscular control patterns
that minimize ACL forces during jump landing
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ABSTRACT
Jump landing is a common situation leading to knee injuries involving the anterior cruciate liga-
ment (ACL) in sports. Although neuromuscular control is considered as a key injury risk factor,
there is a lack of knowledge regarding optimum control strategies that reduce ACL forces dur-
ing jump landing. In the present study, a musculoskeletal model-based computational approach
is presented that allows identifying neuromuscular control patterns that minimize ACL forces
during jump landing. The approach is demonstrated for a jump landing maneuver in downhill
skiing, which is one out of three main injury mechanisms in competitive skiing.
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1. Introduction

Knee injuries involving the anterior cruciate ligament
(ACL) are one of the most common and severe inju-
ries in sports (Griffin et al. 2006; Alentorn-Geli et al.
2009). ACL injuries imply high surgical costs, a long
and intensive rehabilitation time and long-term con-
sequences for the athletes such as an increased risk of
osteoarthritis or a second ACL injury after ACL
reconstruction (Lohmander et al. 2007; Yu and
Garrett 2007; Paterno et al. 2014).

Inciting events/typical situations, which result in
ACL injuries, are non-contact in nature and involve
sudden deceleration tasks such as jump landing
maneuvers with or without a change of direction
(Griffin et al. 2006; Carlson et al. 2016). Video ana-
lysis studies provide important information regarding
the kinematics of the athlete during actual ACL injury
cases and possible risk factors. In a recent review of
Carlson et al. (2016), for example, the landing pos-
ition of the athlete was stated to influence the likeli-
hood of ACL injury to a much greater extent than
inherent risk factors. However, video analysis studies
are restricted to kinematic analyses and do not pro-
vide information about the underlying joint moments
or the muscle forces corresponding to the kinematics
of the athlete.

Muscle forces are well known to affect the loading
of the ACL and impaired neuromuscular control has
been identified as an important modifiable risk factor
of ACL injury (Griffin et al. 2000; Hewett et al. 2005,
2010; Hurd et al. 2006; Taylor et al. 2011; Letafatkar
et al. 2015). Specifically, impaired neuromuscular con-
trol of the muscles spanning the knee joint has been
associated with insufficient and/or delayed recruit-
ment of the hamstrings (McLean et al. 2010; Saunders
et al. 2014) and elevated activation of the quadriceps
muscles(Griffin et al. 2000; Chappell et al. 2007; Yu
and Garrett 2007; Hewett et al. 2010). While high
quadriceps activation in combination with a small
knee flexion angle induces an anterior directed shear
force on the tibia straining the ACL, the hamstrings
induce a posterior directed shear force on the tibia
protecting the ACL. Muscles spanning the ankle and
hip joints were also proposed to affect the loading of
the ACL during jump landing. In particular, in vitro
(Elias et al. 2003) as well as in vivo experimental stud-
ies (Mokhtarzadeh et al. 2013) pointed to the capabil-
ity of the soleus to act as an agonist for the ACL (i.e.
protecting the ACL) and of the gastrocnemius to act
as an ACL antagonist. Reports of reduced ACL load-
ing through a less erect posture during landing tasks
(Shimokochi et al. 2013) also suggest that the
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activation patterns of the hip muscles might affect
injury risk. Elucidation of neuromuscular control
strategies resulting in low ACL forces during injury-
prone or high-risk situations might be an important
step toward a better understanding of the correspond-
ing injury mechanism and the development of dedi-
cated neuromuscular training programs.

Computer simulation incorporating a model of the
human musculoskeletal system is a powerful tool to
analyze the relationship between joint kinematics,
joint moments, muscle forces, neuromuscular control
patterns and knee joint loading (Pandy and
Andriacchi 2010). In addition, optimization methods
can be applied to identify optimum movement and
neuromuscular control patterns that minimize certain
quantities contributing to knee joint loading.
Musculoskeletal simulation models, for example, were
successfully applied to identify optimized movement
and control patterns during walking and sidestepping
such as to minimize the axial knee joint contact force
during walking (Miller et al. 2013), valgus knee load-
ing during sidestepping (Donnelly et al. 2012) or the
external knee adduction moment during gait (Miller
et al. 2015). To our knowledge, however, optimized
control strategies that minimize ACL forces during
jump landing maneuvers have not been investigated.
Based on the results of previous studies one might
infer that ACL injury risk during jump landing might
be reduced through altered muscle activation patterns
such as decreased quadriceps activation and/or
increased hamstrings activation and/or increased
soleus activation. However, it is unknown whether
these effects are additive, whether there are compen-
satory effects of other muscles, which of these changes
have the highest effect on peak ACL force and how
changed activation patterns might affect the corre-
sponding kinematics of the athlete during the land-
ing movement.

The purpose of the present study was to develop a
computational approach aiming to identify neuromus-
cular control patterns that minimize ACL forces dur-
ing jump landing. In this work, we focused on jump
landing in competitive downhill skiing, which was
reported as a high-risk situation and one out of three
main injury situations in competitive alpine skiing
(Bere et al. 2011) with landing heights approaching
2m (Schindelwig et al. 2015). First, we evaluated a
commonly assumed muscle coordination strategy
minimizing the sum of squared muscle activation pat-
terns. Second, we calculated an optimized control
strategy aiming at minimizing the force in the ACL
during the jump landing maneuver.

2. Methods

2.1. Musculoskeletal model

A two-dimensional sagittal plane 25 degrees of free-
dom musculoskeletal model of an alpine skier with
two racing skis was used (Heinrich et al. 2018) to
simulate jump landing in downhill skiing. The model
of the skier consisted of seven rigid segments. A
trunk segment was used to represent the head, arms
and torso of the skier and three segments were used
for each lower extremity (i.e. thigh, shank and foot).
The restraining effect of the ski boot at the ankle joint
was described by a passive moment and a nonlinear
hysteresis curve (Eberle et al. 2017). The mass of the
ski boot was incorporated in the foot segment. The
model of the racing ski, with a nominal length of
2.11m, consisted of a chain of nine rigid segments.
Bending stiffness and damping were incorporated
using passive spring-damper elements. The contact
between the skis and the snow was described by a
penetration force and Coulomb friction acting on
every segment of the two skis (Heinrich et al. 2014).

The motion of the skier was actuated by 16 three-
element Hill-type muscles, eight for each lower
extremity: iliopsoas (Ili), glutei (Glu), hamstrings
(Ham), rectus femoris (RF), vasti (Vas), gastrocne-
mius (Gas), soleus (Sol) and tibialis anterior (TA).
Muscle contraction dynamics were modeled in
accordance with McLean et al. (2003) and incorpo-
rated the muscles’ force-length-velocity properties.
Muscle activation dynamics were described as a first-
order process (He et al. 1991) and modeled the acti-
vation of each muscle in response to a given muscle
excitation pattern as input. A linear relationship was
assumed between joint angles and muscle-tendon
length (McLean et al. 2003) and muscle parameters
were taken from Gerritsen et al. (1996). Based on the
relationship between joint angles and muscle-tendon
length, the muscle’s moment arms and corresponding
joint moments were derived using the principle of
virtual work (van den Bogert et al. 2011). Muscle
parameters and moment arms are provided as
Supplementary online material.

The dynamics of the musculoskeletal skier model –
multibody dynamics, contraction and activation
dynamics – were formulated in the following compact
implicit form

f ðxðtÞ, _xðtÞ, uðtÞÞ ¼ 0 (1)

which offered efficient solution methods for the jump
landing simulations (van den Bogert et al. 2011). In
Equation (1), the vector x(t) represents the state varia-
bles consisting of the generalized coordinates q(t) and
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velocities _qðtÞ of the skier model, the muscle activa-
tions a(t) and the length of the contractile elements
of the muscles LCEðtÞ: The vector u(t) represents the
muscle excitation patterns, which served as control
variables of the skier model.

2.2. Baseline landing simulation

We computed a baseline landing simulation tracking
experimental kinematic data of a professional down-
hill skier, who performed a safe jump landing maneu-
ver in competitive downhill skiing (Nachbauer et al.
1996). Specifically, the landing simulation was formu-
lated as optimal control problem (Heinrich et al.
2018). The task of the optimal control problem was
to find the values of the state variables x(t) and con-
trol variables u(t) of the musculoskeletal skier-ski
model such that a given objective function Jref

Jref ¼ J1 þ J2 (2)

is minimized, while subjected to the following
constraints

f ðxðtÞ, _xðtÞ, uðtÞÞ ¼ 0, t0 � t � t1 (3a)

0 � uðtÞ � 1, t0 � t � t1 (3b)

xhipðtÞ ¼ xhip, dataðtÞ, t ¼ 0 (3c)

The objective function Jref consisted of two terms
J1 and J2. The first term J1 was used to minimize the
differences between the experimental data qi, dataðtÞ
and the corresponding generalized coordinates qiðtÞ
of the skier model in a weighted least square sense.
The experimental data consisted of hip, knee and
ankle joint angles, and the position and orientation of
the trunk segment of a professional downhill skier,
who performed a landing maneuver during a World
Cup competition and were taken from the study of
Nachbauer et al. (1996). The differences were scaled
by factors 1=ri and averaged across the number of
experimental kinematic variables n¼ 9 and the simu-
lation duration t1�t0: The simulation time was
defined from t0 ¼ �0:1s before ground contact until
the time of peak knee flexion t1 ¼ 0:27s after ground
contact. J1 had the following form

J1 ¼ 1
9ðt1 � t0Þ

X9
i¼1

ðt1
t0

qiðtÞ�qi, dataðtÞ
ri

� �2

dt: (4)

The second term was used to resolve muscle
redundancy. Especially we considered a commonly
assumed muscle coordination strategy (Laughlin et al.
2011; Mokhtarzadeh et al. 2013, 2017) corresponding
to the sum of squared muscle activation patterns
ajðtÞ: The sum was averaged across the number of

muscles m¼ 16 and the simulation duration t1�t0: J2
was scaled by a factor wmus set to 10 according to
previous simulations (Heinrich et al. 2014). J2 had the
following form

J2 ¼ wmus

16ðt1 � t0Þ
X16
j¼1

ðt1
t0

ajðtÞ2dt: (5)

The constraints of the optimal control problem
referred to the dynamics of the skier model (3a) and
lower and upper bounds of 0 and 1 on the muscle
excitation patterns (3b), because muscle excitations
are always limited to unity bound constraints
(Erdemir et al. 2007) Additionally, the initial position
of the hip xhipð0Þ was constraint (3c) to match the
tracking data at the beginning of the simulations
xhip, datað0Þ: Otherwise, the jump height of the skier
would be reduced in the simulation in favor of mini-
mizing the sum of squared muscle activations
(Heinrich et al. 2018).

The optimal control problem was solved numeric-
ally using the method of direct collocation and trans-
formed into a constrained nonlinear programming
(NLP) problem (van den Bogert et al. 2011). The NLP
problem was solved using IPOPT 3.11.7 (W€achter
and Biegler 2006), an interior point optimization
solver. In the optimization, the state and control vari-
ables of the model were iteratively adjusted such the
objective function is minimized and the imposed con-
straints are satisfied.

2.3. Knee loading

ACL tensile forces were calculated using a data-driven
knee model (Kernozek and Ragan 2008; Laughlin
et al. 2011; Weinhandl et al. 2014).

First, the resultant axial Fax and anterior–posterior
Fap knee reaction forces were calculated from the
simulated landing movement, gravity and the snow
contact forces using a standard inverse dynamics ana-
lysis Winter (2009).

Second, the tibiofemoral contact force Ftf was com-
puted from the resultant axial knee reaction force Fax
according to the following equation:

Fax ¼ Ftf cos ð/tf Þ�Fq cos ð/qÞ�Fh cos ð/hÞ�Fg cos ð/gÞ
(6)

where Fq, Fh and Fg denote the muscle forces of the
quadriceps, hamstrings and gastrocnemius. The line
of action of the quadriceps /q and hamstrings /h

were defined as functions of knee flexion angle using
the data of (Herzog and Read 1993). The line of
action of the gastrocnemius /g was assumed to be
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parallel to the tibia throughout the range of motion
of the knee (Kernozek and Ragan 2008; Laughlin
et al. 2011). A tibial slope angle of /tf ¼ 9� was
assumed (Matsuda et al. 1999).

Third, anterior–posterior ligamentous shear force
Flig was calculated from the resultant anterior–poste-
rior knee reaction forces Fap:

Fap ¼ Ftf sin ð/tf Þ þ Fq sin ð/qÞ�Fh sin ð/hÞ þ Fg sin ð/gÞ þ Flig

(7)

Finally, the ACL force FACL was calculated based
on the anterior–posterior shear force Flig and cadav-
eric knee measurements (Markolf et al. 1990, 1995):

FACL ¼ F100ðhkÞ�F0ðhkÞ
100

Flig þ F0ðhkÞ (8)

where F100 and F0 are ACL forces when 100N and
0N of anterior tibial force were applied, respectively,
at the knee flexion angle hk:

2.4. Landing simulation minimizing ACL forces

Following the baseline landing simulation, we aimed
at computing a landing simulation with neuromuscu-
lar control patterns of the skier that result in mini-
mized ACL forces. To this aim, we modified the
muscle coordination strategy of the baseline landing
simulation. Especially, the optimal control problem of
the baseline simulation was reformulated adding a
term Jacl with a weighting factor w to the objective
function Jref

J ¼ Jref þ wJacl (9)

with

Jacl ¼ 1
2

ðtcþDt

tc

FR
ACLðtÞ
c

� �2

þ FL
ACLðtÞ
c

� �2

dt: (10)

In Jacl, the integrand represented the sum of squared
ACL forces in the right knee (FRACL) and left knee
(FR

ACL), respectively, normalized by a constant c. We

set c to 1000N such that the terms in the objective
function are of the same order. Since it was reported
that peak ACL forces typically occur within the first
50ms after initial ground contact (Krosshaug et al.
2007; Kernozek and Ragan 2008; Koga et al. 2010;
Laughlin et al. 2011; Mokhtarzadeh et al. 2013), the
sum of squared ACL forces was also restricted to the
first Dt ¼ 50 ms after the time of initial ground con-
tact tc. The weighting factor w was set to 1 after con-
ducting a parameter study. In the parameter study,
we increased the weighting factor w gradually and
observed that for values higher than 1 ACL forces
were not further decreased during the landing simula-
tion. The detailed results of the parameter study are
provided as Supplementary online material.

The reformulated optimal control problem was
subjected to the same constraints (3a), (3b) and (3c)
as in the baseline simulation. Additionally, we
assumed a fourth constraint such that the initial pos-
ture of the skier was constraint to match the initial
posture of the skier in the baseline simulation. As a
consequence, the changes in ACL forces were caused
by changes in the neuromuscular control patterns
during the landing maneuver only and without alter-
ing the initial posture of the skier. The reformulated
optimal control problem was solved numerically in
analogy to the baseline landing simulation using the
method of direct collocation.

2.5. Data analyses

For each landing simulation, the peak ACL force was
computed based on the two-dimensional data-driven
knee model. At the time of peak ACL force the joint
angles, the trunk lean angle of the skier with respect
to the vertical axis, the joint moments at the hip,
knee and ankle as well as the muscle forces and
neuromuscular activation patterns were determined.
Positive moments referred to hip extension, knee
extension and ankle plantarflexion moments.

Figure 1. Peak ACL force in the right leg (a) and left leg (b) corresponding to the baseline simulation (solid lines) and the simula-
tion with minimized ACL forces and the weighting factor w set to 1 (dashed lines). Time 0 denotes the initial ground contact.
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3. Results

3.1. Baseline simulation

In the baseline simulation, the skier landed from a land-
ing height of 1.29m in a slightly asymmetric position.
Comparing the baseline simulation to the experimental
data, root mean square differences (RMSD) were in the
range from 2.4 to 5.0� for the joint angles and trunk lean
of the skier (Supplementary online material). These dif-
ferences were close to the noise in the measurements
determined by a residual analysis in the range from 2.5
to 5.0� (Winter 2009). Initial ground contact occurred at
the right leg and peak normal ground reaction force was
6.92 BW 33ms after initial contact. At the same time,
peak ACL force amounted to 1.13 BW at the right knee;
at the left knee, peak ACL was 0.32 BW and substantially
lower than in the right knee (Figure 1).

At the time of peak ACL force in the right leg, the
kinematics of the skier was characterized by a trunk

lean angle of 54.9�, hip and knee flexion angles of
58.4 and 40.1� as well as 10.3� dorsiflexion at the
ankle (Figure 2); in the left hip and knee flexion
angles of 61.5� and 47.3� and ankle dorsiflexion of
13.1� were observed.

Joint moments at the hip, knee and ankle joint
amounted to 0.90, 1.62 and �0.85Nm/kg in the right
leg and to 0.61, 0.62 and 0.51Nm/kg in the left leg
(Figure 3). Muscle activation patterns were character-
ized primarily by activation of the iliopsoas prior to
ground contact as well as activation of the hamstrings,
vasti, glutei and soleus during the landing phase after
ground contract (Figure 4).

3.2. Minimizing ACL forces

In the landing simulation minimizing ACL forces, the
peak forces in the ACL of the right and left knee
decreased considerably from 1.13 BW to 0.13 BW

Figure 2. Trunk lean and joint angles in the right leg (first column) and left leg (second column) corresponding to the baseline
simulation (solid lines) and the simulation with minimized ACL forces and the weighting factor w set to 1 (dashed lines). Time 0
denotes the initial ground contact.
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and from 0.32 BW to 0.12 BW, respectively (Figure
1). Surprisingly, the reduction of the ACL forces was
accompanied with only little changes in the kinemat-
ics. Specifically, the RMSDs were below 1� for all joint
angles and trunk lean (Figure 2).

In the landing simulation with reduced peak ACL
forces, the joint moments at the knee joints changed
considerably while the joint moments at the hip and
ankle joint remained similar (Figure 3). Especially, in
the left knee, the moment rose and the peak moment
was almost equal to the peak value in the right knee.
Consequently, load was shifted to the left leg and well
balanced between both legs.

Muscle activations also changed considerably and
affected muscles crossing the knee as well as the hip
and ankle joints in both legs (Figure 4). At the time
of peak ACL force, the hamstrings and soleus were

higher activated in the right leg; the vasti were lower
activated and the peak activation was delayed
compared to the baseline simulation. Prior to ground
contact, the iliopsoas showed increased activation. In
the left leg, the vasti were higher activated to counter
the load shift from the right to the left leg. Similar to
the right leg the hamstrings, soleus and iliopsoas were
higher activated.

4. Discussion

The purpose of the present study was to develop a
computational approach to predict neuromuscular
control patterns resulting in minimized ligament
forces during jump landing in downhill skiing.
Our results showed that alterations of muscle
activation patterns (amplitude and timing) of a subset

Figure 3. Joint moments in the right leg (first column) and left leg (second column) corresponding to the baseline simulation
(solid lines) and the simulation with minimized ACL forces and the weighting factor w set to 1 (dashed lines). Time 0 denotes the
initial ground contact. Positive values represent hip and knee extension and ankle plantarflexion moments.
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of the muscles of both legs strongly affected the peak
ACL force.

4.1. Baseline simulation

First, we computed a baseline simulation with a com-
monly assumed muscle coordination strategy mini-
mizing the sum of squared muscle activation patterns
during jump landing (Laughlin et al. 2011;
Mokhtarzadeh et al. 2013, 2017). In the baseline
simulation, the skier performed a jump landing man-
euver from an equivalent landing height of 1.29m.
The resultant peak ACL force was 1.13 BW (880N)

and occurred after 33ms of initial ground contact.
Compared to simulation studies of single-leg landing
maneuvers (Laughlin et al. 2011; Mokhtarzadeh et al.
2013) with peak ACL forces between 0.7 BW and 1.0
BW, respectively, the peak ACL force is higher in the
present study. The difference might be explained by
the higher landing height and the restricted plantar-
flexion at the ankle joint due to the ski boot.
However, the peak force did not approach the failure
load of 2167N that has previously been suggested to
cause ACL rupture (Woo et al. 1991). This was
expected since the skier performed a safe jump
landing maneuver. The timing of peak ACL force is

Figure 4. Muscle activation patterns in the right (first column) and left leg (right column) corresponding to the baseline simula-
tion (solid lines) and the simulation with minimized ACL forces and the weighting factor w set to 1 (dashed lines). Time 0 denotes
the initial ground contact and the vertical lines the time of peak ACL force in the baseline simulation.
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consistent with previous simulation studies of landing
maneuvers, where peak ACL forces were reported in
the range of 1–40ms (Pflum et al. 2004; Kernozek
and Ragan 2008; Laughlin et al. 2011; Southard et al.
2012; Mokhtarzadeh et al. 2013); as well as video ana-
lysis of ACL injury cases, where the time of ACL
injury was estimated within the first 50ms
(Krosshaug et al. 2007; Koga et al. 2010).

4.2. Minimizing peak ACL force

Following the baseline simulation, we used a novel
approach to compute an optimized control strategy,
aiming at minimizing the forces in the ACL during
jump landing. Specifically, we reformulated the opti-
mal control problem corresponding to the baseline
simulation with an extended objective function that
included the knee ligament forces (i.e. ACL forces).
Solving the optimal control problem, the muscle exci-
tation patterns were iteratively adjusted such that the
ACL forces were additionally minimized during the
impact phase of the landing movement where an
ACL injury is most likely to occur (<50ms). To our
knowledge, the present method is the first computa-
tional approach to computing optimum neuromuscu-
lar control patterns with the aim to minimize ACL
loading during jump landing. Previous landing simu-
lation studies focused on the effects of movement
interventions such as landing soft (Laughlin et al.
2011) or landing with increased knee and hip flexion
(Southard et al. 2012) or the effect of leg dominance
and landing height on ACL loading (Mokhtarzadeh
et al. 2017).

Using the optimized control strategy the peak ACL
force could be substantially reduced to 0.13 BW com-
pared to 1.13 BW in the baseline simulation. The acti-
vations of the muscles attaching to the knee joint
were adapted such that increased co-contraction was
observed during the first 50ms after initial ground
contact and in particular at the time of peak ACL
force. Especially, the hamstrings showed increased
activation at both legs. The hamstrings act to counter
anterior tibial translation and consequently induced a
higher shear force at the knee joint in posterior direc-
tion, thus reducing ACL strain. This finding is in
agreement with earlier studies to suggest that insuffi-
cient or slow hamstring reaction may result in inad-
equate knee stabilization during sporting tasks
involving large external loads and increased risk of
ACL tear (Blackburn et al. 2004; Saunders et al. 2014;
Weinhandl et al. 2014). The activation of the quadri-
ceps was carefully timed such that the knee joint

moments were symmetric and consequently the
impact load was uniformly balanced between both
legs. These results are consistent with double versus
single-leg landing studies from the same height, where
lower peak ACL force was reported during double-leg
landing (Kernozek and Ragan 2008; Mokhtarzadeh
et al. 2013). In addition, reduced activation during
the early impact phase and in particular the time of
peak ACL force was observed, which is also in line
with the state of knowledge that high quadriceps acti-
vation during eccentric contraction in combination
with a small knee flexion angle is a major factor con-
tributing to ACL injury (e.g. Griffin et al. 2000; Yu
and Garrett 2007; Hewett et al. 2010).

Also, muscles crossing the ankle and hip joint
showed altered activation patterns. At the ankle joint,
in particular, the soleus was higher activated.
Increased activation of the soleus as favorable activa-
tion pattern is consistent with the results of
Mokhtarzadeh et al. (2013), who proposed a protect-
ive role of the soleus in ACL loading. At the hip joint,
increased activation of the iliopsoas prior to ground
contact was also observed. The increased activation of
the iliopsoas might have been beneficial for the acti-
vation of the hamstrings during the impact phase.
Since the iliopsoas acted as monoarticular hip flexor
increased activation led to accelerated hip flexion and
a slight forward rotation of the trunk prior to landing.
This was compensated by increased activation of the
hamstrings, which decelerated hip flexion and applied
a higher shear force at the knee joint in posterior dir-
ection, thus reducing ACL strain.

In the simulation with decreased peak ACL force,
the kinematics remained similar compared to the
baseline simulation (Figure 3). Consequently, the
reduction in peak ACL force was primarily caused by
adaptation of the muscle activation patterns and was
accompanied with only small changes in the move-
ment of the skier. This result highlights that the
muscle activation patterns are a key factor affecting
the loading of the ACL and that athletes with almost
the same kinematics might be exposed to either high
or low ACL forces during the jump landing move-
ment depending on the chosen control strategy. The
inclusion of exercise regimes in ACL injury preven-
tion to improve body position during landing was
proposed by Shimokochi et al. (2013), who studied
the influence of changing the sagittal plane body pos-
ition during single-leg landings. Based on the present
results, an additional focus on the control strategy
during jump landing is suggested. In particular,
increased activation of the monoarticular hip flexors
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prior to jump landing might be beneficial followed by
increased activation of the hamstrings during the
early impact phase. Corresponding neuromuscular
training regimes might include plyometric, jump and
balance training (Chimera et al. 2004; Nagano et al.
2011) as well as perturbation drills, which have shown
to enhance hamstrings activity (Hurd et al. 2006;
Letafatkar et al. 2015).

4.3. Limitations

Some limitations of the present study have to be men-
tioned. First, jump landing simulations and ACL
forces were computed based on a two-dimensional,
sagittal plane musculoskeletal model of an alpine skier
with two skis. Consequently, knee joint loading due
to valgus or internal and external rotations are not
considered in the present study, which is known to
affect knee ligament loading (Markolf et al. 1995;
Weinhandl et al. 2014). However, analyzing injury
cases during jump landing in World Cup downhill
skiing (Bere et al. 2011), the sagittal plane was
reported to be most important. Three-dimensional
musculoskeletal models could allow for the role of
frontal-plane and transverse-plane hip and knee
movement and neuromuscular control strategies to be
evaluated, which might be important during dynamic
movement tasks with a change in direction such as
sidestep cutting maneuvers (Weinhandl et al. 2014).

Second, the results of the present study are based
on a single downhill skier performing a jump landing
maneuver in competitive downhill skiing.
Unfortunately, kinematic data of high-risk or injury-
prone situations are rare especially during competi-
tions. Recently, however, Eberle et al. (2019) proposed
a computational approach to generate non-contact
ACL injury-prone situations on a computer using
kinematic data of non-injury situations and Monte
Carlo simulation. Based on this approach injury-
prone situations might be generated. With respect to
these situations optimized neuromuscular control
strategies aiming at low ACL forces might be investi-
gated following the methodology in the present study.
These results might provide further insight into the
mechanisms, risk factors and preventive measures for
ACL injuries.

4.4. Conclusion and implications

In conclusion, a computational approach was developed
to compare control strategies and predict muscle activa-
tion patterns that minimize ACL forces during jump

landing in downhill skiing. Using the optimized control
strategy the peak ACL force could be substantially
reduced from 1.13 BW in the baseline simulation to
0.13 BW. The reduction was primarily caused by altered
muscle activation patterns (amplitude and timing) by a
subset of the muscles of both legs and accompanied
with only a small change in the kinematics of the skier
(RMSD < 1�). The proposed computational approach
might also be applied to determine optimized neuro-
muscular control patterns with respect to other injury-
prone situations (e.g. sidestep cutting, pivoting or stop-
jump maneuvers) or other movement tasks such as
walking, running or stair climbing, which might be
important during rehabilitation after ACL injury.
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