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ABSTRACT

COMPUTATIONAL DEVELOPMENT FOR SECONDARY STRUCTURE 
DETECTION FROM THREE-DIMENSIONAL IMAGES OF CRYO-ELECTRON

MICROSCOPY

Dong Si 
Old Dominion University. 2015 

Director: Dr Jing He

Electron cryo-microscopy (cryo-EM) as a cutting edge technology has carved a niche for 

itself in the study o f large-scale protein complex. Although the protein backbone of 

complexes cannot be derived directly from the medium resolution (5-10 A) of amino 

acids from three-dimensional (3D) density images, secondary structure elements (SSEs) 

such as alpha-helices and beta-sheets can still be detected. The accuracy of SSE detection 

from the volumetric protein density images is critical for ab initio backbone structure 

derivation in cryo-EM. So far it is challenging to detect the SSEs automatically and 

accurately from the density images at these resolutions. This dissertation presents four 

computational methods - SSEtracer, SSElearner, StrandTwister and StrandRoller for 

solving this critical problem.

An effective approach, SSEtracer, is presented to automatically identify helices and P- 

sheets from the cryo-EM three-dimensional maps at medium resolutions. A simple 

mathematical model is introduced to represent the P-sheet density. The mathematical 

model can be used for P-strand detection from medium resolution density maps. A 

machine learning approach, SSElearner, has also been developed to automatically 

identify helices and P-sheets by using the knowledge from existing volumetric maps in 

the Electron Microscopy Data Bank (EMDB). The approach has been tested using



simulated density maps and experimental cryo-EM maps o f EMDB. The results of 

SSElearner suggest that it is effective to use one cryo-EM map for learning in order to 

detect the SSE in another cryo-EM map o f similar quality.

Major secondary structure elements such as a-helices and P-sheets can be 

computationally detected from cryo-EM density maps with medium resolutions of 5-10A. 

However, a critical piece of information for modeling atomic structures is missing, since 

there are no tools to detect P-strands from cryo-EM maps at medium resolutions A new 

method, StrandTwister, has been proposed to detect the traces o f P-strands through the 

analysis of twist, an intrinsic nature o f P-sheet. StrandTwister has been tested using 100 

P-sheets simulated at 10A resolution and 39 P-sheets computationally detected from cryo- 

EM density maps at 4.4-7.4A resolutions. StrandTwister appears to detect the traces o f P- 

strands on major P-sheets quite accurately, particularly at the central area o f a P-sheet.

p-barrel is a structure feature that is formed by multiple P-strands in a barrel shape. There 

is no existing method to derive the P-strands from the 3D image of P-barrel. A new 

method, StrandRoller, has been proposed to generate small sets o f possible P-traces from 

the density images at medium resolutions of 5-10A The results of StrandRoller suggest 

that it is possible to derive a small set o f possible P-traces from the P-barrel cryo-EM 

image at medium resolutions even when it is not possible to visualize the separation o f P- 

strands.
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CHAPTER I

INTRODUCTION

Proteins carry out vital functions within cells and make up more than half the cells dry 

weight. Its functions vary from acting as enzymes, to cellular signaling, and to molecular 

transportation. They follow energetically favorable pathways to form a unique and stable 

three-dimensional (3D) structure known as its native conformation. These folded protein 

structures are critical in biological functions as they are required to be in specific folded 

state [1-5], The sequence o f amino acids that constructs the protein ultimately determines 

its native structure. The structure can be categorized to four levels as follows:

Primary Structure: The primary structure of a protein refers to the linear sequence of 

amino acids in the polypeptide chain. It is held together by covalent bonds (e.g. peptide 

bonds) made during the process o f protein biosynthesis or translation. The primary 

structure is determined by the gene corresponding to the protein. Figure 1A depicts a 

portion o f the primary structure.

Secondary structure: The secondary structure o f a protein refers to a regular sub- 

conformational structure formed by consecutive amino acids stabilized by hydrogen 

bonds (H-bonds). The most common examples o f secondary structures are alpha-helices 

(a-helices), beta-sheets (P-sheets), and turns/loops (see Figure IB). Helices and sheets are 

geometrically stabilized by hydrogen bonds between peptide groups. Different regions on
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the polypeptide chain may adopt different secondary structures according to the primary 

sequence o f amino acids in the protein.

a. Helix: The helix is the most common and most predictable secondary structure 

based on the amino acid sequence. The orientation of such a conformation 

produces a helical coiling o f the peptide backbone causes the side chain groups to 

stem out o f the helix coil and sit perpendicular to the axis. Not all amino acids are 

optimal in forming helices due to constraints of their side chains. Amino acids 

such as alanine, asparatic acid, glutamic acid, isoleucine, leucine, and methionine 

favor the formation o f a-helices, whereas, glycine and proline disrupt helix 

formation. Figure IB (red) shows the geometry o f a helix.

b. Beta-sheet: The second most common secondary structure, P-sheets are 

composed o f two or more different strands of amino acids connected by backbone 

hydrogen bonds. P-sheets are either parallel or anti-parallel. Parallel sheets that 

following the peptide chain proceed in the same direction, whereas, anti-parallel 

sheets that following the chain are aligned in opposite directions. Figure IB (blue) 

shows an example o f a P-sheet with two anti-parallel strands.

c. Turns/loops: Turns and loops play an important role in protein 3D structures by 

connecting together P-strands, strands to helices, or helices to one other. The 

amino acid sequences in turn regions may vary. Figure IB (yellow) shows 

examples o f turns and loops.
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Figure 1. The four levels o f protein structures. (A) The primary structure, only ordered 
sequence o f amino acids; (B) secondary structures, P-sheet (blue) is shown as segments 
o f stretches, helices (red) are spiral, and loop/turn (yellow) connects other secondary 
structures; (C) tertiary structure, complete 3D structure o f a single protein molecule; (D) 
quaternary structure, multiple polypeptides.

T ertiary  S tructure: The tertiary structure o f a protein refers to the formation o f a 

complete 3D structure o f a single protein molecule. It defines the spatial relationship of 

different secondary structures to one another within a polypeptide chain. It also describes 

the relationship o f different domains to one another within a protein. The physics o f the 

intra-protein and the environment governs the interaction between different domains such 

as hydrogen bonding, hydrophobic interactions, electrostatic interactions, and van der 

Waals forces. An example o f tertiary structure is shown in Figure 1C.



4

Quaternary Structure: The quaternary structure of a protein refers to multiple 

polypeptide chains that may form the protein molecule. The quaternary structure is 

stabilized by disulfide bonds and the same non-covalent interactions as the tertiary 

structure. Figure ID shows one example o f quaternary structure.

1. Protein Structure Determination and Prediction

A number of experimental techniques are used to determine the structure o f proteins. 

Two such techniques are X-ray crystallography and nuclear magnetic resonance (NMR) 

spectroscopy. The more common X-ray crystallography measures the 3D density 

distribution o f electrons in the protein and accounts for the prediction o f approximately 

90% of proteins found in the Protein Data Bank (PDB) [6, 7], Unfortunately, in some 

cases, both techniques can be very expensive and time consuming (sometimes longer 

than a year). Therefore, developing new computational methods to predict the structure of 

proteins has been given considerable attention and effort [8],

Protein determination techniques are expensive, time-consuming, and not always 

successful with every type of protein. Membrane proteins are an example o f a type that is 

hard to be successfully determined by experimental methods [9, 10], The success o f X- 

ray crystallography is limited to the existence o f suitable crystals from the protein, and 

unfortunately, large proteins cannot easily produce crystals. On the contrary, the 

sequencing o f proteins is fast, simple, and relatively less expensive. As the number of 

genome projects increase worldwide, the difference between number o f sequences and 

known 3D structures is rapidly increasing. The number of protein sequences available at
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the time o f writing this dissertation is more than 87 million1 while the number of 

structure determined and posted on Protein Data Bank2 is only 107,436. Furthermore, the 

sequence o f amino acids, together with the physics o f the intra-protein and the 

environment interactions, play an important role in determination o f protein structure. 

Therefore, the prediction o f a protein native structure from its amino acids sequence 

(primary structure) has been given more attention [8], The need for faster and more cost 

effective computational methods is critically important. It is one o f the most important 

goals in bioinformatics and theoretical chemistry. The design o f drugs and novel enzymes 

are two important examples o f the applications o f protein structure prediction in medicine.

Protein structure prediction is still extremely hard to process for some proteins. Two main 

difficulties are calculation o f the good energy function and finding the global minimum 

o f the energy function. The search space o f the prediction method for the problem is 

astronomically large. Cyrus Levinthal stated in “LevinthaTs Paradox” that, due to the 

large number o f degrees o f freedom in the primary structure o f the protein, the molecule 

has an astronomical number o f possible conformations [11], For example, if  a protein o f 

length 100 residues is sequentially sampled by all the possible conformations (3198 

different conformations), it would require a time longer than the age o f the universe to 

arrive at its native conformation. The huge search space can be pruned by comparative 

modeling or ab initio modeling. When the target primary structure is assumed to adopt a 

similar structure o f another experimentally determined protein, comparative modeling 

would narrow the search space and guide the prediction method accordingly. Otherwise,

! The information is collected from the w ebsite http://ww w.uniprot.org/uniparc/ as of March 2015
2 From the w ebsite of Protein Data Bank www.pdb.org as of March 2015

http://www.uniprot.org/uniparc/
http://www.pdb.org
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ab initio modeling is used to predict the structure from scratch. The accuracy and 

performance o f current prediction methods is assessed by Critical Assessment of 

Techniques for Protein Structure Prediction (CASP) experiment every two years [12-15],

Ab initio modeling is a computational method aimed at predicting and characterizing the 

structure/function of the protein using the information of primary structure as the only 

input. Due to the difficulty of the problem and the astronomical size of the search space, 

most o f ab initio approaches use knowledge-based and physics-based potentials to guide 

the protein folding prediction process. The usage o f this information is helpful to discover 

important features regarding secondary structures, distant constraints, and conformational 

preferences taken from the sequences. The majority o f ab initio approaches focus on 

three aspects of this problem. First, suitable protein representation and corresponding 

protein conformation space in that representation. Second, an accurate energy function 

that is able to distinguish good conformations from bad ones and is compatible with the 

representation. Third, an efficient approach that is able to search the conformational 

search space and minimize the energy term [16], Numerous sophisticated algorithms such 

as Monte Carlo, genetic algorithms, and molecular dynamics are used to search the 

conformational space.

In contrast to ab initio modeling, comparative modeling uses previously determined 

structures as a template. This template modeling seems to be effective because o f the 

limited number o f tertiary structures motifs available even though the number of proteins 

in nature is incredibly large. Many proteins with good sequence similarity have similar
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functions and structures; when a query protein shares 30% sequence identity with a 

protein o f known structure, comparative modeling can predict the structure to a fairly 

good accuracy [17-20], Most comparative modeling consists o f four steps [21]: First, find 

a good template from previously determined structures in the protein data bank. Second, 

align query sequence with the template structure. Third, build the structural framework 

based on alignment by copying aligned regions. Fourth, fill the gaps found on the 

framework.. The first two steps are performed simultaneously in the threading (or fold 

recognition) phase [22, 23], Similarly, the last two steps are also performed 

simultaneously [16],

Although homology-based comparative modeling is the most successful methods for 

structure prediction to date [8, 24, 25], identifying the correct template and refining it is 

still an important condition. The appropriate template in the PDB is a crucial condition 

for the success o f this model otherwise ab initio modeling should be used.

2. Cryo-Electron Microscopy

Electron cryo-microscopy (cryo-EM) has become a major experimental technique to 

study the structures of large protein complexes [26, 27 ]. It is a structure determination 

technique complementary to X-ray crystallography and NMR. A number of large 

molecular complexes, such as ribosome and viruses, have been resolved to near atomic 

resolutions (2-5A) [28-31], Many more have reached medium resolutions (5-10A) [32, 

33], Resolution in terms of electron density is a measure of the resolvability in the 

electron density map of a molecule.
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Figure 2. Cryo-EM technique - from freezing the specimen to atomic structure.

Cryo-EM involves a process o f freezing the sample in ethane slush to produce 

specimen"s non-crystalline ice (Figure 2). These frozen specimens studied at extremely 

low show a structure similar to the native conformation [34], The advantage o f freezing 

the sample is to view it without any distortions or artifacts such as redistribution o f 

elements or removal o f substances and its ability to visualize different functional states 

[35, 36]. Averaging and processing multiple 2D images (i.e. thousands) lead to relatively 

good resolution information (between 5 and 15A) o f the 3D object (3D reconstruction). 

Unfortunately, at such 5-15 A , atom positions are difficult to interpret directly from the 

volumetric density map. However, Hong Zhou et al. recently reported an image o f a virus 

structure at a high enough resolution (3.3A) to see atoms effectively [37], They used a 

single-particle cryo-EM to report the structure o f a primed, infectious subvirion particle 

o f aquareo virus. The volumetric density map they have generated reveals side-chain 

densities o f all types o f amino acids except glycine . It allowed them construct a full-atom 

model o f the viral particle.

Many volumetric density maps o f large protein complexes have been generated at low 

and/or intermediate resolution using cryo-EM technique [37-42], There are 2858 cryo-
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EM experimental density maps that have been deposited to EMDataBank, a Unified Data 

Resource for 3Dimensional Electron Microscopy3. Most o f the entries are at intermediate 

resolution range such as 5-10A. However, the intermediate resolution density maps are 

not resolved well enough to determine the atomic information o f the protein. Recent 

works show the ability o f volumetric density maps to help in discriminating between 

models built by ah initio and/or comparative modeling and in building final models as 

well [40, 43-51]. Given an initial structural model obtained by either ah initio or 

comparative modeling, the volumetric density map is used to refine and fit the model 

structure to generate a high-resolution, all-atom protein model. The Refinement process 

is done by heuristic methods such as conjugate gradients minimization (CG) and 

simulated annealing molecular dynamics (MD). A fitting scoring function measures how 

well the model fits into the volumetric density map to guide structure refinement process 

and identify mismatch regions between the model and the map [44, 49]

3. Problem of Secondary Structure Elements Extraction from Cryo- 

EM Density Maps

At medium resolutions, molecular features are not resolved and it is challenging to derive 

atomic structures from the density maps. In some special situations, particularly for small 

proteins with mostly a-helices, direct modeling is possible to derive the backbone of a 

protein [52], A major approach is to start with a homologous model and to adjust the 

model through fitting [51, 53-56], The initial model can be a homologous structure or a 

model built from a template structure [46, 57, 58], Fitting methods have evolved from 

previous rigid fitting to flexible fitting [44, 59-62], Although fitting a homologous model

1 From the w ebsite o f EMDataBank http://w w w .em databank.org/ as of March 2015

http://www.emdatabank.org/
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has been fairly successful resolving structures from density maps at medium resolutions, 

it is still challenging to find suitable known structures as templates in many cases.

Ab initio modeling aims to derive atomic structures from electron density maps without a 

template structure. Although the connection between SSEs, such as a-helices and P- 

sheets, is ambiguous at medium resolutions, likely connections may still be derived. 

Given the positions of a-helices and P-strands in a density map, one can match them with 

secondary structure sequence segments that can be predicted from the amino acid 

sequence to derive the overall topology of a protein chain [47, 63-67], Once the topology 

is determined (Figure 3), backbone and side chains can be constructed and evaluated 

using energy functions [66, 68, 69],

The location o f secondary structures is critical in modeling atomic structure from a 

density map. Although it is not possible to distinguish the amino acid at medium 

resolutions, SSEs such as a-helices and P-sheets can be visually and computationally 

identified using image processing techniques.
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Figure 3. Ab initio protein structure prediction from the volumetric density maps.



12

A. Challenge of Automatic and Efficient SSE Detection

It was first demonstrated using HelixHunter that a-helices can be computationally 

detected from a density map at sub-nano resolution [70], After that, a number of 

approaches have been developed to detect the a-helices from the medium resolution 

electron density maps [63, 71-75], A few approaches have also been developed to detect 

the P-sheets [63, 72, 74, 76], Most of the computational approaches use automatic 

detection, while a few o f them are semi-automatic guided by user interpretation [63],

Although multiple methods have been developed to detect SSE from the density maps, 

accurate detection either needs user intervention or the careful adjustment of various 

parameters. It is still challenging to detect the SSE automatically and accurately from 

cryo-EM density maps at medium resolutions (~5-IOA). A detected P-sheet can be 

represented by either the voxels of the P-sheet density or by many piece-wise polygons to 

compose a rough surface. However, none of these is effective in capturing the global 

surface feature o f the P-sheet.

Two computational methods, SSEtracer and SSElearner, are used for solving this critical 

problem. An effective approach, SSEtracer, is presented to automatically identify helices 

and P-sheets from the cryo-EM three-dimensional (3D) maps at medium resolutions. A 

simple mathematical model is introduced to represent the P-sheet density. The 

mathematical model can be used for P-strand detection from medium resolution density 

maps. A machine learning approach, SSElearner, has also been developed to
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automatically identify helices and P-sheets by using the knowledge from existing 

volumetric maps in the Electron Microscopy Data Bank (EMDB).

B. Challenge of P-strand Detection

A P-sheet contains multiple P-strands. Although p-sheets can be identified from cryo-EM 

density maps at 5-10A resolutions, it is almost impossible to detect the P-strands o f a p- 

sheet. The spacing between two neighboring p-strands is between 4.5 and 5A, and p- 

strands are only visible when the resolution is higher than 4.7A [77, 78], Without 

knowing the location of p-strands, the representation o f a protein is purely dependent on 

the relative location o f helices [73], De novo modeling has been successful in deriving 

the backbone from the density map o f GroEL (4.2 A resolution) [79] and gplO (4.5 A 

resolution) [80], However, there has not been an a/p structure that is resolved using ab 

initio modeling from a density map at a medium resolution. One of the challenges is the 

inability o f detecting P-strands from the density maps.

Two computational methods - StrandTwister and StrandRoller for solving this 

challenging problem. A new method, StrandTwister, has been proposed to detect the 

traces o f P-strands through the analysis o f twist, an intrinsic nature o f P-sheet. P-barrel is 

a structure feature that is formed by multiple P-strands in a barrel shape. There is no 

existing method to derive the P-strands from the 3D image o f P-barrel. A new method, 

StrandRoller, has been proposed to generate small sets of possible P-traces from the 

density images at medium resolutions o f 5-10A.
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CHAPTER II 

TRACING THE SECONDARY STRUCTURE FROM CRYO-EM  

DENSITY MAPS

Secondary structure elements (SSEs) refer to the density elements corresponding to a - 

helices and P-sheets o f the protein. At the medium resolutions, an a-helix appears as a 

cylindrical stick and a p-sheet appears as a thin layer o f density that is often twisted. The 

identification of SSEs from volumetric maps is critical for ab initio backbone structure 

derivation from cryo-EM maps. Many methods have been developed to identify the SSEs 

at medium resolutions [70] [72, 73, 81-85] [86, 87], Among which more identify ot- 

helices and less identify p-sheets [72, 76, 83, 86, 87], Most o f the computational 

approaches use automatic detection, while a few o f them are semi-automatic guided by 

user interpretation [72, 83], Previous automatic methods usually need multiple user- 

defined parameters which make them hard to use. In general, a-helices are easier to be 

detected than p-sheets. In fact, the first method of SSE detection from low resolution 

density maps detected only helices [70], P-sheets in medium resolution density maps 

usually do not adopt a single characteristic shape like the cylindrical shape of a-helices 

which make them much more difficult to identify.

This chapter is a summary o f the SSEtracer methodology published in paper [88],
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1. Motivation

By now, it is known that P-sheets are not flat as first proposed by Pauling in 1951 [89], p* 

sheets in proteins are almost always twisted. This conspicuous feature of P-sheet has been 

recognized after several P-sheets had been seen in three-dimensional protein structures. 

The right-handed twist of P-sheet was first described by Cyrus Chothia in 1973 [90], 

After that, Salemme suggested in 1981 that the spatial configuration o f p-sheets is 

isotropically stressed surface [91], Some methods have been proposed to show that the P- 

sheet atomic structures can be modeled as different types of 3D surface [92-94],

In addition to the need for accurate detection of p-sheets, accurate detection o f P-strands 

from a P-sheet is needed for modeling the atomic structure. There has not been an 

effective method for p-strands detection from the cryo-EM map at the medium 

resolutions. Due to the closeness of p-strands, cryo-EM density o f P-sheets that at such 

resolution range almost has no indication of single p-strand with any threshold. In this 

chapter, a simple and effective method is presented to detect both a-helices and P-sheets 

from such cryo-EM maps More importantly, the first method to represent the detected P- 

sheet using a mathematical model is developed. In order to derive P-strands from the p- 

sheet density, it is important to have a mathematical model that accurately captures the 

overall surface pattern o f the P-sheet density. The details o f how the mathematical model 

assists the detection of p-strands from p-sheet have been included in a separate chapter -  

chapter IV. The focus of this chapter is to demonstrate that it is possible to use a simple 

mathematical model to represent P-sheet density voxels detected from cryo-EM maps.
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2. Methodology

Based on the local shape characteristics o f a-helices and P-sheets, SSEtracer performs a 

series o f local feature analysis to detect the SSEs. The detected helix voxels are used to 

generate a spline to represent the helix central axis. The detected P-sheet voxels are used 

to generate a mathematical polynomial model to represent the overall surface of p-sheet 

(Figure 4).
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Cryo-EM 3D density map & skeleton

Local feature analysis

Detected helix and p-sheet density

Helix spline p-sheet polynomial model

Local structure 
tensor

Local skeleton 
distribution Local thickness

Least-square sheet density fitting

Figure 4. Flowchart o f SSEtracer and P-sheet representation.
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C. Local Feature Analysis

SSEtracer takes an iso-surface threshold as the only user input parameter, and 

automatically detects the location of a-helices and P-sheets. It is designed to be a tool 

that is both effective and easy to use. All the calculations in this local feature analysis 

step are based on the iso-surface threshold for the density map. The iso-surface threshold 

can be obtained from the EMDB database [32] for experimentally derived cryo-EM maps.

Skeletonization is a powerful method to extract the descriptive structural information 

from the density maps [83, 87, 95], The skeleton is a set o f grid points, or voxels. It refers 

to a medial, geometric representation that approximates the overall shape and connects 

topology on the map. The skeleton can be extracted by using Gorgon, which is a GUI and 

semi-automatic tool for skeletonization [83], The skeleton used in this chapter was 

generated by using Gorgon, because o f the ability o f Gorgon on building the surface 

skeleton and generating clearer skeleton with less redundancy.

The skeleton density voxels was firstly grouped into local clusters based on a distance 

cutoff, which is equals to the spacing o f skeleton density map times 1.732. The centers of 

these voxel clusters were used to speed up the processing, instead o f working on each 

single voxel of the original density map The sparseness o f cluster center points along a 

skeleton can be used to describe the local geometric shape o f the density map. Three local 

structure features: local structure tensor, local skeleton distribution and local thickness 

are calculated at each cluster center in the local shape analysis step.
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L o c a l s tru c tu re  ten so r

Local gradient is often used to characterize the geometrical features in volumetric density 

maps [70, 81, 82], The local structure tensor has been applied to describe the local shape 

[82, 86, 96],

Let I ( x , y , z ) denote the density at voxel ( x , y , z ) .  The local structure tensor is a 

symmetric positive semi-definite matrix given by:

'  l l l XI y U z

K a * I 2‘y l y L

} x h l y L l 2z

where Ix , Iy , and Iz are the derivatives (or gradient) along x, y and z direction 

respectively. The symbol stands for component wise convolution, and Ka is a 

Gaussian convolution kernel, with standard deviation a over which the local structure is 

averaged. The orthogonal eigenvectors o f the structure tensor v u  v 2, v 3 provide the 

preferred local orientations. The corresponding eigenvalues Xv  X2, X3 (X^ > X2 > ^ 3) 

provide the average contrast along these directions. The eigenvalues and eigenvectors can 

be calculated by using Jacobi eigenvalue algorithm [97], The first eigenvector v, 

represents the direction with the maximum variance o f the density, whereas v3 represents 

the direction with the minimum variance. The three eigenvalues could therefore be used, 

based on their relative eigenvectors, to describe the local density nature in three classes: 

cylinder-like, plane-like or isotropic structure:
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• Cylinder-like structures: Xx «  X2 »  ^3

• Plane-like structures: Xx »  X2 ~  X3

• Isotropic structures: Xx & X2 «  A3

Based on the above local structure measurements, two ratios o f the eigenvalues Xx/ X2 

and X2/ X3 are calculated at each cluster point.

L o c a l ske le to n  d is tr ib u tio n

The sparseness of cluster points along a skeleton can be used to describe the local 

geometry shape o f the density map. Two shape descriptors are calculated to capture the 

local geometric shape o f the density map: (I) Number o f neighbors and (2) The local 

distribution angle. A local distribution angle is formed by a cluster point and its two 

neighbors. The cluster points are considered neighbors if their Euclidian distance is less 

than a threshold. The cluster point is predicted to be located on the surface-like region if 

its number o f neighbors is more than two. And also the smallest angle among all local 

distribution angles for this cluster point is smaller than 90 degree. Otherwise the cluster 

point is predicted to be on the curve-like region (Figure 5B and C).
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D

It
Figure 5. Data representation in SSEtracer. (A) The simulated density map of protein 
2AW0 at 8A resolution (gray) and the skeleton (green); (B) the cluster points (dark balls) 
generated from the density skeleton; (C) the curve-like cluster points (red balls) and 
surface-like cluster points (blue balls) in the skeleton distribution calculation o f local 
shape analysis step; (D) the detected helix (red) and P-sheet (blue) density area.

L o ca l th ickn ess

The thickness at each cluster point was calculated using volume-based estimation [98, 

99], The method does not depend on the assumption o f the structural type, thus it is 

suitable to assess the thickness distribution o f any object. The local thickness t ( p )  is 

defined as the diameter o f the largest sphere that fits completely inside the density map 

and contains the cluster point (p):

r  (p ) = 2 *  m a x ( j r |p  e  s p h (x ,r )  c  n ,x  G n j ) (1)

Where sph (x j r )  is the set of voxels inside a sphere with center x  and radius r ,  as shown 

in Figure 6.
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Figure 6. Local thickness o f an object ft determined by finding maximal sphere to the 
object.

One o f the most characteristic features o f P-sheet density is the relative small thickness. 

To measure the thickness, sheetminer uses a template searching scheme which is 

computationally expensive [76], The measurement o f local thickness was introduced into 

SSEtracer. The general thickness definition for arbitrary structures allowing SSEtracer to 

calculate the mean structure thickness and the thickness distribution o f 3-D objects in a 

direct way and independently o f an assumed structure model [98, 99]. Since the P-sheet 

density region is usually thinner than the helix density region at medium resolution 

density maps. The efficient implementation o f the local thickness method was used to 

help on distinguishing between the P-sheet and helix density region.

D. Secondary Structure Voting

The three local features were used to conduct a simple voting scheme to determine if a 

particular cluster point belongs to a helix or a p-sheet.

Two ratios o f the eigenvalues were compared for the local structure tensor feature. The 

helix vote o f a cluster point was increased by 1 if  Ai/A2 <  A2/A3; otherwise the p-sheet
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vote was increased by 1. For the local skeleton distribution feature, the helix vote was 

increased by 1 if the cluster point is detected to be on the curve-like region (Figure 5C, 

red balls); while the P-sheet vote was increased by 1 if it is detected to be on the surface

like region (Figure 5C, blue balls). For the local thickness feature, the overall average 

thickness on the density map for curve-like region and surface-like region was first 

calculated respectively. The helix vote was increased by 1 if the local thickness at certain 

cluster point is within a range from the average thickness of curve-like region; the P-sheet 

vote was increased by 1 if the local thickness at certain cluster point is within a range 

from the average thickness o f surface-like region.

The total SSE vote at a particular cluster point was then summed up. The cluster point is 

finally detected to be on helix area if the vote for helix features is greater or equal to 2, 

and it is detected to be on P-sheet area if the vote for the P-sheet features is greater or 

equal to 2. The maximum votes a cluster point can get is 3.

Finally, the original density voxels around the cluster points were retrieved and grouped 

by using the pre-determined parameter - distance cutoff that mentioned before. Any 

voxels that within this distance cutoff were brought back. The size of the voxel group was 

then estimated by the number of voxels and the maximum distance within the group. The 

small or short voxel groups will be filtered out. For example, helix that detected as 

shorter than 3A will be discarded. The generated voxel groups will be kept as detected 

helix and sheet density area. The detected helix can be simply represented by an
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interpolated spline that within the detected helix voxels, the spline is often close to the 

central axis o f the helix.

E. Mathematical Models for p-sheet

Many studies have shown that a variety o f saddle shaped surfaces can be used to model 

p-sheets in atomic structures. P-barrels has been modeled as highly twisted hyperboloid 

surfaces [92]:

Helicoids have been used to fit small p-sheets using the principle o f minimal surfaces 

[93], Additional models involve catenoid for P-barrels and P-sandwiches [94],

Rather than using different forms for different types of surface, a more general model 

was proposed for polynomial surface [100], Although the order-two polynomial surface 

can already describe some surface pattern for P-sheets, it is sometimes not good enough 

to capture the flexibility and curvature for highly twisted P-sheets. Higher order 

polynomials (order-four or even higher) may exaggerate minor fluctuations in the density 

data. SSEtracer uses order-three 3D polynomial surface (Formula 3) to represent the P- 

sheet surface.

z  = A x 3 -I- B y 3 + C x2 +  D y2 +  E x 2y  4- F y 2x  +  Gxy + Hx + l y  + J (3)
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Since Formula (3) is a function that maps coordinate x  and y  to coordinate z,  the 3D 

surface can be best fitted when the P-sheet density area is approximately parallel to X-Y  

plane and the normal vector o f P-sheet density is along the Z direction. Due to the folded 

shape o f P-sheet, the geometry center o f P-sheet density may not be on the density itself. 

Some scattered cluster points were first searched from the density voxels based on a 

distance cutoff 5A, and defined the sheet center as the closest voxel to the density 

geometry center. The three cluster points that are closest to the sheet center were picked 

to build a center plane for finding the rough normal vector o f the P-sheet density (Figure 

7A). The P-sheet density was then rotated so that the normal vector o f sheet density is 

aligned with the Z direction (Figure 7A). The P-sheet density was then fitted with the 

polynomial surface model (Formula 3) using least-square method, as shown in Figure 7B. 

The (x , y , z ) in this formula is the voxel coordinate o f the P-sheet density. All the ten 

coefficients in this formula can be optimized using least-square fitting method. Finally, 

the P-sheet density was rotated back after the modeling has done.

Figure 7. Fitted polynomial surface to the P-sheet density. (A) The center plane that 
decided by three cluster points (blue balls) with its normal vector (red line); (B) fitted 3D 
surface model (yellow surface points were generated by the model).
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3. Result

The performance o f SSEtracer was tested on ten simulated density maps and five 

experimental derived cryo-EM density maps from EMDB. An identified helix is defined 

as if  its length is within one turn difference from the length of helix in the PDB structure 

which is measured by the central axis of the helix. A identified P-sheet is defined as if the 

detected P-sheet area visually overlays on the P-sheet o f the PDB structure [72], 

Although not included in this chapter, alternative tests could also be conducted if the 

detected SSE location is compared using the Ca atom [86],

SSEtracer was tested using simulated density maps of the representative structures from 

the top 10 most commonly occurring folds [ 101], which were generated to 8A resolution 

using the program pdb2mrc of EMAN [ 102] with a sampling size of 1 A/pixel. The 10 

proteins were used for testing SSEhunter at the same resolution [72], Our method 

successfully identified 73 of the 74 helices that have more than four amino acids (Table 

1). Most o f the missed helices have 3 amino acids in length, presumably of the 310 

helices. SSEtracer detected 14 o f the 17 P-sheets. All 3 missed P-sheets have only two 

strands.

Compared to the semi-automatic method SSEhunter (Table 1), our fully automatic 

SSEtracer appears to be slightly better on detecting the short helices (<5 amino acids and 

5-8 amino acids) and 2-stranded p-sheets. Since SSEhunter is a semi-automatic method, it 

requires user intervention and careful adjustment of various parameters. The comparison 

o f the performance o f SSEtracer with the performance o f SSEhunter is based on the latest
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public result from SSEhunter paper [72], SSEtracer is a fully automatic method which 

does not require user intervention. In this dataset, it outperforms on short helix (<5 amino 

acids and 5-8 amino acids), and 2-stranded p-sheets (Table 1).

Table 1. The number of secondary structure identified by SSEtracer on 10 most 
commonly occurring folds, compared with SSEhunter |72|.

PDB
ID

Our SSEtracer SSEhunter*
Hlx Hlx Hlx Sht= Sht> Hlx Hlx Sht=

<5aa 5-8aa >8aa 2strd 2strd <5aa 5-8aa 2strd
1AJW 0/0 1/1 0/0 0/0 2/2 0/0 1/1 0/0
1AJZ 0/1 3/3 7/7 0/1 1/1 0/1 3/3 0/1
1AL7 1/3 4/4 10/10 0/2 1/1 1/3 4/4 0/2
1C VI 1/1 1/2 8/8 0/0 1/1 1/1 0/2 0/0
IDA] 2/2 2/2 5/5 2/2 1/1 2/2 2/2 0/2
1KNY 0/0 1/1 9/9 0/0 1/1 0/0 1/1 0/0
1WAB 2/3 0/0 6/6 0/0 1/1 1/3 0/0 0/0
2AW0 0/0 0/0 2/2 0/0 1/1 0/0 0/0 0/0
2ITG 0/0 1/1 5/5 0/0 1/1 0/0 1/1 0/0
31.CK 1/4 2/2 6/6 1/1 1/1 1/4 0/2 1/1
Totals 7/14 15/16 58/58 3/6 11/11 6/14 12/16 1/6

*As a comparison, the columns for SSEhunter can be found in the supplementary table 1 o f SSEhunter 
paper [72|.

In addition to the simulated maps, the performance of SSEtracer was also tested using 

five experimental derived cryo-EM density maps that were downloaded from the EMDB 

database. The “recommended contour level” from EMDB was used as the iso-surface 

threshold for the input parameter. The test o f five cryo-EM maps suggests that the helices 

longer than eight amino acids and the P-sheets with more than two strands can be 

detected well. SSEtracer detected 19 o f 20 such helices and all 11 such P-sheets (Table 2).
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Table 2. The num ber of secondary structu re identified by SSEtracer on the 
experim ental derived cryo-EM  maps.

EMD PDB ID, Resolution
Hlx

<5aa
Hlx

5-8aa
Hlx

>8aa
Sht=
2strd

Sht>
2strd

1237_2GSY_A, 1 2 k 1/3 3/5 3/3 1/1 5/5
1733_3C91_H, 6.8A 0/0 0/0 5/5 0/1 2/2
1740 3C92 A, 6.8A 0/1 0/0 5/6 0/0 2/2
1 7 8 0 JIZ 6 JC , 5.5k 0/0 0/1 2/2 0/0 1/1
5030_3FIN_R,6.4A 0/0 0/0 4/4 0/0 1/1

Totals 1/4 3/6 19/20 1/2 11/11

For helices with no more than eight amino acids, SSEtracer was only able to detect 4 of 

10 such helices (Table 2). Our test using five experimentally derived cryo-EM maps 

shows the challenges in small helices. A variety o f possible errors could be introduced 

from the experimentally derived density maps. As shown in Figure 8, the missing density 

for the short helix makes the detection o f that helix very difficult.

Figure 8. Detected SSEs from experimental derived cryo-EM map by SSEtracer. (A) 
EMDB entry EMD-1780 at resolution 6.4A, corresponding true structure (chain K of 
protein 3IZ6) shown as colored ribbon; (B) identified and modeled helices and P-sheets.
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The experimentally derived cryo-EM density maps often contain noises and bumps at the 

edge area of P-sheet, due to the closeness to parts of other structures such as loops or 

turns (Figure 8B). The polynomial model o f P-sheet represents the overall twisted surface 

pattern (Figure 9, right column). The surface points shown in Figure 8 and 9 are 

generated by this polynomial model. As an example, the ten coefficients that calculated 

for the polynomial surface model (Formula 3) of P-sheet shown in Figure 9A are listed: 

A =  0.0013, B = 0.0022, C = 0.0017, D =  -0 .0 0 0 4 , E =  0.0731, F = -0 .0 0 8 4 , G = 

0.0699, H = 3.2652, / =  —1.8834,/ =  1.9414. In this model, each parameter (A to / )  

can be associated with a feature of the 3D surface. For example, the combinations of 

parameter A to G produce the complex o f surfaces. The parameter H and I simply tilt the 

surface in x  and y respectively, and/  sets the base level. As shown in Figure 8 and 9, the 

polynomial surface model visually fits in the detected P-sheet cryo-EM density area well 

and represents the 3D surface feature o f the P-sheets. It is a simplified representation over 

the density voxel representation and other piecewise polygon representation [72], 

Furthermore, the mathematical model can be used to represent the twist o f P-sheet, which 

is an important feature of the P-sheet structure.
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Figure 9. Polynomial model that fits in the P-sheet density. (A) Generated points 
(yellow) by the polynomial model to show the 3D surface, superimposed on the true 
structure (cyan ribbon, sheet A o f protein 3C92) and the detected sheet density (gray, 
EMDB entry 1740); (B) sheet W of protein 3IZ6 and the detected sheet density from 
EMDB entry 1780.

To further quantify the performance o f the polynomial surface fitting method, the fitting 

error by measuring the vertical offsets from the modeled surface to the density voxels 

was calculated. The root-mean-square-error (RMSE) was used to represent the overall 

error o f  polynomial fitting, which is similar to the previous measurements that were used 

for p-sheet atomic structure fitting [92, 94], The error being minimized in the previous 

method is the sum o f the squared distance between the center o f mass o f each peptide 

bond (reference point) in a P-strand and the intersection o f the catenoid surface with a 

line normal to the z axis and passing through the reference point. The error being
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minimized in our polynomial surface fitting is the distance between the fitted surface and 

the density voxels.

Where N is the total number o f density voxels, z, is the Z coordinate o f /-th density voxel 

and z, is the Z coordinate of its corresponding fitted surface point.

Table 3. Polynomial fitting error for the P-sheets in cryo-EM density maps.
E M D S h eet ID # Strands r m s e (A)
1237_2GSY_A 4 2.19
1237 2GSY 13 5 2.30

I237_2GSY_C 6 2.37

1237_2GSY_H 4 1.80
1237_2GSY_G 5 2.16

17.33_.3C91 _(> 5 1.66

173.3_.3C91 Q 5 1.72
1740_3C92_A 5 1.29

1 7 4 0 3 C 9 2 B 5 1.62

1780_3IZ6_W 5 2.27

50.30_.3FIN_AK 3 1.31

Average 1.88

Table 3 shows the 3D surface fitting result for eleven P-sheets that were identified by 

SSEtracer. The eleven P-sheet density maps are experimentally derived cryo-EM density 

maps with resolution between 5.5A and 7.2A. Note that the fitting procedure in our 

method is based on the 3D cryo-EM density voxels instead o f the true atoms o f PDB 

structures [92, 94], The fitting error is related to the threshold o f density maps. The 

“recommended contour level” from EMDB was used as the iso-surface threshold. Most
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of the errors are from the bumps on the edge o f P-sheets. It is known that the van der 

Waals radius o f common atoms is between 1A and 2A. Considering the electron density 

o f protein backbone and side-chain at medium resolutions, the average fitting error 1 88A 

in Table 3 is fairly small. It shows the accuracy o f our P-sheet 3D surface modeling 

method on cryo-EM density maps.

A B

Figure 10. Detected P-strands using the mathematical model o f P-sheet. (A) 3D 
polynomial P-sheet surface model (yellow) and the possible P-strand samples (blue and 
red curve) that on the modeled surface; (B) best detected P-strand position (red curve) 
that superimposed on the true structure (cyan ribbon).

One o f the significant contributions o f the P-sheet mathematical model is for identifying 

P-strands. This is due to the simplicity o f the model yet capturing the overall curvature o f 

the P-sheet. Figure 10B shows an example o f the detected P-traces (red curve) based on 

the points generated from the mathematical model. The detected P-trace aligns well with 

the true P-strands (blue ribbon). The details o f our P-strand detection method are included 

in a separated chapter.

As expected, accurate detection o f p-strands depends on accurate identification o f a p- 

sheet. The boundary o f the identified P-sheet may affect p-strand detection. In most 

cases, the inaccurate boundary can result in a longer/shorter detected P-strand, or
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extra/missing P-strand. Intuitively, the wrongly detected p-sheet density (edge areas in 

Figure 9) may affect the curvature/size of the P-sheet and the P-strand modeling.

Sheet A

Sheet KSheet K

Sheet O

Sheet T

Figure 11. Challenge o f P-sheet detection from the cryo-EM density map at medium 
resolutions. (A) The monomer density (gray) o f GroEL extracted from density map 
EMD 5001; (B) Five P-sheet density regions (colored density) identified using SSEtracer 
are superimposed on chain A o f PDB 3CAU (purple Ca trace) and chain A of 
P D B 1SS8 (cyan ribbon); (C) E2 monomer density (gray) in Encephalitis Virus 
(EMD 5276) at 4.4A resolution; (D) P-sheet density regions (colored density) identified 
using SSEtracer are superimposed on chain B o f PD B 3J0C  (cyan ribbon).
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In addition to short helix (<5 amino acids and 5-8 amino acids) that shown in Table 1 -  2 

and Figure 8, small P-sheets are also quite challenging and hard to detect. Current version 

of SSEtracer detects the secondary structures based on the density features o f SSEs at 

medium resolutions. The detection could fail if there is a missing density, wrong density 

or inaccurate density (as example shown in Figure 8 and Figure 11). SSEtracer detected 

five o f the seven sheets from the density monomer of EMD_5001 (Figure 11 A). Two 2- 

stranded P-sheets (F and G) were missed due to the fact that a 2-stranded sheet can be 

confused with a helix (Figure 11B, pointed by orange arrows) The structure of 

Venezuelan equine encephalitis virus (VEEV) was resolved from the 4.4A resolution 

cryo-EM density map (EMD 5276). The monomer o f E2 which aligned with chain B of 

3J0C was isolated from the density map. SSEtracer detected five larger P-sheets (N, K, O, 

T and R) (Figure 11D). Three 2-stranded p-sheets and two 3-stranded P-sheets were 

missed. Sheet Q (3-stranded) is mostly a 2-stranded twist and appears as a helix in the 

density. Sheet S (3-stranded) is located at the outer surface o f E2 (Figure 11C) where the 

density is weak and has no obvious sheet property.

Current version o f SSEtracer takes density skeleton as an input. The quality o f skeleton 

generated from Gorgon also depends on the quality o f density maps. The quality of 

skeleton would affect the SSE detection result. In order to build a clear and accurate 

skeleton from Gorgon with both surface for the P-sheet region and linear curves for the 

helix/loop regions, careful adjustment of the parameters (such as threshold, step count, 

minimum curve/surface length, curve/surface radius, skeleton radius, and etc.) would be 

needed.
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CHAPTER III 

A MACHINE LEARNING APPROACH FOR THE DETECTION OF 

SECONDARY STRUCTURE FROM CRYO-EM MAPS

The current secondary structure detection methods are mostly based on image-processing 

techniques, these methods search for cylinder-like regions for helices and plane-like 

regions for p-sheets [63, 70-74, 76], Although such methods can recognize most o f the 

helices and P-sheets, they face difficulties in recognizing the border-line cases. These 

methods do not have the capability o f using existing data to assist with the detection. As 

more and more protein backbones are derived for the cryo-EM maps, learning from the 

existing data is more and more important. It has been suggested recently that machine 

learning improves the helix detection in RENNSH [75], RENNSH method uses the 

nested k Nearest Neighbors (kNN) classifiers in machine learning only for the detection 

o f a-helices. It uses the training data and the test data from different proteins o f the same 

cryo-EM map. However, when the true PDB structures of same cryo-EM map are not 

available for training, data from different maps should be used for machine learning. In 

this chapter, it will be demonstrated that the training process and the test process can use 

different cryo-EM maps in EMDB. Our SSEleamer detects both helices and P-sheets 

through the supervised learning from the cryo-EM density map that is estimated to have a 

similar nature to that in the target cryo-EM map.

This chapter is a summary o f the SSEleamer methodology published in paper [86],
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1. Motivation

Although a number o f methods have been developed to identify the SSEs, it is still 

challenging to identify them automatically and accurately. In general, the long a-helices 

and large P-sheets can be detected more accurately. Small helices appear to be similar to 

turns in the density maps at the medium resolution and they are hard to distinguish. A P- 

sheet with two strands can be confused with a helix. Ideally, the detection methods 

should be tested using a large number o f experimentally derived cryo-EM density maps 

for which the backbone structures are known. However, due to the lack o f such paired 

data, the current detection methods were predominantly tested using simulated 

volumetric density maps. Without a test o f a large number o f cryo-EM maps, the 

effectiveness o f the current methods is still not clear when the experimentally derived 

cryo-EM maps are presented.

2. Methodology

There are three major components in our method (Figure 12). The first component 

develops the features using image processing concepts. The second component performs 

the multi-task classification using Support Vector Machine (SVM). The post-processing 

step performs additional filtering and clustering based on the relationships among the 

classified voxels.
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Figure 12. The flowchart o f SSEleamer.

A. Preprocessing and Data Preparation

The performance o f SSEleamer has been tested on ten simulated density maps and 

thirteen experimental cryo-EM density maps from EMDB. The selected EMDB density 

maps are between 3.8A and 9A resolution. Two types o f evaluation were performed. One 

measures the number o f identified secondary structures [70-72] and the other measures 

the number of Ca atoms [70, 76] that falls in the neighborhood o f the secondary 

structures. A helix is identified if its length is within one turn difference from the length 

o f the helix in the PDB structure. A P-sheet is identified if the identified P-sheet voxels 

visually overlay on the p-sheet o f the PDB structure. In order to present a more
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quantitative estimation about the size of the identified helices and P-sheets, the number of 

Ca atoms that are close to the identified helix voxels and P-sheet voxels was estimated. In 

particular, a Ca is considered as an identified helix Ca, if it is within 2.5 A distance from 

an identified helix voxel. A Ca is considered as an identified sheet Ca, if it is within 3 A 

distance from an identified sheet voxel. The definition o f the secondary structures was 

based on the PDB file that is the authors" annotation o f the protein structure. Note that the 

authors" annotation in the PDB file may be slightly different from the annotation using 

DSSP [103], Although the definition o f a helix and a P-sheet is clear in almost all the 

PDB files in our tests, it is necessary to visually decide the number and length in rare 

cases. For example, there is an overlap in the annotated helices with amino acid index 92- 

107 and 106-111 o f 1CV1 (PDB ID). Three strands with amino acid index 37-48, 362- 

375, 96-110 o f 2GSY were annotated in two P-sheets.

SSEleamer has been tested using ten simulated density maps that were generated to 8A  

resolution using the program pdb2mrc o f EM AN [104] with a sampling size o f 1 A/pixel. 

The ten proteins were used for testing SSEhunter at the same resolution [72], The training 

dataset contains four other proteins (PDB ID: IC3W, 1 IRK, 1TIM and 2BTV) previously 

used for testing SSEhunter [12].

Although it is essential to test the SSE detection methods using experimentally derived 

cryo-EM maps, it has been challenging to collect a large number o f such data. Fourteen 

cryo-EM maps have been collected from the EMDB with resolutions between 3.8A and 

9A, out of which thirteen were used to test SSEleamer (Table 4). Four of the thirteen
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cryo-EM maps were selected from the cryo-EM Modeling Challenge 2010 

(http://ncmi.bcm.edu/challenge). They are EMD-5030 (3FIN_chain R), EMD-5030 

(3FIN chain F), EMD-5140 (31YF_chain A) and EMD-5001 (3CAU_chain A).

B. Geometric Processing and Machine Learning

( ie o m e tr ic  fe a tu r e  E x tra c tio n

The feature extraction step characterizes each voxel based on its local geometrical 

features. Local gradient is often used to characterize the geometrical features in 

volumetric density maps [70, 71, 74], Local structure tensor is applied to describe the 

local shape [74, 105],

Let I ( x , y , z )  denote the density at voxel (x , y , z ) . The local structure tensor is a 

symmetric positive semi-definite matrix given by:

I 2 11l x lx ly E h

Ka * I I  I 2lx ly  ly l y h

h h  iy^z I2' z

where lx , ly , and Iz are the derivatives (or gradient) along x, y and z direction 

respectively. The symbol stands for component wise convolution, and Ka is a 

Gaussian convolution kernel, with standard deviation a  over which the local structure is 

averaged. The orthogonal eigenvectors o f the structure tensor v v  v 2, v 3 provide the 

preferred local orientations. The corresponding eigenvalues A,, X2, X3 (At > X2 > A3)

http://ncmi.bcm.edu/challenge
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provide the average contrast along these directions. The first eigenvector v x represents 

the direction with the maximum variance of the density, whereas v3 represents the 

direction with the minimum variance. The three eigenvalues could therefore be used, 

based on their relative eigenvectors, to describe the local density nature in three classes: 

cylinder-like, plane-like or isotropic structure:

• Cylinder-like structures: Xx «  X2 »  X3

• Plane-like structures: A, »  X2 ~ X3

• Isotropic structures: A, «  X2 «  A3

Instead o f using the three eigenvalues o f the structure tensor to distinguish different local 

structures, Yu and Bajaj proposed a practical parameter -  thickness [74], The thickness 

that applied here is defined by the width of the region above a pre-chosen threshold along 

the eigenvector. Let t x, t 2, t 3 be the thicknesses along direction v u v2, v 3. The typical 

thicknesses for different local structures have the following criteria:

• Cylinder-like structures: t x «  t2 «  t 3

• Plane-like structures: t, «  t 2 ~ t3

• Isotropic structures: t x & t 2 & t 3

Based on the above local structure measurements, five features for each voxel in the 

density map were derived: two ratios o f the eigenvalues Xx/X2 andA2/A3, two ratios of 

the thickness t x/  t2 and t2/  t 3, and the normalized density value o f this voxel.
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M ulti-Class Classification o f  the Voxels Using Support Vector Machine

First introduced by Boser, Guyon, and Vapnik in 1992 [106], SVM is one o f the most 

commonly used supervised learning methods. It employs a maximum margin criterion 

and is a powerful tool for classification and regression tasks. The SVM was applied to 

classify the voxels from the test density map into three different classes, helix, sheet and 

background voxels (Figure 13). Given a training set of instance-label pairs y*), i =  

1,.. .,  /  where x t G Rn is an n-dimensional feature vector and y(- is the corresponding class 

label o f that instance. SVM finds the parameters o f a decision function D(x)  =  

w T<p(x) +  b during a learning phase, where $ (* ;)  maps into a higher dimensional 

space [106], The idea is to find a linear separating hyper plane with maximal margin 

between the classes in this higher dimensional space [106, 107], All the parameters found 

during this learning phase can be stored in a model for future prediction on the test data.

( a )  T r a in in g

in pu t  

( b )  P r e d ic t io n

in pu t

label

T ra in in g F eature
d en sity E xtractor

featu res

Test F eature
d en sity E xtractor I I  I 1

fea tu res

SVM

M ach in e
L earn in g

C lassifier
M od el

label

Figure 13. The training and prediction using the SVM
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In the secondary structure identification problem, each voxel in the training density maps 

is associated with five features and one class label. The class label o f each training voxel 

is determined based on its estimated proximity to the secondary structures. The cut-off 

values are empirical, by taking the consideration o f the typical thickness o f a helix (~5A 

in diameter), and the distance between two adjacent P-stands (-4.5A). In particular, the 

three classes were defined as the following.

• +1 for a helix voxel, if it is within 3A from the axis o f a helix;

• -1 for a sheet voxel, if it is within 4.5 A from the Ca atoms of a P-sheet;

• 0 for a background voxel, if it is not a helix voxel nor a sheet voxel.

SVM is inherently two-class classifiers. Multiple two-class problems can be converted to 

a multi-class problem using the concept o f voting. LIBSVM [108] was employed in this 

method to solve the three-class prediction problem.4 LIBSVM uses the “one-against-one” 

approach for multi-class classification [109], If k is the total number o f classes, this 

approach trains k * ( k — l ) /2  classifiers for all the possible combinations o f the class 

pairs. A voting strategy was applied in which each 2-class classification is considered as 

a vote [108], Each voxel from the test density map was then classified according to the 

class with the highest number o f “votes”.

4 The version that downloaded from LIBSVM homepage http://www.csie.nlu.cdu.lw/--cilin/lihsvm/ was in 
November 2011.

http://www.csie.nlu.cdu.lw/--cilin/lihsvm/
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Post-processing

The SVM classification determines the class label for each density voxel in the target 

map. The post-processing takes the class labels as input and determines the exact position 

for the helices and P-sheets (Figure 14). A helix was represented as a set of voxels that 

are often near the central axis o f the helix. A P-sheet was represented as a set o f critical 

voxels on the sheet. The post processing includes two steps: filtering and clustering.

Figure 14. Post-processing. (A) the structure o f 2AW0 (PDB ID) with helices (red 
ribbon) and b-sheet (blue ribbon); (B) the simulated density map at 8A  resolution; (C) the 
helix (red) and sheet (blue) voxels labeled by SVM; (D) the helix (red) and sheet (blue) 
voxels after post-processing; (E) the detected secondary structures superimposed on the 
PDB structure.

The filtering step aims at identifying the voxels with high density in a small 

neighborhood. It is observed that such voxels are often more reliable representatives for 

the SSEs. A filter has been applied using the local-peak-counter (LPC) proposed in 

SheetTracer [110]. For each voxel, the average density was calculated within a sphere o f 

3 A  in radius. Those voxels in the sphere with density value greater than the average have 

their LPC incremented. All the voxels were sorted according to their LPC numbers after
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counting. A threshold parameter was used to select the top ranked voxels. For example, 

the LPC filtering step selected the top 50% of voxels as the candidate representatives for 

the helices in the simulated density map. The top 75% of the voxels were selected as the 

candidate representatives for the P-sheets (Figure 14D).

The candidate voxels were further clustered to select the more reliable clusters for the 

annotation o f secondary structures. The clusters were created based on the adjacency of 

voxels and then the size o f each cluster was measured. A cluster size parameter was used 

to discard the small clusters that are often related to the turns. As an example, the size o f 

3A and 8A has been used to discard the small clusters for the helix and the sheet 

respectively in the simulated density map. The two threshold parameters can be adjusted 

by the user depending on the quality o f the density maps.

Finally, a central axial line o f helix voxel cluster was generated to represent the helix. 

This was done by travelling along the locally highest density voxels between the two 

ends o f the helix voxel cluster. Since the shape o f P-sheets is different for different sheets, 

the sheet voxels after post processing are used to represent the sheets (Figure 14E).

3. Result

The performance o f SSEleamer has been tested on ten simulated density maps and 

thirteen experimental cryo-EM density maps from EMDB. The selected EMDB density 

maps are between 3.8A and 9A resolution. Two types o f evaluation were performed. One 

measures the number o f identified secondary structures [70-72] and the other measures 

the number o f Ca atoms [70, 76] that falls in the neighborhood of the secondary
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structures. A helix is identified if its length is within one turn difference from the length 

of the helix in the PDB structure. A P-sheet is identified if the identified P-sheet voxels 

visually overlay on the P-sheet o f the PDB structure. In order to present a more 

quantitative estimation about the size of the identified helices and P-sheets, the number of 

Ca atoms that are close to the identified helix voxels and P-sheet voxels is estimated. In 

particular, a Ca is considered as an identified helix Ca, if it is within 2.5A distance from 

an identified helix voxel. A Ca is considered as an identified sheet Ca, if it is within 3A 

distance from an identified sheet voxel. The definition o f the secondary structures was 

based on the PDB file that is the authors" annotation of the protein structure. Note that the 

authors" annotation in the PDB file may be slightly different from the annotation using 

DSSP [103], Although the definition o f a helix and a P-sheet is clear in almost all the 

PDB files in our tests, it is necessary to visually decide the number and length in rare 

cases. For example, there is an overlap in the annotated helices with amino acid index 92- 

107 and 106-111 of 1CV1 (PDB ID). Three strands with amino acid index 37-48, 362- 

375, 96-110 o f 2GSY were annotated in two P-sheets.

SSEleamer has been tested using ten simulated density maps that were generated to 8A 

resolution using the program pdb2mrc o f EMAN [104] with a sampling size of 1 A/pixel. 

The ten proteins were used for testing SSEhunter at the same resolution [72], The training 

dataset contains four other proteins (PDB ID: 1C3W, 1IRK, 1TIM and 2BTV) previously 

used for testing SSEhunter [72],
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Our method successfully identified all the 74 helices that have more than four amino 

acids (Table 4). Since 3A is used as the minimum helix length in the post-process step, 

only 4 out o f the 14 extremely short helices were identified. Most o f the missed helices 

have 3 amino acids in length, presumably of the 310 helices. Our method detected all the 

17 P-sheets, 6 o f which have only two strands. Compared to SSEhunter”s result (Table 4), 

our SSEleamer appears to be able to detect more 2-stranded P-sheets and is at least 

comparable in helix identification. Note that the same criteria is used to measure the 

number o f the detected helices and P-sheet as indicated in the SSEhunter paper [72],

Table 4. The comparison of the number of detected secondary structures from the 
simulated maps.

SSEleam er SSEhunter*
PDB ID Helix Helix Helix Sheet = 2 Sheet > 2 Helix Helix Sheet = 2

< 5aa 5 -  8aa > 8aa strands strands < 5aa 5 -  8aa strands
1AJW 0/0 1/1 0/0 0/0 2/2 0/0 1/1 0/0
1AJZ 0/1 3/3 7/7 1/1 1/1 0/1 3/3 0/1
1AL7 0/3 4/4 10/10 2/2 1/1 1/3 4/4 0/2
1C VI 1/1 2/2 8/8 0/0 1/1 1/1 0/2 0/0
1 DAI 1/2 2/2 5/5 2/2 1/1 2/2 2/2 0/2
1KNY 0/0 1/1 9/9 0/0 1/1 0/0 1/1 0/0
1WAB 1/3 0/0 6/6 0/0 1/1 1/3 0/0 0/0
2AW0 0/0 0/0 2/2 0/0 1/1 0/0 0/0 0/0
2ITG 0/0 1/1 5/5 0/0 1/1 0/0 1/1 0/0
31, CK 1/4 2/2 6/6 1/1 1/1 1/4 0/2 1/1
Totals 4/14 16/16 58/58 6/6 11/11 6/14 12/16 1/6

* As a comparison, the columns for SSEhunter can be found in the supplementary table 1 o f the SSEhunter 
paper [72],

In order to quantify the size o f the detected secondary structures, particularly for P-sheets, 

the specificity and sensitivity have been calculated based on the detected helix and sheet 

Ca atoms similar to the estimation used in SheetMiner paper [76], Table 5 shows the 

number o f identified Ca atoms for the dataset in Table 4. A Ca is considered as an
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identified helix Ca, if it is within 2.5A distance from an identified helix voxel. A Ca is 

considered as an identified sheet Ca, if it is within 3A distance from an identified sheet 

voxel. The sensitivity and the specificity o f helix identification is 95.8% and 94.9% 

respectively. The sensitivity and specificity for P-sheet identification is 96.4% and 86.7% 

respectively.

Table 5. The accuracy of identified Ca atoms from the simulated maps.
PDB ID to* Hb tpHc m If* fp H' S1 tp S‘ m Sh fpS1 Sp. H( Se. Hk Sp. s1 Se. Sm
IAJW 145 5 5 0 1 63 50 13 10 99.3% 100.0% 87.8% 79.4%
1AJX 282 124 120 4 6 37 37 0 31 96.2% 96.8% 87.4% 100.0%
IAL7 350 159 145 14 7 46 46 0 26 96.3% 91.2% 91.5% 100.0%
ICVI 162 123 114 9 3 14 14 0 II 92.3% 92.7% 92 6% 100.0%
1 DAI 219 84 81 3 7 47 47 0 32 94.8% 96.4% 814% 100.0%
1F-NY 268 126 121 5 4 66 56 10 25 97.2% 96.0% 87.6% 84.9%
IWAH 212 96 90 6 6 24 24 0 21 94.8% 93.8% 88.8% 100.0%
2AW0 72 22 22 0 3 25 25 0 11 94.0% 100.0% 76.6% 100.0%
2ITG 160 66 66 0 10 21 21 0 18 89.4% 100.0% 87.1% 100.0%
31. CK 270 107 98 9 9 30 30 0 33 94.5% 91.6% 86.3% 100.0%

Average 94.9% 95.8% 86.7% 96.4%
a: The total number of Cu atoms in the protein;
b: The total number of Ca atoms in the helices;
c: The number of true positive Ca atoms of helices;
d: The number of missed Ca atoms that are on helices but not detected;
c; The number of false positive Ca atoms for helices.
f: The total number of Ca atoms in the p-sheets;
g: The number of true positive Ca atoms for p-sheets;
h: The number of missed Ca atoms that are on P-sheets but were not detected; 
i: The number of false positive Ca atoms for p-sheets;
j: The specificity of helix detection, calculated by the formula: 1 - (e/(a - b)); 
k: The sensitivity of helix detection, calculated by the formula: c/b;
I: The specificity of sheet detection, calculated by the formula: 1 — (i/(a - f)); 
m: The sensitivity of sheet detection, calculated by the formula: g/f.

Although it is essential to test the SSE detection methods using experimentally derived 

cryo-EM maps, it has been challenging to collect a large number o f such data. Fourteen 

cryo-EM maps have been collected from the EMDB with resolutions between 3.8A and 

9A, out o f which thirteen were used to test SSEleamer (Table 6). Four o f the thirteen 

cryo-EM maps were selected from the cryo-EM Modeling Challenge 2010
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(http://ncmi.bcm.edu/challenge). They are EMD-5030 (3FIN_chain R), EMD-5030 

(3FIN_chain F), EMD-5140 (3IYF chain A) and EMD-5001 (3CAU_chain A). Since 

SVM is a supervised machine learning method, the best identification accuracy should be 

expected when the training data and the target/test data have similar models. The 

selection o f training data for a target density map is an important step in this 

classification. The quality of the cryo-EM density maps can be different for those at the 

similar resolutions. A training density map has been carefully selected for each target 

cryo-EM map that is to be tested (Table 6). A number of factors were taken into 

consideration in the selection o f training data. These factors include the resolution, the 

estimated range of helix density, the estimated range o f sheet density and the estimated 

noise level in the density map.

Table 6. The target cryo-EM density maps (EMDB ID, PDB ID and resolution) and 
their corresponding training data.

Test data Training data
5030 (3 F IN R ), 6.4A 5168 (3MFP_A), 6.6A
50.30 (3FIN_F), 6.4A 5168 (3MFP_A), 6.6A
5140 (3IYF A), 8A 5030 (3FIN F), 6.4A

1733 (3 C 9 1 JI), 6.8A 1780 (3 IZ 6 K ), 5.5k
5 168 (3M F P A ), 6.6A 5030 (3FIN R), 6.4A
1237 (2(iSY_A), 7.2A 1780 (3 IZ 6 K ), 5.5A
5100 (3IXV_A), 6.8A 50.30 (3FIN_R), 6.4A
5199 (3N09 C), 3.8A 1780 (3IZ6_K), 5.5k
1780 (3IZ6 K), 5.5A 1740 (3C92_A), 6.8A
5223 (3IZ0 A), 8.6A 1340 (2P4N A), 9A
1340 (2P4N A), 9A 5223 (3IZ0 A), 8.6A
1780 (3IZ6 T), 5.5A 5030 (3FIN F), 6.4A

5001 (3CAU_A), 4.2A 1740 (3C92 A), 6.8A

An example o f the detected secondary structures is shown in Figure 15. In this case the 

cryo-EM density map EMD-5030 was aligned with 3FIN_chain R. SSEleamer detected

http://ncmi.bcm.edu/challenge
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all the four helices and the P-sheet (row 1, Table 7). The specificity and the sensitivity for 

the detected helix C a atoms are 93.1% and 96.6%, and those for the sheet detection are 

89.3% and 100% respectively (row 1, Table 8).

Figure 15. Secondary structures detected using SSEleamer. (A) Part o f EMDB entry 
EMD-5030 at resolution 6.4 A  with fitted secondary structure of protein 3FIN_chain R; 
(B) identified helix and sheet locations.

The test o f thirteen cryo-EM maps suggests that the helices longer than eight amino acids 

and sheets with more than two strands can be mostly detected. SSEleamer detected 89 of 

107 such helices and all 26 such P-sheets (Table 7). Note that SSEleamer detected 100% 

such helices and sheets in the simulated data (Table 4). The contrast shows the challenges 

to the SSE detection method for the experimentally derived density maps. This is only 

visible when a large number o f the experimental cryo-EM density maps are used for 

testing. Our test also suggests that SSEleamer detects the P-sheets fairly well in the cryo- 

EM maps. It detected all the 26 P-sheets that have more than two strands, and 9 o f 16 P- 

sheets with two strands (Table 7). For helices with no more than eight amino acids, 

SSEleamer was only able to detect 30 o f 61 such helices (Table 7).
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Table 7. The identified secondary structures from the experimental cryo-EM 
density maps.

EMDB (PDB) ID
Helix 
< 5aa

Helix
5 - 8 a a

Helix 
> 8aa

Sheet = 2 
strands

Sheet > 2 
strands

5030 (3FIN_R) 0/0 0/0 4/4 0/0 1/1
5030 (3FIN_F) 1/1 0/0 6/6 2/2 1/1
5140 (31 YF_A) 0/0 4/8 9/16 1/3 4/4
1733(3C 9 1 H ) 0/0 0/0 5/5 1/1 2/2

5168 (3M F P A ) 0/0 6/9 8/10 0/1 2/2
1237 (2(iSY_A) 0/3 2/5 3/3 1/1 4/4
5100 (3 IX V A ) 0/2 5/11 12/13 0/1 2/2
5199 (3N 0 9 C ) 0/2 3/5 6/6 1/3 2/2
1780 (3IX 6K ) 0/0 0/1 2/2 0/0 1/1
5223 (3IZ0 A) 3/3 1/2 8/11 0/0 2/2
1340 (2P4N_A) 0/1 2/4 9/11 0/0 2/2
1780 (3IZ6 T) 0/0 0/0 4/4 1/1 0/0

5001 (3CAIJ_A) 0/0 3/4 13/16 2/3 3/3
Totals 4/12 26/49 89/107 9/16 26/26

The performance of our SSE detection method has been analyzed using the number of 

identified Ca atoms to reveal the size accuracy of the SSE (Table 8). The overall 

specificity and sensitivity are 91.8% and 74.5% respectively in helix detection. The main 

reason for the reduced sensitivity between the simulated maps verses the EMDB maps is 

in the short helix detection. For example, 8 out of 11 helices in EMD-1237 and 13 out of 

26 helices in EMD-5100 are no more than eight amino acids. Another reason is the 

reduced quality o f the experimental cryo-EM maps compared to that o f the simulated 

density maps. The experimental density maps often have incomplete density data, 

particularly for the short helices. The overall specificity and sensitivity in sheet 

identification are 85.2% and 86.5% respectively. Our test using thirteen experimentally- 

derived cryo-EM maps shows the challenges in the SSE detection from the real cryo-EM 

maps. It is not possible to detect them as accurately as in the simulated maps at this point.
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Table 8. The identified Ca atoms from the experimental cryo-EM maps.
EMDB 

(PDB) ID
to* Hb

Hc
m
Hd

fp
H'

Sf tP
S8

m
s"

fp
s'

Sp. HJ Se. Hk Sp.S1 Se. Sra

5030 (31* IN R) 117 59 57 2 4 14 14 0 11 93. l°o 96.6% 89.3% 100.0%
5030 (3FIN F) 208 80 71 9 4 37 37 0 15 96.9° o 88.8% 91.2% 100.0%
5140 (31YF A) 491 263 136 127 42 74 47 27 69 81.6% 51.7% 83.5% 63.5%
1733 (3C91 II) 203 86 69 17 0 62 54 8 25 100.0% 80.2% 82.3% 87.1%
5168 (3MFP A) 374 186 138 48 17 60 41 19 56 91.0% 74.2% 82.2% 68.3%
1237 (2GSY A) 428 69 46 23 5 187 180 7 71 98.6% 66.7% 70.5% 96.3%
5100 (3IXV A) 626 277 195 82 35 99 86 13 51 90.0° o 70.4% 90.3% 86.9%
5199 (3N09 C) 397 144 118 26 24 128 114 14 41 90.5% 81.9% 84.8% 89.1%
1780(31/6 K) 119 37 25 12 1 29 29 0 11 98.8% 67.6% 87.8% 100.0%
5223 (31/0 A) 412 186 116 70 34 55 42 13 24 85.0% 62.4% 93.3% 76.4%
1340 (2P4N A) 412 202 124 78 21 55 39 16 75 90.0% 61 4% 79.0% 70.9%
1780(31/6 T) 82 54 45 9 0 7 7 0 8 100.0% 83.3% 89.3% 100.0%

5001 (3CAIJ A) 526 255 214 41 61 82 71 11 72 77.5% 83.9% 83.8% 86.6%
Average_______________________________________________________91.8% 74.5% 85.2% 86.5%

a: The total number of Ca atoms in the protein:
b: The total number of Ca atoms in the helices.
c: The number of true positive Ca atoms of helices,
d: The number of missed Ca atoms that are on helices but not detected;
c: The number of false positive Ca atoms for helices:
f: The total number of Ca atoms in the p-sheets;
g: The number of true positive Ca atoms for p-sheets:
h: The number of missed Ca atoms that are on p-sheets but were not detected: 
i: The number of false positive Ca atoms for p-sheets:
j: The specificity of helix detection, calculated by the formula: 1 - (e/(a — b)):
k: The sensitivity of helix detection, calculated by the formula: c/b;
I: The specificity of sheet detection, calculated by the formula: 1 - (i/(a - f));
m: The sensitivity of sheet detection, calculated by the formula: g/f.



CHAPTER IV

MODELING BETA-STRAND FROM CRYO-EM DENSITY MAPS

Ab initio modeling aims to derive near atomic structures from electron density maps without a template 

structure. Although the connection between secondary structure elements (SSEs), such as a-helices and 

P-sheets, is ambiguous at medium resolutions, the likely connections may be derived. Given the 

positions o f a-helices and P-strands in a density map, one can match them with secondary structure 

sequence segments that can be predicted from the amino acid sequence to derive the overall topology o f 

a protein chain [47, 63-66], Once the topology is determined, backbone and side chains can be 

constructed and evaluated using energy functions [66, 68, 69], Pathwalking derives Ca trace directly 

from pseudo atoms extracted from the density map [111]. The main drawback o f this method appears to 

be at P-sheet regions where the P-strands are not resolved.

Figure 16. The problem of p-strand detection from medium-resolution density maps. (A) The density 
corresponding to Chain R of 3FIN (PDB ID) was extracted from cryo-EM density map EMD 5030 
(6.4A resolution) and was superimposed with its corresponding PDB structure (ribbon). (B) The
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Figure 16. (Continued)

detected helices (red lines) and P-sheet region (surface view o f blue voxels) using SSEleamer [86], Two 
possible sets o f P-traces (black solid lines and red dashed lines) may differ in orientation (C) and/or 
position (shift) (D). The backbone structure is superimposed on the observed P-traces for the middle two 
P-strands in (C) and (D).

This chapter is a summary o f the StrandTwister methodology published in paper [112],

I. Motivation

The location o f secondary structures is critical in modeling atomic structure from density map and as an 

overall shape descriptors in identifying similar structures [33], Although it is not possible to distinguish 

the amino acid at medium resolutions, secondary structure such as a-helices (red lines in Figure 16B) 

and P-sheets (blue density voxels in Figure I6B) can be identified [70, 72, 74, 76, 86, 113, 114], A P- 

sheet contains multiple P-strands. Although p-sheets can be identified from cryo-EM density maps at 5- 

10A resolutions, it is almost impossible to detect the p-strands o f a P-sheet. The spacing between two 

neighboring p-strands is between 4.5 and 5A, and p-strands are only visible when the resolution is 

higher than 4.7A [77, 78], Without knowing the location of p-strands, the representation o f protein is 

purely dependent on the relative location o f helices [73], Ab initio modeling has been successful 

deriving the backbone from the density map o f GroEL (4.2 A resolution) (Ludtke et al. 2008) and gplO 

(4.5 A  resolution) [80], However, there has not been an a/p structure that is resolved using ab initio 

modeling from a density map at a medium resolution. One o f the challenges is the inability o f detecting 

P-strands from the density maps. In addition to the secondary structural elements, skeleton that 

represents possible connections can be identified [95, 115], although ambiguous points exist in the 

skeleton.
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A helix detected from the medium resolution data is often represented as a line, referred here as an a- 

trace that corresponds to the central axis o f a helix (red lines in Figure 16B). A P-trace (black line in 

Figure 16C and D) is defined as the central line along a p-strand. In particular, an observed P-trace is the 

line interpolating all geometrical centers o f three consecutive Ca atoms on a p-strand plus two Ca atoms 

at the end o f the P-strand. At medium resolutions, the Ca trace o f a P-strand is not resolved in the 

density map. The problem of detecting p-strands from the density o f  a P-sheet is to find the orientation 

(Figure 16C) and location (Figure 16D) o f P-traces.

Figure 17. Density o f  a P-sheet at different resolutions. The density was simulated using atomic 
structure o f 1A12 (PDB ID) and EMAN [102] at 6A  in (A), 8A  in (B), and 9A in (C). A p-sheet detected 
from an experimentally derived cryo-EM density map (EMD 5030) at 6.4A using SSEtracer [116] and 
visualized in Chimera [117] in (D). The surface representation o f density is shown at a lower (left) and a 
higher (right) threshold in (A)-(D).

As more experimentally determined cryo-EM maps accumulate in the Electron Microscopy Data Bank 

(EMDB) [32, 118], it is clear that such cryo-EM maps are more challenging than the density maps 

simulated at the same resolution. A simulated density map at 6 A  resolution often reveals the separation
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of p-strands at a proper range o f  density thresholds (Figure 17A). Even at 8A resolution, a simulated 

density map partially reveals the separation of P-strands (Figure 17B) and it has much better quality than 

an experimentally-obtained cryo-EM map at a similar resolution. However, a simulated density map at 9 

or 10A resolution is often challenging for visual detection (Figure 17C), and so is a cryo-EM map at 

6.4A resolution (Figure 17D). The question this chapter addresses is if it is possible to derive the p- 

traces from cryo-EM maps at the medium resolutions when no separation o f p-strands is detectable.

Currently there are no tools to derive the p-traces from cryo-EM density maps at medium resolutions. 

Sheettracer is the first attempt to derive p-traces [110], It uses de-convolution to enhance the separation 

of P-strands while filtering and clustering follow. However, this method was predominantly tested using 

simulated density maps with resolutions of 6A  and 8A. For simulated density maps at such resolutions, 

the separation o f P-strands may be visible or partially visible (Figure 17A and B); however, this is not 

true for experimentally-obtained cryo-EM maps (Figure 17D). Sheettracer may be suitable for density 

maps in which the separation of P-strands is partially visible. Gorgon uses a semi-automated method 

allowing a user to determine the position o f P-strands, which is challenging to apply in the cryo-EM 

maps at medium resolutions [119], Pathwalking derives backbone from cryo-EM maps at near-atomic 

resolutions such as 3-5A. It performs well in a-helical domains but fails at P-sheet regions at the medium 

resolutions [111].

The detection of P-strands from medium-resolution cryo-EM maps remains an open problem since the 

first attempt in 2004 [110], In addressing this challenge, a new method - StrandTwister is proposed 

which does not rely on the separation o f P-strands and therefore is applicable to much lower resolutions. 

StrandTwister has been tested using 100 P-sheets simulated to 10A resolution and 39 p-sheets that were
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computationally detected from cryo-EM maps at 4.4-7.4A resolutions. It has been observed that 

StrandTwister can detect the traces of p-strands fairly well for many P-sheets with three or more P- 

strands. The detection o f p-traces is limited by the identification o f P-sheet. This means 2-stranded P- 

sheets and those P-sheets at low quality regions o f a density map remain challenging. The results and 

challenges in P-strands detection will be discussed using three cases: gplO o f bacteriophage epsilon 15 

map (7.3A resolution), GroEL density (4.2A resolution), and E2 o f Venezuelan equine encephalitis virus 

map (4.4A resolution).

2. Methodology

There are two major steps in our StrandTwister. The first is to generate a polynomial surface to fit P- 

sheet voxels [116], The second step identifies right-handed P-twist from the polynomial surface model.

A. Polynomial Fitting of fi-sheet Density

A P-sheet generally appears as a thin layer of density at medium resolutions. However, bumps and 

missing density in P-sheet region are often observed in the experimentally derived cryo-EM maps, 

presumably due to errors in the experimental data. In order to capture the overall shape o f P-sheet 

density and make strand-detection less sensitive to errors in density data, a polynomial surface (5) was 

first determined by fitting the density voxels (see description in Figure 18). Here (x , y , z ) is the 

coordinate o f a voxel point.

z =  A x 3 +  B y 3 + C x2 +  D y2 +  E x 2y  +  F y 2x  +  Gxy  +  Hx + l y  +  J (5)
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In order to fit the polynomial surface (Formula 5) into P-sheet density, a normal vector o f the P-sheet 

density was first determined using the points near the center o f P-sheet. Translation and rotation were 

performed such that the center becomes the origin and the normal vector aligns with the z-axis (Figure 

18A). Least-square fitting was then performed to determine the parameters in the polynomial surface. 

The fitting error was reported in [116], The resulting polynomial surface (Figure 18B) was then used to 

calculate the two main features of P-sheet -  handedness and twist angles.
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Figure 18. Sampling o f the P-traces and calculation o f the twist angles. (A) The density o f a P-sheet 
(gray) with the center and the normal vector (red); (B) The surface points (yellow) derived from 
polynomial fitting; (C) Two sampled orientations; (D) Vectors o f P-traces (green to red); (E) Calculation 
o f handedness and twist angle for two neighboring strands.

The handedness and twist angles were calculated for each set o f P-traces. Each set o f P-traces was 

generated based on the observation that P-strands are roughly parallel to each other with two
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neighboring strands forming a small twist angle. A set o f parallel lines (Figure 18C) with 4.5A spacing 

was first created on a plane perpendicular to the normal vector o f the P-sheet density. Eighteen sets of 

parallel lines were created on the plane to sample the orientation space by every 10°. Each set o f the 

parallel lines was then shifted 1.5A left / right to sample the translation freedom. Each set o f parallel 

lines was used as an initial reference to generate non-parallel lines on the surface model. To do this, the 

parallel lines were projected back to the polynomial surface model. Note that the resulting P-traces are 

not parallel anymore due to the twisted curvature o f P-sheet. Since the central area o f a P-sheet is often 

more reliably detected than the edge, each resulting curved P-trace was divided into four segments with 

equivalent length and the central two were used (Figure 18D) to represent the vector for a P-trace (F, 

pointing from the green to the red dot in Figure 18E).

Let F! and V2 represent two neighboring P-traces, and let F12 represent the vector pointing from line 

segment Fj to V2 and having the shortest distance between them. A right-handed twist requires the 

following.

• (F, x F2) ■ F12 >  0, if Fj and V2 are on the anti-parallel P-strands

• (F, x F2) • F12 <  0, if Ft and V2 are on the parallel P-strands

In principle, F, x V2 is on the line of F12, either having the same direction as F12 in which ((F, x F2) • 

F12) >  0, or having the opposite direction as V-i2 in which ((F, x F2) ■ F12) < 0. Suppose V, and V2 are 

on antiparallel P-strands as in the first case, a right-handed twist will have F, x  V2 in the same direction

as F12 (Figure 18E). A left-handed twist will result in ((F, x ^2) '  ^12) <  0. Since a twist angle is often
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small, the acute angle formed by Vr and V2 was used as the inter-strand twist angle (Figure 18E). Similar 

principle applies in the second case in which Vt and V2 are on the parallel P-strands.

B. Right-handed fi-twist and p-strand Detection

Right-handed twist o f a p-sheet was first described by Cyrus Chothia in 1973 [90], Salemme et al, 

suggested that the spatial configuration o f a P-sheets is isotropically stressed surface [91], To understand 

the right-handed twist, one may thread the right-hand fingers along the P-strands (Figure 19D). The 

natural curvature o f our right hand would lift up the index finger and lower down the pinky (Figure 19D).

Figure 19. The right-handed twist o f a P-sheet. The P-sheet density was detected using SSEtracer from 
cryo-EM map (EMD 1237), and is shown in 0° (A), 45°(B), and 90° (C) view around the normal vector 
(red line); (D) The right-handed twist o f P-sheet 2GSY_sheet G. The strands are labeled such that the 
index finger (1) is at forefront and the pinky (4) is the farthest from the page. The correspondent PDB 
structure o f (A) is shown with hydrogen bonds (thin black lines) in (E).

The key idea in our method is the observation that the density o f a P-sheet reveals the right-handed twist 

very well (Figure 19A, B, C), particularly at the medium resolutions. In addition, it has been discovered
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that wrongly positioned P-strands in the P-sheet density can produce left-handed twist. For example, if 

one attempts to thread fingers into the paper and fit the P-sheet density in Figure 19A, it has to be the left 

hand, not the right hand. This suggests that the correct orientation o f the P-strands can be identified by 

measuring the handedness and twist angles [120],

The surface point (yellow in Figure 18B and C) generated by the mathematical model in formula (3) is a 

simple representation o f P-sheet density, and was used to measure handedness and twist angles. The 

handedness and twist angles were calculated for each set o f P-traces. Each set o f P-traces was generated 

based on the observation that P-strands are roughly parallel to each other with two neighboring strands 

forming a small twist angle (see description in Figure 18).

{(jj/h lj \\k\
B

Figure 20. The set o f P-traces with the maximum twist. (A) The observed P-traces (black) are 
superimposed on the backbone o f sheet A o f 1FX2 (PDB ID). (B) The set o f P-traces with the largest 
AMT (red). The central 2/4 o f the traces is indicated by two spheres. The smallest angle between the 
detected P-trace and the corresponding observed P-trace among all pairs o f detected/observed P-traces is 
shown in dashed box. (C) The points on the fitted surface (dots), the observed P-traces (white lines) and
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two potential sets o f P-traces (red, green) are shown in two views. Among all the sets of sampled traces, 
the set o f red traces has the largest AMT.

Since there is a handedness and a twist angle for each pair of neighboring P-traces, the overall 

handedness and twist angle o f the entire set o f P-traces need to be determined. Those sets having right- 

handed twist for all neighboring-strands were first selected. Such sets were further evaluated by the 

Average-Main-Twist (AMT) angle to select the best one (Figure 20). AMT is the average o f three 

consecutive inter-strand twist angles: the largest inter-strand twist angle and that to its left and to its right 

respectively. The assumption is that the correct set o f P-traces is expected to have near maximum overall 

twist (see Table 9). The top ten (first ten) sets o f P-traces with the largest AMT were detected as 

potential sets.

Table 9. Maximum twist angle and main orientation difference (MOD) for the set of P-traces with 
the maximum twist.

No. PDB ID* #Det./#Obs.b Max tw.c MODd
1 1A12 B 2 / 3 29.6 12.7
2 1A12 D 2 / 3 31.5 8.5
3 1A4I H 3 / 3 14.1 7.8
4 1A4I V 3 / 4 14.4 20.0
5 1AOP 1 5 / 5 26.0 13.0
6 1AOP 2 5 / 5 22.3 8.9
7 1B5K D 5 / 5 17.5 6.3
8 1RV9 B 5 / 6 22.8 8.1
9 1T8II B 6 / 6 14.1 19.8
10 1VLY A 5 / 6 22.9 15.1
11 1YT3 A 5 / 6 26 1 9.0
12 2HKB A 5 / 6 16.7 4.5
13 1CIID SHI 5 / 7 23.7 24.7
14 1D5T D 5 / 7 24.4 12.2
15 1FX2 A 7 / 7 27.3 4.2
16 1DTD A 8 / 8 22.9 8.9
17 1HDO AA 7 / 8 21.0 7.0
18 1.IL0 A 7 / 8 11.6 5.1
19 1IJD9 B 7 / 9 16.3 23.9

a. The PDB and sheet ID;
b. The number of the detected p-traces / the observed p-traces in the set with the 

maximum twist;
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c. The largest twist measured as the AMT angle among all sets o f right-handed 
P-traces sampled with difference orientations;

d. MOD between the set o f  P-traces with the maximum twist and the observed set

3. Result

In order to test the feasibility o f P-trace detection using handedness and twist angles, the relationship 

between P-strand orientations and the maximum twist angle was first investigated using atomic 

structures o f P-sheets. StrandTwister was then evaluated using 100 density maps simulated to 10A 

resolution. It was eventually tested using 39 P-sheets detected from experimentally derived cryo-EM 

maps at 4.4-7.4A resolutions. To evaluate the accuracy o f P-trace detection, the 2-way distance between 

the set o f detected P-traces and the set o f observed P-traces was calculated (see definition of P-trace in 

Introduction and Figure 16C).

A. The Main Orientation of p-strands and the Maximum Twist Angle

In order to identify the correct P-strand orientation among many orientation samples, the relationship 

between the observed orientation and the maximum twist angle was investigated. Nineteen P-sheets 

were randomly selected from the structures in PDB with less than 40% sequence similarity. It appears 

that an observed P-trace roughly represents the central axis o f the P-strand in terms o f the backbone 

atoms (Figure 20A and Figure 16C). A surface model was derived by fitting the polynomial o f formula 

(1) to all points on the observed p-traces o f the sheet. All sets o f p-traces with right-handed twists were 

selected and the AMT angle was calculated for each set. In general, the AMT angle represents the 

average o f three twist angles nearby the largest twist angle, and it is more stable than either the largest 

twist angle or the average o f all twist angles o f a sheet (data not shown). The set o f P-traces with the 

largest AMT was identified; this was referred as the set with the maximum twist (Table 9). It appears
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that the maximum twist angle (the largest AMT) among all sets of P-traces is between 11° and 32° for 

the nineteen test cases (Column 3 Table 9). Interestingly, most o f the largest twist angles are between 

15° and 30°, a popular range o f twist angles measured previously using the atoms o f the P-strands [121 ]. 

Note that the maximum twist angle in Table 9 was not directly calculated using positions of atoms, but 

rather through the sampling of different orientations and selecting for the largest AMT. This suggests 

that the largest AMT roughly corresponds to the twist angle o f P-strands, and the set o f P-traces with the 

largest AMT roughly reflects the orientation o f the true P-strands

Figure 20B shows an example o f the detected set o f seven p-traces with the maximum twist (red lines). 

The AMT of this set is 27.3° (row 15 o f Table 9), and it is the largest among all the sets o f P-traces 

sampled using different orientations and translations. It appears that such a set (red) aligns well with the 

observed set (black), particularly for the central region of the P-sheet. Some portions near the edge o f P- 

sheet are not well detected. In this case, strand 3 appears to be best detected, followed by strand 2 and 4. 

In order to see if the maximum twist can be used as an indicator to detect the P-traces, the Main 

Orientation Difference (MOD) was calculated for the set with the largest twist MOD is defined as the 

average o f three angles, the smallest angle between the detected P-trace and the corresponding observed 

P-trace among all pairs o f detected/observed P-traces (3" and 3 in Figure 20B), and two similar angles 

for its neighboring two pair o f p-traces, the angle between 2" and 2 and the angle between 4" and 4 in 

this case. The MOD for the set o f P-traces that has the maximum twist is only 4.2° for the p-sheet o f 

1FX2 (Figure 20B and Table 9), suggesting a very good estimation of the P-traces for strand 2, 3 and 4. 

To determine whether or not the small MOD happened by chance, sets o f P-traces of difference 

orientations were randomly generated. As expected, MOD varies from 0° to 90° (data not shown), with 

an average o f about 45° which is much larger than the MOD of the set with maximum twist angle (Table
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9 column 4). Sixteen o f the nineteen cases have their MOD less than 20°. This result suggests that the P- 

trace with the maximum twist is a close estimation o f the P-strands for the central region in a P-sheet. 

Note that a P-trace is often curved, and the curvature appears to be more at the edge o f the P-sheet. 

However, our results suggest that it is possible to detect the major P-trace orientation by the maximum 

twist for the central area o f the sheet. Due to the quasi-parallel nature o f P-strands, the other strands were 

derived using the major orientation as a guide. The results are shown in later sections. Our results 

support a hypothesis stating the actual P-strand orientation roughly follows the orientation that creates 

the maximum twist at central area o f P-sheet, where longer stretches o f hydrogen bonds restrict the 

flexibility o f the conformation. It is possible that the maximum-twist conformation may represent a 

stable conformation for the P-sheet to fold into a compact protein structure.

B. Two-way Distance

In order to calculate the 2-way distance, 1-1 correspondence between the P-traces in the detected set and 

those in the observed set was first determined based on the overall smallest 2-way distance. This ensures 

that the same number of detected P-traces (51(52, . .. ,ST ) are compared to same number of observed 

traces ( S \ , S ' 2, ■■■,S 'T) in which Sk is compared with S'k for k =  1, ...,T. The number o f miss-detected 

(or wrongly detected) P-strands can be inferred from the difference between the total number of the 

observed and that o f the detected P-traces. The 2-way distance of a P-strand k, Dk was calculated for 

each pair o f lines Sk and S'k . The overall 2-way distance D reflects the quality o f detected P-traces that 

are corresponding to their observed ones.

Dk = (Z f=1 D*s' / N  +  I "  t D f s/ M ) / 2  (6)

D = (Z L ! Dk) / T (7)
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In formula (4), N and M  are the numbers of points on the detected (Sk ) and the observed P-traces (S'k ) 

respectively, i and j  are the indices of a point along line Sk and S'k respectively. Dfs' is the projected 

distance from point i o f Sk to S'k . The projection of point i is required to be within line S'k . In the case it 

is outside, the distance between i and an end of S'k was used as an approximate distance. In order to 

estimate how much o f a P-strand was detected, the percentage o f the detected Ca atoms o f an observed 

P-strand was calculated. An amino acid of a P-strand is considered detected if the projection distance 

from its Ca atom to the corresponding detected P-trace is less than 2.5A, which is about half P-strand 

spacing.

C. Performance on the Simulated Maps

The purpose o f this test is to investigate if the P-strands can be traced from the density maps simulated at 

10A resolution, at which the separation o f P-strands is not visible. The dataset was collected randomly 

from PDB with the following requirements: (a) The P-sheets are regular sheets rather than barrels; (b) 

The number of strands is between 3 and 10. The atomic structures o f P-sheets were used to generate p- 

sheet density maps at 10A resolution using EMAN, a popular software to produce simulated density 

[102] with step size o f 1 A/pixel. A polynomial surface (1) was generated to fit the P-sheet density.

Figure 21 shows the best of top ten sets o f detected P-traces (red lines) for three cases with 3, 6 and 9 p- 

strands respectively. In the case o f sheet B o f PDB structure 1T8H, one o f the top ten detected sets 

appears to align with the P-strands very well (Figure 2 IB). In this case all six P-traces were detected 

with a small 2-way distance o f 0.70A (Table 10 row 3 of 6-stranded). It is observed that, the top ten 

detected sets always include a set with close orientations to the actual P-strand orientations. The
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detection is slightly better for smaller P-sheets such as those with 3-7 strands, if  the number o f detected 

p-traces and the 2-way distance are considered. However, some large P-sheets were still well detected, 

such as the 9-stranded sheet IUD9 B (Figure 21C). The 2-way distance is only 1 07A in this case (Table 

10), and most o f the P-traces are accurately detected. The error appears to be at the edge o f the P-sheets.

Figure 21. p-strand detection from simulated density maps at 10A and experimental cryo-EM maps. The 
best o f the top ten sets o f detected p-traces (red lines) are superimposed with the backbone o f the P- 
strands and the density maps (gray) for P-sheets 1A4I B in (A), 1T8H B in (B), 1UD9 B in (C), 
EMD 2165 4B 4T 1C  in (D) and EMD 1780 3IZ5 Z in (E). The top view (left) and the side view 
(right) are shown in each case. The density (gray) o f P-sheet in (D) and (E) was detected using 
SSElracer.

The test o f 100 simulated P-sheet density maps shows that one o f the top ten ranked sets o f P-traces 

aligns very well with the observed set o f P-traces, with an overall 2-way distance o f 1.24A (Table 10 last
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two rows) for the detected P-traces. To analyze the sensitivity of the detection, the number o f amino 

acids that were missed in the detection was measured (see definition early in Results). For example, 

1ATZ A has five o f the six P-strands detected (Table 10 row 1 of 6-stranded), and four amino acids 

were missed. For the five P-traces detected, the 2-way distance is 1.18A. Among the 100 test cases, 

StrandTwister appears to be able to detect 81.48% of the P-strands in one of the top ten ranked sets o f P* 

traces (Table 10).

Table 10. p-trace detection from simulated density maps at 10A  resolution.

PDB ID* Fit #Det.c 2-w #Det./#Obs. PDB ID" Fit #Det.c 2-w #Det./#Obs.
3-stranded 6-stranded

1A12_B 1.29 3 0.95 16 / 17 1ATZ_A 1.51 5 1.18 3 6 / 4 0
1 A1 2 I ) 1.25 3 0.93 15 / 17 1 R V 9 B 1.28 6 0.95 2 7 / 2 9
1A4I B 1.30 3 0.64 1 8 / 1 8 1181 I B 1.13 6 0.70 2 8 / 2 8
1A81) B 1.18 3 0.75 12 / 12 1 V I . Y A 1.47 6 0.99 25 / 29
1 A T G B 1.39 3 1.07 10 / 12 1YT3_A 1.20 6 0.90 29 / 31
1 AX< )_A 1.52 3 0.82 16 / 18 2HKK_A 1.32 6 0.80 3 1 / 32
I A Z O B 1.52 3 0.84 13 / 13 2 P 5 1 A 1 36 6 0.98 28 / 30
1B3A_A 1.45 3 0.82 14 / 15 2 Q T R A 1.56 5 1.85 22 / 31
1B 5 K A 1.22 3 1.01 13 / 13 2 V B F B A 1.51 6 0.96 29 / 31
1 B M 8 A 1.81 3 111 16 / 18 2V()A_AB 1.38 6 1.00 29 / .32
l B T K B 1.4.3 3 1.41 2 2 / 2 4 2 Z S G A 1.47 6 0.82 2 8 / 3 0
1 B U P C 1.54 3 1.45 16 / 1 9 3 B L 9 J) 2.33 5 1.84 21 / 29
lliOM 1 1.61 3 1.08 15 / 1 8 7-stranded

4-stranded 1CHDSH1 1.47 7 1.42 34 / 39
I A I 2 A 1.37 4 0.97 2 4 / 2 5 1D 5T J) 1.78 6 1.48 47 / 56
1A 12_C 1.28 4 1.07 18 / 20 ip:l u _b 1.57 6 1 84 27 / 36
1A 12_J 1.33 4 0.93 18 / 20 1 F X 2 A 1.87 7 0.95 4 0 / 4 5
1 A4 I C 1.20 4 0.76 18 / 18 if y p :_a 1.36 7 1.00 28 / 3 1
1 A8I)_K 1.52 4 1.03 2 5 / 2 7 I G 8 K B 1.43 7 1.06 28 / 29
1 AC )P 1 1.56 4 1.08 18/21 2 A 6 Z A 1.49 7 0.94 4 2 / 4 7
1 AQ ZI ) 1.59 3 1.29 17/ 23 2 A P J A 1.56 6 1.58 2 2 / 3 7
1B IJP J) 1.57 4 0.93 28 / 32 2 D K J C 1.58 7 1.29 2 9 / 3 2
IC11) C l 1.25 4 0.74 2 7 / 2 8 3 B A 1 B 1.41 7 0.92 2 5 / 2 6
1CCXA 1.50 4 0.98 2 5 / 2 7 8-stranded
1 C C W B 1.4.3 4 1.36 17 / 22 1DTD_A 1.68 8 1.15 4 0 / 4 7
I1)I)9_A 1.40 3 1.74 15/21 1II2WA.1 2.36 8 1.12 4 4 / 5 1
1 D S 1 C 1.29 3 0.95 13 / 17 l HI TOAA 1.73 7 0.92 3 4 / 3 7
1 Q 3 8 J 1.43 4 0.94 2 3 / 2 7 1J L 0 A 1.56 8 0.85 4 8 / 5 2
IS 0 4 J 1.56 4 1.37 14 / 16 1JOV I) 1.64 7 1.32 52 / 60

2 P 8 Y1 1.37 4 0.98 19 / 20 L RJ H A 1.73 8 1.04 4 0 / 4 4
2VZ1_AH 1.46 4 0.78 17 / 18 1 ,IW9_A 1.63 8 1 76 3 3 / 4 5
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5-stranded 1 K M V B 1 96 7 1.65 34 / 49
1A K Y A 1.44 5 1.22 2 2 / 2 5 1 L A M B 1.45 8 1.04 50 / 56
1A O P J 1.54 5 1.0.3 26 / 29 1 M 1 5 A 1.70 7 1.76 3 7 / 4 6
1 A( )P_2 1.75 5 1.78 2 1 / 3 8 1M4L_A 1.80 8 0.99 4 1 / 4 8

Table 10. (Continued)
PDB ID" Fit #Det.c 2-w #Det./#Obs. PDB ID* Fit #Det c 2-w #Det./#Obs.
1AOP 3 1.63 5 1.17 26 / 31 1NKG C 1.64 7 111 4 5 / 5 4
1B5K_I) 1.40 5 1.88 18 / 2 9 17,1,11 1.82 8 1.16 4 1 / 4 7
i m  j p  a 1.51 5 1.12 26 /  27 3 R L 6 J 1.73 7 1.89 35 / 51
1C I D A 1.57 4 1.19 29 /  37 8 D F R S 1 A 1.88 8 1.46 42 / 56
IC7K. A 1 66 5 1.59 24 / 30 9-strandcd
1CXQ_A 1.53 5 0.95 2 4 / 2 7 1 Q N A C 1.62 7 1.90 3 9 / 5 6
U X i W C 1.46 4 1.00 2 7 / 3 2 U I D 9 B 2.02 9 1.07 49 / 58
lD M IfJJ 1.46 5 0.77 2 6 / 2 7 H J W C B A 1 68 8 1 35 4 1 / 5 3
1DTD_B 1.53 4 1.10 23 / 28 2 A B S A 1.47 10 1.29 3 9 / 4 9
1K2K.A 2.59 4 2.47 13 / 28 2 H A B A 2.04 8 1.18 59 / 75

1M( )I,_S1 2.44 5 1.91 34 / 50 2 V V G A B 1.92 7 1.67 43 / 67
5-stranded 9-stranded

1Z I I 2 A 1.34 5 1.19 20 / 24 3 D B 7 A 2.21 9 1.90 37 / 51
2JK. XAD 1.23 4 0.74 19/2.3 3HN0_A 1.46 8 1.66 3 2 / 3 9
2V/.1_AD 1.23 4 0.66 19 / 23 3 F C X A 2 19 9 1.71 48 / 66

10-stranded 3I19M_C 2.10 7 2.38 30 / 53
1 I GOB 1.81 9 2.13 .33/55 3 H I D A 1.94 6 1.66 2 5 / 4 0
i p i :9_a 1.34 9 1.68 40 / 52 3H()6_A 2.03 9 1.89 38 / 53

1 V7W_A 1.77 9 1.26 5 9 / 7 0 Average 1.59 1.24 2834 / 3478 = 81.48%
2 B 0 T A 2.17 8 2.47 2 2 / 4 4 S td d e v 0.29 0.42

a. The PI)H and sheet ID;
b. The RMSH (root-mean-square-error, in A) for the polynomial surface fitting 
c The number o f  detected p-traces;
d. The 2-way distance (in A) for the best of the top ten sets o f detected P-traces,
c. The number o f detected /  the total number of amino acids in the p-sheel.

D. p-strand Detection from Cryo-EM Maps

The performance o f StrandTwister on the error-free simulated P-sheet density shows the 

potential o f our P-strands detection using the principle o f P-sheet twist. This section examines the 

performance o f P-strand detection using 39 p-sheets, a large dataset from experimentally derived 

cryo-EM maps. Seven cryo-EM maps from EMDB with resolutions between 4.4 and 7.4A were
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collected. All seven density maps were aligned with their corresponding PDB structures at 

download except EMD 1237 which was aligned manually with the help o f “Fit in Map” function 

o f UCSF Chimera [117], The density region belonging to a chain of a protein was isolated from 

the molecular complex, such as a virus, using the PDB structure as an envelope. Once the density 

o f the entire chain o f a protein was obtained, SSEtracer [116] was used to identify P-sheets from 

it. Such identified P-sheet density voxels (shown as a blue surface view in Figure 16B) were then 

forwarded to StrandTwister. The results in this section represent the performance o f both 

SSEtracer and StrandTwister, since the error at either step will affect the results in Table 11.

Figure 21D shows the density detected by SSEtracer from a cryo-EM map at 7.4A resolution. At 

this resolution, the separation of P-strands is not visible, and some regions may have 

weak/missing density (arrows) due to the error in data or in the identification o f P-sheet. 

However, the mathematical surface fitting appears to compensate the missing density to some 

extent, since the surface is based on the overall density distribution o f the detected P-sheet. 

StrandTwister was able to detect all five strands in 2165 4B 4T 1C  (Figure 2 ID), and they align 

fairly well with the observed P-traces. In this case, the 2-way distance for the five strands is only 

1.60 A, and it detected 24 of 31 amino acids on the P-sheet (Table 11).

The number o f strands was correctly detected in 28 o f the 39 cases (shown in Table 11 for the 

best o f the top ten detections), in spite o f the challenge from missing/extra density in the 

experimentally derived data. This is notable, since StrandTwister does not require the knowledge 

o f the number of strands in P-sheet during detection. Two different sampling sets of p-traces may



differ in the number o f strands that are determined by the width o f sheet perpendicular to the 

strand orientation. However, right-handed twist correctly distinguished between a 3-stranded fi

sh eet (with longer strands) verses a 6-stranded (3-sheet (with shorter strands) in the case of 

1780 3IZ5 Z (Figure 21E), since sampling along the orientation perpendicular to the true 

orientation may result in six shorter p-strands with left-handed twist. This suggests that the 

number o f P-strands and the position o f the P-traces are intrinsic characters o f P-sheet density 

and they are reflected in the P-twist.
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Table 11. Accuracy of P-strand detection for the experimentally derived cryo-EM maps.
EMDB PDB Res. Fit #Det./#Obs. 2-w #DetV#Obs.

1237 2GSY A 2.19 4 / 4 2.34 13 / 22
1237_2GSY_B 2.30 5 / 5 1.90 26 / 28
1237_2CiSY_C 7.2 2.37 5 / 6 1.90 3 6 / 41
1237 2GSY H 1.80 5 / 4 3.03 23 / 47
1237 2(iSY Ci 2.16 5 / 4 1.85 36 / 48
1740 3C92 A 1.29 5 / 5 1.71 2 4 / 2 7
1740_3C'92_B 6.8 1.62 5 / 5 1.62 29 / 31
1740 3 C 9 2 J ) 1.46 4 / 5 1.04 2 4 / 2 8
1740 3 C 9 2 Q 1.47 5 / 5 1.59 26 / 27

1780 31/5 AC 2.15 4 / 4 1.58 21 / 25
1780 31/5 AH 1.33 4 / 4 1.60 14 / 15
1780 3 I / 5 A I 1.60 3 / 3 1.56 18 / 22
1780 31/5 AS 1.44 4 / 3 1.72 12 / 19
1780 31/5 A T 1.35 4 / 4 1.53 19 / 20
1780_3I/5_AY 1.61 4 / 5 1.96 1 2 / 16

1780 31/5 F 1.45 5 / 5 1.41 27 / 30
1780_3I/5_H 1.28 3 /3 1.32 15/ 17
1780 31/5 I 2.14 3 /4 1.37 17 / 22
1780 3 I / 5 . I 5.5 1.35 3 / 3 1 46 12 / 14
1780_3I/5_K 1.31 4 / 4 1.63 16 / 19
1780_3l/5_l, 1.81 4 / 5 2.17 19/21
1780 31/5 R 1 75 4 / 4 1.73 23 / 32
1780_31/5_W 2.00 4 / 4 1.93 19 / 23
1 7 8 0 J I / 5 / 1.65 3 / 3 1.00 2 7 / 2 8

1780 31/6 AF 1 51 3 / 3 0.89 14/ 14
1 7 8 0 3 I / 6 D 1.64 3 / 3 1.58 12 / 13
1780_3I/6_F 2.01 4 / 4 1.95 1 5 / 2 0
1780 31/6 I 1.51 4 / 5 1.57 1 5 / 20

1829 2 W W I . C A 1.46 3 / 4 1.72 15/21
1829 2WWI, CB 5.6 1.59 4 / 4 1.91 2 2 / 2 4
1829 2WWQ SA 2.18 3 / 3 1.80 2 1 / 2 6
1829_2WWQ_T A 1.11 3 / 3 1.03 13 / 13
2165 4B4T 1A 1.39 4 / 5 2.18 19/ 31
2 165_4B4T_1C 7.4 1.47 5 / 5 1.60 24 / 31
2165 4B4T AA 1.28 5 / 5 1.38 23 / 26

5036 3FIH P 6.7 1.02 3 /3 1.94 13 / 17
5276 3J0C K 1.16 4 / 4 1 47 20 / 22
5276_3 J0C_() 4.4 1.52 3 / 3 1.60 12/ 15
5276 3J0C T 1.57 3 / 3 1.13 17/ 17

Average 1.62 1.66 763/932
Standard deviation 0 3 5 0.40

a. KMDB PDB sheet ID;
h. Resolution of the density map;
c. The RMSK (in A) for the polynomial surface fitting.
d. The number o f ((-traces in the best o f the top ten detected sets / the number
e. The 2-way distance (in A) between the observed (3-traces and the detected
f. The number of detected /  the total number o f amino acids in the ((-sheet.
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The results in Table 11 suggest that it is possible to detect traces o f P-strands from many P-sheets 

identified from cryo-EM maps at medium resolutions. The overall 2-way distance for the 39 test 

cases is 1.66A  for the detected P-traces (Table 11), suggesting fairly good specificity. 

StrandTwister was able to detect 81.87% of the P-strand amino acids overall. Table 11 shows 

that once a P-sheet region is identified roughly correct, traces o f P-strands can be detected fairly 

well. All o f the sheets in Table 11 have three or more P-strands, since the identification o f 2- 

stranded sheet is not reliable. In the case o f E M D 1237 2GSY (7.2A resolution), there is one 

unique chain (chain A) that contains six P-sheets. SSEtracer identified five P-sheets (Table 11), 

but missed a 2-stranded P-sheet (sheet D) that contains four amino acids. Two extra short strands 

were wrongly detected by StrandTwister due to inaccurate boundary of identified P-sheets. Note 

that the annotation o f sheet F and sheet G in PDB file corresponds to similar region, and hence 

they are counted as one sheet. EM D 1740 3C92 (6 .8A  resolution) has two unique chains (chain 

A and H) that contain five sheets. Four o f the five sheets were detected well, although a 2- 

stranded sheet (sheet P, with seven amino acids) was missed. Three case studies (Figure 22, 23, 

24, 25, 26 and 27) will analyze the details for each P-sheet in the entire chain o f gpIO, GroEL 

and E2 protein.

Detection o f  Four f-stran ds from gpIO Protein o f  FpsilonlS

The backbone Ca trace o f proteins in bacteriophage epsilon 15 was derived from the cryo-EM 

density map (EMD 5678) at 4.5A resolution [80], Its staple protein gpIO appears to contain two 

P-sheets (dashed outlines in Figure 23D). The larger P-sheet was predicted to contain four
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strands [80], In order to see if StrandTwister is able to detect the P-strands from density maps at 

the medium resolution, StrandTwister was applied on gpIO density which was extracted from 

epsilon 15 map (EMD 1557) [122] at 7.3A resolution. To extract the density of gpIO, the chains 

o f PDB structure 3J40 were first manually fitted into the 7.3 A map and refined with “Fit in Map” 

option (Figure 22) in Chimera. The density region o f gpIO (gray in Figure 23A) was manually 

extracted using the guidance o f the fitted gpIO structure (see Figure 22). The envelope o f  gpIO 

protein can be distinguished at 7.3A resolution (box in Figure 22B).

Figure 22, Staple protein gpIO density that was isolated from the cryo-EM density map of 
epsilon-15 bacteriophage 7.3A resolution (EMD 1557). (A) The density map o f  epsilon-15 
(EMD 1557) is shown in blue, green and yellow from outer surface to inner surface. (B) Zoom- 
in view o f the highlighted region in (A) shows that gpIO is located at the outer surface o f the 
virus. The isolation o f gpIO density region was guided by the PDB structure (3J40, purple chain), 
which was fitted into the density map using UCSF Chimera [117], (C) The isolated gpIO density 
that aligned with the PDB structure (Ca trace in purple).

At 4.5A resolution, the two sheets are shown as separate sheets (Figure 23D), and the separation 

o f P-strands is visible. However, this is not true for the 7.3A resolution map (Figure 23 A). The 

lower sheet region has weak/missing density and SSEtracer detected only the upper P-sheet 

(Figure 23 A and B). The detected p-sheet voxels appear to show the twist nature o f that p-sheet
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(Figure 23B). StrandTwister successfully detected four P-traces from the detected P-sheet o f 

gpIO (red lines in Figure 23C). Our analysis o f P-twist in the 7.3A resolution map further 

supports the finding o f 4-stranded sheet in gpIO. Note that only the Ca trace o f the backbone is 

available in the PDB file and therefore the P-sheet is not defined. However, the Ca chain appears 

to resemble a 4-stranded P-sheet [80], This case study demonstrated that it is possible to detect P- 

traces from a medium resolution map where the separation of the p-strands is not available. The 

fact that only one o f the two P-sheets was detected by SSEtracer may suggest that the other one 

o f them is smaller.

The best of top ten detected sets of P-traces is evaluated using the observed P-traces in 

corresponding PDB structures (column 1). For example, the best set detected four strands in 

sheet D of 10EL (row 16). There are four strands annotated in sheet D o f 10EL. The 2-way 

distance for the detected four strands is 2 .12A.

“NA” refers to one of the two situations: (1) the calculation o f 2-way distance is not applicable 

due to the missing annotation o f P-sheets (beginning and ending position o f strands) in the PDB 

file. (2) The sheet is not identified from density.



75

Top view of the larger p-sheet

Figure 23. p-strand detection from the 7.3A resolution map o f epsilonlS. (A) The density region 
(gray surface) o f gpIO protein was extracted from bacteriophage epsilon 15 density map 
EMD 1557 at 7.3A resolution. The Ca chain o f gpIO (chain I o f PD B 3J40) is superimposed 
with the density; (B) The P-sheet density region detected using SSEtracer; (C) The P-strands 
detected (red lines) using StrandTwister are superimposed on the density o f P-sheet (left: side 
view) and the C a trace o f P-strands (right: top view). (D) The superposition o f gpIO density at 
4.5A resolution (EMD 5678) and PDB structure (chain I o f 3J40) is shown as a side view (left) 
and also as a top view (right) at the larger sheet region. See also Figure 22 and Table 12.

The annotation o f P-sheets in PDB structures can be sometimes complicated due to the flexibility 

in forming P-structures. If a P-strand is annotated as a single “U” shape without having a turn 

(AA91-103 in the original annotation o f 3J0C sheet N). The annotation was forced to be 

considered as two separate parallel strands (AA91-97, AA98-103) in order to calculate the 2-way 

distance for two corresponding detected p-traces. If the strands are annotated twice in two P-
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sheets, the strands was considered only once in one P-sheet (AA33-37 and AA44-55 are 

originally annotated in both 3J0C sheet M and sheet N in the PDB file, now they are counted 

only in 3J0C sheet N). In this way the strand number in column 3 of Table 12 will not be double 

counted.

Detection o f  f i s t  rands from GroEL Density M ap HMD 5001

The quality o f a density map may vary from region to region, thus it is possible that not all P- 

strands are well detected in a map at 4-5A resolution. The cryo-EM density map o f GroEL 

(EMD 5001) was obtained at 4.2A resolution, from which the Ca trace (PDB 3CAU) was 

derived using ah initio modeling [79], There are three other GroEL structures (ISS8, 10EL and 

IXCK) that have been solved by X-ray crystallography [123-125], Although these four 

structures are slightly different, they all appear to have seven p-sheets at approximately the same 

locations. The Ca trace o f 3CAU was aligned with the three crystal structures using 

“Matchmaker” in Chimera. The main difference among the four structures appears to be at the 

upper domain, which contains sheet C, D and E (Figure 24A and B).
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Figure 24. P-strand detection from the density map o f GroEL at 4.2A resolution. (A) The 
monomer density (gray) o f GroEL extracted from density map EMD 5001; (B) Five p-sheet 
density regions (colored density) identified using SSEtracer are superimposed on chain A of 
PD B 3C A U  (purple C a trace) and chain A o f PDB 1SS8 (cyan ribbon). The side view (left) and 
the top view (right) o f the P-traces detected (red lines) using StrandTwister are superimposed 
with PDB structures o f 3CAU (purple C a trace) and 1SS8 (cyan ribbon) for sheet A in (C) and 
sheet B in (D). See also Figure 25 and Table 12.

SSEtracer detected five o f the seven sheets from the density monomer o f  EMD 5001 (Figure 

24B). Two 2-stranded P-sheets (F and G) were missed due to the fact that a 2-stranded sheet can 

be confused with a helix (Figure 24A, pointed by orange arrows). Since the Ca trace o f 3CAU



78

does not have an annotation o f secondary structures, the annotation was used in the other three 

X-ray structures to estimate the number o f strands in the P-sheets. However, the beginning and 

ending position o f P-strands vary among the three structures. StrandTwister detected fourteen of 

nineteen traces o f P-strands from the density monomer o f GroEL (Table 12 and Figure 24 and 

S4). The detected P-traces for P-sheet A and B appear to agree well with those in the four 

structures (Figure 24C and D). In fact, the 2-way distance is only 1.28A and 1.13A respectively 

for ISS8 A and 1SS8 B (Table 12). In terms o f sheet C, D, and E, the annotation o f P-sheets is 

different among the X-ray structures (see description in Figure 25).

The Ca model (3CAU) was derived directly from the cryo-EM density map o f GroEL at 4.2A 

[79], Three other GroEL structures (1SS8, 10EL, and 1XCK) were solved using X-ray 

crystallography [123-125] 3CAU (second row) appears to be different from the other three X- 

ray structures row) in the region o f sheet C, D, and E. The annotation o f P-sheets and P~

strands are also slightly different (arrows in B and C) among the three X-ray structures. The 

detected P-traces appear to align better with 1SS8, 10EL and 1XCK in sheet C and sheet D than 

with 3CAU. The orientation and the position o f the detected p-traces appear to align well with 

the X-ray structures, particularly in sheet C and D. The length o f a detected P-trace may not be 

accurate when the outline o f the P-sheet is not accurately identified (arrows in Figure 25). 

StrandTwister detected three o f four P-traces in sheet E (Figure 25C) because the P-sheet was 

identified smaller using SSEtracer with respect to the X-ray structures.



79

A

Detected E

3CAU E3CAU_03«u.c '4 rJG 2 ~ f* L

\  *
1SS6 C

F *  i x c k c

Figure 25. P-strand detection on P-sheet C, D and E o f GroEL cryo-EM density map at 4.2A 
resolution (EMD_5001). The side view (left) and the top view (right) o f the detected P-traces 
(red lines) using StrandTwister are superimposed with the P-sheet density identified using 
SSEtracer and the observed P-strands o f sheet C in (A), sheet D in (B) and sheet E in (C) for 
PDB structure 3CAU (2nd row), 1SS8 (3rd row), 10EL (4th row) and 1XCK (5th row). The arrows 
in (A) indicate the extra density identified as p-sheet. Arrows in (B) and (C) indicate the 
annotation difference among the three PDB structures.

Figure 25 shows the set o f P-traces best align with strands in 10EL. Note that the detected P- 

traces in Figure 25 agrees well with that o f the X-ray structures (1SS8, 10EL, 1XCK), although 

the beginning and ending positions may differ. This suggests that P-twist captures the property o f 

orientation and position o f the strands but not precise enough about the start and end o f a P- 

strand. The accurate outline o f the P-sheet region is currently required. When the start and end of 

a strand is not accurately detected, 2-way distance will be affected. For example, the 2-way 

distance for 1SS8 C is 2.46A (Table 12), which is larger than that o f 1.13A for 1SS8 B. This is



mostly due to the fact that the detected traces are much longer than the observed ones (arrows in 

Figure 25A). Note that the detected P-traces do not align with the Ca trace o f 3CAU at sheet D 

(row 2 in Figure 25B). In fact, none o f the top ten detected sets align well with 3CAU at sheet D.

Table 12. Accuracy of the detected p-traces in gpIO, GroEL and E2 with respect to 
differently annotated P-sheets.

No. EM DB PDB Sheet ID Figure ID #Det./#Obs. Strd 2-w Dist. (A)
1
2

1557 3J40_Gp 10_upper 
1557 3J40 GpIO lower

Figure 23 4 / 4  NA 
0 / 4  NA

3 5001 3CAU A 2 /N A  NA
4 5001 3CAIJ B 2 / NA NA
5 5001 1SS8 A 2 / 2  1.28
6 5001 1SS8 B Figure 24 2 / 2  1.13
7 5001 3CAU F 0 / NA NA
8 5001 3CAU G 0 / NA NA
9 5001 3CAU C 3 / NA NA
10 5001 3CAIJ D 4 /N A  NA
11 5001 3CAU K 3 / NA NA
12 5001 1SS8 C 3 / 3  2.46
13 5001 1SS8 D * 4 / 4 *  2.17
14 5001 1 S S 8 K * 3 / 4 *  2.73
15 5001 lOKL C

Figure 25
3 / 3  2.51

16 5001 lOKL D 4 / 4  2.12
17 5001 lOKL F 3 / 4  1.99
18 5001 1XCK C 3 / 3 2.76
19 5001 1XCK D * 4 / 4 *  2.16
20 5001 1XCK F * 3 / 4 *  2.65
21 5276 3J0C N * 3 / 4 *  2.21
22 5276 3.IOC K 4 / 4  1.47
23 5276 3J0C () 3 / 3  1.60
24 5276 3J0C T 3 / 3  1.13
25 5276 3J0C 1, Figure 27 0 / 2  NA
26 5276 3J0C M * 0 / 2 *  NA
27 5276 3J0C P 0 / 2  NA
28 5276 3J0C Q 0 / 3  NA
29 5276 3J0C S 0 / 3 NA
30 5276 3J0C R Figure 26 4 / 4  2.14
*Notc:
1SS8 D and 1XCK D are annotated as 4-stranded sheet: A A 192-195, AA330-335,
AA320-325, AA213-216;
1SS8 F and 1XCK F are annotated as 4-stranded sheet: AA318- 319, A A 219-227,
AA247-254, AA273-277;
3.I0C N is annotated as 4-stranded sheet: AA33-37, AA44-55, AA91-97, AA98-103.
3J0C M is annotated as 2-stranded sheet: AA61-70 and AA73-78.
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Detection o f  (I-strands from K2 o f  Venezuelan Equine Encephalitis Virus Density 
M ap HMD 5276

The structure o f Venezuelan equine encephalitis virus (VEEV) was resolved from the 4.4A 

resolution cryo-EM density map. E2 contains a transmembrane helix and thirty (3-strands that are 

on ten P-sheets [126] (see Table 12 for details o f annotation). The density monomer of E2 was 

isolated which aligned with chain B o f 3J0C. SSEtracer detected five larger P-sheets (N, K, O, T 

and R) (Figure 27). Three 2-stranded P-sheets and two 3-stranded P-sheets were missed Sheet Q 

(3-stranded) is mostly a 2-stranded twist and appears as a helix in the density. Sheet S (3- 

stranded) is located at the outer surface o f E2 (Figure 27A, B and 26A) where the density is 

weak and has no obvious sheet property. Gaussian filter (Figure 26) was applied to the outer

most domain to enhance the weak density and was able to detect sheet R (Figure 27G). 

StrandTwister detected 17 o f 30 P-traces in E2, suggesting that the majority of the P-strands can 

be detected for p-sheets with three or more P-strands. The detected P-traces align well with the 

corresponding observed p-strands on sheet K, O and T, with 1.47A, 1.60A and 1.13A 2-way 

distance respectively (Table 12).
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Figure 26. Density quality variation in E2 extracted from ciyo-EM density map o f Venezuelan 
Equine Encephalitis Virus at 4.4A resolution (EMD 5276). (A) The density of E2 in EMD 5276 
(top) shows that its outer-most domain (box) containing sheet R and S has weaker density than 
other regions o f  E2. The density region at sheet R and S is superimposed with the corresponding 
structures. (B) The density o f E2 after Gaussian filtering and is represented similarly as in (A). 
Note that there is an extra density area for which no corresponding PDB structure can be found 
even from the neighboring chain (arrow).

The variation o f density quality in E2 was observed in [126] and it is also shown in Figure 26A. 

In order to identify sheet S and R, Gaussian filter (at Width=1.07A) was applied to enhance 

connectivity in the density. SSEtracer was able to detect sheet R after Gaussian filter was applied. 

Even after smoothing, sheet S does not show the characters o f a typical P-sheet (Figure 26B 

middle).
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Figure 27. p-strand detection from the density map o f E2 in Encephalitis Virus (EMD 5276). 
(A) E2 monomer density (gray) at 4.4A resolution; (B) P-sheet density regions (colored density) 
identified using SSEtracer are superimposed on chain B o f PDB 3J0C (cyan ribbon); The side 
view (left) and the top view (right) o f detected P-traces (red lines) using StrandTwister are 
superimposed with the observed P-strands o f sheet N in (C), K in (D), O in (E), T in (F) and R in 
(G). The density shown in (G) was obtained after applying Gaussian filter to enhance density 
connectivity at the outer domain. See also Figure 26 and Table 12.
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E. Co Models Derived from p-traces

A rapid method has been developed to construct the backbone from the density o f a P-sheet for 

situations when the resolution of the density map is high enough to resolve the density pattern of 

a P-strand (i.e. -3.8A resolution) [127], At the medium resolutions however, multiple possible 

Ca models may be derived from a P-trace. StrandTwister produces a possible Ca model from a 

set o f P-traces. A test using 39 sets o f P-traces detected from cryo-EM density maps shows that 

the models have good overall accuracy o f 2.56A RMSD for 84% o f the Ca atoms in the true P- 

sheets. This error is reasonable since the input density maps have resolutions around 4.4-7.4A.

( '(instruction o f  the ( ’«  m odel from P-traces

A method has been investigated to construct the C a model by enforcing both P-traces and the 

general rules observed from true structures of P-sheets, so that the model is along the P-traces 

and appears as P-strands. To investigate the effectiveness o f this method, the accuracy o f the Ca 

models built for 39 sets of P-traces detected from cryo-EM maps was evaluated. Each set o f P- 

traces is the best detected P-traces with the accuracy reported in Table 11.
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Table 13. Accuracy of the Ca model built for the P-sheet density.
No! PDB ID #Det./#Obs.“ RMSD-Mb #Match/#Totalc #Match/#Bui!td

1 1237 2USY A 4/4 2.76 17/22 17/20
2 1237 2GSY B 5/5 2.43 28/28 28/39
3 1237 2GSY C 5/6 2.53 34/41 34/46
4 1237 2GSY !• 5/4 4.04 40/47 40/56
5 1237 2GSY G 5/4 3.35 38/48 38/40
6 1740 3C92 A 5/5 2.87 27/27 27/39
7 1740 3C92 B 5/5 2.72 30/31 30/40
8 1740 3C92 () 4/5 1.81 24/28 24/31
9 1740 3C92 Q 5/5 2.75 27/27 27/38
10 1780 31/5 AC 4/4 1.86 20/25 20/23
11 1780 31/5 A ll 4/4 2.35 14/15 14/19
12 1780 31/5 AI 3/3 2.19 18/22 18/18
13 1780 31/5 AS 3/3 2.82 15/19 15/16
14 1780 31/5 AT 4/4 2.74 18/20 18/24
15 1780 31/5 AY 4/5 1.98 12/16 12/19
16 1780 31/5 F 5/5 2.16 26/30 26/34
17 1780 31/5 II 3/3 1.94 16/17 16/18
18 1780 31/5 I 3/4 2.04 18/22 18/21
19 1780 31/5 J 3/3 2.59 12/14 12/13
20 1780 31/5 K 3/4 2.21 13/19 13/15
21 1780 31/5 L 4/5 2.40 19/21 19/31
22 1780 31/5 R 4/4 2.57 22/32 22/22
23 1780 31/5 W 3/4 2.79 1.3/23 13/22
24 1780 31/5 Z 3/3 2.13 22/28 22/22
25 1780 31/6  AF 3/3 2.04 14/14 14/17
26 1780 31/6 D 3/3 2.21 11/13 11/16
27 1780 31/6  F 4/4 2.70 17/20 17/23
28 1780 31/6 I 4/5 2.34 16/20 16/22
29 1829 2WWI. CA 4/4 2.77 16/21 16/20
30 1829 2WWI, CB 4/4 2.96 23/24 23/29
31 1829 2WWQ SA 4/3 3.23 20/26 20/28
32 1829 2WWQ TA 3/3 2.38 12/13 12/14
33 2165 4 B 4 T JA 4/5 3.45 21/31 21/22
34 2165 4B4T 1C 5/5 2.85 28/31 28/30
35 2165 4B4T AA 5/5 2.56 21/26 21/21
36 5036 3FIH P 2/3 2.73 10/17 10/10
37 5276 3.IOC K 4/4 2.29 21/22 21/25
38 5276 3J0C O 3/3 3.17 13/15 13/15
39 5276 3J0C T 3/3 2.27 17/17 17/24

__________ Average________________________ 2.56 783/932 = 84.0% 783/982 = 79.7%
a. The number o f  detected p-traces / the number o f p-strands in the true structure; 
b The RM SI) distance (in A) of matched C a atoms between the model and the p-strands;
c. The number o f  C a atoms in the model that are matched to their corresponding C a atoms in the 

P-sheet / the total number of C a atoms in the true p-sheet structure;
d. The number o f C a atoms in the model that are matched to their corresponding Ca atoms in the 

p-shcet / the total number of C a atoms built in the model.__________________________________
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The accuracy o f the Ca model was evaluated mostly from two aspects: the number o f the 

matched Ca atoms out o f the total number o f atoms in the observed P-sheet (column 5 o f Table 

13), and the RMSD for the matched C a atoms. For example, there are 28 Ca atoms in the P-sheet 

o f 1 7 4 0 3 C 9 2 O  (row 8 o f Table 13). The Ca model has 1.81 A RMSD for 24 matched Ca 

atoms. It missed 4 atoms which are not included in the calculation o f the RMSD. The model 

contains 31 Ca atoms suggesting that one or more P-strands in the model are slightly longer than 

that in the true structure (Figure 28B). Overall, the models has fairly good accuracy of 2.56A 

RMSD for 84% of the P-sheet structure. The models have similar size as the true P-sheets overall, 

since the number o f matched atoms covers about 80% of the atoms built in the models.

P-traces detected from the density o f a P-sheet were used to derive the Ca model for a P-sheet. 

Ca atoms were generated starting from the middle o f the center P-trace, with later generations 

moving towards the two ends of the P-trace. The rise o f Ca atoms along a P-trace was used as 

3 A [128], an approximated rise in a P-strand. Ca atoms were built around each P-trace according 

to the following rules:

(1) In order to approximate the alignment between two sets of Ca atoms from two neighboring 

strands, the initial Ca atom on each strand should be approximately aligned with that o f a 

neighboring strand.

(2) The distance between two adjacent Ca atoms is between 3.75A and 3.8A.

(3) The angle formed by three consecutive Ca atoms is between 100° and 150° [129],
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(4) An ending Ca o f a P-trace is assigned if it is at least 3A away from the last built Ca atom. 

Note that this distance might be slightly shorter from the typical distance between two Ca atoms.

A translation o f  1.5A up/down from the initial C a was performed and three models were 

generated for each P-sheet. The one with the best RMSD-M is summarized in Table 13, although 

there is not much difference among the three models in terms o f RMSD.

Figure 28. Ca model derived from the detected P-traces. (A) The Ca atoms (pink, green and 
blue) derived from the P-traces (red lines) detected from the P-sheet density (gray) are 
superimposed on the true P-strands (golden) o f sheet 1780 3IZ 5H . The Ca atoms built for 
different strands are shown in different colors. For easy viewing, the C a atoms built for P-trace 1 
(blue) were connected with dashed lines. (B) The miss-detected strand (arrow) and the over
detected region (dashed lines) are indicated for sheet 1740 3C92 O. The Ca atoms derived from 
the P-sheet density are shown on the right panel using similar color labeling scheme as in (A).
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Examination o f  the Accuracy for the C ’a ModeI Built for the Density o f  a fi-sheet

RMSD of Ca atoms is a common parameter to estimate the accuracy o f a conformation. 

Typically, the two models have the same number of points; the two sets o f points also have one- 

to-one correspondence. Since the model constructed from the P-sheet density often has different 

number of Ca atoms from that o f the observed P-sheet, a subset o f Ca atoms was first searched 

so that they can be one-to-one corresponded to a subset o f Ca atoms on the true P-sheet. For 

example, if the model misses a P-strand in the detection (arrow in Figure 28B), the Ca atoms in 

the missed strand are not included in the set “matched Ca atoms”. Once the detected P-traces had 

a one to one correspondence with the P-strands in the true structure, the Ca atoms on each strand 

were examined for one-to-one correspondence. Given a model P-strand C,- and its corresponding 

true P-strand the smaller number o f Ca atoms was adopted as the matched number o f Ca 

atoms, Mi, for the particular strand. To determine the matched Ca atoms between Ct and /?,, the 

best subset containing atoms were searched based on the overall distance. RMSD was 

calculated for the matched C a atoms (Table 13).



CHAPTER V

BUILDING THE BETA-BARREL STRUCTURE FROM 3D CRYO-EM

DENSITY IMAGES

Electron cryo-microscopy (Cryo-EM) has become a major experimental technique to study the 

structures o f large protein complexes, such as ribosomes and viruses [26, 130], It is a structure 

determination technique complementary to the X-ray Crystallography and Nuclear Magnetic 

Resonance (NMR). At the medium resolutions such as 5-10A, detailed molecular features are not 

resolved. However, secondary structure features such as a-helices and P-sheets (Figure 29) can 

be computational identified. The a-helix appears as a stick (red in Figure 29A) and can be 

identified using image processing methods [70, 72, 86, 113], A p-sheet appears as a thin layer of 

density and can be detected computationally (blue in Figure 29B) [72, 76, 86, 131], Some P- 

sheets curve into p-barrels. P-barrel structures are commonly found in porins and other proteins 

that span cell membranes [132], A P-barrel is composed o f multiple P-strands (ribbon o f Figure 

29C and Figure 30) that twist and coil to form a closed structure in which the first strand is 

hydrogen bonded to the last.

Figure 29. Three-dimensional protein density image, the secondary structures (SSEs), and a P- 
barrel. (A) Protein denisty image simulated using EMAN [102] with protein 3GP6 from the 
Protein Data Bank; (B) the computationally detected helix (red line) and P-barrel region
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Figure 29. (Continued)
(blue voxels) using SSEtracer [131]; (C) the atomic structure of the protein (shown in ribbon) 
overlaped with the detected SSEs.

This chapter is a summary o f the StrandRoller methodology published in paper [133],

1. Motivation

Although p-sheets can be detected from cryo-EM density images at 5-10A, it is almost 

impossible to detect the p-strands, the components o f a P-sheet. The spacing between two 

neighboring p-strands is between 4.5 and 5A, and therefore they are not visible when the 

resolution is at 5-10 A [77, 78], Image processing techniques can be used to model the P-strands 

when the separation o f P-strands is visible, if the resolution o f the image is higher than 5 A  [ 127], 

However, such method failed to detect P-strands at the medium-lower resolutions when there is 

no separation at all. The detection of P-strands from medium-lower resolution images has been a 

hard problem since it was first proposed in 2004 [110], There has been no solution to this 

problem. In this chapter, an alternative approach was proposed to incorporate a modeling method 

for addressing this problem. Although the exact P-strands are impossible to detect directly from 

such images, StrandRoller shows that it is possible to generate a small sets o f possible traces for 

the P-strands. A novel method StrandRoller was proposed, to generate the traces o f P-strands 

based on the intrinsic nature o f P-barrel.
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Figure 30. p-strands o f a P-barrel image. A set o f P-traces is shown in black lines at the front and 
gray lines at the back in (A) and (B). Two sets of possible P-traces (represented by two black 
lines and two red lines) may have different orientations shown in (A) or locations shown in (B). 
The atomic structure o f the two P-strands is superimposed on the two representative P-traces in 
(A) and (B).

A helix detected from the medium resolution data is often represented as a line (red line in Fig 

IB and C), referred as an a-trace that corresponds to the central axis o f a helix. The P-trace 

(black line in Figure 30) is defined as the central line along a P-strand. In particular, the observed 

p-trace is the line interpolating all geometrical centers o f three consecutive C a atoms on a p- 

strand plus the two C a atoms at the end o f the p-strand. An observed P-trace represents the line 

along the atomic structure o f P-strand. Given the image o f P-barrel image voxels, the problem of 

P-strands detection is to find the orientation (Figure 30A) and location (Figure 30B) o f the P- 

traces from the three-dimensional density image.

2. Methodology

A. P-barrel Surface Modeling from Cryo-EM Image

P-barrels have characteristic shapes and have been modeled mathematically in previous studies. 

The atomic structure o f a P-barrel has been modeled as hyperboloid surfaces [92, 134, 135] and 

catenoid surfaces [136], All these methods concentrated on the fitting o f a particular
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mathematical model to the p-barrel structures by using linear or non-linear fitting procedure. 

Although these models can approximate the major area o f a P-barrel, the cryo-EM images o f P- 

barrels often deviate from the rigid mathematical models in certain area. An adaptive method 

was presented to generate a surface that can fit in the three-dimensional image o f a P-barrel. The 

idea is to use a rigid model for area that fit well and then optimize the model on where it does not 

fit.

For the region of density that related to a P-barrel, least-square procedure was first performed to 

find the central axis of the barrel by fitting an elliptical cylinder to it (Figure 31 A).

The purpose o f fitting a cylinder here is to find the Z axis o f the P-barrel. Then the surface model 

o f the P-barrel was built from bottom to top. The density voxels on each cross-section o f Z axis 

(Figure 3 IB, gray) look like a round belt, and the fitted elliptical cylinder on each cross-section 

is an ideal ellipse. The voxels that located roughly around the ellipse were saved as the surface 

model (Figure 31B, yellow), if the ellipse is within the density voxels on each cross-section. For 

the region where the fitted elliptical cylinder is outside the density (arrow in Figure 3 IB), the 

closest voxels to the ellipse were searched and saved into the surface model. The surface model 

was built one layer by one layer until reach the top o f the P-barrel density.

Our modeled barrel surface clearly follows to the morphed regions (arrows in Figure 31D) of the 

density image. The more accurate barrel surface makes the P-strand modeling more accurate.
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B. Strand Traveling on the Modeled Barrel Surface

It was first noticed by MacLachlan in 1979 that the specification o f the number o f strands and 

their relative stagger completely determines the overall structure o f a P-barrel [137], The main 

structural characteristics of ideal P-barrel have been discussed based on a cylindrical barrel [137- 

139], In short, P-barrel forms a closed cylindrical barrel. In all known P-barrel structures, the P- 

strands are right-twisted, and in order to satisfy hydrogen bonding, each P-strand is right-tilted 

with respect to the membrane normal axis. Studies have shown that the tilt angles a  of the P- 

strands can vary within certain bounds, between 30° and 60° that relative to the barrel axis as 

reflected in the known structures of membrane proteins [139-141], Note the tilt angles a  o f P- 

strands can even vary by ±15° around the same P-barrel [141], However, the inter-strand 

distance d  remains the same due to the hydrogen bonding pattern o f P-strands. In general, the 

inter-strand distance d is roughly between 4.5 and 5A. These two important statistical parameters 

(tilt angle a  and inter-strand distanced) formed the fundamental basis of our p-barrel modeling 

from cryo-EM density images. Since the real p-barrel is not always an ideal cylinder with fixed 

radius, the P-strands was built based on the surface model and combined with the right-handed 

tilt feature o f P-barrel proteins.
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Figure 31. Modeling the surface and building the p-strands from 3D p-barrel image. (A) The 
barrel axis (red) was searched by fitting an elliptical cylinder (line) to the density image (gray), 
shown as the top view; (B) one cross-section of the barrel, arrow shows the shrinking area of the 
surface model according to the morphed density; (C) top view o f the modeled barrel surface 
(yellow); (D) side view of the barrel surface that modeled from the density (yellow), the barrel 
axis (red) and one cross-section o f the P-barrel; (E) recursive generation o f  P-traces based on the 
tilt angle a  and the side-way distance d  of P-strands; (F) the entire set of p-traces for a certain tilt 
angle, the zoomed in view o f the front portion is shown in (E).

Firstly, an initial P-trace was generated on the modeled surface by tilting the barrel axis to a 

certain initial angle a  and then projected the tilted axis onto the surface (blue in Figure 3 IE). The 

second P-trace was then generated by traveling a horizontal distance h  on the surface (Figure 

3 IE). Here the horizontal distance was estimated as:
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h =  d /  cos a ,d  =  4.8 A (9)

Iteratively, the entire set o f P-traces was built on the barrel surface one by one around the barrel 

surface (Figure 3 IF), until the last P-trace (Figure 3 IE). The tilt angles were sampled for every 

5° among a small range o f 35° to 55°, and three translations were also sampled for each tilt angle 

sampling. The horizontal distance h was equally divided into three segments and each segment 

equals a translation distance. Totally there are fifteen sample sets o f P-traces.

3. Result

Our method StrandRoller was tested on eleven density images o f P-barrel that simulated to 10A 

resolution and one experimental derived cryo-EM density image from EMDB 

(http://www.emdatabank.org/) at 6.7A resolution. To evaluate the accuracy o f our p-trace 

detection, the 2-way distance was calculated between the set of detected P-traces and the set of 

observed P-traces. The observed p-trace is the line interpolating all geometrical centers of three 

consecutive Ca atoms on a p-strand plus the two Ca atoms at the end o f the P-strand, as shown in 

Figure 30. The concept of 2-way distance was previously used to measure the error between two 

sets o f points [40], In order to calculate the 2-way distance, the 1-1 correspondence between the 

P-traces in the detected set and those in the observed set was first determined based on the 

overall smallest distance. This ensures that the same number o f detected P-traces (51(52, ... ,S T ) 

are compared to the observed traces (5 /1,5 '2<... ,S 'T) in which Sk is compared with S 'k for k -  

1, The number o f miss-detected (or wrongly detected) P-strands can be inferred from the 

difference between the total number o f the observed and that o f the detected P-strands. Dk , the 2-

http://www.emdatabank.org/
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way distance o f a P-strand k, was calculated for each pair o f lines Sk andS 'fc. The overall 2-way 

distance D reflects the quality of the detected P-traces that are corresponded to their observed 

ones.

Dk = (Z fU  Dfs'/ N +  IJL , Df's/ M ) / 2 (10)

o = (XLiOfc) / r  (11)

In formula (3), N and M are the numbers of points on the detected and the observed P-traces Sk 

and S’k respectively, i and j  are the indexes o f the point along the lines Sk and S'k respectively. 

Dfs' is the projected distance from point i o f line Sk to line S'k . The projection of point i was 

required to be within lineS 'fc. In case it is outside, the distance between point i and the end of 

line S'k was used to approximate the error.

The purpose of this test is to investigate if the P-strands o f P-barrel can be modeled by our 

method from the medium resolution density images simulated at 10A resolution, at which the 

separation o f P-strands is completely not visible. The dataset was mainly collected from the P- 

barrel transmembrane super family o f Orientations o f Proteins in Membranes (OPM) database 

[142] with less than 40% sequence similarity. The atomic structures o f p-barrels were used to

generate the P-barrel density images at 10A resolution using EM AN [102], a popular software to

produce simulated density, with a sampling of 1 A/pixel.

Figure 32 shows the best o f the fifteen modeled P-traces (red) for three cases with 12, 16 and 5 

P-strands respectively. In the case o f sheet A o f PDB structure 4FQE, the detected set of P-traces



97

appears to align with the P-strands very well (Figure 32A). In this case all the twelve strands 

were detected with a small 2-way distance o f 1.25 A  (Table I). It is observed that, the fifteen 

sampled sets o f P-traces always include a set with close orientation and location to the actual p* 

strands" orientation and location. The test shows the ability o f our StrandRoller for modeling 

various sizes o f P-barrels with range from 5 strands to 16 strands. Although the detection is 

slightly better for the smaller P-barrels, some large P-barrels were still well detected, such as the 

16-stranded p-barrel 2J1N AA18 (Figure 32B). The 2-way distance is only 1.67A in this case 

(Table I), and all o f the strands are accurately detected. The error appears to be at the edge o f the 

P-barrels (arrows in Figure 32B), where the P-strands tend to be more flexible.

Figure 32. P-strands modeling from the simulated density image at 10A  and one experimental 
derived image o f P-barrel. The best o f the fifteen sets of modeled P-traces (red) are superimposed 
with the back-bone o f the P-strands (blue) and the density images (gray) for P-barrels 4FQE A in
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Figure 32. (Continuerd)
(A) and 2J1N AA18 in (B). The top view (left) and the side view (right) are shown in each case. 
A experimental derived cryo-EM image o f P-barrel (EMD 5036, sheet H o f protein 3F1K) is 
shown in (C).

Figure 32C shows the density region o f a P-barrel (3FIK H) from the experimentally derived 

cryo-EM image at 6.7A resolution (EMD 5036). At this resolution, single P-strands are not 

visible. StrandRoller was able to detect all five strands, and they align fairly well with the 

observed P-traces. In this case, the 2-way distance for the five P-strands is only 1,6A , and it 

detected 27 o f 29 amino acids on the P-barrel.

Table 14. Accuracy of P-barrel modeling from simulated density images at 10A  resolution.
P D B  ID* #D et./#O b s. S trd b 2-w  D ist.c #D et./#O b s. A A d
1G7K A13 11/ 11 1.53 103 / 124

1QJP A 8 / 8 1 81 7 4 / 1 0 7
1R R X A 12 11/11 171 95 / 118

1 T X 2 B 7 / 8 1.30 30 / .34
2KRVA10 8 / 8 111 79 / 94
2JIN AA18 16 / 16 1.67 148/  181
2 QDZC1 7 15 / 16 1.50 165/  198
2 Q O M C 1 2/ 12 1.71 153/190

2W.FRAA 15 11 / 12 1 59 103 / 130
3FII)_A14 1 2 / 12 1.36 127/155
4FQi;_A 12 / 12 1.25 122/134

Average 1.50 1199/1465 = 81.84%
Standard deviation 0.22

a. PDB_Sheet ID;
b. The number o f (1-traces in the best o f the fifteen modeled sets / the 
e. The 2-way distance (in A) between the observed (1-traces and the
d. The number of detected / total number of amino acids in the (1-barrel.

The test of 11 simulated P-barrel density images shows that one o f the fifteen sets of P-traces 

aligns very well with the observed true set o f P-traces, with an overall 2-way distance o f 1.5 A for
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the detected P-traces (Table 14). To analyze the sensitivity of the detection, the number o f amino 

acids that were missed in the detection was measured. An amino acid was considered detected if 

its Ca atom is within 2.5A from the detected P-trace that corresponds to the strand where the Ca 

resides. For example, 1 T X 2 B has seven o f the eight P-strands detected (Table 14 row 5). It 

missed four amino acids. For the seven detected strands, the 2-way distance is 1.3 A. Among the 

11 test cases, StrandRoller appears to be able to detect 81.84% of the P-strands fairly accurately 

in one of the fifteen sampled sets of P-traces (Table 14)
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK

Two fully automatic methods, SSEtracer and SSElearner, have been developed for the detection 

o f helices and P-sheets from cryo-EM density maps at the medium resolution range o f 5-10A. 

The SSEtracer was tested using ten simulated maps and five experimental cryo-EM maps from 

EMDB. The SSElearner has been tested using ten simulated density maps as well as thirteen 

cryo-EM maps from the EMDB. Our results show that although the detection can be fairly 

accurate in the simulated density maps, the accuracy decreases significantly for the short helices 

and small P-sheets from the experimentally derived density maps. The overall detection accuracy 

o f SSElearner demonstrated that it is feasible to select a specific density map from the current 

EMDB as training data to detect the SSE o f a target cryo-EM map.

The supervised machine learning approach, SSElearner, requires the selection o f a training 

density map for each target testing density map. It requires certain knowledge about the nature of 

the cryo-EM density map. SSElearner have demonstrated that it is possible to find a training 

density map that shares similar density nature with that o f the target map in the current 

EMDataBank. In addition to the existing features, more sophisticated and advanced features 

could be further discovered and added to the feature vector o f SSElearner to improve the 

accuracy. Also, it is notable that LIBSVM training time is longer for some density maps. 

According to the website o f LIBSVM, slow convergence may happen for some difficult cases.5 

Currently, LIBSVM uses grid search for cross validation to select the best parameters. Future

* According to LBSVM FAQ as o f updated on 25 Feb 2015: htlr>:/Awv\v.csic.ntu.edu.lw/~-cilindihsvm/tau.hlml
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work may include tuning and adjusting those parameters to reduce the number o f iterations. 

Parallelizing the grid parameter search by using multi-cores may also accelerate the training 

process.

Compared to SSElearner, SSEtracer is faster and easier to use. Without selecting a training 

density map for a target map and taking the time to train a particular model for a target map, it 

can detect both helices and P-sheets in a simple voting way It has been noticed that the local 

thickness feature is more sensitive to the local density variance, especially in the experimental 

cryo-EM density maps which contain noises and errors. Even small density errors (missing 

density and extra density) would immediately affect the calculation and analysis o f the local 

thickness. Also, it has been observed that the local thickness o f helices and P-sheets could be 

very similar under a certain threshold. The local thickness of some helix regions could be even 

smaller than the thickness o f P-sheets in some experimental cryo-EM data. This would also 

affect the accuracy of the voting procedure in SSEtracer, since the local thickness feature would 

not help much for distinguishing between helices and P-sheets. Let fi c: R3be the structure. The 

local thickness at point p e  0  is the diameter o f the largest sphere that contains p and is 

completely inside the structure. The local thickness can also characterize a 3D binary image o f a 

complex structure such as bone, cell, or paper fiber [98], Such images are available from, micro

computed tomography [143],

A novel method, StrandTwister, has also been developed for the detection of P-strands from 

cryo-EM density maps. As expected, accurate detection o f P-strands depends on accurate 

identification o f a P-sheet. The boundary o f the identified P-sheet may affect P-strand detection.
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In most cases, inaccurate boundary can result in a longer/shorter detected P-strand, and such an 

error is reflected on the 2-way distance value. The missing density at the upper region o f the P- 

sheet in Figure 21D resulted in missing three amino acids in the detection. The extra density (box 

in Figure 33) affected the curvature/size o f the P-sheet and the detected set was slightly off with 

a 2-way distance of 2.34A (first row of Table 11), compared to the average 2-way distance o f 

1.66A  in Table 11. Our implementation ignored all the short strands less than 6A  in length. This 

may also be responsible for some o f the missing strands.

TV'S 
V \  

k

Figure 33. The accuracy o f P-sheet density identification affects the accuracy o f P-strands 
detection. The identification o f P-sheet density affects the detection o f P-strands in 
EM D B 1237 2G SY A . The color scheme is the same as that in Figure 21 in the main 
manuscript. (A) Top view; (B) The side view with roughly 90° rotation. The extra density 
detected in P-sheet is highlighted in a box.

StrandTwister was tested using 39 P-sheets and the results were analyzed in details for three case 

studies. The conclusion from the tests appears 2-fold. (1) Many P-traces can be detected from 

density maps at medium resolutions. Our proposed idea to use P-twist in detection appears to be 

effective once a P-sheet region is identified approximately. One o f the top ten sets o f P-traces 

contains a set with close estimation to the observed P-traces, particularly at the central region of 

a P-sheet. Fine adjustment is needed to improve the detection near the edge o f  a P-sheet where
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special properties have been observed [144], (2) The detection error mainly comes from two 

situations, the inaccurate boundary o f (3-sheets and the miss-identified P-sheets. Both are long

standing challenges for p-sheet identification. The limitation o f P-strand detection is mostly from 

the identification o f a P-sheet.

In spite o f the errors in identifying short helices and 2-stranded P-sheets, major/larger helices and 

sheets can be detected from the medium-resolution maps. Our results in this thesis add to the 

statement that major helices and those P-strands on larger sheets can be traced. Our previous 

results and those from other studies have shown that the topology o f major secondary structures 

may not rely on the detection o f all secondary structures. In many cases, the topology o f major 

helices is correctly predicted without the detection o f short helices [47, 66, 145], Deriving atomic 

structures from density maps at medium resolutions will inevitably involve sophisticated 

modeling o f uncertainties. The methodology in ab initio modeling from the medium resolution 

density maps has been improved recently to work with a large number o f helices [146], to work 

with complicated skeletons [115], and to build the atomic chains in modeling [66, 111], However, 

the work has been mostly tested using the true position o f P-strands for density maps at the 

medium resolutions. StrandTwister detects the traces of P-strands for major P-sheets. With the P- 

traces, ab initio modeling is expected to move a significant step ahead. The current topology 

determination method will be extended to both a-traces and P-traces. It has been shown that 

additional constraints can be added to represent popular P-strand pairing during topology 

determination [146], An effective method has been illustrated to build a Ca backbone using P- 

traces. However, density errors in the cryo-EM maps at medium resolutions determine that 

multiple sets o f possible P-strands have to be generated. The correct set has to be identified when
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it is modeled together with other parts of the chain. Another potential impact o f P-traces lies in 

the representation of secondary structures in density map. The relative location of a-traces has 

been used as signatures to search for atomic structures with a similar fold [73], Now it is possible 

to include P-traces as well.

Deriving atomic structures from the medium resolution cryo-EM density maps is a challenging 

problem. Although a number of methods exist to detect a-helices, the detection of P-strands from 

medium resolution cryo-EM maps has been an open problem since the first attempt in 2004 

[110], A novel method has been proposed to detect both the number of P-strands and the P-traces 

directly from medium resolution density data using the intrinsic twist o f a P-sheet. To our 

knowledge, this is the second attempt to address the problem of P-strand detection in ten years, 

and StrandTwister gave an optimistic answer to this problem using a completely different 

approach.

A novel approach, StrandRoller, has also been proposed by using image processing and 

geometric modeling to generate a small set o f possible positions o f P-strands from the medium 

resolution P-barrel density images. Our preliminary results show that it is possible to derive such 

small sets. Each possible set o f P-strands can be further evaluated for the best choice when more 

atomic details are added in modeling. This method does not require the resolution of the density 

to be high enough (<5A) to resolve the separation of P-strands in P-barrel images. It applies to 

the images with lower resolutions. In the test containing eleven P-barrel images, StrandRoller 

detected about 81.84% of the amino acids in the P-strands with an overall 1.5A 2-way distance 

between the detected P-traces and the observed ones, if the best o f the fifteen detections is
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considered. The results suggest that P-strands can be generated from the medium resolution cryo- 

EM images o f P-barrel proteins. To our knowledge, this is the first method to address the 

problem o f P-strands detection from medium resolution P-barrel images.

Although StrandRoller can build P-traces for an entire P-barrel based on the cryo-EM density, it 

is still challenging for detecting a complete chunk o f P-barrel density from the medium 

resolution cryo-EM density maps accurately. StrandRoller requires the density to be continuous 

all around the barrel without having disconnection or missing side o f the barrel, since the current 

method uses strand-walking for generating p-strands one by one around the barrel. Future work 

would include further development o f the StrandRoller to overcome this limitation. Piece-wise 

regional modeling would be an option for dealing with incompletely detected P-barrel density. 

Instead o f modeling the entire P-barrel as one whole surface, local piece-wise surface modeling 

and p-strand generation could be implemented to break down the large and complex P-barrel into 

multiple regions. Although local pieces could describe the regional curvatures and features more 

precisely, how to effectively, smoothly and seamlessly merge multiple single pieces into a global 

twisted surface and build the P-strands on that surface would be another challenging problem.

In addition to single-layer P-sheet and P-barrel, there are also many other P-structures like P- 

sandwich, propeller, trefoil, prism, solenoid, and etc.6 In order to solve all types o f P-structures 

from the medium resolution cryo-EM density maps, especially those large and complex P- 

structures. Different mathematical or geometric models should be utilized to capture the features 

o f different P-structures. Instead o f using one polynomial equation to model the entire P-sheet 

and P-barrel, piece-wise surface fitting and modeling could be one of the applicable approaches

6 According to the CATH classification o f proteins: http:/Avww.cathdb.inl'o/
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for describing various local details and curvatures on very large and complex P-structures. 

Although the center area of P-sheet and P-barrel can be modeled by StrandTwister and 

StrandRoller, more effort could be put on the modeling of challenging areas such as the edge 

area o f P-sheet and P-barrel. In addition to the 2-way distance calculation for the accuracy o f P- 

strand detection, some standard measurement such as Hausdorff Distance could also be 

implemented to calculate the distance between detected P-trace and true p-trace.

As an emerging technology, cryo-EM has shown to be powerful in solving the 3D structure o f 

large macromolecular assemblies and cellular complexes. Since some o f the biological molecules 

are sensitive to high energy electron radiations, imaging must be conducted using low dose 

conditions to keep the sampling species in an in vivo status. Non-particle images - i.e. ice, dust, 

contaminations, or noises - in a dataset can lead to severe distortions in the result, including 

erroneous electron densities. Therefore, the images obtained by cryo-EM technique are 

extremely noisy compared to other imaging techniques [147], The success o f 3D reconstruction 

crucially depends on the number and the quality of 2D particle images. Before putting the 3D 

volume data into EMDataBank, the modeling and computational errors from the 3D 

reconstruction step also introduce extra levels o f noise. Therefore, noise reduction and image 

enhancement are desirable for 3D reconstruction, segmentation, and/or structural analysis, such 

as skeletonization and SSE detection. A large number o f image filters have been developed to 

decrease the noise, such as low pass filter, wavelet transforms, median filters, and so on. What 

makes denoising so challenging is that a successful approach must also preserve characteristic 

singular features of local details such as the flexible edge areas o f P-sheets. Future work would
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include compromise between denoising and feature preservation to improve the accuracy of 

protein structure detection from 3D cryo-EM density data.

Secondary structure detection from the cryo-EM density map at the medium resolution is still a 

challenging problem despite the multiple proposed methods. Small (3-sheet like 2-stranded sheet 

and short helix (< 5 amino acids) are still quite hard to detect [72, 88], Edges o f P-sheets and 

complex P-structures are still open problems in the structure prediction from medium resolution 

cryo-EM density maps. In order to speed-up the research in this direction, coordinated effort is 

needed to promote the public sharing o f the developed software and the development o f the 

benchmark data that is available to the public. However, the comparison o f the software is still 

challenging. Some of the methods are automatic and others are semi-automatic [63]. The 

continuing maintenance of the software has also been inadequate in this area.
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APPENDIX A

DETAILED FLOW CHART OF SSETRACER

Input density  m ap

Input thrshold

Filtering

Input ske le ton

Build local structure tensor, local 
th ick n ess o v er th e  ske le ton  c e n te rs

Skeleton distribution analysis; 
C u rv ed /su rface  sk e le to n  c en te r

If curved center, vote++
{

if cylinder eigen, v++ 
if cylinder tensor, v++ 

if local th ickness = [avgCVthick-1, avgCVthick+3), v++ 
if density  value>=avgC V dens-0.1. v++

}

If su rface  center, vote++
{

if plane eigen, v++ 
if p laner tensor, v++ 

if local th ickness = [avgSFthick-1, avgSFthick+1], v++ 
>

no
HLX vo te  >= 4 SH T vo te  >= 2

y e s

E stim ated  a s  HLX c en te r
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R etrieve voxels a round  HLX/SHT cen te rs ; 
C luster th e  HLX a n d  SH T  voxels; 
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APPENDIX B

MANUAL OF SSETRACER

Steps

1. To run the latest version o f SSEtracer in command line. You need to have three inputs: the 
input density mrc file, the input skeleton mrc file and the protein ID. Make sure the „Origin 
index" and „Voxel size" o f these two inputs density maps have been aligned before you run 
the program (USCF Chimera —► Volume —► Volume Viewer —* Features —» Coordinates). 
Since die coordinates o f skeleton generated from Gorgon is not aligned with the density map 
by default, you need to manually align it with the coordinates o f protein density map. An 
ideal skeleton would show the sheets as surfaces and helix/loop parts as curves without 
having extra wrong connections between them. Then simply select a threshold as input the 
parameter. An ideal threshold would show P-sheet as thin layer o f density and helix feature 
as a cylinder.

lTUjiiirctO 373345 ttap j J

1733 M jkH rtw viw r 92 17 33 45 *ep  _ j j

2. Run with “tracer_v3_command <relative input path> <pdbID> <thrshold>”. Press „Enter" 
and the program will automatically detect the location o f a-helices and P-sheets.



3. The output will be generated in the same directory where you put your input files, but in a 
separated folder named as “pdblD threshold outFiles” .

>rmg\SSEtr»cer_v3\f>roteinSet\1733_H_thf_3_outFil«

Name Date modified Typr Sire

L , 1733_H_belix5con:.M 3 '31, 7015 n  o ;  AM I ext Dot tjment 1 kR

, , 1733_H_hefcx56cks.txt 131,7015 110.’ AM Text Dcx tjment 7 kB

, 1733 H_h*tacStK ks2.txt 3.’31'701S 1107 AM 1 ext Drx urnent 7 kR

a l  17J3.H_HOQ.pdb 3/31/7015 1107 AM Program Debug D 1 kB

a l  1733_H.HtX2.pdb 3/31'7015 1107 AM Program Debug D 1 kB

4 1  1733.H_HtX3.pdb 3/31/7015 11:07 AM Program Debug D I kB

<£l 1733.H_HlX4.pdb 3/31/7015 1107 AM Program Debug D 1 kB

*£) 1733.H_HLX5.pdb 1:-31/70151107 AM Program Debug 0 1 KB

1733_H.HLX6.pdb 3/31 .'701- i l l  07 AM Program Debug D I KB

1733_HHl.Xestrmate.mrc 3. 31/70151107 AM MR< hie 716 KB

1733_H_SHT est»mate_f»nal.mrc 3 /31.V01 S 11:07 AM MR( file 71b kB

1733_H_SHTestimate_mitul,mrc 3/31/7015 11:07 AM MRC file 716 KB

1733_H_skett-HX.mrc 3/31/7015 1107 AM MRC hie 716 kB

1733_H_skelSHT .mrc 3/31/7015 1107 AM MRC hie 716 KB

1733_H_tensorHLX.mrc 3/31/7015 1107 AM MRC hie 71b KB

1733.H_tensorSHT.mrc 3/31/7015 11:07 AM MRC file 716 KR

1733_.H_thKlcHU.mrc 3'31,7015 1107 AM MRC 1 lie 716 kB

, 1733_H_thickSHT.mrc 3/31 '7015 11:07 AM MRC f tie 716 KB
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Interpret the result

The detected helices are often called “HLX#_.pdb”, the detected (3-sheet density is called 
“SHTestim atefinal.mrc”. Note if there are multiple |3-sheets in the protein, SSEtracer may 
detect multiple sheet density regions.

Example o f input density map and skeleton:

t »! ES n injjt**3 B Q
i •! B D im jtjtxu*t i| B □ t
j r  0  Q  im j'jix ia*
i | B  □ insjutM**
7 B  D  ir a j i ju M *• fij 0 G irajuu***
• B □  jijuewemew.ert
® B □  17UJ* JHTmmmlmJntUm

Example o f detected SSE locations:

< *1 B imjijuxiMk 
iTsjijixa#* tTnjijtM** 
i m j i

1713j*
17X1 Ji JHTMkMto.taUrt

Detected SSE locations overlapped with the true structure:
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APPENDIX C

MANUAL O F SSELEARNER

Steps

1. Run 'model_generator' first if  you want to generate a model from a density map or several 
maps. The 'Models' folder has already included some pre-generated models, check to see if 
there is an existing model that suitable for your target density map. A suitable model should 
have the similar density quality, similar threshold levels for helix/sheet/background, and 
should show the similar features at these levels with the target density map.

Make sure you put the PDB file and MRC file into 'ProteinSef folder.

Make sure you put all the protein IDs ( X X X X X )  into a 'list.txf file if you want to train 
multiple maps at a time. The first line of'list.txf should contain the name o f the model right after
'//'.

All the parameters that required for running the program are located in 'thresholds & 
parameters.txt'.

Suggest choosing the cross-validation when you want to train a good model.

2. Run 'predictor' to predict the SSEs from the target density map. It will ask the name of 
training model that you want to use to predict this target map.

3. Run 'post-processing' to process the rough result after SVM. All the parameters used are 
located in 'thresholds & parameters.txt'.

All the output files will be generated to 'Output/XXXX X outFiles'.

Example

Use 1780 K as training data to predict 1733_H, do the steps as following:

% ,/modeI_generator

Do you want to train multiple maps or just one single map as a model (m/s): s 
Please specify a protein (pdb file without extension): 1780 K 
Please enter a threshold for filtering the whole map (0 - 1): 0.1 
Please enter a threshold for building thicknesses (>thresholdl): 0.545
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Do you want to use corss-validation (may take a long time) to compute the best c and g value? 
(y/n) y

% ./predictor

Please specify the protein that you want to te s t : 1733_H 
Please enter a threshold for filtering the whole map (0 - 1): 0.1 
Please enter a threshold for building thicknesses (>thresholdl): 0.425

Please specify the model that you want to use to predict 1733 H : 1780_K

— All Done !!

% ./post-processing

Please enter the ID o f test density map (without extension): 1733 H 
Please enter the minimum length of a helix (default 5): 7 
Please enter the minimum length of a sheet (default 8): 10 
Please enter the local peak filter divider for helix (int, default 3): 35 
Please enter the local peak filter divider for sheet (int, default 4): 2 
Please enter the small sheet filter divider (int, default 10): 10

Do you want to rebuild the Sheet? (y /n ): y

9fea|ea4e3tc9|e3fesfe9fe3|e ê9te3|e9|e»|e»|e9|e9|e9fc9fe3feafeafc>(caf(3fc^<94<34c3|e3|e3|c3|c>|e94c

Specificity o f He I ix= 100.00%
Sensitivity o f Helix= 80.23%

Specificity o f Sheet= 82.27%
Sensitivity o f Sheet= 87.10%

**********************************

Done...

Note: This statistics will only he calculated i f  you put the .pdb file o f  true structure in the folder.
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Minimum length o f  a helix/sheet

The minimum length o f helix/ P-sheet is calculated by measuring the distance between two 
farthest voxels in the detected helix or sheet regions. This parameter let the user control the 
minimum size of helix/ P-sheet they want to output.

Local peak filter divider:

Local peak filter is a filter for selecting backbone voxels (highly dense areas). For each voxel, 
the average density o f all voxels contained within a sphere o f 3 A in radius is calculated and 
those voxels in the sphere with a density value greater than the average have their local-peak- 
count number increased by 1 The peak counting operation loops over all voxels and assigns each 
voxel a local peak-count number. Upon completion o f this process, all voxels are sorted 
according to their local-peak-count (lpc) numbers. The voxels that have lpc less than 
(highestjpc/divider) are categorized as backbone voxels and discarded.

Code o f  lpc:

i f  (Ipcfi][j][k] < maxCount/divider) / /  filter voxels have lower local-peak-count 

mrc.cube [i] [j] [k] = 0;

Small sheet filter divider

The initial detected sheet voxels in one density map are clustered into multiple clusters, the large 
sheet areas will be selected and the small clusters will be filtered out. The clusters that have 
number o f voxels less than (maxSHTclusterSize/divider) will be discarded.
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APPENDIX D

MANUAL O F STRANDTWISTER

1. Input file
StrandTwister takes a MRC file that contains one chunk o f density of single sheet as input. The 
chunk o f density can be the detected density output from SSEtracer or SSElearner. Note that if 
the output o f SSEtracer/SSElearner contains sheet density from multiple P-sheets, then they need 
to be separated. One way to do so is to cut in Chimera if visual separation is possible. Place the 
p-sheet MRC file and the downloaded executable file in the same folder to run it. Currently there 
are two versions:

(1) Binary file that compiled under Linux (64bit)
(2) exe file that compiled under Windows 7 (64bit)

l j  tracer_v3_command 

FT tracer_v3_command.exe

2. Parameter
StrandTwister is a fully automatic tool. The only parameter is a threshold o f  the density map, 
which is the user estimation for the size/thickness o f the P-sheet density. If your input MRC 
contains the density that has already been filtered by a given threshold (for example the detected 
sheet density from SSEtracer is filtered by a given input threshold as the Volume View shows 
below), you can enter 0 as the threshold. Otherwise please input a density threshold for your 
input sheet density.

The input density:

And the command line:

sirius : /work/ I t f .i I 1 /SheetTwi sl.er/st.randl wi st.er v?> . /strandtwister_v2_command example 0

Range 0 0.M Level [0.27 Color 
Style a r t a e  meeh C  nfed

Center Orient I O ne I He*

Working on example 
Filtering the map .
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3. Run the program and read the detected result
StrandTwister will output the Top ten detected beta-traces (if there are more than ten right- 
handed sets been detected) as PDB files in the same folder after few seconds, “trans #” means the 
sampled possible translations, from 0 to 2 there are three sampled translations (every 1.5A a 
translation sampling), “orient #” means the sampled possible orientations, from 0 to 170 degree 
there are eighteen sampled orientations (every 10 degree an orientation sampling).

Top
Top
Top
Top
Top
T o p
Top
Top
Top
T o p

twist
twist
twist
twist
twist
twist
twist
twist
twist
twist

15.4688 
15.1739 
13.8909 
13.8543 
13.5302 
13.1992 
13.0184 
12.6977 
12.5161 
11. 7673

trans
trans
trans
trans
trans
trans
trans
trans
trans
trans

orient 170 
orient 170 
orient 0 
orient 160 
orient 0 
orient 0 
orient 170 
orient 10 
orient 160 
orient 20

The statistic results will be saved in a text file named “***_bestResult.txf’.

pdhT f}  f i t . r i n r j  F.rr b f s a t - s ^ t ;  b e s t  I s t r d s  f s t r d s  2 -m a y  b e s t .  #AA lAA
f u m b l e  1 .4 7 2 2 9  t r « n s _ 0 _ o r i  e n t ._ 0  5 5 l . f i f l U  24  31

The best-set with minimum 2-way distance will be recorded in this txt file with the information 
o f least-square fitting error, detected number o f strands in this best set, number of strands in the 
true structure, the number o f amino acids detected in this best set, and the total number o f amino 
acids in the true structure. Note that this statistics will only be calculated if you put the pdb file 
o f true structure in the folder.

You can also load and view the results in UCSF Chimera, the best detection among the Top ten 
output in this example is the Top 4 twist set (below left, t r ansOor ientO) .  You can also load the 
true structure to check it (below right).
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APPENDIX E

MANUAL OF STRANDROLLER

1. Input file
StrandRoller takes a MRC file that contains one complete chunk o f P-barrel density as input. The 
chunk o f density can be the detected density output from SSEtracer or SSElearner. Note that if 
the output o f SSEtracer/SSElearner contains sheet density from multiple P-sheets, then they need 
to be separated. One way to do so is to cut in Chimera if visual separation is possible. Place the 
P-barrel MRC file and the downloaded executable file in the same folder to run it. Currently 
there are two versions:

(1) Binary file that compiled under Linux (64bit)
(2) exe file that compiled under Windows 7 (64bit)

l j  StrandRoller_vl_command 

k l  StrandRoller_vl_command.exe

2. Parameter
StrandRoller is a fully automatic tool. The only parameter is a threshold o f the density map, 
which is the user estimation for the size/thickness of the P-barrel density. If your input MRC 
contains the density that has already been filtered by a given threshold (for example the detected 
sheet density from SSEtracer is filtered by a given input threshold), you can enter 0 as the 
threshold. Otherwise, please input a density threshold for your input barrel density.

The input density:

And the command line:

> ./StrandRoller vl 1G7K A13 0.3
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3. Run the program and read the detected result
StrandRoller will output the sampled beta-traces with all possible tilt angles as PDB files in the 
same folder after few seconds.

The statistic results will be saved in a text file named as “***_bestResult.txf\

bMAmJbd |
pdbT D  b e s t ~ s a t  d e t e c t  f a t r d  t o t a l  f s t r d  2 -w a y  d e t e c t  #AA t o t a l  #AA

1G7R A13 t r a n s  0 o r i e n t  40 11 11 1 .8 0 1 5  85  124

The best-set with minimum 2-way distance will be recorded in this .txt file with the information 
o f detected number o f  strands in this best set, number o f strands in the true structure, 2-way 
distance, the number o f amino acids detected in this best set, and the total number o f amino acids 
in the true structure. Note that this statistics will only be calculated if you put the pdb file o f true 
structure in the folder.

You can also load and view the results in UCSF Chimera, the best detection among the Top ten 
output in this example is the trans_0_orient_40 set (below left,). You can also load the true 
structure to check it (below right).
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