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ABSTRACT

MACHINE LEARNING METHODS FOR MEDICAL AND
BIOLOGICAL IMAGE COMPUTING

Rongjian Li
Old Dominion University, 2016

Director: Dr. Shuiwang Ji

Medical and biological imaging technologies provide valuable visualization infor-

mation of structure and function for an organ from the level of individual molecules

to the whole object. Brain is the most complex organ in body, and it increasingly

attracts intense research attentions with the rapid development of medical and bio-

logical imaging technologies. A massive amount of high-dimensional brain imaging

data being generated makes the design of computational methods for efficient analy-

sis on those images highly demanded. The current study of computational methods

using hand-crafted features does not scale with the increasing number of brain im-

ages, hindering the pace of scientific discoveries in neuroscience. In this thesis, I

propose computational methods using high-level features for automated analysis of

brain images at different levels. At the brain function level, I develop a deep learn-

ing based framework for completing and integrating multi-modality neuroimaging

data, which increases the diagnosis accuracy for Alzheimer’s disease. At the cellu-

lar level, I propose to use three dimensional convolutional neural networks (CNNs)

for segmenting the volumetric neuronal images, which improves the performance of

digital reconstruction of neuron structures. I design a novel CNN architecture such



that the model training and testing image prediction can be implemented in an end-

to-end manner. At the molecular level, I build a voxel CNN classifier to capture

discriminative features of the input along three spatial dimensions, which facilitate

the identification of secondary structures of proteins from electron microscopy im-

ages. In order to classify genes specifically expressed in different brain cell-type, I

propose to use invariant image feature descriptors to capture local gene expression

information from cellular-resolution in situ hybridization images. I build image-level

representations by applying regularized learning and vector quantization on generat-

ed image descriptors. The developed computational methods in this dissertation are

evaluated using images from medical and biological experiments in comparison with

baseline methods. Experimental results demonstrate that the developed representa-

tions, formulations, and algorithms are effective and efficient in learning from brain

imaging data.
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CHAPTER 1

INTRODUCTION

Images play an increasingly important role in many scientific fields. Biology is one

of the best examples that depend heavily upon images for progress. With the recent

development of fluorescent probes and new high-resolution microscopes in biological

imaging, researchers now can visualize sub-cellular components and processes both

structurally and functionally in two or three dimensions. In particular, the increas-

ing availability in biological images has led to intense research interests to the study

of brain. In addition, medical imaging has become a powerful tool to understand

how the brain processes sensory information, and how the processing mechanism

ultimately leads to certain behavior or function. However, the currently used data

analysis techniques for medical and biological imaging data are still relatively crude.

Hence, in this thesis, I mainly work on the design of efficient machine learning meth-

ods for analyzing medical and biological images, and finally promoting the scientific

discoveries about brain.

Brain is an extremely important and complex organ in human body. It is com-

posed of organized cells through effective and functional circuits to control and co-

ordinate actions and reactions of the body. The study of brain is usually proceeded

at multiple levels, ranging from the molecular level, cellular level to the system and

cognitive level. With rapid development of computers and vast amount of data gen-

erated by brain imaging techniques, machine learning is becoming more and more
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important for extracting reliable and meaningful information and making accurate

predictions on brain imaging data. In this thesis, I focus on the design of efficient

machine learning methods for analyzing multiple kinds of brain images at different

levels. The challenges and contributions of my research are provided in the following.

At the brain function level, neuroimaging is a very powerful tool for research and

medical diagnosis of brain conditions since it enables noninvasive visualization of

the structure and functionality of the brain. There has been a number of successful

neuroimaging techniques, such as magnetic resonance images (MRI) and positron

emission tomography (PET) images and so on, for facilitating medical diagnosis.

Combining multi-modality brain imaging data for disease diagnosis commonly leads

to better performance. A key challenge in fully exploiting multiple imaging modal-

ities is that the data are commonly incomplete; namely, some modality might be

missing for some subjects. Therefore, in this thesis, I propose to use deep learn-

ing methods to complete multi-modality medical imaging data and then improve

diagnose performance.

At the cellular-level, the study of structures and functions of neurons and neu-

ron networks is crucial for understanding the working mechanisms of the brain. A

key component in this process is the extraction of neuronal morphology from mi-

croscopic imaging data. Digital reconstruction, or tracing, of 3D neuron structure

from microscopy images is a critical step toward reversing engineering the wiring

and anatomy of a brain. Despite a number of prior attempts, this task remains very

challenging, especially when images are contaminated by noises or have discontinued
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segments of neurite patterns. An approach for addressing such problems is to identify

the locations of neuronal voxels using image segmentation methods prior to applying

tracing or reconstruction techniques. This preprocessing step is expected to remove

noises in the data, thereby leading to improved reconstruction results. Therefore,

in this thesis, I propose 3D convolutional neural networks (CNNs) for segmenting

neuronal microscopy images to improve neuron morphology reconstructions.

At the molecular level, the study of nervous system concerns the molecular basis

of biological activities between bio-molecules in neurons, including deoxyribonucleic

acids (DNAs), ribonucleic acids (RNAs) and proteins, as well as their interactions.

The fundamental research topics include development mechanisms of neurons and ef-

fects of genetic changes on nervous system. The biological discoveries in last century

show that development of a multicellular organism is regulated by gene expression

patterns that specify which part of DNA is used to synthesize proteins in each cell

type. Differential gene expression patterns in cells of the mammalian brain result in

the morphological, connectional, and functional diversity of cells. A wide variety of

studies have shown that certain genes are expressed only in specific cell-types. Analy-

sis of cell-type-specific gene expression patterns can provide insights into the relation-

ship between genes, connectivity, brain regions, and cell-types. However, automated

methods for identifying cell-type-specific genes are lacking to date. Therefore, in this

thesis, I propose computational methods to identify cell-type-specific genes in the

mouse brain by automated biological image computing of in situ hybridization (ISH)

expression patterns.
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Proteins are the major structural and functional components of cells. The s-

tudy about folded structures of proteins is of high importance for understanding the

working mechanisms of actions in large macromolecular complexes such as neurons.

However, the detection of secondary structure of proteins using 3 dimensional (3D)

electron microscopy (EM) images is still a challenging task, especially when the spa-

tial resolution of the EM images is at medium level (5-10Å). Prior researches focused

on the usage of local features with image processing techniques to detect positions

and shapes of proteins in 3D space. These methods usually involve human interven-

tions but with limited success since the features used are hand-crafted which did not

capture the global information of image objects. Therefore, in this thesis, I propose

to use deep learning methods for extracting high representative global features and

then automatically detecting secondary structures of proteins.

1.1 CONTRIBUTIONS OF THIS DISSERTATION

1. I propose a deep learning based framework for completing multimodality imag-

ing data. The proposed deep learning method takes the form of convolutional neural

networks, where the input and output are two volumetric modalities. The network

contains a large number of trainable parameters that capture the highly complicated

relationship between the input and output modalities. When trained on subjects

with both modalities, the network is able to predict the output modality given the

input modality, thereby allowing me to complete multi-modality data.

2. I propose to use 3D Convolutional neural networks (CNNs) for segmenting the
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neuronal microscopy images. I design a novel CNN architecture that takes volumet-

ric images as the inputs and their voxel-wise segmentation maps as the outputs. The

developed architecture allows me to train and predict using large microscopy images

in an end-to-end manner. In addition, to reduce the computational complexity for

predictions of large images, I employ a stack of deconvolution layers in the CNN ar-

chitecture that can produce a dense pixel-wise prediction very efficiently. I show that

the proposed method improves the tracing performance significantly when combined

with different reconstruction algorithms.

3. I build a voxel CNN classifier that predicts the probability of every individual

voxel in an EM image with respect to the secondary structure elements of proteins

such as α-helix, β-sheet and background. To effectively incorporate the 3D spatial

information in protein structures, I propose to perform 3D convolution in the convo-

lutional layers of CNNs so that discriminative features along three spatial dimensions

are all captured. I show that the proposed CNN classifier can outperform existing

learning based methods on identifying the secondary structure elements of proteins.

4. I propose to use invariant image feature descriptors to capture local gene ex-

pression information from cellular-resolution ISH images. I then build image-level

representations by applying vector quantization on the image descriptors. I employ

regularized learning methods for classifying genes specifically expressed in different

brain cell-types. These methods can also rank image features based on their discrim-

inative power. I show that the proposed automated image computing methods could

potentially be used to identify cell-type-specific genes in the mouse brain.
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1.2 SUMMARY OF REMAINING CHAPTERS

Chapter 2: Deep Learning for medical image completion. In this chapter, I first

discuss the Alzheimers Disease Neuroimaging Initiative database and the properties

of images in the database are presented. I then introduce the traditional convolutional

neural networks widely applied for two dimensional natural images. Next, I describe

the developed 3D convolutional neural networks for the imaging data completion. I

also present the detailed architectures in which the organization of different types of

layers for training is discussed. Finally, I report experimental results and discuss the

broad impacts of the developed model for disease diagnosis on medical images.

Chapter 3: Deep learning for 3d neuron reconstruction. This chapter presents

deep learning methods for neuron tracing problems. I first discuss the convolutional

neural network framework, in which the challenges of applying CNNs over large vol-

umetric data are introduced. I then present the proposed scheme for fast prediction

of testing images of large size. Furthermore, I present the proposed CNN architec-

tures in which novel designs are discussed. Finally, I report experimental results and

discuss the broad impacts of improving the 3D neuron reconstruction.

Chapter 4: Deep learning for protein structure detection. This chapter presents

the deep learning method for detecting the secondary structure elements of proteins

on EM images. I first discuss the deep learning method briefly, in which the in-

ception learning, residual learning and also dilated convolutions are introduced. I

then present the proposed deep learning model for classifying the EM image voxels.
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I report experimental results of my method on simulated EM images with medi-

um resolution in terms of Cα atoms identification accuracy and secondary structure

detection accuracy.

Chapter 5: Identification of cell-type-specific genes. In this chapter, I first discuss

the in situ hybridization (ISH) image feature extraction scheme, in which the proper-

ties of scale-invariant feature transform are introduced. I then describe the developed

computational models for cell-type-specific gene classification. Next, I present the

feature selection formalism using stability selection scheme. Finally, I evaluate the

experimental performance of my method on Allen Mouse Brain Atlas image data in

terms of classification accuracy.

Chapter 6: Conclusion and outlook. In this chapter, I provide a summary of my

contributions and discuss future research directions.
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CHAPTER 2

DEEP LEARNING FOR MEDICAL IMAGE

COMPLETION

2.1 INTRODUCTION AND RELATED WORK

Alzheimer’s disease (AD) is a common neuro-degenerative disease. The diagnose

of Alzheimer’s disease is of great importance for early preventions and on-time treat-

ments for patients. During the whole progression procedure of Alzheimer’s disease,

there are two important stages which are widely used to monitor the speed of disease

evolution over time. These two stages are called stable mild cognitive impairment

(sMCI) and progressive mild cognitive impairment (pMCI). The discrimination of

these two stages is a challenge task since the characteristics of pMCI and sMCI are

quite similar. The detection of pMCI and sMCI was initially implemented by ex-

perienced experts through observations. Recently, advanced computational methods

coupled with multi-modal neuroimaging techniques have been developed for early

diagnosis of AD or MCI [1].

A key challenge in employing computational methods for Alzheimer’s disease di-

agnosis is that the neuroimaging data is usually incomplete in the sense that not

all subjects have all data modalities. For example, the individual positron emission

tomography (PET) scans are more expensive than conventional magnetic resonance

imaging (MRI), thus some subjects might only have done the MRI scans because of
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the high cost. However, it would be beneficial if the data could be completed as dif-

ferent modalities contain complementary information. Nevertheless, the relationship

between different data modalities is complicated and nonlinear. Thus, a highly so-

phisticated model is required for the collaborative completion of neuroimaging data.

In this dissertation, I propose to use deep CNNs for completing and integrating

multi-modality neuroimaging data. Specifically, I designed a 3-dimensional (3D)

CNN architecture that takes one volumetric data modality as input and another

volumetric data modality as its output. When trained end-to-end on subjects with

both data modalities, the network captures the nonlinear relationship between two

data modalities and thus is able to predict the output data modality given the input

modality. This allows me to complete and integrate incomplete data. To the best

of my knowledge, this work represents the first attempt in using deep networks for

data completion.

In this dissertation, I apply my 3-D CNN model to predict the missing PET

patterns from the MRI data. I train my model on subjects with both PET and

MRI data, where the MRI data were used as input and the PET data were used as

output. The trained network contains a large number of parameters and thus is able

to encode the nonlinear relationship between brain structure and function. I then use

the trained network to predict the PET patterns for subjects with only MRI data.

Results show that the predicted PET data achieved similar classification performance

as the true PET images. Additionally, results show that my data completion method

significantly outperforms prior methods in all experiments on disease diagnosis.
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2.2 OVERVIEW OF CONVOLUTIONAL NEURAL NETWORK

Convolutional neural networks (CNNs) are a class of deep learning models that at-

tempt to compute high-level representations of data using multiple layers of nonlinear

transformations. Prior studies have shown that CNNs achieved superior performance

on object recognition [2] and classification tasks in natural images [3]. In addition,

CNNs have been used in biological applications such as restoring and segmenting

volumetric electron microscopy images [4–6].

CNNs mimic the visual information processing in the vision system of the brain

by applying local filters to the input [7]. Such filters can be trained to extract

various local features. To generate specific features of the entire visual field, a sliding

filter is applied across the entire visual field. Such feature extraction method is

also known as parameter sharing and leads to dramatic reduction in the number

of trainable parameters. CNN models usually consist of alternating combination

of convolutional layers and local neighborhood pooling layers, resulting in complex

hierarchical representations of the inputs. These properties make CNNs a powerful

tool in image-related applications.

A typical CNN is constructed by stacking various kinds of layers including convo-

lutional layers, pooling layers, soft-max layers and so on. A convolutional layer uses

a set of learnable filters to produce output. Each filter have a small receptive field,

and is applied in a sliding way on input to generate an activation map called feature

map. Feature maps give the responses of those filters at every spatial position. To

be specific, if the k-th feature map at a given layer is hk and the corresponding filter
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contains the weight W k and the bias term bk, then the output feature map hk is

obtained as follows:

hkij = f((W k ∗ x)ij + bk).

Here, x is input vector from the previous layer, ∗ is the inner product of two vectors

and f is a non-linear activation function. The commonly used form of f is the

sigmoid function. Pooling layers are another types of layers used in CNNs. They

generate output feature maps by applying filters without trainable parameters. The

function of a pooling layer is to reduce the spatial size of output feature map, thus

decrease the amount of parameters and computation in the network. A pooling layer

also helps achieve invariance to visual distortions by ignoring positional information,

which provides additional robustness for networks. Besides convolutional layers and

pooling layers, a soft-max layer is also widely implemented as the final layer of a

network used for many image related problems. Its function is to transform outputs

of the previous layer to be in range [0, 1] such that they have a probabilistic meaning.

For example, for a K-dimensional vector x = [x1, x2, . . . , xK ], the formula of soft-max

function is given by

f(xi) =
exi∑K
j=1 e

xj
.

Besides the above mentioned layers, there are many other types of layers that have

been proved very useful for obtaining competitive performance using CNNs. The

detailed introductions about those layers are omitted in this dissertation, and can be

found in the reference [8].
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The training procedure for CNNs generally consists of two steps which are feed-

forward computation and backpropagation. In feed-forward step, information moves

in forward direction which is from input nodes, through hidden nodes, to output

nodes. In backpropagation step, a loss between outputs of CNNs and ground truth is

firstly computed. The gradient of loss function with respect to all weights and biases

in network are then calculated. Weights and biases are updated through obtained

gradient to minimize loss function. The widely used loss function is cross-entropy

loss with following formula,

H(p,q) = −
K∑
i=1

pilog(qi)

where p = [p1, p2, . . . , pK ] stands for ground truth vector and q = [q1, q2, . . . , qK ]

is for output vector of a CNN through feed forward computation. The training of

CNNs is realized by alternatively implementing these two steps until stopping criteria

is satisfied.

Note that there are two ways in backpropagation step for updating weights of

CNNs. The first way is called batch learning in which updating is applied only after

all training samples are visited and their gradient contributions are accumulated. The

major advantage of batch learning is training could be converged in limited iterations

and the global minimum of corresponding optimization problem could be reached.

However, the computation load of batch learning will be high when the number

of samples is very large. Therefore, another way of updating weights of CNNs,

called online learning, is mainly used for real world applications. In online learning,

gradients are calculated after using a subset of training samples to update weights
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for each iteration. The convergence of online learning is slower but its computation

load is much less than batch learning, and it is very suitable and compatible with

modern computer architectures with multiple GPUs.

2.3 ADNI DATA SET

The data used in this dissertation are obtained from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database. ADNI is a worldwide project that provides

reliable clinical data for the research of pathology principle, prevention and treatment

of AD. Multiple research groups contribute their findings of the biological markers

to the understanding of the progression of AD in the human brain.

For each subject, the T1-weighted MRI was processed by correcting the intensity

inhomogeneity followed by skull-stripping and cerebellum removing. In addition,

each MRI was segmented into gray matter, white matter and cerebrospinal fluid and

was further spatially normalized into a template space. in this dissertation, the gray

matter tissue density maps were used. To further reduce the size of image data, the

density maps were downsampled to 64× 64× 64 voxels. The PET images were also

obtained from ADNI.

I use data for 830 subjects in the ADNI baseline data set. This data set was

acquired from 198 AD patients, 403 MCI patients, which include 167 pMCI patients

(who will progress to AD) and 236 sMCI patients (whose symptom were stable and

will not progress to AD in 18 months), and 229 healthy normal controls (NC). Out

of these 830 subjects, more than half of them (432) do not have PET images. Thus,

accurate completion of PET images for these subjects will not only improve the
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accuracy of disease diagnosis, but also lead to novel insights on the relationship

between different data modalities.

2.4 3-D CNN FOR IMAGING DATA COMPLETION

Convolutional neural networks (CNNs) are a type of deep models that are able to

capture highly nonlinear relationships between input and output [2]. In image classi-

fication tasks, two types of layers, i.e., convolutional layer and subsampling layer, are

usually used in an alternating way. The convolutional layer applies trainable filers

to feature maps in the previous layer, while the subsampling layer is used to reduce

the resolution of the feature maps.

CNNs have been primarily applied to 2-D images such as visual object recogni-

tion [2, 3] and segmentation [5]. In [4, 6], 2-D CNNs have been extended to segment

and restore 3-D images. In [9], 3-D CNNs have been applied to process spatiotem-

poral video data. Similar to the 2-D case, 3-D CNNs perform nonlinear mapping by

computing convolutions with 3-D filters on feature maps.

Formally, let the value at position (x, y, z) on the jth feature map in the ith layer

be vxyzij . Then the 3-D convolution is given by

vxyzij = σ

(
bij +

∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqrijmv
(x+p)(y+q)(z+r)
(i−1)m

)
, (1)

where σ(·) is the sigmoid function, bij is the bias for this feature map, m indexes

over the set of feature maps in the (i − 1)th layer connected to the current feature

map, Pi, Qi and Ri are the sizes of the 3-D kernel along three spatial dimensions

respectively, wpqrijm is the (p, q, r)th value of the filter connected to the mth feature
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map in the previous layer. I demonstrate an example of 3-D convolutional layer in

the following Figure ??.

Subsampling layers are commonly used in recognition and classification tasks.

In these layers, the resolution of the feature maps is reduced by pooling over local

neighborhood on the feature maps in the previous layer, thereby enhancing invariance

to distortions on the inputs. In this dissertation, my primary focus is data completion

instead of recognition. Thus, subsampling layers were not used.

Based on the 3-D convolution described above, a variety of CNN architectures

can be devised. In the following, I describe a 3-D CNN architecture, shown in Fig. 1,

that I designed for PET image completion on the ADNI data set. The subject pool

for training this CNN model consists of the samples having both PET and MRI

images.

In this architecture, I start from MRI of 64×64×64 voxels. To train the network,

I randomly select a large number of patches from each 3-D MRI volume. The input

patch size is determined by the size of output patch in the output layer, since each

convolution operation reduces the size of feature map along each dimension by a

factor related to the size of filter. In this dissertation, the size of output patches is

set to 3× 3× 3. The total number of patches extracted from each volume is 50, 000

so that the entire volume is largely covered.

I then apply 3-D convolution with a filter size of 7× 7× 7 on these patches and

construct 10 feature maps in the first hidden layer. The second hidden layer is again

a 3-D convolution layer with 10 feature maps fully connected to all the feature maps
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 7 X 7 X 7 

3-D convolution  7 X 7 X 7 
3-D convolution

Input:  
 1@64 X 64 X 64 
3-D MRI image

10@58 X 58 X 58 
3-D feature maps

10@52 X 52 X 52 
3-D feature maps

Output:  
 1@52 X 52 X 52 
3-D PET image

FIG. 1: The architecture of 3-D CNN for imaging data completion used in this

dissertation. There are 2 hidden layers between the input MRI volume and the

output PET volume. Each of the hidden layers contains 10 3-D feature maps. The

filter size of the network is 7 × 7 × 7. The total number of trainable parameters in

this network is 37, 761.

in the previous layer. The output layer contains only one feature map, which is

the corresponding PET image of the same subject. In addition, the filter size for

mapping the feature maps of the last hidden layer to the output was set to 1 to

reduce the computational workload. In total, the number of trainable parameters

for this architecture is 37, 761. Therefore, the latent nonlinear relationship between

the MRI and the PET data was encoded into the large number of parameters in

the network. This CNN architecture was selected based on a balance between the

representation power and the computational cost of training the network. A network

with more layers and feature maps may be able to represent the training data better,

but it may also overfit the noise. Additionally, the computational cost of training
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more complex networks is prohibitive.

In the experiments, I used the 398 subjects with both MRI and PET data to train

the network. The weights of this network were updated by error back-propagation

using stochastic gradient descent. The learning rate was fixed to 10−2 in all the

experiments. The network was trained for multiple epochs, where each epoch involves

training the network by each example once. in this dissertation, I trained the network

for 10 epochs since the performance seems to have converged after 10 epochs and the

training was very time-consuming. In particular, I have 398× 50, 000 = 19.9 million

training patches. Each epoch took approximately 48 hmys if all the 19.9 million

patches were used even on a Tesla K20c GPU with 2,496 cores.

2.5 EXPERIMENTAL EVALUATION

2.5.1 EXPERIMENTAL SETUP

In the experiments, I focus on evaluating my 3-D CNN model for missing PET

data completion. To this end, I used several controlled experimental settings to com-

pare the predicted and the true PET image data. I did not employ advanced feature

extraction and classification methods to compare the completed and true data, but

rather used a set of standard methods to make the comparison straightforward. I

consider three binary-class classification tasks (i.e., AD vs. NC, MCI vs. NC, and

sMCI vs. pMCI) in this dissertation, where MCI includes both pMCI and sMCI.

I compare my deep learning data completion method with two other commonly

used missing data estimation methods, namely the K-nearest neighbor (KNN) and
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the zero methods [10]. In KNN, I first find the top K most similar samples to the

target sample without PET images based on MRI image features. Then, I replace

the missing values by weighted average of those top K PET features. In the zero

method, I first normalize the data set such that it has zero mean and unit standard

deviation. Then, I set the missing values to be zero.

The experiments in this dissertation consist of two steps. The first step is to com-

plete the missing PET data using CNN, KNN, or Zero methods. The second step

then evaluate the classification performance after completing the missing values. In

the experiments, I train the classifiers by randomly selecting 2/3 of the samples and

perform the evaluation using the remaining 1/3 as test data in this second step. To

obtain robust performance estimates, this random partition is executed 30 times, and

the statistics computed over these 30 trials are reported. I perform feature selection

by removing voxels that have zero value for all subjects and used L2-norm regular-

ized logistic regression for classification. Since the classes are unbalanced, I use the

area under the ROC curve (AUC) as the performance measure to evaluate different

methods in this study. All the experiments are implemented through an open deep

learning package called “cuda-convnet” on a GPU K40 with 128Gb memory.

2.5.2 EVALUATION ON SUBJECTS WITH BOTH MRI AND PET

I first evaluate whether the predicted PET data are similar to the true PET data.

In the data set used for this dissertation, there are 398 subjects with both MRI and

PET images. I randomly sample 1/2 of these 398 subjects for training the 3-D CNN

model. Then the model is used to predict the PET images of the remaining 1/2
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Predicted PET for an AD subject

Ground truth PET for the same AD subject

Predicted PET for an NC subject

Ground truth PET for the same NC subject

FIG. 2: Comparison of the predicted and the ground truth PET images on two

sample subjects.

subjects. Since the test subjects have true PET images, I can compare the true and

the predicted PET images both visually and quantitatively.

I first visually examine the predicted PET patterns with the ground truth data

slice by slice for each subject. I observe that the predicted PET patterns are very

similar to the ground truth data. Figure 14 shows the predicted and the ground

truth data slice by slice for two subjects. In figure 14, each row corresponds to the
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data (either ground truth or predicted) of one subject, and each column corresponds

to slice with the same brain position. I observe that the predicted PET patterns

are very similar to the ground truth data. This demonstrates that my deep learning

based method can accurately predict and complete the missing PET data.

To evaluate the proposed data completion method quantitatively, I compare the

classification results based on the true and the predicted PET images. In addition,

I report the classification results of other commonly used data completion methods

including KNN and Zero. The AUC values of the three tasks based on true PET

images and predicted images by three methods are given in Table 1.

I observe from these results that the 3-D CNN model outperforms KNN and Zero

methods significantly in all three tasks. These significant performance differences

might be because my deep learning method extracts highly nonlinear relationship

between the MRI and PET images that prior methods lack. I also observe that

the results of the 3-D CNN model is comparable with those of the true PET images.

This demonstrates that my predicted PET images can potentially be used for disease

diagnosis. Note that the classification performance reported here might be lower than

those in the current literature on the ADNI data set because (1) I do not employ

advanced feature extraction and classification methods on the true and completed

data, and (2) the number of subjects used in the study is relatively small, since I use

only these subjects with both MRI and PET.

2.5.3 EVALUATION ON ALL SUBJECTS

In order to evaluate the effectiveness of my proposed method further, I report
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TABLE 1: Performance comparison of classification tasks using the true and the

predicted PET data. The data set consists of 398 subjects having both MRI and

PET images.

Tasks MCI vs. NC pMCI vs. sMCI AD vs. NC

PET

True data 0.7014± 0.0212 0.6823± 0.0241 0.8982± 0.0224

3-D CNN 0.6947± 0.0281 0.6804± 0.0267 0.8868± 0.0208

KNN 0.6304± 0.0248 0.6278± 0.0326 0.7421± 0.0282

Zero 0.6175± 0.0213 0.6124± 0.0243 0.6928± 0.0225

the prediction performance on all 830 subjects, where 398 subjects have both MRI

and PET images, and the remaining 432 subjects have only MRI images. The 3-D

CNN and other data completion methods are trained on the 398 subjects, and the

trained models are used to complete the PET images of the remaining 432 subjects.

The classification performance on all 830 subjects is reported in Table 2. Note that

the comparison of classification performance based on true data is not applicable in

this experiment, since 432 of the 830 subjects do not have PET images.

I observe that the 3-D CNN model outperforms KNN and Zero methods for all

three tasks with three different combinations of PET and MRI image modalities.

This again demonstrates that the proposed 3-D CNN data completion method is

more effective than prior methods. I also observe the performance is improved when

the MRI and PET image features are combined. Overall, these experiments yield
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TABLE 2: Performance comparison of classification tasks using the true and the

predicted PET images. All 830 subjects were used in this experiments, where subjects

with no PET images were completed using three methods.

Tasks MCI vs. NC pMCI vs. sMCI AD vs. NC

MRI 0.7439± 0.0329 0.7168± 0.0253 0.9192± 0.0188

PET

3-D CNN 0.7305± 0.0315 0.7029± 0.0245 0.8762± 0.0236

KNN 0.6352± 0.0200 0.6133± 0.0346 0.7391± 0.0304

Zero 0.6102± 0.0268 0.5924± 0.0331 0.7028± 0.0331

MRI + PET

3-D CNN 0.7621± 0.0205 0.7244± 0.0241 0.9287± 0.0207

KNN 0.7231± 0.0214 0.6813± 0.0312 0.7691± 0.0213

Zero 0.7217± 0.0290 0.6291± 0.0317 0.7003± 0.0162

insights on the power of the 3-D CNN model in completing missing neuroimaging

data, thereby providing practical guidelines for employing multi-modality data even

when some data modalities are missing.



23

CHAPTER 3

DEEP LEARNING FOR 3D NEURON

RECONSTRUCTION

3.1 INTRODUCTION AND RELATED WORK

Morphology of neurons plays a critical role in the function of the brain. Recently,

many efforts have been devoted to develop automatic or semi-automatic neuron re-

construction algorithms based on microscopy images. However, this reconstruction

task remains very challenging when a 3D microscopy image has low signal-to-noise

ratio (SNR) and discontinued segments of neurite patterns. Indeed, microscopy im-

age sets with low SNR are quite common for the nervous systems of different an-

imals [11, 12]. Therefore, an effective and automatic denoising algorithm for these

challenging situations would substantially amplify the impact of neuron morphology

reconstruction. Currently, most of prior methods for neuronal structure reconstruc-

tion on noisy images have used the raw images in an unsupervised way [13–16].

The authors in [11] developed a graph-augmented deformable model to reconstruct

the 3D structure of a neuron when the neuron contains a broken structure and/or

fuzzy boundary. However, this method still has difficulties on some noisy pattern-

s, e.g., when two parallel tracts are very close and one is brighter than the other.

In [11, 17, 18], fast-marching based methods were combined with different pruning
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Original image Probability map Adjusted image Reconstruction

CNN Tracing 

FIG. 3: The pipeline of my method for automated reconstruction of neuronal struc-

tures.

Convolution Deconvolution

FIG. 4: Comparison of convolution and deconvolution.

techniques to handle 3D noisy images. However, these methods either have low ac-

curacy when the images are anisotropic or are time-consuming when the number

of noisy voxels is large. The recently published work [19] developed an automatic

tracing framework with training steps to refine the reconstruction results generated

by an initial tracing algorithm. One main bottleneck of this method is its relatively

high computational complexity.

In this dissertation, I propose to use the convolutional neural networks (CNNs) for



25

Reduction  A 

Input

Stem Inception  A

Inference

Concat

+

1x1 (64)

1x7 (64)

1x7 (64)

3x3 (96)

3x3 (96)

1x1 (64)

3x3x4 (64)

3x3 (192)
s =2

1x1(32)

1x1 (32)

3x3 (64)

3x3 (48)

1x1(384) Concat

1x1 (32)
1x1(128)

1x1(128)

7x1(128)

1x7(128)

1x1(896)

7x1(320)

1x7(256)

1x1(256)

3x3(320)
s=2

3x3(192)
s =2

1x1(192)

1x1(2048)
3x1(256)

1x3(224)

1x1(192)
1x1(192)

3x3 Pooling
s =2

3x3 Pooling
s =2

Concat

+

))11111xx11 ((6666644444)))))

))))11111x7777 (6666644444)))))

)))11111x7777 (66664444)))))

(( ))33333x33333 (9999966666)))))

))( ))33333xx33333 (((((9999966666)))))

11111x11111 (((((6666644444)))))

( ))( ))33333x3333x4 (((((66664444)))))

CCConcatt

444

(( )))
(((

7777 (((((66666

(((7 ((6

33333 (((((((99999

x1111 ((((6666

))))

((((7 ((6

777 (((((((666

((

33x3 (192))
s =2

1111x1(333222)))))

11111x111 ((((3332222)))))

33333x33 (66444)))))

)( ))33333x333 (444888)))))

11111x11(338844)))))

1111x1 ((((3332222)))))

CConcatt

11(((33

11111 111 ((((11(((((333

333 (((((444

33 (((((66

+

3x3(32)33333x3((3322)))))33(((33

((

+

92)))))

3x3(32) 
s =2

1x1(256)

3x3(256)

3x3(384)

CCCCConcat

33333x3333 PPPoolllliiiinggggg
s =2

33333x333((((333222))))) 
ss =2

))))( )))))11111x11(((2255666)))))

))))x ( )))))33333x33((22566)))))

))x (( )))))33333x33(((338844)))))

((1111 1((

3((2

)))))11111x1111((((1111222288888)))))

))x (( ))))11111x11((112288)))))

77777x11((112288)))))

x ( )))))11111x777(1112228888)))))

( ))11111x11((((889966)))))

(777(((((111

11(((11

(

+

( ))77777x11(32200)))))

11111x777(25556666)))))

))11x11((((225566)))))

( ))))33x3(320))
s=2
(33333x33(((119922)))))

s =2

11111x111(((((1199222)))))

33333x33 PPoolliing
s =2

199222))) 1111

ConcatCCCConcatoncatt

777((((((2222

(

11((((33((
1111x1(((2048)))))11111x11((22004488)))))

( ))3333x1((2566)))))

( ))111x33((222244)))))

( ))11x1((192)))))
( ))11x11((119922)))))

+

Inception  B Reduction  B Inception  C

Deconvolution 4xDeconvolution 2x Deconvolution 8x Deconvolution 16x

Ground Truth
Softmax loss

(training)

3x3(32), s=233333x3((32)),, s=22) 3x3 Pooling
s = 2

33333x3 PPoolliingg33333 33
s = 2

Relu

Relu
Relu Relu Relu

M x N x P

M x N x P M x N x P M x N x P M x N x P

M x N x P M x N x P

FIG. 5: Detailed architecture of the 3D convolutional neuron network with dense

prediction.

improving the reconstruction performance of existing methods on noise-contaminated

images over different organisms. CNNs are a type of fully trainable models that learn

a hierarchy of features through nonlinear mappings between multiple stacked layers.

CNNs have been widely used in a number of applications and achieved state-of-the-art

performance on tasks including large-scale image and video recognition [3, 9, 20, 21],

digit recognition [5], and object recognition tasks [22]. Recently, many attempts have

been made to extend these models to the field of image segmentation, leading to im-

proved performance [4, 6, 23]. One appealing property of CNNs is that the learned



26

Intermediate layer  Intermediate layer 

Intermediate layer Intermediate layer  

Concatenation  

Previous layer 

+

Intermediate layer  

Intermediate layer  

Element-wise 
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FIG. 6: Illustration of the inception (left) and residual (right) learning.

features through trainable parameters can capture highly nonlinear relationship be-

tween inputs and outputs. Therefore, the reconstruction methods based on CNNs

can be broadly applied to a variety of different data sets.

Specifically, I built a voxel CNN classifier that predicts the probability of every

individual voxel in a given image being a part of neuron or not. CNNs have been

primarily applied on 2D images in the prior studies. To effectively incorporate the 3D

spatial information in neuronal structures, I propose to perform 3D convolution in

the convolutional layers of CNNs so that discriminative features along three spatial

dimensions are all captured. The proposed CNN classifier accepts raw voxel inten-

sities as input without any preprocessing and learns highly discriminative features

automatically for producing final probability maps. These probability maps are inte-

grated later with the raw intensities to produce the final adjusted image as input for

tracing algorithms. In addition, to obtain the predictions of CNNs on test images,

the conventional approaches used patch-based predictions. This approach results in
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significant redundancy in computation, thus making the prediction of large images

very time-consuming. To reduce the computational complexity, I apply a stack of

deconvolution layers in the CNN architecture that can produce a dense pixel-wise

prediction very efficiently. I compare the performance of our approach with that

of commonly used tracing methods on a number of challenging 3D neuronal images

from different model organisms. Results show that the proposed model significantly

outperforms prior methods on neuron tracing from microscopy images.

3.2 BIGNEURON ATLAS

The BigNeuron project [24] provides a large community- oriented neuron mor-

phology database and reconstruction algorithms contributed by many research labs

worldwide. There are more than 20,000 volumetric optical microscopy images from

a variety of species including fruit fly, fish, turtle, chicken, mouse, rat, and human.

The neurons in these images are mainly located in regions such as cortical and sub-

cortical areas, retina, and peripheral nervous system. Each image in BigNeuron has

single color channel, and contains a single neuron or disconnected multiple neurons

having relatively clear separation in their arborization patterns. Some images have

the corresponding reconstructions manually curated and/or proofread to be used as

references or “gold standards” for evaluating the automatically produced reconstruc-

tions. BigNeuron uses the open-source cross-platform package “Vaa3D” software [25]

for facilitating the bench-testing of neuron tracing algorithms developed by worldwide

researchers. More than 30 automated neuron-tracing algorithms for neuron quantifi-

cations have already been ported to Vaa3D as plug-ins, in addition to a number of
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artificial noise by CNN

FIG. 7: Comparisons of tracing performance on images with artificial noises.

other neuron data analysis tools.

3.3 FAST PREDICTION OF CNNS

One major challenge of using CNNs on neuronal image segmentation is that the

volumetric images usually have large sizes and thus could be computational expensive

to segment. A common way of generating image segmentations using CNNs is to

extract patches from the images and use those patches as inputs to the trained

network. The output of each patch is a single label of the center pixel of that patch.
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Raw image Manual CNN+APP2 APP2 SmartTracing

FIG. 8: Comparisons with different neuron tracing methods for two images in

BigNeuron database. The first row is for the subject No. 31, and the second row

is for the subject No. 52. The first column shows the original images. The second

column shows the expert manual reconstruction results. The third column is the

reconstructions using APP2 on adjusted images with our CNN model. The fourth

column is the results by applying APP2 directly on the original images. The fifth

column shows the results by SmartTracing method on the original images.

Such patch-based prediction results in a huge amount of redundant computations.

It is thus desirable to design a fast prediction algorithm that can segment the whole

image directly without generating patches.

In [26], a fast prediction algorithm was proposed by creating a group of frag-

ments over the feature maps generated from each max-pooling layer. Each fragment

contains information independent of other fragments, and the output fragments at

the last layer were reorganized to generate the final prediction of the whole im-

age. Although this fast prediction algorithm does not require patch extraction, some
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TABLE 3: Quantitative comparisons of tracing performance by APP2 and Smart-

Tracing method with and without the adjustment by my CNN model respectively.

The results reported in this table are based on the measure “% of different structure”.

Sub CNN+APP2 APP2 CNN+ST ST Sub CNN+APP2 APP2 CNN+ST ST

3 0.2075 0.5347 0.3153 0.5339 4 0.2226 0.7012 0.4178 N/A

5 0.3472 0.3483 0.5080 0.4974 7 0.2178 0.3920 0.2686 0.3629

16 0.2099 0.2916 0.2488 0.2204 17 0.2096 0.2019 0.2968 0.3134

18 0.3353 0.3645 0.3125 0.3023 19 0.3010 0.2748 0.3276 0.3036

20 0.4588 0.5684 0.4092 0.4130 21 0.3498 0.4163 0.2346 0.2446

22 0.3298 0.3474 0.3188 0.2901 25 0.5443 0.5727 0.6387 0.6101

29 0.3663 0.5017 0.3452 0.3948 31 0.1683 0.3807 0.2483 0.4712

35 0.3622 0.7447 0.5120 N/A 52 0.2492 0.4283 0.2723 0.3845

duplicate computations still exist when generating different fragments. In [27] the

d-regularly sparse kernels were introduced to eliminate the redundant computations

in convolutional and pooling layers. Those sparse kernels converted convolution and

pooling kernels with various strides into operations with a single stride. This conver-

sion ensured continuous memory access and increased the computational efficiency

on GPUs. However, this sparse kernel prediction method is not applicable to archi-

tectures in which feature maps are padded before each convolutional layer to retain

their sizes.

In this dissertation, I employ a novel network to obtain image predictions effi-

ciently. In particular, I apply deconvolution operations to offset the size reduction

caused by convolution and max-pooling operations. Contrary to the convolution
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TABLE 4: Tracing performance comparisons using the measure “entire structure

average” and “different structure average”.

entire structure average different structure average

CNN+APP2 APP2 CNN+ST ST CNN+APP2 APP2 CNN+ST ST

Sub. 3 1.4667 19.1914 1.9345 13.253 3.7271 24.3327 3.8273 17.6276

Sub. 4 1.4608 20.4576 2.2307 N/A 2.9812 24.4982 3.6339 N/A

Sub. 5 2.9562 3.4425 2.9451 2.8185 5.7559 6.6293 4.1684 4.0008

Sub. 7 1.7715 4.1832 2.2249 4.1815 3.1334 7.6208 4.8516 7.8795

Sub. 16 1.7643 2.7168 2.1222 2.3085 4.2014 6.9710 4.2785 5.2957

Sub. 17 1.5133 1.5218 1.9180 1.9883 2.7030 2.8417 2.8988 3.0038

Sub. 18 1.9768 2.1165 2.5506 2.4962 3.1877 3.3327 4.8305 4.7152

Sub. 19 1.7361 1.6803 2.0086 1.9669 2.7909 2.7932 3.0154 2.9459

Sub. 20 2.2600 4.4414 2.5101 3.0851 3.2338 6.3721 3.9653 5.1144

Sub. 21 1.9406 2.9079 1.7357 1.9998 3.0792 5.3018 2.9771 3.7801

Sub. 22 2.0178 2.1073 2.0318 2.0717 3.3857 3.5341 3.2598 3.5386

Sub. 25 15.1363 25.2285 16.9098 18.8010 18.9222 29.3581 20.0443 22.1727

Sub. 29 2.3182 4.3457 2.5062 4.2284 3.7772 7.1298 4.4599 8.1930

Sub. 31 1.5740 13.4657 1.8931 10.0305 5.3058 23.2479 4.0464 13.5121

Sub. 35 3.0737 31.0310 3.4451 N/A 6.6046 32.0973 5.2681 N/A

Sub. 52 4.3104 17.6192 3.3240 12.0861 17.4785 37.7065 9.8060 25.2226

operation that connects multiple input activations using a convolution kernel to pro-

duce a single output, as shown in Figure 4, the deconvolution associates a single

input with multiple outputs using a deconvolution transformation. One significant

advantage of using deconvolutional layers is that they allow the output feature map

to have the same size as the input image by using carefully selected deconvolution
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kernel and stride sizes. Specifically, I use multiple deconvolution operations at dif-

ferent intermediate layers to make the sizes of feature maps at those layers the same.

The deconvolved same-size feature maps are then combined to form a multi-scale

representation of the model input. Through such design, the proposed network is

capable of generating an end-to-end mapping between inputs and outputs and leads

to dense pixel-wise prediction over images without any computational redundancy.

3.4 THE PROPOSED DEEP MODEL

Another major challenge of using CNNs for neuronal image segmentation is the

large diversity of the images in the BigNeuron database. First, the complicated

structures of neurons require the network to be able to learn features from multiple

scales. For example, the recognition of neuron skeleton needs large filters, since

neurons can be very thin yet projecting to long distance in 3D space. On the other

hand, the fine neuronic structures like branches or bifurcations needs small filters

to capture the local information in a small neighborhood. Second, images in the

BigNeuron datasets are contributed by different research groups and acquired using

different imaging techniques on various species such as fruit fly, fish, etc. This results

in a large amount of differences of neuron morphology among the images. Hence, the

network is expected to extract the essential common characteristics of neurons over

those various samples. Third, the qualities of images in BigNeuron are dramatically

different, which introduced an extra difficulty for the model training. For example,

the signal levels of key neurite in some images might be strong and thus easy to

detect, but these signals might be weak in other images because of multiple factors
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such as inappropriate exposure, noises from non-neuronal cells, or limitations of

experimental devices.

To overcome the above-mentioned difficulties, I propose a novel 3D CNN for

reconstructing neurons accurately. Prior studies have demonstrated the superior

performance of CNNs on classifications in natural images. However, in those ap-

plications, 2D convolutions are applied to mimic the visual information processing.

When applied to the neuron reconstruction problems, it is desirable to employ 3D

convolutions since neurons are naturally in 3D space. Architectures with 3D convo-

lutions have been successfully used in video analysis [9, 28–30], in which the video

data were viewed as a 3D volume with time acts as the third dimension. The authors

in [31] used 3D filters to build nonlinear mappings between different image modali-

ties, but its architecture was too shallow and inefficient for our neuron tracing task.

In order to tackle the large variance of neuronal structures in 3D space, I propose

a fully convolutional network (FCN) with 3D convolutions to localize the neurons

in the BigNeuron database. FCNs are variants of CNNs by replacing the fully con-

nected layers with convolutional layers. Such model allows the network to operate

on inputs of any size and produce outputs of corresponding spatial dimensions. Ful-

ly convolutional layers together with deconvolutional layers ensure the feasibility of

end-to-end training and testing. Furthermore, in order to improve the performance

of networks, the strategy of stacking more layers is widely used in literature. Such

strategy has two major drawbacks. One is deeper network typically means a larger

number of parameters, which increases the risk of overfitting. The other drawback is
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the dramatically increased computational complexity. In this dissertation, I propose

to use two powerful deep learning techniques introduced in the following to overcome

these limitations.

3.4.1 INCEPTION AND RESIDUAL LEARNING

One typical way for overcoming the above mentioned two limitations of deeper

networks is to introduce small kernels instead of large kernels. However, large kernels

are still necessary for capturing information of large regions in the input. In order

to deal with this dilemma, inception networks [32,33] used multiple kernel sizes and

max pooling in parallel in each stage, and then aggregated their outputs for the next

stage, as shown in Figure 6. In each inception module, prior to expensive convolutions

with large filter sizes, convolutions with small kernels are inserted to reduce the

dimensionality such as the number of feature maps. An advantage of such design is

that it allows for increasing the number of units at each stage significantly without

an uncontrolled blow-up in computational complexity at later stages. Meanwhile,

the use of multiple filter sizes ensures that the hidden information can be processed

at various scales simultaneously.

The residual learning technique [34] was initially proposed to solve the degrada-

tion problem in which the training accuracy decreases when using too many stacked

layers. Formally, we use H(x) to denote the desired nonlinear mapping between the

input feature map x and the output feature map after applying stacked layers. In

residual learning, the stacked convolutional layers were considered to only fit H(x)’s
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nonlinear residual F (x) := H(x)−x. In other word, the mapping H(x) can be refor-

mulated as F (x) + x and realized by adding a shortcut identity mapping connection

between the input feature map and the output map, as shown in Figure 6. Such

design ensures that residual networks can achieve more accurate results using deeper

models but the training will be still very fast. This is because previous layers are

reused by subsequent layers through shortcut connections, which makes each layer

learns less than a plain network but utilized more information.

In this dissertation, I use residual learning for segmenting the neuron morphol-

ogy from optical microscopy images. In addition to its excellent performance in

dealing with the degradation problem, another motivation of using residual learning

is the limited number of samples for training. Although the number of images in the

BigNeuron database is large, only a small number of them have manual reconstruc-

tions by experts. For segmentation tasks over 2D natural images, transfer learning

could be used to borrow weights from pre-trained models on other similar data sets.

However, transfer learning may not work in the segmentation of 3D neuron images

because of the absence of pre-trained models for transferring. This lack of training

samples restricted the depth of the model since deep models with limited samples

may overfit. Due to the appealing property of residual learning, I employ shortcut

connections between both convolutional and deconvolutional layers to construct the

hierarchical representation of neurons.

3.4.2 THE DETAILED ARCHITECTURE

I provide the detailed configuration of the proposed deep network in Figure 5.
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The whole network contains 6 modules, and each of them used multiple paths for

realizing inception learning. In particular, I use 3 modules (inception A, B, C in

Figure 5) mainly for building the nonlinear relationship between input and output,

and an additional 3 modules mainly for reducing the sizes of feature maps (reduction

A, B, C in Figure 5). For each module in the architecture, convolutional layers are

denoted by kernels sizes and number of feature maps in the brackets. Except those

layers used stride size of 2, which are indicated by “s=2”, the stride sizes in other

layers are all 1. The filter sizes in third dimension is selected as 1 in most layers,

and I ignore to notify that for simplicity. The orange arrows stand for the short-

cuts of residual learning. Multiple deconvolutional layers are used for up-sampling

the intermediate feature maps to have the same size as the input. All outputs of

deconvolutional layers are summed together to form a multi-scale representation of

inputs. In those 3 inception modules, residual learning is applied for improving the

performance and also reducing the computation complexity. The network is 48-layer

deep when counting only layers with parameters. The overall number of layers (in-

cluding scaling and batch normalization) used for the construction of the network is

over 200.

All the convolutional layers, including those inside the inception modules, and

deconvolutional layers use rectified linear activation. Considering the limited num-

ber of foreground neuron voxels in the original 3D images, I randomly sample the

background voxels for each training subject in order to control the numbers of posi-

tive and negative samples. Intuitively, voxels around the neuron boundary are more
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difficult to classify correctly than other distant voxels. Therefore, most of the back-

ground samples are drawn around the neuron boundary. Also the ratio between the

numbers of foreground and background voxels are kept within an acceptable lev-

el. Note that the numbers of voxels in foreground and background classes are not

balanced. If the contribution of each class to the loss is treated equally during the

training, the obtained network will mainly capture the discriminative features of the

majority class which is the background class in this case. Therefore, in the loss layer,

I apply different weights to the foreground and background classes to overcome this

imbalance problem.

3.5 IMAGE ADJUSTMENT

For each microscopy neuron image, I can generate its probability map P having

the same size as the image. Each element of P indicates the probability of the

corresponding voxel as neuron, known as foreground probability. A natural way to use

the probability map is to apply the tracing algorithm directly to detect the neuronal

structure. In this dissertation, I combine the original image and the probability map

together to get a combined representation for suppressing the noise signals effectively.

Specifically, for an input image I(x) where x is a voxel, I screen the probability

map by a threshold δ chosen empirically to identify the foreground voxels. If the

foreground probability P (x) of the voxel x is less than δ, I set the intensity I(x) to

zero, otherwise I keep its original intensity value unchanged. Thus, an intermediate
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intensity image Ĩ(x) is defined as

Ĩ(x) =


I(x) if P (x) > δ,

0 if P (x) ≤ δ.

In order to further use the probability map, I construct a new probability image P̃ (x)

by multiplying the probability value P (x) with 255 and rounding the decimal value

to the closest integer. The final adjusted image F (x) by my method is defined as

F (x) = αĨ(x) + (1− α)P̃ (x)

where α is a weight to control the contributions of the original intensity and the

probability map. Then the tracing algorithm will be applied on the adjusted image

to trace the final neuronal reconstruction. The detailed pipeline of the proposed

method is illustrated in Fig. 12.

3.6 EXPERIMENTAL EVALUATION

3.6.1 EXPERIMENTAL SETUP

In this dissertation, I select 68 subjects from the BigNeuron database. These

subjects are from a variety of species, and each subject has the corresponding expert

manual reconstruction as ground truth for training and evaluation. Out of these 68

3D images, more than half of them contain clearly visible noises in the images. I

randomly sample 3/4 of these 68 subjects for training the proposed models. Then

the model is evaluated on the remaining subjects to compute the neuron tracing

performance. The training and testing split is performed in a stratified way in terms
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of data source to avoid the scenario that all subjects from some research labs are all

either in training or test sets.

During the training phase, I trim off the background margins of the training im-

ages according to the ground truth for saving computational resources. In order to

improve model performance, I use data augmentation to enlarge the training data

set. The data augmentation includes transformations of the original images with

rotation and flipping along different dimensions. During the test phase, I empirically

select the probability threshold value δ in 2 to be 0.02. The coefficient α in Eqn. 3.5

is tuned through line-search over test images and the value of 0.85 is used. I apply

three distance scores to measure the difference between a particular reconstruction

and the ground truth. These scores were defined in [11] and are known as “entire

structure average”, “different structure average” and “percentage of different struc-

tures”. Specifically, for each node in manual reconstruction, I calculate the minimal

spatial distance between this node and all nodes in the reconstructed nodes generated

by computational methods. The entire structure average is obtained by averaging

all these reciprocal minimal spatial distances; the different structure average only

sums those distances that are larger than 2 voxels since the difference of two nodes

that is less than 2 voxels are hardly distinguished visually. The percentage of dif-

ferent structures captures the percentage of pairs of nodes whose reciprocal minimal

spatial distances are more than 2 voxels. For all of these three measurements, larg-

er values indicate higher discrepancy between the tracing results and the manual

reconstruction.
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3.6.2 PERFORMANCE ON IMAGES WITH ARTIFICIAL NOISE

A major advantage of the proposed CNN model is that I can obtain accurate

segmentations of neurons. Such segmentations can enhance the signal of neurons

from a noisy image, which improves the neuron tracing applied in the following. In

order to demonstrate the robustness of our CNN models with respect to different

levels of noises, I add Gaussian white noise of mean 0 and different variance γ to

the original image of Subject 17. I then use each image contaminated with artificial

noise as the input to my CNN model, and generate the corresponding adjusted image

as described in Section 3.5. For both contaminated images and adjusted images by

CNN models, I apply the APP as the tracing method to reconstruct the neuron

structures. The visualization results for three values of γ = 0.001, 0.005 and 0.01

are given in Figure 7. The first column shows the images of Subject No. 21 with

different levels of added Gaussian white noises. The variance values are 0.001, 0.005,

0.01, respectively, from top to bottom. The second column shows the corresponding

adjusted images after applying our CNN model to remove the noise voxels. The

third column shows the reconstruction results by the APP method on the adjusted

images. The fourth column shows the reconstruction results by the APP method on

the contaminated images. The up-right boxes in the fourth column show the parts of

the corresponding images. The distances between the tracing result and the ground

truth is also give in each image in the third and fourth columns.

I can observe that after applying our proposed segmentation model, the numbers

of noise pixels in the adjusted images are significantly decreased. The reconstructions
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on the adjusted images are visually close to the ground truth by human experts.

In contrast, the reconstructions on the contaminated images without adjustments

contain many unnecessary spurs because of the noise signals. In addition, I compute

the distances between the reconstructions and the ground truth. I observe that for

different levels of noise, the performance on the adjusted images is consistently better

than that on the contaminated images. This shows that the trained CNN models

could be potentially used to improve the accuracy of neuron tracing, especially if the

microscopy images are contaminated by noises.

3.6.3 PERFORMANCE ON REAL IMAGES

In order to further demonstrate the advantage of our CNN models on denoising

neuron microscopy images, I use two real images with visible noises contributed by

different research labs. In addition, I compare my method with the SmartTracing

method [19] which is another learning-based tracing framework. I use APP2 as the

tracing method applied on the original and adjusted images, since SmartTracing is

also based on APP2. The reconstruction results of different methods are given in

Figure 8.

I observe that the tracing results on adjusted images are visually more similar

to the ground truth than those on the original images. The probability maps of our

CNN model captured those bright noise voxels, which facilitated the reconstructions

applied subsequently. In contrast, many redundant branches and bifurcations are

still wrongly kept as neuron segments by APP2 on the original images. Although

SmartTracing is a also learning based method, it used local features with complicated
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transformations to train the model. In contrast, CNNs employ stacked layers with

different filter sizes to extract multi-scale information of objects in the image. The

advantage of the proposed model over SmartTracing can be observed in Figure 8.

3.6.4 COMPARISON WITH OTHER METHODS

In order to evaluate the proposed method quantitatively, I compare the tracing

performance of APP2 and SmartTracing with and without adjustment by the pro-

posed CNN model respectively. The results on all 17 test subjects are reported in

Table 3, 4. I observe that, for both APP2 and SmartTracing, their performance

on adjusted images is better than that based on the original images for all three

measurements. Specifically, APP2 with CNN adjustment outperforms APP2 on the

original images for all subjects with respect to the measure “entire structure aver-

age”. Even for the other two measures, there are only one or two subjects on which

APP2 without CNN yield slightly better performance. Similar performance gains by

the proposed CNN models are also observed on the results using SmartTracing. In

addition, I observe that for those images with a large amount of noise such as Sub-

ject 3, 4, 31, and 52, the tracing results after using our CNN models are significantly

better than those on the original images. These results further demonstrate that the

proposed 3D CNN method is very effective in improving neuronal reconstruction on

noisy images.
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CHAPTER 4

DEEP LEARNING FOR PROTEIN STRUCTURE

DETECTION

4.1 INTRODUCTION AND RELATED WORK

Proteins perform most of the work of living cells with unique and stable three-

dimensional (3D) structures. The detection of the folded structures of proteins is

critical for understanding the working mechanisms of action in large macromolecu-

lar complexes such as viruses, cellular organelles and membranes, etc. In the past

decades, a number of studies have been conducted to develop efficient methods for de-

termining the structures of proteins which are categorized to four levels. Most of prior

progresses in this field are based on experimental techniques such as X-ray crystallog-

raphy and nuclear magnetic resonance (NMR). Cryo-electron microscopy (cryo-EM)

is an experimental technique with increasing popularity to study the structures of

protein complexes. Through cryo-EM, a number of large molecular complexes, such

as ribosome and viruses, have been resolved to near atomic resolutions.

However, detecting the secondary structures of proteins automatically and accu-

rately at medium resolutions (5-10Å) is still a challenging task. The major difficulty

is from the fact that the spatial shape patterns of secondary structure elements

(SSEs) at medium resolutions are hardly distinguished with their closely located

neighbours. The most common secondary structure elements (SSEs) are α-helices,
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β Sheet    

α  Helix    

Loop/turns

FIG. 9: Illustration of different SSEs in an example protein including α-helix, β-sheet

and turns/loops. The backbone of a protein structure is shown as a ribbon, and the

surface view of the corresponding density image is superimposed as well.

β-sheets, and turns/loops. An example showing their shapes is given in Figure 9. In

general, the long α-helices and large β-sheets can be detected accurately because of

their easily recognized spatial shapes. However, short α-helices appear to be similar

to turns/loops in the density maps at the medium resolution and they are hard to

distinguish. For instance, a β-sheet with two strands can be easily confused with

an α-helix. The shape and structure of turns/loops are also very similar to those of

the neighbour α-helices. Therefore, it is highly demanded for efficient computational

methods that can accurately and automatically identify SSEs from EM images at

medium resolutions containing high similarities.

Currently, most prior methods for detecting SSEs at medium resolutions are based

on image-processing techniques. These methods search for cylinder-like regions for

α-helices and plane-like regions for β-sheets. In particular, the methods in [35, 36]

detected the α-helices computationally from a density map at sub-nano resolution.
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Original convolution Dilated convolution

FIG. 10: Illustration of the original convolution and the dilated convolution.

They used a five-dimensional cross-correlation search of a three-dimensional density

map followed by a series of integrated feature-detection steps. The authors of [37,38]

studied the unique morphological features of SSEs, and then used the structural sim-

ilarities based on these features for locating α-helices and β-sheets. In addition, De

novo modeling [39] was designed to derive the backbone from the specific density

maps of low resolutions. In general, these existing methods have two common draw-

backs. The first one is they need user interventions such as the careful adjustment

of various parameters. The second drawback is that they did not fully explore the

existing data to assist in detecting SSEs of new samples. The database size of cry-

oEM images for protein backbones is rapidly increasing. It is thus desirable to utilize

the existing data in a more efficient way for improving the performance of detecting

protein structures. Recently, learning based methods with few user interventions are

attracting more research attentions in detecting protein SSEs. The studies in [40]

used a nested K nearest neighbors classifiers for improving the α-helices detection.

However, it used different proteins in the same cryoEM map to form the training
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TABLE 5: Accuracy of identified Cα atoms from the simulated maps.

PDB ID 1ajw 1ajz 1al7 1cv1 1dai 1eny 1wab 2aw0 2itg 3lck Average

Total 145 282 350 162 219 268 212 72 160 270

Hlx 5 124 159 123 84 126 96 22 66 107

tp HlX 5 120 155 119 82 124 96 22 66 98

m HlX 0 4 4 4 2 2 0 0 0 9

fp Hlx 26 23 35 21 24 60 57 11 31 25

Sht 63 37 46 14 47 66 24 25 21 30

tp Sht 60 32 41 12 45 46 24 25 21 29

m Sht 3 5 5 2 2 20 0 0 0 1

fp Sht 61 18 14 18 16 18 22 31 49 24

Spe.Hlx 81.43 85.44 81.68 46.15 82.22 57.75 50.86 78 67.02 84.66 71.52

Sen.Hlx 100 96.77 97.48 96.75 97.62 98.41 100 100 100 91.59 97.86

Spe.Sht 25.61 92.65 95.39 87.84 90.70 91.09 88.30 34.04 64.75 90 76.04

Sen.Sht 95.24 86.49 89.13 85.71 95.74 69.70 100 100 100 96.67 91.87

and testing data. The authors in [41] developed a machine learning framework based

on support vector machine (SVM) method to automatically identify α-helices and

β-sheets with usage of other existing volumetric maps. However, the sample features

they used are locally hand-crafted features which are not representative enough for

the essential characteristics of protein structures.

In this dissertation, I propose to use the convolutional neural networks (CNNs) for

detecting secondary structures in protein EM images. CNNs are a type of fully train-

able models that learn a hierarchy of features through nonlinear mappings between

multiple stacked layers. CNNs have been widely used in a number of image related

applications and achieved state-of-the-art performance on tasks including large-scale
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image and video recognition [3,9,20,21], digit recognition [5], and object recognition

tasks [22]. Recently, many attempts have been made to extend these models to the

field of image segmentation, leading to improved performance [4,6,23]. One appeal-

ing property of CNNs is that the learned features through trainable parameters can

capture highly nonlinear relationship between inputs and outputs. Therefore, it is

natural to employ CNNs for obtaining high representative features from EM images

to improve the performance of detecting protein SSEs.

Specifically, I built a voxel CNN classifier that predicts the probabilities of every

individual voxel in a given EM image with respect to different kinds of SSEs. To

effectively incorporate the 3D spatial information in protein structures, I propose to

perform 3D convolution in the convolutional layers of CNNs so that discriminative

features along three spatial dimensions are all captured. The proposed CNN clas-

sifier accepts voxel EM densities as input and learns highly discriminative features

automatically for producing intermediate label prediction. These intermediate la-

bel predictions are then integrated with post processing steps for detecting the final

secondary structures. In addition, the conventional approaches used patch-based pre-

dictions to obtain the outputs of CNNs on test images, which is very time-consuming

for large images. To reduce the computational complexity, I apply a stack of deconvo-

lution layers in the CNN architecture that can produce a dense pixel-wise prediction

very efficiently. I compare the performance of my approach with that of commonly

used learning based methods on a number of challenging 3D cryoEM density maps.

Results show that the proposed model significantly outperforms prior methods on
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detecting secondary structures of proteins from volumetric images.

4.2 THE PROPOSED DEEP MODEL

One major challenge of using CNNs for cryo-EM segmentation is the large image

diversity in the database. The complicated structures of proteins require the net-

work be able to learn features from multiple scales. For example, the recognition of

α-helices needs large filters, since an α-helix usually extends long in 3D space. On

the other hand, detecting β-sheet structures needs small filters to capture the local

information in a short and flat neighborhood. To overcome the above-mentioned

difficulties, I propose a novel 3D CNN for recognizing the protein SSEs from cryoEM

images accurately. To be specific, I design a fully convolutional network (FCN) with

3D convolutions to localize the SSEs in the images. The proposed fully convolution-

al layers integrated with deconvolutional layers ensure the feasibility of end-to-end

training and testing. The detailed introduction of FCNs and deconvolutional layers

can be found in the previous chapter.

Furthermore, I also propose to use inception learning and residual learning to

improve the performance of networks. An inception network employs different kernel

sizes and also max pooling as multiple pathes in each stage, and then collect their

outputs for the next stage, which allows for increasing the number of units at each

stage significantly without sharply increasing the computational complexity at later

stages. The residual learning is designed to simulate the desired nonlinear mapping

between the input and output of some stage by adding a shortcut identity mapping

connection. The residual networks can achieve more accurate results using deeper
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models with a high speed still. The description of these two techniques are omitted

here since the detailed introduction of them are also provided in the previous chapter.

4.2.1 DILATED CONVOLUTION

Many image related applications such as semantic segmentations problems re-

quired the developed model could keep the local pixel-level accuracy such as precise

detection of edges, and also utilize the knowledge from the wider global context.

To this end, researchers have developed various techniques in deep learning field for

acquiring the multi-scale representation of the input. Besides the inception learning

and residual learning introduced in the above two sections, the convolution with a di-

lated filter has also been studied and shown excellent performance in many computer

vision applications.

The convolution with a dilated filter is an extension of the original convolution. Its

significant property is that the dilated convolutions support exponentially expanding

receptive fields without losing resolution or coverage. Therefore, a neural network

with it could capture information from different scales without increasing the number

of parameters too much. In particular, the formula of the original convolution over

the 1-D input signal f with the kernel k is defined as follows,

(k ∗ f)t =
∞∑

τ=−∞

kτ · ft−τ ,

where t is the variable of f . Instead, the convolution with a dilated filter factor l

between f and k is defined as:

(k ∗l f)t =
∞∑

τ=−∞

kτ · ft−lτ
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TABLE 6: Quantitative comparisons of detection performance by our deep learning

model (DL) and support vector machine method (SVM) for α-helix and β-sheet

respectively. The averaged F1 scores over these two structures are also reported.

Protein ID
F1 Helix F1 Sheet F1 average

DL SVM DL SVM DL SVM

1ajw 27.78 8.26 65.22 72.41 46.50 40.34

1ajz 89.89 66.67 73.56 34.26 81.73 50.47

1al7 88.83 66.67 81.19 34.85 85.01 50.76

1cv1 90.49 86.83 54.55 21.05 72.52 53.94

1dai 86.32 58.87 83.33 49.47 84.83 54.17

1eny 80.00 66.84 70.77 50.38 75.39 58.61

1wab 77.11 66.67 68.57 30.38 72.84 48.53

2aw0 80.00 47.83 61.73 56.18 70.87 52.01

2itg 80.98 67.35 46.15 27.63 63.57 47.49

3lck 85.22 64.42 69.88 35.29 77.55 49.86

Average 78.66 60.04 67.50 41.19 73.08 50.62

In the dilated convolution, the kernel only touches the signal at every lth entry.

This formula applies to a 1-D signal, but it can be straightforwardly extended to

higher dimensional convolutions. The detailed difference between these two kinds of

convolution is illustrated in Figure 10.

Recently, dilated convolutions have been employed for semantic segmentation on

natural images. The authors in [42] analyzed filter dilation and done preliminary

experiments for comparisons with other developed tricks. The authors of [43] used

dilated convolutions to simplify the architecture of [42]. A new convolutional net-

work architecture that systematically uses dilated convolutions is proposed in [44]
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TABLE 7: Quantitative comparisons of detected secondary structures by CNN and

SSEHunter [36].

Protein ID
CNN SSEHunter

Hx < 5Å Hx 5-8Å Sh=2Str. Hx < 5Å Hx 5-8Å Sh=2Str.

1ajw 0/0 1/1 0/0 0/0 1/1 0/0

1ajz 0/1 3/3 0/1 0/1 3/3 0/1

1al7 2/3 4/4 1/2 1/3 4/4 0/2

1cv1 0/1 2/2 0/0 1/1 0/2 0/0

1dai 1/2 2/2 2/2 2/2 2/2 0/2

1eny 0/0 1/1 0/0 0/0 1/1 0/0

1wab 3/3 0/0 0/0 1/3 0/0 0/0

2aw0 0/0 0/0 0/0 0/0 0/0 0/0

2itg 0/0 1/1 0/0 0/0 1/1 0/0

3lck 1/4 2/2 1/1 1/4 0/2 1/1

Total 7/14 16/16 4/6 6/14 12/16 1/6

for multi-scale context aggregation. In [44], the spatial pooling layers were replaced

with convolutions with increased filter dilated sizes. In this Chapter, I propose to

integrate the dilated convolution with inception and residual learning to build an

efficient neural network for identifying protein SSEs from cryoEM images. To be

specific, I used the dilated convolution at the inception modules of Figure 5 respec-

tively. Before the residual learning is implemented, I used the dilation convolution

with filter size 3 for obtaining a larger size of receptive fields.

4.2.2 THE DETAILED ARCHITECTURE

I provide the detailed configuration of our proposed deep networks. In order to
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obtain competitive performance, I average the outcomes of two different models to

obtain the final probability map about the α-helix and β-sheet voxels. The first

CNN model I use is similar to the one introduced in Figure 5. The whole network

also contains 6 modules, and each of them used multiple paths for realizing inception

learning. There are also 3 modules (inception A, B, C in Figure 5) mainly for building

the nonlinear relationship between input and output, and an additional 3 modules

mainly for reducing the sizes of feature maps (reduction A, B, C in Figure 5). The

major difference between the architecture of this chapter with the one demonstrated

in Figure 5) is the usage of dilated convolutions. To be specific, for each inception

modules, I introduce one extra dilated convolution layer with kernel size of 3 and

dilation factor size of 1 on the top of those concatenation layers before the residual

learning is applied. The detailed figure is omitted here since the architecture is

very similar with Figure 5). The other architecture I use is the one proposed in

the paper [45]. Through the ensemble of these two models, the final performance of

identification on SSEs is improved since the biases are averaged and the variances

are reduced.

4.3 EXPERIMENTAL EVALUATION

4.3.1 EXPERIMENTS SETUP

In this dissertation, I select 25 simulated cryoEM images for training and testing.

These cryoEM images are acquired by an open software package called “chimera” [46]

to perform semiautomated single-particle reconstructions from transmission electron
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Protein ’1wab’

Protein ’2itg’

CNN SVM

FIG. 11: Comparisons with different identification methods for two testing cryoEM

images. The first row is for the protein ’1wab’, and the second row is for the protein

’2itg’. The first column shows the result by proposed CNN method. The second

column shows the results by SVM method. The results for both two methods are

generated without any postprocessing steps.

micrographs. In particular, I generate the training and testing simulated maps to

8Å resolution using the program command “pdb2mrc” of “EMAN43” with a sampling

size of 1Å/pixel. I randomly sample 15 of these 25 subjects for training the proposed

models. Then the models are evaluated on the remaining subjects to compute the

SSE detection performance.

The performance is firstly evaluated by calculating the number of identified sec-

ondary structures and also the number of Cα atoms that falls in the neighborhood
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of the secondary structures. To be specific, a helix is identified if its length is within

one turn difference from the length of the helix in the PDB structure. A β-sheet is

identified if the identified β-sheet voxels visually overlay on the β-sheet of the PDB

structure. To present a more quantitative estimation about the size of the identi-

fied helices and β-sheets, I estimate the number of Cα atoms that are close to the

identified helix voxels and β-sheet voxels. The detailed selections of parameters for

closeness are similar to those given in [41].

I also use the F1 score to quantitatively measure the segmentation accuracy on

detecting helix and sheet Cα atoms. Let A and B denotes the number of positive

elements in the binary segmentation labels generated manually and computationally,

respectively, about one protein SSE class on pixels for certain cryoEM image. The

F1 score is defined as

F1 =
2|A ∩B|
|A|+ |B|

,

where |A| denotes the number of positive elements in the binary segmentation A,

and |A ∩ B| is the number of shared positive elements by A and B. The F1 score

lies in [0,1], and a higher value indicates a higher detection accuracy.

During the training phase, I trim off the background margins of the training

images according to the ground truth for saving computational resources. In order

to improve model performance, I use data augmentation to enlarge the training data

set. The data augmentation includes transformations of the original images with

rotation and flipping along different dimensions. During the testing phase, I use the

fast prediction technique introduced in previous chapter for obtaining the output
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probability values over SSEs.

4.3.2 PERFORMANCE ON SIMULATED EM DENSITY MAPS

In order to demonstrate the effectiveness of the proposed method, I firstly report

the specificity and sensitivity based on the detected helix and sheet Cα atoms. In this

chapter, I consider a Cα atom as an identified helix Cα if it is in the neighbourhood

of an identified helix voxel with the radius of 2.5Å. Similarly, an identified sheet

Cα should be within the neighbourhood with the radius of 3Åof an identified sheet

voxel. The detailed numbers of identified Cα atoms for all the testing cryoEM density

maps are given in Table 5. The first column shows the total number of Cα atoms

in the protein. The total numbers of Cα atoms in helices and β-sheets are listed

respectively in second and sixth columns. The numbers of true positive, missed,

and false positive Cα atoms for helices and β-sheets are give in third to fifth, and

seventh to ninth columns respectively. The specificity and sensitivity of helix and

sheet detection are reported in the last four columns, respectively.

I can see that the sensitivity and the specificity of helix identification can reach

71.52% and 97.86%, respectively. The sensitivity and specificity for β-sheet identifi-

cation is 76.04% and 91.87%, respectively.

In order to provide a comprehensive and quantitative evaluation of the proposed

method on detecting protein SSEs, I also report the identification performance on all

10 testing cryoEM images. The performance of our proposed method and another

learning-based method using SVM is reported in Table 6 using F1 scores.

I can see that our method outperformed the existing method for both α-helix
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and β-sheet detection. Specifically, CNN could achieve F1 score as 78.66% for α-

helix and 67.5% for β-sheet on average over 10 testing subjects, yielding an overall

value 73.08%. In contrast, SVM method achieves F1 score as 60.04% for α-helix and

41.19% for β-sheet, yielding an overall value 50.62%.

In addition to quantitatively demonstrating the advantage of the proposed CN-

N method, I visually exam the identification results of α-helix and β-sheet for two

testing samples in Figure 11. The ground truth three-dimensional structural mor-

phologies are shown with color ribbons. The first column presents the results of

CNN method and the second columns are for the SVM method. It can be seen that

identified SSEs by CNN method are quite similar to the ground truth while SVM

generates more false positives.

In order to further compare results by different methods, the numbers of detected

secondary structures by CNN model and the the method called “SSEHunter” pro-

posed in [36] are also presented in Table 7. I can see that, through CNN method, 8

out of the 14 extremely short α-helices of size less than 5 amino acids are identified.

For detecting α-helices of size more than 5 amino acids, the CNN model is also com-

parable with SSEhunter. For the Compared with SSEhunter’s results, the proposed

CNN model is able to detect 4 out of 6 β-sheets with 2 strands. These results further

show that the proposed method is more effective than other method.
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CHAPTER 5

IDENTIFICATION OF CELL-TYPE-SPECIFIC GENES

5.1 INTRODUCTION AND RELATED WORK

Although all cells in the brain are genetically identical, they can develop into

different cell-types that are distinct in morphology, connectivity, and function. For

example, the mammalian brain contains an enormous number of neuronal and glial

cells. The neuronal cells are responsible for information communication and process-

ing, while the glial cells are traditionally considered to provide supportive functions.

Cell-type diversity is resulted from the different sets of molecules that cells of each

type contain. This is in turn due to the differential expression and regulation of

genes in the genome. Thus, analysis of gene expression patterns provides an in-

formative way of studying cellular diversity [47, 48]. In these studies, it has been

commonly observed that some genes are specifically expressed in certain cell-types.

These genes serve as cell-type markers and might define cell-type-specific transcrip-

tional programs [49, 50]. A complete catalogue of the cell-type-specific genes would

be valuable in elucidating the relationship between gene expression patterns, con-

nectivity, brain regions, and cell-types [51–55]. Currently, both experimental and

computational approaches have been used to study cell-type-specific gene expres-

sion patterns. Experimental methods involve in separating cells of different types

from heterogeneous tissues and measuring gene expression levels in the separated
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FIG. 12: The pipeline of my methods for automated identification of cell-type-specific

genes.

tissues using microarrays. Along this line, multiple techniques have been developed

for tissue processing; they, however, suffer from different limitations [49]. As an al-

ternative approach, current computational methods identify cell-type-specific genes

by comparing their expression profiles captured by either microarrays [56–58] or in

situ hybridization (ISH) voxel-level data [59]. These approaches either lack the fine

spatial resolution or the high-order expression characteristics that are needed for
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resolving cell-type-specificity.

In this dissertation, I aim at identifying cell-type-specific genes by mining and an-

alyzing the high-resolution ISH expression pattern images directly. I apply invariant

image feature descriptors to compute high-order expression characteristics from ISH

images. These descriptors were computed on dense and overlapping local patches,

leading to millions of descriptors from each ISH image section. They collectively

capture the local gene expression information, and the spatial information is implic-

itly encoded into the overlapping patches. To obtain image-level representations, I

first cluster these descriptors to obtain the visual words that represent the dominant

local expression patterns. I then compute a bag-of-words representation for each ISH

image by constructing a histogram based on the visual words. This representation

counts the frequency of each visual word occurring in each ISH image, forming a

high-level representation of an ISH image. I employ regularized learning methods for

discriminating genes specifically expressed in different major brain cell-types, namely,

neurons, astrocytes, and oligodendrocytes [47]. The proposed method can also iden-

tify the visual words that are most distinct between different brain cell-types [60]. To

obtain a robust estimation of the most discriminative visual words, I employ stability

selection to construct an ensemble model. The pipeline of my proposed methods is

depicted in Figure 12.

The experimental results show that the high-level representations computed di-

rectly from cellular-resolution ISH images are predictive of cell-type-specificity of
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genes in major brain cell types. I use the area under the receiver operating char-

acteristic curve (AUC) as the performance measure [61, 62]. I achieve AUC values

of approximately 87% in five out of the six tasks when the threshold value for fold

enrichment is set to 20, a recommended value based on experimental data [47]. The

results also show that the image-based invariant representations for ISH images gen-

erally yield better performance than voxel-based features in discriminating genes

enriched in different brain cell types. The average AUC value given by my image-

based approach on data sets with >1.5 enrichment fold is approximately 75% while

an average AUC value of 65% is achieved by voxel-based features. Visualization

of highly-ranked features show that they corresponded to locations containing the

most discriminative features among brain cell-types. I also compare the performance

of different tasks to investigate the intrinsic relationship between various brain cell-

types. My results show that the relative performance differences among various brain

cell-types are generally consistent with my current knowledge on cell-type functions.

5.2 ALLEN MOUSE BRAIN ATLAS

The Allen Mouse Brain Atlas provides genome-wide, three-dimensional, high-

resolution in situ hybridization (ISH) gene expression images for approximately

20,000 genes in the sagittal section for the 56-day old male mice [63]. In addition,

coronal sections at a higher resolution are available for a set of about 4,000 genes

showing restricted expression patterns. For each experiment, a set of high-resolution,

two-dimensional image series are generated. These image slices are subsequently pro-

cessed by an informatics data processing pipeline to generate grid-level voxel data
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in the Allen Reference Atlas space [64]. The output of the pipeline is quantified

expression values at a grid voxel level [65, 66]. The voxel-level data have been used

to identify cell-type-specific genes based on correlation search [59]. Note that the

selection of coronal genes was biased toward genes enriched in cortical and/or hip-

pocampal regions [67].

5.3 ISH IMAGE FEATURE EXTRACTION AND CONSTRUCTION

To fully exploit the cellular-resolution ISH images and extract high-order informa-

tion for classification, I compute features from the original ISH images directly. The

ISH images I use are taken from different mouse brains. Thus, the shape and size of

the brain and various anatomical structures might vary from image to image. Addi-

tionally, tissue processing and image acquisition might also introduce distortions on

the images. To account for these image-level variations, I employ the scale-invariant

feature transform (SIFT) descriptor to capture expression patterns on local patches

of ISH images [68, 69]. This approach can produce robust representations that are

invariant to various distortions on the images. To compute SIFT features, an image

is first convolved with a sequence of Gaussian filters of different scales to produce

difference-of-Gaussian (DOG) images. Stable key-point locations are then detected

from these DOG images. A set of orientation histograms on 4× 4 neighborhoods at

each location are subsequently computed, and each histogram contains 8 spatial bins

recording the pixel gradients in 8 orientations.

In many of the current image classification systems, key-point extractors are typ-

ically not used [70, 71]. Instead, SIFT features are commonly applied on regularly
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spaced grid on the images, leading to densely populated SIFT descriptors. Follow-

ing [72,73] I also apply dense SIFT features on the ISH images [74]. This generated

approximately 1 million SIFT feature vectors from each ISH image section [72]. In

this dissertation, I use the most medial slice of each sagittal section image series.

For the coronal section image series, I use the slice with the median Section ID that

corresponds to the middle location between the most posterior section showing the

cerebellum and hindbrain and the most anterior section showing the olfactory bulb.

The use of more slices would incur high computational cost. In addition, it has been

shown in [72] that performance may not be improved when more slices were used.

In the Allen Mouse Brain Atlas, a detection algorithm is applied to each ISH image

to create a mask identifying pixels in the ISH image that correspond with gene ex-

pression. Thus foreground pixels are considered to correspond with gene expression

while background pixels are not [63]. Only the SIFT descriptors computed from the

foreground pixels are used in this dissertation.

In order to derive an image-level representation for cell-type-specific gene classi-

fication, I employ the bag-of-words method to construct ISH image representation-

s [75–77].

The bag-of-words representation was originally used in text mining and is now

commonly employed in image and video analysis problems in computer vision. In

this approach, invariant features are first extracted from local regions on images or

videos, and a visual codebook is constructed by applying a clustering algorithm on

a subset of the features, where the cluster centers are considered as “visual words”
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in the codebook. Each feature in an image is then quantized to the closest word

in the codebook, and an entire image is represented as a global histogram counting

the number of occurrences of each word in the codebook. The size of the resulting

histogram is equal to the number of words in the codebook and hence the number of

clusters obtained from the clustering algorithm. The codebook is usually constructed

by applying the flat k-means clustering algorithm or other hierarchical algorithms.

This approach is derived from the bag-of-words models in text document categoriza-

tion, and is shown to be robust to distortions in images. One potential drawback

of this approach is that the spatial information conveyed in the original images is

not represented explicitly. This, however, can be partially compensated by sampling

dense and redundant features from the images. The bag-of-words representation for

images is shown to yield competitive performance on object recognition and retrieval

problems after some postprocessing procedures such as normalization or threshold-

ing. The the basic idea behind the bag-of-words approach is illustrated in Figure 13.

To construct a visual codebook, I randomly sample the non-zero descriptors of every

image to obtain a descriptor pool of size 100,000. In some of the classification tasks,

the numbers of images in the two classes differ significantly. To take this situation

into account, I equalize the number of descriptors chosen from both classes. That is,

approximately half of the sampled descriptors are from each of the two classes. The

descriptors from each class are equally distributed among all images in that class.

I apply the k-means algorithm to cluster the SIFT descriptors in this pool. S-

ince the k-means algorithm depends on the initialization, I repeat the algorithm
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FIG. 13: Illustration of the bag-of-words scheme.

three times with random initializations and use the one with the smallest summed

within-cluster distance. The cluster centers are considered as “visual words” in the

codebook. I then represent an entire image as a global histogram counting the num-

ber of occurrences of each visual word in the codebook. The size of the resulting

histogram is equal to the number of words in the codebook, which is also the number

of clusters used in the clustering algorithm.

Formally, let c1, . . . , cm ∈ Rd be the m cluster centers (visual words), and let

v1, . . . ,vn ∈ Rd be the n SIFT features extracted from an image, where d = 128

for SIFT. Then the bag-of-words representation x is m-dimensional, and the k-th

component xk of x is computed as

xk =
n∑
i=1

δ(k, arg min
j
||vi − cj||),
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where δ(a, b) = 1 if a = b, and 0 otherwise, and || · || denotes the vector `2-norm.

To capture the spatial expression patterns at different scales, I construct four

separate codebooks for images with four different resolutions. I then quantize each

image using multiple bags of visual words, one for each resolution. The representa-

tions for different resolutions are then concatenated to form a single representation

for the image. Following [72], I fix the number of clusters to be 500 in the reported

results. To account for the zero descriptors, I introduce an extra dimension in the

histogram to record the number of zero descriptors for each image at each resolution.

Eventually, an ISH image is represented by a high-level feature vector x ∈ Rp, where

p = (500 + 1) × 4 = 2004. Note that the bag-of-words representation has been suc-

cessfully applied to represent biological images in the past [72, 78]. In addition, the

local binary pattern (LBP) features have been used in [79] to identify genes expressed

in cerebellar layers. I compare the LBP features with the bag-of-words features and

observe that the later performs better for the problem studied in this dissertation.

5.4 CELL-TYPE-SPECIFIC GENE CLASSIFICATION

I identify the cell-type specificity of genes by classifying the high-level image

feature representations constructed above. To achieve this, I need a data set of genes

with the corresponding cell-type specificity for training and evaluating my methods.

In [47], the fluorescent-activated cell sorting technique was used to isolate and purify

the astrocytes, neurons, and oligodendrocytes from the developing mouse forebrain.

The expression levels of over 20,000 genes in these cell types were then measured

using microarrays, providing a quantitative, genome-wide characterization of the
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Neurod6 Gfap Ugt8a

FIG. 14: Sample ISH images for genes Neurod6, Gfap, and Ugt8a that are enriched

in neurons, astrocytes, and oligodendrocytes, respectively. Selected images from

approximately the same location were shown for coronal (top) and sagittal (bottom)

sections.

gene expression levels in different brain cell types. By comparing the expression

levels of genes across these major brain cell types, three lists of genes enriched in

astrocytes, neurons, and oligodendrocytes, respectively, were generated and ranked

based on the folds of enrichment. The expression patterns of some example genes

enriched in each of the three cell-types are displayed in Figure 14. Note that the

data in [47] were obtained from the mouse forebrain, instead of the whole brain.

In this dissertation, I train and evaluate my methods based on the genes enriched

in astrocytes, neurons, and oligodendrocytes [47]. For each gene studied in [47], I

check the availability of ISH images from the Allen Mouse Brain Atlas. By doing
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this, I obtain a database consisting of 6,660 ISH image series representing 2,872 genes

in total. Note that each gene in this database could be associated with more than

one cell type, though this does not happen very often.

Each gene in this database is associated with one class label, which is either one of

the three cell-types or a negative class label when it does not belong to any of the three

classes. To discriminate genes with different class labels, I design six classification

tasks by constructing different positive and negative data samples. In the first three

tasks, I use genes enriched in one specific cell-type as positive examples and the

negative samples consist of genes with negative class labels. For the other three

tasks, I design classification tasks to discriminate genes enriched in different brain

cell-types. Results show that classification of genes enriched in different brain cell-

types yielded insights on the cell-type relationships. The statistics on the numbers

of images and genes for these six tasks when the threshold for fold enrichment is 1.5

are given in Table 8. The pipeline of the proposed methods is depicted in Figure 12.

Given a set of training samples {xi, yi}ni=1, where xi ∈ Rp denotes the input feature

vector, and yi ∈ {−1, 1} denotes the corresponding output label. In the problem

considered in this dissertation, xi represents the bag-of-words feature vector, and yi

encodes the cell-type enrichment information of the corresponding gene. I employ

the following regularized formulation for classification:

min
w

n∑
i=1

L(wTxi + b, yi) + λΩ(w), (2)

where w ∈ Rp and b ∈ R denote the model weight vector and bias term, respectively,

Ω(w) denotes the regularization term, and λ is the regularization parameter.
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TABLE 8: Statistics on the numbers of images and genes for each of the six tasks

with different thresholds for fold enrichment.

Folds Tasks Number of genes Number of images

1.5

A vs. Neg. 711 vs. 939 775 vs. 981

N vs. Neg. 775 vs. 939 844 vs. 981

O vs. Neg. 541 vs. 939 577 vs. 981

O vs. A 501 vs. 671 532 vs. 730

A vs. N 690 vs. 754 754 vs. 823

N vs. O 753 vs. 519 819 vs. 552

10

A vs. Neg. 72 vs. 939 80 vs. 981

N vs. Neg. 178 vs. 939 209 vs. 981

O vs. Neg. 47 vs. 939 50 vs. 981

O vs. A 47 vs. 72 50 vs. 80

A vs. N 72 vs. 178 80 vs. 209

N vs. O 178 vs. 47 209 vs. 50

20

A vs. Neg. 26 vs. 939 31 vs. 981

N vs. Neg. 67 vs. 939 78 vs. 981

O vs. Neg. 17 vs. 939 18 vs. 981

O vs. A 17 vs. 26 18 vs. 31

A vs. N 26 vs. 67 31 vs. 78

N vs. O 67 vs. 17 78 vs. 18

In this dissertation, I employ the logistic regression loss function as this loss

yielded competitive performance in classification tasks [80, 81]. The `2-norm regu-

larization Ω(w) = ‖w‖2 is used when making predictions [82]. Additionally, I am

interested in identifying the most important image features that contributed to the

classification performance. This can be achieved by employing the `1-norm regular-

ization Ω(w) = ‖w‖1, which drives some entries of w to zero, leading to feature
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FIG. 15: Box plots of the classification performance achieved on the six tasks.

selection [83–88]. To make the `1-norm based feature selection robust and stable, I

employ an ensemble learning technique known as stability selection [89, 90]. In this

technique, a set of λ values are selected, and data sets of size bn/2c are repeatedly

sampled, without replacement, from the original data of size n. For each sampled

data set, a set of models, corresponding to different λ values, are trained. Then the

selection probability for each feature under a particular λ value is computed as the
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FIG. 16: Comparison of classification performance achieved by my image features

and that by the voxel features used in prior work. The performance on the six tasks

are compared, and nine data sets are used for each task. For each task on a specific

data set, the entire data set is randomly partitioned so that 2/3 of the data is in the

training set and the rest 1/3 is in the test set. A total of 30 random partitions are

generated, and the average performance is reported. The numbers of genes used for

different tasks are given in Table 8.
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TABLE 9: Statistical test results in comparing my image-based method with voxel-

based method. I employed two-sided Wilcoxon signed rank tests on the AUC values

produced by 30 random trials, and the p-values were reported. I also performed the

one-sided statistical test to compare the mean of image-based multiple trials with

that of voxel-based method. The bold values indicate tasks on which image-based

method outperforms voxel-based method significantly.

Folds Sections A vs. Neg. N vs. Neg. O vs. Neg. O vs. A A vs. N N vs. O

1.5

Coronal 0.0822 1.7E-06 4.7E-06 0.0036 1.7E-06 1.7E-06

Sagittal 1.7E-06 8.5E-06 0.1306 2.9E-6 1.7E-06 2.1E-06

Cor.+Sag. 3.5E-06 1.2E-05 0.0017 1.7E-06 2.6E-06 1.7E-06

10

Coronal 6.6E-04 1.7E-06 0.9263 9.3E-06 8.7E-05 0.7343

Sagittal 0.0558 1.7E-06 5.5E-4 0.0916 0.0180 0.0052

Cor.+Sag. 0.0387 1.1E-05 0.5038 0.1086 0.3389 0.4908

20

Coronal 0.0612 1.9E-06 0.9590 0.0001 0.7188 0.0100

Sagittal 0.0387 0.0026 0.0157 2.7E-5 5.7E-6 0.0614

Cor.+Sag. 0.6435 9.7E-05 0.0114 4.0E-4 0.3359 0.0349

relative frequency that this feature is selected among the multiple random samples.

Finally, the maximum selection probability across the λ values is computed and used

to rank the features.

5.5 EXPERIMENTAL EVALUATION

I formulate the prediction of cell-type-specific genes as a set of six binary-class

classification tasks. The prediction is performed by using `2-norm regularized logistic
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regression [91]. I also employ the `1-norm regularized logistic regression [85] and

stability selection for image feature ranking. For each prediction task, I use the

area under the ROC curve (AUC) as the performance measure [61, 62]. I randomly

partition the entire data set for each task into training and test set so that 2/3 of

the data are in the training set, and the remaining 1/3 are in the test set. To obtain

robust performance estimation, this random partition is performed 30 times, and the

statistics computed over these 30 trials are reported.

In [47], genes with >1.5-fold enrichment are reported for each of the astrocyte,

neuron, and oligodendrocyte cell types. It is also stated in [47] that genes enriched

with >20-fold should be considered as cell-type-specific based on the enrichment

levels of well-established cell type markers. In [50] genes with >10-fold enrichment

were considered as cell-type-specific genes. I thus generate multiple data sets by using

1.5, 10, and 20 as cutoff enrichment levels for each of the six tasks. The numbers of

genes and images in each task are summarized in Table 8.

In the Allen Mouse Brain Atlas, ISH images are provided in both the sagittal and

the coronal sections, and I use only those genes with both coronal and sagittal data. I

extract SIFT features and constructed high-level representations for the coronal and

the sagittal images separately. Since images from different sections might capture

different and complementary information, I also concatenate the coronal and sagittal

representations in the classification tasks. To ensure that all features have the same

dimensionality, the codebook size is reduced to 250 so that the concatenated features

have the same dimensionality as the features constructed from only coronal and
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sagittal images. I also use the same set of genes for the coronal and the sagittal

images so that the results are directly comparable.

5.5.1 PERFORMANCE OF GENE IDENTIFICATION

I report the predictive performance achieved by the proposed methods on different

data sets in Figure 15 using box plots. Each plot corresponds to one of the six tasks,

and nine different data sets are generated by using different thresholds for the fold

enrichment and different image sections (coronal, sagittal, and coronal + sagittal).

For each task, the entire data set is randomly partitioned so that 2/3 of the data is in

the training set and the rest 1/3 is in the test set. A total of 30 random partitions are

generated. The central mark represents the median, the edges of the box denote the

25th and 75th percentiles. The whiskers extend to the minimum and maximum values

not considered outliers, and outliers are plotted individually. The numbers of genes

used for different tasks are given in Table 8.It can be observed from the results that

the predictive performance is generally higher on data sets with larger enrichment fold

cutoff values. This result is consistent with the fact that genes with large enrichment

folds tend to have more cell-type-specificity and thus were easier to identify by my

computational methods. In addition, I can observe that combination of the coronal

and the sagittal images invariably yields higher performance than either the coronal

or the sagittal images individually, suggesting that different sectional images capture

complementary information.

I also consider the performance achieved by the combination of the coronal and

sagittal images, as these data sets yield the best performance. When the enrichment
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fold cutoff value is set to 1.5, the performance on five out of the six tasks is higher

than 0.7. When the cutoff value is increased to 10, the performance on five out

of the six tasks reaches 0.85. When the cutoff value is further increased to 20,

the performance on five out of the six tasks becomes higher than 0.87. Note that

a comparative study in [47] showed that genes enriched with >20-fold should be

considered as cell-type-specific. At this level, my proposed methods can achieve high

predictive performance. These results demonstrate that my image-based predictive

methods are able to identify cell-type-specific genes in major brain cell types.

5.5.2 COMPARISON WITH OTHER METHODS

The initial attempt to identify cell-type-specific genes from the ISH data used the

grid-level voxel data generated from the registered ISH images [59]. In particular, [59]

used well-established cell-type marker genes as queries to identify genes enriched in

the same cell-type. This was achieved by computing the correlations of all other

genes with these marker genes based on the voxel-level expression grid data. A high

correlation value is considered as a high probability of enriching in the same cell-

type. I compare the voxel-based features and my image-based features in identifying

cell-type-specific genes in a discriminative learning framework.

Specifically, I compare the performance of methods using two different types

of data, namely the voxel-level expression energy values and the invariant feature

representations computed directly from the ISH images. To this end, I use the grid-

level expression energy values as features and build discriminative classifiers as I

do with my image-based features. That is, I employ the same set of protocols but
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replace my image-based features with the voxel-based features where all annotated

voxels are used. The results for all six tasks are given in Figure 16. To evaluate the

statistical significance of the performance differences, I perform two-sided Wilcoxon

signed rank tests on the AUC values produced by 30 random trials, and the p-values

are reported in Table 9.

I can observe from these results that, in the neuron vs. negative classification

task, my image-based method significantly outperforms the voxel-based method on

all nine data sets. In contrast, these two methods yield similar performance in

classifying astrocyte vs. negative images, and most of the performance differences on

this task are statistically not significant. Note that from the results reported below

in Figure 18 I can see that the astrocyte vs. negative task gives the lowest overall

performance among all six tasks. Thus, it seems that astrocyte-enriched genes are

intrinsically difficult to identify, regardless of the feature representations used. For

the other four tasks, I observe that my image-based method outperform voxel-based

method consistently and significantly on data sets with >1.5 enrichment fold. For

instance, the average AUC value given by my image-based approach is approximately

0.75 while the average AUC value achieved by voxel-based features is approximately

0.65. The performance on other data sets is generally similar, and the differences

are mostly not significant. These results demonstrate that my image-based invariant

representations are generally better than voxel-based features in discriminating genes

enriched in different brain cell types. In addition, the differences are particularly

apparent for genes with low cell-type-specificity.
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FIG. 17: Visualization of the highly-ranked local image features in discriminating

genes enriched in neurons and oligodendrocytes.
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An appealing property of my regularized learning method is that it can identify

the SIFT features and the corresponding image patches that are highly predictive

of cell-type enrichment. These highly-ranked features are expected to be located in

regions where the most discriminative properties of cell-type enrichment are found,

thereby distinguishing the cell-type-specificity of genes accurately. In-depth analysis

of these highly-discriminative features might help elucidating the relationships a-

mong different brain cell-types. To this end, I obtain and visualize the highly-ranked

features for classifying genes enriched in neurons and oligodendrocytes.

Specifically, I use stability selection to rank the bag-of-words features, which

correspond to the cluster centers of the descriptor pool. Since the cluster centers

might not coincide with SIFT features, I locate the SIFT features in the pool that

are closest to these cluster centers. Finally, I trace back to obtain the ISH images

from which these descriptors are extracted. I also record the specific locations that

these SIFT features are computed and the names of genes corresponding to these ISH

images. Some sample highly-ranked features are visualized in Figure 17. For each

highly-ranked feature (i.e., cluster center) generated by stability selection, I found

the closest SIFT descriptor in the pool and then displayed the corresponding ISH

image and the locations on which the SIFT descriptor was computed. The images

in the left column are the ISH images along with the SIFT descriptors. The right

column shows parts of the ISH images in red boxes on the corresponding image

to the left. The grid is used to illustrate the 4 by 4 neighborhoods for the SIFT

descriptor. The arrow denotes the direction and the length denotes the magnitude
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of the orientated histogram. I can observe that most of the highly-ranked features

identified by my method are indeed located around the boundaries between regions

such as hippocampus and isocortex. Additionally, most of these features span the

boundary between the white matter and the gray matter. It has been widely known

that the main function of oligodendrocytes is to provide support and to insulate

the axons of neurons. Thus, oligodendrocytes mostly occupy the white matter. In

contrast, neurons are mainly located in the gray matter to control information flow

within the brain. Therefore, the most discriminative features that distinguish genes

enriched in neurons and oligodendrocytes should span the boundary between the gray

matter and the white matter. These results demonstrate that my feature ranking

method can identify locations in the brain that can distinguish genes enriched in

different cell-types, thereby providing insights on the relationships among brain cell-

types.

I observe that the six tasks achieve different performance, and these differences

might be related to the intrinsic relationship between various brain cell-types. In

order to expedite cross-task comparison, I show the performance of the six tasks on

the combination of coronal and sagittal images in Figure 18. I see that the relative

performance differences among the six tasks are generally consistent across the three

data sets with different levels of enrichment.

I see that the classification of genes enriched in astrocytes versus the negative set

yields the lowest performance on all three data sets. Indeed, astrocytes are among

the least-understood brain cells currently, though they account for a high proportion
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FIG. 18: Comparison of performance achieved on the six different tasks. I only report

the results using combination of coronal and sagittal data, since this data yielded the

best performance. The numbers of genes used for different tasks are given in Table 8.

of the brain cells [92]. This type of cells fill the space between neurons and were tra-

ditionally considered as providing supportive functions to neurons. However, recent

studies showed that thy might control the concentration of extracellular molecules,

thereby providing important regulatory functions [92–94]. Thus, the difficulty of

distinguishing astrocytes with other cells might be due to the fact that they are s-

patially very close to other major brain cell-types, and they are found in all areas of

the brain [92,94,95].

On the other hand, the classification of genes enriched in neurons and oligodendro-

cytes yields the highest performance on all three data sets. Indeed, oligodendrocytes

are examples of well-understood glia in the brain. Their primary function is to in-

sulate the axon and thus expedite the transduction of impulses between neurons by

creating the myelin sheath [92, 94, 95]. Thus, oligodendrocytes mainly reside in the
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white matter, while neurons mainly reside in the gray matter. The spatial comple-

mentarity between oligodendrocytes and neurons might explain the relatively high

performance of distinguishing genes enriched in these two cell-types.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this chapter, I summarize the contributions of this dissertation and discuss

future research directions.

6.1 SUMMARY OF CONTRIBUTIONS

The major theme of this dissertation is to demonstrate that computational meth-

ods can be used to facilitate and speedup analysis of brain images. I propose com-

putational approaches for completing and integrating multi-modality neuroimaging

data. I then design algorithms for identifying cell-type-specific genes in the mouse

brain automatically. I further provide efficient models for improving the neuron

tracing performance on microscopy images. I finally develop effective methods for

identifying the secondary structure elements of proteins on electronic microscopy

images.

For completing and integrating multi-modality neuroimaging data, I develop a

3-D CNN model which takes one volumetric data modality as input and another

modality as output. The nonlinear relationship between different data modalities is

captured by a large number of trainable parameters in the network. I apply this

model to predict the missing PET patterns from the MRI data. Results show that

the predicted PET data achieves similar classification performance as the true PET
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images. Additionally, my data completion method significantly outperforms prior

methods in all experiments.

In order to improve neuronal reconstruction based on microscopy images, I employ

novel deep architectures to segment the neuronal voxels. The CNNs use the original

3D microscopy images as input and generate the segmentation maps as output. I

compare the performance of my approach with that of commonly used tracing meth-

ods. Results show that the proposed model significantly outperforms prior methods

on other neuron tracing methods on microscopy images. Overall, it is demonstrated

that the proposed method produces more accurate results on neuronal morphology

reconstruction.

The identification of secondary structure of proteins is challenging because of their

structural similarities in 3D space. In order to extract the essential characteristics

of secondary structure elements, I propose to use 3D CNNs to segment the EM

images. The proposed CNNs use the 3D EM density maps as inputs and generate the

classification labels as outputs. Then I employ the post processing step for improving

the obtained segmentation maps. I compare the performance of my method with

prior learning based methods for protein structure annotation. Results show that

the performance of the proposed method is significantly better than the existing

methods.

The automatical identification of cell-type-specific genes in the mouse brain is

achieved by combining the high-resolution ISH images from the Allen Brain At-

las with the experimentally-generated lists of genes enriched in astrocytes, neurons,
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and oligodendrocytes. I construct invariant, high-level representations from the ISH

images directly and employ advanced machine learning techniques to perform the

classification and image feature selection. Results show that my image-based repre-

sentations are predictive of cell-type enrichment. I also show that the highly-ranked

image features identified by my method explain the intrinsic relationships among

brain cell-types. Overall, my results demonstrate that automated image computing

could lead to more quantitative and accurate computational modeling and result-

s [96–98].

6.2 FUTURE DIRECTIONS

In the multi-modality image data completion problem, I consider the CNN model

in this dissertation. There are also other deep architectures that achieved promising

performance on image-related tasks. It would be interesting to extend other deep

models, such as the deep belief networks, for volumetric image data completion. In

this dissertation, I employ a CNN model with two hidden layers due to the high

computational cost of training. I will explore ways of expediting the computation

and design more complicated deep models in the future.

In the segmentation problem for improving neuron tracing, there are also other

deep architectures that achieved promising performance on image-related tasks. It

would be interesting to apply other deep models for 3D image segmentation. For

example, recent studies showed that recurrent neuron networks (RNNs) yielded very

promising performance on visual recognition tasks. I will explore RNNs in the field of

neuronal reconstruction in the future. In the current experiments, I only use a small
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number of images for training the CNN models. Prior studies have shown that the

success of deep learning models relies on a large training data set. As more and more

data with manual reconstruction are collected in the BigNeuron project, I will explore

CNNs with deeper architectures in the future. The current work used CNN models for

neuronal image segmentation and improved the quality of subsequent reconstruction.

I will explore the possibility of using CNNs on neuron tracing directly in the future,.

In the protein EM images, I use only a small number of simulated density maps

with medium resolution of 8Å. I will develop novel CNN models with more efficient ar-

chitectures on a large scale of EM images having multiple resolutions to demonstrate

the broad application potential of deep learning methods in the protein structure

detection field. In addition, the detection methods should be further tested using

experimentally derived EM images whose backbone structures are known. However,

due to the lack of such paired data, the proposed method is currently tested on-

ly using simulated volumetric density maps. In order to show the effectiveness of

the proposed method more clearly, I will explore the method on the experimentally

derived EM images in the future.

In the problems of identifying cell-type-specific genes, the features for identifying

cell-type-specific genes are generic representations and are not trained and tuned

to specific tasks. I will explore deep models that are trained end-to-end for fully

automated cell-type-specific gene prediction [9,99]. I formulate the cell-type-specific

gene identification problem into six separate classification tasks in the current work.

However, the prediction of specificity in multiple cell-types might be related. I will
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employ multi-task learning techniques [100–102] to identify cell-type-specific genes

in multiple cell-types simultaneously in the future.
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