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ABSTRACT
To conduct Bayesian inference with large datasets, it is often convenient or necessary to distribute the
data across multiple machines. We consider a likelihood function expressed as a product of terms, each
associated with a subset of the data. Inspired by global variable consensus optimization, we introduce
an instrumental hierarchical model associating auxiliary statistical parameters with each term, which are
conditionally independent given the top-level parameters. One of these top-level parameters controls the
unconditional strength of association between the auxiliary parameters. This model leads to a distributed
MCMC algorithm on an extended state space yielding approximations of posterior expectations. A trade-
off between computational tractability and fidelity to the original model can be controlled by changing
the association strength in the instrumental model. We further propose the use of an SMC sampler with
a sequence of association strengths, allowing both the automatic determination of appropriate strengths
and for a bias correction technique to be applied. In contrast to similar distributed Monte Carlo algorithms,
this approach requires few distributional assumptions. The performance of the algorithms is illustrated with
a number of simulated examples. Supplementary materials for this article are available online.
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1. Introduction

Large datasets arising in modern statistical applications present
serious challenges for standard computational techniques
for Bayesian inference, such as Markov chain Monte Carlo
(MCMC) and other approaches requiring repeated evaluations
of the likelihood function. We consider here the situation where
the data are distributed across multiple computing nodes. This
could be because the likelihood function cannot be computed
on a single computing node in a reasonable amount of time, for
example, the data might not fit into main memory.

We assume that the likelihood function can be expressed as a
product of terms so that the posterior density for the statistical
parameter Z satisfies

π(z) ∝ μ(z)
b∏

j=1
fj(z), (1)

where Z takes values z ∈ E ⊆ R
d, and μ is a prior density. We

assume that fj is computable on computing node j and involves
consideration of yj, the jth subset or “block” of the full dataset,
which comprises b such blocks.

Many authors have considered “embarrassingly parallel”
MCMC algorithms approximating expectations with respect to
(1), following the consensus Monte Carlo (CMC) approach of
Scott et al. (2016). Such procedures require separate MCMC
chains to be run on each computing node, each targeting a dis-
tribution dependent only on the associated likelihood contribu-
tion fj. The samples from each of these chains are then combined
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in a final post-processing step to generate an approximation
of the true posterior π . Such algorithms require communica-
tion between the nodes only at the very beginning and end of
the procedure, falling into the MapReduce framework (Dean
and Ghemawat 2008); their use is therefore more advantageous
when inter-node communication is costly, for example, due
to high latency. However, the effectiveness of such approaches
at approximating the true posterior π depends heavily on the
final combination step. Many proposed approaches are based
on assumptions on the likelihood contributions fj, or employ
techniques that may be infeasible in high-dimensional settings.
We later review some of these approaches, and some issues
surrounding their use, in Section 2.4.

Instead of aiming to minimize entirely communication
between nodes, we propose an approach that avoids employ-
ing a final aggregation step, thereby avoiding distributional
assumptions on π . This approach is motivated by global vari-
able consensus optimization (see, e.g., Boyd et al. 2011, sec. 7;
we give a summary in Section 2.1). Specifically we introduce
an instrumental hierarchical model, associating an auxiliary
parameter with each likelihood contribution (and therefore each
computing node), which are conditionally independent given
Z. An additional top-level parameter controlling their uncon-
ditional strength of association is also introduced. This allows
the construction of an MCMC algorithm on an extended state
space, yielding estimates of expectations with respect to π . By
tuning the association strength through the top-level parameter,
a trade-off between computational tractability and fidelity to the
original model can be controlled.
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As well as avoiding issues associated with embarrassingly
parallel algorithms, our framework presents benefits compared
to the simple approach of constructing an MCMC sampler to
directly target (1). In settings where communication latency is
nonnegligible but the practitioner’s time budget is limited, our
approach allows a greater proportion of this time to be spent
on computation rather than communication, allowing for faster
exploration of the state space.

Our approach was initially presented in Rendell et al. (2018).
A proposal to use essentially the same framework in a serial
context has been independently and contemporaneously pub-
lished by Vono, Dobigeon, and Chainais (2019), who construct
a Gibbs sampler via a “variable splitting” approach. Rather than
distributing the computation, the authors focus on the setting
where b = 1 to obtain a relaxation of the original simulation
problem. An implementation of this approach for problems in
binary logistic regression has been proposed in Vono, Dobigeon,
and Chainais (2018), with a number of nonasymptotic and
convergence results presented more recently in Vono, Paulin,
and Doucet (2019). Our work focuses on distributed settings,
providing a sequential Monte Carlo (SMC) implementation of
the framework that may be used to generate bias-corrected
estimates.

We introduce the proposed framework and the resulting
algorithmic structure in Section 2, including some discussion
of issues in its implementation, and comparisons with related
approaches in the literature. We then introduce a SMC imple-
mentation of the framework in Section 3. Various simulation
examples are presented in Section 4, before conclusions are
provided in Section 5.

2. The Instrumental Model and MCMC

For simplicity, we shall occasionally abuse notation by using the
same symbol for a probability measure on E, and for its density
with respect to some dominating measure. For the numerical
examples presented herein, E ⊆ R

d and all densities are defined
with respect to a suitable version of the Lebesgue measure. We
use the notation xm:n := (xm, . . . , xn) for arbitrary xm, . . . , xn.
For a probability density function ν and function ϕ, we denote
by ν(ϕ) the expectation of ϕ(Z) when Z ∼ ν, that is,

ν(ϕ) :=
∫

ϕ(z)ν(z) dz.

2.1. The Instrumental Model

The goal of the present article is to approximate (1). We take
an approach that has also been developed in contemporaneous
work by Vono, Dobigeon, and Chainais (2019), although their
objectives were somewhat different. Alongside the variable of
interest Z, we introduce a collection of b instrumental variables
each also defined on E, denoted by X1:b. On the extended state
space E × Eb, we define the probability density function π̃λ by

π̃λ(z, x1:b) ∝ μ(z)
b∏

j=1
K(λ)

j (z, xj)fj(xj), (2)

where for each j ∈ {1, . . . , b}, {K(λ)
j : λ ∈ R+} is a family of

Markov transition densities on E. Defining

f (λ)
j (z) :=

∫
E

K(λ)
j (z, x)fj(x) dx, (3)

the density of the Z-marginal of π̃λ may be written as

πλ(z) :=
∫

Eb
π̃λ(z, x1:b) dx1:b ∝ μ(z)

b∏
j=1

f (λ)
j (z). (4)

Here, we may view each f (λ)
j as a smoothed form of fj, with

πλ being the corresponding smoothed form of the target den-
sity (1).

The role of λ is to control the fidelity of f (λ)
j to fj, and so we

assume the following in the sequel.

Assumption 1. For all λ > 0, f (λ)
j is bounded for each j ∈

{1, . . . , b}; and f (λ)
j → fj pointwise as λ → 0 for each j ∈

{1, . . . , b}.

For example, Assumption 1 implies that πλ converges in total
variation to π by Scheffé’s lemma (Scheffé 1947), and therefore
πλ(ϕ) → π(ϕ) for bounded ϕ : E → R. Assumption 1 is
satisfied for essentially any kernel that may be used for kernel
density estimation; here, λ takes a similar role to that of the
smoothing bandwidth.

On a first reading one may assume that the K(λ)
j are chosen

to be independent of j; for example, with E = R one could
take K(λ)

j (z, x) = N (x; z, λ). We describe some considerations
in choosing these transition kernels in Section S1.2 of the sup-
plementary materials, and describe settings in which choosing
these to differ with j may be beneficial.

The instrumental hierarchical model is presented diagram-
matically in Figure 1. The variables X1:b may be seen as “prox-
ies” for Z associated with each of the data subsets, which are
conditionally independent given Z and λ. Loosely speaking, λ

represents the extent to which we allow the local variables X1:b
to differ from the global variable Z. In terms of computation, it
is the separation of Z from the subsets of the data y1:b, given X1:b
introduced by the instrumental model, that can be exploited by
distributed algorithms.

Figure 1. Directed acyclic graphs, representing the original statistical model (left)
and the instrumental model we construct (right).
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This approach to constructing an artificial joint target density
is easily extended to accommodate random effects models, in
which the original statistical model itself contains local vari-
ables associated with each data subset. These variables may be
retained in the resulting instrumental model, alongside the local
proxies X1:b for Z. A full description of the resulting model is
presented in Rendell (2020).

The framework we describe is motivated by concepts in
distributed optimization, a connection that is also explored in
the contemporaneous work of Vono, Dobigeon, and Chainais
(2019). The global consensus optimization problem (see, e.g.,
Boyd et al. 2011, sec. 7) is that of minimizing a sum of functions
on a common domain, under the constraint that their argu-
ments are all equal to some global common value. If for each
j ∈ {1, . . . , b} one uses the Gaussian kernel density K(λ)

j (z, x) =
N (x; z, λ), then taking the negative logarithm of (2) gives

− log π̃λ(z, x1:b) = C − log μ(z)

−
b∑

j=1
log fj(xj) + 1

2λ

b∑
j=1

(
z − xj

)2 , (5)

where C is a normalizing constant. Maximizing π(z) is equiva-
lent to minimizing this function under the constraint that z = xj
for j ∈ {1, . . . , b}, which may be achieved using the alternating
direction method of multipliers (Bertsekas and Tsitsiklis 1989).
Specifically, (5) corresponds to the use of 1/λ as the penalty
parameter in this procedure.

There are some similarities between this framework and
approximate Bayesian computation (ABC; see Marin et al. 2012,
for a review of such methods). In both cases, one introduces a
kernel that can be viewed as acting to smooth the likelihood. In
the case of (2), the role of λ is to control the scale of smoothing
that occurs in the parameter space; the tolerance parameter used
in ABC, in contrast, controls the extent of a comparable form of
smoothing in the observation (or summary statistic) space.

2.2. Distributed Metropolis-Within-Gibbs

The instrumental model described forms the basis of our pro-
posed global consensus framework; “global consensus Monte
Carlo” (GCMC) is correspondingly the application of Monte
Carlo methods to form an approximation of πλ. We focus
here on the construction of a Metropolis-within-Gibbs Markov
kernel that leaves π̃λ invariant. If λ is chosen to be sufficiently
small, then the Z-marginal πλ provides an approximation of
π . Therefore given a chain with values denoted (Zi, Xi

1:b) for
i ∈ {1, . . . , N}, an empirical approximation of π is given by

πN
λ := 1

N

N∑
i=1

δZi , (6)

where δz denotes the Dirac measure at z.
The Metropolis-within-Gibbs kernel we consider uses the

full conditional densities
π̃λ(xj | z) ∝ K(λ)

j (z, xj)fj(xj) (7)
for j ∈ {1, . . . , b}, and

π̃λ(z | x1:b) ∝ μ(z)
b∏

j=1
K(λ)

j (z, xj), (8)

where (7) follows from the mutual conditional independence of
X1:b given Z. Here, we observe that K(λ)

j (z, xj) simultaneously
provides a pseudo-prior for Xj and a pseudo-likelihood for Z.

We define M(λ)
1 to be a π̃λ-invariant Markov kernel that fixes

z; we may write

M(λ)
1 ((z, x1:b); d(z′, x′

1:b)) = δz(dz′)
b∏

j=1
P(λ)

j,z (xj, dx′
j), (9)

where for each j, P(λ)
j,z (xj, ·) is a Markov kernel leaving (7) invari-

ant. We similarly define M(λ)
2 to be a π̃λ-invariant Markov kernel

that fixes x1:b,

M(λ)
2 ((z, x1:b); d(z′, x′

1:b)) =
⎡
⎣ b∏

j=1
δxj(dx′

j)

⎤
⎦ P(λ)

x1:b
(z, dz′), (10)

where P(λ)
x1:b(z, ·) is a Markov kernel leaving (8) invariant.

Using these Markov kernels, we construct an MCMC kernel
that leaves π̃λ invariant; we present the resulting sampling pro-
cedure as Algorithm 1. In the special case in which one may
sample exactly from the conditional distributions (7) and (8),
this algorithm takes the form of a Gibbs sampler.

Algorithm 1 Global consensus Monte Carlo: MCMC algorithm
Fix λ > 0. Set initial state (Z0, X0

1:b); choose chain length N.

For i = 1, . . . , N:

• For j ∈ {1, . . . , b}, sample Xi
j ∼ P(λ)

j,Zi−1(Xi−1
j , ·).

• Sample Zi ∼ P(λ)

Xi
1:b

(Zi−1, ·).

Return (Zi, Xi
1:b)

N
i=1.

The interest from a distributed perspective is that the full
conditional density (7) of each Xj, for given values xj and z,
depends only on the jth block of data (through the partial
likelihood fj) and may be computed on the jth machine. Within
Algorithm 1, the sampling of each Xi

j from P(λ)

j,Zi−1(Xi−1
j , ·) may

therefore occur on the jth machine; these Xi
1:b may then be

communicated to a central machine that draws Zi.
Our approach has particular benefits when sampling exactly

from (7) is not possible, in which case Algorithm 1 takes a
Metropolis-within-Gibbs form. One may choose the Markov
kernels P(λ)

j,z to comprise multiple iterations of an MCMC kernel
leaving (7) invariant; indeed multiple computations of each fj
(and therefore multiple accept/reject steps) may be conducted
on each of the b nodes, without requiring communication
between machines. This stands in contrast to more straightfor-
ward MCMC approaches directly targeting π , in which such
communication is required for each evaluation of (1), and
therefore for every accept/reject step. Similar to such a “direct”
MCMC approach, each iteration of Algorithm 1 requires com-
munication to and from each of the b machines on which the
data are stored; but in cases where the communication latency
is high, the resulting sampler will spend a greater proportion
of time exploring the state space. This may in turn result in
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faster mixing (e.g., with respect to wall-clock time). We further
discuss this comparison, and the role of communication latency,
in Section S1.1 of the supplementary materials.

The setting in which Algorithm 1 describes a Gibbs sampler,
with all variables drawn exactly from their full conditional
distributions, is particularly amenable to analysis. We provide
such a study in Section S2 of the supplementary materials.
This analysis may also be informative about the more general
Metropolis-within-Gibbs setting, when P(λ)

j,z comprises enough
MCMC iterations to exhibit good mixing.

2.3. Choosing the Regularization Parameter

For ϕ : E → R, we may estimate π(ϕ) using (6) as πN
λ (ϕ).

The regularization parameter λ here takes the role of a tuning
parameter; we can view its effect on the mean squared error of
such estimates using the bias–variance decomposition,

E

[(
πN

λ (ϕ) − π(ϕ)
)2] = [πλ(ϕ)−π(ϕ)]2+var[πN

λ (ϕ)], (11)

which holds exactly when E[πN
λ (ϕ)] = πλ(ϕ). In many prac-

tical cases, this decomposition will provide a very accurate
approximation for large N, as the squared bias of πN

λ (ϕ) is
typically asymptotically negligible in comparison to its variance.

The decomposition (11) separates the contributions to the
error from the bias introduced by the instrumental model and
the variance associated with the MCMC approximation. If λ is
too large, the squared bias term in (11) can dominate while if λ

is too small, the Markov chain may exhibit poor mixing due to
strong conditional dependencies between X1:b and Z, and so the
variance term in (11) can dominate.

It follows that λ should ideally be chosen to balance these two
considerations. We provide a theoretical analysis of the role of λ

in Section S2 of the supplementary materials, by considering a
simple Gaussian setting. In particular, we show that for a fixed
number of data, one should scale λ with the number of samples
N as O(N−1/3) to minimize the mean squared error. We also
consider the consistency of the approximate posterior πλ as the
number of data n tends to infinity. Specifically, suppose these are
split equally into b blocks; considering λ and b as functions of n,
we find that πλ exhibits posterior consistency if λ/b decreases
to 0 as n → ∞, and that credible intervals have asymptotically
correct coverage if λ/b decreases at a rate strictly faster than n−1.

As an alternative to selecting a single value of λ, we propose
in Section 3 a SMC sampler employing Markov kernels formed
via Algorithm 1. In this manner, a decreasing sequence of λ

values may be considered, which may result in lower-variance
estimates for small λ values; we also describe a possible bias
correction technique.

2.4. Related Approaches

As previously mentioned, a Gibbs sampler construction essen-
tially corresponding to Algorithm 1 has independently been
proposed by Vono, Dobigeon, and Chainais (2019). Their main
objective is to improve algorithmic performance when compu-
tation of the full posterior density is intensive by constructing
full conditional distributions that are more computationally

tractable, for which they primarily consider a setting in which
b = 1. In contrast, we focus on the exploitation of this frame-
work in distributed settings (i.e., with b > 1), in the manner
described in Section 2.2.

The objectives of our algorithm are similar, but not identical,
to those of the previously introduced “embarrassingly parallel”
approaches proposed by many authors. These reduce the costs
of communication latency to a near-minimum by simulating
a separate MCMC chain on each machine; typically, the chain
on the jth machine is invariant with respect to a “subposterior”
distribution with density proportional to μ(z)1/bfj(z). Commu-
nication is necessary only for the final aggregation step, in which
an approximation of the full posterior is obtained using the
samples from all b chains.

A well-studied approach within this framework is CMC
(Scott et al. 2016), in which the post-processing step amounts
to forming a “consensus chain” by weighted averaging of the
separate chains. In the case that each subposterior density is
Gaussian this approach can be used to produce samples asymp-
totically distributed according to π , by weighting each chain
using the precision matrices of the subposterior distributions.
Motivated by Bayesian asymptotics, the authors suggest using
this approach more generally. In cases where the subposterior
distributions exhibit near-Gaussianity this performs well, with
the final “consensus chain” providing a good approximation
of posterior expectations. However, there are no theoretical
guarantees associated with this approach in settings in which the
subposterior densities are poorly approximated by Gaussians.
In such cases, CMC sometimes performs poorly in forming an
approximation of the posterior π (as in examples of Wang et al.
2015; Srivastava et al. 2015; Dai, Pollock, and Roberts 2019), and
so the resulting estimates of integrals π(ϕ) exhibit high bias.

Various authors (e.g., Minsker et al. 2014; Rabinovich,
Angelino, and Jordan 2015; Srivastava et al. 2015; Wang et al.
2015) have therefore proposed alternative techniques for uti-
lizing the values from each of these chains to approximate
posterior expectations, each of which presents benefits and
drawbacks. For example, Neiswanger, Wang, and Xing (2014)
proposed a strategy based on kernel density estimation; based
on this approach, Scott (2017) suggested a strategy based on
finite mixture models, though notes that both methods may be
impractical in high-dimensional settings.

An aggregation procedure proposed by Wang and Dun-
son (2013) bears some relation to our proposed framework,
being based on the application of Weierstrass transforms to
each subposterior density. The resulting smoothed densities are
analogous to (3), which represents a smoothed form of the
partial likelihood fj. As well as proposing an aggregation method
based on rejection sampling, the authors propose a technique
for “refining” an initial posterior approximation, which may be
expressed in terms of a Gibbs kernel on an extended state space.
Comparing with our framework, this is analogous to applying
Algorithm 1 for one iteration with N different initial values.

A potential issue common to these approaches is the treat-
ment of the prior density μ. Each subposterior density is typi-
cally assigned an equal share of the prior information in the form
of a fractionated prior density μ(z)1/b, but it is not clear when
this approach is satisfactory. For example, suppose μ belongs
to an exponential family; any property that is not invariant to
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multiplying the canonical parameters by a constant will not
be preserved in the fractionated prior. As such if μ(z)1/b is
proportional to a valid probability density function of z, then the
corresponding distribution may be qualitatively very different to
the full prior. Although Scott et al. (2016) noted that fractionated
priors perform poorly on some examples (for which tailored
solutions are provided), no other general way of assigning prior
information to each block naturally presents itself. In contrast
our approach avoids this problem entirely, with μ providing
prior information for Z at the “global” level.

Finally, we believe this work is complementary to other dis-
tributed algorithms lying outside of the “embarrassingly par-
allel” framework (including Xu et al. 2014; Jordan, Lee, and
Yang 2019), and to approaches that aim to reduce the amount
of computation associated with each likelihood calculation on a
single node, for example, by using only a subsample or batch of
the data (as in Korattikara, Chen, and Welling 2014; Bardenet,
Doucet, and Holmes 2014; Huggins, Campbell, and Broderick
2016; Maclaurin and Adams 2014).

3. SMC Approach

As discussed in Section 2.3, as λ approaches 0 estimators πN
λ (ϕ)

formed using (6) exhibit lower bias but higher variance, due to
poorer mixing of the resulting Markov chain. To obtain lower-
variance estimators for λ values close to 0, we consider the use of
SMC methodology to generate suitable estimates for a sequence
of λ values.

SMC methodology employs sequential importance sam-
pling and resampling; recent surveys include Doucet and
Johansen (2011) and Doucet and Lee (2018). We consider here
approximations of a sequence of distributions with densities
π̃λ0 , π̃λ1 , . . ., where λ0, . . . , λn is a decreasing sequence. The
procedure we propose, specified in Algorithm 2, is an SMC
sampler within the framework of Del Moral, Doucet, and Jasra
(2006). This algorithmic form was first proposed by Gilks and
Berzuini (2001) and Chopin (2002) in different settings, build-
ing upon ideas in Crooks (1998) and Neal (2001).

The algorithm presented involves simulating particles using
π̃λ-invariant Markov kernels, and has a genealogical structure
imposed by the ancestor indices Ai

p for p ∈ {0, . . . , n − 1} and
i ∈ {1, . . . , N}. The specific scheme for simulating the ancestor
indices here is known as multinomial resampling; other schemes
can be used (see Douc, Cappé, and Moulines 2005; Gerber,
Chopin, and Whiteley 2019, for a summary of some schemes
and their properties). We use this simple scheme here as it
validates the use of the variance estimators used in Section 3.1.
This optional resampling step is used to prevent the degeneracy
of the particle set; a common approach is to carry out this
step whenever the particles’ effective sample size (Liu and Chen
1995) falls below a predetermined threshold.

Under weak conditions π̃N
λp

(ϕ) converges almost surely to
π̃λp(ϕ) as N → ∞. One can also define the particle approxi-
mations of πλp via

πN
λp

:=
∑N

i=1 Wi
pδZi

p∑N
i=1 Wi

p
, (12)

where Zi
p is the first component of the particle ζ i

p.

Algorithm 2 Global consensus Monte Carlo: SMC algorithm
Fix a decreasing sequence (λ0, λ1, . . . , λn). Set number of parti-
cles N.

Initialize:

• For i ∈ {1, . . . , N}, sample ζ i
0 = (Zi

0, Xi
0,1:b) ∼ π̃λ0 and set

Wi
0 ← 1.

For p = 1, . . . , n:

1. For i ∈ {1, . . . , N}, set W̃i
p ← Wi

p−1wp(ζ
i
p−1), where

wp(z, x1:b) := π̃λp(z, x1:b)

π̃λp−1(z, x1:b)
=

b∏
j=1

K(λp)
j (z, xj)

K(λp−1)
j (z, xj)

.

2. Optionally, carry out a resampling step: for i ∈ {1, . . . , N},

• Independently sample Ai
p−1 from the categorical distribu-

tion with probabilities proportional to (W̃1
p , . . . , W̃N

p ).
• Set Wi

p ← 1.

Otherwise: for i ∈ {1, . . . , N} set Ai
p−1 ← i, Wi

p ← W̃i
p.

3. For i ∈ {1, . . . , N}, sample ζ i
p = (Zi

p, Xi
p,1:b) ∼ Mp(ζ

Ai
p−1

p−1 , ·),
where Mp is a π̃λp -invariant MCMC kernel constructed in the
manner of Algorithm 1.

4. Optionally, store the particle approximation of π̃λp ,

π̃N
λp

:=
∑N

i=1 Wi
pδζ i

p∑N
i=1 Wi

p
.

Although the algorithm is specified for simplicity in terms
of a fixed sequence λ0, . . . , λn, a primary motivation for the
SMC approach is that the sequence used can be determined
adaptively while running the algorithm. A number of such
procedures have been proposed in the literature in the context
of tempering, allowing each value λp to be selected based on
the particle approximation of π̃λp−1 . For example, Jasra et al.
(2011) proposed a procedure that controls the decay of the
particles’ effective sample size. Within the examples in Section 4
we employ a procedure proposed by Zhou, Johansen, and Aston
(2016), which generalizes this approach to settings in which
resampling is not conducted in every iteration, aiming to control
directly the dissimilarity between successive distributions. A
possible approach to determining when to terminate the pro-
cedure, based on minimizing the mean squared error (11), is
detailed in Section S3.2 of the supplementary materials.

With regard to initialization, if it is not possible to sample
from π̃λ0 one could instead use samples obtained by importance
sampling, or one could initialize an SMC sampler with some
tractable distribution and use tempering or similar techniques
to reach π̃λ0 . At the expense of the introduction of an additional
approximation, an alternative would be to run a π̃λ0 -invariant
Markov chain, and obtain an initial collection of particles by
thinning the output (an approach that may be validated using
results of Finke, Doucet, and Johansen 2020). Specifically, one
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could use Algorithm 1 to generate such samples for some large
λ0, benefiting from its good mixing and low autocorrelation
when λ is sufficiently large. The effect of Algorithm 2 may then
be seen as refining or improving the resulting estimators, by
bringing the parameter λ closer to zero.

Other points in favor of this approach are that many of the
particle approximations (12) can be used to form a final estimate
of π(ϕ) as explored in Section 3.1, and that SMC methods
can be more robust to multimodality of π than simple Markov
chain schemes. We finally note that in such an SMC sampler,
a careful implementation of the MCMC kernels used may allow
the inter-node communication to be interleaved with likelihood
computations associated with the particles, thereby reducing the
costs associated with communication latency.

3.1. Bias Correction Using Local Linear Regression

We present an approach to use many of the particle approxi-
mations produced by Algorithm 2. A natural idea is to regress
the values of πN

λ (ϕ) on λ, extrapolating to λ = 0 to obtain
an estimate of π(ϕ). A similar idea has been used for bias
correction in the context of ABC, albeit not in an SMC setting,
regressing on the discrepancy between the observed data and
simulated pseudo-observations (Beaumont, Zhang, and Balding
2002; Blum and François 2010).

Under very mild assumptions on the transition densities
K(λ)

j , πλ(ϕ) is smooth as a function of λ. Considering a first-
order Taylor expansion of this function, a simple approach is
to model the dependence of πλ(ϕ) on λ as linear, for λ suf-
ficiently close to 0. Having determined a subset of the values
of λ used for which a linear approximation is appropriate (we
propose a heuristic approach in Section S3.1 of the supplemen-
tary materials) one can use linear least squares to carry out the
regression. To account for the SMC estimates πN

λp
(ϕ) having

different variances, we propose the use of weighted least squares,
with the “observations” πN

λp
(ϕ) assigned weights inversely pro-

portional to their estimated variances; we describe methods
for computing such variance estimates in Section 3.2. A bias-
corrected estimate of π(ϕ) is then obtained by extrapolating the
resulting fit to λ = 0, which corresponds to taking the estimated
intercept term.

To make this explicit, first consider the case in which ϕ : E →
R, so that the estimates πN

λ (ϕ) are univariate. For each value λp
denote the corresponding SMC estimate by ηp := πN

λp
(ϕ), and

let vp denote some proxy for the variance of this estimate. Then
for some set of indices S := {p∗, . . . , n} chosen such that the
relationship between ηp and λp is approximately linear for p ∈ S,
a bias-corrected estimate for π(ϕ) may be computed as

πBC
S (ϕ) := η̃S − λ̃S

∑
p∈S(λp − λ̃S)(ηp − η̃S)/vp∑

p∈S(λp − λ̃S)2/vp
, (13)

where λ̃S and η̃S denote weighted means given by

λ̃S :=
∑

p∈S λp/vp∑
p∈S 1/vp

, η̃S :=
∑

p∈S ηp/vp∑
p∈S 1/vp

. (14)

The formal justification of this estimate assumes that the
observations are uncorrelated, which does not hold here. We

demonstrate in Section 4 and in Section S4.1 of the supple-
mentary materials examples on which this simple approach is
nevertheless effective, but in principle one could use generalized
least squares combined with some approximation of the full
covariance matrix of the SMC estimates.

In the more general case where ϕ : E → R
d for d > 1,

we propose simply evaluating (13) for each component of this
quantity separately, which corresponds to fitting an indepen-
dent weighted least squares regression to each component. This
facilitates the use of the variance estimators described in the fol-
lowing section, though in principle one could use multivariate
weighted least squares or other approaches.

3.2. Variance Estimation for Weighted Least Squares

We propose the weighted form of least squares here since, as the
values of λ used in the SMC procedure approach zero, the esti-
mators generated may increase in variance: partly due to poorer
mixing of the MCMC kernels as previously described, but also
due to the gradual degeneracy of the particle set. To estimate
the variances of estimates generated using SMC, several recent
approaches have been proposed that allow this estimation to be
carried out online by considering the genealogy of the particles.
Using any such procedure, one may estimate the variance of
πN

λ (ϕ) for each λ value considered by Algorithm 2, with these
values used for each vp in (13).

Within our examples, we use the estimator proposed by
Lee and Whiteley (2018), which for fixed N coincides with an
earlier proposal of Chan and Lai (2013) (up to a multiplicative
constant). Specifically, after each step of the SMC sampler we
compute an estimate of the asymptotic variance of each estimate
πN

λp
(ϕ); that is, the limit of N var[πN

λp
(ϕ)] as N → ∞. While

this is not equivalent to computing the true variance of each
estimate, for fixed large N the relative sizes of these asymptotic
variance estimates should provide a useful indicator of the
relative variances of each estimate πN

λ (ϕ). In Section S4.1 of
the supplementary materials, we show empirically that inversely
weighting the SMC estimates according to these estimated vari-
ances can result in more stable bias-corrected estimates as the
particle set degenerates. We also explain in Section S3.2 how
these estimated variances can be used within a rule to determine
when to terminate the algorithm.

The asymptotic variance estimator described is consistent in
N. However, if in practice resampling at the pth time step causes
the particle set to degenerate to having a single common ances-
tor, then the estimator evaluates to zero, and so it is impossible to
use this value as the inverse weight vp in (13). Such an outcome
may be interpreted as a warning that too few particles have been
used for the resulting SMC estimates to be reliable, and that a
greater number should be used when rerunning the procedure.

4. Examples

4.1. Log-Normal Toy Example

To compare the posterior approximations formed by our
global consensus framework with those formed by some
embarrassingly parallel approaches discussed in Section 2.4,
we conduct a simulation study based on a simple model. Let
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LN (x; μ, σ 2) denote the density of a log-normal distribution
with parameters (μ, σ 2); that is,

LN (x; μ, σ 2) = 1
x
√

2πσ 2
exp

(
− (log(x) − μ)2

2σ 2

)
.

One may consider a model with prior density μ(z) =
LN (z; μ0, σ 2

0 ) and likelihood contributions fj(z) =
LN (log(μj); log(z), σ 2

j ) for j ∈ {1, . . . , b}. This may be seen
as a reparameterization of the Gaussian model in Section S2
of the supplementary materials, in which each likelihood
contribution is that of a data subset with a Gaussian likelihood.
This convenient setting allows for the target distribution π to
be expressed analytically. For the implementation of the global
consensus algorithm, we choose Markov transition kernels
given by K(λ)

j (z, x) = LN (x; log(z), λ) for each j ∈ {1, . . . , b},
which satisfy Assumption 1; this allows for exact sampling from
all the full conditional distributions.

As a toy example to illustrate the effects of non-Gaussian
partial likelihoods we consider a case in which fj(z) =
LN (log(μj); log(z), 1) for each j, and μ(z) = LN (z; 0, 25).
Here we took b = 32, and selected the location parameters μj as
iid samples from a standard normal distribution. We ran GCMC
using the Gibbs sampler form of Algorithm 1, for values of λ

between 10−5 and 10. For comparison, we also drew samples
from each subposterior distribution as defined in Section 2.4,
combining the samples using various approaches. These are the
CMC averaging of Scott et al. (2016); the nonparametric density
product estimation (NDPE) approach of Neiswanger, Wang,
and Xing (2014); and the Weierstrass rejection sampling (WRS)
combination technique of Wang and Dunson (2013), using their
R implementation (https://github.com/wwrechard/weierstrass).
In each case, we ran the algorithm 25 times, drawing N = 105

samples.
To demonstrate the role of λ in the bias–variance decompo-

sition (11), Table 1 presents the means and standard deviations
of estimates of π(ϕ), for various test functions ϕ. In estimating
the first moment of π , GCMC generates a low-bias estimator
when λ is chosen to be sufficiently small; however, as expected,
the variance of such estimators increases when very small values

Table 1. True values and estimates of π(ϕ), for various test functions ϕ, for the log-
normal toy model.

ϕ(z) = z ϕ(z) = z5 ϕ(z) = log(z)
Algorithm (π(ϕ) = 1.141) (π(ϕ) = 2.644) (π(ϕ) = 0.1164)

GCMC

λ = 101 1.329 ± 0.003 121.154 ± 10.487 0.1151 ± 0.0019
λ = 100 1.159 ± 0.002 3.901 ± 0.037 0.1165 ± 0.0014
λ = 10−1 1.144 ± 0.003 2.763 ± 0.044 0.1173 ± 0.0030
λ = 10−2 1.140 ± 0.011 2.648 ± 0.143 0.1150 ± 0.0090
λ = 10−3 1.142 ± 0.022 2.661 ± 0.295 0.1191 ± 0.0199
λ = 10−4 1.120 ± 0.077 3.505 ± 1.136 0.1630 ± 0.0651
λ = 10−5 1.400 ± 0.110 6.195 ± 2.217 0.3283 ± 0.0810

CMC 1.073 ± 0.010 16.092 ± 5.675 0.0135 ± 0.0095
NDPE 1.148 ± 0.029 2.800 ± 0.385 0.1231 ± 0.0246
WRS 1.111 ± 0.007 2.444 ± 0.086 0.0862 ± 0.0063

NOTE: Estimates obtained using global consensus Monte Carlo with various values
of λ, and three embarrassingly parallel methods (see main text for abbreviations).
For each method the mean estimate ± Monte Carlo standard error is presented,
as computed over 25 replicates; the estimator corresponding to the lowest mean
squared error is printed in bold.

of λ are chosen. While the other methods produce estimators
of reasonably low variance, these exhibit somewhat higher bias.
For CMC, the bias is especially pronounced when estimating
higher moments of the posterior distribution, as exemplified by
the estimates of the fifth moment. Note however that high biases
are also introduced when using GCMC with large values of λ (as
seen here with λ = 10), for which πλ is a poor approximation
of π .

Also of note are estimates of
∫

log(z)π(z) dz, corresponding
to the mean of the Gaussian model of which this a reparameter-
ization. While GCMC performs well across a range of λ values,
the other methods perform less favorably; CMC produces an
estimate that is incorrect by an order of magnitude. While this
could be solved by a simple reparameterization of the problem
in this case, in more general settings no such straightforward
solution may exist.

In Section S4.2 of the supplementary materials, we present
second example based on a log-normal model, demonstrating
the robustness of these methods to permutation and repartition-
ing of the data.

4.2. Logistic Regression

Binary logistic regression models are commonly used in settings
related to marketing. In web design for example, A/B testing may
be used to determine which content choices lead to maximized
user interaction, such as the user clicking on a product for sale.

We assume that we have a dataset of size n formed of
responses ηl ∈ {−1, 1}, and vectors ξl ∈ {0, 1}d of binary
covariates, where l ∈ {1, . . . , n}. The likelihood contribution
of each block of data then takes the form fj(z) = ∏

l S(ηlzTξl),
z ∈ R

d, where the product is taken over those indices l included
in the jth block of data, and S denotes the logistic function,
S(x) = (1 + exp(x))−1.

For the prior μ, we use a product of independent zero-
mean Gaussians, with standard deviation 20 for the parameter
corresponding to the intercept term, and 5 for all other param-
eters. For the Markov transition densities in GCMC, we use
multivariate Gaussian densities: K(λ)

j (z, x) = N (x; z, λI) for
each j ∈ {1, . . . b}.

We investigated several such simulated datasets and the effi-
cacy of various approaches in approximating the true posterior
π . To illustrate the bias–variance trade-off described in Sec-
tion 2.3, in the presentation of these results we focus on the
estimation of the posterior first moment; denoting the identity
function on R

d by Id, we may write this as π(Id). While our
global consensus approach was consistently successful in form-
ing estimators with low mean squared error in each compo-
nent, in low-dimensional settings the application of CMC often
resulted in marginal improvements. However, in many higher-
dimensional settings, the estimators resulting from CMC exhib-
ited relatively large biases.

We present here an example in which the d predictors corre-
spond to p binary input variables, their pairwise products, and
an intercept term, so that d = 1 + p + (p

2
)
. In settings where the

interaction effects corresponding to these pairwise products are
of interest, the dimensionality d of the space can be very large
compared to p. We used a simulated dataset with p = 20 input

https://github.com/wwrechard/weierstrass
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variables, resulting in a parameter space of dimension d = 211.
The data comprise n = 80,000 observations, split into b = 8
equally sized blocks. Each observation of the 20 binary variables
was generated from a Bernoulli distribution with parameter
0.1, and for each vector of covariates, the response was gener-
ated from the correct model, for a fixed underlying parameter
vector z∗.

4.2.1. Metropolis-Within-Gibbs
We applied GCMC for values of λ between 10−2 and 1. We
used a Metropolis-within-Gibbs formulation of Algorithm 1,
sampling directly from the Gaussian conditional distribution
of Z given X1:b. To sample approximately from the conditional
distributions of each Xj given Z we used Markov kernels P(λ)

j,z
comprising k = 20 iterations of a random walk Metropolis
kernel.

As mentioned in Section 2.2, in settings of high communi-
cation latency our approach allows a greater proportion of wall-
clock time to be spent on likelihood contributions, compared
to an MCMC chain directly targeting the full posterior π . To
compare across settings, we therefore consider an abstracted
distributed setting as discussed in Section S1.1 of the supple-
mentary materials, here assuming that the latency is 10 times the
time taken to compute each partial likelihood fj (in the notation
of Section S1.1, C = 10�).

We also compare with the same embarrassingly parallel
approaches as in Section 4.1 (CMC, NDPE, WRS), which are
comparatively unaffected by communication latency. For these
methods, we again used random walk Metropolis to draw sam-
ples from each subposterior distribution. To ease computation,
we thinned these chains before applying the combination step;
in practice, the estimators obtained using these thinned chains
behaved very similarly to those obtained using all subposterior
samples.

To provide a “ground truth” against which to compare the
results we ran a random walk Metropolis chain of length 500,000
targeting π . For all our random walk Metropolis samplers we
used Gaussian proposal kernels. To determine the covariance
matrices of these, we formed a Laplace approximation of the
target density following the approach of Chopin and Ridg-
way (2017), scaling the resulting covariance matrix optimally
according to results of Roberts and Rosenthal (2001).

For each algorithmic setting, we ran the corresponding sam-
pler 25 times. To compare the resulting estimators of the poste-
rior mean we computed the mean squared error of each of the d
components of the posterior mean, summing these to obtain a
“mean sum of squared errors.”

Table 2 compares the values obtained by each algorithm after
an approximate wall-clock time equal to 200,000 times the time
taken to compute a single partial likelihood fj. Accounting for
latency in the abstracted distributed setting described above, the
GCMC approach is able to generate 5000 approximate posterior
samples during this time, spending 50% of time on likelihood
computations. In contrast, a direct MCMC approach generates
9523 samples, but would only spend 4.8% of the time on likeli-
hood computations, with the remainder lost due to latency.

The result is that the estimators generated by GCMC for
appropriately chosen λ exhibit lower mean sums of squared

Table 2. Mean sum of squared errors over all d components of estimates of the
posterior mean for the logistic regression model, formed using various algorithmic
approaches as described in the main text, during an approximate wall-clock time
equal to 200,000 times that required to compute a single partial likelihood fj .

Algorithm Mean sum of squared errors

GCMC

λ = 100 0.1835
λ = 10−0.5 0.1379
λ = 10−1 0.0770
λ = 10−1.5 0.0478
λ = 10−2 0.0662

CMC 0.3710
NDPE 0.8476
WRS 0.6402
Direct MCMC 0.0884

NOTE: All values computed over 25 replicates, with the lowest value printed in bold.

errors: we conduct many more accept/reject steps in each round
of inter-node communication than if we were to directly target
π , and so it becomes possible to achieve faster mixing of the
Z-chain (and a better estimator) compared to such a direct
approach. This may be seen when comparing the effective sam-
ple size (ESS) of each chain, where we estimate this via the “batch
means” approach of Vats, Flegal, and Jones (2019): we find that
the average ESS of the direct MCMC chains is only 1111, while
depending on the choice of λ, the shorter GCMC chains have
average ESS values between 1327 and 4577.

Despite being unaffected by latency and therefore allowing
many more samples to be drawn, the embarrassingly parallel
approaches (CMC, NDPE, WRS) perform poorly compared
to GCMC. This is particularly true of the NDPE method of
Neiswanger, Wang, and Xing (2014): while asymptotically exact
even in non-Gaussian settings, the resulting estimator is based
on kernel density estimators and is not effective in this high-
dimensional setting.

Figure 2 shows the mean sums of squared errors as a function
of the approximate wall-clock time (for simplicity we include
only the best-performing of the three embarrassingly parallel
methods, omitting the results for NDPE and WRS). We see that
for large enough λ, the GCMC estimators πN

λ (Id) exhibit rather
lower values than the corresponding CMC and “direct” MCMC
estimators. As the number of samples used grows, the squared
bias of these estimators begins to dominate, and so smaller
λ values result in lower mean squared errors. As λ becomes
smaller the autocorrelation of the resulting Z-chain increases;
indeed we found that for λ too small, the GCMC estimator
πN

λ (Id) will always have a greater mean squared error than the
“direct” MCMC estimator, no matter how much time is used. Of
course, since an MCMC estimator formed by directly targeting
π is consistent in N, given sufficient time such an estimator will
always outperform estimators formed using GCMC, which are
biased for any λ. However, in many practical big data settings
it may be infeasible to draw large numbers of samples using the
available time budget.

4.2.2. Sequential Monte Carlo
We also applied the SMC procedure to this logistic regression
model. While we found that the SMC approach was most
effective in lower-dimensional settings (see Section S4.1 of the
supplementary materials for a simple example) in which it is
less computationally expensive, the SMC procedure can be more
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Figure 2. Mean sum of squared errors over all d components of estimates of the posterior mean for the logistic regression model, formed using various algorithmic
approaches as described in the main text. Values plotted against the approximate wall-clock time, relative to the time taken to compute a single partial likelihood term. All
values computed over 25 replicates.

widely useful as a means of “refining” the estimator formed
using a single λ value, as discussed in Section 3.

We used N = 1250 particles, initializing the particle set by
thinning the chain generated by the Metropolis-within-Gibbs
procedure with λ = 10−1. To generate a sequence of subsequent
λ values we used the adaptive procedure of Zhou, Johansen, and
Aston (2016), using tuning parameter CESS� = 0.98. For the
Markov kernels Mp, we used Metropolis-within-Gibbs kernels
as previously, with each update of Xj given Z comprising k = 50
iterations of a random walk Metropolis kernel.

The estimator πN
λ0

(Id) formed using the initial particle set
was found to have a mean sum of squared errors of 0.0692.
After a fixed number of iterations (n = 100) the resulting SMC
estimate exhibited a mean sum of squared errors of 0.0418; this
represents a decrease of 40%, and has the benefit of avoiding the
need to carefully specify a single value for λ.

Used alone, the bias correction procedure of Section 3.1
was found to perform best in lower-dimensional settings (as in
Section S4.1 of the supplementary materials); here, it resulted
in a mean sum of squared errors of 0.0682 after 100 iterations.
However, improved results were obtained using the stopping
rule we propose in Section S3.2 of the supplementary materials
(with stopping parameter κ = 15), which is based on our
proposed bias correction procedure. The estimator selected by
this stopping rule, which automatically determines when to
terminate the algorithm, obtained a mean sum of squared errors
of 0.0367, a decrease of 47% from the estimator generated using
the initial particle set.

5. Conclusion

We have presented a new framework for sampling in distributed
settings, demonstrating its application on some illustrative
examples in comparison to embarrassingly parallel approaches.
Given that our proposed approach makes no additional assump-
tions on the form of the likelihood beyond its factorized form
as in (1), we expect that our algorithm will be most effective
in those big data settings for which approximate Gaussianity of

the likelihood contributions may not hold. These may include
high-dimensional settings, for which some subsets of the data
may be relatively uninformative about the parameter. In such
cases, the likelihood contributions may be highly non-Gaussian,
so that the CMC approach of averaging across chains results in
estimates of high bias; simultaneously, the high dimensionality
may preclude the use of alternative combination techniques
(e.g., the use of kernel density estimates).

This framework may be of use in serial settings. As previ-
ously noted, the contemporaneous work of Vono, Dobigeon,
and Chainais (2019) presents an example in which the use of
an analogous framework (with b = 1) results in more effi-
cient simulation than approaches that directly target the true
posterior. Our proposed SMC sampler implementation and the
associated bias correction technique may equally be applied to
such settings, reducing the need to specify a single value of the
regularization parameter λ.

There is potential for further improvements to be made to the
procedures we present here. In the SMC case for example, while
our proposed use of weighted least squares as a bias correction
technique is simple, nonlinear procedures (such those proposed
in an ABC context by Blum and François 2010) may provide a
more robust alternative, with some theoretical guarantees. We
also stress that the MCMC and SMC procedures presented here
constitute only two possible approaches to inference within the
instrumental hierarchical model that we propose, and there is
considerable scope for alternative sampling algorithms to be
employed within this global consensus framework.

Supplementary Materials

Supplement to “Global consensus Monte Carlo”:
“GCMCsupplement.pdf ” includes supplementary materials covering
implementation considerations, theoretical analysis for a simple
model, and heuristic procedures for the proposed SMC sampler (with
numerical demonstrations).

R code for examples: “GCMCexamples.zip” contains R scripts used to
generate the numerical results and figures presented here and in the
supplement.
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