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Let W denote the Brownian motion. For any exponentially bounded Received 9 April 2019
Borel function g the function u defined by u(t,x) = E[g(x + cWr_¢)] Accepted 7 August 2020

is the stochastic solution of the backward heat equation with ter-

minal condition g. Let u"(t,x) denote the corresponding approxima- o o

. . . . X Approximation using simple
tion generated by a simple symmetric random walk with time steps .

) random walk; weak rate of
2T/n and space steps *a/T/n where ¢ > 0. For a class of terminal convergence; finite
functions g having bounded variation on compact intervals, the rate difference approximation of
of convergence of u"(t,x) to u(t, x) is considered, and also the the heat equation
behavior of the error u"(t,x) — u(t,x) as t tends to T.
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1. Introduction

The objective of this article is to study the rate of convergence of a finite-difference
approximation scheme for the backward heat equation. The error analysis is carried out
for a large class of exponentially bounded terminal condition functions having bounded
variation on compact intervals.

During the past decades, convergence rates of finite-difference schemes for para-
bolic boundary value problems have been studied with varying assumptions on the
regularity of the initial/terminal condition, the domain of the solution, properties of
the possible boundary data, etc. (see, e.g., [1-5]). In order to study the convergence,
several techniques have been applied. Our approach is probabilistic: The solution of
the PDE is represented in terms of Brownian motion, and the approximation scheme
is realized using an appropriately scaled sequence of simple symmetric random walks
in the same probability space, in the spirit of Donsker’s theorem. The possible dis-
continuities of the terminal function produce error bounds which are not uniform
over the time-nets under consideration, and hence the time dependence of the error
is of particular interest here.

To explain our setting in more detail, fix a finite time horizon T>0, a constant ¢ >
0, and consider the backward heat equation
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0 a* O?
pY +7ﬁ =0, (Lx)€[0,T)xR, u(T,x)= gx), xeR. (1)

The terminal condition g: R — R is assumed to belong to the class GBV o, consisting
of exponentially bounded functions that have bounded variation on compact intervals
(the precise description is given in Definition 2.3). The stochastic solution to the prob-
lem (1) is given by

u(t,x) :=E[g(eWr)|oW, = x| =E[g(x+cWr_,)], (tx)€[0,T] xR, (2)

where (W;),., denotes the standard Brownian motion. To approximate the solution (2),

we proceed as follows. Given an even integer n € 2N, a level zp € R, and time and
space step sizes d > 0 and h > 0, respectively, define

T {tg = 2k | nggg,kez}, St i={zm+2mh|meZ}. (3

The finite-difference scheme we will consider is given by the following system of equa-
tions defined on grids G, :=7" x S, C [0,T] x R,

VIt x) — V(1] |, x) N a? v (1, x + 2h) — 2v"(t, x) + v"(t, x — 2h) 0
-t 2 (2h)? ’ (4)
VT, - )=g.

Letting 6 := L and h := a\/%, the system (4) can be rewritten in an equivalent form as

1
VIt |, x) = : [V (£, + 2h) + 20" (£, x) + V" (8], x — 2h)], 5)
Vi(T, - )=g.

This scheme is explicit: Given the set of terminal values {g(x) | x € S} }, the solution

V" of (5) is uniquely determined by a backward recursion. We extend the function v" in
continuous time by letting

n
Vit x) = v"(t,x)  for  te[ti ), 0<k< > (6)

and study the error of approximation ¢,(t,x) on (t,x) € [0,T) x S}, where

en(t,x) :=V"(t,x) — u(t, x). (7)

Theorem 2.5, the main result of this article, states that for a constant C>0 depending
only on g,

 CY(x)
T e

en(t, )] < ) (bx) € [, 17,,) x 82, 0< k<2,

(8)

where the function /(x) = y(|x|,g, 0, T) > 0 is given explicitly in Section 2.
In the 1950s, Juncosa and Young [2] considered a finite difference approximation of
the (forward) heat equation on a semi-infinite strip [0,00) X [0, 1], where the initial
condition was assumed to have bounded variation. Using Fourier methods, they proved
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[2, Theorem 7.1] that the error is O(n2) uniformly on [t,00) X [0,1] for any fixed
t > 0. However, they did not study the order of the blow-up of the error as ¢ | 0 (which
translates to ¢ T T in the case of the backward equation (1)). Indeed, the bound (8) sug-
gests that the convergence is not uniform in (¢, x). Nevertheless, one obtains the rate

ni on any compact subset of [0,T) x R, and this rate is also sharp for the class
GBYV ¢ . The blow-up in (8) vanishes if g has more regularity: For «-Holder continuous
g with o € (0,1] and ¢ =1, it was shown in [6, Corollary 4] that |¢,(t,x)| < Cn™ holds
uniformly in (¢, x), where C = C(T) > 0 is a constant.

The main result is derived using the following probabilistic approach. Let (&), ,
be a sequence of i.i.d. Rademacher random variables, and define

u'(t,x) = E[glx+oWj_,)], (tx) €0, T] xR, 9)

where (W}),c(o 7) is the random walk given by

2T/n
\[ Z & teloT] (10)

([-] denotes the ceiling function). The key observation is that the function u”, when
restricted to Q;‘O, is the unique solution of (5) for every z; € R. Relation (6) also holds
for u" by definition. Moreover, since the random walk (W) 7y affects the value of

n

u" only through its distribution, we may consider a special setting where the
Rademacher variables &, &,, ... are chosen in a suitable way. Defining these variables as
the values of the Brownian motion (W;),., sampled at certain first stopping times (see
Section 2.1) enables us to apply techniques from stochastic analysis for the estimation
of the error (7) where v' = u".

The above procedure was applied in Walsh [7] (cf. Rogers and Stapleton [8]) in rela-
tion to a problem arising in mathematical finance. More precisely, the weak rate of con-
vergence of European option prices given by the binomial tree scheme
(Cox-Ross—Rubinstein model) to prices implied by the Black-Scholes model is analyzed
in [7] (cf. Heston and Zhou [9]). A detailed error expansion is presented in [7,
Theorem 4.3] for terminal conditions belonging to a certain class of piecewise
C? functions.

Using similar ideas, we complement this result by considering a large class of func-
tions containing the class considered in [7]. Moreover, instead of studying the error at
time =0 only, we derive a time-dependent error bound. Finally, a gap is closed in the
proof done in [7]. It concerns the estimate [7, Proposition 11.2(iv)] for which a detailed
proof is given in Section 5.2.

It is argued in [7, Sections 7 and 12] that the rate remains unaffected if the geometric
Brownian motion is replaced with a Brownian motion, and the binomial tree is replaced
with a random walk. It seems plausible that also our time-dependent results in the
Brownian setting can be transferred into the geometric setting with essentially the same
upper bounds.

The article is organized as follows. In Section 2, we introduce the notation, recall the
construction of a simple random walk using first hitting times of the Brownian motion,
and formulate the main result Theorem 2.5. Using this sequence of first hitting times,
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the error (7) will be split into three parts. Estimates for the adjustment error and the local
error are derived in Section 3, and the global error is treated in Section 4. Section 5 contains
the result for the sharpness of the rate and the key moment estimates applied in Section 4.
The remaining auxiliary results and estimates can be found in the appendix, where also the
construction of the terminal function class and its properties are briefly discussed.

2. The setting and the main result
2.1. Notation related to the random walk

Consider a standard Brownian motion (W;),., on a stochastic basis (Q, F,P, (F¢),0)s
where (F¢),., stands for the natural filtration of (Wi)so- Let (Xi),sp = (O'Wt);o,
where ¢ > 0 is a given constant. By t(_; ;) we denote the first exit time of the proc_ess
(Xt) ;> from the open interval (—h, h),

Tpn =inf{t > 0: X, =h} =inf{r > 0: |W,| =h/c}, h>0.

In order to represent the error (7), we construct a random walk on the space
(Q F,P,(F}),5)- Following [7], we define

=0 and 7 =r(h) = inf{t > 71 |X — Xo [ = h} (an

recursively for k = 1,2,.... Then 7, is a P-a.s. finite (F),,-stopping time for all k > 0,
and the process (X )., . 1is a symmetric simple random walk on 7" =
{mh : m € Z}. For every integer k > 1, we also let

At =1 —1-; and AX, =X, —X

Th—1"
The strong Markov property of (X;),, implies that (At AX,),_, , is an iid. process
such that for each k > 1, we have P(AX,, = *h) =1/2,

(Atg, AXTk)i(r(,h,m,Xr(ih’h)), and (A1, AXy,) is independent of Fo,_ ..

Moreover, as shown in [8, Proposition 1], the increments AX; and Art; are independ-
ent. Consequently, the processes (Aty),_, , ~and (AXy),_,, . are independent (see
also [7, Proposition 11.1] and [10, Proposition 2.4]).

We deduce, in particular, that for all N > 1 the random variable X, is distributed as
Yy, & where (¢k)key,o,.. is an iid. sequence of Rademacher random variables.
Therefore, for W7_, defined in (10), we have the equality in law

d n . i T T—t
X, =0W}_, provided that (h,N)= (0\/;2[2T/n-‘>'

Note that in this case the sequence of stopping times (tx),_ . (11) depends on n
via h = h(n).

The error (7) will be split into three parts, where each of these parts will take into
account different properties of the given function g. For this purpose, let us introduce
some more notation. Let 0, denote the smallest multiple of 2T/n greater than or equal
to T — t. That means, for given n € 2N and t € [0, T),
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T T—t
0, = nQT, where ny = 2[21"/71-‘ €{2,4,...,n}. (12)
It is clear that
2T
0<0,—(T—t)<— and 0, T—t as n— oo.
n

Note also that the connection between lattice points ;! = 2kT/n € T" introduced in (3)
and the time instant 0, € (0, T] is explained as follows:

telt,ty,,) ifandonlyif 0,=T-t, 0<k<-—1 (13)

Y

2.2. The class of terminal functions

The approximation error will be estimated for functions g belonging to the class
GBYV o, introduced below. This class is contained in the class of exponentially bounded
Borel functions.

Definition 2.1 (The class Begp). A function g: R — R is said to be exponentially
bounded if there exist constants A, b > 0 such that

g(x)] < At for all x € R. (14)
The class of all Borel functions with the above property will be denoted by B .

The function class GBV.y generalizes functions of bounded variation (which are
bounded) by allowing exponential growth. While these functions have bounded variation
on each compact interval, their total variation may be unbounded (or undefined) over
unbounded intervals. See [11] and Appendix A.1 for more information on this topic.

Definition 2.2 ([11, Definition 3.2]). Denote by M the class of all set functions
1:{Ge€BR):G is bounded} — R

that can be written as a difference of two measures u!,y? : B(R) — [0,00] such that
w(K) < oo nad p?(K) < oo for all compact sets K € B(R).

Below it is understood that [a,b) = () whenever a > b.
Definition 2.3 (The class GBV ¢y, ). Denote by GBV ¢, the class of functions g : R — R
which can be represented as

g = e u([0.) ~ u(50) + S Ly (), x€R as)

where ¢ € R is a constant, u € M, and J = (%.x),_; , C R’ is a countable set such
that x; # x; whenever i # j. In addition, we require that for some constant 8 > 0,

J e PP d|u|(x) + Z |oi| e PRl < 0. (16)
R i—1

1
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To give some examples of classes of functions contained in GBV,, we have the
remark below. See Appendix A.1 for the proof.

Remark 2.4 (Examples of functions belonging to the class GBV ¢y ).

(i)  Every polynomial belongs to the class GBV ..
(i)  Each increasing (resp. decreasing) function g € B, belongs to GBV .
(iii)  Each convex (resp. concave) function g € By, belongs to GBV .
(iv)  Kexp C GBVep, where Kep is the class of functions g : R — R considered in
Walsh [7] (pp. 340, 345-346, and 348), i.e. they satisfy the below criteria:
(v) &g, and g" belong to B,
(vi) g.¢, and ¢” have at most finitely many discontinuities and no oscillatory
discontinuities
(vii)  g(x) =31 (g(x+) + g(x—)) at each point x € R.

2.3. The main result

The main result of this article, Theorem 2.5, describes the approximation error between
the solution of the backward heat equation (1) and its finite-difference approximation
(9) for terminal functions belonging to the class GBV ¢y, .

Theorem 2.5. Let n € 2N, and let u and u" be the functions introduced in (2) and (9).
Suppose that g € GBV oy, is a function given by (15) and that f > 0 is as in (16). Then,
for all (t,x) € [0,T) x R,

. C/joT Bx| n
i u(t,x) — u(t,x < — P t#£t, 0<k<-—,
(i) () (e, ) i #4 ;
) | (x) —u(thx)| < ol <k <
k N T ) -T2

where Cp g 1 1= CVTEF 7T and C>0 is a constant depending only on g.

Remark 2.6. The error bounds in Theorem 2.5 grow exponentially as functions of the
variable x. If the terminal condition g satisfies (16) with f=0 one obtains bounds
which are uniform in x.

Proof of Theorem 2.5. The function u”(t,x) is constant in t on intervals of length 2T /n,
while ¢ — u(t, x) is continuous. Therefore, for ¢ € [t/, ¢/, ), we will split the error and

write
' (tx) — u(t,x) = (" (tf,x) — u(ty, x)) + (u(tf,x) — u(t,x)),
where
£49(6,2) 1= u(t} x) — u(t,x) = Egx + Xp,) — gl + Xr_,)] (17)

will be called the adjustment error. Next, we exploit the construction of the random
walk (X;, ), by Skorokhod embedding from the process (X;),., and let
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Jo(w) :=inf{2m € 2N : 1,,(w) > 0,}, € Q, (18)
which is the index of the first stopping time 7o, 72,74,... exceeding the value 0,.
Consequently, by construction, X;, will be ‘rather close’ to Xy, for large n. Therefore,
we will write
W (tx) — u(f,x) = Efg(x + X, ) — glx +Xp,)] = 6§ (6,x) + &,°(1,%),

where the first term on the right-hand side

sﬁl"b(t, x) =E[gx+X,, ) —g(x + Xz, )] (19)
is referred to as the global error, and second term

e (tx) == E[g(x+X;,) — glx + Xp,)] (20)

denotes the local error. The local error is influenced by the smoothness properties of
the terminal condition g, while for the global error only integrability properties of g
are needed.

Since g € GBV ¢y, there exists a constant A = A(f) > 0 such that |g(x)| < AefH for
all x € R. Indeed, relation (14) is satisfied for a function g given by (15) by letting b :=
f and A to be equal to the sum of |c| and the left-hand side of (16).

Consequently, by Theorems 3.1, 3.8, and 4.3 (the bounds for the error terms 8fldj , slffc,

and &£, respectively), there exists a constant C >0 such that

" (t,x) — u(t, x)| < Ceﬁ|x|+3ﬁ202T<

VT VT T
T L =T )
/(T —1t) V(T =1 n(T—1)

It remains to observe that since /n(T —t;) > /2T for all integers 0 < k < n/2, it
holds

T _ VT _ VT
n(T—t) = /n(T—6) " /n(T—1)

3. The adjustment error and the local error
3.1. The adjustment error

The purpose of this subsection is to derive an upper bound for the modulus of the
adjustment error defined in (17) for a terminal function g belonging to GBV ¢, .

Theorem 3.1. Let n € 2N, and suppose that g € GBV o, and > 0 is as in (16). Then,
for all (t,x) € [0,T) x R,

CANVT e

g ﬂ{t;ﬁt”vo<k<ﬂ}>
V/n(T —1t) k :

len(t0)] <

n

where Ag = 2[oe PVd|p|(y).
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Proof. Denote by p; the density of X; = oW for s >0, and consider the function
u(s,x) = E[g(x+ Xr_)] = J gx+2)prs(z)dz, 0<s<T.
R

Fix n € 2N and suppose that #;' = 2kT /n is the lattice point such that ¢ € [t,#], ). If t =

ty, (13) implies that 0, =T —t, and thus sidj(t, x) =0 by (17). Suppose then t &
(ti-t¢,,) and use the representation (29) for the function z — g(x + z) in order to rewrite

() 0 = | [o(r+ 2y T=7) — ot 2vT=0)] (o
N JRJ[O,OO) [H<y7x’°°) (zﬂ) = Lyxo0) (Zm)}d,u(y)pl(z)dz
) LJ (=000 e (2VT=8) = 1y (VT = 1) |y (2)d2

= Il - 12.
(21)

Since g is exponentially bounded, one may apply Fubini’s theorem to rewrite

y—x

h :J J [1 (y— oo) (2) — ﬂ(%,oo)(zq dp(y)pi(2)dz = J Jﬁ_ pr(2)dzdu(y).  (22)
)

/T—r}(” y

T—t;(’
The mean value theorem and the fact VT — t < /T — t imply for arbitrary y € R that

R [0,00 [0, 00)

y—x

ol Jﬁ p1(2)dz <eﬁx+ﬁlyxpl< ly — x| ) y—x JT-H-VT—t
yox - VT =t ] Tt T—t
7 k k

VT -t —VT—t
T—t

Blx|
€ 2Po\/T—22/2
< sup ze b
V2an (ZG(O, ) >

e1+/5\x\+/5202T ﬁ
<
v /(T -1

where the estimates \/T -t — VT =t < \/t — 1 < /2T/n and

sup 27 BVT-2/2 < sup ez(l+[iaﬁ)fz2/2 < e(1+ﬁaﬁ)2/2 < T

z€(0, 00) z€(0, 00)

were applied. Consequently, it follows by (22) that

el+[f\x\+ﬂzazT \/T
n| < —Frn— J e Wdlul(y) | ——, (23)
ﬁ [0,00) n(T — t)
and an analogous computation for the integral I, yields
1+B|x|+f 6> T T
L] < e J e_ﬁb"d|,u|(y) L (24)
Vv (0, 00) n(T —1t)

Since ei,dj(t, x) = u(t},x) — u(t,x), the relations (21, 23), and (24) imply the claim. O
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3.2. The local error

Suppose that (h,0) € (0,00) x (0, T]. The aim of this subsection to derive an upper
bound for the absolute value of the error

e0(8) = Elg(Xy) —g(X0)] (25)
as a function of (h, 0), where g € GBV ¢, . The random variable ] is given by
J =J(h,0) = inf{2m : 15, > 0},

where 1, was defined in (11). Afterward, upper bounds for the error (25) are derived
in the dynamical setting, where the step size h and the level 0 will depend on n.

Observe that ] = J, holds for J, defined in (18) when one substitutes (h,0) =

(o\/ T/n, & [ZTT‘/ )
Let us start by introducing the following notation:

Zh={k+1)h:kecZ}, Z':={2kh:kcZ}

(0 refers to “odd” and e refers to “even”); then Z" = Z’; UZZ. In addition, we will
abbreviate

do(x) = dist(x Z8),  du(x) = dist(x,Z!) =h—dy(x), x€R. (26)

As in [7], we project functions onto piecewise linear functions in order to compute the
conditional expectation E [g(XT,) |F 9].

Definition 3.2. Define operators I, and Il, acting on functions u : R — R by

o Iu(x):= u(x) if x € Z" and x — T,u(x) linear in [2kh, 2k + 2)h] Vk € Z,
o Tlu(x) = u(x) if x € Z" and x — T,u(x) linear in [(2k — 1)h, (2k + 1)h] Vk € Z.

The key ingredient in the estimation of the error ?;?C@ (8) is the following result, which

was proposed in [7, Section 9]. For the convenience of the reader, a sketch of the proof
is given below. Recall Definition 2.1 for the class Bey,, and denote by Ny := {0,1,2,...}
the set of non-negative integers.

Proposition 3.3. Let (h,0) € (0,00) x (0, T| and define a random variable
L= L(h0):=sup{meNy:1, <0} (27)

(ty is equal to the largest of the stopping times Ty, T1, ... less than 0). Then, for a function
g E BCXP >

ao(8) = E[Mg(Xp) — g(Xo)] + E[(TTeg(Xy) — TLeg(Xy))P(L even|Xy)].  (28)

Proof. If g € Bexp, then also Il.g € Beyy and I, Il,g € Bey,. The expectations on the
right-hand side of (28) thus exist and are finite. Using the Markov property of the pro-
cess (X;),5g> it can be shown that

E[g(Xq)|Fo] = TLg(Xo) P-a.s. on {L odd},
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E[g(X:)|Fo] = T,I.g(Xp) P-as. on {L even},
see [7, Section 9]. Consequently, since 1(; oqq) + 11 even) = 1 P-as,,
Efg(X)] = B[E[g(X)IF0] Ly auar] +E[E[SX0)IF0] Lt o]
= E[[1.g(Xp)P(L 0dd|Xp)] + E[ TI,I1.g(Xe)P(L even|Xp)]
=E[ILg(Xo)] + E[(IILg(Xs) — Mg(Xp))P(L even|Xy)].

If g € GBV ¢, is a function given by (15) and g* := g(x + - ) for given x € R, then

g)c(z) =ct J ﬂ(y*X)OC)(Z)d:u(y) - J Il( 00, y—X] Z)d.u +Zazﬂ{x, x} . (29)

[0, 00) (—O0,0)

Using the representation (29) and linearity, the estimation of the error glh‘)ce(g*) essen-
tially reduces to the estimation of integrals whose integrands consist of indicator func-
tions or their linear approximations given by the operators II, and Il, (introduced in
Definition 3.2). The following lemma enables us to interchange the order of integration
or summation with the application of these operators.

Lemma 3.4. Suppose that (h,0) € (0,00) x (0, T] and that § € GBV e, admits the repre-
sentation (15). Then, for all x € R,

o Mg'(e) =t [ Ml @dng) = | Mol g@diy)
[0, 00) (=00,0)
+ > allly (2, z€R,
ieN:xi—xGZi’

(11) HOHeg)C(Z) =c+ J Hone](yfx,oo)(z)du(y) - J Hone]l(foo,yfx](Z)d,u(y)
(=00,0)

+ Z aiHDHel{xifx} (Z), z e R.

ieN:x; —erZ’

Idea of the proof. The representations in (i) and (ii) follow by using the representation
(29), linearity of the operations f — ILf, f — Ilf, and f+— [fd|u|, and relation
(83). O

Proposition 3.5. Let (h,0) € (0,00) x (0, T]. Suppose that g € GBV o, admits the repre-
sentation (15) and that § > 0 is as in (16). Then, for all x € R,

Blg"(X,) ~ g0 | < = W*ﬁ“ﬁ“’”/z(jRe-ﬂydmuy)+ > |m|e—ﬂxf>.

iEN:x,vfxEZZ’

(30)
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Proof. Let us denote by p = p( - ,0) the density of Xp:
1

z2>
p(z,@)—\/mexp<m, z€eR.

By Lemma 3.4, we may decompose the expectation on the left-hand side of (30) as fol-
lows:

Bl ) =€ 00)] = | | [y () = Lo () ipl)

R 10, 00)

— J [Hel(—oc,y—x(2) = L—oo,y—(2)]dr(y)p(2)dz
R (~o0,0)

+ J (oI 1 (s, 00y (2) — Hely—x,00)(2) | du(r)q(2)p(2)dz
R (0,00)

- J [ToITe 1 (—oc,y—x)(2) — Mol (—o0,y—4(2) | d1e(y)q(2)p(2)dz
R (-x,0)

+ Z o; [Hel{xi—x} (2) — Il{x,-—x} (z)]p(z)dz
R i€Nux;—x€Z!

+ Z o [Honeﬂ{xﬁx} (Z) - Heﬂ{xi*x} (Z)] q(Z)p(Z)dZ
R iEN:x,-—eri‘

—. E(l) _ E(2) +E(3) _ E(4> +E(5) +E(6),
(31)

where q=q(z,0) is the function introduced in (57) which satisfies g(z) =
P(L even|Xy = z) (Leb-a.e.). To show (30), we derive upper estimates for the quantities

|E¥|,1 < i <6, in the following steps.

Step 1: E1) and E?. Suppose that y — x € [2kh, (2k 4 2)h) for some k € Z. Then

|He1(yfx,oc)<z) - ﬂ(yfx,oo)(zﬂ < Jl[zkh, (2k+2)h) (2),
and since for each z € [2kh, (2k + 2)h) it holds that |y| < 2h + |x| + |z|, we have

e/flyJRmeﬂ(yx,,x)(z) —1yno0)(2) p(2)d2

< ezﬁh+ﬁ|xlj eﬁ|z\|He]l(y7x)oo>(Z) — H(y—x,oo)(z) |p(Z)dZ
R

(2k+2)h

< 2Phtpixl J Pl p(2)dz
2kh

< 2 2B BlxI+5 0 T/2 h

Nez: V0

Consequently, by Fubini’s theorem,
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|E(1)| < J e Bl (eﬁy J el (y—x,00)(2) = 1y—x,00) (2) |p(z)dz) dlpl(y)
(32)

[0, 00) R

h 2 22
< L2 i) J |l ).
SN o) 1l (y)

In fact, it also holds that

\E(2>| h 2 ez[ih+ﬁ|x|+[izazT/2J e Pd|p| o) (33)

< _ - __Z
~ oV0V2n
since |He]l(,oo,y,x] (z) — ]l(,oo,y,x](zﬂ = |Hel<},,x,oo>(z) — ﬂ(y,x,oo)(zﬂ for all zeR,

—00,0)

which is a direct consequence of the relation

Hel(foo,r] =1- Hel(r,oo)> reR. (34)

Step 2: E® and E“¥. Suppose y — x € [2kh, (2k 4 2)h) for some k € Z. Then |y| <
3h + |x| + |z| holds for all z € [(2k — 1)k, (2k + 3)h), and by (84) we may estimate

eﬂM JR|HOHE ]1 (y—x,0) (Z) - He ]1 (y—x,00) (Z) ‘q(z)p(z)dz

< e3/3h+/3xJ eﬁ‘z‘|HoHe1<y7x,oo>(Z) _ HeIl(yfx,oc)(Z”q(Z)p(z)dZ
R

(2k+3)h
<emm [ ) gy

(2k=1)h 4h
1 (2k+3)h
< — hhthlx J eﬁlzlp(z)dz
4 (2k—1)h

<L sprepiporo P

ST vk

where we used the fact that d,(z) < h and g(z) <1 for all z< R. Hence, by Fubini’s
theorem,

|E(3)| < J e (eﬁy J T 1 -y, 00) (2) — He]l<y_x,m)(z)|q(z)p(z)dz> dlpl(y)

[0, 00) R
P (35)
< BBl 0T 2 J P31 4l .
SN S 1)
0, 00
Moreover, by (34) and by the linearity of I1,, we obtain
h 1 2 2
@) < Bl + T2 J P dlul o, (36)
B9 <o 1)

(—00,0)
since |H0He]l(,oc)yfx] (Z) — He]l(,oo,y,x] (Z)| = |H0HEH(}/,X’OQ) (Z) — Heﬂ(yfx,oo) (Z)|, zeR.
Step 3: E®). Notice that [¢(z)p(z)dz =0 for the function ¢(z) =3, rez
]l{x,._x} (z) since @ =0 a.e. Notice also that for &€ Z’Z, it holds that II, 1z <
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L1e_on,e12n)- Therefore, since it also holds (for each x;) that |x;| < 2k 4 |x| + |z| when-
ever |z — (x; — x)| < 2h,

|E(5>| < oc,-J Heﬂ{xi,x}(z)p(z)dz
ieNwx;—xeZ! R
S Z |ai|e_ﬁ|x[J eﬁ‘xi‘p(z)ﬂ[(x,-—x)—Zh, (xi—x)+2h] (Z)dZ
ieNwx;—xeZ! R
(xi—x)+2h (37)
< Y et e
ieNwx;—xcZ! (xi—x)=2h
< h A ppesiepoT) S e e,
J\/a 2m i€Nwx;—x€Z!
Step 4: E® If¢ e Zh, relations (83), (88), and the linearity of I1, imply that
ILIT, ﬂ{é}(Z) — L lg(2)
1
= (M |- (6= 2)() — e — (€~ 2B)) — 5 (T |- ~El() — e — )
1
o (Mo |+ —(E+2h)](2) — [z — (£ +2h)))
do(2)
= (Le-sne-m(2) = 2Leoneam (2) + Lgsnciam(2)), 2 ER.
Therefore, since |x;| < 3h + |x| + |z| whenever |z — (x; — x)| < 3h, we get
B9 30 ol ML)~ L o 2 lg(@p(a)de
i€Nux;—x€Z! R
o (xi—x)+3h ‘ du z
S S e
. x;—x)—3h
ieN:x;—xeZh (xi=%)
38
|<xi| ; - (xi—x)+3h ( )
< 3 s J Pl p(2)dz
iEN:x,-fxEZh 2 (xi—x)=3h
< M3 pmpipeT) ST fofe P,
O-\/_‘ 2 ieN:x;—xeZ!

The proof is completed by combining relation (31) with the bounds (32)-(33) and (35)-(38). O

Before presenting the main result of this subsection, Theorem 3.8, we provide an aux-
iliary convention regarding the notation. It enables us to distinguish between the gen-
eral setting (h, 0) and the specific n-dependent setting (h,, 0,,) also in the later sections.

Assumption 3.6. For given t € [0, T) and n € 2N, we substitute (h, 0) = (h,, 0,), where

T _
h,,:a\/:, Hn:ﬂ and ng=2 u
n n 2T /n

as in (12). For notational convenience, we will drop the subscript n from h,,.
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Remark 3.7. The special choice (h,0) = (h,,0,) in Assumption 3.6 affects the objects
below used throughout this text:

T = inf{s > 14—y : |X; — X¢,_,| = h}, (ka>k=0,1,...> (]:fk)kzo,l,...’
Jo=J=inf{2m € 2N : 15,, > 0,,}, L, =L =sup{m €Ny : 1, < 0,},
zh ={2kh:kez}, 7'={Ck+Vh:kez}, 7'=7"07Z"

do(y) :dist(y,Z’;>, deo(y) = d1st(y, e), and  p(y) = P(X, € dy)/dy.

This choice also affects the function g = q( - ,h,0) defined below in (5.3). In particular,
Proposition 5.3 implies that q(y) = P(L, even|Xy, =y) for y ¢ z".

Recall that &°(t,x) = E[g(x + X, ) — g(x + Xp,)] as defined in (20).

Theorem 3.8. Let n € 2N. Suppose that the function g € GBV o, admits the representa-
tion (15) and that f > 0 is as in (16). Then, under Assumption 3.6, there exists a con-
stant C> 0 such that for all (t,x) € [0,T) x R,

CVT S35 0T

loc
e (Lx) <

n
tE [thti), 0<k<Z.
Proof. Proposition 3.5 with (h,0) = (h,0,) as stated in Assumption 3.6 combined with
the relation h(029n)71/2 = ngl/z yield
Cp. o, 7 B
o) < P (] P+ 3D e
0 R ieN:x;—eri’

where the coefficient Cg 5,7 > 0 implied by (30) can be estimated as follows:

242 7 sBoVT+RT)2 3BT
Cf’ = e3ﬁh+ﬁ a*T/2 S ezﬁo’ +po S Ce

hro V2n V21
for a constant C>0. Since ngT = n(T —t}) for t € [t{(’,t,’gﬂ) by (13), we obtain the
desired result. O

4. The global error

Our aim is to derive an upper bound for the modulus of the global error defined in
(19), that is

0 (tx) =Efg(x + Xy, ) —g(x +Xq,)]»

where the function g is an exponentially bounded Borel function and (Xx,) is the

k=0,1, ..
random walk considered in Section 2.1. For this purpose, we need a collection of esti-
mates related to the behavior of the random walk (X;,) and the random variable J,,. A
part of these estimates are given in this section, while the more involved ones are pre-

sented later in Section 5.2 and Appendix A.2.

Note: Assumption 3.6 is taken as a standing assumption throughout Section 4.
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Recall the definitions of ny and 0, given in (12), and that J,(®w) = inf{2m € 2N:
Tom(®) > 0,} as was defined in (18). A result similar to the lemma below was proved
in [7, Corollary 11.4].

Lemma 4.1. For any b > 0, it holds that

(i) ElePnl] <2et''T/2, (39)
(ii) Ele!Xnl] < 2eboV2T+0e’T/2, (40)
Proof. (i) Since X% = Zil AX.,, where (AXTk)k:Lz,... is a sequence of ii.d. random

variables with P(AX;, = *=h) =1/2 for h = /T /n (see Section 2.1),
E[eblx“”)l] < 2E[e" ] = 2(E[e?A%])" = 2(cosh(bh))" < 262 < 260772,

since cosh(y) < ¢”’/? holds for any y € R.
(ii) Firstly, observe that by the definition of J, we have |X; — Xj,| < 2h. Secondly,

since for a standard normal Z random variable it holds that E[e*Z]] < 2¢*'/2 for all
ueR,

EletXon!] < BlebXo, —Xo[+0X0,l] < 260 [eboviilz] < 2eboVITH T2,
|
The following upper bounds are later needed for the estimation of the global error.

Proposition 4.2.
(i)  Suppose that p > 0, g € Beyp, and that b > 0 is as in (14). Then there exists a con-
stant C, > 0 such that for all x € R,

X P
| T 0| b 2 52
n |x|+b*6*T
(n t)eszlrilz[o T) ¢ ( 720, gt Xa) || = e . @

Moreover, for every p >0 there exists a constant C, > 0 such that

G sp  alP(1x, /W > 0)°) <G, (42)
(n, t)€2NX [0, T)

(iii) sup n‘ZIP’(U,, — ng| >/ 5) < G, (43)

(n,t)€2Nx[0, T)

Proof. (i) Observe that
Xr 1 "o 4 1 "o
ngy — AX = é‘)
V20, \/0'29,,; i w/n(); ’
where (&;);_, , . is an ii.d. Rademacher sequence (see Section 2.1). Hence,

1o n 2
Ele™n] = (Cosh («/r < (er/@m)™ — "2, reR.
Ny -

Snp =
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Consequently, by the symmetry of S, and Markov’s inequality,
IP’(|Sn0| > r) = ZIP’(erS"H > erz) < 2e " Ele™m] < 2e7r2/2, r>0,

and thus, uniformly in (n, t), for p >0,

o0

E|S,,[f —pL rP_IIP)(|Sm,| > r)dr < ZPJ e 2y = Cp < 00. (44)

0
Holder’s inequality, (44), and (39) then imply that

E[Isuls(x+ Xe, )] < A (Bl [7) " (@[ ])' < 248} ebisweT

This proves (41) for p >0, and the case p=0 can be seen from the last line as well.
(i) Since h\/ng = /0*0,, by Markov’s inequality and (44) we obtain

P(|anﬁ/h| > n?/S) — P<|Sm,| > n}/“’) < ES,, [y V"0 < Cyny 1 (45)

for all g > 0. Choose g > 10p and multiply both sides of (45) by ng to obtain (42).
(ii) For every K> 0, Markov’s inequality and Proposition 5.9 imply that

]P’(|]n —ng| > nZ/S) <E|J, — ng|Kn(;3K/5 < CKn;K/IO (46)
for some constant Cx > 0. For given p > 0, it remains to choose K > 10p and multiply
both sides of (46) by n'{;. O

The proof of the main result of this section follows closely the proof of [7,
Theorem 8.1].

Theorem 4.3. Let n € 2N. Suppose that g € Beyp and that b >0 is as in (14). Then
there exists a constant C >0 such that for all (t,x) € [0,T) x R,

CrT

8g10b t, < -

n
HHPET o [tl?;l) t}::ﬂ)) 0<k< 3

Proof. The rough idea behind the estimation of the global error is to decompose it into
a sum of a part, which corresponds to certain moments of the random variables X,

and J, — np, and to a part, which can be bounded by a term which is “of the order”
n,? for some p > 1. Define a set

Loy = {1Xe,, H v [, = nol < /") (47)
and decompose the error sﬁl‘)b(t, x) into the sum of expectations EW and E(z), where
EV :=E[g(x +Xs,) — g(x + X, ); ]
E® = B[g(x+X,,) - g(x+ X, i 5, |-

Using the estimates of Lemma 4.1 and Proposition 4.2, it can be shown that

|E(2)| < Con0—3/zeb\x\+hzozT+hm/ﬁ (48)
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for some constant Co > 0. This is done in Lemma A.2(i). Estimation of |E(1)| requires
more subtlety. Denote the probability mass functions of X;, ., /h and J, — ngy by

Ppyik(y) :==P(Xe,., =yh) and P{m ) =PU.—np=y), ye€eLZ. (49)

By Lemma A.2(ii), there exists a constant C: > 0 such that

. X k  3K* +4ky* 3K Kyt
x+yh)P, (k)P,,(y)| — — + _y
k;noyzz—:rt()g( g ) ' ((y) 27’!3 81’1?) 4713 81’1?) (50)

BV <

= 32 242
+ Clng / eb\x\—}—b o T.

Next, we use relation (78) in order to rewrite the double sum on the right-hand side of
(50) as

S k 3K+ 4k 3k KAyt
E®) = WP (k)P (7) | — — -
k;no}’zz—nog(x " ) n“( ) 0 (y) (21’[() 8’13 ! 47’[2) 8’13

3| —

1 3 J,—n 2
= ; {ZE[g(X"‘v‘Xrn“)]EUn - T’l()] _SE[g(x_'_XT"U)]E(\/n—GG)

| (e 2 + X, ) | Bl — g + 2 X, \ +X. ) |E alAN
5 NG g(x+Xe, ) | Eln — ol +7 NG g(x+X.,) N

1 - o 4 | Jo — 1o\ 2
_ﬁz<¢g€>g@+X%)E<7ﬁ%>}
) nie {E[g(x X)) GEUn — ng| — %E(I"\/_n_:f’> )

+E [(%) g(erX%)] (i]E(]n\/_ﬁ;H> B %E[]n B n9]>

_%E [(%)l(wxw)} E(I"\/_n_?)z}.

1
By Proposition 5.7, there exist constants c;,¢; > 0 such that |E[J, — ng] —3| < c1n,°

(51)

2 _1
and E {(]”—\/%“) - %] < cn,°. In particular, the following inequalities hold:

1 3. (Th—n\> 5 a3
~E[J, — ng] — > e
2 Bl = ol 8<\/ﬁ;) 12_<2+8
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Consequently, by (51) and (41), there exist constants C,,C3 > 0 such that

< > R X ! Ik X 2 X
BT < o B e+ X))l + G (BN T ) $+ %)
4 ~
1 XT,, Czeb\bezazT (52)
E 0 X e
o (J?E>g“+ W) || YT
~ ~ 2 2
< Cs it | Cze"";‘/:b T

_3
To complete the proof, it remains to observe that n,* < ngl(l /v/2), to combine (48),
(50), and (52), and to recall that nyT = n(T — t}/) for t € [t,’j, tZ+1)- O

5. Technical results
5.1. First exit times of Brownian bridges and the sharpness of the rate

Let (h,0) € (0,00) x (0, T] and recall L = sup{m € Ny : 1, < 0} as was defined in (27).
In this subsection we derive a representation for the function

Y ]P’(L even|Xy = y) (53)
based on first exit time probabilities of a Brownian bridge. This representation (60)

together with the associated estimates derived in [12] is applied in order to prove
Proposition 5.5, the main result of this subsection.

Definition 5.1 (Brownian bridge). Let x,y € R and I>0. A Gaussian process

A . . . .
(B y)te[o, j with mean and covariance functions given by

t
Ebﬂ4=x+7o—@’0Sf5L

t
COV(B?’I”V,B;C’Z’}}) = s<1 - j>’ 0<s<t<]

is called a (generalized) Brownian bridge from x to y of length [.

Remark 5.2. By comparing mean and covariance functions, it is easy to verify that a

Brownian bridge (B; by )tclo,y 1s equal in law with the transformed processes below:

) l,x) - s
(Bl_t o] (‘time reversal’) (54)
0, l,yfx) ¢ . s
(x + B, o] (‘translation’) (55)
(—p*b )te[o, 1 (‘reflection around the x-axis’). (56)

A continuous version of a Brownian bridge (B}’ O,y)te[o g can be thought as a random

function on the canonical space (Cl0,0],5(C[0,0]),Pyy,,), where P, g, denotes the
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associated probability measure. In the following proposition we give different character-
izations for the function (53) in terms of hitting times. For all c € R, a<b, and w €
Clo, 0], we let

He(w) :=inf{t €[0,0] : 0, = c}, Hy (o) :=inf{t €[0,0]: o & (a,b)},
He(w) =sup{t €10,0] : 0, = c}, H,p(w):=sup{t €[0,0]: ;& (ab)}.

Proposition 5.3. Let (h,0) € (0,00) x (0, T]. Suppose that (B{/G’O)O)te[o 0 is a Brownian
bridge on a probability space (Q,F,P), and define

ay) = qb»h,0) == 1@((3{/"‘ b0 o Mits Z"° before hitting zf;/“), yeR  (57)

Then, for all k € Z,

(i) qay) = ]P(L even|Xy = y), y &7k, (58)
(11) q(y) _ Py/zr,(),O(szh/o' < H(2k+l)h/0)’ y (S (Zkh, (2k + l)h), (59)
IP>y/<'r,(9,0(1—12kh/(r < H(2k71)h/g)’ JAS ((Zk — 1>h, Zkh),

do(y) @ 0,0,y/c
+ - Ep {B,;}’ } y € (2kh, (2k + 1)h),
(iii) _ h h (~(@k+1)h—y) /o, (y—2kh) /a) (60)
q(y) do(y) _ EE~ B(i,(),y/(r ye ((Zk B l)h Zkh)
h BT H(—(Zkh—y)/n, (y—(k=1)h) /o) ’ > ’

Here H(, ;) = inf{t € 0,0] : B*%7° & (a,b)}, and P refers to the probability measure on

the space (Q, F,P) considered in Section 2.

Proof. Ttem (ii) is clear. To show (i), observe that if Xy(w) € (2kh, (2k + 1)h) and L(w)
is even, the path ¢ +— X;(w) does hit 2kh at 7 (w) and afterwards, i.e. on [t(®),0), it

does not hit any other mh (m # 2k) and hence stays inside ((Zk — 1)h, 2k + l)h).
Therefore, the last entry of this path into (2kh, (2k + 1)h) occurs via 2kh, and thus

P(L even, Xy € (2Kkh, (2k + 1)h)) = Po(owy = 2kh, ooy € (2kh, (2K + 1)h))

ktnm) (@)

=1 wH(zkh/g,(zkH)h/,,)(w) _T’ wy € T’ T

=Py (HZkh/rr > H(2k+1)h/(r)’

where P, denotes the Wiener measure on (C[0,0], B(C[0,0])). Thus, for
y € (2kh, (2k + 1)h),

IP’(L even|Xy :y) =Po,0,y/0 (szh/o‘ > ﬁ(2k+1)h/d) = IP)y/U,O,O(HZkh/a < H(2k+1)h/a) =4())

where we used relations (54), (59), and the fact that ]P( - | Xo = y) =Py,0,y/s on
(Clo,0],B(C[0,0])) (see e.g. [13, Chapter 1]). The case y € ((2k — 1)k, 2kh) is similar.
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For (iii), assume y € ((2k — 1)k, 2kh); the case y € (2kh, (2k + 1)h) is similar. It is
clear that whenever z & (a,b), a < 0 < b, and H(a, p = inf{t €[0,0] : B?’O’Z Z (a,b)},

Po,0,:(Ha < Hp) = % - ﬁEp {B‘I){f;] (61)
In addition, from (59) we deduce that
) = IEDy/a,e,o(szh/a < H(zk—l)h/a)
= Po,0,—y/0 (H(Zkh—y)/a < H((Zk—l)h—y)/o) (62)
=Po.0y/0 (H(Hkh)/c7 < H(yf(zkfl)h)/(r>

by (55) and (56). Substitute z=y/o, a= %TZkh, nd b =22k l)h. Then z ¢
(a,b), a<0<b, b—a=h/s, and hence by (61), (62), and do( y) = — (2k — 1)h,

do(h) GE |:BO 0,y/c :|
(2k-1)h)/c)

q(y)z h h P (o—2kh) /o, (y—

|

Before we proceed to prove the sharpness result for the class GBV.y,, Proposition 5.5,
we list the assertions of [12] which are needed for the proof.

Lemma 5.4 ([12, Lemmas 4.1 and 4.2(i)]). Let (h,0) € (0,00) x (0,00) and suppose that
a<0<bandyé¢ (ab). Then

Es [B5 || <

(a,b)

E H
OM@(M (1 + 2(1al v ) + 3v20)., )

b(2lal +y) A0, y=b,

E H < 64
0,0,}/[ (a,b)} - { |a|(2b + |y|) /\0, y S a. ( )

Proposition 5.5. Under Assumption 3.6, there exists a function g € GBV o such that

0< hm 1nf nzen(O 0) < limsup nzen(O 0) < oo. (65)

n—oo

Proof. For simplicity, let T =0 =1 and g:= 1| «). Then h =n" 5, g€ GBV ¢xp, and
the location of the jump of g belongs to the set Zh for all n € N. Observe that then
&9(0,0) = 0 by Theorem 3.1 and |e5°°(0,0)| < Cn~! by Theorem 4.3, where C>0 is
some constant. Consequently, it suffices to show that (65) is valid for the local
error £°°(0,0).

The expression n%sl,fc(o, 0) is bounded from above by Theorem 3.8. For the lower
bound, we note that by Definition 3.2,

x+2h x4+ 3h
Hg]l[o’o@(x) = (1 A T) ﬂ[,zh,m)(x), Honel[olm>(x) = (1 A T) 1[,3;[’00) (x), X € R.
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Consequently, for (h,6) = (n_%, 1), Proposition 3.3 and relation (58) yield
&2°(0,0) = E[Te 15, 00) (W1) = 1jg,00)(W1)] + E[(TTIe 1 g, 00) (W1) — TTe T g, o) (W1) ) q(W1)]

0 x+2h h x4+ 3k x4 2h

-5 p(")d"+J3h[ W ‘< W Il[Zh,o><X>+Iuo,oq(x)ﬂq(x)p(x)dx
0 X 0 x hx_

[ - e [ R awptod+ | X awpods
0 X —h x h

= > —;hZh(l _q(x))p(x)dx_kjﬂh +h3hq( )p( )dx—i—%Jo q(x)p(x)dx

> plh) | L - s

by the symmetry of the functions p >0 and g € [0,1] and substitution x — —x. Next,
notice that for k=0 and ¢ = 0 = 1, relations (60), (63), and (64) imply that whenever

x € (—h,0),

’q(x) _ dolix) _ % B By ] E % (bl 4+ 20| v G4 1)) + 32 ) Eo, 1 [Hig )]
< (3h+3v2) %(Zh —Ix|)
<3h(h+2).
Consequently, for x € (—h,0),
1 — g(x) = 1—@— ’q(x)—@ z@—sh(mﬂ) :%—3h(h+\/§),

and thus there exist constants C;, C, > 0 (not depending on h) such that

0 2h |x| O x+2h
loc > X+ Lid] _ J
£9(0,0) > p(h) J_h = 3h(h+ v2)p(h) S
> [Cih— G (h+v2)lp(h).
The relation & = n~2 then implies that lim inf,_., #2¢°°(0,0) > C;p(0) > 0. O

Remark 5.6. In [7, Proposition 9.8] it is stated that the rate for the local error is h (i.e.
n_%) instead of h* (i.e. n~!) whenever the terminal condition g has a discontinuity at a

non-lattice point x ¢ Z". By contrast, Proposition 3.5 implies that only the jumps that
occur at even lattice points contribute to the error. This discrepancy is a result of the

choice of different step functions: In [7], only step functions of the type 1, =
14a3/2 + 1(4,0) are considered.

5.2. Moment estimates for the random variable J,,

In this subsection, moment estimates are presented for the random variable

Jo = inf{2m € 2N : 15, > 0,,},
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(which was introduced in (18)), which are applied in Section 4. We begin with a prop-
osition which generalizes [7, Proposition 11.2(ii)-(iii)] to the time-dependent setting
(t # 0). For the proof, the reader is referred to [14, Section 6.1].

Proposition 5.7. Suppose that Assumption 3.6 holds. Then there exists a constant C>0
such that for all (n,t) € 2N x [0, T),

(i) E[n]—ne—g‘s\/%_e, (ii) ’E(]”Jn_:”)z—g‘s\/%_e.

To derive an estimate for E|J, — ng|< for arbitrary K>0, we recall (see, e.g. [15,
Theorem 14.12]) a version of the Azuma-Hoeffding inequality.

Proposition 5.8 (Azuma-Hoeffding inequality). Suppose that (Mj)j:0 . is a martingale
started for which My = 0 holds. In addition, assume that for all i > 1 there exists a con-
stant o; > 0 such that |M; — M;_,| < o; a.s. Then, for all k € N and every s >0,

P(My > s) < exp (— i )

s
k
2 Zj:ﬂ%

The following result, proved below in the time-dependent setting, can be found in [7,
Proposition 11.2(iv)] for t=0. The original proof, however, does not cover the case cor-
responding to the inequality (67) for the set As.

Proposition 5.9. Suppose that Assumption 3.6 holds, and let K> 0. Then there exists a
constant Cx > 0 depending at most on K such that

E|J, — nol* < CKnIH(/2 for all (n,t) € 2N x [0, T). (66)

Proof. 1t suffices to prove the claim for K > 2, since the case K € (0,2) then follows by
Jensen’s inequality. Since |J, — ng| is a non-negative random variable,

1 * ke

—E|J, — nol* = J ZKTP(|J, — ng| > 2)dz.

K 0
We show that there exist constants C}?,C}?,CS) > 0 corresponding to the sets A; =
(0,2],A = (2,n9] and A; = (19, 00) such that

Ii(ng) := J ZP(|], — ng| > 2)dz < Cg‘)ng/z for all ny. (67)
A
Step 1: Since K > 2 and np > 2, we have that

nim) = |

0

2 2

ZKP(|], — ng| > 2)dz < J Kz < 2K /K < C§<I>n10</2.
0

Step 2: Suppose that 19 > 2 and define d,, (1) := ;- ["5]. Then

ng 1
ZKP(|], — ng| > 2)dz = ngj uEP(|], — ng| > nou)du

2/”0

na(m) = |

2 (68)

1
< nIH{J uKilp(‘]n - ”0| > 5n0(u)n9)du.
2/”0
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The idea here is to estimate the tail probability inside the integral on the last line of
(68) with the help of Lemma A.6. To proceed, fix a constant a € (0,1] small enough
such that for every m € N,

7'52 30 (u) 30m(u)
Om T H —_— H Y
W) <fHye T+ 0m@) )~ N T = 0m(w)
>1/4 hold for all u<a, (69)

where the function H is defined below in (91). Depending on the value of ny, we split
the right-hand side of (68) into the sum of the integrals

I 1(no) := nI(){J uK_IIP’(U,, — ng| > 5n[)(u)n9)du (for a > 2/ny, otherwise 0),
2/ﬂ0
1

L, »(ng) := nIgJ uK_I]P’(Un — ng| > 5n{,(u)ng)du.

av (Z/n(;)

If a € (2/ny,1), by (69) and the fact that ny(1 + J,,(u)) and ng(1 — ,,(u)) are even
integers, we may apply Lemma A.6 and estimate

a

L1(ng) = ngJ uK*I[IP’(]n > ng(1+ 0y, (1)) + P(Ju < ng(1 — 6y, (1)))]du

2/110

¢ K—1 3 ngéno 3 7105 ( )
JQW“ lﬁp< §r+%xu) ( o)™ OO

a 3 ngd. (u
< 2n§J u*exp 100, (). du.
2/ny 8 14+ (5,,0

By the properties of the floor function, for u € (0,1] it holds that

&, (1) QN”)>@@‘>)>032

IN

n

- nou > (71)
1+ 0n(u) 1+ (" 14+ u 2
and thus the right-hand side of (70) can be bounded from above by
a g (a2 2 1-2/ny INKL e
2”10<J WK ey < 2nfy J (u +—> et du
2/ny 0 ng
(72)

1—2/1’!0 2 K-1 SnHuz
< 2K1n§J uf ot <> e 1 du.
0 ng

By substituting x = u,/ng and identifying the right-hand side of (72) as an integral with

respect to a Gaussian measure, it can be verified that this integral multiplied by nK/ 2

bounded by some constant C( b > 0. Hence, I 1(ng) < C(2 2 K/2 for all ny, where

C}?’l) > 0 depends only on K.
Let us then consider the integral I ;(ng). If a/3 < 2/ny, then ny < 6/a, a < av (2/ng),

and thus I 5(ng) < 6K(KaX) ", On the other hand, if a/3 € (2/ny,1), by Lemma A.6,
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L2(ng) = ny Jl W P > ng(1+ 8, (u))) + P < 19(1 — Sy, (u)))]du

<k Jl WP > 101+ 60y(a/3))) + B < o(1 — 6ny(a/3)))]du
K 3 190y, (a/3) 3 ngd,(a/3)’ bk
< ny |exp (—573_ 5@((}/3)) + exp (—571 9_ 5n6(a/3))] L udu

K 3 n9dn,(a/3) Dok
< 2ny exp <_§W> J du

< o exp (_ 3ng(a/3 —2/ny) )
16

Here we used the fact that u — &,,(u) is nondecreasing, that ny(1 + d,,(a/3)) and
ng(l — On,(a/ 3)) are (even) integers, condition (69), and inequality (71). Notice that the
right-hand side converges to Zero as ng — 0o. Consequently, there exists a constant
CZ? > 0 such that I 5 (ng) < C&? for all np, and (67) for k=2 follows.

Step 3: To estimate I3(ny), we apply the Azuma-Hoeffding inequality to the tail distri-
bution of the random variable J, = inf{2m € 2N : 1,,, > 0, }. Recall that 7; — 7;_1,i =
1,2,..., are iid. (see Section 2.1) and that %70, =ny according to (4). Let (;:=
Z(ti—tia), i>1 Then, for all m € N, we have

2m—2 2m—2
P(J, > 2m) = P(tm—2 < 0,) <ZC,§ 0>§P<ZCiAN§n9>

i=1

_P <2§:2(CN —{AN)> (2m —2)ey — m;),

(73)

i=1

where N € N is chosen such that 3/4 < ¢y := E[{; AN] < E[(;] = 1. Then |E[{; A N] —
(AN|<N for all i>1, and by (73) and the Azuma-Hoeffding inequality
(Proposition 5.8),

P(J, > 2m) < exp (— ((2m — 2)ey — n9)2>’ m € N.

2(2m — 2)N?

Since J, > 0, we have

00
I3(ng) = zK*I]P’(]n —ng > z)dz
n
2;;()+2 o] mng+2
= Py > 2+ ng)dz + ZJ 2 P(y > 2+ ng)dz
Jn m=3 J (m—1)ng+2
2ng+2 oo ermng+2
< 2P (), > 2ng)dz + ZJ 2P (Jy = mny +2)dz
Jng m=3J (m—1)ny+2
b2 (@) oo pmmge2 o 12
< ZK—le W (2mg) g + ZJ ZK le W2 m dz
1o m=3 J (m—1)np+2

= 13)1(11()) + 13,2(11()).
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Since cy € (3/4,1), there exist constants ¢,c’ > 0 such that

2n9+2 g ((2-2/ng)en—1)* noe 31
L1 (ng) = J Kle ™ ) dz < 2(2mg +2)K e < Y,
1y
o0 mng+2 ny (mcy 71)2 o0 ngmd
L,2(ng) = ZJ Klemt o dz < (mng+2) e < CP,
m=3 J (m—=1)ny+2 m=3
where C;?’l), C;?’z) > 0 depend at most on K. This proves (67) for k= 3. O
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Appendix A
A.1. The class GBV,y,

The present subsection gives some insight to the properties of the terminal function class
GBYV . For a function g : R — R, we let

N
Ty(x) := sup{z lg(xi) —g(xic1)l, NEN, —o0<x <x <---<xy= x}.
i—1

If lim, . Ty(x) < 0o, the function g is said to be of bounded variation. The class of functions
with this property is denoted by BV.

In this article, an extension of BV instead of the class itself is chosen as the class of terminal
functions. The reason for this is the fact that, by definition, each function in BV is bounded.
Consequently, e.g. the class of polynomials is not contained in BV even though a polynomial has
bounded variation on every compact interval. To find a large class of functions which may be
unbounded but also have the latter property, we will follow the presentation given in [11].

Recall the class M given by Definition 2.2, which consists of set functions u (acting on bounded
Borel sets on R) that can be written as a difference of two measures p!, u? : B(R) — [0, 00] such
that u!(K) and u?(K) are finite for all compact sets K € B(R). In [11, Theorem 3.3] it is proved
that such a decomposition can be chosen to be orthogonal and minimal: There exists a unique pair
of measures u*, = on B(R) such that u* and u~ are mutually singular, and ' < p! and = < p?
hold for all the other decompositions u = u! — . Even though u € M is not itself a signed meas-
ure (it is undefined on unbounded sets), the aforementioned result, based on the Hahn decompos-
ition theorem, allows us to define the total variation measure associated to u by setting

lul : BR) — [0,00],  |ul :=p" +p.

Consequently, the integral in (16) appearing in Definition 2.3 of the class GBV .y, is defined.

As a special case of the result [11, Theorem 4.3], one may verify that BV C GBV.y, holds
true. To close this subsection, we sketch the proof of the item (i) and (iv) of Remark 2.4. The
proofs for the items (ii) and (iii) are left to the reader.

Proof of Remark 2.4. (i) To show that every polynomial f(x) =Y} ,ax*, a € R,N € N
belongs to the class GBV .y, let

N
c=ay, du= Zkakxkfldx, and J =0
k=1
to be the parameters appearing in the representation (5) for the function f. It remains to observe
that this u satisfies the condition (16), since for every > 0,

N
J e P d|p|(x) :J e P z:kulkxk*1
R R k=1

(iv) Denote the points of discontinuity of the function g € Kexp by 21 <%, <--- < xy, N2>0.
Then, the function & : R — R defined as

h(x) = g(x) — ZAg(xi)G Ly (%) + 1<xi7m>(x)>> Ag(xi) := g(xit) — g(xi—),

is continuous. In addition, by the fundamental theorem of calculus for piecewise continuous
functions, it holds that

dx < oo.

h(y) — h(x) = J g(s)ds, xy€eR.

X

One then checks that the function g satisfies (5) provided that the set function p is given by
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N
w(A) == J g (s)ds + ZAg(x,-) liseay, A€ B(R) is a bounded set,

A i=1

J = Ag(xi),xi)il, and ¢ := g(0) — 2N | 1 Ag(x:) I x1(0). It remains to verify that

Bl 3 A8 (i)l - pix

e Hi(x e < o0

J]R | |( ) i=1 2

holds for a Sufﬁciently large ﬂ >0 by the exponential boundedness of g,.

A.2. Auxiliary results for the proof of Theorem 4.3

Under Assumption 3.6, let us recall from (49) the notation Puyik(y) = IP’(X

gk = hy) and
Pl () =P(Ju —ng = y), y € Z. Notice also that for all k € 2N,

k
Pyy) = <m>2‘k, yE€2L, [|y|<k
2

kP y1

n"

é(Wﬁ)::giﬂ—n

As in [7], we define the “effective order” of a monomial with p,q,7 € Ny to be

n" 2
We will use the following result from [7] in the proof of Lemma A.2.

Proposition A.1 ([7, Proposition 11.5]). Let

P,
R:D(R) —» R, R(nky):= +k(y);
Pu(y)
k 3k +4ky* 3k Kyt
RW .2 2Z)" = R, RrRW Jkyy) (= — — -—,
Nx (22)" (n.k.y) 2n 8n? 4n®>  8nt

where

D(R) := {(n,k,y) €2N x (22)° : |k| v Iyl < n3/5}.

(74)

(75)

Then there exists a constant Co > 0, an integer ng, and a finite sum R® of monomials of effective

order at most —3/2 such that for all (n,k,y) € D(R) with n > ny,

[R(n, k,y) — [1 - Rm(n, k,y) +R(2)(n, k,y)}| < Con3/2.

The lemma below presents upper estimates which are applied in the proof of Theorem 4.3.

(76)

Lemma A.2. Suppose that g € Bey, and that b > 0 is as in (14). Suppose also that RW is as in
(75) and that T, is given by (47). Then there exists a constant C>0 such that for all x € R and

ny € 2N,

_3/2 2 52
< Cl’l(_) / eb\x|+b T T+h(7\/2T’

0 [Efo(r+,) g+ X 1T

(ll) ’E[g(X+X1n()) _g(-x+XT]);FYl():|

ng

— Z Z g(x—i—yh)PLﬂ(k)PnU (y)R(l)(ng,k,y)‘ < Cng3/zeh|x‘+b2”2T.

k=2—ngy=—ny
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Proof. (i) Since T c {1, /hl > n3/5} U {|],1 — ng| > ”0 °}, we may use Holder’s inequality,
(42), and (43) to show that there exists a constant C' > 0 such that

_ 1/2
|E[g(x+xw) —g(x—i—XI]");FEH} | < C'ny? (E\g(x—i—XTno) —g(x+X%)\2) .

The claim follows, since by the triangle inequality, (39) and (40), and the fact that g € By,
there exists another constant C > 0 such that

1/2 ~ 2.2
(]E|g(x +X.,) —8(x+ X, )|2) < CellI+b e T+baV2T

(ii) The proof of item (ii) is done in several intermediate steps and only sketched here for the
sake of brevity. More details can be found in [14, Lemma A.3].
Step 1: Let us first show that there exists a constant C > 0 such that for all x € R and ny,

ng

Z Z g(x + yh)P: m} (k)P m)(y)R(Z)(ne’k’)’) 1{\y\v|k\§n3/5}

k=2—ngy=—ny

< Cn(;:)’/zeb\xH»bzazT, (77)

where R@ is as in Proposition A.1. Using the relations h = 6+/T/n, 0, = nyT/n and (49), it
can be shown that for given integers p,q,r € Ny and subsets Ay, A, C Z,

o ; Ky
Z Zg(x-i—yh Pno(k) (V) T no" Il{J’E/\l keAz}

k=2—ngy=—ny

(78)

X q
_(ptg)/2-r Tny
=ny q E <\/o'—2—(0n> g(x-i—Xrnﬂ) ‘ry,”/h € A1 E

_ P
(]n\/ﬁ;0> iTn —np € Ay

By the definition of R, there exists an integer N € N, a vector (ai)fi L CR, and vectors
@)Y (@)Y s ()Y, € Ny’ such that (pi +q;)/2 —ri < —=3/2 forall 1 <i <N, and

N .
Kpiyi
@ (ng, k,y) = Za,-n—):l for (ng,k,y) € D(R).
i=1 0

Therefore, by the relation (78), the left-hand side of (77) can be rewritten and estimated by

qi
Pitdi_ . Xz, J—ng\ ¥
2 am” " (ﬁ) O SN 1 G RS ”ﬂ

X, 1\ T — ol \"
3/2Z| J|E (\/_) lg(x + Xe, )| | E | \/’T:ol

- _3/2 252
< Cl’l() / eb\x|+b 5 T’

where C > 0 is some constant implied by (41) and (66). This proves (77).
Step 2: Let us show that for some constant C> 0 and for all x € R and ny € 2N,

Cn0*3/zeb|x|+bzozT. (79)

Z ng+yh ng )Pﬂn(y)R<l)(n9>ky {M \k|>n3/5} <

k=2—ng y=—ny

By (75) and (78), it is sufficient to prove that for given p,q,r € Ny there exists a constant
Cp,q,r > 0 such that for all x € R,

ng kp}/q
Z > gl yh)P (k)Py (y )n— H{M k[>n/* }

k=2—ny y=—ny

< Cp, " rn;3/zeh\x\+bzazT. (80)
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Relation (80) can be verified by writing {|y| v k| > ns/s} = {|y| > n3/5} U {\k| > n3/5 Iyl <
”Z/ °} and considering the corresponding sums separately using relation (78) and similar calcula-
tions as in Step 1. Indeed, the case {\ y| > nf)/ 5} can be shown using Holder’s inequality and rela-
tions (39), (42), (44), and (66). The case {\k| > n3/5 Iyl < n3/5} follows from Holder’s inequality,
(41), (43), and (66).

Step 3: Since the processes (Atx);_; , and (AX),_,, = are independent (see Section 2.1), the
random variable J, and the process (X, ),_,,  are also independent. Taking also into account

that suppP,,x = {m € 27 : [m| < ng + k} (for each k € 2N) and suppP|, = {m — ng : m € 2N},
it can be shown that

E[g(x—}—XT )—g(x—}—XT );Fnﬂ}

1 an+
= 303 et )P, R ><1‘ PE?) Yotvme®)

k=2—ngy=—ng

Thus, by (74)-(78), there exist constants Cy, C; > 0 and ny € 2N such that whenever ny > ny,

ng

Z > glx+yh)P), (k)P n{,(y)R(n(”@’k’yﬂ{\n K<m}

k=2—ngy=—ng

—E [g(x +X.,) —8(x+ Xq)); Fn(,}

ny
=[S0 Y et ymp, @ P ) (R (k) = 1 = R k) g
k=2— m;yffﬂn o (81)
3/2 -
< Gony Z Z lg(x + yh)|P na k)P"“ y)]{b’\ v k< }

k=2—ngy=—ny

ng

Z > glx+yh)P, (K)P,, (9)R? (ng, k y) 1 {ilvki<ny*}

k=2—ngy=—ng
< Comy B [Jg (x + Xe, i Xe, /] < %] 4 Comg ¥ 2eisr et
< C2n0 3/2eb\x\+b262T

for some constant C, > 0 implied by (41). Consequently, we get the claim for all ny > ny by the
triangle inequality, (79), and (81). By letting

M:=  sup

(nyky y):n<ng

< 00,

W(nky) —[1 - R(n,k,y)]) 1 {piviken}

for ng < ny we find another constant C; = Cs(np) > 0 such that

Z ng+yh 2o (K) P (y )(R<l)("(1>k»y)—[1—R(””’k’y)])H{lylv‘k'i"f}/s}

k=2—ngy=—ng

ny

<M Z Z |g x+}’h ‘Pn(, ) rl() {|}’| \k\<n3/s} (82)

k=2—ngy=—ng

< ME[lg(x + X, ) s s, /] < il*[B (U, ol < m)°)

—3/2 2.2
< C3I’19 / eb\be a*T

by (41). Combine (79), (81), and (82) to complete the proof. 0O
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A.3. Auxiliary results for Sections 3 and 5
The following identities are applied in proof of Lemma 3.4.

Lemma A.3. Let h >0 and recall the operators I1, and Il, given by Definition 3.2.

(i)  For all ¢ € R, it holds that

Tyoom
15 (x) = % (= (E=2R)| + |x — (£ +2h)| —2jx— ¢&]), x€R. (83)
(i) Ify € [2kh, (2k + 2)h) for k € Z, then in terms of d, defined in (26),
do ()

|H0He]l(y,oc)(x) - He](y,oo)(x” =

4h Il[<2k*1)11,(2k+3)h)(")) xeR. (84)

Proof. (i) It is obvious by the definition of II, that IT, 1z =0 for & & Z". If ¢ € Z", then

x—(E—2h) _
Heﬂ{g}(x) _ ] z: > (é Zh) <x <, (85)
Ehx ¢ <x < (E+2h),

and zero elsewhere, so it suffices to verify that (85) agrees with the representation given in (83).
(i) Suppose that y € [2kh, (2k + 2)h) for some k € Z. One checks that
1 1 1
I 100)(%) = 5+@|x7 2kh| 7E|xf
Then, by the linearity of I, and by (86), we have for every x € R that
l_[(,l_[e ] (y,oo> (X) — He ﬂ (y,oc) (x)

(2k +2)h|,x € R. (86)

_ ﬁ (M, |- —2Kh|(x) — |x — 2kh]) — — (I, |- —(2k+ 2)h|(x) — |x — (2K + 2)h])

4h (87)
= dz(;f) (ﬂ (k-0 2k 0m) () — Likrnn, keapn) (x))’
since it holds for all x € R and m € Z that
I, |- —2mh|(x) — |x — 2mh| = do(x)1[<2m71>h’ (MH)h)(x). (88)
Taking the absolute values of both sides of (87) then completes the proof. O

The proof of the next lemma, which is based on the Laplace transform of the stopping time 1,
defined in (11), follows the approach of [7, Proposition 11.3] and is given in [14, Section 6.2].

Lemma A.4. Under Assumption 3.6, suppose that ng € 2N and a constant £ > 0 are such that
npé € N. Then for every p € (0, gé@n\/ﬁ) it holds that

(i) I[ (\/ n ([n égn) > ‘)) < eXp — —3 —pz 1 i 73p (89)
0 0 2602 C_On\/n() ’
1 E \Y4 ng l”()g Et n F exp é 2 li 6 } > 90

where the function H : (0,7/2) — R is given by

H ~—1+E(x—2+1 ) (91)
(x) == A \5 T logcosx ).
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Remark A.5. The above estimates are non-trivial only whenever H is positive. Since H(0+) =
1/2, it holds that H(x) > 0 for small enough x. Notice that the condition p € (0, %ﬁ@n\/ﬁ(})

ensures that , /5037\/’/% € (0,7/2), which is the domain of H.

The purpose of Lemma A.4 and its immediate application is the following result related to the
tail probabilities of J,—an essential tool in proof of Proposition 5.9. While it resembles inequality
(42) in [7], the time-dependent setting causes some changes.

Lemma A.6. Under Assumption 3.6, suppose that ny € 2N, J € (0, 12’;—2712) and let H be as in
(91). Then

36

(i) P(]n>n()(1+5))§exp(—%lmféH( m)) if  np(1+9) € 2N,

(i) P(J, < np(1 —9)) < exp (—%f“iH( %)) if  np(1—5) e 2N.

Proof. Fix ny € 2N, 6 € (0, 1), and let p i= 80, /. For (i), let &:=1+06 and suppose
that ng(1 + 8) = nyp& € 2N. Then (the first equality follows from the definition of J, in (18))

. 3p° 3p
IP(]" > 1’!{)5) = ]P)(T"Uﬁ < 0") = P(\/%(Tﬂuf - QO,,) < _p) S eXp (_26921—[( éo””))

by (90), since the choice of ¢ ensures that the pair (&, p) satisfies the assumptions of Lemma A.4.
To show (ii), let now ¢ := 1 — § and suppose that ny(1 — &) = ny¢ € 2N. Then, by (89),

2

P(Jy < n9g&) = P(tue > 0n) = P(/1o(tne — £0,) > p) < exp (;;021_[< é03\p/n_6>)

since the pair (&, p) satisfies the assumptions of Lemma A.4 due to the choice of 4. O
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