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Parabolic Degrees and Lyapunov Exponents for Hypergeometric
Local Systems

Charles Fougeron

Max Planck Institute for Mathematics, Bonn, Germany

ABSTRACT
Consider the flat bundle on P

1�f0; 1;1g corresponding to solutions of the hypergeometric
differential equation

Yn

i¼1ðD� aiÞ�z
Yn

j¼1ðD� bjÞ ¼ 0;where D ¼ z
d
dz

For ai and bj real numbers, this bundle is known to underlie a complex polarized variation
of Hodge structure. Setting the complete hyperbolic metric on P

1�f0; 1;1g; we associate
n Lyapunov exponents to this bundle. We study the dependence of these exponents on
parameters ai;bj through algebraic computations and numerical simulations, and point out
new equality cases of the exponents with parabolic degrees of these bundles.

KEYWORDS
hypergeometric functions;
Higgs bundle; variation of
Hodge structure; parabolic
degree; Lyapunov exponent
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1. Introduction

Oseledets decomposition of flat bundles over an ergodic
dynamical system is often referred to as dynamical vari-
ation of Hodge structure. In the case of Teichm€uller
dynamics both Oseledets decomposition and a variation
of Hodge structure (VHS) appear. Two decades ago it
was observed in [Kontsevich 97] that these structures are
linked, some of their invariants are related: the sum of
the Lyapunov exponents associated to a Teichm€uller
curve equals the normalized degree of the Hodge bundle.
This formula was studied extensively and extended to
strata of abelian and quadratic differentials from then
(see [Bouw and M€oller 10, Eskin et al. 14, Forni et al. 14,
Krikorian 03–04]). Soon this link was observed in other
settings: in [Kappes and M€oller 16] it was used as a new
invariant to classify hyperbolic structures and distin-
guish commensurability classes of Deligne–Mostow’s
non-arithmetic lattices in PUð2; 1Þ and PUð3; 1Þ; in
[Filip 14] a similar formula was observed for higher
weight variation of Hodge structures. The motivation of
the present work is the study of the relationship between
these two structures in a broad class of examples with
arbitrary weight. The examples will be given by hyper-
geometric differential equations which yield a flat bundle

endowed with a variation of Hodge structure over the 3-
punctured sphere. A recent article [Eskin et al. 16] shows
that the degrees of holomorphic flags of the Hodge filtra-
tion bound by below the partial sums of Lyapunov expo-
nents. Our study will start by computing these degrees in
Sections 2 and 3. After presenting an algorithm to
approximate Lyapunov exponents in Section 4, we then
explore the behavior of Lyapunov exponents and their
distance to the latter lower bounds in Section 5. This will
enable us to bring out some simple algebraic relations
under which there is a conjectural equality.

1.1. Hypergeometric equations

Let a1; a2; :::; an and b1; b2; :::; bn be two disjoint
sequences of n real numbers. We define the hypergeo-
metric differential equation corresponding to those
parameters

Yn
i¼1

D� aið Þ�z
Yn
j¼1

D� bj
� � ¼ 0;where D ¼ z

d
dz

(1–1)

This equation originates from a large class of spe-
cial functions called generalized hypergeometric
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functions which satisfy it. These functions have a lot
of interesting properties and there is a very rich litera-
ture about them. For an introduction to the subject
see for example [Yoshida 97].

Equation (1–1) is an order n differential equation
with three singularities at 0, 1, and 1 hence its space
of solutions defines locally a dimension n vector space
away from singularities and can be seen in a geomet-
ric way as a flat bundle over P

1�f0; 1;1g: This flat
bundle is completely described by its monodromy
matrices around singularities. We will denote mono-
dromy matrices associated to simple closed loop going
counterclockwise around 0, 1, and 1 by M0, M1, and
M1: We obtain a first relation between these matrices
observing that composing the three loops in the same
order will give a trivial loop: M1M1M0 ¼ Id: The
eigenvalues of M0 and M1 can be expressed with
respect to parameters of the hypergeometric equation
(1–1) and M1 has a very specific form as stated in the
following proposition.

Proposition 1.1. For any two sequences of real num-
bers a1; :::; an and b1; :::; bn;

� M0 has eigenvalues e2ipa1 ; :::; e2ipan

� M1 has eigenvalues e�2ipb1 ; :::; e�2ipbn
� M1 is the identity plus a matrix of rank one

Proof. See Proposition 2.1 in [Fedorov 15] or alterna-
tively Proposition 3.2 and Theorem 3.5 in [Beukers
and Heckman 89]. w

This proposition determines the conjugacy class of
the representation associated to the flat bundle
p1ðP1 � f0; 1;1gÞ ! GLnðCÞ thanks to the rigidity of
hypergeometric equations (see [Beukers and Heckman
89]). These classes are given explicitly in Section 4.3.

1.2. Lyapunov exponents

We now endow the 3-punctured sphere with its
hyperbolic metric. As this metric yields an ergodic
geodesic flow gt, to any integrable norm k � k on the
flat bundle E of dimension n we associate, using
Oseledets theorem, real numbers k1 � � � � � kn; and a
flag decomposition of E in subbundles above almost
every point,

E ¼ V�k1 � � � � � V�kn � 0

such that for any vector v 2 VkinVkiþ1 ;
kGtvk ¼ exp kit þ o tð Þð Þ

where Gtv is the flow induced by gt on E by the parallel
transport for the flat connection. This is usually called

the Oseledets flag decomposition. The ki are the
Lyapunov exponents and correspond to the growth rate
of the norm of a generic vector in each of these flags
while transporting it along with the flat connection.

A complete explanation of the existence of these
Lyapunov exponents in our setting can be found in [Eskin
et al. 16].Moreover, it is proved in Theorem 2.1 of this art-
icle that there exists a canonical family of integrable norms
on the flat bundle associated to the hypergeometric equa-
tion which will produce the same flag decomposition and
Lyapunov exponents. They call this family the admissible
norms. In particular, the harmonic norm (see Remark in
Section 2.1) induced by a VHS is admissible.

For numerical simulations, the most convenient
norm to compute Lyapunov exponents is the constant
norm. Consider a norm on the fiber in E over some
base point in the base curve P1�f0; 1;1g; and extend
it by parallel transport on a maximal simply con-
nected subspace. The maximal domain is chosen to be
the complement of a finite collection of closed path.
Then this norm is not continuous across the bounda-
ries, and depends on the choice of the domain, but
define Lyapnunov exponents independently according
to the following proposition.

Proposition (2.2 in [Eskin et al. 16]). Any constant
norm on a flat bundle in the case defined above is also
integrable and computes the same Lyapunov exponents
as any admissible norm.

1.3. Parabolic degree bound

Let V be a dimension k holomorphic vector subbundle
of the Deligne extension of E (defined in Section 2.3),
we can define its parabolic degree as in Definition 2.2
that we denote by degparðVÞ: It can be through of as a
generalization of the degree of holomorphic bundles
on compact complex varieties to the case were these
varieties are punctured. The main theorem in [Eskin
et al. 16] states that, in our setting,

Xk
i¼1

ki � 2degpar Vð Þ: (1–2)

The motivation of the present work is to explore
the equality cases for this inequality. In the case of
examples coming from hypergeometric equations,
there are several such holomorphic vector subbundles
that will be induced by an extra algebraic structure:
the variation of Hodge structure.

The present work will consist, first, in computing
the parabolic degrees for these induced holomorphic
vector subbundles, second, to compare them with sum
of Lyapunov exponents.
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1.4. Variation of Hodge structure

Hypergeometric equations on the sphere are well known
to be physically rigid (see [Beukers and Heckman 89] or
[Katz 96]) and this rigidity together with irreducibility is
enough to endow the flat bundle with a (complex) VHS
(see Definition in Section 2.1) using its associated Higgs
bundle structure (see [Fedorov 15] or directly Corollary
8.2 in [Simpson 90]). Using techniques from [Katz 96]
and [Dettweiler and Sabbah 13], Fedorov gives in
[Fedorov 15] an explicit way to compute the Hodge
numbers for the underlying VHS. We extend this com-
putation and give a combinatoric point of view that will
be more convenient in the following to express parabolic
degrees of the Hodge flag decomposition.

Let a and b be two sets of n points on the circle
R=Z: Starting from any of these points, we browse the
circle counterclockwise (or in the increasing direction
for R) and enumerate the points in a [ b by order
of appearance g1; g2; :::; g2n: Let us now define ~f :
Z \ ½0; 2n	 7!Z recursively by the following properties,

� ~f ð0Þ ¼ 0;
� ~f ðkÞ ¼ ~f ðk�1Þ þ 1 if gk 2 a

�1 if gk 2 b
:

�

We denote by f the function defined for any gk 2
a [ b by f ðgkÞ ¼ ~f ðkÞ: This definition depends up to a

shift on the choice of starting point. For a canonical
definition, we shift f such that its minimal value is 0.
Which is equivalent to starting at a point of minimal
value. This defines a non-negative function f that we
will call the intertwining diagram of the equation
(Figure 1).

For every integer 1 � i � n we define

hi :¼ # ajf að Þ ¼ i
� � ¼ # bjf bð Þ ¼ i�1� �

Then we have the following theorem from
[Fedorov 15],

Theorem (Fedorov). The h1; h2; :::; hn are the Hodge
numbers of the VHS after an appropriate shifting.

Remark. If the as and bs appear in an alternate order
then f ðaÞ 
 1 and f ðbÞ 
 0 thus there is just one elem-
ent in the Hodge decomposition and the polarization
form is positive definite. In other words the harmonic
norm is invariant with respect to the flat connection.
This implies that Lyapunov exponents are zero.

In general, this Hodge structure endows the flat bun-
dle with a pseudo-Hermitian form of signature (p, q)
where p is the sum of the even Hodge numbers and q
the sum of the odd ones. This gives classically the fact
that the Lyapunov spectrum is symmetric with respect

Figure 1. Example of computation of f.

Figure 2. Geometric representation of middle convolution action on f.
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to 0 and that at least jp�qj exponents are zero (see
Appendix A in [Forni et al. 14]).

Pushing further methods of [Fedorov 15] and
[Dettweiler and Sabbah 13], we compute the parabolic
degrees of the sub Hodge bundles in the hypergeo-
metric frame. This computation was done with the
help of computer experiments in Section 5.2 which
yielded a conjectural formula for these degrees.
Besides from the intertwining diagram, another quan-
tity appears. Let us relabel a and b by order of
appearance after choosing a1 such that f ða1Þ ¼ 1;
then take the representatives of a and b in R which
are included in ½a1; a1 þ 1½ for an arbitrary representa-
tive of a1, and define c :¼P

b�P
a: The formula

will depend on the floor value of c. As 0<c<n we
have n possible values 0 � ½c	<n:

Theorem 1.2. Let E a flat bundle over P
1�f0; 1;1g

defined by hypergeometric differential equations, and
let E ¼ �n

p¼1Ep a Hodge decomposition for its VHS.
For all 1 � p � n we denote by dp the degree of the
Deligne compactification of Ep over the sphere. Then,

� if p ¼ ½c	 þ 1;

degpar Epð Þ ¼ dp þ cf g þ
X
f að Þ¼p

aþ
X

f bð Þ¼p�1
1�b;

� otherwise,

degpar Epð Þ ¼ dp þ
X
f að Þ¼p

aþ
X

f bð Þ¼p�1
1�b:

The proof of this theorem is given in Section 3. In
Algorithm 1 we present a general way to compute dp.

1.5. Observed new phenomenon

Generalizing an example of [Eskin et al. 16] coming
from families of Calabi–Yau varieties, we exhibit in
Section 5.1 new examples which satisfy conjecturally
an equality in formula (1–2) and whose monodromy
groups have a particular algebraic behavior.

2. Degree of Hodge subbundles

2.1. Variation of Hodge structure

We start recalling the definition of a polarized com-
plex variations of Hodge structures (VHS).

A VHS on a curve C consists of a complex flat
bundle ðE;rÞ together with an Hermitian form h and
a h-orthogonal decomposition

E ¼ �
p2Z
Ep

into C1-subbundles. We write the induced flag filtra-
tions by F p :¼ �i�p Ei and F p :¼ �i�p Ei: The fol-
lowing conditions are satisfied:

� The decreasing filtration F� is holomorphic, and
the increasing filtration �F � is anti-holomorphic.

� The connection shifts the grading by at most one,
i.e.

r F pð Þ � F p�1 � X1
C and r F p

� �
� F p�1 � X1

C

� h is positive definite on Ep if p is even; negative
definite if p is odd.

Up to a shift, we can assume that there is a n such
that Ei ¼ 0 for i< 0 and i> n. We call n the width of
the VHS.

Remark. We can define a canonical norm by taking
6h on spaces Ep, such that it is positive definite on
each of these spaces. This norm is called the har-
monic norm.

2.2. Decomposition of an extended
holomorphic bundle

Let C be a complex curve, we assume that its bound-
ary set D :¼ �CnC is an union of points. Consider E an
holomorphic bundle on �C: We introduce structures
which will appear on such holomorphic bundle when
they are obtained by canonical extension when we
compactify C: The first one will take the form of fil-
trations on each fibers above points of D.

Definition 2.1 (Filtration). A ½0; 1Þ-filtration on a
complex vector space V is a collection of real weights
0 � w1<w2< � � �<wn<wnþ1 ¼ 1 for some n � 1
together with a decreasing filtration of subvector spaces

G� : V ¼ V�w1!V�w2! � � �!V�wnþ1 ¼ V�1 ¼ 0

The filtration satisfies V�� � V�x whenever � � x
and the previous weights satisfy V�wiþ�ˆV�wi for
any �>0:

We denote the graded vector spaces by grwi
:¼

V�wi=V�wiþ� for � small. The degree of such a filtration
is by definition

deg G�ð Þ :¼
Xn
i¼1

widim grwið Þ

This leads to the next definition,

Definition 2.2 (Parabolic structure). A parabolic struc-
ture on E with respect to D is a couple ðE;G�Þ where
G� defines a ½0; 1Þ-filtration G�Es on every fiber Es for
any s 2 D:

4 C. FOUGERON



A parabolic bundle is a holomorphic bundle
endowed with a parabolic structure. The parabolic
degree of ðE;G�Þ is defined to be

degpar E;G�ð Þ :¼ deg Eð Þ þ
X
s2D

deg G�Esð Þ

2.3. Deligne extension

In the following we consider V a local system on
P
1�f0; 1;1g associated to a monodromy representa-

tion with eigenvalues of modulus one. We denote by
V the associated holomorphic vector bundle.

We recall the construction of Deligne’s extension
of V which defines a holomorphic bundle on �C with a
logarithmic flat connection. We describe it on a small
pointed disk centered at s 2 D� (the full disk is
denoted D). Let q be a ray going outward of the sin-
gularity, then we can speak of the vector space of flat
sections along the ray LðqÞ which has the same rank r
as V: As all the LðqÞ are isomorphic, we choose to
denote it by V0. There is a monodromy transform-
ation T : V0 ! V0 to itself obtained after continuing
the solutions. This corresponds to the monodromy
matrix in the given representation. For every a 2
½0; 1Þ we define

Wa ¼ v 2 V0 : T�fað Þrv ¼ 0
� �

where fa ¼ e2ipa

These vector spaces are nontrivial for finitely many
ai 2 ½0; 1Þ: We define

Ta ¼ f�1a TjWa
and Na ¼ logTa

Let q : H! D�; qðzÞ ¼ e2ipz be the universal cover
of D�: Choose a basis v1; :::; vr of V0 adapted to the
generalized eigenspace decomposition V0 ¼ �a Wa:

We consider viðzÞ as the pull back of vi on H: If vi 2
Wa; then we define

~vi zð Þ ¼ exp 2ipaz þ zNað Þvi
These sections are equivariant under z 7! z þ 1

hence they give global sections of VCðD�Þ: The
Deligne extension of VC is the vector bundle whose
space of section over D is the OD-module spanned by
~v1; :::;~vr: This construction naturally gives a filtration
on V0.

In general, we can define various extensions Va �
V�1 � j�V where j is the inclusion j : D� ! D;V1 is
the Deligne’s meromorphic extension and Va (resp.
V>a) for a 2 R is the free O�C -module on which the
residue of r has eigenvalues a in ½a; aþ 1Þ (resp.
ða; aþ 1	). The bundle V� is a filtered vector bundle
in the definition of [Eskin et al. 16].

If we have a VHS F� on V over C; it induces a fil-
tration of every Va simply by taking

FpVa :¼ j�FpV \ Va

this is a well-defined vector bundle thanks to nilpo-
tent orbit theorem ([Schmid 73] (4.9)).

In general for C; we define on fibers over any sin-
gularity s 2 D; for a 2 ð�1; 0	 and k ¼ exp ð�2ipaÞ;

wk V�1s
� � ¼ graVs ¼ Vas =V>a

s

Definition 2.3 (Local Hodge data). For a 2 ½0; 1Þ; k ¼
exp ð2ipaÞ and p 2 Z, we set for any singularity s 2 D

� �
p
a ¼ dimgrpFwkðVsÞ also written hpwkðVsÞ

� hpðVÞ ¼P
a �

p
aðVsÞ

According to Riemann–Hilbert theorem, for any
local system with all eigenvalues of the form
exp ð�2piaÞ at the singularities endowed with a trivial
filtration we associate a filtered D�C -module with resi-
dues and jumps both equal to a (see for example syn-
opsis of [Simpson 90]). Thus the sub D�C-module
corresponding to the residue a has only one jump of
full dimension at a, and

degpar grpFV
� �

¼ dp Vð Þ þ
X
s2D;a

a�pa Vsð Þ (2–3)

where we choose a 2 ½0; 1Þ and where dpðVÞ is the
degree of j�V:
2.4. Acceptable metrics and metric extensions

The above Deligne extension has a geometric inter-
pretation when we endow C with an acceptable metric
K. If V is a holomorphic bundle on C; we define the
sheaf NðVÞa on C [ fsg as follows. The germs of sec-
tions of NðEÞa at s are the sections s(q) in j�V in the
neighborhood of s which satisfy a growth condition;
for all �>0 there exists C� such that

js qð ÞjK � C�jqja��:
In general this extension is a filtered vector bundle

on which we do not have much information, but the
metric is called acceptable if it satisfies some extra
growth condition on the curvature, and if it induces
the above Deligne extensions.

Lemma 2.4 (Theorem 4 [Simpson 90]). The local sys-
tem V with non-expanding cusp monodromies has a
metric which is acceptable.

Proof. For completeness, we reproduce the construc-
tion of [Eskin et al. 16]. The idea is to construct
locally a nice metric and to patch the local construc-
tions together with partition of unity. The only deli-
cate choice is for the metric around singularities. We
want the basis elements ~vi of the a-eigenspace of the

EXPERIMENTAL MATHEMATICS 5



Deligne extension to be given the norm of order jqja
in the local coordinate q around the cusp and to be
pairwise orthogonal. Let M be such that e2ipM ¼ T;
where T is the monodromy transformation. Then the
Hermitian matrix exp ð log jqjMtMÞ defines a metric
such that the element ~vi has norm jqjaj~vij: w

Corollary 2.5. When the monodromy representation
goes to identity, the parabolic degree goes to zero.

Proof. In the proof above, it appears that T ! Id
implies that the matrix M ! 0 and that the metric
goes to the standard hermitian metric locally. The
curvature goes to zero around singularities and its
integral on any subbundle goes to zero. This is its
analytic degree, and it is equal to the parabolic degree
we are considering (Lemma 6.1 [Simpson 90]). w

3. Proof of Theorem 1.2

3.1. Local Hodge invariants

Our purpose in this subsection is to show the follow-
ing relation on local Hodge invariants, which will
imply Theorem 1.2 according to formula (2–3). The
proof will be given in Section 3.2.

Theorem 3.1. The local Hodge invariants for equation
(1–1) are:

1. at z ¼ 0,

�pam ¼
1 if p ¼ f amð Þ
0 otherwise

�

2. at z ¼ 1;

�
p
�bm ¼

1 if p�1 ¼ f bmð Þ
0 otherwise

�

3. at z ¼ 1,

�pc ¼
1 if p ¼ c½ 	 þ 1
0 otherwise

�

Remark. Computations of (1–1) and (1–2) are done in
[Fedorov 15, Theorem 3]. We give a similar proof with
an alternative combinatoric point of view.

Recall that the monodromy at z¼ 1 has all eigenval-
ues but one equal to one. The last one is equal to e2ipc:

3.2. Computation of local Hodge invariants

In the following, we denote by M the local system
defined by the hypergeometric equation (1–1) in the

introduction. The point at infinity plays a particular
role in middle convolution, thus we apply a biholo-
morphism to the sphere which will send the three sin-
gularity points 0; 1;1 to 0; 1; 2: Hereafter, M will
have singularities at 0, 1, 2.

Similarly Mk;j corresponds to the hypergeometric
equation where we remove terms in ak and bj,Y

m6¼k
D� amð Þ�z

Y
n 6¼j

D� bnð Þ ¼ 0

Let Lk;j be a flat line bundle above P
1�f0; 2;1g

with monodromy EðakÞ at 0, Eð�bjÞ at 2 and Eðbj �
akÞ at 1: Similarly L0k;j is defined to have monodromy
Eð�bjÞ at 0, EðakÞ at 2 and Eðbj � akÞ at 1:

The two key stones in the proof are Lemma 3.1 in
[Fedorov 15] and Theorem 3.1.2 in [Dettweiler and
Sabbah 13]:

Lemma 3.2 (Fedorov). For any k; j 2 f1; :::; ng we
have,

M ’ MCbj�ak Mk;j � L0k;j
� �

� Lk;j

In the following theorem, we modify a little bit the
formulation of [Dettweiler and Sabbah 13], taking a ¼
1�a so that the condition
becomes 1�a 2 ð0; 1�a0	 () a 2 ½a0; 1Þ:
Theorem 3.3 (Dettweiler-Sabbah). Let a0 2 ð0; 1Þ, for
every singular point in D, every a 2 ½0; 1Þ and any local
system M, we have,

�pa MCa0 Mð Þ� � ¼ �
p�1
a�a0 Mð Þ if a 2 0; a0½ Þ
�
p
a�a0 Mð Þ otherwise

(

and,

dp MCa0 Mð Þ� � ¼ dp Mð Þ þ hp Mð Þ�
X

s2D �af g2 0;a0½ Þ
�p�1s;a Mð Þ

3.2.1. Recursive argument
We apply a recursive argument on the dimension of
the hypergeometric equation. Let us assume that n �
3 and that Theorem 3.1 is true for n – 1.

For convenience in the demonstration, we change
the indices of a and b such that ai (resp. bi) is the ith
a (resp. b) we come upon while browsing the circle to
construct the function f. For x; y; z in R=Z we write
x 
 y 
 z if there are three real x̂; ŷ; ẑ which repre-
sent x, y, z such that x< y < z and z�x<1:

We apply Lemma 3.2 with ak and bj such that ak �
bj: Let us describe what happens to the combinatorial
function f after we remove these two eigenvalues. We
denote by f 0 the function we obtain (Figure 2).

6 C. FOUGERON



Removing ak will make the function decrease by
one for the following eigenvalues until we meet bj,
thus for any s 6¼ ak; bj;

f sð Þ ¼ f 0 sð Þ if s 
 ak 
 bj
f 0 sð Þ þ 1 if ak 
 s 
 bj

�

We apply Theorem 3.3 with a0 ¼ bj�ak: It yields
that we have for all m 6¼ k; at singularity zero,

�
p
1þam�ak M � L�1k;j

� �

¼
�
p�1
am�bj Mk;j � L0k;j

� �
if am�akf g<bj�ak

�
p
am�bj Mk;j � L0k;j

� �
otherwise

8><
>:

which can be written in a simpler form

�pam�ak M � L�1k;j

� �

¼
�
p�1
am�bj Mk;j � L0k;j

� �
if ak 
 am 
 bj

�
p
ak�bj Mk;j � L0k;j

� �
if am 
 ak 
 bj

8><
>:

In terms of M and Mk;j;

�pam Mð Þ ¼ �
p�1
am Mk;jð Þ if ak 
 am 
 bj
�
p
am Mk;jð Þ if am 
 ak 
 bj

(

For any integer i, j we denote by dði; jÞ the function
which is 1 when i¼ j and is zero otherwise.

�pam Mð Þ ¼ d p� 1; f 0 amð Þ
� �

if ak 
 am 
 bj
d p; f 0 amð Þ
� �

if am 
 ak 
 bj

(

¼ d p; f amð Þ
� �

Similarly for all m 6¼ j; at singularity 2,

�
p
�bm Mð Þ ¼ �

p�1
�bm Mk;jð Þ if ak 
 bj 
 bm
�
p
�bm Mk;jð Þ if ak 
 bm 
 bj

(

�
p
bm

Mð Þ ¼ d p� 1; f 0 bmð Þ� �
if ak 
 bj 
 bm

d p; f 0 bmð Þ� �
if ak 
 bm 
 bj

(

¼ d p; f bkð Þð Þ

And at 1, we set

~c :¼ c�bj þ ak ¼
X
m6¼j

bm�
X
m6¼k

am;

�
p
c Mð Þ ¼

(
�
p�1
~c Mk;jð Þ if cf g<bj�ak
�
p
~c Mk;jð Þ otherwise

�pc Mð Þ ¼ d p� 1; ~c½ 	 þ 1
� �

if cf g ¼ ~cf g þ bj�ak�1
d p; ~c½ 	 þ 1
� �

if cf g ¼ ~cf g þ bj�ak

(

¼ d p; c½ 	 þ 1
� �

If we pick bn>an for the computation, we have
Hodge invariants for all values except for an and bn.
We then perform the computation for a1<b1; from
which we deduce the invariants at bn and an. Yet, we
should keep in mind that the previous computations
are always modulo shifting of the VHS. That is why
we need to have dimension at least 3, since in this
case a2 will appear in both computations and will
show there is no shift in our formulas.

3.2.2. Initialization for n¼ 2
We use the computations performed in the previous part
for a2 and b2. To do so, remark that the unique (com-
plex polarized) VHS on M2;2 is defined by hpðMÞ ¼
dðp; 1Þ and the only non-zero local Hodge invariants are

�1a1 M2;2ð Þ ¼ 1 at singularity 0

�1�b1 M2;2ð Þ ¼ 1 at singularity 1
�1b1�a1 M2;2ð Þ ¼ 1 at singularity 1

which corresponds to the definition of dðp; f 0ða1ÞÞ
for the first two, and to dðp; ½c	 þ 1Þ for the last one.

Using the previous subsection, we deduce

�
p
a1 Mð Þ ¼ d p; f a1ð Þ

� �
at singularity 0

�
p
�b1 Mð Þ ¼ d p; f a1ð Þ

� �
at singularity 1

�
p
c Mð Þ ¼ d p; c½ 	 þ 1

� �
at singularity 1

According to [Fedorov 15], the Hodge numbers of
M are

Figure 3. The Farey’s tessellation.
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h1 ¼ 1 if a1 
 a2 
 b1 
 b2
2 if a1 
 b1 
 a2 
 b2

;

�

h2 ¼ 1 if a1 
 a2 
 b1 
 b2
0 if a1 
 b1 
 a2 
 b2

�

Using the fact that
P

a �
p
a ¼ hp; we can deduce the

other Hodge invariants.

�2a2 ¼ 1 if a1 
 a2 
 b1 
 b2
�1a2 ¼ 1 if a1 
 b1 
 a2 
 b2

We conclude that �
p
a2ðMÞ ¼ dðp; f ða2ÞÞ and simi-

larly �
p
�b2ðMÞ ¼ dðp; f ða2ÞÞ:

3.3. Continuity of the parabolic degree

To compute dpðVÞ in equation (2–3), we show in the
following Lemma that they are locally constant on a
given domain.

Lemma 3.4. For all hypergeometric systems belonging
to a1; :::; am; b1; :::; bn all distinct modulo one the dp’s
only depend on the intertwining diagram and the inte-
ger part of c.

Proof. The main idea here is that rigidity implies that
the holomorphic structure of the Higgs bundles is
locally constant.

Let L and L0 be the flat bundles of solutions of
equation (1–1) for eigenvalues a, b and a0; b0 as in the
Theorem with the same intertwining diagram and
integer part of c. We endow these flat bundles with a
trivial filtration. To L and L0 correspond some Higgs
bundle ðE; hÞ and ðE0; h0Þ together with parabolic
structures at singularities (see [Simpson 90]).

Now consider ðE; hÞ filtered with the weights a01 �
� � � � a0n at 0 where we take E�a0i ¼ E�ai : Similarly at1
and we keep the same filtration above 1. The monodromy
matrices of the flat bundle associated to this new filtered
Higgs bundle have the same eigenvalues as L0 according
to the table in the Synopsis of [Simpson 90] (p. 720) and
no nilpotent part. Thus its monodromy matrices are con-
jugate locally with the ones of L0 and by rigidity is iso-
morphic to L0:

We conclude using uniqueness of system of Hodge
bundle associated to a stable rigid Higgs bundle with
given weights. w

Together with Corollary 2.5 it will be enough to com-
pute dpðVÞ: We fix an intertwining diagram and a floor
value for c and make the a and bs go to 0 or 1. At the
limit, the parabolic degree is zero and we can deduce
dpðVÞ from the Theorem 3.1 as described in the
next subsection.

3.4. Algorithm to compute dp

Algorithm 1. Computation of dp

function DEGREE(a; b; p)
if p � 1 then return 0
else if LENGTH ðaÞ ¼ 1 then
if p> 1 then return 0
else return –1
end if

end if

RELABEL ða; bÞ
p SORTða � bÞ
Ga  ½;	;Gb  ½;	
c 0; p0  p
for 1 � i � 2n do
if pi 2 a and piþ1 2 b then
Ga  Ga � ½piþ1−pi	

end if
if pi 2 b and piþ1 2 a then
Gb  Gb � ½piþ1−pi	

end if
end for
Gb  p2n−p1

ðai;bjÞ  SMALLESTðGaÞ
ðbk; alÞ  SMALLESTðGbÞ
if bj−ai<al−bk then
a0  anai
b0  bnbj
b0k  bk þ bj�ai
if fðbjÞ ¼ p�1 then
c −1

end if
else
a0  anal
b0  bnbk
a0i  ai þ al−bk
if fðbkÞ ¼ p−1 then
c −1

end if
end if
if minfðb0Þ>0 then
p0  p−1

end if

return c þ DEGREEða0; b0; p0Þ
end function

Using the previous lemma, we present an algorithm
to compute dp for a given set of a and b. We let the
monodromy matrices go to identity while keeping the
intertwining diagram and c unchanged. Corollary 2.5
states that the parabolic degree at the limit will be
zero, thus we can deduce dp from the formula for the
corresponding parabolic degree at the limit.

Assume f ða1Þ is a minimal value of f ðaÞ; then c is
computed for representatives of the a and b in the
interval ½a1; a1 þ 1Þ for any representative of a1 in R:

We shift everything so that we can assume a1 ¼ 0 —
this process of relabeling and shifting is done by the
function RELABEL in Algorithm 1.
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Remark that we can deform the set of points con-
tinuously such that two consecutive a and b get infin-
itely close from one another without changing the
quantity c, their value do not interfere any further in
the degree formula. Indeed, as they are consecutive
points, they will always appear substracted one to the
other in the formulas, we can thus shift them together
freely without changing neither the intertwining dia-
gram, the value of c, nor the parabolic degrees. We
can then concentrate on the remaining points.

This implies an induction process on the dimension
of the bundle to compute dp. Consider the gaps between
two consecutive points that are not both a or both b.
Let ai and bj be the two points with a minimal such
gap—this is returned by the function SMALLEST in
Algorithm 1. If ai comes before bj in the cyclic order,
pick another bk such that the next point is some a, and
shift simultaneously ai and bk by bj�ai: We make a
symmetric process in the opposite case. This reduces the
problem to one dimension lower, without ai and bj.

In the case ai ¼ a1; when we let bj go to a1, the
quantity ai þ 1�bj ! 0: Otherwise, ai þ 1�bj ! 1:
This is why we add the variable c to the recursive result
in the algorithm when these two points appear in the
formula of the parabolic degree, i.e. when f ðbjÞ ¼ p�1:

Finally, in some cases the intertwining diagram on
the induced set of a and b will be shift by one, com-
pared to the initial one. This is why we need to com-
pare the minimum of the function f one the new set
of points, and modify the value of p accordingly.

4. Algorithm

In this section, we describe the algorithm used to
compute the Lyapunov exponents. We start by simu-
lating a generic hyperbolic geodesic and following
how it winds around the surface, namely the evolution
of the homology class of the closed path. Finally we
compute the corresponding monodromy matrix after
each turn around a cusp.

4.1. Hyperbolic geodesics

The first question that arise when trying to compute
Lyapunov exponents is how to simulate a generic
hyperbolic geodesic. We find an answer in a beautiful
theorem proved by Caroline Series in [Series 85]
which relates hyperbolic geodesics on the Poincar�e
half-plane and continued fraction development of real
numbers. We follow here the notations of [Dal’Bo 07]
(see part II.4.1).

Let us consider the Farey tessellation of H (see
Figure 3). It is invariant with respect to the discrete
subgroup of index 3 in PSLðZÞ generated by

1 1
0 1

	 

;

1 0
1 1

	 
� �
:

The tessellation yields fundamental domains for the
action of this group. The sphere minus three points
endowed with its complete hyperbolic metric is a
degree two cover of the surface induced by the quo-
tient of H by this group. This is why we represent the
tessellation with two colors: a fundamental domain
for the sphere is given by any two adjacent triangles
of different colors. Thus it will be easy once we
understand the geodesics with respect to this tessella-
tion to see them on the sphere.

Figure 4. Two ways to cross an hyperbolic triangle.

Figure 6. Homology marking.

Figure 5. Crossings of a given geodesic.
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Let us consider a geodesic going through i. It lands
on the real axis at a positive and a negative real num-
ber. The positive real number will be called x, this
number determines completely the geodesic since we
know two distinct points on it.

We associate to this geodesic a sequence of positive
integers: consider the sequence of hyperbolic triangles
the geodesic crosses. For each one of those triangles,
the geodesic has two ways to cross them (see Figure
4). Once it enters it, it can leave it crossing either the
side of the triangle to its left (a) or to its right (b).

Remark. The vertices of hyperbolic triangles are located
at rational numbers, so this sequence will be infinite if
and only if x is irrational (see [Dal’Bo 07] Lemme 4.2).

We have now for a generic geodesic an infinite
word in two letters L and R associated to a geodesic.
For example the word associated to the geodesic in
Figure 5, is of the form LLRRLR � � � ¼ L2R2L1R � � � :
We can factorize each of these words and get

Rn0Ln1Rn2Ln3 � � �
Except for n0 which can be zero the ni are posi-

tive integers.

Theorem 4.1. The sequence ðnkÞ is the continued frac-
tion development of x. In other words,

x ¼ n0 þ 1
n1 þ 1

n2þ 1
n3þ���

The measure induced on the real axis by the meas-
ure on T1

H dominates Lebesgue measure.

See [Dal’Bo 07] II.4 or [Series 85] for a proof.

Remark. This theorem states exactly that to study a
generic geodesic on the hyperbolic plane, we can con-
sider a Lebesgue generic number in ð0;1Þ and com-
pute its continued fraction development.

As explained in the introduction, we consider the
Lyapunov exponents induced by the flat connection
on the hypergeometric functions bundle. They are
defined for almost every points in the unit tangent
bundle of the base space (here P

1�f0; 1;1g) as the
growth of transported vectors along the hyperbolic
geodesic flow. Thus to compute these Lyapunov expo-
nents, we need to estimate the parallel transport
induced by the flat connection along the hyperbolic
flow. So we need to understand how a generic hyper-
bolic geodesic winds around the cusps, and compute
the product of the corresponding monodromy matri-
ces for the flat connection. By the previous theorem
we can simulate a generic cutting sequence of a
hyperbolic geodesic in the Farey’s tessellation of H:

Our goal now will be to associate to such a sequence
a product of monodromy matrices keeping track of its
homotopy class.

There is a representation of the hyperbolic struc-
ture on P

1�f0; 1;1g given by two ideal triangles in
the hyperbolic half-plane ð0; 1;1Þ and ð�1; 0;1Þ
glued together as in Figure 6. The three cups of this
representation are denoted by A, B, and C. They can
be permuted by an isometry which preserves or
reverses orientation whenever the permutation pre-
serves or changes the cyclic order of the cups. This
representation is constructed with two copies of a fun-
damental domain for Farey’s tessellation, thus the cut-
ting sequence of a generic geodesic against these two
cells is encoded as previously by the continued frac-
tion expansion of a generic real number.

In this representation, let P be a point inside the
triangle ð0; 1;1Þ: Let us assume the first side crossed
by the geodesic in ð1;1Þ; and the next number in the
coding N describes how many times the geodesic will
cross the left sides of the triangle after the first cross-
ing. Observe that after one crossing we are back to P
and the geodesic made a loop in the direct (counter-
clockwise) direction around the cusp A. Each pair of
crossing to the left adds one loop around A. At the
end of this sequence of crossings we must discrimin-
ate two cases:

� If N is even, the geodesic makes N=2 direct loops
around A, and the next crossing will be
along ð1;1Þ:

� If N is odd, the geodesic makes ðN þ 1Þ=2 direct
loops around A. The next crossing is given by one
unit of the next number of crossings to the right
and will be along (0, 1).

The remaining part of the trajectory of the geodesic
is now described by the next numbers of the coding.
The one following N, N 0 now describes how many
times the geodesic crosses the right side of the trian-
gles. We now apply an orientation reversing isometry
(such that left and right will be switched) on the

Figure 7. Crossings after N steps.
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representation to reduce the problem to the previous
case, where the geodesic starts by crossing the geo-
desic ð1;1Þ and the number N describes how many
times it will cross the left side (Figure 7).

� In the first case, we invert 1 and 1 (A and B),
and N :¼ N 0:

� In the second case, we invert 0 and 1 (C and A),
and N :¼ N 0�1:
There is a last point to consider, since we want to

compare the growth of the norm with regards to the
geodesic flow, we need to follow the length of the lat-
ter. Here we have a discretized description of the geo-
desic flow, at each time it returns to the fundamental
domain. We can with this description fully describe
the homology of the flow, but its length will a priori
not correspond to the number of iterations of our
algorithm. Its speed is given by the first Lyapunov
exponent of the Gauss map, as explained in [Zorich
96] Appendix 10. It is equal to L�evy’s con-
stant c ¼ p2

12 log 2 :

4.2. Pseudo-code

Based on the previous subsection, we now formulate
in Algorithm 2 the pseudo-code of an algorithm to
computing the Lyapunov exponents of a local system
over P

1�f0; 1;1g; for given monodromy matrices
at cusps.

Let us start with a random vector (randomvector) in
the local system and follow its parallel transport along
a random hyperbolic geodesic. This random geodesic
is coded by a random number in the interval x 2
½0; 1	 with respect to the invariant Gauss measure
(randomgauss). Namely, it is coded by the continued
fraction development x ¼ ½0 : x1; x2; :::	:

As explained in the previous subsection, we start in
a ideal triangle ð0; 1;1Þ in the fundamental domain,
and mark the cusp at the top with the variable cusp ¼
1: The geodesic ð1;1Þ will be the first one to be
crossed by the cutting sequence.

The orientation alternates after each step, so it will
be read out of the parity of i. Moreover, when the
number of cuttings determined by xi is odd, we use
one cutting from the next sequence xiþ1 to reduce to
the previous case. We keep track of this phenomenon
with a penalty variable p.

The key point of the algorithm is to keep track of
which cusp is placed at 1 in the given representation.
The other two cups will be determined by the orienta-
tion, that is why we use maps next and previous which
browse through this cyclic ordering of the cusps fixed
at the beginning, here 0! 1!1! 0:

Algorithm 2. Simulation of hyperbolic flow

v  random vectorðÞ
x  random gaussðÞ . x ¼ ½0 : x1; x2; :::	
p 0; cusp 1
for 1 � i � K do
N xi−p
if N is even and i is odd then
v  MN=2

cusp � v
cusp nextðcuspÞ
p 0

end if
if N is even and i is even then
v  M−N=2

cusp � v
cusp previousðcuspÞ
p 0

end if
if N is odd and i is odd then
v  MðNþ1Þ=2cusp � v
cusp previousðcuspÞ
p 1

end if
if N is odd and i is even then
v  M�ðNþ1Þ=2cusp � v
cusp nextðcuspÞ
p 1

end if
end for

We apply this algorithm to n random vectors v,
after a large number of iterations K we orthogonalize
the family of vectors using Gram–Schmidt process.
Let z1; :::; zn the norms of these orthogonal vectors.
Then the Lyapunov exponents ki can be estimated

Figure 8. Experiments.
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with the formula

1
c
� zi
K
�ki:

4.3. Monodromy matrices

In the introduction, Proposition 1.1 gives a set of
properties on the monodromy matrices for hypergeo-
metric differential equations with two distinct sequen-
ces of real parameters. The following theorem of
Levelt (see Theorem 3.2.3 in [Beukers 09] for a proof)
gives a rigidity property for these matrices together
with a very useful specific form for them.

Theorem 4.2 (Levelt). Assume e2ipa1 ; :::; e2ipan and
e2ipb1 ; :::; e2ipbn are two disjoint sequences. Then M0M1
is a reflection and the pair M0;M1 is uniquely deter-
mined up to conjugation by

M0 ¼

0 0 ::: 0 �An

1 0 ::: 0 �An�1
0 1 ::: 0 �An�2
..
.

0 ..
.

0 0 ::: 1 �A1

0
BBBBB@

1
CCCCCA

M�11 ¼

0 0 ::: 0 �Bn

1 0 ::: 0 �Bn�1
0 1 ::: 0 �Bn�2
..
.

0 ..
.

0 0 ::: 1 �B1

0
BBBBB@

1
CCCCCA

WithY
i

X � e2ipaið Þ ¼ Xn þ A1X
n�1 þ � � � þ AnY

i

X � e2ipbið Þ ¼ Xn þ B1X
n�1 þ � � � þ Bn

5. Observations

5.1. Calabi–Yau families example

A first family of examples is coming from 14
1-dimensional families of Calabi–Yau varieties of
dimension 3. The Gauss–Manin connection for this
family on its Hodge bundle gives an example of the
hypergeometric family we are considering. The mono-
dromy matrices were computed explicitly in [Van
Enckevort and Van Straten 08] and are parametrized
by two integers C and d. We introduce the following

Figure 9. Difference between sum of Lyapunov exponents and parabolic degree for a generalization of the 14 families in [Eskin et
al. 16].

Figure 10. Restriction on the blue line in Figure 9a.
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monodromy matrices,

T ¼
1 0 0 0
1 1 0 0
1=2 1 1 0
1=6 1=2 1 1

0
BB@

1
CCAS ¼

1 �C=12 0 �d
0 1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA

In the previous notations, M0 ¼ T;M1 ¼ S;M1 ¼
ðTSÞ�1: These matrices satisfy relation M1M0M1 ¼
Id: We see that M1�Id has rank one and eigenvalues
of M0 and M1 have modulus one thus correspond to
hypergeometric equations. In this setting, T has eigen-
values all equal to one and eigenvalues of ðTSÞ�1 are
symmetric with respect to zero, we denote them by
l1; l2;�l2;�l1 where l1; l2 � 0:

The parabolic degree of the holomorphic Hodge
subbundles are given by,

Theorem [Eskin et al. 16]. Suppose 0<l1 � l2 � 1=2
then the degree of the Hodge bundles are

degparE3;0 ¼ l1 and degparE2;1 ¼ l2

Thus according to the same article, we know that
2ðl1 þ l2Þ is a lower bound for the sum of Lyapunov
exponents. We call good cases the equality cases and
bad cases the cases where there is strict inequality.

There are 14 different couples of values for C and
d where the corresponding flat bundle is an actual
Hodge bundle over a family of Calabi–Yau varieties.
These examples where computed few years ago by M.
Kontsevich and were a motivation for this article. We
list them in Figure 8.

To see what happens in a similar setting for more
general hypergeometric equations, we vary C, d and
compute the corresponding eigenvalues l1 and l2 as
well as the Lyapunov exponents. In Figure 9(a) we
drew a blue point at coordinate ðl1; l2Þ if the sum of
positive Lyapunov exponents are as close to the para-
bolic degree 2ðl1 þ l2Þ as the precision we have
numerically and we put a red point when this value is
outside of the confidence interval.

Note that according to Figure 9(a) it seems that all
points below the line of equation 3l2 ¼ l1 þ 1 are
bad cases. In Figure 9(b), we represent the distance of
the sum of the Lyapunov exponents to the expected
formula. We see that this gives a function that oscil-
lates above zero. More precisely, it seems that good
cases are outside of some lines passing
through ð1=2; 1=2Þ:

To push the numerical simulations further, we con-
sider what happens on lines of equation 3l2 ¼ l1 þ 1
(Figure 10(a)) and 48l2 ¼ 10l1 þ 19 (Figure 10(b))
both passing through ð1=2; 1=2Þ and a point corre-
sponding to one of the previous good cases.

We observe that on the graph (Figure 10(b)) there
is only one good case which corresponds to ðl1; l2Þ ¼
ð1=10; 3=10Þ in the previous list of good cases. In the
graph (Figure 10(a)), there are good cases at points
ðl1;l2Þ ¼ ð1=8; 3=8Þ; ð2=10; 4=10Þ which were also on
the previous list but other points appear such
as ð3=12;5=12Þ;ð4=14;6=14Þ;ð5=16;7=16Þ;ð6=18;8=18Þ:

Remark that these all have the form

k�3
2k

;
k�1
2k

	 


we checked it numerically for all 4 � k � 10; we con-
jecture that this phenomenon appears for every k � 4:

According to [Brav and Thomas 14] and [Singh
and Venkataramana 14], the 7 good cases correspond
to cases where the monodromy group of the hyper-
geometric local system is of infinite index in Spð4;ZÞ;
which is commonly called thin. In the other cases the
group is of finite index and is called thick. The new
conjectural good cases we found by ways of Lyapunov
exponents do not seem to have a representation with
integers or even rational C and d. A lot of questions
arise about these points, for example can we find a
number-theoretic interpretation of their equality as in
Conjecture 6.5 in [Eskin et al. 16], or is there a spe-
cific property on the monodromy group in
these cases.

Yuri Manin pointed out a possible interpretation in
cosmology of the Lyapunov exponents in our setting,
and a probable relation to Kasner exponents using
time complexification; compare to [Manin and
Marcolli 14] and [Manin and Marcolli 15].

5.2. Examples for n5 2

As we have seen in the introduction the two
Lyapunov exponents are symmetric k1 and �k1: The
sum of the positive Lyapunov exponents is just k1.
The parameter space we have for these 2-dimensional
flat bundles are a1; a2;b1; b2:

The Lyapunov exponents are invariant through
translation of the set of parameters. Indeed, we can
consider the bundle with edM0 and e�dM1 monodro-
mies, it will have the same set of Lyapunov exponents
since both scalar will appear with the same frequency
and its parameters will be a1 þ d; :::; ah þ d; b1 þ
d; :::; bh þ d hence without loss of generality we can
assume b1 ¼ 0: Moreover the parameters are given as
a set, the order does not matter.

In the following experiments we will consider a set
of parameters where the bs will be equidistributed
and the as will be shifted with respect to them. Here
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we represent the value of the Lyapunov exponent for
a1 ¼ r; a2 ¼ 2r; b1 ¼ 0; b2 ¼ x and we have by defin-
ition c ¼ x�3r (Figure 11).

Remark. We first notice that the zone where the
Lyapunov exponent is zero corresponds to the setting
where the parameters are alternate and where there is
a positive definite bilinear form invariant by the flat
connection (see Section 1). This will be true whenever
the VHS has weight 0.

Another noticeable fact is that zones are delimited
by combinatorics of a and b, and of ½c	 introduced in
the introduction.

Remark that ½c	 is 0 in zones 1, 4, and 1 in zones
2, 5. In the following table, we give a relation binding
k1; r; x obtained by linear regression. The other col-
umn is the formula for the parabolic degree in the
given zone (Figure 12).

In this case, the VHS is of weight � 1 and thus is
in the setting of [Kontsevich 97]. In consequence, we
have the equality

k1 ¼ 2
degparE1
v Sð Þ

where degpar is the parabolic degree of the holomor-
phic bundle and vðSÞ ¼ 1 the Euler characteristic of S.

This is a good test for our algorithm and formula
on degree. More generally, for any dimension n, this
formula will hold as long as the weight is equal to 1.

5.3. A peep to weight 2

Let n be equal to 3. In this case, there will be three
Lyapunov exponents k1; 0;�k1: As explained in the
previous subsection, if the weight of the VHS is 0,
k1 ¼ 0; if it is 1, k1 is equal to twice the parabolic
degree of E1: We consider configurations where the
weight is 2. Assume a1 ¼ 0; the only cyclic order in
which the VHS is irreducible and of weight 2 is for,

0 ¼ a1 < a2 < a3 < b1 < b2 < b3 < 1

We parametrize these configurations with 5 parame-
ters which will correspond to the distance between two
consecutive eigenvalues: h1 ¼ a2�a1; h2 ¼ a3�a2; h3 ¼
b1�a3; h4 ¼ b2�b1; h5 ¼ b3�b2 (Figure 13).

Using a Monte-Carlo process, we found some val-
ues in this configuration for which there is equality

Figure 12. Intertwining diagrams in the zones of Figure 11b.

Figure 11. Sum of positive Lyapunov exponents in a subfamily of hypergeometric equation of order 2.
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with twice the parabolic degree of E2�E1: We
remarked that several parameter points where there is
equality satisfy h1 ¼ h2 and h4 ¼ h5: This motivated
us to consider the 2 dimensional subspace of parame-
ters

h1; h2; h3; h4; h5ð Þ ¼ x; x; 1=2; y; y
� �

For these parameters we can observe a remarkable
phenomenon; the difference between the Lyapunov
exponent and the formula with parabolic degrees

depends only on xþ y. We plot this difference in
Figure 14 and see that for some values of xþ y there
is equality.

We computed that for x þ y ¼ 1=10; 1=12; 1=18 the
formula holds.

Remark that

degparE1 � E2 ¼ 2 �1þ a1 þ a2 þ 1�b2 þ 1�b3 þ cf g� �
Yet a1 ¼ 0; a2 ¼ x; b2 ¼ 1=2þ 2x þ y; b3 ¼ 1=2þ

2x þ 2y and c ¼ 3yþ 3=2þ 3x>1: Hence

degparE1 � E2 ¼ 1

There is equality when k1 ¼ 1:
Moreover degparE1 ¼ 2ð0þ a1 þ 1�b3Þ ¼ 1� 4ðx þ

yÞ ¼ 3=5; 2=3; 7=9 in the three previous cases.
We try now another family with an irrational par-

ameter,

h1; h2; h3; h4; h5ð Þ ¼ x; x;
1

2
ffiffiffi
2
p ; y; y

	 


Again we observe that the difference between the
Lyapunov exponent and the formula with parabolic
degrees depends only on xþ y (Figure 15).

Figure 15. Another example of weight 2.

Figure 14. Difference between the sum of Lyapunov exponents in a family of weight 2.

Figure 13. Intertwining diagram and parameters for a family with weight 2 VHS.
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We observe that the difference goes to zero at xþ
y ¼ 0:22978 which does not seems to be rational as
before. Moreover, in this case, c ¼ 3yþ 3

2
ffiffi
2
p þ 3x and

degparE1 � E2 ¼
1ffiffiffi
2
p

and

degparE1 ¼ 2� 1ffiffiffi
2
p �4 x þ yð Þ ¼ 0:37377
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