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ABSTRACT
This article considers experimental design based on the strategy of rerandomization to increase the
efficiency in experiments. Two aspects of rerandomization are addressed. First, we propose a two-stage
allocation sample scheme for randomization inference to the units in experiments that guarantees that
the difference-in-mean estimator is an unbiased estimator of the sample average treatment effect for any
experiment, conserves the exactness of randomization inference, and halves the time consumption of the
rerandomization design. Second, we propose a rank-based covariate-balance measure which can take into
account the estimated relative weight of each covariate. Several strategies for estimating these weights
using pre-experimental data are proposed. Using Monte Carlo simulations, the proposed strategies are
compared to complete randomization and Mahalanobis-based rerandomization. An empirical example is
given where the power of a mean difference test of electricity consumption of 54 households is increased
by 99%, in comparison to complete randomization, using one of the proposed designs based on high
frequency longitudinal electricity consumption data. Supplementary materials for this article are available
online.
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1. Introduction

There is today a substantial literature on how to design ran-
domized experiments to increase the efficiency as compared to
complete randomization. All designs try to improve the similar-
ity in the potential outcome of the groups of comparison by, in
different ways, making the groups balanced in covariates that are
observed before the experimental design is decided. The most
common design used to improve balance is stratified or blocked
randomization. The idea of stratified randomization is to divide
units into strata (i.e., groups or blocks) based on similarity on
covariates and then perform complete randomization within
each strata. In this way, units from all strata will be represented
in both the treatment and control groups1 and thereby imbal-
ance in any of these covariates are avoided (see, e.g., Imbens and
Rubin 2015 for a recent overview).

An alternative design is rerandomization which was orig-
inally suggested by Fisher in the early twentieth century but
was first written up and implemented in Morgan and Rubin
(2012). As the name suggests, rerandomization consists of redo-
ing the randomization until some prespecified balance criterion
on the observed covariates is met. That is, the randomization
is restricted to a subset of admissible allocations that fulfill
the rerandomization covariate balance criterion. Based on the
affinely invariant Mahalanobis distance covariate balance crite-
rion, Morgan and Rubin (2012) showed that rerandomization
can decrease the variance in the effect estimate substantially

CONTACT Per Johansson per.johansson@statistics.uu.se Uppsala University and IFAU, Uppsala, Sweden.
1The concepts in this article extend to any number of treatment groups. To simplify discussions, the number of treatment groups is restricted throughout

this article to two, referred to as treatment and control.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

as compared to complete randomization. Morgan and Rubin
(2015) extended the results in Morgan and Rubin (2012) to deal
with the case when large numbers of covariates are available and
when some covariates can be a priori defined as more important
than others.

The strategy of rerandomization is especially useful when
continuous covariates are available, as in principle, even a single
continuous covariate implies infinitely many strata and there-
fore must be discretized with information loss as a consequence.
Compared to stratification, rerandomization is computationally
demanding. However, with today’s computers it provides a very
interesting and powerful alternative design. As also Morgan and
Rubin (2012) pointed out, rerandomization is not a design strat-
egy that replaces stratification, rather a researcher should block
on what covariates are possible and then use rerandomization
on remaining covariates within these strata. Like with blocked
designs, it is possible to apply rerandomization in sequential
randomization designs (Zhou et al. 2018), as is often used in,
for example, clinical trials.

One potential caveat with rerandomization is that common
test-statistics are no longer asymptotic normally distributed. Li,
Ding, and Rubin (2018) showed that the specific asymptotic dis-
tribution under rerandomization depends on which covariate
balance measure is used and derive the asymptotic sampling
distribution of the difference-in-mean estimator under reran-
domization based on the Mahalanobis distance measure.
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Figure 1. The electricity consumption (kWh) during the pretreatment month for the 54 households included in the experiment.

One appealing alternative to asymptotic inference was given
in Morgan and Rubin (2012), namely, to restrict the infer-
ence to the units in the experiments and to base the analysis
on exact (randomization) inference (Fisher 1935). Due to the
assumption-free nature of the randomization inference, this
strategy is valid for all well-behaved (discussed in Section 3) bal-
ance criteria. It is advantageous if the subset of allocations from
all admissible allocations is of a moderate size when conducting
the exact inference. A formal strategy of choosing the “best”
subset from the admissible is, to our knowledge, not available
in the literature.

The contribution of this article is 2-fold. First, an allocation
sampling scheme for choosing the approximate “best” subset
of admissible allocations is proposed. In addition to provid-
ing the exact level for the exact test, the sampling scheme: (i)
guarantees that the difference-in-mean estimator is unbiased for
the sample average treatment effect (SATE) and (ii) reduces the
computational time for the design by half. Second, we develop
a rerandomization covariate balance measure that is easy to use
when pre-experimental outcome data (possibly high frequency
longitudinal) are available, a situation that has not previously
been addressed in the literature.

The article should be of broad interest as the situation where
the pretreatment outcome is observed for many time periods is
becoming more common. The last few decades’ technological
development of personal electronic devices like smart phones,
smart watches, fitness trackers, and the “Internet of Things,”
has made the collection of high frequency longitudinal data
substantially simplified and cheaper. This development has also
led to an increased interest in what kinds of research questions
these data might help us answer (see, e.g., Hamaker and Wich-
ers 2017; Hamaker et al. 2018). The present article points out
yet another possibility that these data brings, namely that of
improving designs, enabling informative causal analysis also in
relatively small experiments. In addition, we present practical
guidelines for any rerandomization design that should be useful
for any practitioner that want to use this strategy.

As a motivating example, data from an electricity consump-
tion experiment are considered. In the design stage, repeated
measurements of the outcome (kWh), displayed in Figure 1, are
available for a sample of 54 households for the month before
the treatment assignment. The average consumption for every
12 hr period, that is, 60 measurements per month is observed.
Clearly, there are large variations in several aspects (level, varia-
tion, etc.) of the consumption behavior the months before the
treatment assignment. The interest in this particular study is
to see how user’s electricity consumptions behavior is affected
by information campaigns about money saving consumption
behaviors. Using one of the strategies proposed in this article,
the power of a mean difference test with equal sized groups at
the first time period after the pretreatment period, is increased
by 99% as compared to complete randomization. All the details
of this study are presented in Section 6.

The rest of the article is structured as follows. Section 2
introduces the concept of rerandomization and the Mahalanobis
distance rerandomization criterion specifically. Section 3 intro-
duces the formalized allocation sample scheme to select the
subset of admissible allocations for exact inference. Section 4
introduces the new rerandomization covariate balance measure
based on the ranks of the mean differences in the covariates.
Section 5 provides a Monte Carlo simulation where the perfor-
mance of the new balance measure is compared to Mahalanobis-
based rerandomization and complete randomization. Section 6
provides the empirical analysis of electricity consumption data
illustrating the proposed procedure and balance measure. Sec-
tion 7 contains a discussion and concludes the article.

2. Mahalanobis-Based Rerandomization

To provide a better understanding of the underpinnings of the
rerandomization framework proposed by Morgan and Rubin
(2012), it is here compared to complete randomization and
classical stratified design.
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The technical difference between complete and stratified
randomization is that allocations that are possible in complete
randomization are excluded in the stratified randomization.
More precisely, the allocations from complete randomization
associated with imbalances in the stratification covariates are
excluded. For example, consider a study where two equal sized
treatment and control groups will be compared. A sample of 10
males and 10 females are randomly sampled from the popula-
tion. Under complete randomization there are

(20
10

) = 184,756
possible treatment allocations. If instead, randomization is strat-
ified on sex, that is, 5 males and 5 females are allocated to treat-
ment the number of possible treatment allocations are reduced
to

(10
5
)(10

5
) = 63,504, that is, the 121,252 (= 184,756 − 63,504)

allocations that are unbalanced on sex are excluded. To stratify,
the covariate space needs to be partitioned into finite sets. With
a set of a few categorical covariates this strategy is easy to
implement, at least if there is more than one individual within
each strata. However, as mentioned above, if one would like to
include continuous covariates (e.g., pre-experiment outcomes)
in the design, simple stratification methods run into problems
as continuous covariates must be discretized (Hu and Hu 2012).

Rerandomization is similar to stratified randomization in the
sense that certain allocations are excluded, the main difference
is the exclusion criterion. To formally introduce the concept
of rerandomization, we start by describing the basic idea as it
is outlined in Morgan and Rubin (2012) which also forms the
basis for the extensions in Morgan and Rubin (2015), Zhou et
al. (2018), and Li, Ding, and Rubin (2018).

Consider a trial with N individuals of which N/2 = N1 = N0
are assigned to treatment and control, respectively. Let z be
a fixed N × K matrix containing variables observed prior to
the treatment assignment. z may contain both covariates and
pretreatment outcomes. When the separation is important, x
denotes the N×Kx covariate matrix, and ypre denotes the N×Ky
pretreatment outcomes matrix, where K = Kx + Ky.

Let Wi = 1 if individual i is treated and Wi = 0 if not. Let
W be the matrix of all

( N
N/2

) = NA possible random assign-
ments (i.e., before treatment groups are assigned). For a given
allocation j, j = 1, . . . , NA the Mahalanobis distance between
the covariate mean vectors of those assigned to treatment (T)
and control (C), respectively, is defined as

M(z, wj) = Mj = N
4

(Zj
T − Zj

C)′cov(z)−1(Zj
T − Zj

C),

j = 1, . . . , NA, (1)

where wj is the jth column vector in W, cov(z) is the sample
covariance matrix and Zj

T −Zj
C is the difference in mean vectors

which is a K ×1 stochastic vector as it depends on the allocation
j. Morgan and Rubin (2012) suggested randomizing within the
set

{W|M(z, wj) − a ≤ 0}, (2)

where a is a constant. This means that instead of randomly
choosing one of the NA possible allocations, a smaller set of
allocations with small Mahalanobis distances is considered. If
the means are normally distributed then Mj ∼ χ2(K). This
means that a can be indirectly determined by setting pa in

pa = Pr(χ2(K) ≤ a).

As the number of rerandomizations is geometrically distributed
with expected value 1/pa, the expected number of rerandom-
izations before drawing a randomization fulfilling the criterion
with, for example, pa = 0.001, is 1000. As this holds for any
N, the time it takes to find the allocations from which to finally
make the randomization is independent of N for a fixed pa.

If z is ellipsoidally symmetric then, as a consequence of
Mahalanobis metric being multivariate affinely invariant, the
variation reduction is equally large for each covariate and, given
Mj ∼ χ2(K), equal to

cov(Zj
T − Zj

C|z,Mj ≤ a) = νacov(Zj
T − Zj

C|z), (3)

where

νa = Pr(χ2(K + 2) ≤ a)

Pr(χ2(K) ≤ a)
; 0 < νa < 1.

This implies that the variance of the covariates in the subset of
allocations is reduced in comparison to the complete random-
ization. The equal percent variance reduction (EPVR) of the
included covariates is equal to

100(1 − νa). (4)

Furthermore, νa can be written as
2
K

× γ (K/2 + 1, a/2)

γ (K/2, a/2)
, (5)

where γ (b, c) = ∫ c
0 yb−1e−ydy. Equation (5) shows that the

variance reduction is increasing in a and decreasing in K.
Let Yi(0) be the potential outcome if not treated and let

R2 be the coefficient of determination of a regression of Y(0)

on z, where Y(0) = (Y1(0), . . . , YN(0))′. Under the assump-
tions of conditionally normally distributed outcomes and addi-
tive homogeneous treatment effects, Morgan and Rubin (2012)
showed that the percent reduction in variance of the differences
in mean estimator is equal to

100R2(1 − νa). (6)

In the two following sections, the two main contributions
of this article are presented, respectively. First, the practical
strategy for implementing rerandomization for a class of reran-
domization balance measures is proposed, after which the new
covariate balance measure is presented.

3. Sampling Scheme for Exact Inference Under
Rerandomization

This section presents a formal strategy for how to implement
rerandomization with exact inference for empirical applications.
This strategy applies to all balance measures with symmetric
criterion functions, defined in detail below.

The exact p-value (Fisher 1935) of a test-statistic for a ran-
domly selected allocation is obtained from the percentile of the
histogram of the observed values of the test-statistic for all possi-
ble allocations. In complete randomization there are NA possible
allocations. To calculate the exact p-value, the test statistic is
calculated for all j = 1, . . . , NA allocations to create the his-
togram. The implication of this procedure is that the smallest
possible p-values under the null hypothesis will be restricted
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by the size N and whether there are ties in the test statistic.
If the number of possible allocations is restricted further, as
when using rerandomization, the set of allocations fulfilling the
rerandomization criteria must be kept large enough to calculate
the desired percentiles of the randomization distribution. This
means that, randomization within a set of “best” allocations is
valid only as long as the set of allocations is large enough to
obtain the desired percentile, what we define as the resolution
of the exact p-value.

That is, the upper bound of the resolution of the exact p-value
from a two-sided hypothesis test is 2/Sunique, where Sunique is the
number of unique test-statistic values in the set of admissible
allocations.2 For a guaranteed resolution, r, on the hundredth in
the two-sided p-value, 200 allocations must be selected, given no
ties in the statistic. For continuous outcomes and a statistic that
is a smooth function of the outcome, for example, the difference-
in-means, all allocations are likely to be unique.

For most sample sizes, the number of allocations fulfilling
even very strict rerandomization criteria is usually large why
too low resolution of the p-value is not usually an issue. How-
ever, too large number of allocations means that it becomes
intractable to calculate the exact p-value based on all admissible
allocations. One alternative is to randomly draw an allocation
from the admissible allocations, and then Monte Carlo approx-
imate the exact p-value. Another alternative is to first strategi-
cally choose a subset of H allocations from all admissible allo-
cations and then randomly draw one of these H allocations. The
exact p-value can then be calculated over only the subset of the
H allocations. This procedure will in general require sampling
a much smaller number of allocations than with Monte Carlo
approximation and provides, by definition, the correct level of
the hypothesis test for an effect. In the following section we
discuss a strategy of finding the “best” H allocations during a
fixed computational time.

3.1. Criterion Function for Admissible Allocations

Define the general rerandomization criterion function

ϕ(z, wj, B, c) =
{

1, if B(z, wj) ≤ c,
0, otherwise,

(7)

where B(z, wj) is the scalar covariate balance measurement of
allocation j for the set of covariates z, and c is a criterion.
Let Wϕ be the subset of admissible allocations, that is, the set
of allocations j for which ϕ(z, wj, B, c) ≡ 1. As an example,
for the Mahalanobis distance balance measure with inclusion
criterion a,

ϕ(z, wj, M, a) =
{

1, if M(z, wj) ≤ a,
0, otherwise.

(8)

2The uniqueness is required to be able to calculate the unique rank on which
the p-value is based. Given no ties in the test statistic the resolution of
the p-values from a two-sided hypothesis test in a balanced complete
randomized experiment is equal to 2/

( N
N/2

)
.

3.2. Mirror Allocations and Unbiased Estimators of SATE
Under Rerandomization

In addition to ensuring unbiasedness of the difference-in-means
estimator, the inclusion of mirror allocations (pairs of mirror
allocations) has the advantage of reducing the time it takes to
find a fixed number of allocations by a factor of two. This follows
since for any symmetric balance measure, if an allocation is
admissible, so is the corresponding mirror allocation and thus
only the covariate balance of one allocation in each pair of
mirror allocations has to be evaluated.3

For the symmetric balance measure B, let Bj be the balance
measurement of the jth allocation for j = 1, . . . , NA, where the
allocations are ordered lexicographic such that the first NA/2
contains no pair of mirror allocations. Based on this measure,
the best allocation among the NA/2 first allocations is given by

w(1) = argmin
wj

Bj, j = 1, . . . , NA/2.

That is, the “best” allocation is the allocation with the smallest
imbalance. If, for example, the balance measure is the Maha-
lanobis distance, the smallest possible Mahalanobis distance for
a given sample is M(1) = M(z, w(1)).

A reasonable goal in a rerandomization design is that of
finding the set of the H allocations with the globally smallest
imbalances W(1:H), defined as

W(1:H) = {w(1), . . . , w(H/2), wM
(1), . . . , wM

(H/2)}, (9)

where w(o), o = 1, . . . , NA/2 is the allocations with the NA/2
smallest imbalances and wM

(o) is the mirror allocation to w(o).
Finding W(1:H) requires that we compute all balance mea-

surement in the set W. However, NA is often so large that
computational time is a restriction in finding W(1:H). For this
reason we suggest an algorithm that finds the approximate best
set of allocations for large N within, what can be defined as, a
reasonable time limit.

Define the approximate best set

W∗
(1:H) = {w∗

(1), . . . , w∗
(H/2), w∗M

(1) , . . . , w∗M
(H/2)}, (10)

where w∗
(o) for o = 1, . . . , card(W∗)/2 is the allocation with

oth smallest Bj for j ∈ W∗ ⊂ W, W∗ is the set of considered
allocations, and card(W∗) = Ns is the cardinality of this set.

To illustrate the idea of finding the set W∗
(1:H), let Ns = I×H∗

where I is the number of times we are reading H∗ allocations
from the disk. Let CM denote the NA/2 allocations where all
mirror allocations are removed and assume for simplicity that
the columns in CM are ordered according to the order they are
being randomly selected, that is c1

M is the first randomly selected
allocation vector, and so on. Let i = 1, . . . , I, and let A1 be the
first set of H∗ randomly selected allocations from CM .

For concretization, assume that we use the Mahalanobis
balance measure to find the H best allocation in W∗

(1:H). This
means that we need to sort M(z, cj

M), j = 1, . . . , H∗ and then
keep the H/2 with the best balance in A1. Denote this set

3Note that in a balanced factorial experiment with G treatments, the time
it takes to compare the balance measure of any number of allocations is
reduced by a factor of 1/G! when using this mirror allocation design.



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 5

Figure 2. The cumulative distribution function for the Mahalanobis distance (df = 3) of the 800th order statistic in the random sample of allocations for numbers of
allocations between 100,000 and 1,000,000.

M1
(1) = (M(z, a1(1)), . . . , M(z, a1(H/2))), where a1(o) is a vector

of allocations with the oth smallest imbalance in A1. For i = 2,
we select H∗ new allocations in A2 and calculate M(z, cj

M), j =
H∗ + 1, . . . , 2H∗. The balance measure of these H∗ + H/2
allocations are then sorted and the H/2 allocations with best
balance in A1 ∪ A2 are stored in M2

(1). For i = 3, we select H∗
new allocations in the set A3, and so on. For the final set W∗ we
add the mirror allocations.

The proposed allocation sample scheme, using the mirror-
allocation strategy and for the Mahalanobis distance criterion,
is presented in detailed in Allocation sample scheme 1.

Allocation sample scheme 1. Order all possible allocations lexi-
cographically4 such that the first NA/2 allocations contains no
pairs of mirror allocations. Call the set containing the first NA/2
allocations CM . Choose a desired level of resolution r. Assuming
no ties, this gives the number of allocation H = 2/r.

1. Randomly sample, without replacement, a set A1 from CM
containing H∗ allocations, where H∗ ≥ H/2.

2. Calculate the balance measure for all allocations in A1, store
the H/2 allocation with the smallest imbalances from A1 in
the set W∗

s .
3. For i = 2, . . . , I

(a) Sample a new set of allocations, Ai, of size H∗ from the
NA/2 − (i − 1) × H∗ remaining allocations in CM .

(b) Calculate the Mahalanobis distance for Ai. Replace the
set W∗

s with the H/2 allocations with smallest imbalances
in the set {W∗

s , Ai}.

4. Save W∗
(1:H) = {W∗

s , WM∗} as the final subset of admissible
allocations, where WM∗ contains all mirror allocations for the
allocations in W∗

s .

With this algorithm, W∗ = A1 ∪A2 ∪· · ·∪AI−1 ∪AI . As the
sampling of allocations are random, W∗

(1:H) is an approximation
of the set containing the globally best allocations W(1:H). This
approximation will be better the longer the sampling of alloca-
tions is allowed to continue since W∗ → W as I × H∗ → NA.

If the balance measure is the Mahalanobis distance, the
set containing the H allocations with the globally smallest

4Most programming language have functions for generating combinations
in lexicographic order, for example, the RcppAlgos-package in R.

imbalances follows from Equation (9). For M(j) = M(z, w(j)),
the set of the globally smallest Mahalanobis distances is
{M(1), . . . , M(H/2), MM

(1), . . . , MM
(H/2)}. That is, the allocations

with the H first-order statistics of the Mahalanobis distance in
the set of all NA allocations. This corresponds to a = M(H/2)

in pa = Pr(χ2(K) ≤ a). Let M∗
(H/2) be the Mahalanobis

distance of the pair of mirror allocation with the H/2 smallest
Mahalanobis distance in W∗. The sample scheme implies that
pa∗ = Pr(χ2(K) < M∗

(H/2)) is unknown and stochastically
dependent on I × H∗. This is in contrast to Morgan and
Rubin (2012) where the inclusion criterion pa is fixed and the
number of included allocations is random for a fixed number
of rerandomizations. If the number of considered allocations
is small, that is, I × H∗ <<

( N
N1

)
, then M∗

(H/2), and thus
pa∗ , may be large. However, as I × H∗ → NA it follows that
M∗

(H/2) → M(H/2) and pa∗ → Pr(χ2(K) ≤ M(H/2)).
For chi-square distributed Mahalanobis distances, that is,

under normal covariates or a large sample (Morgan and Rubin
2012), the distribution of the Hth order statistic is known for
any I × H∗, given by

FM∗
(H)

(m) = Fβ(H,I×H∗−H)

(
Fχ2

(K)
(m)

)
, (11)

where FM∗
(H)

, Fβ(H,I×H∗−H), and Fχ2
(K)

denotes cumulative dis-
tribution functions (CDFs) of the Hth order statistics of the
Mahalanobis distances of a random sample of allocations, the
β(H, I × H∗ − H) distribution, and the χ2(K) distribution,
respectively (Gut 2009, chap. 4). This means we can calculate
(numerically) the probability of pa∗ < ε implied by M∗

(H/2) for
any given I × H∗, for an arbitrary ε ∈ (0, 1). As an example,
Figure 2 displays the CDF of the 800th (H/2 = 800) order
statistic for a χ2(3) distribution as a function of pa for different
I × H∗. It is clear from the figure that, with probability close
to one, Pr(χ2(K) ≤ M∗

(800)) = 0.009 when I × H∗ = 100,000.
Thus, with probability close to one, the set W∗

(1:800) only contains
allocations from the 1% of the globally best allocations, or better.
With I × H∗ = 1,000,000 the corresponding probability equals
0.001, that is, the set W∗

(1:800) contains allocations from the 0.1%
of the globally best allocations, or better. This implies that the
cardinality of W∗ can be chosen such that the allocations in the
obtained set W∗

(1:H), with a probability arbitrarily close to one,
all will have Mahalanobis distances smaller than some desired
value.
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The size of H∗ will affect the computational time as it
depends on the speed of reading from the disk and the time
it takes to sort the H∗ + H/2 allocations in each iteration.
For each iteration we would like to find as many allocations
as possible with better balance than as the currently best H/2
allocations. This means that H∗ should be as large as possible,
making I as small as possible for a fixed Ns. However, a too large
set Ai in memory slows the sorting time down substantially.
This means that if we want to have as large Ns as possible for a
given computation time, H∗ should to be tuned to the memory
capacity of the computer and with the speed of reading from
the disk. In summary, there are two parameters that governs the
proposed sample scheme. The number of included allocations
H (implied by the desired resolution of the exact p-value) and
the number of considered allocations (I × H∗). The number
of iterations in step 3 can as consequence be decided based on
computational time given an “optimal” choice of H∗.5

4. A Rank-Based Balance Measure

In this section, we present the second contribution of this article,
an alternative rerandomization balance measure based on the
rank of the covariate mean difference. The suggested balance
measure is marginal affinely invariant and avoids the problem
with inverting potentially large and singular covariance matrices
that might occur using the Mahalanobis distance, especially
with highly correlated covariates. In addition, the suggested
balance measure provides a convenient alternative to Morgan
and Rubin (2015) if the researcher has a priori information on
the relative importance of the observed covariates.

Define the mean of the covariate k for a given allocation j for
those assigned treatment and control Zj

kT = 1
N/2

∑
i:Wj

i=1 zik

and Zj
kC = 1

N/2
∑

i:Wj
i=0 zik, respectively. Consider the covariate

balance measure
K∑

k=1
Rank(|Zj

kT − Zj
kC|), (12)

where the rank is calculated over j = 1, . . . , card(W).
Again, let w(j) be the allocation with the jth smallest value
of (12) over the first half of the lexicographic order of
allocations, the set of the Hth best allocation as W(1:H) =
{w(1), . . . , w(H/2), wM

(1), . . . , wM
(H/2)}. As, for any covariate, the

exact p-value from a two-sided mean difference test within a
set of allocations is a monotonous transformation of the rank of
the absolute differences within the same set the p-values can be
used instead of the ranks to simplify notation and to avoid large
numeric values in large sets of allocations. Let pjk denote the
exact p-value of the two-sided mean difference test for allocation
j and covariate k, and define the balance measure

R(z, wj) = −
( K∑

k=1
ωkpjk

)
, (13)

5Making use of this procedure with the rank-based balance measure (see
Section 4) in the empirical example (see Section 6), the allocation sampling
scheme was left to work for 11 hr after which about one billion allocations
had been considered and the H = 800 approximately best had been
retrieved.

where ωk is the weight given to covariate k, with
∑K

k=1 ωk =
1. Here, the largest p-value implies the smallest absolute mean
difference. Therefore, to fit the general criterion function, the
negative sign is added so that the H allocations with the smallest
R(z, wj), j = 1, . . . , NA gives the set W(1:H). R is a symmetric
balance measure for any choices of ωk’s. Using Allocation sample
scheme 1, the criterion function for R has a criterion that itself
is a function of W∗, that is,

ϕ(z, wj, R, R(z, W∗
(H))) =

{
1, if R(z, wj) ≤ R(z, W∗

(H)),
0, if R(z, wj) > R(z, W∗

(H)),
(14)

where wj ∈ W∗ for all j.
With one single covariate, that is, K = 1, the H allocations

with the smallest imbalances, that is, the allocations with the
largest R(z, wj) among j = 1, . . . , NA, are the same allocations
that have the H smallest Mahalanobis distances. This implies
that with one covariate the rerandomization based on this new
balance measure yields identical variance reductions as in Mor-
gan and Rubin (2012) and, hence, that the percent reduction
in variance of the estimator under normality of the outcome
is given in Equation (6). However, for K > 1 the two balance
measures may give different sets of allocations. The proposed
measure does not explicitly use the covariance structure of the
covariate matrix, but instead make use of marginal weights for
each covariate. However, in situations where the weights can
be estimated from data, the covariate covariance structure can
be taken into account in the weights themselves. The following
section discuss this further.

The balance measure R(z, wj) is robust against outliers in
single covariates, as the impact of the imbalance in one covariate
is bounded by the exact p-value, that is, [0,1]. The Mahalanobis
balance measure has no upper bound for the influence of a single
covariates. This difference could be important for small samples
where single observations are more influential. A drawback with
the measure is an increase in computational time in contrast
to the Mahalanobis measure. The reason is that the p-values
in the criterion is fixed in the set W, but not across subsets.
The implication is that the p-values needs to calculated in the
set {W∗

s , Ai}, for all i = 1, . . . , I. This means that the 3(b) in
Algorithm 1 with the rank-based measure is 3(b′): Calculate the
balance measure for the set {W∗

s , Ai}. Replace the set W∗
s with

the H/2 allocations with the smallest imbalances.6
Throughout the remainder of this article, we denote the

balance measure using the procedure given in Equation (13)
R, while the procedure in Equation (1) using the Mahalanobis
distance balance measure is denoted M. R with uniform weights
is simply denoted R while if the R balance measure is based on
nonuniform weights it is denoted R(ω, G), where G is a generic
term defining the method being used to set these weights.

Morgan and Rubin (2015) addressed the case when covari-
ates vary in importance and suggest rerandomization based on
Mahalanobis distance within tiers of covariates, grouped by a
priori importance. The R balance measure is a complement to
Morgan and Rubin (2015) which is simple to implement and

6An example on the computational time of different choices of H∗ is included
in the supplementary R-file.
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allows the weights ωk, k = 1, . . . , K, to be estimated. This ability
is especially useful when K is large and some weights might
be zero or close to zero. In the following section we discuss
strategies for estimating the weights in the situation where (at
least) one premeasured outcome is observed at the design stage.

4.1. Estimating the Weights From Pretreatment Data

Assume data on the outcome is observed for T time periods at
the time of the design and experiment. For this time period,
we also observe a set of covariates. We first discuss the case
with T = 1. This means that z = {Y1, x1, . . . , xKx} where
Y1 = (Y11, . . . ., Yn1)

′. Then, we turn to the case with T > 1.
Focusing on the situation with Kx = 0.

4.1.1. One Pretreatment Outcome
If the pretreatment outcome, Y1, can be assumed to be corre-
lated with the post-treatment outcome in the absence of treat-
ment, Y2(0), an obvious strategy is to estimate the weights in
Equation (13) using the partial correlation of the individual
covariates and the pretreatment outcomes.

Denote the weights for {Y1, x1, . . . , xKx} as {ω0, ω1, . . . , ωKx}.
The weight for the covariates are estimated using ordinary least
square (OLS) on

ỹi1 =
Kx∑

k=1
βk̃xik + εiT ,

where ∼ indicate a standardized variables, that is, z̃i = (Zi −
Z)/

√
̂var(Zi). With Kx covariates and one pretreatment out-

come there are K = Kx + 1 variables to base rerandomiza-
tion on.7 By normalizing the weights to sum to one we get
ω̂′=( 1

δ
, |β̂1|

δ
, . . . , |β̂K |

δ
), where δ = ∑K

k=1 |β̂k|+1. As all variables
are standardized to have unit variance the coefficients are there-
fore bounded in theory, that is, 0 ≤ |β̂j| ≤ 1 ∀ j = 1, . . . , Kx,

and it follows that 1
δ

≥ |β̂j|
δ

. This means that the pretreatment
outcome will always have the largest weight, which is natural
given that the weights are estimated under the assumption that
the pretreatment outcome is associated with the outcome at
the time period of the experiment. This strategy is denoted as
R(ω, O) throughout the rest of this article.

If there are many covariates and/or the sample size is small
in comparison to Kx, it might be useful to estimate the par-
tial correlations with some regularization estimator, for exam-
ple, LASSO (Tibshirani 1996). Using LASSO tuned with cross-
validation, some covariates can be given zero weights, which
might substantially reduce the noise in the weight estimation
with many highly correlated covariates. This strategy, using
leave-one-out cross-validation, is denoted as R(ω, L).

There is a close relation between Mahalanobis-based
rerandomization and the proposed measure with regression-
estimated weights. As can be seen from Equation (6), the
variance reduction in the outcome in Mahalanobis-based
rerandomization is governed by R2 and νa. As νa is decreasing
in K (Equation (5)) this means that including unnecessary

7The set of covariates can, of course, be extended to include transformations
of the originally observed covariates.

covariates (i.e., not increasing R2) will reduce the potential
efficiency gain from the rerandomization. This property stems
from the fact that the covariates are treated symmetrically,
that is, the percentage reduction in the imbalance is the same
for all covariates (Equation (4)). Our measure with estimated
weights will not reduce the imbalance equally for all covariates.
If Y1 is a good proxy for Y2(0), better balance is obtained
for the covariates that are most important for the potential
outcome. Using LASSO, some estimated weights may be exactly
zero, this corresponds to removing unimportant covariates
from x, which in Mahalanobis rerandomization would imply
obtaining a smaller νa but unchanged R2. This would give
larger balance improvements in the remaining covariates
leading to larger variance reduction in the difference-in-means
estimator. This indicates that the proposed balance measure
with estimated weights is a useful complement to Mahalanobis
rerandomization when there are many covariates and their
importance is unknown a priori.

In the situation where the outcome is observed at several time
periods pretreatment, that is, T > 1, LASSO is still useful to
estimate the weights for the R balance measure, however, for
larger numbers of time periods other strategies for performing
the rerandomization might be preferable as is discussed in the
next section.

4.1.2. Several Pretreatment Outcomes
With z = (Y1, . . . , YT , x1, . . . , xKx) the strategies in the previous
section applies directly. However, because the exact p-values
used in the measure must be calculated for each pretreatment
time period with nonzero estimated weight, the computational
time estimating R(ω, O) or R(ω, L) increases drastically with the
number of pretreatment time periods why alternative strategies
may be preferable. We limit the discussion to the case with
Kx = 0 as the extension to the situation with Kx > 0 is
straightforward applying the results of the previous section.
Thus, in the following z = (Y1, . . . , YiT).

An alternative in this situation is to predict the outcome value
at the time period of the experiment by fitting a time series
model to the pretreatment outcomes of each individual and then
use the one step forecast to base the rerandomization on. In
this setting the time-series prediction model is denoted R(ω, F).
Since there is only one forecast value for each individual, M
based on the forecast will give the same allocations as with
R(ω, F). Note that the R(ω, F) strategy is not only time saving, it
also allows for heterogeneity across experimental units.

The two strategies R(ω, L) and R(ω, O) are likely to work
well if the processes across individuals are homogeneous. If the
processes are heterogeneous across the individuals, for exam-
ple, with differences in the “memory” or time-dependency in
the outcomes, the R(ω, F) may be more efficient in reducing
the variance as it can incorporate heterogeneity, although, at
the cost of estimating more parameters. Thus, if T is large
and heterogeneity is present, which is possible to detect using
the pretreatment data, R(ω, F) should likely be preferred over
R(ω, L) and R(ω, O).

The following section provides a Monte Carlo simula-
tion study where the different strategies are evaluated and
compared.
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5. Monte Carlo Simulation Studies

Throughout the Monte Carlo studies, complete randomization
will serve as a benchmark for the reduction of variance of the
covariates (including pretreatment outcomes) and the estimated
treatment effect under the null for the different rerandomization
strategies.

In traditional Neyman–Pearson asymptotic inference, a test
with a small variance of the estimator will be asymptotically
more powerful than a test based on an estimator with large
variance given that both tests are based on consistent estimators
of the effect and the variance. As the power of the Fisher ran-
domized test (FRT) is based on shifts in the rank due to the shift
under the alternative it is not possible to evaluate the power of
two strategies based only on the variance of the estimators under
null.8 For this reason, the relative power under the alternative is
also presented.

All evaluations of variance are made on the data for the
period after the allocation is made, that is if the design and
treatment assignment is performed at period T, the power and
variance is calculated at T + 1. Denote complete randomization
with c, and the different rerandomization strategies with d =
M, R, R(ω, O), R(ω, L) and R(ω, F). For each arm of the study,
4000 replications (Nrep) are considered.

Let Wir = 1 or 0 if unit i is treated or control in replicate r
and let zrki be value of covariate k for unit i in replication r and
define

zrqT = 1
N1

N∑
i=1

Wirzrqi,

zrqC = 1
N0

N∑
i=1

(1 − Wir)zrqi, r = 1, . . . , Nrep,

ZkT = (z1kT , . . . , zNrepkT)′ and ZkC = ((z1kC, . . . , zNrepkC)′.

The relative (compared to complete randomization) change
in variance in the mean difference between the treated and
controls in covariate/pretreatment outcome k, at time period T,
using design d is then defined as

VC(k|d) ≡ var(ZkT − ZkT |d) − var(ZkT − ZkT |c)
var(ZkT − ZkT |c) , (15)

for k = 1, . . . , K. The treatment effect estimate for each repli-
cate, r, is defined

τ̂rc = 1
N1

N∑
i=1

WirYiT+1 − 1
N0

N∑
i=1

(1 − Wir)YiT+1,

τ̂dr = 1
N1

N∑
i=1

WirYiT+1 − 1
N0

N∑
i=1

(1 − Wir)YiT+1

∣∣∣W ∈ W∗
d.

8The distribution of the FRT test is only known empirically (i.e., the his-
togram). Under the Fisher null (i.e., homogeneous treatment effects and
the same variance of treated and controls and no treatment effect) the
asymptotic variance is equal to V̂ = Ns2/(N1N0) where s2 is the sample
variance and

τ̂ − 0√
V̂

d→ N(0, 1).

Under these assumptions the t-test (i.e., Neyman–Pearson inference) and
FRT have the same size asymptotically.

The empirical variance under rerandomization and complete
randomization is then defined

var(τ̂d) = 1
Nrep

Nrep∑
r=1

(τ̂rd − τ̄d)
2 and

var(τ̂c) = 1
Nrep

Nrep∑
r=1

(τ̂rc − τ̄c)
2,

where τ̄d and τ̄c are the average estimated treatment effects
across the replications. The relative change in variance of the
treatment effect of strategy d is defined

VCτ (d) ≡ var(τ̂d) − var(τ̂c)

var(τ̂c)
. (16)

The exact p-value for the complete randomization and the
rerandomization strategies are defined as

πrc = Pr(|̂τrc(W, Y)|) ≥ |̂τrc| and πrd = Pr(|̂τrd(W∗
d, Y)|) ≥ |̂τrd|.

Here, τ̂rc(W, Y) is the distribution of estimates over all
allocations in replication r under complete randomization
and τ̂rd(W∗

d, Y) is the corresponding distribution under
rerandomization. The relative power is evaluated with τ being
varied from 0.4σY to 2σY in steps of 0.4σY , and estimated as

Power(τ , d) ≡ pτd − pτ c
pτ c

, τ = 0.4, 0.8, . . . , 2.00, (17)

where

pτ c = 1
Nrep

Nrep∑
r=1

1(πrc ≤ 0.05) and

pτd = 1
Nrep

Nrep∑
r=1

1(πrd ≤ 0.05).

5.1. Cross-Section Data and One Pretreatment Outcome

Consider the data-generating process (DGP)

Yit = x′
iβ + εit , i = 1, . . . , N, t = 0, 1, (18)

where xi is a Kx × 1 vector of normal distributed variables with
mean 2 and covariance matrix �, that is, xi ∼ N(2, �) and
εit = 0.3 × εit−1 + ζit , where ζit is independent and identical
distributed (iid) and normal, that is, ζit ∼ N(0, σ 2).9 Due to
independence the marginal variance of the outcome is equal to

var(Y) = β�β ′ + σ 2

1 − 0.32 . (19)

We compare the proposed rerandomization balance measure, R,
with M for T = 0 (Ky = 1, Kx = 3) and T = 1 (Ky = 1, Kx = 3
and Ky = 1, Kx = 10) under different specifications of β and
�. The residual variance, σ 2, is chosen to obtain R2 = 0.25 in
expectation.

9The results from the Monte Carlo simulations with regards to power are
not sensitive with respect to the choice of distributions of the covariates
or the error term. The covariates and the error terms are chosen to be
normally distributed only to compare the results from the Monte Carlo to
the theoretical expected variance reductions given in Equations (4) and (6)
for small N.
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Table 1. Relative variance change in the covariates and the effect estimate as
compared to complete randomization (Equations (15) and (16)) for Mahalanobis
distance (M) and ranked p-values (R) rerandomization designs.

A B

Balance measure R M R M

VC(X1|.) −0.71 −0.74 −0.83 −0.74
VC(X2|.) −0.71 −0.75 −0.83 −0.75
VC(X3|.) −0.70 −0.75 −0.73 −0.75
VCτ (.) −0.20 −0.19 −0.22 −0.20

NOTE: The left and right panels display the results for DGPs A and B, respectively.

5.1.1. Cross-Sectional Data
This section serves to compare the proposed balance mea-
sure with the balance measure presented in Morgan and Rubin
(2012) in a setting when the weights cannot be estimated from
data. That is, the weights of the covariates are assumed uni-
form, that is, not estimated, which implies that we expect no
improvement using our balance measure as compared to the
Mahalanobis distance. As this setting is not primary focus, the
results are restricted to N = 14, for which the 800 allocations
with the (globally) smallest value of the balance measure are
used. This implies that pa = 800/

(14
7
) = 0.233.

Two DGPs are considered. In the first, (A), we let β =
(1, 1, 1) and � = diag(1, 1, 1) and in the second, (B), we let
β = (1, −1, 1) and

� =
⎡⎣ 1 −0.8 0

−0.8 1 0
0 0 1

⎤⎦ .

Table 1 displays the relative variance reduction in the covari-
ates and the estimated treatment effect. The variance reduction
of the covariates for the M balance measure is, as expected, of
the same magnitude for all covariates and around 75%. Given
that νa = 0.213 (= P(χ2

5 ≤ 0.233)/P(χ2
3 ≤ 0.233)) this

variance reduction is close to the one theoretically expected
of 78.7% (cf. Equation (4)). The variance reductions of the
covariates using the R balance measure is around 71% under
DGP A. Under DGP B the variance reduction is 83% for the
two correlated covariates but only 73% for the independent
covariates. The variance reduction of the treatment effect under
the null is around 20% for all strategies. Given that νa = 0.213

and R2 = 0.25 this is in line with the theoretically expected
variance reduction using the M balance measure of 19.7% (see
Equation (6)). Figure 3 displays the relative power gain of the
rerandomization as compared to complete randomization for
the two DGPs A and B. From the left panel, displaying the result
under DGP A, one can see that both criteria increase the power
by 20% for small treatment effects. Given that the covariates are
uncorrelated, the similarity of the results with M and R with
uniform weights is expected. The results displayed in panel B
show that the criteria have similar power gains for small effect
sizes. However, for larger effect sizes, R gives substantially larger
power gains.

5.1.2. Results With One Pretreatment Outcome
Turning to the case with T = 1, two new DGPs are considered.
The first, (A), with Kx = 3 we let β = (0, 0.25, 0.75)

and � = diag(1, 1, 1). In the second, (B), with Kx = 10
we let β = (0, 0, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) and � =
diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1). For both DGP’s the importance
of the covariates is increasing in k. In DGP A, x1 does not
contribute to the variation of the outcome, and in DGP B, x1,
x2, and x3 do not contribute to the variation of the outcome.
These two DGPs illustrate how the criteria M, R , R(ω, O), and
R(ω, L) are affected by the number of included covariates and
how well the criteria incorporates the relative importance of the
covariates. The considered sample sizes are N = 14, 50, and
100. Including one pretreatment outcome observation implies
K = 4 and K = 11 covariates. In the K = 11, N = 14 setting,
the M balance measure is expected to perform poorly, as the
covariance matrix is very large in comparison to the sample
size.

When N = 14, the 800 globally best allocations for a
given sample are used for each criteria. As pa = 0.233 for
the Mahalanobis balance measure this implies νa = 0.29 (=
P(χ2

6 ≤ 0.233)/P(χ2
4 ≤ 0.233)) with Q = 4. For Q = 11,

we get νa = 0.51 (= P(χ2
13 ≤ 0.233)/P(χ2

11 ≤ 0.233)). This
means that, using the M balance measure, the expected variance
reductions in the covariates are 71% and 49% for K = 4 and
K = 11, respectively. The corresponding variance reduction in
the variance of the effect estimate are 17.99% and 12.25%.

DGP A DGP B
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Figure 3. Relative power as compared to complete randomization for Mahalanobis distance (M) and ranked p-values (R) rerandomization designs. The left and right figures
display the results for DGPs A and B, respectively.
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Table 2. Relative change in variance of the covariates and in the effect estimate as compared to complete randomization (Equations (15) and (16)) for Mahalanobis distance
(M) and ranked p-values (R) rerandomization designs.

R(ω, L) R(ω, O) R M

N 14 50 100 14 50 100 14 50 100 14 50 100

K = 4

VC(Yt=T |.) −0.94 −0.96 −0.96 −0.92 −0.95 −0.95 −0.66 −0.71 −0.73 −0.64 −0.73 −0.74
VC(X1|.) −0.07 −0.09 −0.05 −0.25 −0.15 −0.09 −0.62 −0.66 −0.67 −0.65 −0.73 −0.74
VC(X2|.) −0.17 −0.16 −0.12 −0.33 −0.23 −0.15 −0.63 −0.69 −0.66 −0.67 −0.74 −0.73
VC(X3|.) −0.31 −0.55 −0.63 −0.51 −0.61 −0.65 −0.67 −0.71 −0.72 −0.63 −0.73 −0.73
VCτ (.) −0.18 −0.20 −0.22 −0.20 −0.22 −0.24 −0.17 −0.20 −0.21 −0.16 −0.20 −0.20

K = 11

VC(Yt=T |.) −0.93 −0.96 −0.96 −0.68 −0.93 −0.94 −0.39 −0.50 −0.46 −0.21 −0.48 −0.47
VC(X1|.) −0.04 −0.08 −0.05 −0.24 −0.16 −0.09 −0.37 −0.43 −0.41 −0.21 −0.47 −0.49
VC(X2|.) −0.04 −0.07 −0.03 −0.31 −0.15 −0.13 −0.43 −0.42 −0.44 −0.25 −0.47 −0.49
VC(X3|.) −0.05 −0.04 −0.08 −0.25 −0.18 −0.12 −0.36 −0.43 −0.42 −0.21 −0.48 −0.50
VC(X4|.) 0.03 −0.01 −0.07 −0.24 −0.11 −0.14 −0.36 −0.43 −0.45 −0.17 −0.46 −0.49
VC(X5|.) −0.04 −0.04 −0.08 −0.29 −0.17 −0.14 −0.37 −0.41 −0.43 −0.23 −0.46 −0.50
VC(X6|.) −0.02 −0.10 −0.07 −0.26 −0.18 −0.17 −0.40 −0.45 −0.42 −0.21 −0.47 −0.48
VC(X7|.) −0.08 −0.10 −0.16 −0.24 −0.24 −0.23 −0.36 −0.45 −0.43 −0.17 −0.50 −0.48
VC(X8|.) −0.13 −0.11 −0.18 −0.30 −0.28 −0.28 −0.41 −0.46 −0.42 −0.23 −0.46 −0.52
VC(X9|.) −0.11 −0.19 −0.31 −0.30 −0.35 −0.34 −0.39 −0.44 −0.44 −0.20 −0.49 −0.51
VC(X10|.) −0.15 −0.22 −0.32 −0.33 −0.34 −0.40 −0.42 −0.44 −0.45 −0.23 −0.47 −0.52
VCτ (.) −0.17 −0.16 −0.17 −0.15 −0.21 −0.22 −0.12 −0.12 −0.13 −0.05 −0.16 −0.11

NOTE: The top and bottom panels display the results including four (K = 4) and eleven (K = 11) covariates, respectively.

To limit the computational time for N = 50 and N = 100,
we randomly sampled 4000 from all possible allocations. To get
the same resolution of the exact p-value as in the N = 14
case, the rerandomization is performed by selecting the 800 best
allocations according to the different criteria, within this set
of 4000 allocations. This implies that the 20% best allocations
among these 4000 are selected. Since pa is a little bit smaller
than with N = 14 the expected variance reduction is a few
percent larger. However, as a consequence of the initial random
sampling of the 4000 allocations the theoretical results of the
variance reductions for the M balance measure may be less exact
for N = 50 and 100.

Table 2 displays the change in variance in the covariates and
the effect estimates for the four criteria compared to complete
randomization for both DGP’s. Figure 4 displays the results with
respect to relative power of the four criteria.

From the top panel, displaying the results with K = 4, we
can see that the variance reduction of the R and M balance
measure are very similar both in the covariates and the effect
estimates. For N = 14, the variance reductions are a little bit
lower than what is theoretically expected (71% in the covariates
and 18% in the effect estimate). With N = 50 and 100 the
variance reduction is a little bit higher than what is theoretically
expected. For the R(ω, O) and R(ω, L) criteria, the variance
reductions in the covariates are the highest for the pretreatment
outcome and monotonically increasing for the covariates which
is in accordance with the increasing importance of the covariates
in the DGPs. With regard to variance reduction of the estimated
treatment effect, the R(ω, O) balance measure is performing best
overall.

From the bottom panel, displaying the results with K = 11,
it is clear that the variance reductions of the M balance measure
and the R balance measure are performing similar but only when
N ≥ 50. The variance reductions are close to the theoretically
expected of 49% and 12% for the M balance measure. However

with N = 14, the variance reduction is much smaller than
the theoretical value as expected given the small number of
observations to estimate the 10 × 10 covariance matrix. It is
interesting to note that the variance reduction for the R balance
measure with N = 14 is on the same levels as with N = 50
and 100. Turning to the two criteria using the estimated weights
R(ω, L) and R(ω, O), the pattern as with K = 4 is repeated. Both
criteria are reducing the variance of the lagged outcome the most
and are both successfully picking up the relative importance
of the covariates in the DGP, even though the R(ω, L) balance
measure are better. Except for N = 14, the R(ω, O) balance
measure is giving the largest variance reduction in the estimated
treatment effect. With N = 14, the R(ω, L) balance measure
performs better than the R(ω, O) balance measure.

The left panels of Figure 4 displays the results for the relative
power when K = 4. From this figure, it is clear that all the
rerandomization criteria increase power as compared to com-
plete randomization. The power gain for the smallest effect sizes
is around 15%–25% and increasing with N. Both the R(ω, O)

and R(ω, L) criteria have higher power than the M and R criteria.
With N = 14, the power gain using the R(ω, L) balance measure
is substantial also compared to the R(ω, O) balance measure.
Turning to the right panels displaying the results with K = 11,
we find that the power is increasing in N and that the R(ω, O)

and R(ω, L) criteria are more efficient than the M and R criteria.
Once again, with N = 14, the power gain using the R(ω, L)

balance measure is substantial in comparison with the other
criteria. This results displays the advantage of using penalizing
in the situation of many covariates in combination with small
samples. With N = 100 the relative power increase is almost
twice as good with the R(ω, O) and R(ω, L) criteria as compared
to the M and R criteria.

To summarize, for both DGPs the power was substantially
improved by using estimated weights. This result most likely
stems from giving more weight to the covariates most correlated
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Figure 4. Relative power as compared to complete randomization for Mahalanobis distance (M) and ranked p-values (R) rerandomization designs. The left and right panels
display the results including four (K = 4) and eleven (K = 11) covariates, respectively.

with the outcome. Furthermore, with many covariates and small
N it is important to penalize the number of covariates to be
included in the criteria to obtain real power gains.

5.2. Longitudinal Data

In this section, two different time series DGP are considered
with T = 10,100 and N = 1,450,100. In the first DGP the times
series process, denoted homogeneous in the following, is set to
be the same for all units

Yit = 0.5 × Yit−1 + ζit , i = 1, . . . N, t = 1, . . . , T + 1, (20)

where ζit iid N(0, 1). In the second DGP, denoted heterogeneous
in the following, the time series processes differ across four
strata according to

Yit = φjY i,lag + εit ,
i = 1, . . . , N, t = 1, . . . , T + 1, j = 1, . . . , 4, (21)

where Y i,lag = (Yit−1,Yit−2, Yit−3)
′, φ1 = (0.5, 0, 0), φ2 =

(0, 0.5, 0), φ3 = (0, 0, 0.5), φ4 = (0.39, 0.32, 0), and εit iid
N(0, 1). For both DGPs, the parameters are chosen such that
R2 = 0.25.

When T = 10, the R(ω, O), R(ω, L), and R(ω, F) criteria are
used. In this context, the Mahalanobis-based rerandomization
is difficult to apply due to singular covariance matrices and
is therefore excluded. Given the large number of correlated

pretreatment outcomes with T = 100, also the R(ω, O) balance
measure runs into singularity problems in the estimation in that
setting and is therefore excluded in that case.

In this setting with only outcome data, the OLS estimated
weights are estimated as

ỹiT = β0 +
T−1∑
t=1

βt̃yit + εi

using OLS. Denote ωτ the weight for ỹiτ then ω =(ω1, . . . , ωT)′

and the estimated ω̂′=
( |β̂1|

δ
, . . . , |β̂T−1|

δ
, 1

δ

)
where δ =∑T−1

t=1 |β̂t| + 1. This implies ωT ≥ ωt ∀ t = 1, . . . , T − 1 in
expectation.

5.2.1. Results With T = 10
The top panel of Table 3 displays the results under the homoge-
neous DGP. With N ≥ 50, all criteria are successful in giving the
latter time periods larger weights which is in line with the DGP.
The variance reduction for R(ω, O) varies more across different
N, than the two other criteria. The advantage of using penalized
regression for small N is confirmed also in this setting. It is clear
that the R(ω, L) and R(ω, O) criteria give larger reductions in
the variance of the lagged outcomes and the estimated treatment
effect under the null than R(ω, F). The variance reduction in
the estimated effects is significantly better for the R(ω, L) and
R(ω, O) criteria than for R(ω, F) balance measure. The bottom
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Table 3. Variance reduction of the covariates and in the effect estimate as compared to complete randomization (Equations (15) and (16)) for the ranked p-values (R)
rerandomization designs.

Rerandomization R(ω, F) R(ω, L) R(ω, O)

N 14 50 100 14 50 100 14 50 100

DPG = Homogeneous

VC(Y1|.) −0.01 0.04 0.01 −0.07 −0.02 −0.01 −0.33 −0.17 −0.12
VC(Y2|.) −0.01 −0.02 −0.00 −0.09 −0.04 −0.05 −0.37 −0.25 −0.18
VC(Y3|.) −0.00 0.01 −0.04 −0.08 −0.03 −0.07 −0.39 −0.24 −0.25
VC(Y4|.) −0.01 −0.02 −0.06 −0.05 −0.03 −0.07 −0.42 −0.26 −0.20
VC(Y5|.) −0.08 −0.09 −0.08 −0.06 −0.11 −0.07 −0.42 −0.30 −0.16
VC(Y6|.) −0.12 −0.08 −0.09 −0.10 −0.10 −0.11 −0.41 −0.29 −0.22
VC(Y7|.) −0.17 −0.14 −0.16 −0.08 −0.08 −0.10 −0.39 −0.26 −0.25
VC(Y8|.) −0.28 −0.23 −0.25 −0.20 −0.24 −0.21 −0.45 −0.34 −0.32
VC(Y9|.) −0.37 −0.31 −0.32 −0.42 −0.62 −0.69 −0.51 −0.68 −0.73
VC(Y10|.) −0.39 −0.42 −0.39 −0.92 −0.95 −0.95 −0.69 −0.92 −0.93
VCτ (.) −0.10 −0.10 −0.13 −0.19 −0.27 −0.21 −0.14 −0.25 −0.24

DPG = Heterogeneous

VC(Y1|.) 0.01 0.00 −0.03 −0.01 −0.03 −0.08 −0.29 −0.18 −0.17
VC(Y2|.) −0.03 −0.03 0.02 −0.10 −0.07 0.03 −0.33 −0.23 −0.10
VC(Y3|.) −0.05 −0.01 −0.11 −0.05 −0.01 −0.06 −0.30 −0.18 −0.17
VC(Y4|.) −0.08 −0.06 −0.05 −0.10 −0.05 −0.06 −0.35 −0.22 −0.18
VC(Y5|.) −0.10 −0.11 −0.08 −0.06 −0.04 −0.05 −0.35 −0.19 −0.17
VC(Y6|.) −0.14 −0.10 −0.15 −0.06 −0.05 −0.11 −0.36 −0.22 −0.20
VC(Y7|.) −0.19 −0.19 −0.21 −0.08 −0.15 −0.24 −0.36 −0.28 −0.28
VC(Y8|.) −0.19 −0.21 −0.16 −0.14 −0.25 −0.29 −0.38 −0.39 −0.34
VC(Y9|.) −0.29 −0.27 −0.24 −0.14 −0.09 −0.13 −0.35 −0.24 −0.20
VC(Y10|.) −0.31 −0.27 −0.30 −0.93 −0.96 −0.97 −0.71 −0.94 −0.95
VCτ (.) −0.06 −0.08 −0.10 −0.04 −0.07 −0.05 −0.06 −0.09 −0.06

NOTE: The top and bottom panels display the results for the homogeneous and heterogeneous DGPs, respectively.

panel of Table 3 displays the results with the heterogeneous DGP.
Also in this case, the variance reduction increases with t when
N ≥ 50 for all criteria. Once again we see that the variance
reduction is of similar magnitudes for the R(ω, F) and R(ω, L)

criteria but that the variance reduction of R(ω, O) with N = 14
differs to a large extent from the variance reduction with larger
N. The variance reduction in the effect estimate is of similar
magnitude for N = 14 and 50. With N = 100, the R(ω, F)

balance measure gives the largest variance reduction.
Figure 5 displays the relative power of the different reran-

domization strategies as opposed to complete randomization
under the homogeneous (left panel) and heterogeneous (right
panel) DGPs. From the left panel one can see that for small
effects the power gain is around 20% for the R(ω, O) and R(ω, L)

criteria for all N. Furthermore, these criteria are superior to the
R(ω, F) balance measure. From the right hand panels one can
see that the power gains for N = 50 and 100 is around 10%
for the R(ω, F) balance measure. For these sample sizes, this
balance measure gives almost 100% larger relative improvement
than the two other criteria. With N = 14 it is hard to get any
improvements for any of these criteria in comparison to the
complete randomization, at least with R2 ≤ 0.25.

5.2.2. Results With T = 100
Table 4 displays the change in variance in the effect estimate
for the two criteria. With the homogeneous DGP, the R(ω, F)

and R(ω, L) criteria give similar variance reductions in the range
19%–25%. With the heterogeneous DGP the variance reduction
obtained with the R(ω, F) balance measure is of the same mag-
nitude as with the homogeneous DGP. The variance reduction
using the R(ω, L) balance measure is now only around 10%.
The variance reduction in the 100 lags shows a pattern (not

displayed) very similar to the pattern presented in Table 3. The
first 90 time periods have close to zero weights for both strategies
and the last 10 have increasing weights. Figure 6 displays the
relative power of the R(ω, F) and R(ω, L) criteria under the
two DGPs. In the lefts panels, displaying the results from the
homogeneous DGP we can see that with the smallest effects
size the increase in power is around 10% with N = 14 and
around 20% with N = 50 and 100. For N = 50 and 100,
the R(ω, L) balance measure performs better than the R(ω, F)

balance measure. From the right hand panels, displaying the
results with the heterogeneous DGP, we can see that the R(ω, F)

balance measure with N = 50 and 100 is in the range 20%–15%
in comparison to the complete randomization. With N = 14
the increase in power is only 5%. The R(ω, L) balance measure
gives hardly any improvement in power in comparison to the
complete randomization.

In summary of Section 5.2, when the number of time periods
and sample size is small, and the DGPs are heterogeneous, it is
difficult to improve the power by the rerandomization strategies
presented in this section. However, if either the sample size or
the number of time periods increase, there are gains to be made
using the strategies presented here. With long time series of
pretreatment outcomes there are large gains for both considered
DGP’s. Of course, with large T, the level of heterogeneity can be
evaluated by preanalysis to guide the choice of strategy.

6. Empirical Example—An Information Experiment
on Electricity Consumption

This section illustrates how the proposed design strategies
can be applied in practice in a small sample experiment. The
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Figure 5. Relative power as compared to complete randomization for the ranked p-values (R) rerandomization designs for T = 10. The left panel and right panel display
the results from the Homogenous and the heterogeneous DGPs, respectively.

Table 4. Relative change in variance in the estimated treatment effect as com-
pared to complete randomization (Equations (15) and (16)) for the ranked p-values
(R) rerandomization designs with forecast-based and LASSO estimated weights,
respectively.

Rerandomization R(ω, F) R(ω, L)

N 14 50 100 14 50 100

Homogeneous

VCτ (.) −0.19 −0.25 −0.21 −0.22 −0.25 −0.24

Heterogeneous

VCτ (.) −0.23 −0.26 −0.22 −0.07 −0.11 −0.06

NOTE: The top and bottom panels display the results for the homogeneous and
heterogeneous DGPs, respectively.

pre-experimental data used in this example originates from
Öhrlund, Stikvoort, and Schultzberg (2018), where a small
randomized experiment is conducted. The interest is in how
electricity consumption behavior can be affected toward a
behavior more suitable for solar energy by providing informa-
tion on energy consumption. Several outcomes are of interest
in the original study, here we focus on one of them, the mean
consumption difference between the group that received the
information and the group that did not. The sample consists of
54 households for which the electricity consumption is observed
for each hour for the 4 months before treatment assignment.
To increase the efficiency, a complex stratified randomization

was used to assign treatment in the original study using all
pretreatment data. Here, as an illustration, only the first 30 days
are used, where consumption data are aggregated to 60 distinct
12-hr periods. The last period (T + 1 = 60) is left out from the
design stage and is used to evaluate the design.

All the pretreatment outcome time series are presented in
Figure 1. Figure 7 displays the heterogeneity in the pretreat-
ment outcome by showing the households with the smallest and
largest maximum consumption value, the smallest and largest
household mean, and the smallest and largest standard devi-
ation over the pretreatment time periods, in the panels from
left to right, respectively. It is clear that there are quite large
differences in several aspects of the electricity consumption
between the households during the pretreatment period and it
is clearly not trivial to find a balanced design.

Since the pretreatment data are measured with high fre-
quency and no other covariates are available, the two strategies
presented in the latter part of Section 5.2 are used, that is select
the best allocations according the R(ω, L) and R(ω, F) criteria.
Since the number of possible allocations equals

(54
27

) = 1.95e15,
the globally best allocations cannot be found and instead the
procedure presented in Section 3 is applied. We chose here a
resolution of 1/400 implying H = 800, that is, allocations were
sampled randomly without replacement and the best 800 was
kept. The procedure was left working for 11 hr which in this
case meant that a random sample of one billion allocations were
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Figure 6. Relative power as compared to complete randomization the ranked p-values (R) rerandomization designs with forecast-based and LASSO estimated weights,
respectively, for T = 100. The left panel and right panel display the results from the homogenous and the heterogeneous DGP’s, respectively.
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Figure 7. The electricity consumption (kWh) for the households with the largest (max) and smallest (min) maximum consumption, mean consumption, and standard
deviation in their consumption, respectively.
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Figure 8. The relative probability as compared to complete randomization of randomly selecting an allocation that gives a significant result for two different rerandom-
ization strategies given different hypothesized treatment effects.

considered. As a benchmark to the rerandomization strategies,
complete randomization was conducted. The exact p-value for
the complete randomization was Monte Carlo approximated
by a random draw of 40,000 allocations from the considered
billion.

To evaluate the potential power gains under the proposed
designs as compared to complete randomization, hypotheti-
cal homogeneous treatment effects where added to the treated
group. That is, for each of the 800 selected allocations, the
hypothetical treatment effect was added to Y60 for the treatment
group and the exact p-value calculated. The same procedure was
applied to the 40,000 randomly selected allocations (complete
randomization), and the relative number of allocations that had
exact p-values less than α = 0.05 were compared by calculating
the relative probability of drawing an allocation that rejects the
null under the alternative when using R(ω, L) or R(ω, F) as
compared to complete randomization.

Figure 8 displays the relative probability of rejecting the null
under the alternative when random assignment is restricted to
the set of allocation defined by the two criteria as compared
to random assignment in the set of 40,000 randomly selected
allocations.10 From the figure we can see that for a half standard
deviation (of the outcome) effect, the probability of obtaining
a statistically significant effect after making a random draw
from the 800 allocations determined by the R(ω, F) and R(ω, L)

measures is around 99% and 57% higher, respectively, than
when making a random draw from the 40,000 randomly chosen
allocations. It is worth noting that the forecast procedure, that is
to use R(ω, F) balance measure is less computationally demand-
ing than the R(ω, L) balance measure. The R(ω, L) takes around
T time longer than the R(ω, F) balance measure to calculate.

An alternative way of displaying the difference between the
complete randomization and the rerandomization strategies is

10Note that there is no difference in rejection rate under the null as all tests
are based on exact inference.

Table 5. Relative variance change in the effect estimates across the possible allo-
cation using R(ω, F) and R(ω, L) as compared to complete randomization (Equation
(16)).

Rerandomization R(ω, F) R(ω, L)

VCτ (.) −0.56 −0.61

NOTE: Complete randomization is here Monte Carlo approximated by 40,000 ran-
dom allocations.

to look at the empirical variance of the effect estimate under
these designs. The variance of the effect estimate is thus obtained
by estimating the effect for the restricted set of 800 allocations
under the two criteria and for all 40,000 allocations for the
complete randomization. Table 5 displays the percentage change
in variance in the effect estimate compared to complete ran-
domization. It is clear that, in comparison to complete random-
ization the variance using the R(ω, F) and R(ω, L) criteria is
reduced by 56% and 61%, respectively.

7. Discussion

Based on the results in Morgan and Rubin (2012), this article
develops strategies for rerandomization as a means to increase
efficiency in randomized experiments. Morgan and Rubin
(2012) suggested randomization based on the Mahalanobis
distance balance measure of the covariate mean-difference
vector between potential treated and controls. This article has
two main contributions. First, a strategy to sample from set
of admissible allocations fulfilling an implicit rerandomization
balance measure to find the best possible design, given a balance
measure, within a certain time limit. With the proposed sam-
pling strategy and a symmetric balance measure, the difference-
in-means estimator is unbiased and the Fisher test is exact by
design. Second, a new covariate balance measure is proposed
as an alternative to the Mahalanobis distance. The balance
measure differs from the Mahalanobis distance in several ways;
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it has computational advantages over the Mahalanobis balance
measure in the situation of a large set of highly correlated
covariates, and importantly, as the proposed balance measure
expresses the weights of each covariate explicitly, it enables
for various strategies of estimating the weights from data.
For given a priori weights, the strategy can be considered an
alternative to the strategy of Morgan and Rubin (2015) whom
suggested rerandomization within tiers of importance. The
proposed criterion balance measure is especially useful with one
pretreatment outcome or longitudinal pretreatment outcome
data. In this situation, the correlation structure of the data can
be estimated using data to give different weights to the covariates
and the pretreatment outcomes accordingly.

The Monte Carlo simulations show: (i) that with traditional
cross-section data (i.e., only covariates) the suggested crite-
rion has similar performance as the Mahalanobis criterion, (ii)
an advantage with the new strategy to the Mahalanobis cri-
terion when one or several pretreatment outcomes are avail-
able. Finally (iii), two Monte Carlo simulations with only pre-
treatments observations (as in the empirical illustration) shows
advantages with the new strategies in comparison to complete
randomization.

Taking use of a sample of 54 households with electricity
consumption over 60 time periods, it is shown that the power
of a mean difference test in a balanced randomized experiment
can be increased by up to 100% using one of the proposed reran-
domization strategies as compared to complete randomization.

Supplementary Materials

The file “R-functions.R” contains a function for performing the designs
proposed in the article. Moreover, examples of several designs are given
with simulated data. Code for a small Monte Carlo simulation study is
given for comparison of different designs. The code for the design of
the Empirical example is given (Note that smaller number of considered
allocations is specified so that the whole code will run in reasonable time).
Finally, a function for calculating the CDF for the H:th order statistic of the
Mahalanobis distance in the set of considered allocations is given together
with the example from the paper.

The file “EXACT_INFERENCE_RCPP_ARMADILLO.cpp” contains
C++ functions for calculations of the exact p-values needed in the designs.
This file is sourced from the “R-functions.R” and is necessary for running
the function therein.

The file “EMPIRICAL_DATA_ELECTRICITY.Rdata” contains the data
used in the empirical example. This file is loaded in “R-functions.R”.
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