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ABSTRACT

RESOURCE ALLOCATION IN VEHICULAR CLOUD COMPUTING

Puya Ghazizadeh 
Old Dominion University, 2014 

Director: Dr. Ravi Mukkamala and Dr. Stephan Olariu

Recently, we have witnessed the emergence of Cloud Computing, a paradigm shift 
adopted by information technology (IT) companies with a large installed infrastructure 
base that often goes under-utilized. The unmistakable appeal of cloud computing is that it 
provides scalable access to computing resources and to a multitude of IT services. Cloud 

computing and cloud IT services have seen and continue to see a phenomenal adoption 
rate around the world.

Recently, Professor Olariu and his coworkers through series of research introduced 
a new concept, Vehicular Cloud Computing. A Vehicular Cloud (VC) is a network of 

vehicles in a parking lot that can provide computation services to users. In this model each 
vehicle is a computation node. Some of the applications of a VC include a datacenter at 
the airport, a data cloud in a parking lot, and a datacenter at the mall.

The defining difference between vehicular and conventional clouds lies in the dis­
tributed ownership and, consequently, the unpredictable availability of computational re­
sources. As cars enter and leave the parking lot, new computational resources become 
available while others depart, creating a dynamic environment where the task of efficiently 
assigning jobs to cars becomes very challenging.

Our main contribution is a number of scheduling and fault-tolerant job assignment 
strategies, based on redundancy, that mitigate the effect of resource volatility in vehicular 
clouds. We offer a theoretical analysis of the expected job completion time in the case 

where cars do not leave during a checkpoint operation and also in the case where cars may 
leave while checkpointing is in progress, leading to system failure. A comprehensive set 
of simulations have shown that our theoretical predictions are accurate.

We considered two different environments for scheduling strategy: deterministic and 
stochastic. In a deterministic environment the arrival and departure o f cars are known. 

This scenario is for environments like universities where employees should be present at 

work with known schedules and the university rents out its employees’ cars as computa­

tion nodes to provide services as a vehicular cloud. We presented a scheduling model for a 

vehicular cloud based on mixed integer linear programming. This work investigates a job



scheduling problem involving non-preemptive tasks with known processing time where 
job migration is allowed. Assigning a job to resources is valid if the job has been exe­

cuted fully and continuously (no interruption). A job cannot be executed in parallel. In our 

approach, the determination of an optimal job schedule can be formulated as maximizing 
the utilization of VC and minimizing the number o f job migrations. Utilization can be 

calculated as a time period that vehicles have been used as computation resources. For 
dynamic environment in terms of resource availability, we presented a stochastic model 

for job assignment. We proposed to make job assignment in VC fault tolerant by using 
a variant of the checkpointing strategy. Rather than saving the state of the computation, 

at regular times, the state of the computation is only recorded as needed. Also, since we 

do not assume a central server that stores checkpointed images, like conventional cloud 
providers do, in our strategy checkpointing is performed by a car and the resulting image 
is stored by the car itself. Once the car leaves, the image is lost. We consider two scenar­
ios: in the first one, cars do not leave during checkpointing; in the second one, cars may 

leave during checkpointing, leading to system failure. Our main contribution is to offer 
theoretical predictions o f the job execution time in both scenarios mentioned above. A 
comprehensive set of simulations have shown that our theoretical predictions are accurate.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Inspired by the success and promise of conventional cloud computing, Olariu et al. 
[1-4] have introduced the concept of a Vehicular Cloud, (VC, for short), a non-trivial 
extension of the cloud computing paradigm. Their key insight was that present-day cars 
are endowed with powerful on-board computers [5,6] and that most of these vehicles spend 

many hours per day parked in a parking garage, parking lot, or driveway. At the moment, 
the computing and storage resources of these vehicles are untapped and the opportunity 
for their use is wasted.

Advances in automotive industry have made the dream of smart cars come true. Ford 
has announced four million vehicles in the US have its SYNC system (Ford SYNC is a 
factory-installed, integrated in-vehicle communications and entertainment system). Based 

on the Ford announcement, in the next three years, nine more million vehicles will have 
SYNC. Google has tested a self-driving car which is equipped with a central computer, 
video cameras, radar sensors, GPS, etc. In the Google car which is driver-less, computer 
takes control of driving. Ford predicts an autonomous-driving mode will be available in 
its cars by 2017.

Nowadays vehicles are beyond transportation machines. In fact they are the machines 
with high computing power. People can get different services (navigation, weather, en­
tertainment, etc) while they are in the vehicle as a driver or passenger. In the other hand 
advances of cloud computing have encouraged companies and users to move their com­

putations, IT services or digital entertainments to the cloud. The main factor of cloud 
computing is computation power. Vehicles in parking lots could be potential resources for 
computation power.

It is very likely that, given the right incentives, the owners of vehicles will decide 

to rent out their on-board capabilities on-demand or on a per-hour or per-day basis, just 
as owners of large computing or storage facilities find it economically appealing to rent 

out their excess capacity. For example, we anticipate that in the near future air travelers
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will park and plug their cars in airport long-term parking lot. In return for free parking 

and other perks, they will allow their vehicle to participate, during their absence, in the 

airport datacenter. While these VCs may be used much like traditional clouds, their true 

novelty and technical challenge lies in the fact that the vehicles come and go, making the 
assignment of computing resources to jobs challenging.

1.2 OBJECTIVES AND GOALS

This thesis proposes scheduling model and job assignment strategy for vehicular cloud. 

As we mentioned earlier in Section 1.1, the defining difference between vehicular and 
conventional clouds lies in the distributed ownership and, consequently, the unpredictable 
availability of computational resources. As cars enter and leave the parking lot, new com­
putational resources become available while others depart creating a dynamic environment 

where the task of efficiently assigning jobs to cars becomes very challenging.
We considered two different environment in terms of resource availability: determin­

istic and stochastic. In deterministic environment, arrival and departure of cars are known. 

This scenario happens in places like universities and companies where employees schedule 
is known. Therefore residency time of their cars are deterministic variables.

1.3 CONTRIBUTIONS

We present a scheduling model based on linear programming. We define our model by 
using linear constraints. The input for this model is jobs with known processing time. We 

use migration to handle interruption that may be caused by car departure. The objective 
functions of this model are resource utilization and number of migration. This model 
minimizes the number of migration and maximizes the resource utilization. Results of 

simulation show that optimal and near optimal results are fount by this model.

Another contribution of this thesis is a fault-tolerant job assignment strategy, based 
on redundancy, that mitigates the effect of volatility of resource availability in vehicular 
clouds. We offer a theoretical analysis o f the expected job completion time in the case 

where cars do not leave during a checkpoint operation and also in the case where cars may 
leave while checkpointing is in progress, leading to system failure. A comprehensive set 

of simulations have shown that our theoretical predictions are accurate. We designed our 
model for different levels of redundancy to explore the trade-offs based on job completion 

time and mean time to failure.

We propose different job assignment strategies that we call Jl, J2 and J3. In J1 strategy
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we assign a job to one car at a time randomly. Every T time period checkpoint will be 

created to save the current state of computation. If the car assigned to the job departs, a new 

car will be recruited and the job will be restarted. The computation will continue from the 

last saved checkpoint. In this model central server is needed to save the checkpoint. Also 

optimal checkpointing period should be calculated by using differentiation. We present 
theoretical prediction of job completion time for J1 strategy. Simulation results confirm 
our analytical results.

In J2 strategy, each job is assigned to two random cars at a time. Job will be exe­
cuted on both cars simultaneously. If one of the cars leave, the remaining car undergoes 
a checkpoint period during which its state o f the computation is saved. Once the check­

point is finished, a new car will be recruited. Job will be restarted on both job using last 
checkpoint and execution continues. This process continues until the job is completed. In 
this model there is no need for central server because the checkpoint will be saved on the 
car. This avoids the problems that may happen because communication between clients 

and server during bandwidth shortage. In our model we consider two different cases. In 
first case we assume that car do not leave during checkpointing. This case happens when 
checkpoint duration is short with respect to car residency time. The second case is when 
car may leave during checkpointing which leads to failure. We offer theoretical prediction 

for job completion time for both cases. We also offer theoretical predictions for mean time 
to failure. Mean time to failure is defined as the time that it takes that failure occurs in 
system. Simulation results confirm the accuracy of theoretical predictions. We model J2 
strategy as Markov process with N + 1 states. The first state is state zero where no check­
point has been taken. The second state is 1 where first checkpoint has been successful. 
Process is in state /, if the all i checkpoint have been successful. In this Markov process 
transition from state i to i +  1 is successful if the checkpoint number i +  1 is completed. 

If the checkpoint is not successful the process returns to state zero which means failure 
happened in system.

J3 strategy is similar to J2 strategy. In this strategy each job is assigned to three cars at 

a time. We model this strategy as a Markov process. We present theoretical prediction of 

job completion time and mean time to failure for this model. Simulation results confirm 

the accuracy of analytical results. In J3 strategy mean time to failure is larger that J2 

strategy but J2 strategy outperforms J3 strategy in terms of job completion time. Also 

J2 strategy outperforms J3 strategy in terms of resource utilization, because number of 

resource assigned to a job is smaller than J3. We present comparison results of J2 and J3
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strategies for job completion time.

Number of checkpoints and probability of checkpoint failure are important factors to 
determine system reliability. By analysing the probability of checkpoint failure, system 

administrator can determine if the system is reliable for executing jobs. Also by comparing 
expected number of checkpoints with actual number of checkpoints that has been taken, 

system administrator can detect if there has been any malicious behaviour. We provide 
simulation and analytical results for expected number of checkpoints and probability of 
checkpoint failure.

Our contributions have been published or will appear in the following conferences.

• Puya Ghazizadeh, Ravi Mukkamala and Samy El-Tawab: “Scheduling in Vehicular 
Cloud Using Mixed Integer Linear Programming”, The First International Workshop 
on Mobile Sensing, Computing and Communication (MSCC), Philadelphia, ACM 
MobiHoc 2014, August 11 - 14, 2014.

• Puya Ghazizadeh, Ravi Mukkamala and Stephan Olariu: “Reasoning about Mean 

Time to Failure in Vehicular Clouds”, MILCOM 2014, Military Communications 
Conference, Baltimore, Maryland, October 6-8, 2014 (Under Review).

• Puya Ghazizadeh, Ravi Mukkamala and Stephan Olariu: ‘Towards Fault-Tolerant 
Job Assignment in Vehicular Cloud Computing”, IEEE MASS 2014, 11th IEEE In­

ternational Conference on Mobile Ad hoc and Sensor Systems, Philadelphia, Penn­
sylvania, October 28-30, 2014 (Under Review).

• Puya Ghazizadeh, Stephan Olariu and Ravi Mukkamala: “Towards Dynamic Job 
Assignment in Vehicular Cloud Computing”, Thirteenth Annual Graduate Research 

Symposium (GRS), College of William & Mary, Williamsburg, USA, March 21 and 
22, 2014.

• Puya Ghazizadeh, Ravi Mukkamala and Stephan Olariu: “Redundancy in Ve­

hicular Cloud Computing”, Fourth Annual Graduate Research Achievement Day 

(GRAD Day) Old Dominion University, Norfolk, Virginia, USA, Thursday, March 
27, 2014.
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1.4 ROADMAP

The remainder of this dissertation is organized as follows. Chapter 2 provides the 
necessary background on cloud computing, vehicular network, volunteer computing and 

vehicular cloud. Chapter 3 presents scheduling model for vehicular cloud established in 

parking lot based on mixed integer linear programming. This model uses migration in 
order to prevent interruptions that may be caused by random departure of vehicles. In 
Chapter 4 our main contribution is a fault tolerant job assignment strategy, based on redun­

dancy, that mitigates the effect of resource volatility of resource availability in vehicular 
clouds. We offer a theoretical analysis of the expected job completion time in the case 
where cars do not leave during a checkpoint operation and also in the case where cars may 
leave while checkpointing is in progress, leading to system failure. Chapter 5 presents two 

fault-tolerant job assignment strategies, based on redundancy. We offer a theoretical anal­
ysis of the mean time to failure of these strategies. In Chapter 6, we present analytical and 
simulation model for job completion time in stochastic environment considering one car at 

a time as a computation node. In Chapter 7 we discuss the trade-offs for proposed models 
based on completion time and mean time to failure. Finally, in Chapter 8, we put the work 
in perspective, offer concluding remarks and highlight directions for future research.
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CHAPTER 2

RELATED WORK

Vehicular Cloud Computing involves different research areas from cloud computing to 

Intelligent Transportation Systems (ITS). In this chapter we present the main research areas 

that are most related to vehicular cloud. The following research areas are directly related 
or have the similar challenges and problems as Vehicular Computing: Cloud Computing, 
Vehicular Networks, Volunteer Computing (Metacomputing), Connected Cars.

In this chapter we will identify the similarities of these research areas and their relation 
with VC.

2.1 CLOUD COMPUTING

The idea of cloud computing originated from different types of technologies like grid 
computing, distributed systems, cluster computing and utility computing. Cloud comput­
ing provides IT services to users by third party over the Internet. In [7], National Institute 
of Standards and Technology (NIST) defines Cloud Computing as “a model for enabling 

convenient, on-demand network access to a shared pool of configurable computing re­
sources (e.g., networks, servers, storage, applications, and services) that can be rapidly 
provisioned and released with minimal management effort or service provider interac­
tion”. As [8] and [9] have mentioned, the concept of cloud computing is initiated from 

the recognition that renting infrastructure and software would be more beneficial rather 
than investing in them. The idea of cloud computing is supported by low-cost high speed 
Internet, virtualization and advances in parallel and distributed computing and distributed 
databases. One of the advantages of cloud computing is offering scalable computing power 

and IT services. Cloud computing concept has been accepted by many companies in US 
and all over the world. Most of these companies have under-utilized infrastructure and 
cloud computing will improves their resource utilization.

With cloud computing, developers that have new ideas do not need to have large capital 
to spend on hardware and infrastructure. They can simply implement their ideas on cloud 

infrastructures. Three aspects are novel in cloud computing in terms o f hardware point of 

view:
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Fig. 1: Google Apps as Software as a Service

1. It gives the user the ability of having unlimited computing power on demand, there­
for there is no need for user to plan far ahead for resource provisioning.

2. It eliminates up-front economic commitment by cloud users, therefore it allows them 

to increase hardware based on the demand.

3. It gives the users the option to pay for computing power on a short-term basis as 
needed (e.g., processors by the hour and storage by the day) and release them as 
needed, thereby rewarding conservation by releasing resources (e.g. machines and 
storage) when they are no longer useful.

Services provided by cloud computing are classified into three categories: Software as 
a service (SaaS), Platform as a service (PaaS) and Infrastructure as a service (IaaS) [8-13], 
Figure 2 shows these services.

SaaS: SaaS is a model that provides applications to end users over the Internet or local 

networks (e.g. Google Apps: Google Calendar, Google Drive, Google Talk, etc). 
In SaaS cloud provider is responsible for software licensing which means user only 
pays for the delivered service rather than software license. Following advantages 

make SaaS attractive for users: 1- There is no need for user to update the software.

2- All the users will use the same version of software which creates compatibility.
3- User can have access to software from everywhere [14]. Figure 1 illustrates an 

example of SaaS.

PaaS: In platform as a service, computing platform is provided to users to develop soft­

ware (e.g. Google’s App Engine, which provides Python runtime environment and
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APIs for applications to interact with Google’s cloud runtime environment). De­
velopers build their software in the distributed environment offered by PaaS. This 

environment will enable developers to test the software for different scenarios.

IaaS: IaaS is a service that provides fundamental resources like storage, processor and 

network to users. In this model, service provider is the owner of the infrastructure 
and is in charge of maintenance (e.g. Amazon Elastic Compute Cloud (EC2)). In 
this type of service, user controls the hardware which means that user is responsible 

for scaling and failover processes, because scalability and failover processes are 
application dependent [15].

2.1.1 CLOUD COMPUTING ADVANTAGES

Cloud computing is growing and companies are moving their computation services to 

cloud in order to benefit from the services that can be provided by cloud providers. The 
following are some of the advantages of cloud computing [15]:

1. Unlimited computing power based on the user’s need. Cloud computing providers 
are able to provide high computation powers to users. Virtualization is one of the 

main reasons in utilizing the servers which eventually increases the performance of 
servers. Vimtalization is simulation techniques to provide virtual resources. We 
explain virtualization in more details in Section 2.1.5.

2. No need for up-front investment. Users use the cloud computing infrastructures 
without investing on them.

3. Pay as you go: users only pay for the service that they receive. The other cost like 
maintenance is not users’ concern any more.

4. Scalability: users can scale up or scale down the computation based on demand (e.g. 

web server for a special event like Olympic games or conferences which the demand 
is high at a specific period of time).
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Fig. 2: Cloud Services

2.1.2 APPLICATIONS DESIGNED FOR CLOUD COMPUTING

In order to design an application for cloud, following features should be considered: 
[16]

1. Each component of application should be scalable. In that case user can scale up or 

scale down the application based on demand.

2. In order to handle failure in distributed system, application components should be 
loosely coupled. By having loosely coupled components, failure of one component 
will not affect the other components. Therefore availability o f system will increase.

3. Parallelization is the key point of increasing performance in distributed system. Par- 

allelization will distribute the task over the distributed computation nodes which 
improves the performance.

4. There should be a recovery mechanism for failures (e.g., checkpoint)
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2.1.3 CLOUD TYPES

Based on the ownership and accessibility clouds are classified into three categories: 

public cloud, private cloud and hybrid cloud.

Public Cloud In public cloud, infrastructure is owned by cloud provider. In this type of 

cloud, service is available to public through Internet. Service availability in public 
cloud is high but security level in compared to private cloud is low. User does not 
have control on public cloud, therefore service flexibility has lower level compared 

to private cloud.

Private Cloud In private cloud, infrastructure is owned by user. This type of cloud usually 
is used for application development. User has a high level of control in private 
cloud (e.g. controlling bandwidth). Also private cloud has high level of security and 

service flexibility. The other application for private cloud is financial services. High 
level of security is essential feature for financial services which can be provided by 
private cloud.

Hybrid Cloud Hybrid cloud is a combination of public cloud and private cloud and they 
can be coupled to each other. In IT services at a specific period of time or peak 
period, need of extra capacity may emerge. Since in hybrid cloud, public cloud is 
coupled with private cloud, as a result, workload can be moved from private cloud 
to public cloud and vice versa. Therefore in case of failure in one of the clouds, 

service still can be available to users though the other one. Figure 3 shows hybrid 
cloud which includes both public and private cloud.

2.1.4 CLOUD ARCHITECTURE

Cloud architecture has features that can handle the following problems that are com­

mon in typical distributed computation models [16]:

• Providing all the computation resources that an application needs.

• Providing on-demand resources on time.

• Providing recovery mechanism for failure in distributed computation environment.

• Scaling the computation resources based on the load.
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Fig. 3: Types of Cloud

• Releasing the assigned computation resource from terminated task and reassign it to 
new task.

The main components of cloud computing that are common in other computation models 
are: database, storage, computation nodes and controller. Computation nodes are inde­

pendent components therefore failure of one node will not affect the other nodes. Since 
components are independent, database is used to record the status of each component. By 
executing query against database, we can obtain the state of system any time. Storage 
is used for saving input data, fetching data for computation and saving outputs. Storage 
in clouds will save several copies of data to protect them against damages. Controllers 
are used to control each component and manage the communication between components. 
Controllers also manage the communication of client and server applications with data 
storage. As we mentioned in cloud computing, components are independent. In cases 

that components should be coupled, they should be defined loosely. In other words, they 

should be loosely coupled. In order to define loosely coupled components, a queue system 
will be used that behaves like buffer. The output of one component that is an input for the 
other component will be stored in a queue before getting to the other component. In that 

case if the first component fails the second component can continue to executing the queue 

until the first component recovers. Figure 4 is an example for queue service.
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Fig. 4: Queue Service

2.1.5 VIRTUALIZATION

Virtualization, in computing, is simulating techniques that provide a layer between 
hardware and operating system. This layer can provide a virtual resource (e.g., CPU, stor­
age, network, etc). In other words virtualization provides a logical view of resources rather 

than physical view. For example server virtualization is the ability of executing multiple 
applications or operating systems on one physical server. Applications or OSs that are 
running on one physical server should be isolated in order to be running securely. Virtual­
ization has been started from mid 20th century. The main idea of virtualization is to utilize 

the resources. Virtual machine is the main factor o f cloud computing. Cloud computing 
has been developed based on VM technology. Some of the virtualization advantages are:

• VM takes away hardware dependency

• Create a pool of resources on hardware

• Virtual machines are set of files that move between physical servers

• VMs can be isolated. Failure of one of them can not affect the other one

• Provides high availability (you can run it everywhere e.g. USB)

• Virtualization is a good solution for sharing resources

• Virtualization utilizes servers
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Fig. 5: Hosted Virtualization.

Virtualization Types

Virtualization is classified into three classes: 1-Application Virtualization, 2-Hosted
Virtualization, 3-Hypervisor Virtualization [17].

Hosted Virtualization is virtualization on top of the operating system (hosting OS is 
called domainO). This type of virtualization is for users to have different separate 
OS for experimenting different software. In other words this type of virtualization 

is for personal experiment rather then cloud computing. Examples for Hosted Vir­
tualization are VMware Workstation, VMware Fusion and Microsoft VirtualServer 
2005. Figure 5 shows Hosted Virtualization.

Hypervisor Virtualization is virtualization on top of hardware. In this type of virtual­

ization hypervisor software will be installed on hardware instead of domainO. This 
type of virtualization is more secure because there is no security concerns related 

to hosting OS, domainO. Hypervisor will directly access hardware which increases 

security and resource management ability. This type of virtualization is used in 

cloud computing infrastructures. Here are the examples for Hypervisor Virtualiza­
tion software: VMware ESX Server (vSphere) and Citrix Xen Server. Figure 6 
shows different layers in Hypervisor Virtualization.
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Fig. 6: Hypervisor Virtualization.

Application Virtualization is virtualization for application layer. Application will be in­
stalled in sandbox which is testing environment for untested software from unveri­
fied party. In this model application does not have direct access to underlying OS. 

This type of virtualization is for running conflict applications that can not run in 
the same time (e.g., different version of same software). Examples for this type of 
virtualization are VMware ThinApp, Microsoft Application Virtualization. Figure 7 
shows the order of layers in Application Virtualization.

VM Migration

IT administrators use virtual machine migration in data centers and clusters to manage 

load balancing, handle failure and lower maintenance cost [18]. Virtualization is a solution 
for migrating computation between different physical servers because data and different 

status of computation will be saved as a file. There are two types of virtual machine 
migration: Live Migration and Cold Migration.

Live Migration: In live migration, applications can be transferred to different physical 

servers while running. Since during the migration process the application is not 
suspended, performance of the system does not decrease. This type of migration is 

resource intensive. Page status copying is the main component o f live migration.
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Cold Migration In cold migration, the virtual machine will be turned off which means 
the operating system and application are suspended before transferring to physical 
machines. In cold migration, because of the interruption that caused by stopping the 
application, performance of the system may decrease.

VM Cloning

Cloning is creating a new VM from existing VM with same configuration. New created 
VM can resume the same process from the previous VM [19]. Cloning instead of installing 
operating system, applications and configuring, makes copies of pre-configured VMs in 
order to save time. Cloning is used in the environment that groups of users use same 
operating system and software.

Migration Time

In this section we estimate a range for virtual machine migration time. This estimation 
does not affect our approaches that we present later in Sections 3, 4, 5 and 6. The goal of 

this part is to provide more realistic migration time that can be used in different scenarios 
that we present in next chapters.

Nelson et al. [20] experience different measurements and show the migration time and
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Operating System Migration Time

Windows 6-8 Seconds
Linux 6-8 Seconds

TABLE 1: Different Types of Operating System.

Application Migration Time

iometer 6-8 Seconds

memtest86 16 Seconds

dbhammer 16 Seconds

TABLE 2: Different Types of Application.

application downtime for different workloads. In their experiments migration is between 
two different physical machines for applications on Intel x86-based operating system, in­
cluding Microsoft Windows and Linux where guest operating system runs over virtual 

machine.
In their approach virtual machine makes migration possible by capturing the state of 

hardware and software within the virtual machine. The largest part of state in virtual 
machine that needs to be migrated is physical memory.

Based on [20], virtual machine migration includes following stages:

1. Start the migration by choosing the virtual machine to migrate and choosing its 
destination.

2. While VM is running, pre-copy the VM memory state to the destination.

3. Sending the non-memory state and quiescing the VM.

4. Moving the VM control to destination and continue the running at destination.

5. Transferring any remaining memory state and eliminate the dependency on the ori­

gin machine.

Nelson et al. [20] experience different scenarios with following software and applica­

tion:
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• idle: An idle Windows 2000 Server.

• kemel-compile: Linux kernel compilation in RedHat 7.2.

• iometer: Iometer [21] running on Windows 2000 Server. Iometer was configured to 

run disk I/O with 3 worker threads each performing I/O to a 500MB file with up to 

five outstanding writes.

• memtest86 : Memtest86 [22], which continuously reads and writes memory, running 
test #1 in a loop

• dbhammer: Database Hammer [23], a client/server database load generator running 
on Windows 2000 Server. The server was migrated while the client was running on 

a third physical machine.

They emphasize that end-to-end migration time depends on the size of VM’s memory. In 
their measurement for VM’s memory with size 512 MB, end-to-end time of migrations 
are idle: 6-8 seconds, kemel-compile: 6-8 seconds, iometer: 6 -8, memtest86 : 16 seconds, 
dbhammer: 16 seconds. Tables 1 and 2 show the list of Operating System and application 
used in their experiment.

If we consider a normal laptop as on-board computation device in vehicle the VM’s 
memory size can vary up to 10 GB easily. Since VM’s memory has a strong effect in 

migration time, we multiply the previous scenario by (10 * =  20) to estimate the mi­
gration time. Considering running same application as mentioned above the migration 
time can be estimated as eight minutes for running either memtest86 or dbhammer. Nowa­
days most of the processors have more than one core (e.g, Intel core i3, i5 and i7 that 

are typical processors in laptop) which means they can process multiple CPU instructions 
at the same time. Therefore multiple applications can be processed in the same time. In 
case of considering execution of both memtest86 and dbhammer the migration time can 
be considered as fifteen minutes. In a strict scenario we can add the time of setting up the 

arrived vehicle in parking lot, plugging to Ethernet cord and power cord, and consider the 

migration time as twenty minutes.

2.2 VEHICULAR NETW ORK

Vehicular Ad Hoc Networks (VANET) is a wireless ad hoc network of mobile vehicles. 

In this network communication can be between vehicle and vehicle (V2V) or vehicle and 
roadside infrastructure (V2I).
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Federal Communication Commission (FCC) allocated a spectrum frequency for com­

munication between vehicles to vehicles and vehicles to roadside infrastructures fifteen 
years ago. The FCC then allocated 75MHz of spectrum in the 5.850 to 5.925 GHz 

band for the exclusive use of Dedicated Short Range Communications (DSRC) Service 
in 2003 [24-27]. The approximate range of the communication is 1000 meters.

The original goal of VANET was to provide drivers with notification of real-time traffic 
conditions and prevent car accidents.

Based on US Department of Transportation (US-DOT) and National Highway Traffic 
Safety Administration (NHTSA) statistics, every year traffic jam in highways cost the 

nation over $70 billion in lost worker productivity and over 8.5 billion gallons of fuel 
wasted, not to mention high levels of carbon emissions [28-33].

Based on US-DOT highway incidents cause over half of all congestion events [34], 
Further, the NHTSA indicates that one of the leading causes of traffic accidents is con­

gested roads. These problems have motivated scientists to use recent technologies and 

extend the idea of Mobile Ad-hoc Networks (MANET) to roadway and street communi­
cations. The new type of networks, referred to as Vehicular Ad-hoc Networks (VANET) 
that gives drivers advance notification. The original motivation for the interest in VANET 
was to notify drivers of road condition, congestion, hazardous driving conditions and other 

similar traffic-related concerns [27,35]. Therefore VANET emphasizes on applications for 
traffic status reports, collision avoidance, emergency alerts, cooperative driving, and other 
similar concerns [27, 35]. Many researchers and scientist in VANET community predict 

that advances in VANET or other developing vehicle-based computing and communica­
tions technology, have an enormous impact on society [26,36-38], Because o f this pre­
dicted social impact, many car manufacturers, government agencies and standardization 
institutes all over the world have created national and international associations dedicated 

exclusively to VANET. Some of these associations are Hondas Advanced Safety Vehicle 
Program, Networks-on-Wheels, the Car-2-Car Communication Consortium, the Vehicle 

Safety Communications Consortium [26,38]. Rapid converge of ITS and VANET that has 
happened in the past few years is heading to the development of Intelligent Vehicular Net­

works (IVN). It is expected that IVN changes the way we drive by providing a safe, secure 
and well-conditioned constant computing environment that will be spread on streets and 

highways.
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2.3 CONNECTED VEHICLES

Now that houses and businesses are connected to the Internet, vehicles are the last 
major market for connectivity.

Connected vehicles is a concept that has been presented by U.S. Department of Trans­
portation. Connected vehicles is defined as Vehicles that interact with each other (V2V), 
the roadside infrastructure (V2I), and beyond (V2X) via wireless communications.

The idea of connected vehicles is to solve real-word problems [39], Following are the 

issues that have been addressed by connected vehicles.

Safety Application: using Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) 

Communications for safety purpose.

Collecting and Managing Real-time Data: In this method the gathered traffic, transit 
and freight information will be analyzed. By analyzing the information, traffic will 
be managed in most efficient, safest and most environmentally friendly possible way.

Dynamic Mobility Applications: This research investigates the different technologies to 

improve the transportation. In other words finding fastest and most environmentally 
friendly trip by using different type of transportation (car, bus, truck, train, etc.) is 
the topic for this research. This research helps companies to use cross-modal travel 
system in managing their transportation needs.

Road Weather Management: This research will use weather information in helping 

travelers and transportation system. This information is vehicle-based which means 
it has been gathered by monitoring current weather condition via vehicles on roads.

Applications for the Environment Real-Time Information Synthesis (AERIS):
This research helps transportation managers to consider environmental impact by 

using data from tailpipe emissions with combination o f other environmental data.

Most of the car manufacturers have embedded a system in their selected models that 

provide different applications. Every year new applications are introduced by car compa­

nies that presents new services. Figures 8, 9 are embedded devices that Ford and GM use 

to contribute to the idea of connected vehicle.
Connected vehicles provide many advantages for vehicle owners and takes driving 

experience to the next level. In the same time businesses, and government agencies that 

own highways can manage the traffic more efficiently.
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Fig. 8 : GM MyLink Telematics System: Photo Credit (http://gm-volt.com/)

Fig. 9: Microsoft-based Ford Sync: Photo Credit (http://www.ford.com/)

http://gm-volt.com/
http://www.ford.com/
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Fig. 10: Google Car: Photo Credit (http://techcrunch.com/)

The idea of connected vehicle is supported by different companies like Audi, BMW, 
Ford, GM, Mercedes-Benz, Toyota, Volkswagen, Hyundai, Nissan.

2.4 SMART CARS

Along with connected vehicle concept, there are other concepts that have been intro­

duced by different companies. Google announced its driver-less car. Google self-driving 
project was started in 2009 and has been a very successful project. The goal of this project 
is to avoid accidents caused by human error. Based on the statistics 93 percent of incidents 
are caused by human error. In the past five years that Google car has been on trial, no 

incident has happened. This means that Google car accident rate is zero. Google car has 
lasers, positional and orientation sensors, and radar. By using these devices, Google car is 
able to see 360 degrees.

Ford Evos concept car is a new model that has been introduced to public at 2011 
Frankfurt Motor Show. Evos is a cloud connected car. User information and personal data 
stored in cloud are accessible by Evos. Therefore Evos knows the person’s preferences, 

needs, health and work schedule, etc. Evos is able to fetch and process data from cloud to 

determine user’s preferences based on traffic, weather and work schedule.

2.5 VOLUNTEER COMPUTING

Volunteer computing is a model of computing based on shared resources. In this model 

users all over the world share their computers as a source of computing power and storage

http://techcrunch.com/
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through internet. Volunteer computing emerged in 1990 and created large projects by 
recruiting hundred volunteer machines.

Vehicular cloud and volunteer computing are similar in different aspects and shares 

some challenges like ownership, privacy and security. In both of these models service 

provider is not the owner of the computation resource. Therefore the hosts are not trusted. 
In the same time host is concerned about its own data privacy and security.

In volunteer computing in order to protect the host privacy, computation will be inside 

a sandbox that prevents accessing host’s data. This protects hosts from viruses and Trojan 

horses that might try to steal or destroy their data. Thus, potential hosts can feel safe about 
privacy and security of their data during the computing time.

2.6 VEHICULAR CLOUDS

As mentioned in Section 2.1, cloud computing concept has been very successful in 
providing and utilizing computing resources.

We believe in a near future vehicles on the roads, streets and parking lots will be 
considered for potential computing resource that can be organized and utilized by third 
party to provide computation resources. These vehicles everyday spend hours in parking 
lot or driveway and during these hours, their computational and storage capabilities are 
wasted. These features make vehicles interesting resource to be considered as computation 

node. We envision that by giving right incentives, the owner of cars are willing to rent 
out their on-board computation device. For example traveler can park and plug their car 
in airport parking lot when they are on travel. Vehicles can use the airport facility as a 
resource of electricity power to run the computation. Also vehicles can have access to 

parking garage data-center. In the similar scenario vehicles that are stuck in traffic jam  
can use their computation power to manage the traffic through collaborating in running 

complex simulation designed for traffic control. For example this storage can be rented by 
data-center manager. Another example is to use the storage in content delivery and p2p 

applications where a file is decomposed into several blocks distributed across nodes of the 
network and interested users need to collect different blocks to reconstruct the file.

2.6.1 SERVICE TYPES

Vehicular cloud computing can provide at least two types of services: Storage and 

Computation service.
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Storage as a Service

Vehicles with additional storage capacity can participate in storage service. Because of 

the low cost of storage, it is predictable that computers on cars will have multiple Terabytes 

of storage attached to them. Because of the available space in cars, accommodating a hard 

drive is possible easily. The available storage can be used by many application in the cloud.

Computation as a Service

Vehicle that are computation nodes can be used to execute distributed scientific com­

puting. These distributed resources can be used to run large-scale tasks. This task can 
range from community-based initiatives, such as Wikipedia, Delicious, Slashdot to open 
source software development project or it can be used to provide on-demand computation 
to individual like Amazon EC2.

2.7 SECURITY AND PRIVACY

One of the main concerns in shared resources is privacy and security which is the case 
in vehicular cloud. In vehicular cloud, security and privacy of both vehicle’s owner and 
user who uses the rented vehicle must be protected.

Virtualization technique is able to address these privacy concerns [40-42]. In this 
regard, virtualization refers to a concept in which access to a single underlying hardware is 
controlled so multiple guest operating system can share that single piece o f hardware, with 
no guest operating system being aware that it is actually sharing anything at all. Therefore 

by using virtualization many customers at same time can rent on-board computation power 
in a vehicle and none of them can violate the privacy and security of each other or vehicle 
owner. This will protect both privacy and security o f all the users on the system. A number 
of successful virtualization vendors exist today including, among others, Citrix [43] and 

VMWare [44],

2.7.1 ATTACKS IN VEHICULAR CLOUD

Vehicular clouds are more subject of failure because of their nature. Failure are usually 

caused by crashing node or leaving cars. Beside the unintentional faults that can be caused 

by data loss or corruption due to faulty network links or faulty processors, there could be 

intentional faults. This type of fault can be caused by malicious nodes submitting invalid 

data. This type of attack where nodes submit invalid results intentionally is called sabotage.
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Dishonest user may try to get paid just by returning random numbers instead of doing real 
work. In this case dishonest user will create error in the system not only by submitting 

incorrect results also by propagating error that will affect other computations.

Another type of attack is when users steal information from data that are given. This 
type of attack is called espionage. In this case one company may get access to its competi­
tor’s data by spying as a computation node.

Protecting against malicious users is very difficult. Possible ways of addressing this 

problem includes using cryptographic techniques such as digital signatures and check­
sums to protect against volunteers sending back random results, encrypted computation 

to protect against espionage and attempts to forge digital signatures and checksums, and 
periodic obfuscation (i.e., instruction scrambling) techniques to simulate encrypted com­
putation when it is not possible.

Cryptography is a solution that has been proposed protects computation against ma­
licious users. Cryptographic techniques include digital signatures and checksums. Other 

data integrity evaluation techniques also have been presented by researchers [45], In cases 
that these methods are not applicable, redundant computation can be used. In redundant 
computing we give the same task to more than one computation node, and have them to 
vote on correct answer. Researchers have shown that redundancy reduces error rates ex­

ponentially [46], In traditional fault-tolerance technique, malicious users may be able to 
crack the code and create valid checksums for invalid results. But redundant computation 
can be used even in the presence of malicious users.

2.8 EXAMPLES OF VEHICULAR CLOUDS

In this section we demonstrate the power of Vehicular Cloud concept. We discuss 
several possible instances of Vehicular Clouds that use the computing power of vehicles in 
parking lots.

2.8.1 A DATACENTER AT THE AIRPORT

Long-term parking lot in airport where cars are parked for days while their owners are 

on travel is a good potential for vehicular cloud. The airport can provide Ethernet con­

nection (e.g., 100 Megabit Ethernet, 1G, or even 10G Ethernet connections) and power 
source (e.g., regular power outlet) to parked vehicles. Travelers that allow their vehicle 

to participate in airport vehicular cloud will share their travel plans (e.g., their departing 
and arriving flights), making it easier for the airport to schedule the existing resources.
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By having the schedule of travelers, the long term parking lot at the airport offers a rela­

tively stable, long-term availability of resources. Finding parking spot in airport long term 
parking lot has always been a challenge because most of the time they are full. Having a 

parking lot full of cars indicates that the amount of resources is likely to be plentiful. We 

expect that in near future the computation resources in different airport parking lots can 
be joined together to make more stable environment in term of computation resources. In 
this case vehicular cloud will have the excess capability of any cloud. In return owner of 

vehicles who participate in computation as a computation node will get free parking spot 
with other pecuniary advantages.

2.8.2 DATA CLOUD IN PARKING LOT

The next example of vehicular cloud is the following: consider a company or univer­

sity with 500 employees. Since 90% of Americans drive to work [47] we expect that at 
least 350 vehicles be in the parking lot. Company or university by providing appropriate 
incentives can rent employees vehicle as computation nodes in daily, weekly or monthly 

bases. In this case company or university instead of renting computation services from 
outside, it could use the under utilized resources o f employee in its parking lot with great 
price. In this scenario the architecture of the vehicular cloud will be almost identical to 
the architecture of a conventional cloud, with the additional twist of, perhaps, limiting the 
interaction to weekdays.

2.8.3 DATACENTER AT THE MALL

Every day many people spend many hours in shopping center. Based on US statistics 
in 2008 that performed on teens, 95% of shoppers spent more than one hour at the mall 

while 68% of them spent more than two hours [48]. Therefore hundreds of thousands of 

customers spend many hours in mall and shopping center while their vehicle is parked 
and its computation is left under-utilized. These under-utilized resource can be used and 
provide IT services. The mall can manage these resources by giving incentives to car 

owners.

2.8.4 SPECIAL EVENT MANAGEMENT

Based on the statistics every year in US 24,000 special events are planed. These events 
include concerts, sport activities and festivals where the number of attendance is greater
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than 10,000 people. These events cause between 93 and 187 million hours of travel delay 
and between $1.7 and $3.5 billion in additional travel costs [49,50].

Owner of these cars that attend these events and park in the parking lots nearby will be 

more than willing to allow their cars to participate in vehicular cloud set up by either the 
municipality or the event organizers in return for free parking. Those cars can use their 
computing resources and offer additional computing power that can be used to dispersal 

schedules from the event, or develop alternative traffic flow control strategies in response 

to incidents or changes in desired departure times from an event.

2.9 SUMMARY

In this chapter we discussed research areas that are related or similar to vehicular cloud 
like, cloud computing, vehicular network, volunteer computing. Vehicular cloud and tra­

ditional cloud have many common challenges. Therefore most of the solutions that have 
been proposed for traditional cloud can be used in vehicular cloud. But the main difference 
between vehicular cloud and traditional cloud is in resource availability. We present fault 
tolerant strategies in Chapters 4 and 5 to overcome this problem.

In this chapter, we discussed how VANET can be used in creating mobile vehicular 

cloud. We also mentioned the privacy and security challenges in vehicular cloud that are 
in common with volunteer computing. Finally we presented several examples of vehicular 

cloud like data center in airport and mall.
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CHAPTER 3 

JOB SCHEDULING IN DETERMINISTIC ENVIRONMENT

3.1 INTRODUCTION

Traditional cloud includes large numbers of servers. These servers are established in 
cloud infrastructure and are available to provide service anytime unless there is a failure. 

Failure can be from software or hardware. In other words traditional cloud has static 
environment in term of computation power unless there is a failure. In contrast VC has 
dynamic computation nodes. Vehicles which are the computation nodes can arrive or 
depart any period of time which makes VC a dynamic environment in terms of computation 

power. Random arrival and departure of vehicles may interrupt the jobs that are running. 
In this chapter we present a model for scheduling in VC that prevents interruption in job 
execution. This model is based on migration.

The remainder of this chapter is organized as follows. In Section 3.2, we describe 

migration and different scheduling approaches. In Section 3.3, we present our approach 
with an example. Section 3.4 gives the details of implementation and experiment result. 
Conclusions is given in Section 3.5.

3.2 RELATED WORK

3.2.1 SCHEDULING

Scheduling problem has been a topic for computer science operations research from 

mid-twentieth century. Job scheduling problems are defined as allocating limited resources 
to jobs in order to optimize the objective function.

In terms of computational complexity, most of the job scheduling problems are clas­
sified as NP-hard problems. NP-hard problem can be solved in polynomial time using a 

non-deterministic Turing machine.
Different solutions have been presented for scheduling: artificial intelligence, priority 

rules, heuristic algorithms (e.g., GA, PSO, etc) and operational research which includes 

simplex method, cutting plane, branch and bound [51].
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Operational Research

In operational research method, problem is separated from solving algorithm. Prob­

lem should be defined based on mathematical model and solving algorithm (e.g., simplex 
method) is used to solve the problem.

Priority Rules

There are different types of rule-based algorithms like First Come First Service 

(FCFS), Shortest Processing Time (SPT), Longest Processing Time (LPT). Some o f these 
algorithms have been used in CPU scheduling. Priority rules are efficient in terms of ex­
ecution complexity but in some of the large and complex environment optimal solution 
can not be found by using priority rules [52]. Priority rules are extracted based on analyz­

ing different experiments. Therefore efficiency of the rules depends on the experiments, 
priority rules cannot be adapted to all environments [53].

Heuristic Algorithms

Heuristic algorithms have been developed based on the biology principles [54], Based 
on these principle solutions should evolve during each generation. Evolution of the solu­
tion leads to optimal or near optimal solution. Genetic algorithm (GA) [55], taboo search 
algorithm [56] and simulated annealing algorithm [57] are examples of heuristic algo­
rithms.

Artificial Intelligence

Neural Network and constraint programming are examples of artificial intelligence 
scheduling method [58]. One of the advantages of artificial intelligence method is consid­
ering the changes in environment and responding to these changes.

There are combined methods which apply two different scheduling algorithms like 

priority rules and heuristic algorithms in order to create an efficient scheduling algorithm.

In our approach we use linear programming model that belongs to operational research 

class.

3.2.2 LINEAR PROGRAMMING

Linear programming has been introduced in early mid-20th century [59] and is highly 

structured mathematical model. In this model objective function and constraints are linear.
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Each constraint can be a linear equality or inequality. Objective function is a mathemat­
ical function of decision variables that measures the performance of the solution. Based 

on the decision variables, model can be classified into linear programming, integer linear 

programming or mixed integer linear programming. In linear programming [59] decision 

variable are non-integers. Integer programming is another version of linear programming 
that decision variables are integer values. The model that some of the decision variables 

are integer and some of them are non-integer is called mixed integer programming. Both 

integer programming and mixed integer programming mathematical models are linear pro­
gramming model.

In linear programming solving algorithm and problem model are separated form each 

other. In other words by changing the problem model, there is no need to change the 
solving algorithm. This feature makes linear programming a flexible approach. Different 
version of problem can be defined by adding or modifying the equations without changing 
the solving algorithm.

3.2.3 MIGRATION

In a typical vehicular cloud (e.g. airport parking lot) vehicles arrive and depart in dif­
ferent period of time. As we mentioned vehicles are the computation resources in vehicular 
cloud. Therefore computation resources are dynamic in terms of availability. In order to 

handle the interruption which is caused by vehicle’s departure, we use migration. In VC 
migration is a process of transferring a job from one vehicle to another vehicle or server.

We present an approach for job scheduling in dynamic environment in terms of com­
puting resources. Our model is based on mixed integer linear programming. In our ap­

proach, we use live migration in order to transfer VMs to different physical machines. In 
our model each vehicle is physical machine or computation node.

3.3 OUR APPROACH

3.3.1 PROBLEM DEFINITION

Our scheduling problem can be defined as a parallel machine scheduling. In this type of 

problem, jobs are assigned to several parallel identical machines. This type o f scheduling 
includes combination and permutation. Permutation is assigning jobs to machines and 

combination is for defining different sequence of jobs on each machine. There are m
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identical parallel machines and n jobs with known processing time.

This work investigates a job scheduling problem involving non-preemptive tasks with 
known processing time where job migration is allowed. In non-preemptive task, once a 

task has been given the resource it cannot be taken away from that task. Assigning a job to 
resources is valid if job has been executed fully and continuously (no interruption). A job 

can not be executed in parallel. In this work resources are dynamic in terms of availability.
In our approach, the determination of an optimal job schedule can be formulated as 

maximizing the utilization of VC and minimizing the number of job migrations. Uti­
lization can be calculated as a time period that vehicles have been used as computation 
resources.

3.3.2 0-1 MODEL DESCRIPTION

In this model we define a decision variable Xijk. i is the index for jobs, j  is the index 
for hour slots. Each parking spot has an ID and k is the index for parking spots in parking 
lot. Xty  value is 1 if job i has been assigned to a vehicle in parking spot k at time slot j.  
Otherwise value for is 0. In this model parking lot has constant number of parking 
spots. The first part of the objective function for this model is the following:

' E X ijk*(PMAX)jk (1)
ijk

PMAX is a matrix that shows the parking occupancy. Each element of this matrix can have 
value either 1 or -1. Value 1 means that a vehicle will be available as a computation node 
in parking spot j  and hour slot k. Value -1 means in parking spot k and hour slot j  vehicle 
is not available. Constraint 2 is for defining that each parking spot in a specific hour slot 
can not have more than one job.

Y/\* <  l (2)
i

Di is the duration of job i. Constraint 3 shows that a job will be assigned to resources if it 
is executed fully. Otherwise it will not be assigned.

Vi £ x ,y k -  Di *y, = 0 (3)
j,k

_y, is for implementing OR operator and can have value 0 or 1. Constraint 4 shows that a
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job can be executed only on one parking spot in specific hour slot (no parallelization).

V U  £ * ; , * <  1 (4)
k

Constraint 5 determines the starting time of job i.

Vi,j ,  k Xijk * Si < j  * Xijk (5)

Si is starting time for job i.
Starting time of jobs are used in constraint 12 to avoid interruption in job execution. Con­

straint 5 is not linear constraint. We replace a set of linear constraints that enforce con­
straint 5. Followings are constraints that are used to replace constraint 5. We define a new 
variable Wijk that replaces the product of two variables Xijk and S, .

Wijk =  X iJk*Si  (6)

Wij k - X i j k * j < 0  (7)

Wi jk - X iJk* N H S < 0  (8)

Wijk- S i <  0 (9)

S i - N H S  +  N H S * X i j k - W i jk < 0 (10)

w i j k > 0  ( 11)

N H S  is number of hour slots.

Following constraint is for executing the units of job continuously.

Vi * j  -  SiDi = 0 .5(D,)2 -0 .5 D , ( 12)
j,k

Equation 13 is second part of objective function. In our model we minimize equation 13 
in order to minimize the number migrations.

Vi ]jT (Maxi — Mini) (13)

Maxi is the variable that defines the parking spot with the highest ID number which has 

been assigned to job i. Min -, is the variable that defines the parking spot with the lowest
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ID number which has been assigned to job i. In second part of objective function we try 

to minimize the distance between Max,- variable and Min,- variable. By minimizing the 
second part of this objective function, number of the parking spots that have been assigned 

to job i will decrease. This will decrease the number of migrations. In other words a job 
tends to be executed on minimum number of parking spots. Here we define the Mm, and 
Max[.

Mini *Xi jk< X ijk*k (14)

Maxj *Xi jk > X ijk*k (15)

Constraint 14 will enforce the definition of lowest parking spot ID to Mim- Constraint 15 
will enforce the definition of highest parking spot ID to Max,. Since constraint 14 and 
15 are not linear we define a set of constraints to convert constraint 14 and 15 to linear
constraints. We define a new variable Qijk that replaces the product of two variables X,jk

and Mini. Following are the constraints for converting constraint 14 to linear constraint:

Qijk = Xijk* Mim  (16)

Q i j k - X i j k * k <  o (17)

Qi jk  —X i j k *NM  <  0 (18)

Q i j k - Mim < 0  (19)

Mim — NM  + N M  * X i j k ~  Qijk <  0 (20)

Qi jk  >  0 (21)

NM  is number of machines.

We define a new variable Rijk that replaces the product of two variables Xjjk and Max,-.
Following are the constraints for converting constraint 15 to linear constraint:

Rj jk Xjjk * Maxj (22)

—Rijk + X ijk *k < 0 (23)

Rijk — Xjjk *NM < 0 (24)

Rijk — Maxi < 0 (25)
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Job's Specification: Arrival Time, Computation Time

Time Axis

Fig. 11: Scheduling 0-1 Model (Jobs’ Specification)

Maxi — N M  +  N M  * <  0 (26)

Rijk > 0 (27)

3.4 IMPLEMENTATION AND EXPERIMENT RESULTS

We implemented the proposed MILP model in Matlab and utilized the Gurobi opti­
mization [60] through its Matlab interface to solve the scheduling problem in VC. Our 

model prevents interruptions that may occur due to departure of vehicles by using live mi­
gration. Figure 11, 12 and 13 shows a scheduling problem for nine jobs. Figure 11 is job 

specifications that shows duration of each job. Figure 12 shows the occupancy of three 
parking spots during ten hours. Color red defines that there is not vehicle in that parking 

spot for that specific hour. Figure 13 is the output of the scheduling model for jobs con­

sidering three parking spots during ten hour slots. Jobs are distinguished by their ID that 

are shown in Figure 13. Zero means there is no job assigned to that parking spot in that 

specific hour slot. Result in Figure 13 shows that there is a migration for the job with ID 

two at the end of hour slot eight from parking spot two to parking spot one.
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Resource's Availability: Available (White), Not Available (Red)

oQ.in
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Time Axis

Fig. 12: Parking Occupancy Model

Schedule of Accepted Jobs

Fig. 13: Scheduling 0-1 Model (Result)
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3.5 CONCLUSION

In this chapter we presented a scheduling model for vehicular cloud established in 
parking lot. We assumed that the arrival and departure of cars are known. This scenario 

happens in environments like university and hospitals that employees should be present at 
work with known schedule. In this case university or hospital can rent out its employees’ 

car as a computation resource to provide IT services as a vehicular cloud. Known schedule 
creates a deterministic environment in terms of resource availability.

Our model is based on Linear Programming. In Linear Programming, model is sepa­
rated from solving algorithms. Model can be changed easily with changing the constraints 
without need to change the solving algorithm. This will allow to present different version 
of the problem in terms of degrees of freedom.

In our model, we assumed that jobs are non-primitive tasks with known duration times. 
In non-preemptive task, once a task has been given the resource it cannot be taken away 
from that task. We defined the model based on linear constrains. Departure of cars will 
cause interruption in executing jobs. In our model in order to prevent interruption, we 
allow migration. Migration is transferring virtual machine from one physical machine to 
different physical machine. Our model minimizes the number of migrations and maxi­
mizes the resource utilization. Simulations results have shown that our model provides 

optimum and near optimum job schedule.
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CHAPTER 4 

FAULT-TOLERANT JOB ASSIGNMENT

4.1 INTRODUCTION AND MOTIVATION

A fundamental way in which VCs differ from conventional clouds is in the ownership 
of resources. In VCs the ownership of the computational resources is distributed over 

a large population, as opposed to a single owner as in the conventional clouds run by 
Amazon, Google, IBM, etc. A corollary of this is that the resources of the VC are highly 
dynamic as cars may leave unexpectedly. Thus, any job assignment will have to feature 
some form of fault tolerance.

Fault tolerance was a perennial concern in distributed systems and many solutions have 

been proposed over the years. Fault tolerance remains a crucial issue in cloud computing 
and a substantial number of papers have proposed solutions for static environments [61— 
65],

One of the classic solutions is referred as checkpointing, where the state o f the com­
putation is saved periodically and the most recent such image is used to roll back the 
computation in the case of a system failure. Unfortunately, this kind of roll-back recov­
ery is very expensive to implement in VCs because, among others, of the low bandwidth 

connections. Consider a vehicular cloud established in parking lot, with typical approach 
periodic checkpoints should be saved on a central server. In this approach vehicles should 
communicate with server to save the checkpoints. Interaction of large number of nodes 
with server in same time to save checkpoints will cause low bandwidth connection prob­
lem.

In this chapter, we propose to make job assignment in VC fault tolerant by using a 

variant of the checkpointing strategy. Rather than saving the state of the computation at 

regular times, the state of the computation is only recorded as needed. Also, since we 
do not assume a central server that stores checkpointed images like conventional cloud 
providers do [43,44], in our strategy checkpointing is performed by a car and the resulting 

image is stored by the car itself. Once the car leaves, the image is lost. We consider two 

scenarios: in the first one cars do not leave during checkpointing; in the second one cars 
may leave during checkpointing, leading to system failure.
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Our main contribution is to offer theoretical predictions of the job execution time in 
both scenarios mentioned above. A comprehensive set of simulations have shown that our 
theoretical predictions are accurate.

The remainder of this chapter is organized as follows. In Section 4.2 we briefly survey 
relevant work on vehicular clouds; in Section 4.3 we state the main contributions of this 
work. Next, Section 4.4 offers the details of our fault-tolerant job assignment to cars. Sec­

tion 4.5 discusses the scenario where cars do not leave during a checkpoint operation and 

offers analytical performance predictions in this case. In Section 4.6 we allow cars to leave 
during a checkpoint operation, leading to a system failure. We also offer theoretical per­
formance predictions in this general case. Section 4.7 introduces our simulation model and 
presents an empirical performance evaluation of our fault-tolerant job assignment scheme 
through extensive simulation. Finally, Section 4.8 offers concluding remarks.

4.2 RELEVANT PREVIOUS WORK ON VEHICULAR CLOUDS

In order to be able to schedule resources and to assign computational tasks to the 
various cars in the VC, a fundamental prerequisite is to have an accurate picture of the 
number of vehicles that are expected to be present in the parking lot as a function of time. 
What makes the problem difficult is the time-varying nature of the arrival and departure 
rates. Quite recently, Arif et al. [4] have proposed a stochastic prediction model for the 

parking occupancy given time-varying arrival and departure rates. They provided closed 
forms for the probability distribution of the parking lot occupancy as a function of time, 
for the expected number of cars in the parking lot and its variance, and for the limiting 
behavior of these parameters as time increases. In addition to analytical results, they have 

obtained a series of empirical results that confirm the accuracy of the analytical predictions.

4.3 OUR CONTRIBUTIONS

As mentioned before, the distributed ownership of the computational resources makes 

it very challenging to assign, with any degree of confidence, jobs to resident vehicles. To 

get a feel for the problem, assume that we just assigned a job to a car currently in the 
parking lot. If the car stays in the parking lot until the job terminates, all is well.

The difficulty arises when the car departs before job completion. In such a case, un­

less we take special precautions, the entire work done is lost and we have the restart the 

entire process again, taking chances on another car, and so on until eventually the job is 

completed.
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One possible solution is to set up a checkpointing strategy: this is a policy that pre­
scribes making periodic copies of the state of the computation in such a way that rollback 

recovery can be used in the case where the car currently running the job leaves. While 

simple and intuitively satisfying, this first solution is very difficult to implement efficiently. 

One of the main reasons is that most of these checkpoints are, in fact, unnecessary reducing 
dramatically the efficiency of the vehicular cloud.

In this work we explore a trade-off. Specifically, we assign each job to two cars and 

take a checkpoint only when one of the cars leaves the parking lot. As it turns out, this 

strategy is quite efficient in terms of resource utilization and also competitive in terms 
of the expected throughput. Extensive simulations have confirmed the accuracy of our 

theoretical predictions.

4.4 THE JOB ASSIGNMENT STRATEGY J2

Our main goal is to provide a theoretical analysis of the expected job completion time 
in a VC environment. Consider a vehicular cloud set up in the parking lot of an inter­

national airport. We assume that, due to high demand, the parking lot is almost always 
nearly full and, in particular, it is always possible to find two cars that can be assigned to 
an incoming job. We assume that, at any moment in time, a car is assigned at most one job 
and a job is assigned to at most two cars.

Job Assignment Strategy J2: Each job is assigned to two cars selected, at random, from 
the available cars. When one of the cars departs, the remaining car undergoes a checkpoint 
period during which its state of the computation is saved; the saved state is then copied to 
a new car and the job is restarted on both cars.

Refer to Figure 14 for an illustration. Here, the job is started, initially, on cars A and 
B. When car A leaves, the computation on car B is checkpointed. Once the checkpoint 
terminated, the job is restarted on cars B and C. At some point, car C leaves. Again the 
computation on car B is checkpointed and the job is restarted on cars B and D. When car 

B leaves, the computation on car D is checkpointed and the job is restarted on card D and 
E. Finally the job terminated before cars D and E leave the parking lot.

4.5 W HEN CHECKPOINTS DO NOT FAIL

We begin by analyzing the simplest case where cars do not leave during checkpointing. 

While unrealistic in general, this scenario occurs predominantly when checkpoint duration 
is short with respect to car residency times. Our goal is to compute the expected job
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Fig. 14: Illustrating the job assignment and checkpointing strategy.

completion time, including the duration of all checkpoints, in this case.

Here is a list of assumptions we make: The residency time of cars are independent, 
identically distributed exponential random variables with parameter A >  0. In the absence 
of migrations, the execution time of each job is a random variable T  with distribution 
function G and finite expectation E[T\ <  °o.

Let there be N  checkpoints of durations X\,  Xj, • • ■, Xn  where N  is a random variable 
that will be discussed shortly. The X, ’s, (1 < i < N ) ,  are independent identically distributed 
(iid) random variables with a common distribution F  and finite expectation, E[Xk] = p  < 

oo for k — 1,2, • • •. Let J  be the random variable that keeps track of the total expected 
execution time of the job, including the duration o f all checkpoints, if any. As already 
mentioned, our goal is to evaluate E[J}. In this section we assume that cars do not leave 
during the checkpointing operation.

It is intuitively clear that the number N  of checkpoints is a function of the duration T  of 
the job: the larger T, the more checkpoints are likely to be involved in the execution. The 
following technical results will be used at several places in the remainder of the chapter. 
In particular, it will be useful to establish the relationship between T and N.

Lem m a 4.5.1. Let X and Y be independent, exponentially distributed random variables 
with parameter X. The random variable Z  =  min{X, Y } is exponentially distributed with 
parameter 2X.

Proof. For z > 0 we write

Pr[Z >  z] =  Pr[min{X, Y } > z]

=  P r[{ K > z } n { F  >z}]

=  Pr[X >  z] Pr[F >  z]
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and the proof of the lemma is complete. □

Lemma 4.5.1 tells us that the inter-arrival time of checkpoints is exponentially distributed 

with parameter 2A and so the the conditional distribution of the random variable N , given 

that {T  =  /}, is Poisson with parameter 2Xt. In other words, for all natural number n

Pr[N =  n | T  =  t] =  W £ L e - 2Xt.

To get a handle on the probability mass function of the number N  o f checkpoints, we 
evaluate Pr[JV =  n] by conditioning on T :

Pr[N = n) = [  Pr[JV =  n | T = /] dG(/)
Jt=o

Jo n\
(28)

We are now in a position to reveal the relationship between N  and T. We proceed as 

follows:

oo

E W\ = £nPr[A ^ =  n]

Jo n

Jo " o  n\

JO „_1 ( « - ! ) !
/»oo

2A /  te~2Xte1Xt <\G(t)
Jo
J y»00

' /dG (0
o

=  2A

=  2A

=  2 XE[T}. (29)

Next, we are interested in the expected total time spent taking checkpoints (and, of course, 

restarting the job after checkpoints). For this purpose, we need to evaluate the expectation
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E[X\ + X2 H KA'jv]. By the law of total expectation we have

E[Xx 4- X2 +  ■ • ■ +  Xyv]
00

=  £  E[X\ + X 2 +  • • • + X v | A =  n] Pr[)V =  n]
n=0

=  E[Xx+ X 2 + -- -+Xn)?r[N = n\
00

=  £ n E [X ]P r[A  =  n]
n=0

OO

=  E[X] £ n P r[W  =  n]
n = 0

=  E[X]E[W] (30)

where, recall, E\X\ is the expected duration of a checkpoint/restart operation.

Finally, we can write

E[J] =  E [ T + X x+ X 2 + --- + Xn ]

= E[T] + E[Xx+ X 2 + - - -+ Xn )

=  E [r] +  E[X]£[JV] [by (53)]

=  E[T]+2XE[X]E[T] [by (52)]

=  E [ r ] ( l  +  2A.E[X]). (31)

Observe that the distributions of T  and X  only occur in (31) through their first moment. 
This tells us that our result holds for a large number of distributions that share the same 
first moment.

4.6 THE GENERAL CASE

In this section we allow cars to leave while the checkpoint operation is in progress. 

Evidently, in such a case the checkpoint will not complete successfully and we say that 
a system failure occurs. The only way to recover from system failure is to restart job 
execution from scratch.

We inherit the notation and terminology from the previous section. In particular, N  is 

the random variable that counts the number of checkpoints that occur during the execution 

of a job. We model the general case as a Markov process with states 0, 1, • • • , N, such 

that



Fig. 15: Markov Process
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Fig. 16: Illustrating the proof of Lemma 4.6.1.

• the process is initially in state 0 ;

• the process returns to state 0 upon a system failure;

• the process is in state i, (1 < i  < N ) ,  when the first i checkpoints were all successful;

• state N  is absorbing.

Recall that car residency times are iid exponential random variables with parameter X 

and that checkpoint duration is a random variable with distribution function F  and finite 
expectation p..

Lemma 4.6.1. The probability o f  a successful checkpoint is

Proof  Consider what happens when a checkpoint operation is started and refer to Figure 

16. Let X  be the random variable that denotes the duration of the checkpoint and let Z be 
the residual life of the residency of the car that is running the checkpoint operation. For the

(32)
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checkpoint to be successful, the event {X < Z}  must occur. Conditioning on the duration 
of the checkpoint, we write

since it is well known that the residual life of the residency times is exponentially dis-

In order to evaluate the expected job completion time in the presence of system failures, 

we need to define the following costs, that reflect the time elapsed from the previous restart 
in state 0 until the current system failure.

To understand the cost structure, it is important to be able to assess the expected time 
that the process spends in each state until a successful transition to the next state. Indeed, 
having reached state i, the process spends an expected + H until it makes the transition 
to state i +  1. To see that this is the case, observe that, by Lemma 4.5.1, the expected 
time until the first car leaves is ^  to which we add the expected duration of the successful 
checkpoint.

Let us turn to the cost of a system failure. As will be seen shortly, the cost of a system 
failure depends on the state in which the failure occurred. Specifically, a system failure 
that occurs while the process is in state:

• 0 has associated cost This is because the expected time of the system failure 

must be In the previous expression, is the expected time until one
of the cars left and checkpointing was stated, while j  is the expected departure time 
of the remaining car. Observe that in the case of a system failure is smaller that

tributed with the same parameter A. This completes the proof. □

j ,  {j  >  1), the cost consists of

the cost of j  successful checkpoints, i.e. ( 2X +  m) plus 

the cost of an unsuccessful transition, which, as we saw is
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Thus, the cost of a system failure that occurs while the process is in state j  is

Let J  be the random variable that keeps track o f the total time to complete the job in 
the presence of system failures. E[J] has the following components

• E[7’](1+ 2A /i)/A  -  the expected completion time when no system failures occur. 
Indeed, as we saw in Section 4.5 E[T}{\ + 2A /i) is the expected job completion time 
if no system failures occur. Since there are N  transitions that can fail independently, 
the probability of this is p^\

• ( +  £[7]) (1 — p) -  the expected job completion time in the case of a failed tran­
sition from state 0  to state 1;

• t !j={ [(2X+A*). /+  53- +  £[./]] pj(  1 — p) -  which is the summation of the expected 
job completion for each j  where the transition from state j  to j - f  1 fails, while the 
previous transitions were all successful.

To simplify the notation, we let q denote 1 — p. In this notation, we write

=  E [ T ) { \ + 2 l i i ) p N + ^ q  + E{J]q

(33)

Tedious, albeit straightforward computations confirm that

• E)=i‘ ( 2I  +  /1) j> - '« =  ( i + # i ) £lf ^ r ) - ( 2x + p ) A V v

• E ^ ' ( a :  +  Ei-'])pJ9 = a : ( 1 - P A' ) + £ W ( | - p " )



Upon replacing these expressions in (33) we obtain

E[J] =  E [ T} ( \ +2Xn) pN + [ ^ -  + n
2A

p ( l ~ p P )
1 - p

N pN

+ 2A

After a number of elementary algebraic manipulations, we obtain the following ex­
pression for £[7],

m

+

E [ T } ( l + 2 X p ) - ^ —  + p ) N

_L , u\  p(1 ~pn) , _LIz l l
2A J  pN ( l —p)  2A pP (34)

We claim that as N  -» £[ATJ

0 .

To see that this is the case, recall that by (29) £ ,[A] =  2XE[T).  Since E[iV] is finite, the 
values of N  are concentrated around E[N}. thus, as N  approaches E[N],

1
E [ T } ( l + 2 X p ) - ^  + p ) N  

£ [T ](1 + 2 k n )  -  £ [ r ] ( l  +2A/I) =  0

With the previous observation, (34) yields the approximation
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4.7 SIMULATION RESULTS

In addition to the theoretical models developed in Sections 4.5 and 4.6 we have eval­
uated the performance of our fault-tolerant job assignment strategy through an extensive 

set of simulations. The goal of this section is to report on our experimental results and to 
show that they closely match the theoretical predictions obtained previously. Specifically, 
Section 4.7.1 presents the details of our simulation model used to generate the various 
diagrams. Later, Section 4.7.2 summarizes our findings in the form of various diagrams.

4.7.1 SIMULATION MODEL

In this subsection, we present the details of our simulation model. We assume a large 
parking lot, similar to a typical parking lot in the downtown area o f a large city. Car 
residency time are assumed to be exponentially distributed with parameter A. In our sim­

ulation A varied between |  and | .  Since the expected residency time is given by j-, our 
choice corresponds to cars spending, on the average, between three and eight hours in the 
parking lot. Also, we assumed that the number of available cars are sufficiently large, so 
that upon one car departing, a substitute could be found without delay.

Jobs durations are exponentially distributed random variables with parameter y. In our 
simulation y  varied between 5 and 5 .

Upon one of the car assigned to a job departing before job  termination, the remaining 

car enters a checkpoint. Individual checkpoint duration is a function of the amount of data 
that needs to be stored and is taken to be exponentially distributed with parameter fl. This 
means that the average duration of a checkpoint is We experimented several scenarios, 
with average checkpoint durations o f 10 minutes.

This model was developed in MATLAB 7.14. In each o f the experiments, a job with 

one of the parameters described above was submitted to the Vehicular Cloud and the dura­
tion of job executed recorded. The same experiment was then repeated 105 times and the 
average of these runs were plotted.

4.7.2 SIMULATION RESULTS

This section presents our simulation results performed in order to validate the analyti­

cal results obtained in Sections 4.5 and 4.6. We have performed several sets o f experiments 
that we now describe. In order to evaluate the impact of the various problem parameters
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discussed in Subsection 4.7.1 on the expected duration of job execution (including check­

pointing and, perhaps, system failure) we have conducted a number experiments corre­
sponding to the scenarios that we detail next.

In the first set of experiments, the model has been set up in such a way that system 
failures due to cars leaving during checkpointing will not occur.

• Scenario 1: In the first scenario we assumed that under ideal conditions (i.e. no 
checkpoints necessary), the average job duration is three hours. We further assumed 
an average checkpoint duration of 10 minutes;

• Scenario 2: In this scenario we assume that the average duration of the jobs are 3 
hours and the average checkpoint duration is 15 minutes.

• Scenario 3: In this scenario we assume that the average duration of the jobs are 3 
hours and the average checkpoint duration is 20 minutes.

• Scenario 4: In order to see the impact of longer job duration, in the second scenario 
we assumed an average job duration of five hours and an average checkpoint duration 
of 10 minutes.

• Scenario 5: In this scenario we assume that the average duration of the jobs are 5 
hours and the average checkpoint duration is 15 minutes.

• Scenario 6 : In this scenario we assume that the average duration of the jobs are 5 
hours and the average checkpoint duration is 20  minutes.

• Scenario 7: In order to see the impact of longer job duration, in the second sce­

nario we assumed an average job duration of eight hours and an average checkpoint 
duration of 10 minutes.

• Scenario 8 : In this scenario we assume that the average duration of the jobs are 8 

hours and the average checkpoint duration is 15 minutes.

• Scenario 9: In this scenario we assume that the average duration of the jobs are 8 

hours and the average checkpoint duration is 20  minutes.

The results of these scenarios are featured in Figures 17-25. In all scenarios described, 

the simulation results confirmed the accuracy of the theoretical predictions, the results 

being, essentially, indistinguishable.
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Fig. 17: Scenario 1. Illustrating Job Completion Time J2 Strategy Checkpoint Failure not 
Allowed

In the second set of experiments, system failure was allowed to occur, in other words 
cars were allowed to leave during checkpointing. Recall, that in the case of a system 
failure, the execution of the job has to be restarted from scratch.

In order to compare analytical results to simulation results, we consider two scenarios 
in the second set of simulations for Section 4.6:

• Scenario 1: In this scenario we assume that the average duration of the jobs are 3 
hours and the average checkpoint duration is 10 minutes.

• Scenario 2: In this scenario we assume that the average duration of the jobs are 5 

hours and the average checkpoint duration is 10 minutes.

Figure 26-27 are the comparison of simulation results and analytical results. Compar­
ison shows that analytical approach and simulation results are consistent.

4.8 CONCLUDING REMARKS

Vehicular clouds are motivated by the abundant computational resources in present-day 
vehicles and the fact that most of these vehicles are parked every day, for hours on end,
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Fig. 22: Scenario 6 . Illustrating Job Completion Time J2 Strategy Checkpoint Failure not 
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Fig. 24: Scenario 8. Illustrating Job Completion Time J2 Strategy Checkpoint Failure not 
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while their owner is working, shopping, travelling, etc. Given the huge number of vehicles 
on our roads and city streets, vehicular clouds are expected to have a huge societal impact.

In this chapter we have proposed a job assignment strategy in vehicular clouds and 

have analyzed its performance both analytically and by simulation.

Because of the random arrival and departure of cars, resource availability is highly 
unpredictable. Traditional approach like periodic checkpointing is not applicable because 
cars should be communicating with central server constantly in order to save checkpoint 

on server or copy the checkponit from server. In large computation system with hundreds 
of nodes, this communication is not possible or it creases high overload on system. We 
present an approach based on redundancy and checkpointing to handle this dynamic envi­

ronment. In our approach the checkpoint will be saved on the car rather than server. In our 
approach a job is assigned to two cars at random. Once one of the cars leaves, the other 
car saves the current state of computation as a checkpoint. Once the checkpoint is finished 
successfully, another car will be recruited. Job will be restated on both cars and the pro­

cess continues until the job is completed. We consider two cases. In first case we assume 
that car does not leave during checkpointing and in the second case we assume that car 
may leave during checkpointing which leads to failure in system. We present theoretical 
prediction of job completion time for both cases. Simulation results show the accuracy of 
theoretical prediction.
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CHAPTER 5 

MEAN TIME TO FAILURE

In Section 4.4 we presented J2 strategy for job assignment. In this chapter we propose 

another fault-tolerant job, J3, assignment strategy, based on redundancy, that mitigates 
the effect of resource volatility of resource availability in vehicular clouds. We offer a 

theoretical analysis of the mean time to failure of these strategies. A comprehensive set of 
simulations have confirmed the accuracy of our theoretical predictions.

5.1 INTRODUCTION AND MOTIVATION

One of the recognized metrics of fault tolerance is the mean time to failure (MTTF) 

defined as the expectation of the random variable that keeps track of the occurrence of a 
system failure. In this chapter, we investigate the MTTF for two natural job assignment 
strategies in VCs. Our main contribution is an analytical derivation of the MTTF for 
each assignment strategy. Extensive simulation results have confirmed the accuracy of our 

theoretical predictions.
The remainder of this chapter is organized as follows. In Section 5.2 we briefly survey 

relevant work on vehicular clouds; in Section 5.3 we state the main contributions of this 
work. Next, Section 5.4 offers the details of our two job assignments. Section 5.6 discusses 
the MTTF of the first job assignment strategy, while Section 5.7 discusses the MTTF 
of the second job assignment strategy. Section 5.8 introduces our simulation model and 
presents an empirical validation of our theoretical predictions. Finally, Section 5.9 offers 

concluding remarks.

5.2 RELEVANT PREVIOUS WORK ON VEHICULAR CLOUDS

5.3 OUR CONTRIBUTIONS

In this work we explore a trade-off. Specifically, beside the J2 strategy presented in 4.4 
we propose another job assignment strategy that we call it J3. In J2, we assign each job to 

two cars and take a checkpoint only when one of the cars leaves the parking lot. In J3, we 

assign each job to three cars as will be discussed in detail in Section 5.4. As an evaluation
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Fig. 28: Illustrating the J2 job assignment strategy.

of the degree of fault tolerance provided by our job assignment strategies, we will provide 
a detailed theoretical analysis of the mean time to failure o f each of J2 and J3. Extensive 
simulations have confirmed the accuracy of our theoretical predictions.

5.4 THE JOB ASSIGNMENT STRATEGIES

Our main goal is to provide a theoretical analysis of the MTTF in a VC environment. 
Consider a VC set up in the parking lot of an international airport. We assume that, due 
to high demand, the parking lot is almost always nearly full and, in particular, it is always 
possible to find at least two cars that can be assigned to an incoming job. We assume that, 

at any moment in time, a car is assigned at most one job and a job is assigned to at most 
two cars.
The J2 Assignment Strategy: We explained this strategy in Section 4.4. Figure 28 shows 
J2 strategy. For more details refer to Section 4.4.

The J3 Assignment Strategy: The J3 job assignment strategy is very similar to the J2 
strategy discussed above, except that each job is assigned to three cars instead of two. 
When one of the cars leaves, both remaining cars undergo a checkpoint period where they 

save the state of their respective states of the computation. When one of the remaining 

cars completes checkpointing, a third car will be recruited and the job will be restarted on 
all three cars using the saved image. On the other hand, if one of the cars leaves during 

checkpointing and the remaining car successfully completes checkpointing then two cars 

will be recruited and the job will be restarted on all three cars using the saved image. In 
the case where the checkpointing operation does not complete successfully, because both 

cars leave, a system failure is said to occur.

Intuitively, the strategy J3 is more fault tolerant than J2. In many practical applications 

where, in addition to fault tolerance, reliability is a major concerned and the result of the 

computation is accepted on the basis of voting [46,66-68], J3 is a good candidate. On the
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other hand, J2 has a higher throughput and could also be used in a voting system.

5.5 BASICS

In the remainder of this chapter we shall assume that car residency times are indepen­

dent, exponentially distributed random variables with parameter X and finite expectation. 

We assume that the duration of checkpoints are independent identically distributed random 
variables with distribution function G and finial expectation. We further assume that the 
duration of checkpoints is independent of the residency time of cars.

Cars may leave while a checkpoint operation is in progress. Evidently, in such a case 

the checkpoint will not complete successfully and we say that a system failure occurs. The 
only way to recover from system failure is to restart job execution from scratch.

Lemma 5.5.1. Let X  and Y be independent, exponentially distributed random variables 

with parameters X and p., respectively. The random variable Z  =  min{X,F} is exponen­
tially distributed with parameter X +  p.

Proof. For z > 0 we write

Pr[Z >  z] =  Pr[min{X,T} >  z]

=  Pr[{X >  z} n  {Y > z}]

=  Pr[X >  z] Pr[T >  z]

=  e~Xze~^z =  e~(X+^ z

and the proof of the lemma is complete. □

5.6 THE M TTF FO R TH E J2  STRATEGY

The main goal of this section is to determine the MTTF corresponding to the J2 job 

assignment strategy. Imagine a long-lived job that is running, initially, on two cars, say 

Ci and C2 . We adopt the convention that a newly recruited car takes the identity of the 
departed car. For example, imagine that car C2 just departed and that car C\ is running 

a checkpoint operation. If the checkpoint completes successfully, the newly recruited car 

will referred to as C2 . Likewise for C |.

Referring to Figure 29, we model the problem as a Markov process with states C1C2 , 

C i, C2 and F such that
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( c ' ° 3  )

Fig. 29: Illustrating the Markov process corresponding to strategy J2.

• the process is in state C1C2 if both cars running a given job are present in the parking

• the process is in state Cj once car C2 has left and car Cj is still in the parking lot;

• the process is in state C2 when car C1 has left and car Ct is still in the parking lot;

• the process is in state F  when both cars C\ and C2 have left during a checkpoint

We assume that the Markov process is initially in state C1C2 . Of great interest are the 
transition rates between these states. Since the car residency times are iid, each of the two 

cars Cj and C2 have an equal likelihood of being the first one to leave, the process makes 
a transition from state C1C2 to states Cj and C2 with probability |.

Next, assume that the process is in state C\. The process goes back to state C1C2 if the 

checkpointing operation terminates before C1 leaves. Let the probability of this event be 

p. In this notation, the transition from state C\ to state F  occurs with probability 1 — p. In 
order to determine p, recall that, since the residency times are exponentially distributed, 

the residual residency time of a car is exponentially distributed with the same parameter 

A.

Lemma 5.6.1. The probability o f the transition from  state C\ (resp. C2 to state C1C2 is

lot;

operation.

(35)



c h e c k p o i n t  b e g i n s  c h e c k p o i n t  e n d s

Fig. 30: Illustrating the proof of Lemma 5.6.1.

Proof. Consider what happens when a checkpoint operation is started and refer to Figure 
30. Let Y be the random variable that denotes the duration o f the checkpoint and let Z be 
the residual life of the residency o f the car that is running the checkpoint operation. For the 
checkpoint to be successful, the event {Z  > Y} must occur. Conditioning on the duration 

of the checkpoint, we write

Let T\2, T \, T2 be the random variables denoting, respectively, the time it takes the 
Markov process to reach F (i.e., for a system failure to occur), when the process in the 

states C1C2, Ci and C2, respectively. In this notation, the MTTF of J2 is simply 7) 2.
By Lemma 5.5.1 the expected amount of time the process spends in state Q C 2 is 

2j .  Next, recall that from C1C2 the process is equally likely to transit to either Ci or C2. 
Further symmetric considerations tell us that £[7)] =  £ [72]. Thus, using the law of total 
expectation we write

/ oo
P r[Z > F  [ Y =  y]dG(y)

Jy=0
p o o

= /  Pr[Z>y]dG (y)
Jy=0

This completes the proof of Lemma 5.6.1. □

(36)

Next, let W\ and W2 be the random variables denoting the amount of time the process
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is spending in states Ci and C2, respectively, By symmetry, it is clear that Wj and W2 and 

iid with a distribution function that we now discuss. As before, let Y  denote the duration 
of a checkpoint and let Z be the residual residency time of, say, C].

Pr[W, <  t] = 1 -  Pr[Wi > t]

=  1 — Pr[min{7,Z} >  t]

=  1 -Pr[{K > r } n { Z > r } ]

=  1 -  Pr[K >  <]Pr[Z >  f] [by independence] 

=  1 —e~A,[l G(/)].

Therefore, the expectation £[Wi] of W| can be evaluated as follows.

(37)

drE [WX] =

=  f  e - Xt{\ -G { t)]d t  
Jo

[after integration by parts]
i [ 1 " / o ’ e i "dG(")j ___ „

—-— . [by Lemma 5.6.1] (38)

An identical argument, with C2 instead o f C1 shows that

E[W2] =  E[W,] =  i ^ .

The law of total expectation in conjunction with (38), allows us to write 

£[7j] =  J E ^ K l - Jp) +  [JE[W1]-hJE[7’12]p(1 - pY +
1 - p

+ E[Tn ] P- (39)

As before, it is easy to confirm that E[T2] = E[T\}. This latter observation, in conjunction 

with (36) and (39), yield a simple system of linear equations that can be solved for £'[7j 2]
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to yield the MTTF of the J2 job assignment strategy.

MTTFn =  E M  =  i  4- M j h r i  ■ (40)

5.7 THE MTTF FOR THE J3 STRATEGY

In this section we propose to determine the MTTF corresponding to the J3 job assign­
ment strategy. Imagine a long-lived job that is running, initially, on three cars, say Cj, C2 

and C3. We adopt the convention that a newly recruited car(s) take(s) the identity(ies) of 
the departed car(s). For example, imagine that car C2 just departed and that cars Cj and 

C3 are running a checkpoint operation. If one of these cars completes the checkpoint suc­
cessfully, the newly recruited car will referred to as C2. If, however, Cj left the parking lot 
without completing the checkpoint, assuming that C3 completes its checkpoint operation 
successfully, the two recruited cars will be assumed to be C2 and C\.

Referring to Figure 31, we model the problem as a Markov process with states C1C2C3, 
C1C2, C1C3, C2C3, D\, £>2, £>3, £>4, £>5, £>6 and F  such that the process is in state

• C1C2C3 if all three cars running a given job are present in the parking lot;

• C1C2 when car C3 has left the parking lot;

• C1C3 when car C2 has left the parking lot;

• C2C3 when car Cj has left the parking lot;

• D\ if the process was in C1C2 and car C2 has left;

• £>2 if the process was in C1C2 and car C1 has left;

• D3 if the process was in C1C3 and car C3 has left;

• D4 if the process was in C1C3 and car Cj has left;

• D5 if the process was in C2C3 and car C3 has left;

• D(, if the process was in C2C3 and car C\ has left;

• F  when all three cars have left during a checkpoint operation.
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CxC2

Fig. 31: Illustrating the Markov process corresponding to strategy J3.

We assume that the Markov process is initially in state C1C2 C3 . O f great interest are 
the transition rates between these states. In spite of the fact that the Markov process corre­
sponding to J3 has more states, the analysis of the transition probabilities is similar to the 
one of the previous section. Since the car residency times are iid, each of the three cars 

C i, C2  and C3 have an equal likelihood of being the first one to leave, the process makes a 
transition from state C1C2 C3  to each of the states C1C2 , C1C3  and C2 C3 with probability 5 .

Next, assume that the process is in state C1C2 . The process goes back to state C1C2 C3 

if at least one checkpoint operation terminates before Ci or C2  leaves. Let the probability 
of this event be q. In order to determine q, recall that as already mentioned, the residual 
residency time of a car is exponentially distributed with parameter A.

To determine q we let X  and Y be the residual residency times o f cars Ci and C2  and 

let U be the duration of a checkpoint. In order for the process to return to state C1C2 C3 , 
the event {min{X,y} >  U} must occur. Thus,

q = Pr[{min{X,F} > C }]
J /»oo

' Pr[{min{X,y} > U \ U  = u\AG{u)
0
p o o

=  / Pr[{min{X,y} >w]dG(«)
J  0

p  00
=  /  e~2*u dG(u). [by Lemma 5.5.1] (41)

Jo
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By symmetry, (41) guarantees that the probability of the process going from either of 

the states C\C3 and C2C3 to state C1C2C3 is also q. Notice also that by symmetry, the 

transition from state C\C2 to either of the states D\ and D2 occurs with probability 

and that also by symmetry, this matches the probability of a transition from states C1C3 to 
D3 and D4 and from state C2C3 to £>5 and D6.

Next, assume that the process is in state D \, in other words, both cars C2 and C3 have 

left during a checkpoint and only car C\ remains. If Cj successfully completes the check­

point operation, two new cars will be recruited and, consequently, the process makes tran­
sition to state C1C2C3. We now state a result whose proof mirrors that o f Lemma 5.6.1 and 
is omitted.

Lemma 5.7.1. The probability o f the transition from state D\ to state C[C2C3 is

p o o

p =  e~Xud G(u). (42)
Jo

Now, a symmetry argument confirms that the transition from any one of the states D2 , 
D3, D4 , Ds and Df, to state C\C2C3 has probability p.

Let W\ 23 be the random variable that keeps track of the time the process spends in state 
C1C2C3 before making a transition. Reasoning as in Section 5.6 we have

E|W|23] =  3^ -  (43>

Next, let W\2 ,W \3 and W23 denote the time spent in the states C1C2, C1C3 and C2C3 

before making a transition. Reasoning as in Section 5.6, we find that

E[Wl2] = E\Wl3] = E[W23] =  (44)

Further, let Wi,W2, W3, W4 , W3 and W$ denote the time spent in the states 
£>1, D2l D3, D4 , D5, and D(, before making a transition. Reasoning as in Section 5.6, 

we find that

E\WX) = E[W2] = E[W3] = E[W4] = E[W5] =  E[W6] = (45)

Finally, let T\23, £12, £13, L23, T\,T2, T3, T4 , T5 and Tb be the time it takes the process 
to reach state F  assuming that the process finds itself in states C1C2C3, C\C2, C\C3, C2C3, 

D \,D 2, D3, D4 , D5 and D6, respectively.
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By the law of total expectation we have

E[Ti2s] — + | ^ t ^ l23 +  7 i 3 ] | ^ [ ^ 1 2 3  +  ^23]

=  £[Wi23 +  7j2] [by symmetry]

=  ~  + E[Tn ). [by (43)] (46)

Similarly, the law of total expectation along with the observation that E[T\] =  £[72] 
yields

E[Tn ] = E[WX2 + Tm ]q + E[Wn  + T x } ^  + E[W{2 + T2} ^ -

=  ( ^ + * w ) « + ( i r + ^ i ) ( 1 - ? )

=  qE[Tm } + { \ -q ) E [ T x] + 1- ^ - .  (47)

A third application of the law of total expectation yields

E[r,] =  E[w, +  r 1233p + E [ w , ] ( i - p )

=  pE[Tl23\ + ^ - ~ .  (48)

Finally, the system of equations (46), (47) and (48) can be solved for £ [7123] to yield
the M TTFjz = £ [ 7 ) 23] of the J3 job assignment strategy.

M TTFn  =  -  +  +  3J l ( l - /? ) ( ! -< ? ) ' (49)

5.8 SIMULATION RESULTS

We have evaluated the accuracy of the MTTF predictions in Sections 5.6 and 5.7 
through an extensive set of simulations. The goal of this section is to report on our ex­
perimental results and to show that they closely match the theoretical predictions obtained 

previously. Specifically, Subsection 5.8.1 presents the details of our simulation model. 
Later, Subsection 5.8.2 summarizes our simulation results.

5.8.1 SIMULATION MODEL

In this subsection, we present the detail of our simulation model. We assume a large
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parking lot, similar to a typical parking lot in the downtown area of a large city. Car 

residency time are assumed to be exponentially distributed with parameter A. In our sim­

ulation A varied between 5 and g. Since the expected residency time is given by j ,  our 

choice corresponds to cars spending, on the average, between three and eight hours in the 

parking lot. Also, we assumed that the number of available cars sufficiently large, so that 
upon one car departing, a substitute could be found without delay.

Our model was developed in MATLAB 7.14. In each of the experiments, a job with one 

of the parameters described above was submitted to the Vehicular Cloud and the duration 
of job executed recorded. The same experiment was then repeated 105 times and the 
average of these runs were plotted.

5.8.2 SIMULATION RESULTS

This section presents our simulation results performed in order to validate the analyt­
ical results obtained in Sections 5.6 and 5.7. We have performed two sets of experiments 
that we now describe. In order to evaluate the impact of the various problem parame­
ters discussed in Subsection 5.8.1 on the expected duration of job execution (including 
checkpointing and, perhaps, system failure) we have conducted a number experiments 
corresponding to the scenarios that we detail next.

• Scenario 1: In the first scenario we considered the J2 job assignment strategy. Each 
job was assigned to two cars. Checkpoints have an exponential distribution with 
mean duration of 10 minutes. Car residency times were taken to be exponentially 
distributed with parameter A. In our experiments we varied the expected car resi­
dency time varies between three and eight hours. The simulation results are featured 
in Figure 32;

• Scenario 2: In this scenario we considered the J2 job assignment strategy. Each 
job was assigned to two cars. Checkpoints have an exponential distribution with 
mean duration of 15 minutes. Car residency times were taken to be exponentially 

distributed with parameter A. In our experiments we varied the expected car resi­

dency time varies between three and eight hours. The simulation results are featured 
in Figure 33;

• Scenario 3: In this scenario we considered the J2 job assignment strategy. Each 

job was assigned to two cars. Checkpoints have an exponential distribution with
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mean duration of 20 minutes. Car residency times were taken to be exponentially 

distributed with parameter X. In our experiments we varied the expected car resi­
dency time varies between three and eight hours. The simulation results are featured 

in Figure 34;

• Scenario 4: In the second scenario we considered the J3 job assignment strategy. 
Each job was assigned to three cars. Here, the average checkpoint duration was 
10 minutes with exponential distribution. Cars residency time were exponentially 

distributed with parameter X. We varied the average car residency times between 
three and eight hours. The actual simulation results are illustrtrated in Figure 35.

• Scenario 5: In the second scenario we considered the J3 job assignment strategy. 
Each job was assigned to three cars. Here, the average checkpoint duration was 

15 minutes with exponential distribution. Cars residency time were exponentially 
distributed with parameter X. We varied the average car residency times between 
three and eight hours. The actual simulation results are illustrtrated in Figure 36.

• Scenario 6 : In the second scenario we considered the J3 job assignment strategy. 
Each job was assigned to three cars. Here, the average checkpoint duration was 
20 minutes with exponential distribution. Cars residency time were exponentially 
distributed with parameter X. We varied the average car residency times between 

three and eight hours. The actual simulation results are illustrtrated in Figure 37.

A glance at Figures 32-37 confirms that the simulation results confirm the accuracy of our 
theoretical predictions. Analyzing these results show that in both J2 and J3 strategies by 
increasing the checkpoint duration the mean time to failure will decrease. The main reason 

is because by increasing the checkpoint duration the probability that the car departs during 
checkpointing will increase.

Meant time to failure in J3 is longer compared with J2 strategy. The reason is the 
number of cars that undergo a checkpoint in J3 strategy is larger than J2 strategy. Having 

more cars taking checkpoint will increases the probability of successful checkpoint. In 
Chapter 7 we provide comparison result of J2 and J3 strategies in terms of job completion 
time and mean time to failure.
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5.9 CONCLUDING REMARKS

Vehicular clouds are motivated by the abundant computational resources in present-day 
vehicles and the fact that most of these vehicles are parked every day, for hours on end, 

while their owner is working, shopping, travelling, etc. Given the huge number of vehicles 

on our roads and city streets, vehicular clouds are expected to have a huge societal impact. 
In this chapter we have proposed a job assignment strategy in vehicular clouds and have 
analyzed its performance both analytically and by simulation.
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CHAPTER 6

ONE CAR APPROACH J1

Beside the J2 and J3 strategies that we presented in Sections 4.4 and 5.4, in this chapter 

we propose the J 1 strategy and our main contribution is to offer theoretical predictions of 
the job execution time.

The goal of this chapter is to provide a benchmark for the two strategies, J2 and J3, 

that we presented the previous chapters. Later in this chapter we determine the advantage 
and disadvantage of J1 strategy.

beside completion time that is a criteria for comparison, J2 and J3 strategies have this 
advantage that

J 1 compared to J2 and J3 has a disadvantage of finding optimal checkpoint period.

6.1 OUR CONTRIBUTIONS

Job Assignment Strategy J l :  Each job is assigned to one car selected, at random, from 
the available cars. In this strategy each job is executed on a single car until the car leaves. 
Every T time units a checkpoint is taken. The checkpoint will be saved on central server. 
When the car leaves, the computation is rolled back to the last checkpoint and continued 
from there by a different car.

T is a constant that needs to be differentiated in order to maximize the performance.

• Let there be N  checkpoints of durations X \ , Xj, • • • , XN. The X;’s, (1 <  i < N), are 
independent identically distributed (iid) random variables with a common distribu­
tion F  and finite expectation, £[X*] =  j i  <  <» for k — 1, 2, • • •.

• Let J  be the random variable that keeps track of the total expected execution time of 

the job, including the duration of all checkpoints, if  any. As already mentioned, our 
goal is to evaluate E[J}.

• Assume that the residency times of cars in the parking lot are iid random variables 

with an exponential distribution where A >  0.
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In this approach we assume that cars do not leave during a checkpoint. P  is the proba­
bility that residency time o f car is greater than z.

Pr[Z >  z] = 1 -  Pr[Z < z] =  1 -  (1 -  e~Xz) = e ' Xz

It is clear that random variable of number of cars that fail until one car stays at least T  
is geometrically distributed thus:

— — e Xz
P

The amount of time that failed car stays in parking lot:

f T \ - e ~ XT
/  e~Xzdz = -----5-----  (50)

JO A

The time that it takes until one car stays at least for T  time:

1 —r-t-T „XT 1 
eXT * -— \ =

X X

L is job duration and expected job completion time is:

_  E[L) ex r  — 1
£[•/] =  — * (— I —  +  /-0 +  A

A =  z . - ( L ^ J  . r )

6.2 SIMULATION

In addition to the theoretical models developed in Section 6.1 we have evaluated 

the performance of our job assignment strategy through an extensive set of simulations. 

The goal of this section is to report on our experimental results and to show that they 

closely match the theoretical predictions obtained previously. Specifically, Subsection

6 .2.1 presents the details of our simulation model used to generate the various diagrams.
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Later, Subsection 6.2.2 summarizes our findings in the form of various diagrams.

6.2.1 SIMULATION MODEL

In this subsection, we present the detail of our simulation model. We assume a large 

parking lot, similar to a typical parking lot in the downtown area of a large city. Car res­

idency time are assumed to be exponentially distributed with parameter X.  The expected 
residency time is given by jj-. Also, we assumed that the number of available cars suffi­
ciently large, so that upon one car departing, a substitute could be found without delay.

Jobs durations are exponentially distributed random variables with parameter y. In our 
simulation y varied between |  and

Upon the car assigned to a job departing before job termination, the computation is 
rolled back to the last checkpoint and continued from there by a different car. Individual 

checkpoint duration is a function of the amount of data that needs to be stored and is taken 
to be exponentially distributed with parameter fx. This means that the average duration of 
a checkpoint is We experimented scenarios, namely average checkpoint duration of 10, 
15 and 20 minutes.

This model was developed in MATLAB 7.14. In each of the experiments, a job with 
one of the parameters described above was submitted to the Vehicular Cloud and the dura­
tion of job executed recorded. The same experiment was then repeated 105 times and the 
average of these runs were plotted.

6.2.2 SIMULATION RESULTS

This section presents our simulation results performed in order to validate the analytical 
results obtained in Sections 6 .1. We have performed several sets of experiments that we 

now describe. In order to evaluate the impact of the various problem parameters discussed 
in Subsection 6.2.1 on the expected duration of job execution we have conducted a number 

experiments corresponding to the scenarios that we detail next.

In this set of experiments, the model has been set up in such a way that system failures 
due to cars leaving during checkpointing will not occur.

• Scenario 1: In the first scenario we assumed that under ideal conditions (i.e. no 
checkpoints necessary), the average job duration is three hours. We further assumed 

an average checkpoint duration of 10 minutes and average staying time of 3 hours;

• Scenario 2: In the first scenario we assumed that under ideal conditions (i.e. no
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Fig. 38: Scenario 1. Illustrating Job Completion Time in J1 Strategy

checkpoints necessary), the average job duration is three hours. We further assumed 
an average checkpoint duration of 10 minutes and average staying time of 5 hours;

• Scenario 3: In the first scenario we assumed that under ideal conditions (i.e. no 
checkpoints necessary), the average job duration is three hours. We further assumed 

an average checkpoint duration of 10 minutes and average staying time of 8 hours;

Figure 38-40 are the comparison of simulation results and analytical results. Compar­
ison shows that analytical approach and simulation results are consistent.

In the second set of experiments, we compare job completion time in J 1 and J2 strategy. 

In order to compare the results, we consider nine scenarios in the second set of simu­

lations:

• Scenario 1: In this scenario we assume that the average duration of the jobs are 8 

hours and the average checkpoint duration is 10 minutes and average staying time 

of 3 hours.
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Fig. 39: Scenario 2. Illustrating Job Completion Time in J1 Strategy

• Scenario 2: In this scenario we assume that the average duration of the jobs are 8 

hours and the average checkpoint duration is 10 minutes and average staying time 
of 8 hours.

• Scenario 3: In this scenario we assume that the average duration of the jobs are 3 

hours and the average checkpoint duration is 10 minutes and average staying time 
of 3 hours.

• Scenario 4: In this scenario we assume that the average duration of the jobs are 3 
hours and the average checkpoint duration is 10 minutes and average staying time 

of 4 hours.

• Scenario 5: In this scenario we assume that the average duration of the jobs are 3 

hours and the average checkpoint duration is 10 minutes and average staying time 

of 5 hours.

• Scenario 6 : In this scenario we assume that the average duration of the jobs are .5
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Fig. 40: Scenario 3. Illustrating Job Completion Time in J 1 Strategy

hours and the average checkpoint duration is 20 minutes and average staying time 
of 5 hours.

• Scenario 7: In this scenario we assume that the average duration of the jobs are 3 
hours and the average checkpoint duration is 20 minutes and average staying time 

of .5 hours.

• Scenario 8 : In this scenario we assume that the average duration of the jobs are 3 

hours and the average checkpoint duration is 10 minutes and average staying time 
of .5 hours.

• Scenario 9: In this scenario we assume that the average duration of the jobs are 7 

hours and the average checkpoint duration is 10 minutes and average staying time 
of 3 hours.

Figure 41-49 are the comparison of J1 and J2 strategy. Comparison shows that J2 

provides smaller job completion time.
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Job Duration =8 hours, Checkpoint Duration =10 Min, Staying Time=8
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Fig. 41: Scenario 1. Illustrating Comparison between J1 and J2 Strategy.

6.3 COMPARING J1 AND J2 STRATEGIES

By analyzing the result from Figures 41-49 we can conclude the following. Job com­
pletion time in J2 strategy is always shorter than J1 strategy. The reason is in J1 strategy 
once the car leaves, if no checkpoint has been taken, the job  is lost. In case there has 
been checkpoints the computation will roll back to the last checkpoint. In this case only 

part of the job is lost. The portion of the lost job depends on how often checkpoints are 
created. This will introduce a new challenge which is optimal period for checkpointing. 

In J2 strategy once the car leaves the other car will go under checkpointing and this will 
avoid computation loss.

By analyzing Figures 41-49, it is obvious that checkpointing period has important role 
in job completion time for strategy J l .  Choosing non-optimal or sub-optimal checkpoint­

ing period will increase the job completion time drastically.

Results also show that when job duration is small compared with car residency time, J l 
and J2 strategy will have same performance in terms of completion time. This is because 

most probably the job execution will be complete before any departure happens. In a
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Fig. 42: Scenario 2. Illustrating Comparison between J l and J2 Strategy.

scenario that no departure happens J 1 and J2 will have some performance in terms of job 
completion time. Because there will be no checkpointing process.

Checkpoint duration also has direct effect in increasing job completion time. Figure 

47 shows that by increasing the checkpoint duration J l and J2 will have almost same per­
formance because J2 by its nature creates more checkpoint compared with J l  and once 
the checkpoint duration is large the completion time will increase which brings J2 perfor­
mance close to J l.

The other important factor in J2 performance is job  duration. Figure 41 shows that by 
increasing job duration J2 performance increases compared with J l. Departure of car in 
J l  will cause computation loss. The computation loss will be longer for jobs with longer 

duration and this will decrease the J 1 performance.

6.4 CONCLUDING REMARKS

In this chapter we have proposed a job assignment strategy using one car at a time in 

vehicular clouds and have analyzed its performance both analytically and by simulation.



Ex
pe

ct
ed

 
Co

m
pl

et
io

n 
Tim

e 
(h

ou
rs

)

79

Job Duration =3 hours. Checkpoint Duration =10 Min, Staying Time=3
6.5

-*—  One-Car Approach 
Two-Car Approach

5.5

4.5

3.5

0.25 0.5 0.75 1 1.5 2 3 4
Checkpointing Periods (hour)- Checkpointing without failure

Fig. 43: Scenario 3. Illustrating Comparison between Jl and J2 Strategy.

We discussed advantages and disadvantages of J l  strategy compared with J2 strategy.
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Fig. 48: Scenario 8. Illustrating Comparison between Jl and J2 Strategy.
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Fig. 49: Scenario 9. Illustrating Comparison between Jl and J2 Strategy.
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CHAPTER 7

COMPARISON OF JOB ASSIGNMENT STRATEGIES

In this chapter we compare J2 and J3 strategies in terms of job completion time, by as­
suming that car does not leave during checkpointing. In Section 7.1 first we offer theoreti­

cal predictions of the job execution time in J3 strategy. Then we provide a comprehensive 
set of simulations that shows our theoretical predictions are accurate.

Checkpoint duration has important role in job completion time and system failure. In 
Section 7.4 we predict the probability o f checkpoint failure by experimenting different 
scenarios. A comprehensive set of simulations that shows our theoretical predictions are 
accurate. In Section 7.5 we present number of checkpoints during job execution time. We 
provide simulation results for this section.

7.1 JOB EXECUTION TIME J3

Lemma 7.1.1. LetX , Y andW  be independent, exponentially distributed random variables 
with parameter X. The random variable Z =  min{X,F,W} is exponentially distributed 
with parameter 3X.

Proof. For z >  0 we write

Pr[Z >  z] = Pr[min{X,y,W ) >  z]

-  Pr[{y > z } n { Y  > z } n { w > z } ]

-  Pr[X >  z] Pr[F >  z] Pr[W >  z]

= e~Xze~Xze~Xz = e~3Xz

and the proof of the lemma is complete. □

Lemma 7.1.1 tells us that the inter-arrival time of checkpoints is exponentially distributed 

with parameter 3A and so the the conditional distribution of the random variable N,  given 

that {T =  r}, is Poisson with parameter 3Xt. In other words, for all natural number n

Pr [N = n \ T  = t] = (3*0" .-3»,-e
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To get a handle on the probability mass function of the number N  of checkpoints, we 
evaluate Pr [N =  n] by conditioning on T:

Pr[W =  n] = f  PrjW =  n | T =  t] dG(t)

=  f  dO(r). (51)
Jo n\

We are now in a position to reveal the relationship between N  and T. We proceed as 
follows:

oo

£[W] =  £  rtPr[W =  /i]

„=0 n ■

=  / "  £ > ^ V 3* 'd o «
J 0  „ = 0  n -

=  u / ■ „ - « - « ( , )
J« ( « - ! ) !

p o o

= 3X te~3Xte3XtdG(t)
Jo

. f°°tdG(t)
Jo

= 3X

=  3 XE[T]. (52)

Next, we are interested in the expected total time spent taking checkpoints (and, of course, 

restarting the job after checkpoints). For this purpose, we need to evaluate the expectation 
E[Xi + X 2 H h^Cv]- By the law of total expectation we have

E\X 1 + * 2  + • • •+ * * ]
00

=  £ e [ X i + X 2 + •••-(-X/v I W =  n]Pr[Af =  n]
n = 0

=  E[X 1 +  X2 +  • ■ • + X n] Pr[W =  n]
00

=  £ n E [X jP r[N  =  n]
n~0

OO

=  E\X] J ] n P r [ ^  =  «]
n= 0

=  £ [* ]£ [« ! (53)
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where, recall, £[X] is the expected duration o f a checkpoint/restart operation.

Finally, we can write

E[J\ =  E [ T + X ] + X 2 + - - -+Xn ]

=  E[T] + E[Xy+ X 2 + - - -+XN]

= £ [ r ]  +  E[Xj£[N] [by (53)]

-  E[T] + 3XE[X}E[T] [by (52)]

= £[r](l+3A£[X]).  (54)

Observe that the distributions of T  and X  only occur in (54) through their first moment. 

This tells us that our result holds for a large number of distributions that share the same 
first moment.

7.1.1 SIMULATION RESULTS

In addition to the theoretical models developed in Section 7.1 we have evaluated the 
performance of our fault-tolerant job assignment strategy through an extensive set of sim­
ulations. The goal of this section is to report on our experimental results and to show that 

they closely match the theoretical predictions obtained previously. Specifically, Subsection
7.1.2 presents the details of our simulation model used to generate the various diagrams. 
Later, Subsection 7.1.3 summarizes our findings in the form of various diagrams.

7.1.2 SIMULATION MODEL

In this subsection, we present the detail of our simulation model. We assume a large 
parking lot, similar to a typical parking lot in the downtown area of a large city. Car 
residency time are assumed to be exponentially distributed with parameter X. In our sim­
ulation X varied between |  and Since the expected residency time is given by j ,  our 

choice corresponds to cars spending, on the average, between three and eight hours in the 
parking lot. Also, we assumed that the number of available cars sufficiently large, so that 
upon one car departing, a substitute could be found without delay.

Jobs durations are exponentially distributed random variables with parameter y. In our 
simulation /  varied between |  and 5 .

Upon one of the car assigned to a job departing before job termination, the remaining 
car enters a checkpoint. Individual checkpoint duration is a function of the amount of data
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that needs to be stored and is taken to be exponentially distributed with parameter fi. This 

means that the average duration of a checkpoint is We experimented scenarios, namely 
average checkpoint durations of 10, 15 and 20  minutes.

This model was developed in MATLAB 7.14. In each of the experiments, a job with 
one of the parameters described above was submitted to the Vehicular Cloud and the dura­

tion of job executed recorded. The same experiment was then repeated 105 times and the 
average of these runs were plotted.

7,1.3 SIMULATION RESULTS

This section presents our simulation results performed in order to validate the analytical 
results obtained in Sections 7.1. We have performed several sets of experiments that we 
now describe. In order to evaluate the impact of the various problem parameters discussed 
in Subsection 7.1.2 on the expected duration of job execution we have conducted a number 
experiments corresponding to the scenarios that we detail next.

In these set of experiments, the model has been set up in such a way that system failures 
due to cars leaving during checkpointing will not occur.

• Scenario 1: In the first scenario we assumed that under ideal conditions (i.e. no 
checkpoints necessary), the average job duration is three hours. We further assumed 
an average checkpoint duration of 10 minutes;

• Scenario 2: In this scenario we assume that the average duration of the jobs are 3 

hours and the average checkpoint duration is 15 minutes.

• Scenario 3: In this scenario we assume that the average duration of the jobs are 3 
hours and the average checkpoint duration is 20  minutes.

• Scenario 4: In order to see the impact of longer job duration, in the second scenario 

we assumed an average job duration of five hours and an average checkpoint duration 
of 10 minutes.

• Scenario 5: In this scenario we assume that the average duration of the jobs are 5 
hours and the average checkpoint duration is 15 minutes.

• Scenario 6 : In this scenario we assume that the average duration of the jobs are 5 

hours and the average checkpoint duration is 20  minutes.
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• Scenario 7: In order to see the impact o f longer job duration, in the second sce­

nario we assumed an average job duration of eight hours and an average checkpoint 
duration of 10 minutes.

• Scenario 8 : In this scenario we assume that the average duration of the jobs are 8 

hours and the average checkpoint duration is 15 minutes.

• Scenario 9: In this scenario we assume that the average duration of the jobs are 8 

hours and the average checkpoint duration is 20  minutes.
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Fig. 50: Scenario 1. Illustrating Job Completion Time J3 Strategy Checkpoint Failure not 
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Allowed



95

A verage Jo b  Duration =8 hours, C heckpoint D uration =20 min

-*—  Simulation Result 
- Analytical Result10.8

^ 10-6 
§
£ . 10.4
03
E
P  10.2
co
Q)
Q .

3  9-8

I  96
9.4

9.2

Average Residency Time of Vehicles -  Exponential Distribution, J3 (hours)

Fig. 58: Scenario 9. Illustrating Job Completion Time J3 Strategy Checkpoint Failure not 
Allowed

The results of these scenarios are featured in Figures 50-58. In all scenarios described, 
the simulation results confirmed the accuracy of the theoretical predictions, the results 
being, essentially, indistinguishable.
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7.2 COMPARISON OF JOB COMPLETION TIME

In this section we compare 72 and 73 strategy in terms of job completion time.

Job Duration = 3, Checkpoint Duration =10 min
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Fig. 59: Scenario 1. Illustrating the Comparison o f Job Completion Time in J2 and J3 
Strategy.

Results show that completion time in J2 strategy is smaller than J3 strategy approach. 
Having 3 cars will increase the probability of departure and each departure will lead to 
making checkpoint. Having more checkpoints in J3 strategy is the main reason that in­

creases the completion time of jobs.

In the other hand by analysing the results from Section 5.8.2 it is clear that mean time 
to failure in J3 strategy approach is longer that J2 strategy approach.
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Fig. 60: Scenario 2. Illustrating the Comparison of Job Completion Time in J2 and J3
Strategy.
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Fig. 61: Scenario 3. Illustrating the Comparison of Job Completion Time in J2 and J3
Strategy.
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Fig. 63: Scenario 5. Illustrating the Comparison o f Job Completion Time in J2 and J3
Strategy.
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Fig. 64: Scenario 6. Illustrating the Comparison of Job Completion Time in J2 and J3
Strategy.



102

Job Duration = 5, Checkpoint Duration =20 min

-*—  J3 Strategy 
> J2 Strategy9.5

£  8.5

® 7.5

XJ
®
$  6.5

LU

5.5

5 10 15 20 25 30 35 40 45
Average Staying Time of Vehicle -  Exponential Distribution (hours)

50

Fig. 65: Scenario 7. Illustrating the Comparison of Job Completion Time in J2 and J3
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Fig. 66: Scenario 8. Illustrating the Comparison of Job Completion Time in J2 and J3
Strategy.
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J2 Strategy, Checkpoint Duration is Exponentially Distributed
250

■*—  Checkpoint Expected Duration=10 min 
Checkpoint Expected Duration=15 min 

^ —  Checkpoint Expected Duration=20 min
200

150

u_

100

50

Average Residency Time of Car, Exponential Distribution (hours)

Fig. 67: Scenario 1. Illustrating the Comparison of Mean Time to Failure in J2 Strategy.

7.3 COMPARISON OF MEAN TIME TO FAILURE

In this section we analyze the impact of checkpoint duration in mean time to failure 
for J2 and J3 strategies. First we analyze the results for J2 strategy in Figure 67, then we 
explain the results in Figure 68 for J3 strategy.

Figure 67 shows the mean time to failure for J2 strategy. In this figure the residency 
time of vehicles varies between 3 and 8 hours and checkpoint duration can have follow­
ing values: 10, 15 and 20 minutes. Results from Figure 67 show that by increasing the 

checkpoint duration, mean time to failure in J2 strategy decreases. The reason is because 

by increasing checkpoint duration, the probability that car leaves during checkpointing in­
creases. Since departure of the car during checkpointing leads to failure, this will lead to 
shorter mean time to failure.

Figure 68 shows the mean time to failure for J3 strategy. In this figure the residency 

time of vehicles varies between 3 and 8 hours and checkpoint duration can have following 
values: 10, 15 and 20 minutes. Analyzing the results from Figure 68 shows that J3 has 

same behavior as J2. In J3 same as J2, by increasing the checkpoint duration, meant time to
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Fig. 68 : Scenario 2. Illustrating the Comparison o f Mean Time to Failure in J3 Strategy.

failure decreases. By increasing the checkpoint duration the probability that two remaining 
cars depart will increases which leads to shorter mean time to failure.

7.4 PROBABILITY O F CHECKPOINT FAILURE

In this section we present the analytical and simulation result for the probability of 

checkpoint failure in J2 strategy.

The goal of this section is to provide an outline for checkpointing process presented in 
J2 strategy. Having general idea about number of checkpoints and the probability of check- 
poniting success is important in determining system requirement and reliability. In other 

words based on checkpoint failure rate the administrator can consider backup strategy like 
using traditional servers in vehicular cloud.

Also determining the expected number of checkpoints can be used in monitoring the 

system. As an instance administrator can monitor the job execution process and compare 

the number of taken checkpoints with the number of expected checkpoints. The compari­
son can determine if there has been any malicious action and the reliability of the system
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can be defined.

From Lemma 4.6.1 we know that if car residency times are iid exponential random 
variables with parameter A and checkpoint duration is a random variable with distribution 

function F  and finite expectation fi, P the probability that checkpoint succeed is:

7.4.1 SIMULATION RESULTS

This section presents our simulation results performed in order to validate the analytical 
results obtained in Sections 7.4. We have performed several sets of experiments that we 
now describe. In order to evaluate the impact of the various problem parameters on the 
probability of checkpoint failure we have conducted a number experiments corresponding 
to the scenarios that we detail next.

• Scenario 1: In the first scenario we assumed that the average checkpoint duration is 
10 minutes;

• Scenario 2: In this scenario we assumed that the average checkpoint duration is 15

• Scenario 3: In this scenario we assumed that the average checkpoint duration is 20

The results of these scenarios are featured in Figures 69-71. In all scenarios described, 

the simulation results confirmed the accuracy of the theoretical predictions, the results 
being, essentially, indistinguishable.

7.5 NUMBER OF CHECKPOINTS

In this section we present the simulation results for the number of the checkpoints that 

are taken during executing a job in J2 strategy. We assume that car may leave during 

checkpointing that leads to failure. We provide the results for total checkpoints, successful 

checkpoints and failed checkpoints.

In order to evaluate the impact of the various problem parameters on the probability of 

checkpoint failure we have conducted a number experiments corresponding to the scenar­

ios that we detail next.

(55)

minutes;

minutes;
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Fig. 69: Scenario 1. Illustrating the Probability of Checkpoint Failure.

• Scenario 1: In the first scenario we assumed that the average job duration is three 

hours. We further assumed an average checkpoint duration of 10 minutes;

• Scenario 2: In this scenario we assume that the average duration of the jobs are 3 
hours and the average checkpoint duration is 15 minutes.

• Scenario 3: In this scenario we assume that the average duration of the jobs are 3 

hours and the average checkpoint duration is 20  minutes.

• Scenario 4: In order to see the impact of longer job duration, in the second scenario 
we assumed an average job duration of five hours and an average checkpoint duration 
of 10 minutes.

• Scenario 5: In this scenario we assume that the average duration of the jobs are 5 

hours and the average checkpoint duration is 15 minutes.

• Scenario 6 : In this scenario we assume that the average duration o f the jobs are 5 

hours and the average checkpoint duration is 20  minutes.
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Fig. 70: Scenario 2. Illustrating the Probability of Checkpoint Failure.

• Scenario 7: In order to see the impact of longer job duration, in the second sce­
nario we assumed an average job duration of eight hours and an average checkpoint 
duration of 10 minutes.

• Scenario 8 : In this scenario we assume that the average duration of the jobs are 8 

hours and the average checkpoint duration is 15 minutes.

• Scenario 9: In this scenario we assume that the average duration of the jobs are 8 

hours and the average checkpoint duration is 20 minutes.

The results of these scenarios are featured in Figures 72-80.
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Fig. 72: Scenario 1. Illustrating the Number of checkpoints.
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Fig. 73: Scenario 2. Illustrating the Number of checkpoints.
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Fig. 74: Scenario 3. Illustrating the Number of checkpoints.
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Fig. 76: Scenario 5. Illustrating the Number of checkpoints.
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Fig. 77: Scenario 6. Illustrating the Number of checkpoints.
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Fig. 78: Scenario 7. Illustrating the Number of checkpoints.
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Fig. 79: Scenario 8. Illustrating the Number of checkpoints.
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Fig. 80: Scenario 9. Illustrating the Number of checkpoints.
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CHAPTER 8 

CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE 

WORK

The main goal of this chapter is to put the work done in this dissertation in perspective. 

We will present the problems that we have addressed and the solutions we have proposed. 
We then will point out features that will be implemented as part of future work. This chap­
ter is organized as follows: Section 8.1 summarizes the results and the main conclusions of 
this dissertation. Future extensions and developments of this work are discussed in Section 
8 .2 .

8.1 CONCLUDING REMARKS

Nowadays, vehicles are beyond transportation machines. In fact they are the machines 
with high computing powers. People can get different services (navigation, weather fore­

cast, entertainment, etc) while they are in the vehicle as a driver or passenger. In the other 
hand advances of cloud computing have encouraged companies and users to move their 
computations, IT services or digital entertainments to the cloud. The main factor of cloud 
computing is computation power. Vehicles in parking lots could be potential resources for 
computation power [5,69,70].

Recently a new concept Vehicular Cloud Computing has been introduced to the liter­
ature. Vehicular Cloud is a network of vehicles on road or in parking lot that can provide 
computation services to users. In this model each vehicle is a computation node.

In this thesis, we addressed resource allocation in vehicular cloud computing. The 

main difference between vehicular cloud and traditional cloud is in resource availability. In 
traditional cloud, computation nodes are available permanently unless there is a hardware 

failure. Clouds are designed to deliver highly available computing services with hardwares 
that are highly reliable and their failure rate is very small. In other words computation 

nodes are available all the time. In the other hand vehicular cloud computation nodes are 

on-board devices that are installed in cars. Random arrival and departure of cars create 

a dynamic environment in terms of resource availability. This dynamic environment can 

cause failure in executing jobs because cars may randomly leave during running jobs.
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Consequently the computation assigned to those car will be lost. In order to handle failure 
in this environment, we have presented different approaches based on checkpointing and 
redundancy and migration.

This work investigates job scheduling problem and resource allocation in vehicular 

cloud established in parking lots (e.g. mall, university and parking lots in airport). We be­
lieve it is only a matter of time before the huge vehicular fleets on our roadways, streets and 

parking lots will be recognized as an abundant and underutilized computational resource 

that can be tapped into for the purpose of providing third-party or community services. It is 
common knowledge that many of these vehicles spend hours each day in a parking garage, 
parking lot, or driveway. The computational and storage capabilities o f these parked vehi­

cles is a vast untapped resource that, at the moment is wasted. We conjecture that, given 
the right incentives, the owner of a vehicle may decide to rent out excess on-board ca­
pabilities, just as the owners of large computing or storage facilities find it economically 
appealing to rent out their excess capacity.

We considered two different environments for scheduling strategy: deterministic and 
stochastic. In deterministic environment the arrival and departure of cars are known. This 
scenario is for environment like universities where employees should be present at worked 
with known schedules and university rents out its employees cars as computation nodes 
to create to provide service as a vehicular cloud. We presented a scheduling model for 
vehicular cloud based on mixed integer linear programming. This work investigates a job 
scheduling problem involving non-preemptive tasks with known processing time where 

job migration is allowed. Assigning a job to resources is valid if job has been executed 
fully and continuously (no interruption). A job can not be executed in parallel. In our 
approach, the determination of an optimal job schedule can be formulated as maximizing 
the utilization of VC and minimizing the number of job migrations. Utilization can be 

calculated as a time period that vehicles have been used as computation resources.

For dynamic environment in terms of resource availability, we presented a stochastic 
model for job assignment, we proposed to make job assignment in VC fault tolerant by 
using a variant of the checkpointing strategy. Rather than saving the state of the computa­

tion at regular times, the state of the computation is only recorded as needed. Also, since 

we do not assume a central server that stores checkpointed images like conventional cloud 
providers do [43,44]. In our strategy checkpointing is performed by a car and the resulting 

image is stored by the car itself. Once the car leaves, the image is lost. We consider two 
scenarios: in the first one cars do not leave during checkpointing; in the second one cars
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may leave during checkpointing, leading to system failure. Our main contribution is to of­

fer theoretical predictions of the job execution time in both scenarios mentioned above. A 

comprehensive set of simulations have shown that our theoretical predictions are accurate.

8.2 DIRECTION FOR FUTURE WORK

Vehicular cloud as a new concept can inspire and provide many opportunities for sci­

entists in different research areas. In this section, we describe future research directions to 

extend the concept of vehicular cloud and bring it closer to real-world deployment.

8.2.1 VC PERFORMANCE FOR DIFFERENT APPLICATIONS

Jobs can be classified to different categories based on resources usage: CPU-intensive, 
Memory-intensive, Data-intensive, Network-intensive, etc. Analyzing vehicular cloud per­

formance for different type of the jobs is another challenge that we consider as a future 
work. Result of this analysis will determine if there is a need to add specific elements to 
vehicular cloud for a specific type of jobs to have higher performance.

8.2.2 CLUSTERING IN VEHICULAR CLOUD

Clustering has been a solution in distributed environments for load balancing and re­

covering from failure. Number of resources in vehicular cloud are dependent on arrival 
and departure rate of vehicles. Therefore there could be shortage of resources in specific 
period of time in some VCs. Clustering will allow VC to solve this problem by using 

resources from other vehicular clouds in the cluster. As a future work we are interested in 
investigating the impact of clustering in vehicular clouds.

8.2.3 VEHICULAR CLOUD OF HYBRID CARS

Most of the car manufactures have introduced their own model of hybrid car to the 
market and in near future hybrid cars will be the ultimate choice for consumers [71]. Hy­

brid cars are equipped with high capacity batteries and they are able to save electricity for 
a long period of time. Therefore they are good candidates in providing long term elec­

tricity power for computation purposes. As a plan for future work, we are interested in 

considering the vehicular cloud based on hybrid cars and determine the advantage and 

disadvantages of this model.
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8.2.4 IMPLEMENTATION OF HADOOP ON VC

Map-Reduce is a programming model that is used to process large datasets. This model 
parallelizes the data processing through distributed cluster o f computation nodes [72,73]. 
This model is based on defining two functions: Map function and Reduce function. Map- 
Reduce is based on functional programming, which the output of each map function is an 
input for reduce function. Map will sort the data based on keys that has been defined by 

user. The sorted data will be sent to reducers corresponding with sorting key.
Hadoop in open-source implementation of Map-Reduce [74], Hadoop has two types of 

nodes: Master and Slave. Master divides the large dataset to small chunks. After reading 
each chunk, Master will send the data to corresponding Slave based on the key that has 
been defined by user. Slaves after processing the data will combine the result. Figure 81 
illustrates the architecture of Hadoop.

Our goal is to adapt Hadoop framework to vehicular cloud computing. In our approach, 

we put slave nodes (reducers) in the stable number of vehicles. In Figure 82, we show a 

diagram that represents virtual data of a parking lot changing with time over one day. The 
maximum number of parking spots is 100. Measurement is done every hour. Sometimes, 
number of arriving vehicles is equal to leaving vehicles.

Although, number of vehicles in some cases is stable but there might be a Virtual 
Machine (VM) migration. Consider a scenario that the number of vehicles leaving at any 

hour is equal to number o f vehicles arriving. In this case, we have the VM migration which 

takes place in short period of time [75].
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Fig. 82: Illustrating the migration of VMs in a parking lot.

In Figure 83, we explain the concept o f migration of VM in vehicles located in a 
parking lot. It is noticed that the total number of vehicles in Figure 83- part A (left side) 
is equal to the total number of vehicles in Figure 83- part B (right side) but the VM which 
represents the vehicles has changed.

We assume that for each parking lot, a minimum number of vehicles are maintained. 
Our assumption is real in case of an airport parking lot. In order to implement Hadoop in 
vehicular cloud, we assign slave nodes to set of minimum number o f vehicles (in Figure 

82 the slave nodes have been recognized by shadow). The remaining number of vehicles 
represents the master nodes in our system (in Figure 82 the master has been shown without 
shadow). The moment that master is done with the task of reading the data, it gives the 
permission to slaves to start reading master. After finishing the reading process, master 

will start new task which is independent from the last task.

Based on the type of VC, number of master and slave nodes will be different. In other 
word, we can change the number of maps and reducers depending on actual number of 

vehicles in the parking lot. As a plan of work we will explore the optimum number of 

master and slave nodes for vehicular cloud.
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Fig. 83: Illustrating Virtual Data of Parking lot (Number of vehicles vs. Hours).
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APPENDIX

In Section 5 we assumed that cars may leave during checkpointing. If cars leave during 
checkpointing failure will happen. In order to calculate the mean time to failure we need to 

calculate the distribution of the absolute value of difference between cars’ residency time.
In the following derivation X and Y are standing for the residency times of the two 

cars currently executing the job. Z =  |X — Y\ is the random variable that keeps track of the 
duration of the next checkpoint.

Consider independent exponential random variables X  and Y with parameters X and 
;U, respectively and write

Z =  \ X - Y \ .

The main goal of this short note is to evaluate the distribution function Fz of Z. For 

this purpose, given a non-negative real number z, we are interested in evaluating

Fz (z) =  Pr[Z > z] =  Pr[|X - Y \ < z ] .

As is usually the case, we will find it convenient to evaluate P[\X — Y\ > z] first. Let 
fx,y{x,y)  be the joint distribution function of X  and Y. Since X  and Y are independent we 
have

fx, r(x,y)  =  f x { x ) f Y(y)

where fx(x)  and fy(y)  are the marginal density functions. Moreover, since X  and Y are 
exponential with parameters X and /i we can write

f x , y ( x , y )  =  X

Now consider the planar domain D  defined as follows

D = {(*,30 l*,y > 0 ; \ x - y \ > z } .

Referring to Figure 84 it is easy to see that D decomposes into disjoint domains D\ and 

D2 such that
D x =  {(*,y) | * > y ;  * - y - z >  0}

and

D2 = {(*,y) | y >x-  y — x  — z > 0}.



( 0 ,0 ) ( 2 , 0 )

Fig. 84: Illustrating the sub-domains D\  and Dj.

Since D\ and Dj  are disjoint,

I f *  ,y(jr,y)dxdy =  J J  fx,y(x,y)Axdy + J J  fx,y{x,y)dxdy.
D D 1 D2

With this notational preamble out of the way, we are ready to evaluate P[|X — Y  I >z].

P [ | X - y | > z ]  =  J J / x ,K(x,y)drdy
D

=  JJ/x ,K (^ ,y)dxdy  +  JJ/x,K(-«,y)dxdy.
D\ D2

We now proceed by evaluating I\ =  JJD f x . Y ( x , y ) d x d y  and h  — JJD f x , y ( x , y ) dxdy



7

127

separately. For this purpose we write

I \  =  f  X e ~ Xx f  n e  ^ d y d x
Jx=z  Jy=0

- £ - e ~ Xl X + n

Similarly,

Jr°° r y - z  ,
' f l e^^y /  Xe~ dxdy
y= z  J  0=0ty=z

X 
X -t- fi

e~nz

It follows that

P[|X - Y \ > z }  =  1- 7— e~Az +
X fi A-f-jU

In the particular case where X =  fj., i.e. X  and Y are identically distributed, we write 

P[|X -  Y | >  z] =  X- e ~ Kz +  X- e ~ Xz =  c ” Az

and, consequently,

P [ |^ - F |  <z] =  l - f T * 2.

This result is only mildly surprising given the memoryless property of the exponential 
distribution.

Based on this derivation if the residency times are i.i.d., as we assume them to be, then 
the distribution of the absolute value of their difference is again exponentially distributed 
with the same parameter.
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