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ABSTRACT
We consider estimation of the asymptotic covariance matrix in nonstationary time series. A nonparametric
estimator that is robust against unknown forms of trends and possibly a divergent number of change
points (CPs) is proposed. It is algorithmically fast because neither a search for CPs, estimation of trends,
nor cross-validation is required. Together with our proposed automatic optimal bandwidth selector, the
resulting estimator is both statistically and computationally efficient. It is, therefore, useful in many statistical
procedures, for example, CPs detection and construction of simultaneous confidence bands of trends.
Empirical studies on four stock market indices are also discussed.
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1. Introduction

In many real applications, the observed time series {Y i}n
i=1 is a

contaminated version of the ideal stationary time series {Xi}n
i=1.

The contamination may consist of an unknown trend, season-
ality, and abrupt change points (CPs). This type of nonsta-
tionary time series is commonly encountered in Econometrics,
Risk Management, Neurology, Genetics, Ecology, etc. (see, e.g.,
Horváth, Kokoszka, and Steinebach 1999; Grangera and Hyung
2004; Banerjeea and Urga 2005; Mikkonen et al. 2014; Kirch,
Muhsal, and Ombao 2015). As a result, assessing the stationarity
of Y i is usually indispensable before conducting inference and
modeling. Many tests for this purpose require estimating the
asymptotic covariance matrix (ACM) of X̄n = n−1∑n

i=1 Xi,
namely, � = limn→∞ n var(X̄n). Their performances rely on
an efficient estimator of � that is robust against the mean and
autocorrelation structures. This article addresses the problem of
mean-structure and autocorrelation consistent (MAC) estima-
tion of �.

One classical problem in assessing stability is CP detec-
tion. A large class of CP tests is based on the cumulative
sum (CUSUM) process (e.g., Brown, Durbin, and Evans 1975;
Ploberger and Krämer 1992; Jirak 2015). Among them, the
celebrated Kolmogorov–Smirnoff (KS) test is arguably the most
commonly used in detecting a mean shift. In the univariate
case, the KS test statistic usually requires an estimator of the
asymptotic variance constant (AVC) σ 2, that is, the univariate
analog of �, for standardization (see Csörgö and Horváth 1997).
However, without a jump robust estimator of σ 2, the KS test may
not be monotonically powerful with respect to the jump magni-
tude (see Vogelsang 1999; Crainiceanu and Vogelsang 2007; Juhl
and Xiao 2009). Indeed, the power may even completely vanish
(see Figure 6 for a visualization of this phenomenon). However,
many existing approaches are either restricted to one CP or
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do not fully eliminate the nonmonotone problem. Furthermore,
for multidimensional CP tests (e.g., Horváth, Kokoszka, and
Steinebach 1999), there is no robust estimator of �. Although
Shao and Zhang (2010) proposed a self-normalized KS test,
which does not require estimating �, it sacrifices power for
that. Its power may even completely vanish under a misspecified
alternative (see Section 5.4).

Besides detection of CPs, there are many more dedicated
procedures for assessing the stability of mean, for example,
testing the existence of structural breaks in trends, constructing
simultaneous confidence bands (SCB) of trends, and testing
non-constancy of trends (see Wu, Woodroofe, and Mentz 2001;
Wu 2004; Wu and Zhao 2007, and references therein). All of the
aforementioned procedures require an estimator of σ 2 that is
jump robust as well as trend robust. It is worth mentioning that
even in the absence of CP and trend, estimation of σ 2 is already
difficult because it requires specifying a bandwidth parameter
(see, e.g., Andrews 1991; Newey and West 1994). To the best of
our knowledge, there is no jump and trend robust estimator of
� that equips with an optimal bandwidth estimator.

In view of the above problems, this article proposes a single-
pass (i.e., neither estimation of CP nor trend is required) and
fully nonparametric estimator of � for general multidimensional
time series. It is consistent and robust even if there are a diver-
gent number of CPs and nonconstant trends of unknown forms.
Furthermore, a closed-form formula of the optimal bandwidth
is derived so that users do not need to resort to computation-
ally intensive cross-validation. Hence, the resulting estimator is
MAC, statistically efficient, and computationally fast.

The remaining part of the article is organized as follows.
Section 2 reviews some standard estimation methods of �.
Section 3 provides motivation of deriving the proposed jump
robust estimator; and presents the key theoretical results.
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Section 4 gives the extension to trend robustness. Implementa-
tion issues and generalization are also discussed. Section 5 illus-
trates finite sample performance Section 6 presents empirical
studies on stock market indices. Section 7 concludes the article.

2. Review of Asymptotic Covariance Estimation

2.1. Mathematical Setup

Suppose the observed time series
{

Y i ∈ R
d}n

i=1, d ∈ N, is
generated from Y i = μ(i/n) + Xi, where μ : [0, 1] → R

d

is a mean function; and
{

Xi ∈ R
d}

i∈Z is strictly stationary and
ergodic with mean EXi ≡ 0, i ∈ Z, and autocovariance function
(ACVF) �k := E

(
XkXᵀ

0
)
, k ∈ Z. Also denote the symmetrized

ACVF by �k := (�k + �−k)/2, k ∈ Z. The ACM of X̄n :=
n−1∑n

i=1 Xi is defined by

� := lim
n→∞ n var

(
X̄n
) =

∞∑
k=−∞

�k =
∞∑

k=−∞
�k , (1)

provided that the limit exists. Note that the ACM is also
known as the time-average covariance matrix, long-run covari-
ance matrix, and (scaled) spectral density at zero frequency.

The unknown mean μ(·) combines trend, seasonality and
jump discontinuities:

μ(i/n) := f (i/n) +
J∑

j=0
ξ j1{Dj ≤ i < Dj+1} , (2)

where f := f n : [0, 1] → R
d is a sequence of continuous

functions; J := Jn is the number of CPs; ξ j := ξ j,n is the mean-
shift from f in the time period [Dj, Dj+1), for j = 0, . . . , J; and
Dj := Dj,n is the jth CP, for j = 1, . . . , J, such that 1 ≡ D0 <

D1 < · · · < DJ < DJ+1 ≡ n + 1. Here the indicator 1{E} = 1
if the event E occurs, otherwise 1{E} = 0. Without loss of
generality, assume ξ j−1 �= ξ j for all j = 1, . . . , J. For simplicity,
we write μi := μ(i/n).

The unobservable time series {Xi} is assumed to admit a
causal representation Xi = g(Fi), where g(·) is a d-dimensional
measurable function, Fi := (. . . , εi−1, εi); and {εi}i∈Z are inde-
pendent and identically distributed multidimensional vectors of
innovations (see Wu 2005). This framework is general enough
to cover many commonly-used models, for example, autoregres-
sive moving average (ARMA) model, Volterra series, bilinear
(BL) model, threshold AR model, and generalized AR con-
ditional heteroscedastic (GARCH) model (see, e.g., Wu 2011;
Degras et al. 2012). More multivariate examples defined under
this framework can be found in Sections 1 and 2 of Wu and
Zaffaroni (2018).

2.2. Mathematical Notations

The following notations are used in the article. Denote N =
{1, 2, . . .} and N0 = N ∪ {0}. For a ∈ R, 	a
 and �a� are
the floor and ceiling of a, respectively. For a, b ∈ R, denote
a∨b = max(a, b) and a∧b = min(a, b). When the sample size n
is clear, denote [[a]] = (2∨�a�)∧(n−1). For real sequences {an}
and {bn}, write an ∼ bn if an/bn → 1; an = o(bn) if an/bn → 0;

and an = O(bn) if there are M > 0 and N such that |an/bn| ≤ M
for all n ≥ N.

Matrices and vectors are written in boldface, while scalars
are written in normal face. The (r, s)th element of a matrix A
is denoted by A[r,s]. The uth component of a vector μ is denoted
by μ[u]. In one-dimensional case (i.e., d = 1), the ACM in (1) is
written as �, �[1,1] or σ 2, and the mean function in (2) is written
as μ(·) or μ[1](·).

For any matrix A, denote its entry-wise absolute value by |A|,
its trace by tr(A), its transpose by Aᵀ, its column-by-column
vectorization by vec(A), and A⊗2 = AAᵀ. The diagonalization
of a vector v is denoted by diag(v), that is, a diagonal matrix
whose diagonal elements are the elements of v. Denote the
column vector of ones, the column vector zeros, and the identity
matrix by 1, 0, and I, respectively.

For any real random variable Z and any p ≥ 1, denote
‖Z‖p = (

E |Z|p)1/p. For any vector-valued random variable Z,
we write Z ∈ Lp if

∥∥Z[u]∥∥
p < ∞ for all u. If ε1, . . . , εn are

identically and independently distributed (iid) as the standard
normal distribution, we write ε1, . . . , εn

iid∼ N (0, 1). If ε, ε′ are
iid, then we say that ε′ is an iid copy of ε.

2.3. Estimation in Stationary Time Series

Suppose that μ1 = · · · = μn. There are three standard classes of
methods to estimate �. The first one is the subsampling method
(see, e.g., Meketon and Schmeiser 1984; Carlstein 1986; Song
and Schmeiser 1995; Politis, Romano, and Wolf 1999; Chan and
Yau 2017b). For instance, the overlapping batch means (OBM)
estimator is

�̂OBM,n := �

n − � + 1

n∑
i=�

⎛⎝1
�

i∑
j=i−�+1

X̂j

⎞⎠⊗2

, (3)

where � ∈ N ∩ (1, n) is the batch-size, X̂i := Y i − Ȳn and
Ȳn := n−1∑n

i=1 Y i. The second one is the kernel method
(see, e.g., Newey and West 1987; Andrews 1991; Politis 2011).
For example, the Bartlett kernel and the quadratic spectral (QS)
kernel estimators are

�̂Bart,n :=
�∑

k=−�

Bart (k/�) �̂k and

�̂QS,n :=
n−1∑

k=−(n−1)

QS (k/�) �̂k , (4)

respectively, where �̂k := n−1∑n
i=|k|+1 X̂iX̂

ᵀ
i−|k|,

Bart(t) := (1 − |t|)1(|t| ≤ 1), and QS(t) :=
25 {sin(6π t/5)/(6π t/5) − cos(6π t/5)} /(12π2t2). The third
one is based on the resampling method (see, e.g., Künsch 1989;
Politis and Romano 1994; Paparoditis and Politis 2001; Lahiri
2003). Recently, a new class of estimators based on orthonormal
sequences is proposed (see, e.g., Phillips 2005; Sun 2013).
The choice of kernel or orthonormal sequences are discussed
in Lazarus et al. (2018). Besides, Müller (2014) studied the
problem under strong autocorrelation.

Estimation of � is important because it is usually required in
the inference of μ, for example, construction of SCB for μ, and
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Table 1. A summary of the robust estimators introduced in Section 2.4, where AC, CV, J, W, and WZ represent estimators proposed in Altissimoa and Corradic (2003),
Crainiceanu and Vogelsang (2007), Jirak (2015), Wu (2004), and Wu and Zhao (2007), respectively.

Robustness Generality & optimality

Estimators (a) J change points (b) Continuous trend (c) Dimension d (d) Optimal �

AC Yes, J < ∞ No d = 1 Not derived
CV, J Yes, J = 1 No d = 1 Not derived
W, WZ No Yes d = 1 Not derived
�̂0,2,n (proposal) Yes, J = o(n1/5) Yes d ≥ 1 Derived

NOTE: The last row shows a special case of our proposed estimator �̂p,q,n , which will be defined in (8). Note that (a) states the robustness against piecewise-constant means
with J CPs. Note also that three estimators (namely WZ1, WZ2, and WZ3) are proposed in WZ, but they share the same facts (a)–(d).

output analysis in Markov chain Monte Carlo (see Flegal and
Jones 2010; Chan and Yau 2016, 2017a; Liu and Flegal 2018). All
three methods above require specifying an unknown bandwidth
� (or the batch size, block size, etc.) In practice, � is crucial to the
performance of estimators but its optimal value is notoriously
difficult to estimate (see, e.g., Politis 2003; Hirukawa 2010).

2.4. Estimation in Nonstationary Time Series

Suppose that μi �= μj for some i �= j. In this case, as far as
we know, (i) all existing estimators of � are either restricted to
particular forms of mean-structure; and (ii) the estimators are
not equipped with the optimal bandwidth. Some representative
estimators are listed below, and are summarized in Table 1. For
reference, the precise formulas of the estimators are presented
in Section C.1 of the supplementary materials.

Altissimoa and Corradic (2003) proposed estimating σ 2 by
applying a standard kernel estimator to the time series after
being de-trended by a local mean estimator. The resulting esti-
mator is consistent when the mean is a piecewise constant
function with finitely many breaks. However, there are some
drawbacks. First, they did not derive the optimal bandwidth. It is
possible that the optimal bandwidth of the modified estimator is
different from that of the standard kernel estimator. Second, the
modified estimator introduces an extra tuning parameter, that
is, the bandwidth for the local mean estimator. This bandwidth
has to be chosen carefully to have a consistent estimator of
σ 2. However, its optimal value is unsolved. A similar method
was proposed by Juhl and Xiao (2009) in a hypothesis testing
context. However, their estimator is inconsistent under non-
stationarity.

Crainiceanu and Vogelsang (2007) found that a CP test has a
non-monotonic power if a non-robust estimator of σ 2 is used.
They proposed an estimator of σ 2 that is robust to one CP. Their
idea is to estimate a potential CP and then de-mean the observed
time series before and after the estimated CP separately. So, the
standard methods in Section 2.3 can be applied to estimate σ 2.
Their remedy mitigates the non-monotone problem, but it still
has some drawbacks. First, it allows a single CP only; and the
trend must be a piecewise constant. In reality, these assumptions
may not be satisfied (see Section 6.1). Second, the optimal band-
width is estimated by a parametric plug-in method proposed
by Andrews (1991). If the parametric model is misspecified,
its performance is doubtful. Recently, Jirak (2015) proposed a
similar de-trending method for estimating σ 2 robustly, but the
optimal bandwidth selection issue was not addressed.

In Wu (2004) and Wu and Zhao (2007), they proposed
using the first-order difference of nonoverlapping batch means

(NBMs) to construct robust estimators of σ 2. There are some
drawbacks. First, NBM-type estimators are less efficient than
the overlapping batch means counterpart in terms of mean-
squared error (MSE) (see Politis, Romano, and Wolf 1999).
Thus, their estimators have a significant loss in L2 efficiency. It
is worth noting that there is no trivial way to extend their NBM-
type estimators to the more efficient OBM-type estimators (see
Remark C.2 in the supplementary materials). Second, they did
not derive the optimal bandwidth.

Remark 2.1. Gonçalves and White (2002) proved that two block
bootstrap estimators (Künsch 1989; Politis and Romano 1994)
are consistent under a mild nonconstant mean structure, namely
Un := ∑n

i=1(μi − μ̄n)2/n = o(1/�), where � is the block size
used in the estimators, and μ̄n = ∑n

i=1 μi/n. However, Un =
o(1/�) does not hold if there is one nontrivial jump in mean.
For example, if μi = 1(i ≥ n/2), that is, the mean jumps from
0 to 1 at n/2, then Un → 1/4 �= 0. Gallant and White (1988)
documented similar results in the context of heteroscedasticity
and autocorrelation consistent (HAC) variance estimation. In
Theorem 6.8, they showed that standard HAC estimators are
biased unless the mean is a constant.

3. Jump Robustness

3.1. Motivation

Throughout Section 3, μ(·) is assumed to be a piecewise con-
stant function with J jumps, that is, f (x) ≡ 0. This assumption
will be relaxed in Section 4.1. Our proposal is to use a differenc-
ing technique consecutively (see Remark 3.1). If the number of
jumps J and the magnitude of jumps |ξ j−ξ j−1| are not too large,
then each value in the lag-1 difference sequence {Y i − Y i−1}n

i=2
is of mean zero approximately. In this case, we have

E

{
1

2(n − 1)

n∑
i=2

(Y i − Y i−1)
⊗2

}

≈ 1
2
(
2�0 − �1 − �

ᵀ
1
) = �0 − �1 .

So, the semi-average of the lag-1 difference sequence is a poten-
tial estimator of �0 − �1, the spread between the symmetrized
ACVF at lag 0 and lag 1. Similarly, a potential estimator of
�0 − �k is the semi-average of the lag-k difference sequence

�̂k := 1
2(n − |k| + 1)

n∑
i=|k|+1

(
Y i − Y i−|k|

)⊗2 ,

|k| = 0, 1, . . . , n − 1 . (5)
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The convention �̂ t := �̂�|t|�∧(n−1) is used for t ∈ R. The
summability of �k in (1) implies �L → 0 as L → ∞. Hence,
�̂L approximates �0 for large L. The bi-differencing estimator

�̂k(L) := �̂L − �̂k, |k| = 0, 1, . . . , n − 1 , (6)

is, thus, a potential estimator of �k when L is large. Observe
that the sample mean Ȳn is not involved in the definition of
�̂k(L), therefore, we can estimate the ACVFs without estimating
the mean μ. The concept of bi-differencing is new. The first
and second differencing operations (5) and (6) remove the first
and second-order offsets, that is, μ(·) and �0, respectively.
A graphical illustration of the bi-differencing concept can be
found in Section A of the supplementary materials. Using the
representation � = ∑∞

k=−∞ �k in (1), we may use a “naive”
estimator of � as follows:

�̂naive,n :=
�∑

k=−�

K(k/�)�̂k(L) =
�∑

k=−�

K(k/�)
(
�̂L − �̂k

)
,

(7)

where � ∈ N is a bandwidth, K(·) is a kernel function, and L =
c0� for some c0 ≥ 1.

However, MSE
(
�̂

[r,s]
naive,n

)
→ 0 slowly for all r, s ∈ {1, . . . , d}.

We demonstrate it through a simple Monte Carlo experiment
in Section B of the supplementary materials. An explanation
of the slow convergence of �̂naive,n is that the “same correction
term” �̂L is used for all �̂k, k = 0, . . . , �, in (7). So, the vari-
ance of the “aggregated correction term”

∑�
k=−� K(k/�)�̂L =

O(�)�̂L increases with � quadratically. This is a huge loss in
L2 efficiency because the variance of a standard ACM estimator
only increases with � linearly (see Andrews 1991, Proposition
1(a)). Our strategy is to replace �̂k(L) in (7) by �̂k(Lk) with an
appropriately chosen sequence {Lk ∈ R

+}k∈Z. This sequence
should satisfy the following two conditions.

1. (Bias condition) Lk ↑ ∞ as � ↑ ∞ for each k so that �̂Lk ≈
�0 for each k. It ensures that �̂k(Lk) = �̂Lk − �̂k is able to
accurately approximate �k with a small bias.

2. (Variance condition) Lk ↑ ∞ as |k| ↑ ∞ for each � so that
asymptotically different correction terms �̂L0 , . . . , �̂L�

are
used to correct �̂0, . . . , �̂� for each �. Since �̂L0 , . . . , �̂L�

are
not perfectly correlated, it help reducing the variance of the
new “aggregated correction term”

∑�
k=−� K(k/�)�̂Lk .

Hence, Lk should be increasing with � and |k|. One choice of
such Lk is a linear combination of � and |k| with positive weights,
that is, Lk = c0� + c1|k|, c0, c1 ∈ R

+. Note that �̂
[r,s]
naive,n sets

c1 = 0, which violates the variance condition. In the remaining
part of this article, we will demonstrate that Lk = c0� + c1|k| is
sufficient to produce optimal results (see Remark 3.2).

Remark 3.1. Difference-based estimators are not new. It has
been used in time series analysis and robust estimation (see,
e.g., Anderson 1971; Hall, Kay, and Titterinton 1990; Dette,
Munk, and Wagner 1998; Hall and Horowitz 2013). However,
they are restricted to the estimation of the marginal variance �0.
Differently, we aim at estimating the ACM � =∑k∈Z �k. It is a
harder problem than estimating �0, and requires a new tech-
nique called bi-differencing. Our bi-differencing technique is

partially motivated by the bipower variation (Barndorff-Nielsen
and Shephard 2004) in the context of testing for jumps in a
continuous time series.

Remark 3.2. As we will show in Theorems 3.1 and 3.2, a lin-
ear form of Lk already achieves the optimal convergence rate.
Although an incremental improvement maybe possible by using
a more general form of Lk, we leave it for future investigation.

3.2. Proposed Robust Estimators and Overview of Main
Results

For estimation of �, we can use the polynomial kernel Kq(x) =
(1 − |x|q)1{|x| ≤ 1} for some q ∈ N. Then the jump robust
estimator of the ACM � is defined by

�̂0,q,n : =
�∑

k=−�

Kq(|k|/�) · �̂k

=
�∑

k=−�

{
1 −

∣∣∣∣k�
∣∣∣∣q} {�̂c0�+c1|k| − �̂k

}
, (8)

where � = �n ∈ N ∩ (1, n). Using other kernels in (8), for
example, QS(·), is also possible, however, we only focus on the
polynomial kernel Kq(·) in this article to avoid complication.
Extension to other kernels is routine. Users may choose their
favorite kernel and their favorite sequence Lk. Relative to �,
these choices have slightly less impact on �̂p,q,n at least in the
first-order asymptotic. The effect of kernel choice on higher
order asymptotic (see, e.g., Lazarus et al. 2018) is theoretically
interesting. However, it is beyond the scope of this article. We
leave it for future research.

Suppose that �q :=∑∞
k=−∞ |k|q�k exists and its entries are

finite. Under the conditions in Theorems 3.1, 3.2, and part (1) of
Corollary 4.1 (to be presented in Sections 3.3 and 4.1), the value
of MSE

(
�̂

[r,s]
0,q,n

)
= E

(
�̂

[r,s]
0,q,n − �[r,s]

)2
is given by

MSE
(
�̂

[r,s]
0,q,n

)
∼
(
�[r,s]

q

)2 1
�2q

+
[

4q2 (1 + c1) {�[r,r]�[s,s] + (�[r,s])2}
(q + 1)(2q + 1)

]
�

n
(9)

for each r, s. Hence, if � = O(n1/(1+2q)), then MSE
(
�̂

[r,s]
0,q,n

)
=

O(n−2q/(1+2q)), which is the optimal convergence rate achieved
by the standard estimators (see, e.g., Andrews 1991). In other
words, the proposed robust estimator �̂0,q,n is rate-optimal in
the L2 sense.

From (9), the MSE of the proposed estimator �̂
[r,s]
0,q,n depends

on �
[r,s]
q . Hence, its MSE-optimal bandwidth � also depends on

�q. As a result, a robust estimator of �q is also important for
estimating the optimal bandwidth. This phenomenon is similar
to the classic results in non-robust estimation of � (see, e.g.,
Andrews 1991). It motivates us to study robust estimation for
all �0, �1, �2, . . .. Similar to (8), our proposed jump robust
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Table 2. Summary of the statistical meanings of p, q, P and their associated quan-
tities.

Order Related quantity Statistical meaning

p �p =∑k∈Z |k|p�k The estimand is �p . If p = 0,
�0 ≡ � reduces to the ACM (1).

q Kq(t) = (1 − |t|q)1(|t| ≤ 1) The qth order kernel Kq(·) is used in
the estimator �̂p,q,n.

P ≡ p + q ϒP =∑k∈Z |k|P|�k| If ϒP is finite with a larger P, then
the autocorrelation is weaker.

estimator of �p =∑k∈Z |k|p�k (p ∈ N0) is defined as

�̂p,q,n := �̂p,q,n (Y1:n, �, c0, c1) :=
�∑

k=−�

Kq(|k|/�) · |k|p · �̂k.

(10)

The statistical meanings of p and q are summarized in the first
two rows of Table 2.

3.3. Theoretical Results

We develop a general estimation procedure which takes various
levels of serial dependence into account. For each P ∈ N0, define
ϒP := ∑∞

k=−∞ |k|P |�k|. The finiteness of ϒP characterizes
the strength of serial dependence, thus it is usually served as
an assumption for proving consistency of estimators (see, e.g.,
Politis 2011, Theorem 1). More precisely, we follow Chan and
Yau (2017b) to define the coefficient of serial dependence of
{Xi} by

CSD(X) := sup
{

P ∈ N0 : ϒ
[•,•]
P < ∞

}
, where

ϒ
[•,•]
P := max

r,s∈{1,...,d}
ϒ

[r,s]
P . (11)

Clearly, the larger the value of CSD(X), the weaker the serial
dependence. For example, consider a univariate fractional Gaus-
sian noise process (Davies and Harte 1987) defined as a Gaussian
process with ACVF �k = a(|k|+ c)−b for each k, where a, c > 0
and b ≥ 1. In this model, ϒP < ∞ if and only if P < b − 1.
Hence, CSD(X) = 	b − 1
. More examples and their associated
values of ϒP can be found in Appendix B of Chan and Yau
(2017b). Some multivariate examples can be found in Section
C.3 of Chan and Yau (2017a). As we shall see in Section 3.3.1,
the assumption of CSD plays a critical role in controlling the
bias of the estimator �̂p,q,n.

Asymptotic theories are built on the framework of depen-
dence measures (see Wu 2005). Recall that Xi = g(Fi) and
Fi := (. . . , εi−1, εi) (see Section 2.1). Let ε′

j be an iid copy of εj.
Denote Xi,{j} := g(Fi,{j}) and Fi,{j} := (Fj−1, ε′

j, εj+1, . . . , εi).
Define the physical dependence measure and its aggregated value
by, respectively,

δ
[u]
4,i :=

∥∥∥X[u]
i − X[u]

i,{0}
∥∥∥

4
and 


[u]
4 :=

∞∑
i=0

δ
[u]
4,i .

For example, consider a univariate linear process (Brockwell and
Davis 1991, Definition 3.2.1) defined as Xi =∑∞

j=0 cjεi−j, where
{cj} are real coefficients such that

∑∞
j=0 |cj| < ∞, and {εj} are

iid noises such that E|ε0|4 < ∞. Then δ
[1]
4,i = K|ci| for each

i, and 

[1]
4 = K

∑∞
j=0 |cj| < ∞, where K = ‖εi − ε′

i‖4 < ∞.
More univariate examples and their associated values of physical
dependence measures can be found in Examples 1–11 of Wu
(2011). Also see Models I–VI in Example 1 of Chan and Yau
(2017a) for some multivariate examples. Finiteness of 


[•]
4 :=

maxu∈{1,...,d} 

[u]
4 (i.e., Assumption 3.1) is a mild and easily-

verifiable condition for studying asymptotic properties (see Wu
(2007)).

Assumption 3.1 (Short range dependence). The time series {Xi}
satisfies 


[•]
4 < ∞.

Assumption 3.1 rules out time series having very strong serial
dependence, for example, time series with �[r,s] = ∞. Indeed,
Assumption 3.1 implies the existence of �. More importantly,
it leads to the invariance principle for the (scaled) partial sum∑	tn


i=1 Xi/
√

n for 0 ≤ t ≤ 1. It is required for deriving the vari-
ance of �̂p,q,n. Assumption 3.1 is satisfied by many important
time series models, including the aforementioned linear process,
ARMA and BL models (see, e.g., Wu 2005; Liu and Wu 2010).
Note also that some parallel formulations of dependence like
strong mixing coefficient (Rosenblatt 1985) have been widely
adopted by researchers. However, the mixing type assumptions
are sometimes difficult to verify. On the contrary, Assump-
tion 3.1 is more easily verifiable (see Wu 2011).

We also need to regularize the size of the bandwidth �.
Denote J := {1, . . . , J} and Ju :=

{
j ∈ J : μ

[u]
Dj−1

�= μ
[u]
Dj

}
for

u = 1, . . . , d.

Assumption 3.2 (Conditions on �). The bandwidth � = �n
satisfies (i) � → ∞ as n → ∞, (ii) � = o(n) as n → ∞,
and (iii) {(c0 + c1) ∨ 1}� ≤ infu∈{1,...,d} inf j∈Ju

(
Dj+1 − Dj

)
.

In Assumption 3.2, conditions (i) and (ii) require that the
size of � cannot be too small or too large, respectively. These
conditions are commonly required in the small-� subsampling
approach (i.e., �/n → 0) (see Politis, Romano, and Wolf 1999).
Condition (iii) states that two consecutive CPs cannot be too
close within the same component of the time series. Indeed,
condition (iii) is stronger than needed but it makes derivations
easier.

3.3.1. Bias and Variance Expressions
Let χ := 1

{
c1 �= 1 − c0Fp,q

}
, where Fp,q := (p + 2)(p + q +

2)/{(p + 1)(p + q + 1)}. Also let

an := sup
u∈{1,...,d}

sup
j∈Ju

∣∣∣μ[u]
j − μ

[u]
j−1

∣∣∣ .

Also recall that J = Jn denotes the number of CPs (see (2)). The
bias of the jump robust estimator, Bias

(
�̂

[r,s]
p,q,n

)
:= E

(
�̂

[r,s]
p,q,n

)
−

�
[r,s]
p , is given below.

Theorem 3.1 (Bias of the estimator). Suppose that X1 ∈ L2,
f (x) ≡ 0, CSD(X) = P ≡ p + q, and Assumption 3.2
holds, where p ∈ N0 and q ∈ N. Then, for c0, c1 ∈ R

+ and
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r, s ∈ {1, . . . , d},

Bias
(
�̂

[r,s]
p,q,n

)
= − 1

�q �
[r,s]
p+q + rbias

n , (12)

rbias
n = O

{
�p+1

n

(
�χ + �2

n

)
a2

nJn

}
+ o

(
1
�q

)
.

In Theorem 3.1, the assumption CSD(X) = p + q controls
the rate of decay of ACVF. For a fixed p, if the value of CSD(X) is
larger, then q is larger, and the autocorrelation is weaker. Conse-
quently, the autocorrelation at large lags only introduce a small
bias to �̂

[r,s]
p,q,n. Hence, it makes sense that the magnitude of the

leading term of the bias in (12), that is, |�[r,s]
p+q|/�q = O(1/�q), is

decreasing with q. Besides, Jn and an determine the frequency of
the CPs and the magnitude of the jumps, respectively. From (12),
if a2

nJn is not too large so that rbias
n = o(1/�q), the dominating

term of the asymptotic bias is −�
[r,s]
p+q/�

q. Consequently, �̂
[r,s]
p,q,n

is asymptotically unbiased as � → ∞. Technical conditions for
controlling rbias

n are discussed in Corollary 4.1. Moreover, c0 and
c1 do not affect the first-order asymptotic bias of �̂p,q,n.

Define �[r,s] := �[r,r]�[s,s] +(�[r,s])2. The variance of �̂
[r,s]
p,q,n

is given below.

Theorem 3.2 (Variance of the estimator). Suppose that X1 ∈ Lν

for ν > 4, f (x) ≡ 0, and Assumptions 3.1 and 3.2 hold. If p ∈
N0, q ∈ N, c0, c1 ∈ R

+ and r, s ∈ {1, . . . , d}, then

var
(
�̂

[r,s]
p,q,n

)
= 4q2 (1 + c1) �[r,s]�1+2p

(2p + 1)(2p + q + 1)(2p + 2q + 1)n
+ rvar

n ,

(13)

rvar
n = O

[
�1+2p

n

{
�2

n
(
1 + a2

nJn
)+ o(1)

}]
.

Theorem 3.2 requires Assumption 3.1 because its proof relies
on the invariance principle, which is guaranteed by Assump-
tion 3.1 (see, e.g., Wu 2005). However, the detailed strength of
serial dependence (i.e., the CSD) is not important for deriving
(13). Besides, unlike the asymptotic bias, the variance of �̂p,q,n
depends also on Lk. However, only c1 but not c0 is relevant. Since
c1 determines the speed of divergence of Lk as k → ∞, the
variance in (13) is naturally increasing with c1. Note that c0 and
c1 are not tuning parameters for balancing the leading terms of
the bias and variance because c0 and c1 are not involved in (12).
Although c0 and c1 can be chosen optimally by balancing the
second-order bias and variance, that is, rbias

n and rvar
n , the effect

on �̂
[r,s]
p,q,n is relatively incremental.

Consider � = O(nθ ) for some θ ∈ (0, 1). The MSE-
optimal value of θ can be found by balancing the squared-bias
and variance of �̂

[r,s]
p,q,n so that the MSE is minimized. Assume

a2
nJn → ∞ sufficiently slow so that rbias

n = o(1/�q) and
rvar

n = o(�1+2p/n) (see Corollary 4.1 for explicit conditions to
guarantee that). In this case, Theorems 3.1 and 3.2 imply that

MSE
(
�̂

[r,s]
p,q,n

)
=
{

Bias
(
�̂

[r,s]
p,q,n

)}2 + var
(
�̂

[r,s]
p,q,n

)
= O(1/�2q) + O(�1+2p/n). (14)

If � = O(nθ♦
), then (14) achieves its minimum order, that is,

MSE
(
�̂

[r,s]
p,q,n

)
= O(n−λ♦

), where

θ♦ := 1/(1 + 2p + 2q) and λ♦ := 2q/(1 + 2p + 2q).
(15)

Note that the superscript “♦” indicates optimal values. It is
worth mentioning that the robust estimator �̂p,q,n achieves the
same optimal L2 convergence rate as the non-robust counter-
parts (see, e.g., Andrews 1991; Chan and Yau 2017b).

3.3.2. Theoretically Optimal Bandwidth
In this subsection, we derive the optimal � ∼ φnθ♦ , φ ∈ R

+,
such that the MSE of �̂p,q,n is optimized up to the first order
including its proportionality constant.

Suppose rbias
n = o(1/�q) and rvar

n = o(�1+2p/n). Let W be
a weight matrix specifying the entry-wise importance of �p.
For example, W = (1{r ≤ s})d

r,s=1 puts equal weight on each
element of the upper triangular part (including the diagonal)
of �p. Write W � 0 if W[r,s] ≥ 0 for all r, s, and W[r,s] > 0
for at least one pair of r, s. From now on, assume W � 0.
Denote W := diag{vec(W)} (see Section 2.2 for the definitions
of diag(·) and vec(·)). Then the optimal value of φ is the mini-
mizer of

AMSEp,q,W
(
�̂p,q,•

)
:= lim

n→∞ n2q/(1+2p+2q)

MSEW
(
�̂p,q,n

)
, where

MSEW
(
�̂p,q,n

)
:= E

[{
vec
(
�̂p,q,n − �p

)}ᵀ
W
{

vec
(
�̂p,q,n − �p

)} ]
. (16)

The weighted MSE (16) is a generalization of the L2 risk under
the Frobenius norm ‖ · ‖F because, for any square matrix A,
{vec(A)}ᵀW{vec(A)} = tr(AᵀA) = ‖A‖2

F if W = 11ᵀ. Similar
weighting rule is also adopted by Andrews (1991) and Chan and
Yau (2017a). By Theorems 3.1 and 3.2, the optimal value of φ is
φ♦, where

φ♦ := φ♦
p,q :=

{
(2p + q + 1)(2p + 2q + 1)κp+q

2q(1 + c1)

}θ♦

, (17)

κp+q := (vec �p+q)ᵀW(vec �p+q)

(vec 	)ᵀW(vec 	)

= (vec �p+q)ᵀW(vec �p+q)

(vec �)ᵀW(vec �) + tr{W(� ⊗ �)} . (18)

Here A ⊗ B is the Kronecker’s product of A and B. Note that
the size of the optimal bandwidth �♦ ∼ φ♦nθ♦ depends on two
parameters θ♦ and φ♦.

• The parameter θ♦ = 1/(1 + 2P) controls the divergence
rate of �♦ = O(nθ♦

). Recall, from Table 2, that if P is
small, then the serial dependence is strong. Hence, it makes
sense to have a larger optimal bandwidth �♦ to cover more
autocovariances.

• The parameter φ♦ controls the leading coefficient of �♦.
The value of φ♦ depends on the unknown κp+q. We inter-
pret this quantity for univariate {Xi}. In this case, κp+q =
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(�p+q/�)2/2, which is not purely increasing with the
strength of autocorrelation. Indeed, it also depends on the
sign of autocorrelation. For example, if �k = ρk for some
ρ ∈ (−1, 1), then κ2 = 2ρ2/(1 − ρ)4, which is not
an increasing function of |ρ|. This interesting phenomenon
also exists in the standard variance estimation (see Andrews
1991, (5.1) and (5.2)). Estimation of φ♦ is presented in
Section 4.3.

Formula (17) handles all entries of � simultaneously. If the
dependence structures of {Xi} vary dramatically across entries,
we may construct entry-adaptive optimal bandwidth. Let eu :=
(0, . . . , 0, 1, 0, . . . , 0)ᵀ be the uth elementary d-vector, that is,
e[v]

u = 1{v = u} for all v ∈ {1, . . . , d}. Setting W = ereᵀs ,
we can produce the optimal bandwidth for the (r, s)th entry of
�. The resulting optimal asymptotical MSE (AMSE) of �̂

[r,s]
p,q,n is

given by

nλ
♦
p,q E
(
�̂

[r,s]
p,q,n − �

[r,s]
p

)2

→ 1
1 − λ♦

{
λ♦(1 + c1)

2p + q + 1

}λ♦

�[r,s]

⎧⎪⎨⎪⎩
(
�

[r,s]
p+q

)2

�[r,s]

⎫⎪⎬⎪⎭
1−λ♦

.

(19)

4. Extension, Discussion, and Implementation

4.1. Extension to Trend Robustness

In this section, we consider the full generalization of {Y i}, that
is, the assumption f (x) ≡ 0 is removed. We measure the amount
of fluctuation of f = f n by

bn := sup
u∈{1,...,d}

sup
x,x′∈[0,1]

∣∣∣∣∣ f [u]
n (x) − f [u]

n (x′)
x − x′

∣∣∣∣∣ ,

which is small if the fluctuation of f n does not grow too fast
with n. The following two theorems state the bias and variance
of �̂p,q,n when μ(·) consists of jumps and trends.

Theorem 4.1 (Bias of the estimator). If the assumption f (x) ≡ 0
is removed, then, under all other conditions in Theorem 3.1,
(12) is satisfied with rbias

n being replaced by Rbias
n = rbias

n +
O
{
�p+3(b2

n + Jnanbn)/n2} .

Theorem 4.2 (Variance of the estimator). If the assumption
f (x) ≡ 0 is removed, then, under all other conditions in
Theorem 3.2, (13) is satisfied with rvar

n being replaced by Rvar
n =

rvar
n + O

(
�4+2pb2

n/n3) .

The optimal bandwidth in (17) and the optimal MSE in
(19) remain valid, provided that Rbias

n = o(1/�q) and Rvar
n =

o(�1+2p/n). Consequently, �̂p,q,n achieves the optimal conver-
gence rate even in the presence of jumps and continuous trends.
The remainder terms Rbias

n and Rvar
n are influenced by (i) the

jump effect a2
nJn, (ii) the trend effect b2

n, and (iii) their joint effect
anbnJn. Using these three factors, we define the following classes

of mean functions:

M♦ :=
{
μ(·) : a2

nJn = o
(

nθ♦(p+q−χ)
)

,

anbnJn + b2
n = o

(
nθ♦(3p+3q−1)

)}
,

M :=
{
μ(·) : a2

nJn = o
(

nθ♦(p+2q−χ)
)

,

anbnJn + b2
n = o

(
nθ♦(3p+4q−1)

)}
.

Both M♦ and M include only reasonably well-behaved mean
functions μ(·) such that the aforementioned effects (i), (ii), and
(iii) are small. Clearly, M♦ ⊆ M. Simple conditions to control
Rbias

n and Rvar
n are given below.

Corollary 4.1. Assume the conditions in Theorems 4.1 and 4.2.
Let � = O(nθ♦

).

1. If μ(·) ∈ M♦, then Rbias
n = o(1/�q) and Rvar

n = o(�1+2p/n).
2. If μ(·) ∈ M, then Rbias

n = o(1) and Rvar
n = o(1).

The above results remain valid if Rbias
n and Rvar

n are replaced by
rbias

n and rvar
n , respectively.

Corollary 4.1 ensures that �̂p,q,n is L2 consistent if μ(·)
belongs to the well-behaved class M. If μ(·) belongs to a more
well-behaved class M♦, we also have the optimal results (17)
and (19), which imply that the convergence rate of the estimator
�̂p,q,n is not affected by jumps and trends. However, the standard
(non-robust) estimators, for example, �̂OBM,n in (3) and �̂QS,n
in (4), are not guaranteed to be consistent if μ(·) ∈ M.

For example, consider the estimator ̂�0,2,n with � = O(n1/5),
and any c0 > 0 and c1 ≥ 1. It is L2 consistent, and satisfies the
optimal results (17) and (19) if μ(·) belongs to

M♦ = {μ(·) : a2
nJn = o(n1/5), anbnJn + b2

n = o(n)}. (20)

The class M♦ in (20) includes (but not restricted to) mean
functions having piecewise Lipschitz continuous trends with
at most Jn = o(n1/5) bounded jumps. Note that such Jn is
allowed to be divergent to infinity as n → ∞. See the last
row of Table 1 for a summary and a comparison with existing
robust estimators. We illustrate Corollary 4.1 through a simple
simulation experiment. Let Xi = 0.5Xi−1 + 0.5εi−1 + εi, where
εi

iid∼ N (0, 1). Consider

μ(t) = 41(0.2 ≤ t < 0.3) + 2e2t + sin(8π t), (21)

which consists of two CPs, an exponentially increasing trend,
and a periodic structure. In this case, an = 4, bn = 4(e2 + 2π),
and Jn = 2. Hence, the mean function (21) is a member of the
class M♦ defined in (20). Figure 1(a) shows a typical realization
of Yi = Xi + μi (1 ≤ i ≤ 400). The density functions of �̂0,2,n
and �̂QS,n are shown in Figure 1(b). The proposed estimator
�̂0,2,n concentrates at around the true value � = 9, however,
the standard estimator �̂QS,n is obviously off the targeted value.

4.2. Comparison With Standard Estimators

The estimator �̂p,q,n sacrifices statistical efficiency to gain
robustness. In this section, we investigate how much efficiency
is lost.
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Figure 1. (a) A typical realization of the time series with the mean function defined
in (21). (b) The density functions of �̂0,2,n and �̂QS,n when n = 400. The true value
is � = 9.

The proposed robust estimator �̂0,1,n uses the Bartlett kernel
K1(·) ≡ Bart(·). So, we compare it with the standard non-
robust Bartlett kernel estimator �̂Bart,n defined in (4). Denote
the optimal bandwidths for �̂0,1,n and �̂Bart,n by �

♦
0,1 and �

♦
Bart,

respectively. According to (15) and (17), and Equation (5.2) of
Andrews (1991), they are given by

�
♦
0,1 ∼

(
3κ1n

2(1 + c1)

)1/3
and �

♦
Bart ∼

(
3κ1n

2

)1/3
,

respectively, where κ1 is defined in (18). Denote the resulting
optimal estimators by �̂

♦
0,1,n and �̂

♦
Bart,n, respectively. The ratio

of their weighted MSEs (see (16)) is given below.

Proposition 4.1. Assume the conditions in Theorems 3.1 and 3.2.
Let c0, c1 > 0, W � 0, and μ(t) = 0 for all t ∈ [0, 1]. Then
MSEW

(
�̂

♦
0,1,n

)
/MSEW

(
�̂

♦
Bart,n

)
→ (1 + c1)

2/3 > 1.

According to Proposition 4.1, the non-robust estimator
�̂

♦
Bart,n is more efficient than the robust estimator �̂

♦
0,1,n asymp-

totically. It makes sense. Note that the efficiency loss is smaller
if c1 is smaller. However, in finite sample, setting c1 ≈ 0 may
degenerate the estimator to the naive estimator �̂naive,n defined
in (7). Hence, using a small c1 > 0 is suggested only if the sample
size n is extremely large. Practical suggestion on selecting c1 is
discussed in Section 4.3.

Besides, we also compare our estimator with the most
promising (univariate) robust estimator proposed by Wu,
Woodroofe, and Mentz (2001), Wu (2004), and Wu and Zhao
(2007), namely,

σ̂ 2
WZ3,n := �

2(m − 1)

m∑
k=2

(Ak − Ak−1)
2, (22)

where m = 	n/�
, and Ak = �−1∑k�
i=1+(k−1)� Yi is the kth

non-overlapping batch mean (NBM) for k = 1, . . . , m. The
optimal MSE of σ̂ 2

WZ3,n was not derived by the authors. For
reference, we derive it under the constant mean assumption.
Applying similar techniques as in Theorems 3.1 and 3.2, we have
Bias

(
σ̂ 2

WZ3,n
) ∼ −�1/� and var

(
σ̂ 2

WZ3,n
) ∼ 7�2�/(2n). The

optimal bandwidth is � ∼ {4�2
1n/(7�2)}1/3. Consequently,

MSE(�̂0,1,n)/ MSE(̂σ 2
WZ3,n) → {8(1 + c1)/21}2/3. In partic-

ular, when c1 = 1, our estimator �̂0,1,n is uniformly better
than σ̂ 2

WZ3,n, and satisfies that MSE(�̂Bart,n) : MSE(�̂0,1,n) :
MSE(̂σ 2

WZ3,n) ≈ 1.00 : 1.59 : 1.90 when n is large and their
respective optimal bandwidths are used.

4.3. Choices of q, c0, c1, and 


The best estimator in Wu and Zhao (2007) has a MSE of size
O(n−2/3), whereas our proposed estimator �̂0,q,n has a much
smaller MSE, that is, O{n−2q/(1+2q)}, if q > 1. In practice, if
there is no prior information, we suggest q = 2, that is, assuming
CSD(X) = 2, which is essentially equivalent to the assumption
(ϒ2 < ∞) made by Paparoditis and Politis (2001).

Although we develop theories for all c1 > 0, it makes little
sense to use c1 ∈ (0, 1) statistically and intuitively. To see it,
observe that �̂k(Lk) = �̂Lk − �̂ |k| is a reasonable estimator
of �k only if Lk > |k|, which is satisfied for all k if and only if
c1 ≥ 1. Hence, it is sensible (but not necessary) to assume c1 ∈
[1, ∞), among which c1 = 1 minimizes the AMSE. So, c1 = 1 is
suggested in practice. For q > 1, �̂p,q,n has the same AMSE for
any c0 > 0, hence, c0 does not affect the asymptotic behavior.
We illustrate in Section C.4 of the supplementary materials that
the finite sample performance of �̂p,q,n is essentially the same
for any c0 that is not close to zero. In practice, we suggest using
c0 = 1 as a default choice.

If an initial pilot estimate of �p is needed, we can use �̂p,q,n

with a rate optimal bandwidth � = O(nθ♦
). In practice, we

suggest � = [[2nθ♦]], where [[t]] := (2∨�t�)∧(n−1). According
to our simulation experience, this rule-of-thumb bandwidth
gives reasonably good performance. Using the notation in (10),
we denote the resulting pilot estimator by

�̂
†
p,q,n := �̂p,q,n

(
Y1:n, � = [[2n1/(1+2p+2q)]], c0 = 1, c1 = 1

)
.

(23)

In particular, for estimating � ≡ �0, our recommended default
estimator is as simple as

�̂
†
0,2,n =

�∑
k=−�

(
1 −

∣∣∣∣k�
∣∣∣∣2
) (

�̂�+|k| − �̂ |k|
)

, (24)

where � = [[2n1/5]] and �̂h = {2(n−|h|+1)}−1∑n
i=|h|+1(Y i −

Y i−|h|)⊗2. If a more accurate estimate of �p is needed, we can
use �̂p,q,n with a fully optimal bandwidth � ∼ φ♦nθ♦ . From
(17), φ♦ is a function of � and �p+q. So, the value of φ♦
is unknown. We propose to first estimate � and �p+q by the
pilot estimators �̂

†
0,2,n and �̂

†
p+q,2,n. Then φ♦ is consistently

estimated by plugging in these estimated values into (17) and
(18), that is,

φ̂♦ :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2p + q + 1)(2p + 2q + 1)

(vec ̂�
†
p+q,2,n)

ᵀW(vec ̂�
†
p+q,2,n)

2q(1 + c1)(vec �̂
†
0,1,n)

ᵀW(vec �̂
†
0,2,n)

+ tr{W(�̂
†
0,2,n ⊗ �̂

†
0,2,n)}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

1/(1+2p+2q)

.

(25)

Using �̂♦ := [[φ̂♦nθ♦]], the estimator �̂p,q,n is equipped with the
optimal bandwidth asymptotically. The resulting estimator

�̂
‡
p,q,n := �̂p,q,n

(
Y1:n, � = [[φ̂♦n1/(1+2p+2q)]], c0 = 1, c1 = 1

)
(26)
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Algorithm 1: Proposed MAC estimator �̂
‡
p,q,n for estimat-

ing �p

[1] Input:
[2] (i) Y1:n—d-dimensional time series;
[3] (ii) p—order of the estimand �p (set p = 0 for

estimation of the ACM �);
[4] (iii) q—order of the polynomial kernel Kq(·) (set q = 2

by default);
[5] (iv) c0, c1—parameters (set c0 = c1 = 1 by default); and
[6] (v) W—d × d weight matrix (set W[r,s] = 1{r ≤ s} for

each 1 ≤ r, s ≤ d by default).
[7] begin
[8] Compute �̂

†
0,2,n and �̂

†
p+q,2,n according to (26);

[9] Compute φ̂♦ according to (25);
[10] Compute the estimated optimal bandwidth

�̂♦ = [[φ̂♦n1/(1+2p+2q)]];
[11] Compute �̂

‡
p,q,n = �̂p,q,n

(
Y1:n, � = �̂♦, c0, c1

)
according to (10).

[12] return �̂
‡
p,q,n – MAC estimator of �p.

is called the qth order MAC estimator of �p. It can be computed
by Algorithm 1. The R-packageMAC is built for implementing it.

4.4. Discussion on Robustness to Heteroscedasticity

Thus far we have assumed that the noise sequence {Xi} is sta-
tionary (i.e., without heteroscedasticity). Now, suppose that {Xi}
is not stationary but satisfies E(Xi) = 0. In this case, we define
the finite-n version of �0 = limn→∞ n var

(
Ȳn
)

by

�0,n := n var
(
Ȳn
) = nE

(
X̄nX̄ᵀ

n
)

= 1
n
∑∑
1≤i,j≤n

E
(

XiXᵀ
j

)
=
∑
|k|<n

�k,n, (27)

where �k,n =∑n
i=1+|k| E(XiXᵀ

i−|k|+Xi−|k|Xᵀ
i )/(2n). Following

the arguments in Section 3.1, it is not hard to see that �̂k(L)

still approximates �k,n. Thus, it is not surprising that the pro-
posed estimator �̂p,q,n continues to be consistent for �p,n :=∑

|k|<n |k|p�k,n. Similar to Section 8 of Andrews (1991), we
can extend the consistency results to heteroscedastic time series.
Suppose the regularity conditions of Theorem 4.1, Theorem 4.2,
and part (1) of Corollary 4.1 are satisfied except the following
changes.

• The stationarity of the noise sequence {Xi} is removed. How-
ever, it still satisfies that there is some ν > 4 such that
Xi ∈ Lν and E(Xi) = 0 for all i ∈ Z.

• The assumption CSD(X) = p + q is changed to CSD∗(X) =
p + q, where

CSD∗(X) := sup⎧⎨⎩P ∈ N : max
r,s∈{1,...,d}

∞∑
k=−∞

|k|P sup
i≥1

E(X[r]
i X[s]

i−k) < ∞
⎫⎬⎭ .

We also define, for each P ∈ N0, that

�
[r,s]
P,∗ :=

∞∑
k=−∞

|k|P sup
i≥1

E(X[r]
i X[s]

i−k) and

�[r,s]∗ := �
[r,r]
0,∗ �

[s,s]
0,∗ +

(
�

[r,s]
0,∗
)2

.

Note that CSD∗(X) = P implies that �
[r,s]
P,∗ < ∞ and �

[r,s]∗ <

∞ for each r, s. Under the modified regularity conditions, the
conclusions of Theorems 4.1 and 4.2 are updated to

lim sup
n→∞

�2q
{

E
(
�̂

[r,s]
p,q,n

)
− �

[r,s]
p,n

}2 ≤
(
�

[r,s]
p+q,∗

)2
, (28)

lim sup
n→∞

n
�1+2p var

(
�̂

[r,s]
p,q,n

)
≤ 4q2 (1 + c1)�

[r,s]∗
(2p + 1)(2p + q + 1)(2p + 2q + 1)

(29)

for all r, s ∈ {1, . . . , d}. If � = O(n1/(1+2p+2q)), then (28) and
(29) imply that

lim sup
n→∞

n2q/(1+2p+2q)E
(
�̂

[r,s]
p,q,n − �

[r,s]
p,n

)2 ≤ C

for some C < ∞. Hence, �̂p,q,n is a consistent estimator of �p,n
with the optimal convergence rate. Examples and finite-sample
performance of �̂p,q,n in the heteroscedastic case are shown in
Section 5.3.

5. Finite Sample Performance

5.1. Efficiency and Robustness Against One Jump

We compare �̂0,q,n with the following estimators in terms of
efficiency and robustness.

• (CV) Crainiceanu and Vogelsang (2007) proposed to esti-
mate one potential CP D1 and then construct a de-trended
process, say {X̂CV

i }. The modified OBM estimator σ̂ 2
CV,n is

defined by applying the estimator (3) to {X̂CV
i } instead of {X̂i}.

Andrews (1991)’s AR(1)-plug-in rule is used for selecting the
optimal batch size.

• (WZ) Wu and Zhao (2007) used NBMs {Ak} to estimate σ 2.
They proposed σ̂ 2

WZ1,n := π�{4(m − 1)2}−1∑m
k=2 |Ak −

Ak−1|, σ̂ 2
WZ2,n := �(2z3/4)

−1 mediank∈{2,...,m} |Ak − Ak−1|,
and σ̂ 2

WZ3,n defined in (22), where mediank∈K xk denotes the
median of {xk}k∈K, and zp is the 100p% quantile of N (0, 1).
They showed, under regularity conditions, that σ̂ 2

WZ1,n and
σ̂ 2

WZ2,n are weakly consistent if � = [[n5/8]], and that σ̂ 2
WZ2,n

is L2 consistent with MSE(̂σ 2
WZ3,n) = O(n−2/3) if � � n1/3.

For σ̂ 2
WZ3,n, we implement it with the an estimated optimal

bandwidth by using our proposed estimator (see Section 4.2
for more details). Denote these three estimators by WZ1,
WZ2, and WZ3, respectively.

• (AC) Altissimoa and Corradic (2003) proposed using
Bartlett kernel estimator after locally detrending the mean.
The bandwidth is selected by cross-validation. Denote the
resulting estimator by σ̂ 2

AC,n. They proved that σ̂ 2
AC,n is con-

sistent (see Table 1).
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Figure 2. The values of log(MSE0) and log(MSEsd) are plotted against n, where MSE0 denotes the MSE when the jump size ξ = 0, and MSEsd denotes the standard
deviation of the MSEs across different ξ . Recall that smaller MSE0 and smaller MSEsd imply higher efficiency and robustness, respectively. Note that σ̂ 2

AC,n is computed only
when n ≤ 400 because it requires a computationally intensive cross-validation step. Note that horizontal axis is plotted in the logarithmic scale for better visualization.

• (MAC) We use the estimators �̂‡
0,1,n and �̂‡

0,2,n, as well as
the pilot estimator �̂†

0,2,n. Denote them by MAC(1), MAC(2),
and MAC(P), respectively.

Their detailed formulas are presented in Section C.1 of the
supplementary materials for reference. We recall from Table 1
that σ̂ 2

CV,n is robust to one CP without trend; σ̂ 2
WZ1,n, σ̂ 2

WZ2,n
and σ̂ 2

WZ3,n are proved to be robust to trends only; σ̂ 2
AC,n is only

proved to be robust to finitely many CPs; and the proposed
estimators �̂

♦
0,1,n and �̂

♦
0,2,n are robust to both trends and a

divergent number of CPs. If there is at most one CP, then σ̂ 2
CV,n

is an oracle estimator because, in practice, we rarely know that
there is at most one CP.

Consider the ARMA(1,1) model: Yi = Xi + μi where Xi =
aXi−1 + bεi−1 + εi and εi

iid∼ N (0, 1), for i = 1, . . . , n. In
particular, consider a = b = 0.2, 0.4, 0.6 (Models A1–A3,
respectively), n = 400 × 4j, j = 0, . . . , 3, and five different
mean sequences μi = ξ × 1{i ≤ n/2} for ξ = 0, . . . , 4.
The MSEs are estimated by using 2000 independent replications.
The lack of efficiency (MSE0) is measured by the MSE when
ξ = 0, whereas the lack of robustness is measured by the stan-
dard derivation (MSEsd) of the MSEs across ξ ∈ {0, 1, . . . , 4}.
Smaller MSE0 and smaller MSEsd imply higher efficiency and
robustness, respectively.

The results are shown in Figure 2. Clearly, σ̂ 2
WZ1,n and σ̂ 2

WZ2,n
perform badly in terms of both efficiency and robustness. The
major competitor σ̂ 2

WZ3,n performs reasonably well in terms

of both two measures, however, it is less efficient than all of
our proposed estimators (�̂‡

0,1,n, �̂‡
0,2,n, �̂†

0,2,n) in nearly all
cases. The estimator σ̂ 2

AC,n is quite efficient when the mean is
a constant, however, it loses all of its efficiency when the jump
size is large. For example, when n = 400, its MSE inflates 407%
when the jump magnitude ξ increases from 0 to 4. Besides, the
cross-validation step makes it computationally inefficient.

The proposed estimators �̂‡
0,1,n and �̂‡

0,2,n perform the best in
nearly all cases. The advantage of �̂‡

0,2,n is increasingly obvious
when n increases. The pilot estimator �̂†

0,2,n performs quite well,
so it is justifiable to use it as an initial guess. It is remarked
that �̂†

0,2,n performs very well in Model A3 because its default
tuning parameter accidentally matches the theoretically optimal
value. However, this privilege is not general (see, e.g., Figure 5
of another experiment in Section 5.3).

5.2. Robustness Against Trend and Multiple Jumps

In this subsection, we investigate the robustness against both
trends and jumps. Consider the same models of {Xi} in Sec-
tion 5.1, but the mean function is replaced by μi = (i/n)1{0.4 ≤
i/n < 0.7} + (5i/n − 4)21{i/n ≥ 0.7}. Figure 3 shows a typical
realization of {Yi} in Model A2. Observe that the trend effect
and jump effect are not obvious because they are masked by
the intrinsic variability of the noises {Xi}. This scenario mimics
the situation in which the observed time series looks stationary
but, indeed, it has been contaminated by a hardly noticeable
nonconstant trend and structural breaks.
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Figure 4. The values of log {MSE(·)} of different estimators are plotted against the sample size n in Models A1–A3. Here the mean function consists of nonconstant trends
and multiple jumps (see Section 5.2 and Figure 3). Note that horizontal axis is plotted in the logarithmic scale.
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Figure 3. Thin solid line: A realization of {Yi} in Model A2 of length n = 400. Thick
solid line: The nonconstant mean function {μi} in Section 5.2. Dotted vertical lines:
The change points.

The simulation result is visualized in Figure 4. First, the
MSE of the previous oracle estimator σ̂ 2

CV,n does not decrease
with n because it is no longer consistent when the mean is
not a piecewise constant function. The estimators σ̂ 2

WZ1,n and
σ̂ 2

WZ2,n perform poorly again. The estimator σ̂ 2
WZ3,n and our pro-

posed �̂‡
0,1,n, �̂‡

0,2,n, �̂†
0,2,n perform well. Among them, σ̂ 2

WZ3,n
performs least well, whereas �̂‡

0,2,n and �̂†
0,2,n perform most

promisingly. The take-home message is that even if the trend is
relatively insignificant, the impact on the estimators of σ 2 can be
catastrophic especially when the mean-structure is misspecified.

5.3. Multivariate Time Series With Heteroscedastic Errors

We consider estimation of �0,n (defined in (27)) for a bivariate
time series {Y i = (Yi1, Yi2)ᵀ}n

i=1 with time-varying means and
heteroscedastic errors. Let Yij = μij + τijXij for i = 1, . . . , n
and j = 1, 2, where μij is the mean, Xij is a stationary noise, and
τij creates heteroscedasticity. Two mean sequences are used: (i)
μij = 0 for all i, j, and (ii) μi1 = i/n, μi2 = 1 (i/n > 1/3). We
set τi1 = 1 + i/(4n), τi2 = 1 + sin(4π i/n)/(4n), and generate
{Xij} as follows:[

Xi1
Xi2

]
=
[

0.27 −0.09
−0.18 0.18

] [
Xi−1,1
Xi−1,2

]
+
[

0.01 −0.14
0.28 0.08

]
εi−1 + εi, i = 1, 2, . . . , n,
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Figure 5. The values of log{MSEW (·)} for �̂Bart,n , �̂QS,n , �̂
‡
0,1,n, �̂

‡
0,2,n and

�̂
†
0,2,n in the heteroscedastic case are plotted against n, where vec(W) =

(1, 1/2, 1/2, 1)ᵀ is used, and MSEW (·) is defined in (16). The left and right plots
show the results in the constant mean and nonconstant mean cases, respectively.
Note that the horizontal axes are plotted in the logarithmic scale.

where ε0, . . . , εn are independent standard bivariate normal
random vectors.

The proposed estimators �̂
‡
0,1,n, �̂‡

0,2,n, and �̂
†
0,2,n are evalu-

ated. We compare them with the standard Bartlett kernel estima-
tor �̂Bart,n and QS kernel estimators �̂QS,n (see (4)). The band-
widths of �̂Bart,n and �̂QS,n are selected by Andrews’s (1991)
vector AR(1)-plug-in rule. As far as we know, in the multivariate
setting, there exists no other estimator that is proved to be
consistent and optimal in the presence of nonconstant mean,
autocorrelation and heteroscedasticity. The results are shown
in Figure 5. We also repeat the experiment with homoscedastic
errors, that is, τij = 1 for all i, j. Since the results are very similar
to the heteroscedastic case, we only present the result in Figure
3 of the supplementary materials.

From Figure 5, all five estimators are consistent in the
constant-mean case. However, �̂Bart,n and �̂QS,n are no longer
consistent when the mean is not a constant. On the other hand,
the mean-structure does not affect the performance of �̂

‡
0,1,n,

�̂
‡
0,2,n, and �̂

†
0,2,n. It verifies the claimed consistency and robust-

ness. In addition, although the pilot estimator �̂
†
0,2,n does not

perform as well as the optimal estimator �̂
‡
0,2,n, it is still able to

give sufficiently good results. It supports the use of �̂
†
0,2,n as an

initial estimator in practice.
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5.4. Change-Point Detection

In this subsection, we consider the CP detection problem, that is,
to test H0 : EY1 = · · · = EYn against H1 : ∃D1 such that EY1 =
· · · = EYD1−1 �= EYD1 = · · · = EYn. We analyze (i)
whether CP tests are monotonically powerful with respect to the
magnitude of jump |EYD1 −EYD1−1|; and (ii) their power losses
under a misspecified alternative hypothesis.

Let Tn(k) := n−1/2∑k
i=1 X̂i be the CUSUM process of

X̂i = Yi − Ȳn. The standard KS test statistic is defined by
Tn := maxk∈{1,...,n} |Tn(k)/σ̂ |, where σ̂ is a consistent estimator
of σ . Then, H0 is rejected at 5% level if Tn > 1.358. Alternatively,
a self-normalized KS test (Shao and Zhang 2010) can be used.
Following them, we compare

• (SZ) their self-normalized KS test, and
• (KS) the standard KS tests with different estimators of σ 2,

namely, σ̂ 2
A,n, σ̂ 2

CV,n σ̂ 2
JX,n, σ̂ 2

WZ3,n, σ̂ 2
AC,n, and �̂‡

0,2,n, where
σ̂ 2

A,n is Bartlett kernel estimator with Andrew’s AR(1) plug-in
selector of �; the estimator σ̂ 2

JX is proposed by Juhl and Xiao
(2009); and all other estimators are defined in Section 5.1.

Detailed formulas of the above CP tests and estimators of σ 2

are presented in Section C.3 of the supplementary materials for
reference. Consider the bilinear model: Yi = Xi + μi where
Xi = (a + bεi)Xi−1 + εi and εi

iid∼ N (0, 1), for i = 1, . . . , n. The
physical dependence measure decays at the rate δ

[1]
4,n = O(�n),

where � = √
a2 + b2 (see Wu 2005, 2011). If � is larger, the

serial dependence is stronger. We use a = 0.33, 0.36, 0.39 and
b = 0.5, 0.6, 0.7 so that � = 0.6, 0.7, 0.8, respectively. Denote
them by Models B1–B3, respectively.

Both SZ and KS tests assume that the mean function is a
piecewise constant with one CP when H0 is false. If it is actually
the case, we call that the alternative hypothesis is correctly
specified, otherwise, the alternative hypothesis is said to be mis-
specified. We consider the following two alternative hypotheses
in the experiments:

• (correctly specified alternative) H1: μi = ξ × 1{i/n > 1/4}
for i = 1, . . . , n; and

• (misspecified alternative) H′
1: μi = ξ(1 + e−10i/n+5) ×

1{i/n > 1/4} for all i = 1, . . . , n,

where the value of ξ ∈ R controls the jump magnitude. If ξ = 0,
both H1 and H′

1 reduce to H0. In H1, the mean jumps to ξ at
i = 	n/4
+1, and then stays constant; whereas, in H′

1, the mean
shoots up at i = 	n/4
+1, and then decays to ξ . In practice, CP
may arrive like H′

1 instead of H1, hence, a good CP test should
be powerful in both cases. A good size-α CP test should satisfy
the following four properties, where α ∈ (0, 1).

• (Size correctness) The probability of rejecting H0 is close to
α when H0 is correct.

• (Powerfulness) The probability of rejecting H0 is high when
H0 is incorrect.

• (Monotonicity of power) The power is increasing with the
magnitude of jump |ξ |.

• (Robustness) The test is still powerful under misspecified
alternative hypotheses.

The simulation is conducted for n = 100, 400, 800 with
nominal size α = 5%. Since the results are similar under
different models, we only report the results under Model B2
here (see Figure 6). The full results are deferred to Section C.3
in the supplementary materials. The size-adjusted power curves
are also presented in the supplementary materials for reference.
Under H1, all tests except KS(A) and KS(JX) have monotonic
powers with respect to |ξ |. The test KS(WZ3) commits the Type
I error more frequently than the nominal value even when the
sample size is large. This over-size phenomenon is due to the
use of inefficiency estimator of σ 2. The power curves are largely
the same for KS(CV), KS(AC), and KS(MAC(2)) as they are
essentially the same test. Observe that SZ is significantly less
powerful when 0 < ξ < 1.

Under H′
1, all tests except KS(MAC(2)) and KS(WZ(3))

immediately lose all power when |ξ | > 0. In particular, SZ
remains powerless even when n and ξ are large. It is not desir-
able because SZ is very sensitive to whether the alternative
hypothesis is well-specified. For KS(A), KS(CV), KS(JX), and
KS(AC), they are not powerfully because of using inconsistent or
inefficient estimators of σ 2. It gives a sign of warning to use these
tests in practice. It is worth emphasizing that KS(WZ3) seems
more powerful than KS(MAC(2)). However, it is just because
KS(WZ3) rejects too frequently no matter H0 is true or not.
Hence, the apparently more powerful KS(WZ3) test is not reli-
able. Among all tests above, our proposed test KS(MAC(2)) is
the only monotonically powerful test that has accurate size and
is insensitive to misspecification of the alternative hypothesis.

6. Empirical Studies

6.1. Change Point Detection in S&P 500 Index

The Standard & Poor’s 500 (S&P 500) Index is a stock mar-
ket index based on 500 representative companies in the USA.
The daily adjusted close prices of the index, from 3 January
2006 to 30 December 2011 (n = 1511), are investigated.
The dataset can be downloaded from http://finance.yahoo.com/
quote/%5EGSPC/history. The financial crisis in 2008 is believed
to have a tremendous impact on the global stock market. We
suspect that it led to an abrupt change in the stock market.
Testing this claim is important since a noncontinuous impact
implies that the economy may have a structural change.

Denote the logarithm of the S&P 500 Index by Yi. Observe
that there is an obvious trend in Yi (see Figure 7). A standard
approach is to study the return series yi := Yi − Yi−1 to get
rid of the trend component. This differencing step is essen-
tial for many standard CP tests, for example, SZ and KS tests
presented in Section 5.4, because they cannot handle trends.
Using the CUMSUM-type CP estimator D̂1 (see (1) of the
supplementary materials for its formula), we estimate the CP to
be 10 March 2009. It is remarked that the same CP is detected
by the method described in Altissimoa and Corradic (2003).
Hence, the CP test fails to capture the 2008 financial crisis.
Indeed, testing H0: “Ey1 = · · · = Eyn” by the KS(MAC)
test defined in Section 5.4, we fail to reject H0 at 5% level.
We conclude that the 2008 financial crisis has no jump impact
on the return yi. Since taking the difference of Yi may cancel
out the potential jump effect, it seems desirable to analyze Yi

http://finance.yahoo.com/quote/%5EGSPC/history
http://finance.yahoo.com/quote/%5EGSPC/history
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Figure 6. The powers of the CP tests defined in Section 5.4 are plotted against the jump magnitude ξ under Model B2. The scenarios under well-specified alternative H1
and misspecified alternative H′

1 are shown in the upper and lower plots, respectively. Dashed horizontal lines indicate the significance level α = 5% and zero. Note that
horizontal axis is plotted in the logarithmic scale for better visualization.

directly (see Vogelsang 1999 for a similar analysis). Using the
CP test proposed by Wu and Zhao (2007), we can test H0: “The
mean function i �→ EYi is continuous” against H1: “The mean
function i �→ EYi has a jump-discontinuity.” The test statistic
is Qn := (knσ̂ )−1 maxkn≤i≤n−kn

∣∣∣∑kn+i
j=i+1 Yj −∑i

j=i−kn+1 Yj

∣∣∣ ,
where σ̂ 2 is a consistent estimator of σ 2, that is, the AVC of
{Yi}; and kn = 	n0.6
. Then H0 is rejected if Qn is large. Using
MAC(2) to estimate σ , we obtain σ̂ = 0.0517; and found that
H0 is rejected at any reasonable level. It is remarked that σ is
estimated to be 0.0434 by using the estimator WZ3. Although
this estimate is a bit smaller than our proposed estimate, the
same conclusion for testing H0 is obtained if this estimate is
used in the test statistic Qn. Although Wu and Zhao (2007) did
not provide any estimator of the CP, they argue that if i + 1 is a
discontinuity point, then the difference of the averages inside the
statistic Qn should be large. Following their idea, D̂WZ := 1 +
arg maxkn≤i≤n−kn

∣∣∣∑kn+i
j=i+1 Yj −∑i

j=i−kn+1 Yj

∣∣∣ is a reasonable
estimator of the CP. The estimated CP, D̂WZ, is 7 October 2008
(see Figure 7). It indicates the 2008 financial crisis quite accu-
rately. It coincides with our understanding of the stock market.

6.2. Simultaneous Change Point Detection in Several
Indices

Besides S&P 500 Index mentioned in Section 6.1, there are
several other stock market indices that are commonly used by

6.6

6.8

7.0

7.2

SP500 in log−scale

Year

lo
g
(S

P
5
0
0
)

2006 2007 2008 2009 2010 2011 2012

Estimated CP

Figure 7. Time series plot of {Yi}, that is, the daily S&P 500 Index (3 January 2006–30
December 2011) in the log scale (see Section 6.1). The vertical dotted line indicates
the value of D̂WZ estimated by the statistic in Wu and Zhao (2007). Here σ 2 is
estimated by MAC(2).

traders, for example, Dow Jones Index, Nasdaq Composite, and
Russell 2000. In this subsection, we investigate whether we can
make use of these four market indices simultaneously to make a
more precise detection of the 2008 financial crisis.

Consider the squared daily returns, which can be used as
proxies for daily volatilities, of the aforementioned four indices
in the period 1 July 2008–30 December 2008 (see Figure 8).
Applying the CUSUM-type CP estimator D̂1 (see (1) of the sup-
plementary materials for its formula) to each index individually,
we obtain the same CP 29 September 2018. It is remarked that
the no CP null hypothesis is rejected at 5% level by the test
KS(MAC(2)) for each individual index.
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Figure 8. The squared returns of four stock indices (1 July 2008–30 December 2008)
(see Section 6.2). The two vertical lines denote the CP locations. The earlier and
later CPs are detected by the multivariate and univariate CUSUM CP estimators,
respectively.

Since these stock market indices are highly correlated and
are believed to follow the market trend very closely, a CP (if
any) is likely to appear simultaneously. Hence, using multi-
variate time series for detecting a CP can be more accurate
and precise. Applying the multivariate version of the KS CP
test (Horváth, Kokoszka, and Steinebach 1999) to the four
indices, we detect the CP to be 15 September 2008. From Fig-
ure 8, the squared returns between 15 and 29 September are
slightly higher than the first portion of the series. Hence, using
multivariate time series helps detecting these small changes.
Consequently, multivariate tests are potentially more useful
in practice. It is also remarked that the no simultaneous CP
alternative is rejected at 5% level by the CP test (Horváth,
Kokoszka, and Steinebach 1999) with our proposed MAC(2)
estimator.

7. Conclusions

In this article, we propose an estimator of the ACM in non-
stationary time series. The estimator has several desirable fea-
tures: (i) it is robust against unknown trends and a diver-
gent number of jumps; (ii) it is optimal in the sense that an
asymptotically correct optimal bandwidth can be implemented
robustly; (iii) it is statistically efficient since it has the opti-
mal L2 convergence rate for different strength of serial depen-
dence; (iv) it is computationally fast because neither numerical
optimization, trend estimation, nor CPs detection is required;
and (v) it is handy because its formula can be as simple
as (24).

Some applications of the estimator are illustrated. In partic-
ular, we found that the CP test equipped with the proposed esti-
mator is the only available test which is monotonically powerful
and insensitive to a misspecified alternative hypothesis.

Supplementary Materials

Supplementary materials include graphical illustration, additional simula-
tion results, and proofs. The R-package MAC for computing the proposed
estimator is also provided.
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