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ABSTRACT
The novel mechanism of action of immunotherapy agents, in treatment of 
various types of cancer, poses unique challenges during the designing of 
clinical trials. It is important to account for possibility of a delayed treatment 
effect and adjust sample size accordingly. This paper provides an analytical 
approach for computing sample size in the presence of a delayed effect 
using a piece-wise proportional hazards model. Failing to account for an 
anticipated treatment delay may result in considerable loss in power. The 
overall hazard ratio (HR), which now represents the average HR across the 
entire treatment period, can remain a meaningful measure of average ben-
efit to patients in the trial. We show that, special consideration needs to be 
given for the designing of interim analyses related to futility, so as not to 
increase the probability of incorrectly stopping an effective agent. It is shown 
that the weighted log-rank test, using the Fleming-Harrington class of 
weights, can be used as supportive analysis to better reflect the impact of 
a delayed effect and possible long-term benefit in a subset of the overall 
population.
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1. Background

The recent development of immunotherapy agents in the treatment of advanced cancers and the 
promising efficacy results observed in various tumor types is changing the way patients are treated 
with these diseases. Immunotherapy utilizes the body’s immune system to fight the cancer. In simple 
terms, a healthy immune system can detect and destroy foreign objects in our body, including cancer 
cells. However, the tumor can escape detection of the immune system by activating certain inhibitory 
pathways, such as the programmed cell death 1 (PD-1) or its ligand, (PD-L1), which prevents the 
cancer cells from being recognized as a foreign entity. Inhibition or blockade of pathways such as PD-1 
allows the body’s own immune system to detect and destroy cancer cells (Pardoll 2012). And 
therapeutic agents that target the PD-1 or PD-L1 pathways have proven to be very effective in treating 
several types of cancer (Borghaei et al. 2015; Brahmer et al. 2015; Rizvi et al. 2015).

The novel mechanism of action of these agents has also challenged researchers to some extent on 
the classical paradigm of study design, analysis and interpretation of clinical trials. A few character-
istics of these agents, often reflected in the clinical data are (i) a delayed separation of the Kaplan-Meier 
(KM) curves questioning the assumption of proportional hazards (PH) in sizing of trials (Robert et al. 
2015), (ii) a long and flat tail of the KM, reflecting a subset of patients deriving long term benefit with 
these agents, suggesting additional consideration needs to be given to follow-up as well as in data 
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analysis to understand this effect better, and (iii) the utility of RECIST (Eisenhauera et al. 2009) based 
endpoints, such as tumor response and progression free survival (PFS) as a good measure of clinical 
benefit compared to overall survival. In this article, we provide a statistician’s perspective on these 
issues and discuss ways of designing and analyzing trials with immunotherapy agents. Our focus in 
this paper will be on issues (i) and (ii) only. The challenges with issue (iii) would be the subject of 
a separate paper.

While traditional methods for sizing of trials with time to event endpoints use the PH assumption, 
if a delayed effect is present, this may lead to considerable loss in power of the log-rank test (or 
equivalent Cox regression), if the delay is not considered during the design of the trial (Chen 2013, Lin 
2020). Under PH, the hazard functions are assumed to be proportional over time, i.e., the relative 
hazard is assumed to be constant. Now consider a scenario where no treatment benefit is observed over 
a period t ≤ T, i.e., the HR = 1 for this lag period. Following this lag period, for t > T, the HR 
(experimental: control) is assumed to be c (a constant < 1). Therefore, the HR throughout the entire 
follow-up period can be assumed to be piece-wise proportional (1 if t ≤ T, and c if t > T), rather than 
just c for the entire follow-up period. Hence, in this example, if one were to estimate the average HR 
over the entire follow-up period, this will now be a value between c and 1. Thus if we size the trial 
assuming a HR of c, the study will be under powered.

Consider the same scenario with the treatment effect being piece-wise proportional. The overall 
average HR can now be seen to be decreasing over time instead of being constant; therefore, any 
benefit in treatment effect will only be reflected after a minimum amount of follow-up. While follow- 
up and sufficient maturity of data is critical in any study, the possibility of the HR decreasing over time 
will further highlight the importance of follow-up in trials with a possibly delayed treatment effect. For 
example, if the trial is analyzed prematurely, then the treatment estimate may be very close to 1 and 
will not reflect the benefit that would have been observed eventually. Therefore, careful consideration 
needs to be given in terms of timing of any analysis. This becomes even more important while 
planning for an interim analysis for early decision making, especially futility. For trials with 
a delayed effect, there is concern about the risk of early stopping to incorrectly accept the null 
hypothesis. It is then evident that use of conventional futility boundaries that ignore the delay 
would inflate the type II error, since the probability of crossing a futility boundary would be increased.

Another hallmark signature of immunotherapy agent is the long-term durability of response and 
disease stabilization in a subset of patients. Sometimes this is reflected in the tail of the KM curve 
which tends to become very flat. A good example will be the 10-year overall survival follow-up data in 
the Ipilimumab trial (Hodi et al. 2010). This further reiterates the need for adequate follow-up to 
capture the impact of the patients with long term benefit, on the overall treatment effect. In addition, it 
also raises the question, if the contribution of these long-term responders needs to be better reflected 
in our analysis. Since these long-term responders would have likely progressed or died in a matter of 
months instead of being alive without the disease for several years one can justify the need for 
capturing this benefit more appropriately in our analysis. If we now consider the traditional log- 
rank test, which only depends on the order of occurrence of the events rather than any consideration 
on the timing, and also puts the same weight on every event regardless of its rank order, the question 
becomes if we should consider analyses, such as using a weighted log-rank test, that will put more 
weight on late versus early events. This may in turn reflect better the contribution of these long-term 
responding patients on the overall treatment benefit.

There are literature dealing with clinical trials with delayed treatment effect. Zucker and Lakatos 
(1990) proposed two weighted log-rank types of statistics designed to have good efficiency over a wide 
range of lag functions, which can be applied in situations where a delayed effect is expected but cannot 
be specified precisely in advance. However, the authors do not provide an analytic approach for 
sample size and power calculation. Zhang and Quan (2009) investigated the asymptotic distribution of 
the two-sample log-rank test statistic under the lag-time model for analyses in both intent-to-treat 
(ITT) population and non-ITT population, under the assumption that patient accrual is a step 
function, and illustrated the calculation of asymptotic power. It is worth mentioning that in order 
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to perform the non-ITT analysis, the lag-time needs to be predefined so that patients discontinued 
prior to the lag-time will be treated as non-informative censoring. Xu et al. (2017) proposed a new 
weighted log-rank test, called the piecewise weighted log-rank test, and developed approaches for 
sample size and power calculation when there is a delayed treatment effect. More specifically, the 
power is determined by the events accumulated after the onset of treatment effect.

In this paper, we propose a sample size calculation using the piece-wise PH model under 
general assumptions on accrual and follow-up in the ITT population. Section 2 provides the 
details of the sample size computation using the piece-wise PH model under general assump-
tions on accrual and follow-up. Section 3 uses simulations to understand the impact of a delayed 
treatment effect on power of the test, by looking at different magnitude of delay (relative to the 
median survival time in the control arm). Section 4 evaluates through simulations, the operating 
characteristics (OC) of the statistical tests at the IA, in presence of a delayed treatment effect. We 
describe and compare the performance of two approaches to futility stopping that control type II 
error in the delayed response setting. Section 5 investigates the power of the un-weighted versus 
weighted log-rank test in the presence of a treatment delay, under non-PH alternatives. The 
Fleming-Harrington’s G (ρ, τ) class of weights is considered for this evaluation. The power of the 
tests with different sets of weights is evaluated under varying assumptions of treatment delay. 
Section 6 provides a discussion of these various findings and how it may impact on our current 
thinking on trial designs and data analysis. Overall conclusions are provided in Section 7.

2. Sample size computation in the presence of a delayed treatment effect

2.1. Sample size

Powering of a trial with a delayed treatment effect can easily be performed by applying standard 
sample-size approaches for time-to-event data. However, in contrast to proportional hazards, the 
power depends on both the proportion and number of events observed.

Throughout the paper we assume that there is a delayed treatment effect and specifically a piecewise 
proportional hazards model with an alternative hypothesis H1 given by:
HR1 ¼ 1 for t<T;

HR2 ¼ x < 1ð Þ for t � T; (1) 

where T denotes the lag-time until there is a benefit of therapy. HR1 and HR2 the ratios of the hazard 
functions (experimental: control) before and after the lag respectively. It is straightforward to extend 
the approach to a more complicated piecewise model that had additional time periods and any value 
for the HR in that period; in this paper we concentrate on a simpler model to highlight some of the key 
design considerations.

The overall average HR on an interval (0, t�), where t� > T, 

ò
t�

0
h1 tð Þ=h2 tð Þd S1 tð ÞS2 tð Þ

as defined by Kalbfleisch and Prentice (1981) and Schemper (1992), can be simplified as (the 
derivation can be found in the Appendix): 

HR ¼ exp p1 ln HR1ð Þ þ p2 ln HR2ð Þð Þ (2) 

where p1 and p2 are the proportion of events observed during the time interval (0, t�) before and after 
the lag-time, h1 and h2 are the hazard functions, and S1 and S2 are the survival functions, respectively.

So, in the case of model (1) 

HR ¼ exp p2 ln HR2ð Þð Þ (3) 
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The average HR is an important concept in the interpretation of trial results with a delayed treatment 
effect and is a meaningful measure representing the average benefit over the period of observation.

Having determined HR for a given T, HR1, HR2, and N (the total number of patients recruited), 
standard sample size approaches (Schoenfeld 1983) can be used so that: 

e ¼
1þ rð Þ

2

r
�

Φ� 1 1 � α=2ð Þ þ Φ� 1 1 � βð Þ½ �
2

ln2 HR
� � (4) 

where e is the total number of events, α is the two-sided type 1 error and 1-β the power, and r the ratio 
of patients randomized in the experimental arm compared to control.

2.2. Estimation of average hazard ratio for a given follow-up

In order to estimate the expected average hazard ratio the proportion of events expected in each trial 
period first needs calculating. The calculation is complicated by the fact that patients are not recruited 
instantaneously.

We first assume that events follow a piecewise weibull distribution with: 

S tð Þ ¼ exp � λ1tγð Þ t<T
exp � λ1Tγ � λ2ðtγ � Tγð ÞÞ t � T

�

(5) 

where λ1 and λ2 are the scale parameters before and after T respectively and γ the shape parameter, 
noting that a piecewise exponential distribution is a special case with γequal to 1. In practice 
a common value of λ1 and λ2 will be assumed for the control arm and derived from historical data 

with λ ¼ ðln 2ð Þ=mÞ
1=γ and median m. Whereas for the experimental arm, a long-term survival 

probability can be used to estimate λ2 assuming the same λ1 and shape parameter,γ as the control arm.
It is also necessary to create a p.d.f., g(s), for the recruitment time and associated c.d.f. G(s). Here we 

assume that the recruitment time could be nonuniform and is given by Carroll (2009): 

g sð Þ ¼
ksk� 1

Bk ; G sð Þ ¼
sk

Bk (6) 

where B is the total recruitment time and k (>0) a measure of nonuniformity, with k = 1 corresponding 
to uniform recruitment and k = 2 often representing a more realistic rate of recruitment.

The proportion of events occurring by time t can then be estimated as follows: 

p event by time tð Þ ¼ ò

min t; Bð Þ

0
g sð Þ 1 � S t � sð Þð Þds 

¼ G min t;Bð Þð Þ � ò

min t; Bð Þ

0
g sð ÞS t � sð Þ ds 

¼
min t;Bð Þ

B

� �k

�
k

Bk ò

min t; Bð Þ

0
sk� 1S t � sð Þ ds (7) 

substituting the Weibull survival function from (5). For a specified maximum follow-up time, the 
number, and hence the proportion of events in each time-period can then be calculated by numerically 
integrating (7) using standard quadrature methods. Closed form solutions exist for a piecewise 
exponential distribution.

It is worth noting that, unlike proportional hazards, when patients are censored will have a bearing 
on the average HR and hence the power of the study. In particular, even if there is complete follow-up 
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of all patients so only administrative censoring, if the minimum follow-up time is less than T, some 
patients will be censored before T. In this case, the proportion of events observed before T, and 
consequently the average HR and power will be different to another study, with the same piecewise 
HRs and total events, which has a different duration of follow-up.

2.3. Associated measures

When designing a trial, it is helpful to also provide estimates of other associated measures to allow 
other researchers to gauge the extent of clinical benefit associated with the piecewise proportional 
hazards model. Additionally, it is informative to calculate and present the smallest treatment effect that 
would be statistically significant, often referred to as the critical value. For survival data it is possible to 
define the critical value for the HR exactly if the trial is analyzed when the observed number of events 
closely matches the number assumed in the design.

The variance of ln(HR) is given by 1þrð Þ
2

re , therefore the critical value forHR, which corresponds to 
the hazard ratio which has the upper limit (UL) of its confidence interval equal to 1, i.e., 

ln ULð Þ ¼ ln HRcritical
� �

� Φ� 1 α=2ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ rð Þ
2

re

s

¼ 0;

which gives us the critical value as below: 

exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ rð Þ
2

re

s

Φ� 1 α=2ð Þ

2

4

1

A� (8) 

It is also possible to calculate the critical hazard ratio, HR2crit, in the second time-period using an 
iterative approach. An initial estimate of HR2crit is made by re-arranging (3) to give

This initial estimate is used to derive an updated survival function and second time-period scale 
parameterλ2e ¼ λ2c:HR2crit1 for the experimental arm and (7) used to find updated estimate of p2 and 
hence a new value for derived HR2crit . The process is continued until the value of HR2crit remains 
sufficiently constant.

A commonly used statistic is the median survival within each treatment arm. The value associated 
with the alternative hypothesis can be calculated by: 

ln 2ð Þ
λ1

� �1=γ
if S Tð Þ � 0:5 

ln 2ð Þ � λ1Tγ

λ2

� �

þ Tγ
� �1=γ

if S Tð Þ> 0:5 

For the control group λ1c and λ2cwould be set to the values assumed when estimating the duration of 
the trial. For the experimental group, λ1e = λ1cand λ2e= λ2c: HR2.

The median values expected when the average HR corresponds to statistical significance can be 
calculated in the same manner but deriving the scale parameters using HR2crit .

Whilst it is informative to present the expected medians, this measure can be particularly mislead-
ing with a delayed treatment effect as it will tend to underestimate the overall benefit. Therefore, it can 
be helpful to additionally present the expected survival probabilities associated with longer term 
survival and these can be derived directly from (5). Those associated with the critical value would use 
λ2e= λ2c:HR2crit . Indeed, these survival probabilities can be used as means to calculate HR2 to size the 
trial based on an expected T and clinically meaningful difference in long term survival.
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3. Impact of delayed treatment effect on power of study

We now investigate powering of trials in the presence of a delayed treatment effect. Consider a two- 
arm trial with 1:1 randomization, where the primary objective is to compare overall survival (OS) 
between the two arms. For now, we will assume PH, and that the OS time in the control and 
experimental arms follow an exponential distribution with a median of 7 and 14 months respectively. 
Therefore, the target HR will be 0.5. This trial will require 91 deaths to achieve 90% power, with 
a critical HR for statistical significance of 0.66, using a two-sided 0.05 level log-rank test. If we further 
assume a uniform accrual of 20 patients per month over 6.5 months, then the trial can be conducted 
with 130 patients and will require 20.9 months (6.5 months accrual time and 14.4 months follow-up) 
to achieve the target number of events (70% maturity).

Now using (1), let us assume that x = 0.5 and T = 2. Therefore, we are assuming that the 
experimental arm follows a piecewise exponential distribution and the HR is no longer assumed to 
be constant over the entire study period (Figure 1); The average HR over the 20.9 months follow-up 
period can be estimated to be 0.6, instead of 0.5 using the methods provided in Section 2. Had the trial 
been conducted with the planned 91 death events, the power of the test would now be 69% instead of 
90%. Therefore, to maintain the same power, we will require either a larger sample size and/or a longer 
duration of follow-up. One option would be to conduct the trial with 240 patients. If we enroll these 
patients in 12 months (uniform accrual of 20 patients per month), and follow them for another 
11 months, (overall study duration of 23 months), we would expect to observe 168 deaths from 240 
patients (70% maturity). The study will now achieve 90% power to detect an overall HR of 0.6, with 
a critical HR for statistical significance of 0.74, instead of 0.66.

Figure 2 below shows the potential loss in power, under different assumptions of a delayed effect, 
ranging from no delay to a delay of up to 6 months, before observing any treatment benefit. For the 
purpose of illustration, we assume two scenarios, with the treatment effect after the delay being a HR of 
0.5 and 0.625 respectively. As expected, there is loss in power, sometimes considerable, with increased 

Figure 1. Hypothetical survival curves showing delayed versus immediate separation. This figure shows hypothetical survival curves, 
under the scenario of an immediate separation (Blue vs. Red curve, with an assumed HR of 0.5) or a delayed separation after 
2 months (Black vs. Red curve, with an assumed HR of 0.5 after the separation). In the case of a delayed separation, the overall HR 
after 23 months of follow-up is estimated to be 0.6.
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amount of treatment delay. The required number of events to compensate for the loss in power is 
considerably high as well.

Another useful observation to note is that once the average HR is determined using (3) (under the 
piece-wise PH assumption), the required number of events to achieve a specific power follows 
standard sample size calculations using (4). Therefore, the power of the test and the required number 
of events will be the same as under the scenario of no delayed separation, as long as the target HR and 
the level of significance of the two tests are the same

With PH, for the same number of events, the power is identical regardless of the number of patients 
recruited. This is no longer the case with a delayed effect and the same power can be achieved with 
a different number of events. For example, consider a trial where the HR follows (1) with x = 0.625 and 
T = 2, the control (treatment) arms follow an exponential (piece-wise) distribution. Table 1 show that 
if 480 patients are enrolled in the first 16 months (30 patients per month uniform accrual) and 
followed for 8.3 months, then the average HR will be 0.704 and 342 events will be observed after 
24.3 months. One can then achieve 90% power to detect an average HR of 0.704. However, if we 
choose to enroll a larger number of patients, so that the same number of events is obtained in a shorter 
time period, this will result in loss of power. Note the average HR which now increases from 0.704 
(study duration of 24.3 months) to 0.725 (study duration of 21.5 months). Note that, one can still 
achieve 90% power by conducting the trial with fewer events, and a smaller sample size, but requiring 
a higher level of maturity of the data. Consider a trial with a sample size of 390 patients, but with study 
duration of 28 months (13 months enrollment and 15 months of follow-up). This will now result in 
316 events (81% maturity). Since the average HR now reduces to 0.694, the study can achieve 90% 

Figure 2. Impact of treatment delay on power of the study. This figure shows the power of the test (y-axis) corresponding to 
a specific number of events (x-axis) under different assumptions of treatment delay. The median in the control arm is assumed to be 
7 months, and the corresponding HR after the delay is assumed to be 0.5 and 0.625 in the two examples. Under each scenario 
(example 100 events), the sample size, the required number of events, and accrual time (15 months) are fixed, keeping the maturity 
level at 71%, while varying the duration of follow-up to obtain the target events, with different assumptions of delay.

Table 1. Sample size, follow-up and impact on power of the test (Simulation runs = 5000).

No. of 
Patients

Accrual 
(Months)

Follow-up 
(Months)

No. of Events 
(maturity)

Average 
HR

Estimated Study Duration 
(Months) Power

480 16 8.3 342(71%) 0.704 24.3 90%
510 17 6.0 342(67%) 0.709 23.0 88%
540 18 4.3 342(63%) 0.715 22.3 87%
570 19 2.8 342(60%) 0.719 21.8 86%
600 20 1.5 342(57%) 0.725 21.5 84%

Randomization ratio = 1:1; fixed number of events; delayed separation after 2 months; HR = 0.625 after separation; uniform accrual 
(30 patients per month) with varying trial size and minimum follow-up; median OS (control) = 7 months; 2-sided type I error = 0.05.
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power with only 316 instead of 342 events, but the trial would take 3.7 months longer than a 480- 
patient trial with the same power.

4. Interim analysis in the presence of a delayed treatment effect

It is very common to introduce interim analyses (IA) in trials with an objective of either stopping 
early for overwhelming benefit (superiority) or for lack of benefit (futility). In any trial, require-
ment for adequate follow-up before performing an IA is critical. However, as highlighted in the 
previous section, follow-up and maturity of the data will be particularly important where a delay is 
expected before the treatment starts to show effectiveness, especially to avoid falsely stopping 
a trial for an effective agent. We investigate appropriate timings for conducting IAs for futility, 
using simulations. For simplicity, we will consider situations that are commonly expected in 
practice to evaluate how the operating characteristics (OC) changes when there is a delayed effect 
present.

4.1. Simulation parameters

We will consider a two-arm trial with 1:1 randomization; uniform accrual of 30 patients per month; 
target HR of 0.625; Median OS in the control arm of 7 months. In order to highlight the increased 
probability of making incorrect decision, the trial has been powered under the PH assumption. This 
study would require 192 events (71% maturity) to achieve 90% power to detect a HR of 0.625, using 
a 2-sided 0.05 level test, without adjustment for any planned IA. The trial will be conducted with 274 
patients. Therefore, it will take 9.1 months to accrue these patients and another 11.6 months of follow- 
up to achieve the necessary events. The target maturity of the data at the time of the final analysis is 
192/274 (70%).

Now suppose we introduce a single IA for futility, at the design stage, either after 50% of the target 
number of events or 80% of the target number of events are observed. We will now evaluate the impact 
of a delayed treatment effect of 2 months, which was not accounted for during the study design stage in 
this trial. For illustration purpose, we will use the Lan-DeMets beta spending function that approx-
imates the O’Brien Fleming boundary (Lan and DeMets 1983) to compute the stopping boundary for 
futility at the IA, assuming a true HR of 0.625 to calculate the type II error spent at the interim. O’Brien 
Fleming boundary is chosen as one may want to be cautious when stopping a trial for futility. Other 
spending functions can be utilized as appropriate to achieve the operating characteristics that are 
desirable for a given trial, but a similar overall conclusion should be reached. This trial will now 
require 194 events (if the IA is introduced at 50% of the events) or 204 events (if the IA is introduced 
after 80% of the events) to maintain overall power at 90% allowing for early rejection of H1. Therefore, 
the IA will be conducted after 97 out of 194 target events (164 events out of 204 target events) are 
observed.

We will also consider conducting the IA using a slightly different strategy. Using IA at 50% target 
events as an example, since the follow-up time and maturity of events is critical, instead of conducting 
the IA at 50% of the target events, we will consider conducting the analysis on the first 137 (50%) 
patients, but with a similar maturity as in the final analysis, i.e., with 97 events (71% maturity) on the 
first 137 patients, where the same stopping boundary computed using 50% of target events in the 
overall population will be used, provided that the interim analysis will be conducted based on same 
number of events. Since the objective is to stop for futility, we will compare the probability of stopping 
incorrectly to accept the null hypothesis at the interim, i.e., the false negative rate (FNR). Results 
provided in Tables 2 and 3 are based on 5000 simulation runs.

Based on Table 2, we can see that if the original PH assumptions (no treatment delay) do not hold 
true, there is an increased risk of deeming the new agent as ineffective early on and incorrectly 
stopping the trial. That risk is reduced if this analysis is conducted on a subset of patients, but with 
similar maturity as in the final analysis.
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However, in our example, the approximate timing when 97 (50% of the 194 target events) were 
observed from all randomized patients was about 10 months, while it took about 18.5 months to 
observe the same number of events from the first 137 patients. That timing is close to when we expect 
to observe 92% of the target events, from all randomized patients. Under a different set of assumptions, 
this time difference could be even longer. Therefore, it is not surprising that there is a higher risk of 
a false conclusion if the futility analysis is conducted early in the trial, when we expect a delayed 
treatment effect. This can be mitigated by requiring sufficient follow-up and maturity. However, it is 
acknowledged that the practical savings from conducting the futility analysis very late in the trial (say 
after greater than 80% of the target events) may be limited.

It is intuitive, that the FNR will be more manageable, if the trial was originally powered assuming 
a 2-month delay (Table 3). If no IA is planned, the trial will now require 344 events from 482 patients 
(71% maturity) to achieve 90% power. Assuming an accrual rate of 30 patients per month, it will take 
16 months to enroll and another 8.3 months of follow-up to achieve the target events. The overall HR 
over the entire treatment period will be 0.703. In order to maintain the overall power, adjusting for one 
IA for futility, conducted after 50% (80%) of events, we recomputed the required number of events 
using the Lan-DeMets (O’Brien Fleming) beta spending function, assuming a true fixed HR of 0.703. 
This trial will now require 346 (IA at 50% of target) events or 363 events (IA at 80% of target) events. 
However, note that the overall power of the study is still approximately 87% (87%) instead of 90%, as 
would have been expected with this adjustment.

The reduction in overall power from 90% to 87% is because we are still using unadjusted futility 
boundary that does not take into consideration, a delayed treatment effect and the HR not being 
constant over time. Again, if the IA is conducted using the alternative strategy, i.e., using the same 
number of 173 (50%) events, but obtained from the first 241 (50%) patients, then the overall power will 

Table 2. Comparison of FNR of futility analyses under different assumptions of treatment delay (Simulation runs = 5000).

Length of Delay 
(Months)

Target events at FA, % of target events at 
IA

FNR at IA (overall type II error) 
§

FNR at IA (overall type II 
error) ¡

0 194, 50% 1.7% (10.5%) 1.9% (10.2%)
2 194, 50% 10.9% (35.5%) 5.2% (32.8%)
0 204, 80% 7.4% (10.8%) N/A*
2 204, 80% 32.1% (38.1%) N/A*

§IA analysis conducted after planned target events reached. 
¡IA conducted on a subset (first 50% of enrolled patients) after planned target events reached. 
* N/A = Not applicable, as it would now require 163 (80% of target) events from 137 patients. 
For illustration purpose, assuming delayed separation after 2 months; HR = 0.625 after separation; uniform accrual (30 patients per 

month). The futility boundary for the interim analysis was calculated using a Lan-DeMets beta spending function that approx-
imates the O’Brien Fleming boundary; A critical HR of 0.948 (0.792) was used for IA conducted after 50% (80%) of target events. 
Maturity is around 71% (75%) at final analysis.

Table 3. Comparison of FNR of futility analyses at IA when treatment delay is accounted for in sample size calculation (Simulation 
runs = 5000).

Length of Delay 
(Months)

Target events at FA, % of target events at 
IA

FNR at IA (overall type II error) 
§

FNR at IA (overall type II 
error) ¡

2 346, 50% 4.8% (12.8%) 1.8% (11.2%)
2 363, 80% 10.0% (12.9%) N/A*

§IA analysis conducted after planned target events reached. 
¡IA conducted on a subset (first 50% of enrolled patients) after planned target events reached. 
* N/A = Not applicable, as it would now require 275 (80% of target) events from 241 patients. 
Sample size was calculated with consideration of delayed treatment effect. If no IA is planned, 344 events (482 patients) are needed 

to achieve at least 90% power at final analysis (FA) when there is a 2-month delay and assumed HR is 0.625 after the delay; overall 
HR is estimated to be 0.703 after 8.3 months of follow-up. The study was then adjusted for one interim analysis for futility using the 
Lan-DeMets beta spending function that approximates the O’Brien Fleming boundary, assuming a true fixed HR of 0.703; A critical 
HR of 0.961 (0.839) was used for IA at 50% (80%) target events, Maturity is around 72% (75%) at final analysis.
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be approximately 89%, with an FNR at the IA of 1.8% instead of 4.8%. In this case, the timing of the IA 
using a subset of patients is approximately same as the occurrence of 84% of target events in all 
patients. However, the FNR using all the events is about 10%, instead of 1.8%. It is worth noting that, 
the probability of early termination, under the null hypothesis of no treatment benefit is approximately 
60% if the IA is conducted with 50% of events (or on events from the first 50% patients enrolled) while 
it is 93% if the IA is conducted after observing 80% of the events. This tradeoff should be considered 
while making appropriate choice of futility analysis in the study.

In order to strike a reasonable balance between the risk of early stopping to incorrectly 
accept the null hypothesis and scheduling the futility analysis very late in the trial, an 
alternative is to use the full dataset but account for the lower treatment effect at the 
interim analysis. This can be accomplished using a beta spending approach similar to the 
method by Pampallona et al. (2001) and will be the subject of a separate publication. The 
Pampallona et al. method is flexible in the sense that it provides a very general class of 
boundaries, that can be made suitably aggressive or cautious depending on what is desir-
able in the context of a specific trial.

5. Analysis to account for possible delayed treatment effect

During the design stage, if there is a potential of a delayed treatment effect, it is recommended to take 
the possible delay into consideration by calculating the sample size as outlined in Section 2. However, 
if there is an anticipation of a delayed treatment effect, one option could be to account for it in the 
analysis by putting more weight on the later events.

5.1. Weighted log-rank test

Under the PH assumption, the log-rank test (LRT) is the most powerful option for comparing 
survival distributions. However, when the proportional hazards assumption is violated, log-rank 
tests may not have the maximal power in the class of all linear rank tests. A good alternative is 
the weighted log-rank test (WLRT) using Fleming and Harrington’s G ρ,τ class of weights. It can 
be demonstrated that WLR tests provides greater power than LRT when effects of treatment are 
delayed.

Assume that deaths are observed at times t1 < t2 < . . . < td and that the number of deaths at time ti is 
di (=d1i þ d2iÞof a total number at risk at that time of ni ¼ n1i þ n2ið Þ:

The weighted log-rank statistics, with weight function W(t) is 

XD

i¼1
W tið Þðd1i � Eðd1iÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XD

i¼1
W2 tið ÞVarðd1iÞ

v
u
u
t ;

where Eðd1iÞ ¼ n1i � d1i=nið Þ and Varðd1iÞ ¼ n1in2idi ni � dið Þ=n2
i ni � 1ð Þ under the null hypothesis 

(Hasegawa 2014). This statistic follows the standard normal distribution. The G ρ,τ class of weighted 
log-rank tests was proposed by Fleming and Harrington (1991), with a weight function equal to

W Tið Þ ¼ Ŝ tið Þ
� �ρ 

1 � Ŝ tið Þ
� �

for ρ > 0, τ > 0,
where Ŝ tið Þis the Kaplan-Meier estimate of the survival function in the pooled sample at time ti.
Figure 3 Weight functions in the Fleming-Harrington’s G ρ,τ class. Weights are uniform in G0,0 and 

emphasize early, middle, and late differences, respectively, in G 1,0, G 1,1 and, G 0,1.
When ρ = 0, τ = 0, G 0,0 corresponds to the standard log-rank; when ρ = 1, τ = 0, G 1,0 corresponds 

to the Prentice statistics (Prentice 1978). Letting ρ = 0 and τ = 1 would place more weight on late 
events, emphasizing late differences in the hazard rates and/or the survival curves.
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5.2. Performance of WLRT

The performance of the WLRT is evaluated through simulations. WLRT with the Fleming-Harrington 
class of weights can be easily performed using the LIFETEST procedure in SAS 9.1 or later (SAS/ 
STAT® 9.1 User’s Guide 2004) or the FHtest package in R (Oller and Langohr 2012). The performance 
of various WLR tests can be evaluated using simulations. The results in Table 4 are based on 5000 
simulation runs.

As an example, in a double-blind, randomized, parallel-controlled trial, 266 patients were randomly 
assigned in a 1:1 ratio to receive the experimental or control therapy, where the HR follows (1) with x = 
0.625 for different T (=0, 2, 4 and 6-month, respectively). A uniform 15-month accrual period was 
assumed. The primary endpoint is OS and the median survival is assumed to be 7 months in the 
control arm. The analysis of OS is conducted using a two-sided 5% test, once 193 OS events are 
achieved. Table 4 shows the percentage of times the null hypothesis is rejected under different weights 
for various length of delay, T.

As expected, the standard LRT is the most powerful test when T = 0 because the PH assumption 
holds when there is no delayed the treatment effect. However, when there is a delayed treatment effect, 
LRT may not remain the most powerful test. In this particular example, when the delay is moderate 
(2 months), G 1,1 performs better than the other tests; while with longer delays (≥ 4 months), G 0,1 

performs better than the other tests. It is not surprising that the G 1,0 test does not perform well in the 
presence of a delay, since more emphasis is given to the early versus late events.

6. Discussion

The goal of this paper was to highlight some of the issues one needs to consider during the designing of 
trials with immunotherapies for treating different types of cancer. As observed from data in recently 
published clinical trials, two hallmark features of these class of agents, are (i) a delayed treatment effect, 
generally seen as a delayed separation of the KM curve and (ii) the long-term durability of responses in 

Figure 3. The weight functions used in the Fleming-Harrington’s G ρ,τ class.

Table 4. Percentage of times rejecting null hypothesis based on 5,000 runs of simulation (%) (Simulation runs = 5000).

WLRT Under H0 No Delay 2-Month Delay 4-Month Delay 6-Month Delay

G 0,0 4.8 89.9 67.5 43.3 23.5
G 1,1 4.9 85.9 78.1 55.2 29.8
G 0,1 5.5 79.4 74.7 60.5 41.2
G 1,0 5.4 85.8 50.9 24.5 12.1
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patients that may result in a long flat tail of the KM curve. It is important to note that it is not always 
the case that these features are observed with the clinical data. In fact, there are also examples of trials, 
see Brahmer et al. (2015) and Motzer et al. (2015), where there was no evidence of a delay. However, 
with the given uncertainty, building in these assumptions during the design phase may protect the trial 
from being under powered, in case the initial assumptions are incorrect. A detailed discussion on 
impact of power of the log-rank test under various non-PH alternatives has been discussed using 
simulations and case studies and a combination of weighted log-rank test (called the MaxCombo test) 
has been proposed when the type of deviation from the PH assumption (e.g., delayed separation versus 
crossing survival curves) is unknown (Lin et al. 2020).

We have provided an analytical approach for computing the sample size in the presence of 
a delayed treatment effect, under general assumptions on patient accrual and the underlying 
survival distribution. We have assumed nonuniform accrual (of which the simple uniform accrual 
is a special case) and that the survival time follow a Weibull distribution (of which, the commonly 
used exponential distribution is a special case). Traditionally medians are supplied by physicians 
and translated by statisticians into a HR, making various assumptions, in order to design a trial; we 
have presented an approach where only long-term survival probabilities need to be supplied and 
trials can be designed along with an assumption regarding the time delay. These approaches were 
then used to evaluate the possible loss in power, in the presence of a delay, if that is not accounted 
for during the design stage. We hope this presentation of a more general framework will help others 
design trials in a wide variety of settings. Another possibility to consider is the crossing of the 
survival curves, where the treatment effect may be in favor of the control arm for a certain period of 
time (HR > 1 prior to the lag) before switching directions. The sample size framework presented in 
this paper can be adapted to consider this situation. However, if this is anticipated, then the clinical 
significance of such a scenario, where a group of patients may actually perform worse with the 
experimental agent, needs to be given careful consideration before embarking in such a trial. We 
acknowledge, one of the limitations of our proposed method is it requires some amount of 
knowledge of the lag time during the design stage. This may often be obtained from available 
data. However when there is limited data but NPH is anticipated based on the mechanism of action 
of the molecule, a minimum amount of lag time can be assumed such that the trial is still 
adequately powered for an overall treatment effect (HR) that is clinically relevant. If the actual 
delay happens to be longer than what was assumed, there will still be loss in power. However, in 
that situation one could argue that the treatment benefit in the overall population is less likely to be 
clinically relevant and further exploration on subgroups with greater benefit may be necessary. If 
the delay happens to be smaller than originally assumed, the trial can be over powered. However, 
this will still be a better outcome than having a negative study. When there are such uncertainties, 
interim analyses for efficacy can be introduced to mitigate the risk of prolonging the trial due to 
increased sample size and/or follow-up. We have also highlighted the importance of follow-up and 
maturity of the data, if the PH assumption does not hold, and the HR estimate is expected to 
improve over time. Therefore, careful consideration should be given to the timing of the analysis. 
With PH for the same number of events the power is identical regardless of the number of patients 
recruited, this is no longer the case with a delayed effect and the same power can be achieved with 
a different number of events which provides for a greater number of design options. Another 
option that may be considered when there is uncertainty in the lag time during the trial design 
period, is to obtain a better estimate based on the actual data, and refining the assumptions on the 
proportion of events, p1 and p2 observed before and after the lag-time that will contribute to the 
overall HR. If it appears that the initial assumptions during the trial design period underestimated 
the lag-time, then the follow-up time can be adjusted to ensure enough events are contributing after 
the lag, in the estimation of the overall HR, to ensure that the power of the study is maintained. 
Such an approach will be similar in nature to an adaptive sample size re-estimation but may have 
more applicability in the immune-oncology space given the novel mechanism of action and the 
evolving understanding of both the timing and reason for the treatment lag in different tumor 

12 P. MUKHOPADHYAY ET AL.



types. Also, this will very likely involve an independent data monitoring committee having to make 
these decisions, based on a pre-specified set of rules. Therefore, like other adaptive trials, this will 
require careful planning prior to implementation.

We illustrate through simulations, the risk of conducting an IA early in the trial. In particular, the 
probability of the test to cross the superiority boundary can be low, while the chance for incorrectly 
declaring the trial as negative, can be higher. Therefore, the practical benefits of an early IA for either 
futility or superiority analysis can be questionable, and it is recommended that an IA is planned using 
a sufficiently mature dataset (e.g., 80% of the target number of events).

A few additional points to consider, if we believe the underlying PH assumption may not hold in 
practice. First, is the HR estimate, still a valid measure of clinical benefit, either from a statistical or 
a clinical perspective? From a statistical perspective, the Cox model is the most powerful test when 
hazard functions are proportional over the entire follow-up period. From that point, the use of the HR 
estimate as a valid measure has been questioned (Uno et al. 2014). However, if the same tie handling 
approach is used, the score test arising from the Cox model is mathematically identical to the ordinary 
LRT. Therefore, any inference made using the Cox model and the log-rank test is generally identical or 
near identical.

Can we address this theoretical concern in the following way? Let us assume that the hazard 
functions are piece-wise proportional at two or even more distinct time periods. The HR estimates 
derived using the Cox model should still be valid during these two periods. One can then define an 
overall measure of clinical benefit as the average HR, which is the weighted average of these estimates, 
weighted by the proportion of events occurring in each time period. We can then make inference 
based on this weighted test statistic which can be regarded as a measure of average benefit to the 
patient, as discussed in Section 2 of the paper.

From a clinical perspective, the meaningfulness of the average HR would generally depend on the 
observed data. In many cases, we believe, the HR is still a useful measure that effectively communicates 
the relative average benefit of receiving one therapy over the other. Exceptions always apply, depend-
ing on the shapes of the KM curves, amount of delay, whether there is a crossing of the curves, that 
may suggest presence of a quantitative or qualitative interaction between treatment and some other 
predictive factor, etc. (Mok et al. 2009). One could use standard techniques, (such as a Cox model with 
a time dependent covariate, Schoenfeld residuals), to evaluate the validity of the PH assumption. 
However, violation of the PH assumption by itself may not undermine the value of the overall HR 
estimate. It may then need to be supplemented with additional information, such as looking at 
piecewise HR estimates or consideration of other supplemental measures, such as the restricted 
mean survival time (RMST) (Huang and Kuan 2017; Royston and Parmar 2013). Although, RMST 
does not require an underlying assumption of proportional hazards and has a relatively easy inter-
pretation as a summary measure, under NPH it suffers from similar loss in power as the LRT (Lin et al. 
2020). Other drawbacks of RMST includes sensitivity of the measure to censoring at the tail of the KM 
curve and the magnitude of benefit (either in terms of difference or ratio) may be less well understood 
by clinical practitioners compared to the HR. Never the less, when NPH is observed, both RMST and 
milestone survival estimates can provide valuable information which helps with the holistic under-
standing of the trial results.

Another point worth mentioning is that, since the HR estimate only depends on the rank order of 
the events, and not on the actual timing of occurrence, two very different shapes of the KM curves may 
provide the same HR estimate. If we anticipate patients remaining disease free over a very long period 
or potentially getting cured, it may be also important to capture the timing of the event as well. From 
that point, one can look at other measures of clinical benefit, such as the RMST or milestone survival 
estimates to supplement the HR estimate or performing a parametric analysis in such a case. However, 
this aspect may be the topic of a separate discussion and not necessarily related to the discussion 
around validity of the HR in the presence of a treatment delay.

The second question is how much of a delay should be assumed during the sizing of the trial. One 
way to address this may be to consider that the fundamental objectives, when designing these trials 
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have not changed. Our goal is to still size these trials to be able to detect clinically meaningful 
differences in treatment effect, if one exists, and not just power the study to achieve statistical 
significance. As discussed in Section 3, the power of the trial when analyzed using a Cox model or log- 
rank test will depend on the average HR. Assuming a very long delay followed by a modest benefit will 
result in an average HR estimate that may no longer be clinically relevant. For example, consider in 
a late stage disease with no available treatment option, 25% of the patients treated with the new agent 
achieves long term remission while the remaining 75% does no better than best supportive care (BSC). 
Will it still be justified to approve such an agent in an all-comers population? The answer may be yes, 
provided (i) there is no way yet, to prospectively identify the patients who are going to benefit and (ii) 
the remaining 75% of patients are doing no worse than they would have in the BSC arm and (iii) the 
toxicity profile is acceptable. In this example, such a dichotomous population may result in a delayed 
separation of the KM curve. However, the outstanding benefit in one quarter of the study population 
may justify the risk of approving the new agent in a wider population. But if the benefit is only modest 
in those 25% of patients, and does not bring long term remission, one would then question the value of 
such an agent getting approved. However, if there was sufficient follow-up that revealed evidence of 
long-term cure amongst those 25% this could substantially alter the overall assessment of benefit/risk. 
Therefore, during the design stage, one still needs to be conscious of the average HR being targeted and 
ensure that the effect size is clinically relevant even in the presence of a delay.

Another point is should we be considering the anticipated delay in the analysis? From a statistical 
perspective, the ordinary LRT is the most powerful nonparametric test to detect PH alternatives. But 
that is not the case, under the presence of a treatment delay. In Section 5, we show that if a delay is 
observed, then the WLRT using the Fleming-Harrington class of weights performs better than the 
LRT. However, one of the drawbacks for the WLRT is the selection of weights, which would depend on 
the type of NPH expected to be observed from the data, e.g., delayed separation versus crossing of the 
KM curves. If there is considerable uncertainty in the type of NPH expected, one can also use 
a combination of weighted LRTs such as the MaxCombo test, which will be relatively agnostic to 
the type of NPH alternative observed and can provide more robust power (Lin, 2020). The motivation 
to use the WLRT should not be driven solely by increasing our chances of observing statistical 
significance or being able to reduce the sample size of the study as the use of an unequally weighted 
analysis implicitly assumes that it is more important to delay life in some patients compared to others. 
However, in diseases with significant unmet need, if there are patients, (with otherwise very short life 
expectancy) who can survive for years, the WLRT may better help in capturing the impact of treatment 
benefit for these patients. Furthermore, if patients are followed for a significant time cure rate models 
could be explored to assess whether there is a group of patients cured by therapy (Farewell 1982; 
Maller and Zhou 1996). Therefore, such tests can be used as additional sensitivity analyses to support 
the primary conclusions, provided they are clearly pre-specified in the statistical analysis plan.

7. Conclusion

The novel mechanism of action and different response kinetics of immunotherapy, in the 
treatment of various types of cancer, poses some unique challenges during the designing of 
such trials. In particular, it is important to account for the possibility of a delayed treatment 
effect and adjust the sample size accordingly. This paper provides an analytical approach for 
computing the sample size in the presence of a delayed treatment effect using a piece-wise PH 
model. Failing to account for an anticipated treatment delay may result in considerable loss in 
power. The overall HR, which now represents the average HR across the entire treatment period, 
remains a meaningful measure of average benefit to patients in the trial. However, based on the 
initial findings, this may need to be supplemented with other measures, such as long-term 
survival probabilities. Special consideration needs to be given for the designing of interim 
analyses, particularly related to futility, so as not to increase the probability of incorrectly 
stopping an effective agent. Weighted log-rank tests can be considered as supportive analysis 
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to better reflect the impact of a delayed treatment separation and long term durability of 
response observed in a subset of patients. The weights should be pre-specified in the statistical 
analysis plan.
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Appendix. Derivation of Average Hazard Ratio in the Presence of Non-Proportional 
Hazards

The derivation is provided in the case of a piecewise proportional hazards model with two periods. The result by Berry 
et al. (1991) can easily be extended to additional periods. 

ln HRð Þ~U=V (1) 

where 

U ¼
X

i
d1j � n1jdj

�
nj

� �

is the usual log-rank numerator, and 

V ¼
X

i

n1jn2jdj nj � dj
� �

n2
j nj � 1
� �

is the usual log-rank denominator.
Furthermore, 

V
~re

1þ rð Þ
2 (2) 

is the reciprocal of the variance for the ln(HR), where r is the randomization ratio and e is the number of events 
observed.

Crucially, U and V can be partitioned into summations before and after a change in the HR.
Therefore, 

ln HRð Þ~
U1 þ U2

V1 þ V2
(3) 

where Ui and Vi are the corresponding values for period i where hazards are proportional.
From (1) and (2) we know that: 
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Ui
~rei

1þ rð Þ
2 ln HRið Þ:

Substituting into (3) gives 

ln HRð Þ~
e1 ln HR1ð Þ þ e2 ln HR2ð Þ

e1 þ e2
:

Therefore, 

HR ¼ exp p1 ln HR1ð Þ þ p2 ln HR2ð Þð Þ

,
where piis the proportion of events in each period.
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