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ABSTRACT 

 

NOVEL MONTE CARLO METHODS FOR LARGE-SCALE LINEAR ALGEBRA 

OPERATIONS 

 

Hao Ji 

Old Dominion University, 2016 

Director: Dr. Yaohang Li 

Linear algebra operations play an important role in scientific computing and data analysis. With 

increasing data volume and complexity in the "Big Data" era, linear algebra operations are important tools 

to process massive datasets. On one hand, the advent of modern high-performance computing 

architectures with increasing computing power has greatly enhanced our capability to deal with a large 

volume of data. One the other hand, many classical, deterministic numerical linear algebra algorithms 

have difficulty to scale to handle large data sets.  

Monte Carlo methods, which are based on statistical sampling, exhibit many attractive properties 

in dealing with large volume of datasets, including fast approximated results, memory efficiency, reduced 

data accesses, natural parallelism, and inherent fault tolerance. In this dissertation, we present new Monte 

Carlo methods to accommodate a set of fundamental and ubiquitous large-scale linear algebra operations, 

including solving large-scale linear systems, constructing low-rank matrix approximation, and 

approximating the extreme eigenvalues/ eigenvectors, across modern distributed and parallel computing 

architectures.  First of all, we revisit the classical Ulam-von Neumann Monte Carlo algorithm and derive 

the necessary and sufficient condition for its convergence. To support a broad family of linear systems, 

we develop Krylov subspace Monte Carlo solvers that go beyond the use of Neumann series. New 

algorithms used in the Krylov subspace Monte Carlo solvers include (1) a Breakdown-Free Block 

Conjugate Gradient algorithm to address the potential rank deficiency problem occurred in block Krylov 

subspace methods; (2) a Block Conjugate Gradient for Least Squares algorithm to stably approximate the 

least squares solutions of general linear systems; (3) a BCGLS algorithm with deflation to gain 

convergence acceleration; and (4) a Monte Carlo Generalized Minimal Residual algorithm based on 
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sampling matrix-vector products to provide fast approximation of solutions. Secondly, we design a rank-

revealing randomized Singular Value Decomposition (R3SVD) algorithm for adaptively constructing low-

rank matrix approximations to satisfy application-specific accuracy. Thirdly, we study the block power 

method on Markov Chain Monte Carlo transition matrices and find that the convergence is actually 

depending on the number of independent vectors in the block. Correspondingly, we develop a sliding 

window power method to find stationary distribution, which has demonstrated success in modeling 

stochastic luminal Calcium release site. Fourthly, we take advantage of hybrid CPU-GPU computing 

platforms to accelerate the performance of the Breakdown-Free Block Conjugate Gradient algorithm and 

the randomized Singular Value Decomposition algorithm. Finally, we design a Gaussian variant of 

Freivalds’ algorithm to efficiently verify the correctness of matrix-matrix multiplication while avoiding 

undetectable fault patterns encountered in deterministic algorithms.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Statement of the Problem 

Numerical linear algebra operations, such as solving systems of linear equations, linear 

regression, constructing low-rank matrix approximation, approximating extreme eigenvalues/eigenvectors 

of a matrix, and so on, are behind many real-life applications, ranging from data mining to large-scale 

simulations and machine learning. The efficiency of these linear algebra applications is crucial for the 

performance of many big data applications. 

With the increasing size and complexity of datasets in the "Big Data" era, many problems involve 

operations on matrices with millions, billions, or even trillions of elements. The large volume of matrices 

brings new computational challenges to classical numerical linear algebra algorithms. For example, 

(1) Costly matrix pass: When a matrix is too large, it may be unable to fit in the core memory. Very often, 

in many practical applications, the large matrices are not explicitly stored and the matrix elements 

will be regenerated when needed. Consequently, the cost of transferring a matrix from slow memory 

to core memory or regenerating matrix elements easily dominates that of arithmetic calculations. As a 

result, a pass over the matrix elements becomes a new computational bottleneck in many operations 

on large matrices. For extremely large matrices, a complete matrix pass is even prohibited. 

(2) Scalability to modern parallel and distributed computing architectures: Many traditional, deterministic 

numerical methods are typically designed to obtain highly accurate solutions with high consumptions 

of computational power or memory storage, which make them less effective or even infeasible to 

scale to a large dataset. Modern linear algebra algorithms are expected to fully take advantage of 

modern parallel and distributed computing paradigms to achieve good performance. 

(3) Potential memory errors: When a matrix is large enough, the matrix computations are vulnerable to 

faults in computer systems. Errors that corrupt the data being processed are no longer negligible, and 
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fault-tolerant and resilient numerical algorithms are demanded for large-scale linear algebra 

operations.  

Consequently, many traditional algorithms for linear algebra operations, especially those 

designed to minimize floating-point operations, have difficulty in scaling up to handle increasingly large 

matrices. Addressing these computational challenges to improve the performance of large-scale linear 

algebra operations is the key in support of scientific computing and data analysis applications with large 

volume of data, which will eventually lead to broad scientific and economic impacts. Hence, the objective 

of this dissertation is to design new computational methods to accommodate large-scale numerical linear 

algebra operations across modern distributed and parallel computing architectures. 

 

1.2 Our Approaches 

The Monte Carlo methods benefit from random sampling and exhibit many attractive advantages 

when handling extremely large matrices. For instance, 

(1) Monte Carlo methods are based on statistical sampling, where most operations are carried out on a 

small portion of carefully sampled matrix elements, and, thus, the number of passes on all matrix 

elements can be limited, often by orders of magnitude.  

(2) Monte Carlo methods are naturally parallel. Therefore, they are well-suitable to large-scale 

computing platforms, which are equipped with a large number of multi-core CPUs, many-core 

coprocessors, and multi-general purpose graphics process units (GPGPU).  

(3) Monte Carlo methods are often able to obtain low-accuracy solution approximation quickly, which is 

particularly suitable for many applications where high-accuracy solutions are not necessary.  

Motivated by the attractive features of Monte Carlo methods, in this dissertation, we develop 

efficient Monte Carlo methods to carry out a set of fundamental and ubiquitous linear algebra operations. 

The major contributions of this work include, 

(1) A necessary and sufficient condition for the convergence of the classical Monte Carlo linear solver 

using the Ulam-von Neumann algorithm (Chapter III). 
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(2) Krylov subspace Monte Carlo solvers to handle general large-scale linear systems with pass reduction 

and convergence acceleration, such as a Breakdown-Free Block Conjugate Gradient algorithm 

(BFBCG), a Block Conjugate Gradient for Least Squares algorithm (BCGLS), a BCGLS algorithm 

with Deflation (BCGLSD), and a Monte Carlo Generalized Minimal Residual algorithm 

(MCGMRES) (Chapter III).  

(3) A Rank-Revealing Randomized Singular Value Decomposition (R3SVD) algorithm to adaptively 

construct low-rank matrix approximations (Chapter IV). 

(4) A Sliding Window Power (SWP) method to rapidly approximate the extreme 

eigenvalues/eigenvectors of large matrices (Chapter V). 

(5) Using GPUs to accelerate matrix computations in BFBCG and Randomized Singular Value 

Decomposition (RSVD) (Chapter VI). 

(6) A Gaussian variant of Freivalds’ algorithm (GVFA) to efficiently and reliably validate the correctness 

of matrix-matrix multiplication (Chapter VII). 

 

1.3 Dissertation Organization 

The rest of the dissertation is organized as follows. Chapter II presents a review of the 

relevant literature to Monte Carlo methods, numerical linear algebra operations, and acceleration and 

validation techniques of matrix operations on modern parallel/distributed platforms. We present our new 

Monte Carlo methods with rigorous mathematical analysis for solving large-scale linear systems, 

constructing low-rank matrix approximation, and approximating extreme eigenvalues and eigenvectors in 

Chapters III, IV, and V, respectively. Chapter VI investigates the accelerated implementations of the 

Monte Carlo algorithms on hybrid CPU-GPU platforms. Chapter VII proposes a novel approach based on 

random sampling to verify the correctness of matrix products. Finally, Chapter VIII summarizes the 

dissertation and discusses our future (post-dissertation) research directions. 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Monte Carlo Methods 

Numerical methods known as Monte Carlo methods can be loosely defined in general terms to be 

any methods that rely on random sampling to estimate the solutions [1]. Monte Carlo methods are often 

applied to problems which are either too complicated to be described by a mathematical model or whose 

parameter space is too large to be explored systematically.  

2.1.1 The Basic of Monte Carlo 

Monte Carlo methods provide approximate solutions to a variety of mathematical problems by 

random sampling. To illustrate the principles of Monte Carlo methods, we use the numerical integration 

as an example.  

Suppose we want to calculate a one-dimensional definite numerical integral, 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. A 

common numerical integral method is to divide the one-dimensional interval into 𝑁 subintervals and then 

to sum the area corresponding to each subinterval using either rectangular, trapezoidal, or Simpson’s rules 

(Fig. 1(a)) [2]. Similarly, for two-dimensional intervals, the number of 2D subintervals becomes 𝑁2 (Fig. 

1(b)). In general, for 𝑑-dimensional integration problems, the 𝑑-dimensional space needs to be divided 

into 𝑁𝑑  subintervals. For a not very high dimensional problem with 𝑑 = 20  and 𝑁 = 100, the total 

number of subintervals that need to be evaluated goes up to 1040, which is unapproachable by many 

numerical integration algorithms. 
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(a) 1D integral (b) 2D integral 

Fig. 1. Numerical integration using deterministic methods 

 

In contrast, Monte Carlo methods estimate the integral by statistical sampling techniques [3]. Let 

us consider a one-dimensional integral 𝐼0−1 = ∫ 𝑓(𝑥)𝑑𝑥
1

0
, which can be easily extended to a more general 

integral of 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. Suppose that the random variables 𝑥1, 𝑥2, … , 𝑥𝑁 are drawn independently from 

the probability density function 𝑝(𝑥). A function 𝐹 may be defined as  

𝐹 = ∑𝑓(𝑥𝑖)𝑝(𝑥𝑖)

𝑁

𝑖=1

. 

The expectation value of F becomes 

𝐸(𝐹) = ∫ 𝑓(𝑥)𝑝(𝑥)𝑑𝑥
1

0

. 

The crude Monte Carlo integration method assumes that the probability density function 𝑝(𝑥) is uniform, 

i.e., the random samples 𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑁) are equally important, and then   

𝐸(𝐹) = ∫ 𝑓(𝑥)𝑑𝑥
1

0

. 

Correspondingly, the variance of 𝐹 becomes 

𝑉𝑎𝑟(𝐹) =
1

𝑁
∫ (𝑓(𝑥) − 𝐸(𝐹))2𝑑𝑥 =

1

𝑁
𝜎2

1

0

, 

where 𝜎2 is the inherent variance of the integrant function 𝑓(𝑥). Clearly, we can find that the standard 

deviation of the estimator  is 𝜎𝑁−
1

2. This means that as 𝑁 → ∞, the distribution of 𝐹 narrows around its 

mean at the rate of O(𝑁−
1

2).   
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Now, let us extend the Monte Carlo integration method to a 𝑑 -dimensional integral 𝐼𝑑 =

∫ …∫ 𝑓(𝑥)𝑑𝑥
1

0

1

0
, the expectation of 𝐹𝑑 = ∑ 𝑓(𝑥𝑖)

𝑁
𝑖=1 /𝑁 on uniformly distributed random variable vectors 

𝑥1, 𝑥2, … , 𝑥𝑁 becomes  

𝐸(𝐹𝑑) = ∫ …∫ 𝑓(𝑥)𝑑𝑥
1

0

1

0

= 𝐼𝑑 . 

The variance of the estimator 𝐹𝑑 is 𝜎𝑑
2/𝑁, where 𝜎𝑑

2 is the inherent variance of the integrand function 

𝑓(𝑥) . If 𝑓(𝑥)  is given, 𝜎𝑑
2  is a constant and therefore, similar to one-dimensional integral, the 

convergence rate of Monte Carlo is O(𝑁−
1

2), which is independent of dimensionality.   

In summary, compared to the deterministic numerical integration methods, whose convergence 

rate is O(𝑁−


𝑑), where  is the algorithm-related constant and 𝑑 is the dimension, Monte Carlo integration 

method yields a convergence rate of O(𝑁−
1

2 ) [4], which can avoid the “curse of dimensionality.” 

Moreover, computations on each random sample are independent, which can be carried out in an 

embarrassingly parallel manor to harness the power of large-scale parallel and distributed computing 

architectures [5, 6].  

 

2.1.2 Importance Sampling 

Crude Monte Carlo treats all random samples in an equally important way. In reality, we can 

often gain additional knowledge from the application domain, which can be taken advantage to come up 

with better estimators. Variance reduction is a procedure of deriving an alternative estimator to obtain a 

smaller variance than the crude Monte Carlo estimator and to improve the accuracy of the Monte Carlo 

estimates given a certain number of samples. In practical applications, a good estimator leading to million 

times more accurate than a bad one is not rarely seen. Some of the popular variance reduction techniques 

[1, 3, 4] include stratified sampling, control variates, antithetic variates, and importance sampling. These 

variance reduction methods, if appropriately used, can significantly improve the efficiency of Monte 
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Carlo methods in processing and analyzing big data sets. Here, we concentrate on describing the idea of 

importance sampling. The details of other variance reduction techniques can be found in [1].   

The importance sampling technology is often used in statistical resampling, which reduces 

statistical variance by emphasizing the sampling on regions of interest with higher probability. For 

example, by introducing a new proposal function 𝑔(𝑥), the original integral 𝐼0−1 = ∫ 𝑓(𝑥)𝑑𝑥
1

0
 can be 

rewritten as  

𝐼0−1 = ∫
𝑓(𝑥)

𝑔(𝑥)
𝑔(𝑥)𝑑𝑥

1

0

= ∫
𝑓(𝑥)

𝑔(𝑥)
𝑑𝐺(𝑥)

1

0

, 

where  𝐺(𝑥) is a cumulative density function (CDF). 𝑓(𝑥)/𝑔(𝑥) is called the likelihood ratio. With 

random samples drawn from a proposal distribution whose CDF is 𝐺(𝑥) instead of sampling from a 

uniform distribution, the variance of the importance sampling estimator 𝐹𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 becomes 

𝑉𝑎𝑟(𝐹𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔) = ∫ (
𝑓(𝑥)

𝑔(𝑥)
− 𝐸(𝐹))

2

𝑑𝐺(𝑥)
1

0

. 

A good likelihood ratio 
𝑓(𝑥)

𝑔(𝑥)
 close to 𝐸(𝐹) can result in a significant statistical variance reduction. 

In practice, assuming that we know nothing about the target distribution at the very beginning, we 

may have to start from uniform sampling. However, after initial sampling, we have a better estimation of 

the target distribution, which results in a more precise proposal function. The resampling process can be 

guided by the new proposal function and leads to a better approximation of the target distribution.  

 

2.2 Linear Algebra Operations 

Linear algebra operations, such as solving linear systems, constructing low-rank matrix 

approximation, and approximating extreme eigenvalues and eigenvectors are pervasive in various 

scientific and engineering domains. 

 



   

 

8 

2.2.1 Linear System Solvers 

2.2.1.1 Classes of Linear Systems Solvers 

Considering a linear system in the form of 

𝐴𝑥 = 𝑏, 

where 𝐴  is an 𝑛 × 𝑛  non-singular matrix, 𝑏  is a given constant vector, and 𝑥  is an unknown vector,  

existing numerical solvers can be roughly categorized into the following four main groups:  

(1) Direct methods [7], such as Gaussian elimination and LU decomposition. These methods transform 

the original linear system into a form that can be solved in an easier manner. For example, denoting 

𝐴 = 𝑀𝑁 as the LU factorization of  𝐴, the original linear system 𝐴𝑥 = 𝑏 is then transformed into two 

relatively easy-to-solve linear systems 𝑀𝑦 = 𝑏 and 𝑁𝑥 = 𝑦.  These direct methods are numerically 

stable and suitable for cases involving small and dense matrices.  

(2) Stationary iterative methods [8], such as Jacobi method and Gauss-Seidel method. These methods 

transform 𝐴𝑥 = 𝑏 into a new linear form 𝑥 = 𝐻𝑥 + 𝑐. Based on this, starting with a given initial 𝑥0, 

stationary iterative methods update the solution vector by 𝑥𝑘+1 = 𝐻𝑥𝑘 + 𝑐 at each iteration. This 

iteration process repeats until convergence is reached. The stationary iterative methods are applicable 

to large and sparse systems, but its convergence condition is theoretically limited, such as requiring 

the spectral radius of 𝐻 to be less than 1. 

(3) Krylov subspace methods, including Conjugate Gradient (CG) method [9], Biconjugate Gradients 

(BiCG) method [10], and Generalized Minimal Residual (GMRES) method [11]. In general, Krylov 

subspace {𝑟, 𝐴𝑟, 𝐴2𝑟, … , 𝐴𝑠𝑟, … }  is constructed to search a good approximation to the solution. 

Compared to stationary iterative methods, Krylov subspace methods often yield broader convergence 

conditions than stationary iterative methods. 

(4) Monte Carlo methods, such as Ulam and von Neumann algorithm [12] and Monte Carlo Almost 

Optimal (MAO) [13], which apply stochastic sampling to estimate the solution. Consider a linear 

system 𝑥 = 𝐻𝑥 + 𝑐 , Monte Carlo methods first build up a probability matrix 𝑃 with an unbiased 
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estimator 𝑋(𝛾) =
𝐻𝑟0𝑟1𝐻𝑟1𝑟2…𝐻𝑟𝑘−1𝑟𝑘

𝑃𝑟0𝑟1𝑃𝑟1𝑟2…P𝑟𝑘−1𝑟𝑘

𝑐𝑟𝑘
𝑇𝑟𝑘

⁄ , and independent random samples are then spawned to 

approximate the solution.  

2.2.1.2 Conventional Monte Carlo Solvers 

Applying Monte Carlo methods to estimate solutions of linear systems is originally proposed by 

Ulam and von Neumann and later described by Forsythe and Leibler in [12]. Considering a linear system 

in the form of 

𝑥 =  𝐻𝑥 +  𝑏 

where 𝐻 is an 𝑛 × 𝑛 non-singular matrix, 𝑏 is a given constant vector, and 𝑥 is the unknown vector, the 

fundamental idea of the Monte Carlo linear solver using Ulam-von Neumann algorithm is to construct 

Markov chains by spawning terminating random walks. The transition probabilities of the random walks 

are defined by a transition matrix 𝑃 satisfying the following transition conditions: 

𝑃𝑖𝑗 ≥ 0; 

∑𝑃𝑖𝑗 ≤ 1

𝑗

; 

𝐻𝑖𝑗 ≠ 0 → 𝑃𝑖𝑗 ≠ 0 

and the termination probability 𝑇𝑖 at row 𝑖 is defined as 

𝑇𝑖 = 1 − ∑ 𝑃𝑖𝑗𝑗 . 

Then, a random walk starting at 𝑟0 and terminating after 𝑘 steps is defined as 

𝛾𝑘: 𝑟0 → 𝑟1 → 𝑟2 → ⋯ → 𝑟𝑘 

where the integers 𝑟0, 𝑟1, 𝑟2, … , 𝑟𝑘  are the row indices of matrix 𝐻 visited during the random walk. A 

random variable 𝑋(𝛾𝑘) defined as 

𝑋(𝛾𝑘) =
𝐻𝑟0𝑟1𝐻𝑟1𝑟2 … 𝐻𝑟𝑘−1𝑟𝑘

𝑃𝑟0𝑟1𝑃𝑟1𝑟2 … 𝑃𝑟𝑘−1𝑟𝑘

𝑏𝑟𝑘
/𝑇𝑟𝑘

 

is an unbiased estimator of component 𝑥𝑟0 in the unknown vector 𝑥. The fundamental idea of Ulam-von 

Neumann algorithm is to statistically sample the underlying Neumann series  
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𝐼 +  𝐻 + 𝐻2  +  𝐻3  + ⋯  

of the linear system. Denoting || . || to be the L-∞ norm, as specified in the Monte Carlo linear solver 

literature [3], if ||𝐻|| < 1, the Neumann series converge to (𝐼 − 𝐻)−1 and, hence, 𝑋(𝛾𝑘) is an unbiased 

estimator of (𝐻𝑘𝑏)𝑟0 , while ∑ 𝑋(𝛾𝑘)𝑃(𝛾𝑘
∞
𝑘=1 ) equals to the solution 𝑥𝑟0.  Fig. 2 shows the procedure of 

Monte Carlo linear solver using Ulam-von Neumann scheme.  

 
Fig. 2. Monte Carlo linear solver using Ulam-von Neumann scheme 

 

The original Monte Carlo linear solver by Ulam-von Neumann is not efficient and its 

convergence relies on the properties of 𝐻 and 𝑃. Later algorithms have also been developed to improve 

the Monte Carlo solver, by selecting a better transition matrix 𝑃 or applying alternative transformations 

from 𝐴𝑥 =  𝑏 to 𝑥 =  𝐻𝑥 +  𝑏 to accelerate convergence. Wasow [14] modified the scheme by Ulam 

and von Neumann by designing another unbiased estimator, which has been shown to have smaller 

variance under some special conditions. Halton [15] proposed a sequential Monte Carlo method to 

accelerate the Monte Carlo process by taking advantage of the rough estimate of the solution to transform 

the original linear system 𝑥 =  𝐻𝑥 +  𝑏 to a new system 𝑦 =  𝐻𝑦 +  𝑑, where ||𝑑|| < ||𝑏||. Dimov et 

al. [16, 17] developed an accelerating Monte Carlo scheme to control the convergence of the Monte Carlo 

algorithm for different unknown elements with different relaxation parameters, which can increase the 

1st:   1   4   4   5   5   4   4   5   5   4

2nd:   1   3   3   5   5   2   2   5   5   4   4   1
3rd:   1   3   3   6   6   3   3   6   6   3
                  …
50th:   1   4   4   1   1   3   3   6   6   3

1st:   4   5   5   3   3   1   1   3   3   6   6   3
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x1 x4
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3rd:   5   2   2   5   5   2   2   5   5   4 
…
50th:   5   4   4   5   5   4   4   1

x5

1st:   3   1   1   3   3   5   5   4   4   5   5   2   2   5

2nd:   3   5   5   2   2   5   5   2   2   5   5   2  
3rd:   3   6   6   3   3   6   6   3

…
50th:   3   1   1   3   3   6   6   3   3   6   6   3

1st:   6   3   3   5   5   2   2   5
2nd:   6   3   3   6   6   3
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…
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efficiency of the random walk estimators. Tan [18] studied the antithetic variates techniques for variance 

reduction in Monte Carlo linear solvers. Srinivasan and Aggarwal [19] used non-diagonal splitting to 

improve the Monte Carlo linear solvers. Moreover, for applications with large linear systems, Sabelfeld 

and Mozartova [20] designed a sparsified randomization algorithm by using a sparse, random matrix 𝐺, 

which is an unbiased estimator of 𝐻 , to replace the original matrix 𝐻  during the sampling process. 

Furthermore, Mascagni and Karaivanova [21] investigated the usage of quasirandom numbers in the 

Monte Carlo solver.  

Compared to the deterministic linear solvers, the Monte Carlo linear solvers have several 

uniquely attractive advantages in handling extremely large coefficient matrices [153,154]. First of all, the 

Monte Carlo linear solvers are based on sampling, which do not need to access all elements in 𝐴 at every 

iteration step. This is particularly suitable for applications such as large-scale sensor networks where 

every element in 𝐴 is available for access but getting the complete picture of the matrix 𝐴 is costly or 

practically infeasible. This is also helpful for handling incomplete or imperfect data. Secondly, random 

walks in the Monte Carlo linear solvers can be carried out independently in a distributed manner, which is 

favorable for the nowadays large-scale parallel and distributed processing platforms. Thirdly, the Monte 

Carlo linear solvers can obtain a quick approximation to solutions with low resolution. Fourthly, random 

walks in the Monte Carlo linear solvers have little memory requirements and the random walk algorithm 

is scalable with the size of the matrices. Finally, for applications interested in only a few elements in the 

unknown vector, using the Monte Carlo linear solvers based on Ulam-von Neumann algorithm can 

eliminate unnecessary computations for other elements in the unknown vector. 

 

2.2.2 Constructing Low-rank Matrix Approximations 

2.2.2.1 Low-rank Matrix Approximations 

Considering an 𝑚 × 𝑛 matrix 𝐴 with rank 𝑟 , the optimal 𝑘-rank (𝑘 ≤ 𝑟) approximation 𝐴𝑘  of 

matrix 𝐴 yields minimum approximation error among all possible 𝑚 × 𝑛 matrices of rank 𝑘 [7], i.e., 
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‖𝐴 − 𝐴𝑘‖𝐹
2 = 𝑚𝑖𝑛

 𝑟𝑎𝑛𝑘(𝑋)=𝑘
‖𝐴 − 𝑋‖𝐹

2 . 

Within controllable approximation error, a good low-rank approximation of a large matrix can reduce 

storage requirement and accelerate matrix operations such as matrix-vector or matrix-matrix 

multiplications. If 𝐴 is a matrix representing data affinity in a large dataset, low-rank approximation can 

be used for dimension reduction or noise elimination. As a result, constructing low-rank approximations 

of large matrices plays a central role in many data analytic applications [1, 22, 23, 24, 25], such as 

principle component analysis, compressed sensing, data compression, manifold learning, and matrix 

completion.  

The optimal 𝑘 -rank approximation 𝐴𝑘  can be straightforwardly obtained by computing full 

Singular Value Decomposition (SVD) and truncating it by selecting the dominant singular values and 

their corresponding singular vectors such that 

𝐴𝑘 = ∑𝜎𝑖𝑢𝑖𝑣𝑖
𝑇

𝑘

𝑖=1

, 

where 𝑘 ≤ 𝑟,  𝜎1,  𝜎2, … , 𝜎𝑘  are the singular values of  𝐴  in non-increasing order, and  𝑢1,⋯ , 𝑢𝑘  and 

𝑣1,⋯ , 𝑣𝑘 are the corresponding left and right singular vectors, respectively. Here, by tuning the value of 

𝑘, the low-rank matrix approximation error measured by Frobenius norm can be controlled by 

‖𝐴 − 𝐴𝑘‖𝐹
2 = ∑ 𝜎𝑖

2

𝑟

𝑖=𝑘+1

. 

2.2.2.2 Fast Monte Carlo methods for Low-rank approximation 

Numerically computing the full SVD of a matrix when both 𝑚  and 𝑛  are large is often 

prohibitively computationally costly as well as memory intensive. As the efficient alternatives, 

randomized algorithms to approximate SVD have attracted great interest recently and become competitive 

for rapid low-rank approximations of large matrices [22, 26, 27, 28]. Instead of passing over the large 

matrix in full SVD, the randomized SVD algorithms focus on efficiently sampling the important matrix 

elements. Many sampling strategies, including uniform column sampling (with or without replacement) 
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[29, 30], diagonal sampling or column-norm sampling [31], sampling with 𝑘-means clustering [32], and 

Gaussian sampling [33], have been proposed. As a result, compared to full SVD, randomized SVD 

methods are memory efficient and can often obtain low-rank approximation in a significantly faster way. 

Nevertheless, most of these randomized SVD algorithms require the rank value 𝑘 to be given as 

an input parameter in advance. In many practical applications, 𝑘 is unknown beforehand but is of great 

importance to the accuracy of the solutions. In general, underestimating 𝑘 can introduce unacceptable 

large error in the low-rank approximation while overestimating 𝑘 can lead to unnecessary computational 

and memory costs. Without prior knowledge of the distribution of the singular values, in practice, it is not 

uncommon to re-run fast Monte Carlo methods many times until a good value of 𝑘 is determined, which 

is a waste of computational resources.  

 

2.2.3 Approximating Extreme Eigenvalues and Eigenvectors 

2.2.3.1 Extreme Eigenvalues and Eigenvectors 

Calculating the extreme eigenvalues/eigenvectors of a matrix is often required in many fields of 

science and engineering. An eigenvector 𝑢 of an 𝑛 × 𝑛 matrix 𝐴 is a vector that satisfies  

𝐴𝑢 = 𝜆𝑢, 

where 𝜆 is an eigenvalue of matrix 𝐴. A few of the largest or smallest eigenvalues and the corresponding 

eigenvectors are called extreme eigenvalues and eigenvectors. In particular, the dominant eigenvalue of 

matrix 𝐴 refers to the eigenvalue with the largest absolute value. 

2.2.3.2 Power method for Extreme Eigenvalues/Eigenvectors 

Let 𝜆1, 𝜆2, … , 𝜆𝑛, (|𝜆1| ≥ |𝜆2| ≥,… ,≥ |𝜆𝑛|) be eigenvalues of matrix 𝐴 of order 𝑛 and 𝑣1, 𝑣2, …, 

𝑣𝑛  the corresponding eigenvectors. The direct method of calculating extreme eigenvalues and 

eigenvectors is to obtain the eigenvalues from the polynomial equation 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0, and then the 

eigenvectors can be computed by solving each linear system (𝐴 − 𝜆𝑖𝐼)𝑢𝑖 = 0 accordingly. However, this 

procedure is not practical for large matrices, due to its high computational cost and memory requirement.  
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To handle a very large, sparse matrix, one of the most popular methods is power method [34]. 

Starting from a random vector 𝑥0, the power method is described by the power iteration 

𝑥𝑖+1 = 𝐴𝑥𝑖 , 

which eventually converges to the dominant eigenvalue and eigenvector [7]. In general, normalizing 𝑥𝑖+1 

to the unit norm is carried out to avoid a vector of large magnitude. The power method has been popularly 

used in a variety of real-life applications, which is regarded as the only feasible method with least 

memory requirement when the matrix is very large and sparse. For example, the power method is used in 

Google’s PageRank algorithm to rank webpages in the Internet in their search engine results [35]; Twitter 

employs the power method to recommend “who to follow” to its users [36]; by exploring the graph 

constructed via content and link features, the power iteration is also applied to calculate the trust vector as 

the stationary distribution vector of the graph to fight spams [37].   

Similarly, under the assumption of the existence of (𝐴 − 𝜇𝐼)−1, the inverse iteration [7] employs 

𝑥𝑖+1 = (𝐴 − 𝜇𝐼)−1𝑥𝑖 to approximate the eigenvector corresponding to eigenvalue closest to 𝜇, where  𝐼 

is the identity matrix. Typically, when 𝜇 is set to 0, the resulting vector approximates the eigenvector 

corresponding to the eigenvalue with smallest magnitude. 

One of the main disadvantages in the power method is that its convergence speed is governed by 

the eigengap between the first two largest eigenvalues 𝜆1 and  𝜆2 of 𝐴 in absolute values. If |𝜆2| is very 

close to |𝜆1|, a large number of power iterations are often needed to reach convergence, even for a small 

matrix. This is particularly unfavorable for large matrices where passing over all elements is costly.  

 

2.3 Parallelism in Matrix Computations 

Implementations of large-scale linear algebra, including matrix-vector multiplication, matrix-

matrix multiplication, QR decomposition, and Singular Value Decomposition (SVD), require fully taking 

advantage of modern parallel and distributed computing paradigms to achieve good performance. For 
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instance, General Purpose Graphics Process Units (GPGPU), Intel Xeon Phi, and Cloud Distributed 

Systems (Fig. 3). 

   

GPGPU Intel Xeon Phi Cloud Distributed Systems 

Fig. 3. Modern parallel/distributed computing paradigms/architectures 

 

Many high-performance linear algebra libraries are available to increase application performance 

on specific hardware architecture. For instance, to support linear algebra computations on GPU, CUBLAS 

(CUDA Basic Linear Algebra Subroutines) [38] contains the GPU-accelerated functions of basic dense 

matrix operations. Complementary to CUBLAS, CULA [39] is an extended linear algebra library 

provides high-level equivalent routines of LAPACK over CUDA runtime, MAGMA library [40] contains 

advanced matrix decompositions functions, and CUSPARSE [41] is a library for sparse matrix operations. 

Moreover, on multi-core CPUs and Intel Xeon Phi, MKL (Math Kernel Library) [121] is widely used to 

accelerate linear algebra routines. Furthermore, on distributed-memory systems, PBLAS (Parallel Basic 

Linear Algebra Subprograms) [146] and ScaLAPACK (Scalable Linear Algebra PACKage) [147] are 

popular libraries used in many parallel computing applications.   

 With the growing size of large matrices in linear algebra operations, efficiently implementing 

large-scale matrix computations on the emerging big data platforms are of primary interest nowadays. For 

example, Fig. 4 shows the flowchart of a QR decomposition implementation on a tall-and-skinny matrix 

using MapReduce [42, 43] in an uneven, distributed fashion, which achieves load balancing and has a 

clear performance advantage over the classic Householder QR algorithm.  
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Fig. 4. The computation of a QR decomposition of a “Tall-and-Skinny,” dense matrix 𝐻 

 

2.4 Numerical Verification Techniques 

As the demands on modern linear algebra applications created by the latest development of high-

performance computing (HPC) architectures continue to grow, so does the likelihood that they are 

vulnerable to faults. Soft faults in computer systems, defined as intermittent events that corrupt the data 

being processed, are among the most worrying, particularly when the computation is carried out in a low-

voltage computing environment. For example, the 2,048-node ASC Q supercomputer at Los Alamos 

National Laboratory reports an average of 24.0 board-level cache tag parity errors and 27.7 CPU failures 

per week [44]; the 131, 072-CPU BlueGene/L supercomputer at Lawrence Livermore National 

Laboratory experiences one soft error in its L1 cache every 4–6 hours [45]; more recently, a field study on 

Google’s servers reported an average of 5 single bit errors occur in 8 Gigabytes of RAM per hour using 

the top-end error rate [46]. The reliability of computations on HPC systems can suffer from soft errors 

that occur in memory, cache, as well as microprocessor logic [47], and thus produce potentially incorrect 

results in a wide variety of ways. Therefore, the appropriate approaches to remedy the consequences of 

soft errors for certain linear algebra applications are needed. 
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Matrix-matrix multiplication is one of the most fundamental numerical operations in linear 

algebra. Many important linear algebraic algorithms, including linear solvers, least squares solvers, matrix 

decompositions, factorizations, subspace projections, and eigenvalue/singular values computations, rely 

on the casting the algorithm as a series of matrix-matrix multiplications. This is partly because matrix-

matrix multiplication is one of the level-3 Basic Linear Algebra Subprograms (BLAS) [48, 49, 50]. 

Efficient implementation of the BLAS remains an important area for research, and often computer 

vendors spend significant resources to provide highly optimized versions of the BLAS for their machines. 

Therefore, if a matrix-matrix multiplication can be carried out free of faults, the linear algebraic 

algorithms that spend most of their time in matrix-matrix multiplication can themselves be made 

substantially fault-tolerant [51]. Two relevant algorithms from the literature for error detection in matrix-

matrix multiplication are described below. 

 

2.4.1 The Huang-Abraham Scheme 

The Huang and Abraham scheme [52] is an algorithm-based fault tolerance (ABFT) method that 

simplifies detecting and correcting errors when carrying out matrix-matrix multiplication operations.  

This is slightly different from the matrix product verification problem. The fundamental idea of the 

Huang-Abraham scheme is to address the fault detection and correction problem at the algorithmic level 

by calculating matrix checksums, encoding them as redundant data, and then redesigning the algorithm to 

operate on these data to produce encoded output. Compared to the traditional fault tolerant techniques, 

such as checkpointing [53], the overhead of storing additional checksum data in the Huang-Abraham 

scheme is small, particularly when the matrices are large. Moreover, no global communication is 

necessary in the Huang-Abraham scheme [11]. The Huang and Abraham scheme forms the basis of many 

subsequent checking schemes, and has been extended for use in various HPC architectures [128,129,130]. 

Fig. 5 illustrates the Huang and Abraham scheme [52] for detecting faults in matrix-matrix 

multiplication. First of all, column sums for 𝐴 and row sums for 𝐵 are generated and are added to an 

augmented representation of 𝐴  and 𝐵 . These are treated as particular checksums in the subsequent 
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multiplication. Then, multiplication of the extended matrices produces the augmented matrix for 𝐶 (Fig. 5 

(a)) where the checksums can be readily compared. Mismatches in the row and column checksums 

indicate an element fault in matrix product, 𝐶 (Fig. 5 (b)).  

=xA B C

 
(a): Generation of column checksum for 𝐴 and row checksum for 𝐵 and multiplication of the extended matrices to 

produce the checksum matrix for 𝐶 

 

x

Matrix Element Checksum Mismatch x Fault
 

(b): Mismatches in the row and column checksums indicate an element fault in matrix product 

Fig. 5. The Huang-Abraham scheme for detecting faults in matrix-matrix multiplication 

 

 

However, there are certain patterns of faults undetectable by the Huang-Abraham scheme. Here is 

a simple 2 × 2 example to illustrate such an undetectable pattern. 

Consider the matrices 

𝐴 = [
2 3
3 4

] , 𝐵 = [
1 −6
1 6

] , 𝐶 = [
5 6
7 6

]. 

Clearly 𝐴 × 𝐵 = 𝐶  holds in this example. Then we use the Huang-Abraham scheme to calculate the 

column checksum for 𝐴 and row checksum for 𝐵 and we can get 

𝐴𝐹 = [
2 3
3 4
5 7

]  and  𝐵𝐹 = [
1 −6 −5
1 6 7

]. 

Then 
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𝐴𝐹 × 𝐵𝐹 = [
5 6 11
7 6 13
12 12 24

] = 𝐶𝐹 . 

However, if there is a fault during the computation of 𝐶 which causes the swap between the first and 

second column, an erroneous result matrix 𝐶′ = [
6 5
6 7

] is generated by swapping columns of 𝐶. Column 

or row swapping, usually caused by address decoding faults [131], is a commonly observed memory fault 

pattern [132]. The problem is that the checksum matrix of 𝐶′ becomes 𝐶′𝐹 = [
6 5 11
6 7 13
12 12 24

], where both 

the row and column checksums match those of the true product of 𝐴 × 𝐵. Consequently, the Huang-

Abraham scheme fails to detect this fault. 

The Huang-Abraham scheme can be viewed as a linear constraint satisfaction problem (CSP), 

where the variables are the 𝑛2 entries in the resulting matrix, the constraints are the 2𝑛 row and column 

checksums, and the 2𝑛 × 𝑛2  coefficient matrix in the underdetermined linear CSP system equation 

specifies the selection of row or column elements, as shown in Fig. 6. Clearly, a result matrix, 𝐶, that 

does not satisfy the CSP equations indicates errors in 𝐶 detectable by the Huang-Abraham scheme. The 

unique, correct result matrix, 𝐶, satisfies the CSP equations. Nevertheless, other possible result matrices 

satisfying the CSP equations are the fault patterns undetectable by the Huang-Abraham scheme. Only 

when at least 𝑛2  constraints with different element selection are incorporated so that the rank of the 

coefficient matrix in the CSP equation is 𝑛2, can the undetectable fault patterns be eliminated. However, 

in this case, it is equivalent to simply checking every element in 𝐶. 

 
Fig. 6. Underdetermined CSP system in the Huang-Abraham Scheme 
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It is important to notice that there are an infinite number of existing fault patterns that satisfy the 

checksum constraints and thus are undetectable by the Huang-Abraham scheme, even in the above simple 

2 × 2 example (the rank of the CSP coefficient matrix is 3). Moreover, as dimension, 𝑛, increases, the 

number of checksum constraints increases only linearly but the number of elements in a matrix has 

quadratic growth. Therefore, the undetectable patterns in Huang-Abraham scheme increase dramatically 

with 𝑛. As a result, for multiplications in large matrices, fault detection methods based on the Huang-

Abraham scheme can generate false positive results for a large number of circumstances. 

 

2.4.2 The Freivalds’ Algorithm 

The fault detection methods based on the Huang-Abraham scheme are deterministic algorithms. 

With the tradeoff of random uncertainty, Freivalds [54] showed that a probabilistic machine can verify the 

correctness of matrix product faster than direct recalculation. The procedure of the corresponding method, 

later named Freivalds’ algorithm (Algorithm 2.1), is described as follows. 

Algorithm 2.1: Freivalds’ Algorithm 

Step 1. Step 1. Randomly sample a vector 𝜔 ∈ {0, 1}𝑛 with probability ½ of 0 or 1. 

Step 2. Step 2. Calculate the projection of C onto 𝜔: 𝐶𝜔 = 𝐶 × 𝜔. 

Step 3. Calculate the projection of the product 𝐴 × 𝐵 onto 𝜔: 𝐴𝐵𝜔 = 𝐴 × (𝐵 × 𝜔). 

 

Obviously, if 𝐴 × 𝐵 = 𝐶, 𝐶𝜔 = 𝐴𝐵𝜔 always holds. Freivalds proved that when 𝐴 × 𝐵 ≠ 𝐶, the 

probability of 𝐶𝜔 = A𝐵𝜔 is less than or equal to 1/2. The runtime of the above procedure is 𝑂(𝑛2) with 

an implied multiplier of 3, as it is comprised of three matrix-vector multiplications.  This is an upper 

bound as one can perhaps optimize the evaluation of 𝐵𝜔 and 𝐶𝜔. By iterating the Freivalds’ algorithm 𝑘 

times, the runtime becomes 𝑂(𝑘𝑛2) and the probability of a false positive becomes less than or equal to 

2−𝑘, according to the one-sided error. More generalized forms of Freivalds’ algorithm have also been 

developed, mainly based on using different sampling spaces [133,134,135,136]. Given at most 𝑝 

erroneous entries in the resulted matrix product, Gasieniec, Levcopoulos, and Lingas extended Freivalds' 

algorithm to one with correcting capability running in 𝑂(√𝑝𝑛2𝑙𝑜𝑔(𝑛)𝑙𝑜𝑔(𝑝)) time [137].  



   

 

21 

CHAPTER III 

MONTE CARLO METHODS FOR LINEAR SYSTEMS SOLVERS 

 

3.1 Convergence Analysis of Ulam-von Neumann Algorithm 

The fundamental idea behind conventional Monte Carlo solvers as introduced in Chapter II, is to 

construct Markov chains based on random walks to estimate the underlying Neumann series 

𝐼 +  𝐻 + 𝐻2  + 𝐻3   +  … 

to evaluate solutions of the linear systems.  

As pointed out in [3], if ‖𝐻‖ > 1, the Monte Carlo method breaks down. Nevertheless, it is well 

known that the necessary and sufficient condition for the Neumann series to converge is 𝜌(𝐻)  <  1, 

where 𝜌(𝐻)  is the spectral radius of 𝐻. Proposition 3.1 shows that ‖𝐻‖ < 1  is a stricter condition than 

𝜌(𝐻)  <  1. Therefore, there exists a family of matrices whose corresponding Neumann series converge 

but that the Monte Carlo linear solver cannot converge.  

 

Proposition 3.1. For an 𝑁 ×  𝑁, nonsingular matrix 𝐻, 𝜌(𝐻) ≤ ‖𝐻‖. 

Proof. Let 𝜆 be an eigenvalue of 𝐻 and 𝑦 the corresponding eigenvector. Thus 𝜆𝑦 =  𝐻𝑦, and ‖𝜆𝑦‖  =

 ‖𝜆‖‖𝑦‖  =  ‖𝐻𝑦‖ ≤  ‖𝐻‖‖𝑦‖ . Finally, ‖𝜆‖ ≤ ‖𝐻‖ for all eigenvalues of 𝐻  and 𝜌(𝐻) ≤ ‖𝐻‖ , since 

𝜌(𝐻) is the largest absolute value of the eigenvalues of 𝐻.  

 

3.1.1 Suggestive Examples 

To investigate the condition for convergence of conventional Monte Carlo linear solvers, we start 

considering a set of suggestive examples with 2 × 2 matrices (Table 1) to study the behavior of the Monte 

Carlo linear solver using Ulam-von Neumann algorithm [153]. We find that although the Monte Carlo 

solver is based on sampling the Neumann series, the convergence of Neumann series is not a sufficient 

condition for the convergence of the Monte Carlo solver. Actually, properties of 𝐻  are not the only 
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factors determining the convergence of the Monte Carlo solver; the underlying transition probability 

matrix 𝑃 plays an important role. 

TABLE 1 

Behavior of the Monte Carlo Linear Solver using Ulam-von Neumann Algorithm in 6 Cases of 2 × 2  Matrices 

under Different Conditions and Transition Matrices 

 

Case 𝐻 and 𝑃 Conditions Converged? 𝑉𝑎𝑟 (∑𝑋(𝛾𝑘)

𝑘

) 

1 

𝐻 = [
0.1 0.3
0.3 −0.05

] 

 

𝑃 = [
0.1 0.3
0.3 0.05

] 

‖𝐻‖ < 1 

𝜌(𝐻) < 1 

𝜌(𝐻+) < 1 

𝜌(𝐻∗) < 1 

Yes 

 

2 

𝐻 = [
0.1 0.3
0.3 −0.05

] 

 

𝑃 = [
0.009 0.891
0.8 0.1

] 

‖𝐻‖ < 1 

𝜌(𝐻) < 1 

𝜌(𝐻+) < 1 

𝜌(𝐻∗) > 1 

No 

 

3 

𝐻 = [
0.8 0.35
0.1 −0.01

] 

 

𝑃 = [
0.8 0.1
0.7 0.2

] 

‖𝐻‖ > 1 

∑ |𝐻𝑖𝑗|
𝑁
𝑗=1 > 1 

for some but not 

all 𝑖 

𝜌(𝐻) < 1 

𝜌(𝐻+) < 1 

𝜌(𝐻∗) < 1 

Yes 

 

4 

𝐻 = [
0.8 0.35
0.1 −0.01

] 

 

𝑃 = [
0.1 0.8
0.7 0.2

] 

‖𝐻‖ > 1 

∑ |𝐻𝑖𝑗|
𝑁
𝑗=1 > 1 

for some but not 

all 𝑖 
𝜌(𝐻) < 1 

𝜌(𝐻+) < 1 

𝜌(𝐻∗) > 1 

No 
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TABLE 1 Continued 

Case 𝐻 and 𝑃 Conditions Converged? 𝑉𝑎𝑟 (∑𝑋(𝛾𝑘)

𝑘

) 

5 

𝐻 = [
0.4012 0.5305
0.5305 −0.7023

] 

 

𝑃 = [
0.3306 0.5694
0.3303 0.5697

] 

‖𝐻‖ > 1 

∑ |𝐻𝑖𝑗|
𝑁
𝑗=1 > 1 

for some but not 

all 𝑖 
𝜌(𝐻) < 1 

𝜌(𝐻+) > 1 

𝜌(𝐻∗) > 1 

No 

 

6 

𝐻 = [
0.3968 −0.7162

−0.7162 −0.6226
] 

 

𝑃 = [
0.2565 0.6435
0.5350 0.3650

] 

‖𝐻‖ > 1 

∑ |𝐻𝑖𝑗|
𝑁
𝑗=1 > 1 

for all i 

𝜌(𝐻) < 1 

𝜌(𝐻+) > 1 

𝜌(𝐻∗) > 1 

No 

 

 

One can find that in all of these six suggestive cases in Table 1, the 𝐻 matrices satisfy the spectral 

radius condition where 𝜌(𝐻) < 1; however, the Monte Carlo linear solver does not converge in all of 

these cases. Hence, it is clear that the convergence of the underlying Neumann series is not a sufficient 

condition for the Monte Carlo linear solver to converge. More interestingly, cases 1 and 2 use the same 𝐻 

matrix where ||𝐻|| < 1 but different transition matrices 𝑃. The Monte Carlo linear solver converges in 

case 1 but diverges in case 2, indicating that the selection of transition matrix 𝑃 is important. If 𝑃 is 

selected improperly, the Monte Carlo linear solver may diverge even if ||𝐻|| < 1 holds. Furthermore, the 

𝐻 matrix in case 3 does not satisfy condition ||𝐻|| < 1, but the Monte Carlo linear solver does not break 

down, which disagrees with the analysis in [3] that “if ||𝐻|| > 1, the Monte Carlo method breaks down.” 

The phenomenon in case 3 suggests that there are some situations when ||𝐻|| > 1 but 𝜌(𝐻) < 1 that the 

Monte Carlo linear solver can still converge, i.e., ||𝐻|| < 1 is not a necessary condition for convergence 

in the Monte Carlo linear solver. Similar to the situation in cases 1 and 2, case 4 has the same 𝐻 matrix as 

case 3 but different transition matrix 𝑃, which results in divergence. Cases 5 and 6 show the behavior of 
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the Monte Carlo linear solver under 𝜌(𝐻+) > 1  when ∑ |𝐻𝑖𝑗|
𝑁
𝑗=1 > 1  for some but not all 𝑖  and 

∑ |𝐻𝑖𝑗|
𝑁
𝑗=1 > 1 for all 𝑖, respectively.  

 

3.1.2 A Necessary and Sufficient Condition 

We consider a Monte Carlo linear solver as converging if the variance of the estimator ∑ 𝑋(𝛾𝑘)𝑘 ,  

𝑉𝑎𝑟 (∑𝑋(𝛾𝑘)

𝑘

) = ∑𝑉𝑎𝑟(𝑋(𝛾𝑘))

𝑘

 

is bounded as 𝑘 → ∞, provided that every random walk 𝛾𝑘 is independent. We first investigate the impact 

of selecting a transition matrix 𝑃 on the convergence of the Monte Carlo linear solver. For convenience, 

we state what mathematical results are needed as lemmas. Also note that 𝑉𝑎𝑟(𝑋(𝛾𝑘)) diverging as 𝑘 →

∞, implies the same of 𝑉𝑎𝑟(∑ 𝑋(𝛾𝑘)𝑘 ). Hence, when we study the convergence/divergence behavior of 

the Monte Carlo linear solver in the theorems, we only consider 𝑉𝑎𝑟(𝑋(𝛾𝑘)) instead of 𝑉𝑎𝑟(∑ 𝑋(𝛾𝑘)𝑘 ). 

Without loss of generality and for simplicity, we also assume that the Markov chains in the Monte Carlo 

linear solver are ergodic and that every element in the constant vector 𝑏 in the linear system satisfies 𝑏𝑖 ≠

0, for all 𝑖. 

By taking both 𝐻 and 𝑃 into consideration, we derive a necessary and sufficient condition for 

convergence of the Ulam–von Neumann Monte Carlo method, as shown in Theorem 3.3. Lemma 3.2 is 

used in the proof of Theorem 3.3.  

 

Lemma 3.2.  Let 𝐻  be an 𝑁 × 𝑁  nonsingular matrix and 𝑏  be a nonzero vector. If  𝜌(𝐻) < 1 , 

 ∑ (𝐻𝑘𝑏)
𝑟0

2∞
𝑘=0  is bounded. 

Proof: For any 휀 > 0, a matrix  𝑅 is generated such that 

𝑅 =
𝐻

𝜌(𝐻) + 휀
. 

Due to that 0 < 𝜌(𝐻) < 1, it is easy to show that  𝜌(𝑅) =
𝜌(𝐻)

𝜌(𝐻)+𝜀
< 1. Then, 
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lim
𝑘→∞

𝑅𝑘 = 0. 

Or, equivalently, this indicates that a natural number 𝐾 exists such that ∀𝑘 > 𝐾, ‖𝑅𝑘‖ < 1 . 

Accordingly, 

∀𝑘 > 𝐾, ‖𝑅𝑘‖ = ‖(
𝐻

𝜌(𝐻) + 휀
)
𝑘

‖ = 
‖𝐻𝑘‖

(𝜌(𝐻) + 휀)𝑘
< 1 

That is, 

∀𝑘 > 𝐾, ‖𝐻𝑘‖ < (𝜌(𝐻) + 휀)𝑘 . 

Therefore, ∀𝑘 > 𝐾, 

|(𝐻𝑘𝑏)
𝑟0

 | ≤ ‖𝐻𝑘𝑏‖ ≤ ‖𝐻𝑘‖‖𝑏‖ < (𝜌(𝐻) + 휀)𝑘‖𝑏‖ 

and 

(𝐻𝑘𝑏)
𝑟0

2
≤ ‖𝐻𝑘𝑏‖

2
< (𝜌(𝐻) + 휀)2𝑘‖𝑏‖2. 

In particular, since 휀 can be any positive number, we can set 휀 = 𝑐
1

2 − 𝜌(𝐻) > 0, where 𝑐 is a positive 

number such that 𝜌(𝐻)2 < 𝑐 < 1. Then 

(𝐻𝑘𝑏)
𝑟0

2
< 𝑐𝑘‖𝑏‖2, ∀𝑘 > 𝐾 

Hence,  

∑(𝐻𝑘𝑏)
𝑟0

2
∞

𝑘=0

= ∑(𝐻𝑘𝑏)
𝑟0

2
𝐾

𝑘=0

+ ∑ (𝐻𝑘𝑏)
𝑟0

2
∞

𝑘=𝐾+1

 

≤ ∑(𝐻𝑘𝑏)
𝑟0

2
𝐾

𝑘=0

+ ∑ 𝑐𝑘‖𝑏‖2

∞

𝑘=𝐾+1

 

= ∑(𝐻𝑘𝑏)
𝑟0

2
𝐾

𝑘=0

+ ‖𝑏‖2 ∑ 𝑐𝑘

∞

𝑘=𝐾+1

 

= ∑(𝐻𝑘𝑏)
𝑟0

2
𝐾

𝑘=0

+
‖𝑏‖2𝑐𝐾+1

1 − 𝑐
 

Since ∑ (𝐻𝑘𝑏)
𝑟0

2𝐾
𝑘=0  has finite number of terms, and 

‖𝑏‖2𝑐𝐾+1

1−𝑐
 is a constant,  ∑ (𝐻𝑘𝑏)

𝑟0

2∞
𝑘=0 is bounded.  
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Theorem 3.3. Given an 𝑁 × 𝑁 nonsingular matrix 𝐻  such that 𝜌(𝐻) < 1, a nonzero vector 𝑏 , and a 

transition matrix 𝑃, the necessary and sufficient condition for convergence of the Monte Carlo linear 

solver using the Ulam-von Neumann algorithm is 𝜌(𝐻∗) < 1, where 𝐻∗ is an 𝑁 × 𝑁 matrix such that 

𝐻𝑖𝑗
∗ =

𝐻𝑖𝑗
2

P𝑖𝑗
. 

Proof. Since 

𝑉𝑎𝑟(𝑋(𝛾𝑘)) = 𝐸((𝑋(𝛾𝑘))2) − (𝐸(𝑋(𝛾𝑘)))
2

 

= ∑ ∑ … ∑ 𝑃𝑟0𝑟1𝑃𝑟1𝑟2 …𝑃𝑟𝑘−1𝑟𝑘
𝑇𝑟𝑘

(
𝐻𝑟0𝑟1𝐻𝑟1𝑟2 …𝐻𝑟𝑘−1𝑟𝑘

𝑏𝑟𝑘

𝑃𝑟0𝑟1𝑃𝑟1𝑟2 …𝑃𝑟𝑘−1𝑟𝑘
𝑇𝑟𝑘

)

2𝑁

𝑟𝑘=1

𝑁

𝑟2=1

𝑁

𝑟1=1

− (𝐻𝑘𝑏)
𝑟0

2
 

= ∑ ∑ … ∑
𝐻𝑟0𝑟1

2 𝐻𝑟1𝑟2
2 …𝐻𝑟𝑘−1𝑟𝑘

2 𝑏𝑟𝑘
2

𝑃𝑟0𝑟1P𝑟1𝑟2 …𝑃𝑟𝑘−1𝑟𝑘
𝑇𝑟𝑘

𝑁

𝑟𝑘=1

𝑁

𝑟2=1

𝑁

𝑟1=1

− (𝐻𝑘𝑏)
𝑟0

2
 

= (𝐻∗𝑘𝑏∗)
𝑟0

− (𝐻𝑘𝑏)
𝑟0

2
 

where 𝑏∗ is a nonzero vector such that 𝑏𝑖
∗ =

𝑏𝑖
2

𝑇𝑖
, and 𝑇𝑖 is the termination probability at row 𝑖, in the Ulam-

von Neumann algorithm. If the 𝑘 random walks are independent, it follows that  

𝑉𝑎𝑟 (∑ 𝑋(𝛾𝑘)

∞

𝑘=0

) = ∑ 𝑉𝑎𝑟(𝑋(𝛾𝑘))

∞

𝑘=0

 

= ∑ ((𝐻∗𝑘𝑏∗)
𝑟0

− (𝐻𝑘𝑏)
𝑟0

2
)

∞

𝑘=0

 

= ∑(𝐻∗𝑘𝑏∗)
𝑟0

∞

𝑘=0

− ∑(𝐻𝑘𝑏)
𝑟0

2
∞

𝑘=0

 

Since  𝜌(𝐻) < 1  , Lemma 3.2 implies the second term ∑ (𝐻𝑘𝑏)
𝑟0

2∞
𝑘=0  is bounded. Therefore, whether 

𝑉𝑎𝑟(∑ 𝑋(𝛾𝑘)∞
𝑘=0 ) is bounded depends solely on the first term, ∑ (𝐻∗𝑘𝑏∗)

𝑟0

∞
𝑘=0 , which is bounded if and 

only if 𝜌(𝐻∗) < 1. In conclusion, 𝜌(𝐻∗) < 1 is the necessary and sufficient condition for convergence of 

the Monte Carlo linear solver using Ulam-von Neumann algorithm.  
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The derived necessary and sufficient condition clarifies the confusions on the convergence of the 

Ulam–von Neumann Monte Carlo linear solver [153]. Fig. 7 summarizes the relationship between matrix 

𝐻 and the convergence of the Monte Carlo linear solver using Ulam-von Neumann algorithm below,  

(1) The convergence of Neumann series is not a sufficient condition for the convergence of Monte Carlo. 

(2) The transition matrix 𝑃 plays an important role. An improper selection of transition matrix may result 

in divergence even though the condition ||𝐻|| < 1 holds. 

(3) If ||𝐻|| < 1 is satisfied, there always exist certain transition matrices that guarantee convergence of 

the Monte Carlo linear solver. These transition matrices are trivial to find. 

(4) The Monte Carlo linear solver may or may not converge if ||𝐻|| < 1 and 𝜌(𝐻) < 1. If ∑ |𝐻𝑖𝑗|
𝑁
𝑗=1 > 1 

for every row 𝑖 in 𝐻 or, more generally, 𝜌(𝐻+) > 1 where 𝐻+  is a nonnegative matrix that 𝐻𝑖𝑗
+ =

|𝐻𝑖𝑗|, the Monte Carlo linear solver cannot converge, regardless how transition matrix 𝑃 is selected. 

(5) The sufficient and necessary condition for the Monte Carlo linear solver to converge is 𝜌(𝐻∗) <

1, where 𝐻𝑖𝑗
∗ = 𝐻𝑖𝑗

2 𝑃𝑖𝑗⁄  given 𝐻 and a transition matrix 𝑃. 

No transition matrices exist to achieve convergence

Transition matrices exist and trivial to find to achieve Monte Carlo convergence

Monte Carlo may converge, but transition matrices may be hard to find

 

Fig. 7. Summary of relationship between matrix 𝐻 and convergence in Monte Carlo linear solver using Ulam-von 

Neumann algorithm 
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3.1.3 Limitations of Conventional Monte Carlo Solvers 

The fundamental mechanism of conventional Monte Carlo solvers is constructing Markov chains 

based on random walks to estimate the underlying Neumann series to evaluate solutions of the linear 

systems. Therefore, provided that the random walks are based on Markov chains and the estimation is for 

the Neumann series, our convergence analysis in this section is applicable to the other conventional 

Monte Carlo solvers.  

In practice, the general form of a linear system 𝐴𝑥 =  𝑏 is often considered, instead of the form 

𝑥 =  𝐻𝑥 +  𝑐. When applying conventional Monte Carlo solvers to the linear system 𝐴𝑥 =  𝑏, it may 

face the following difficulties, 

(1) Unless 𝐴 is diagonally dominant, not all general 𝐴𝑥 =  𝑏 can be easily recast into 𝑥 =  𝐻𝑥 +  𝑐 with  

||𝐻|| < 1 to guarantee that the Monte Carlo solvers converge.  

(2) In the case of ||𝐻|| ≥ 1, finding a transition matrix 𝑃 becomes a constraints satisfaction problem 

defined as follows: 

Variables: {𝑃𝑖𝑗| 𝑖 = 1…𝑁, 𝑗 = 1…𝑁}; 

Domain: [0,1]; 

Constraints: 𝑃𝑖𝑗 ≥ 0;∑ 𝑃𝑖𝑗 ≤ 1𝑗 ; 𝐻𝑖𝑗 ≠ 0 → 𝑃𝑖𝑗 ≠ 0;  𝜌(𝐻∗) < 1.  

Unfortunately, solving this constraint satisfaction problem can be at least as hard as solving the 

original problem of 𝑥 =  𝐻𝑥 +  𝑐 . More seriously, for in the case of 𝜌(𝐻+) > 1  where 𝐻+  is a 

nonnegative matrix that 𝐻𝑖𝑗
+ = |𝐻𝑖𝑗|, there exists no transition matrix 𝑃 to make the Monte Carlo 

linear solvers converge. 

(3) The convergence rate of the conventional Monte Carlo is dominated by || 𝐻 ||.  In the case that || 𝐻 || 

is close to 1.0, the convergence of the underlying Neumann series is quite slow.  

Therefore, due to the restricted convergence conditions, the applicability of conventional Monte 

Carlo solvers using Neumann series to general large-scale systems of linear equations is severely limited. 
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If the convergence condition of Monte Carlo linear solvers can be loosened, a much wider collection of 

matrices can be solved by Monte Carlo linear solvers.  

 

3.2 Breakdown-Free Block Conjugate Gradient (BFBCG) Algorithm 

Our analysis on the classical Monte Carlo linear solver using Ulam-von Neumann algorithm 

indicates its limitation in convergence condition as well as convergence speed in solving general linear 

systems. Here, rather than sampling the Neumann series, we focus on developing new Monte Carlo 

method to sample Krylov subspace to approximate the solution to the linear system. 

 

3.2.1 Sampling Krylov Subspace 

To sample the underlying Krylov subspace of a linear system 𝐴𝑥 =  𝑏 in an efficient way, we 

convert the linear system into a block form by appending the right-hand side vector 𝑏 and a Gaussian 

matrix 𝛺, such as  

𝐴𝑋 =  𝐵 

where 𝐵 = [𝑏, 𝛺] is a block matrix containing 𝑠 (𝑠 ≥ 1) multiple right-hand sides. Fig. 8 illustrates the 

procedure of converting the original system to a block form. 

× =

x bA

× =

X B

A

n

n

n

n s s

x x' b ω

 
Fig. 8. Expanding a single right-hand side to multiple right-hand sides by supplying Gaussian random vectors 

 

The columns of matrix 𝐵 are expected to be statistically independent vectors, which can explore 

the Krylov subspace in a block manner, such that  
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1st random direction:    𝑟0
(0)

, 𝐴𝑟0
(0)

, 𝐴2𝑟0
(0)

, 𝐴3𝑟0
(0)

, …  

2nd random direction:    𝑟0
(1)

, 𝐴𝑟0
(1)

, 𝐴2𝑟0
(1)

, 𝐴3𝑟0
(1)

, …  

                                       …  

𝑠th random direction:    𝑟0
(𝑠−1)

, 𝐴𝑟0
(𝑠−1)

, 𝐴2𝑟0
(𝑠−1)

, 𝐴3𝑟0
(𝑠−1)

, …  

where 𝑟0
(𝑖)

 denotes the 𝑖 th initial residual direction. In fact, using block Krylov subspace has many 

attractive features, 

(1) A block formulation can potentially accelerate convergence and reduce the total number of passes 

over 𝐴, which is particularly favorable in handling large-scale matrices in which a pass over all 

elements in 𝐴 is costly.  

(2) Block matrix computations can lead to computational efficiency [59, 60, 61] for linear systems 

involving very large coefficient matrices. If 𝑠 ≪ 𝑛, the block methods involve a lot of multiplication 

operations on “tall-and-skinny” matrices, which can be easily parallelized with Level 3 BLAS 

subroutines [62, 63, 64].  

(3) Solutions corresponding to multiple right-hand sides can be evaluated simultaneously. This is 

particularly useful for applications such as multi-objective optimization [65] being interested in 

finding solutions with respect to different right-hand side vectors.  

(4) When the right-hand sides are augmented with Gaussian random vectors, extreme 

eigenvalues/eigenvectors of the coefficient matrix can be rapidly approximated via Monte Carlo 

sampling. These approximate eigenvectors can later be used in the deflation process to further 

accelerate convergence speed of the solvers.  

 

3.2.2 BCG and Rank Deficiency 

Despite the attractive features, a well-known practical issue of the blocking scheme is the rank 

deficiency problem that can lead to block methods breakdown. More specifically, in constructing block 

Krylov subspace, inverting block matrices is often needed to evaluate multiple right-hand sides 
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simultaneously. During the iterations, some of these block matrices may lose rank. Consequently, 

inverting a block matrix with rank defect is one of the roots of the breakdown problem in block-type 

Krylov subspace methods. As a result, breakdown becomes a major cause of numerical instability in 

almost every block Krylov subspace method [66, 67, 68, 69, 70]. Although certain work in the literature 

[71] indicates that breakdown usually happens with a very small probability in practice, breakdown, if it 

actually occurs, may seriously hurt the computational performance. For mission-critical applications, this 

is particularly unfavorable.  

We use the original Block Conjugate Gradient (BCG) algorithm by O’Leary [69] as an example 

to illustrate the rank deficiency problem.  

Algorithm 3.1: Original Block Conjugate Gradient (BCG) Algorithm  

Input: matrix 𝐴 ∈ ℝ𝑛×𝑛, matrix 𝐵 ∈ ℝ𝑛×𝑠, initial guess 𝑋0 ∈ ℝ𝑛×𝑠 , preconditioner 𝑀 ∈ ℝ𝑛×𝑛, tolerance 

𝑡𝑜𝑙 ∈ ℝ, and maximum number of iterations 𝑚𝑎𝑥𝑖𝑡 ∈ ℝ   

Output: an approximate solution  𝑋𝑠𝑜𝑙 ∈ ℝ𝑛×𝑠 

 

𝑅0 = 𝐵 − 𝐴𝑋0   

𝑍0 = 𝑀𝑅0   

𝑃0 = 𝑍0𝛾0  

for  𝑖 = 0,… ,𝑚𝑎𝑥𝑖𝑡 

𝛼𝑖 = (𝑃𝑖
𝑇𝐴𝑃𝑖)

−1
𝛾𝑖

𝑇(𝑍𝑖
𝑇𝑅𝑖)   

𝑋𝑖+1 = 𝑋𝑖 + 𝑃𝑖𝛼𝑖   

𝑅𝑖+1 = 𝑅𝑖 − 𝐴𝑃𝑖𝛼𝑖  
if converged, then stop. 

𝑍𝑖+1 = 𝑀𝑅𝑖+1   

𝛽𝑖 = 𝛾𝑖
−1(𝑍𝑖

𝑇𝑅𝑖)
−1

(𝑍𝑖+1
𝑇𝑅𝑖+1)   

𝑃𝑖+1 = (𝑍𝑖+1 + 𝑃𝑖𝛽𝑖)𝛾𝑖+1  
end  

𝑋𝑠𝑜𝑙 = 𝑋𝑖+1 

 

As shown in Algorithm 3.1, 𝑋0 is the initial solution guess and 𝑀 is a symmetric and positive 

definite (SPD) preconditioner. 𝑃𝑖 denotes the search directions. 𝛼𝑖 and 𝛽𝑖 are 𝑠 × 𝑠 parameter matrices to 

ensure orthogonality of 𝑅𝑖+1 and 𝑃𝑖 as well as conjugacy (𝐴-orthogonality) of 𝑃0, … , 𝑃𝑖+1, respectively. 𝛾𝑖 

is an arbitrary non-singular 𝑠 × 𝑠 matrix, which in practice is selected, for example, to orthogonalize 𝑃𝑖 to 

decrease round-off errors and to enhance numerical stability [69]. 

Proposition 3.4 states that the preconditioned residual matrix 𝑍𝑖 and the search matrix 𝑃𝑖 have the 
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same matrix rank as the residual block 𝑅𝑖. Therefore, loss of full rank in 𝑅𝑖 will lead to rank deficiency of 

𝑍𝑖 and 𝑃𝑖  during BCG iterations. Consequently, 𝑍𝑖
𝑇𝑅𝑖  and 𝑃𝑖

𝑇𝐴𝑃𝑖  become singular and thus it is 

improbable to obtain (𝑍𝑖
𝑇𝑅𝑖)

−1
and (𝑃𝑖

𝑇𝐴𝑃𝑖)
−1

 to evaluate 𝛼𝑖  and 𝛽𝑖 . As a result, BCG breakdown 

occurs. 

 

Proposition 3.4. Suppose 𝑅𝑖 is an 𝑛 × 𝑠 residual matrix of rank 𝑟𝑖 (𝑟𝑖 ≤ 𝑠) at the 𝑖th iteration, then 

𝑟𝑎𝑛𝑘(𝑃𝑖) = 𝑟𝑎𝑛𝑘(𝑍𝑖) = 𝑟𝑎𝑛𝑘(𝑅𝑖) = 𝑟𝑖, 

where 𝑟𝑎𝑛𝑘(∙) denotes the rank of a matrix. 

Proof.   First, we show that 𝑟𝑎𝑛𝑘(𝑍𝑖) = 𝑟𝑎𝑛𝑘(𝑅𝑖) = 𝑟𝑖.  From Algorithm 3.1, matrix 𝑍𝑖 is defined as 

𝑍𝑖 = 𝑀𝑅𝑖. Since M is assumed to be SPD, then 𝑟𝑎𝑛𝑘(𝑍𝑖) = 𝑟𝑎𝑛𝑘(𝑅𝑖) = 𝑟𝑖. 

Next we show that 𝑟𝑎𝑛𝑘(𝑃𝑖) = 𝑟𝑎𝑛𝑘(𝑅𝑖). The search matrix 𝑃𝑖 is given by  

𝑃𝑖 = (𝑍𝑖 + 𝑃𝑖−1𝛽𝑖−1)𝛾𝑖. (1) 

Left multiplying (1) by 𝑃𝑖
𝑇𝐴 on both sides, we get  

𝑃𝑖
𝑇𝐴𝑃𝑖 = 𝑃𝑖

𝑇𝐴𝑍𝑖𝛾𝑖 + 𝑃𝑖
𝑇𝐴𝑃𝑖−1𝛽𝑖−1𝛾𝑖. 

Notice that columns in 𝑃𝑖 are A-orthogonal to 𝑃𝑖−1, i.e., 𝑃𝑖
𝑇𝐴𝑃𝑖−1 = 0, then 

𝑃𝑖
𝑇𝐴𝑃𝑖 = 𝑃i

𝑇𝐴𝑍𝑖𝛾𝑖. 

Using the basic properties of matrix rank, we can get 

𝑟𝑎𝑛𝑘(𝑃𝑖) = 𝑟𝑎𝑛𝑘(𝑃𝑖
𝑇𝐴𝑃𝑖) 

= 𝑟𝑎𝑛𝑘(𝑃𝑖
𝑇𝐴𝑍𝑖𝛾𝑖) 

≤ 𝑟𝑎𝑛𝑘(𝑍𝑖) 

= 𝑟𝑎𝑛𝑘(𝑅𝑖). 

(2) 

On the other hand, since columns in 𝑅𝑖 are orthogonal to 𝑃𝑖−1, i.e., 𝑅𝑖
𝑇𝑃𝑖−1 = 0, left multiplying both 

sides of (1) by 𝑅𝑖
𝑇 and eliminating the zero terms, we obtain 

𝑅𝑖
𝑇𝑃𝑖 = 𝑅𝑖

𝑇𝑍𝑖𝛾𝑖 = 𝑅𝑖
𝑇𝑀𝑅𝑖𝛾𝑖. 

According to the basic properties of matrix rank again, we have 
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𝑟𝑎𝑛𝑘(𝑃𝑖) ≥ 𝑟𝑎𝑛𝑘(𝑅𝑖
𝑇𝑃𝑖) 

                      = 𝑟𝑎𝑛𝑘(𝑅𝑖
𝑇𝑀𝑅𝑖𝛾𝑖) 

           = 𝑟𝑎𝑛𝑘(𝑅𝑖). 

       (3) 

Based on (2) and (3), 𝑟𝑎𝑛𝑘(𝑃𝑖) = 𝑟𝑎𝑛𝑘(𝑅𝑖) = 𝑟𝑖 is concluded.   

 

In practice, rank deficiency may be caused by many different reasons, for instances, inappropriate 

guess of initial vectors, unbalanced convergence speeds of solutions with respect to multiple right-hand 

sides, and accumulation of round-off errors. The possible situations of rank deficiency in BCG are 

summarized as follows. 

(1) Two or more vector components in the initial block residue 𝑅0 are linearly dependent. For example, if 

the multiple right-hand sides in matrix 𝐵 contain linearly dependent vectors and 𝑋0 simply takes zero 

vectors as the initial guess, then the initial block residue 𝑅0 will include linearly dependent vectors. In 

practice, this breakdown situation can be eliminated by ensuring the linear independence of column 

vectors in 𝑅0, such as carefully selecting initial guess 𝑋0. An alternative approach is orthogonalizing 

𝑅0 [72] to eliminate the dependent vectors in 𝑅0. 

(2) Convergence of one or more vector components in the block residue 𝑅𝑖  . During BCG iterations, 

solutions with respect to some right-hand sides may converge faster than the others, which results in 

near zero vectors in 𝑅𝑖. This typically happens when the norms of the component vectors in 𝑅0 are 

significantly different in magnitude. An obvious approach is to normalize the right-hand sides in 𝐵 so 

as to keep the norms of the component vectors of 𝑅0 at a similar scale [71] to hopefully balance the 

number of convergence steps for the multiple right-hand sides. Since convergence has already been 

achieved in some solutions, removing these solutions and their corresponding residual vectors [69] 

not only avoids BCG breakdown, but also eliminates unnecessary numerical computations. 

(3) Two or more vector components in the block residue 𝑅𝑖  at the 𝑖 th iteration become linearly 

dependent. If one is only interested in a single solution with respect to a specific right-hand side, for 
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example, the multiple right-hand sides block expanded from a single right-hand side, the variable 

BCG algorithm [68] by constructing an 𝐴 -orthogonal projector to reduce the block size can 

sufficiently address the breakdown problem caused by this factor. Nevertheless, if solutions to all 

right-hand sides are of interest, assuming that the right-hand sides of the corresponding linearly 

dependent vectors have not converged yet and thus none of the vector components in 𝑅𝑖 are zero, 

reducing the block sizes will result in loss of solutions. 

 

3.2.3 The BFBCG Algorithm 

We present a simple solution to address the rank deficiency problem in BCG, which results in a 

Breakdown Free Block Conjugate Gradient (BFBCG) algorithm (Algorithm 3.2). The fundamental idea 

of BFBCG is, in case of the rank of the block search direction vectors being reduced, the parameter 

matrices are calculated in the reduced Krylov subspace to minimize the block nonnegative quadratic 

function of 

𝐹(𝑋) = 𝑡𝑟𝑎𝑐𝑒((𝑋 − 𝑋∗)𝑇𝐴(𝑋 − 𝑋∗)), 

where 𝑡𝑟𝑎𝑐𝑒(∙) is the trace of a matrix and 𝑋∗ = 𝐴−1𝐵 is the desired block solution. As a result, BFBCG 

avoids estimation of the inverse of a potentially non-full rank matrix and thus addresses the rank 

deficiency problem. 

Algorithm 3.2: Breakdown-Free BCG (BFBCG) Algorithm 

Input: matrix 𝐴 ∈ ℝ𝑛×𝑛, right hand side matrix 𝐵 ∈ ℝ𝑛×𝑠, initial guess 𝑋0 ∈ ℝ𝑛×𝑠, preconditioner 𝑀 ∈
ℝ𝑛×𝑛, tolerance 𝑡𝑜𝑙 ∈ ℝ, and maximum number of iterations 𝑚𝑎𝑥𝑖𝑡 ∈ ℝ   

Output: an approximate solution 𝑋𝑠𝑜𝑙 ∈ ℝ𝑛×𝑠 

 

𝑅0 = 𝐵 − 𝐴𝑋0  

𝑍0 = 𝑀𝑅0  

�̃�0 = 𝑜𝑟𝑡ℎ(𝑍0)  

for 𝑖 = 0,… ,𝑚𝑎𝑥𝑖𝑡 

             𝑄𝑖  =  𝐴�̃�𝑖  

�̃�𝑖 = (�̃�𝑖
𝑇
𝑄𝑖)

−1
(�̃�𝑖

𝑇
𝑅𝑖)  

𝑋𝑖+1 = 𝑋𝑖 + �̃�𝑖�̃�𝑖  

𝑅𝑖+1 = 𝑅𝑖 − 𝑄𝑖�̃�𝑖  
if converged, then stop. 

𝑍𝑖+1 = 𝑀𝑅𝑖+1  
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�̃�𝑖 = −(�̃�𝑖
𝑇
𝑄𝑖)

−1
(𝑄𝑖

𝑇𝑍𝑖+1)  

�̃�𝑖+1 = 𝑜𝑟𝑡ℎ(𝑍𝑖+1 + �̃�𝑖�̃�𝑖)  

end 

𝑋𝑠𝑜𝑙 = 𝑋𝑖+1  

 

To illustrate the differences in comparison with the BCG algorithm described in Algorithm 3.1, 

the matrix symbols with a “~” notation are used to indicate that the dimension of these matrices may 

reduce in case of rank deficiency in BFBCG. New forms of calculating parameter matrices �̃�𝑖 and �̃�𝑖 are 

derived based on potentially reduced search subspace. In case of lost rank in search directions or residual 

vectors, �̃�𝑖 is designed to ensure that the next residual vectors 𝑅𝑖+1 are orthogonal to search space 𝒫𝑖. A 

new form of �̃�𝑖 is derived so that the new search space 𝒫𝑖+1 is conjugate to all previous search spaces 

𝒫𝑗  (𝑗 < 𝑖 + 1). 

Compared to the original BCG algorithm [69], our BFBCG algorithm has the following major 

differences: 

(1) Matrix operation 𝑜𝑟𝑡ℎ(∙) is employed for extracting an orthogonal basis �̃�𝑖 ∈ ℝ𝑛×𝑟𝑖 from the search 

space 𝒫𝑖. 𝑜𝑟𝑡ℎ(∙) can be efficiently implemented using QR decomposition with column pivoting. In 

case of rank deficiency, the dimension of the search space 𝒫𝑖  will be reduced, which avoids the 

situations of revisiting the subspace already visited in the BCGAdQ algorithm described in [73]. 

(2) If rank deficiency occurs at the 𝑖th iteration, �̃�𝑖 and �̃�𝑖 turn into rectangular matrices of size 𝑟𝑖 × 𝑠, 

where 𝑟𝑖 is the dimension of search space 𝒫𝑖 at the 𝑖th iteration, while they are restricted as square 

matrices in BCG.  

(3) Matrices 𝛾𝑖 are no longer necessary in the BFBCG algorithm. 

In addition to breakdown avoidance, the BFBCG algorithm maintains several favorable features 

in practice. For example, at each iteration, matrix 𝐴  is visited only once. Meanwhile, (�̃�𝑖
𝑇
𝑄𝑖)

−1
 

calculated in �̃�𝑖 can be reused for computing �̃�𝑖.  

We use Theorems 3.5 and 3.10 to justify the derivation of �̃�𝑖 and �̃�𝑖, respectively. Theorem 3.5 

shows, in case of rank deficiency at the 𝑖th iteration in BFBCG, the rectangular parameter matrix �̃�𝑖 
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ensures that 𝑅𝑖+1 is orthogonal to the search space 𝒫𝑖. 

 

Theorem 3.5. Suppose 𝑅𝑖 loses full rank at the 𝑖th iteration. Let 𝒫𝑖 denote the corresponding search space 

with dimension 𝑟𝑖 (𝑟𝑖 < 𝑠). Given matrix �̃�𝑖 ∈ ℝ𝑟𝑖×𝑠 so that 

�̃�𝑖 = (�̃�𝑖
𝑇
𝑄𝑖)

−1
(�̃�𝑖

𝑇
𝑅𝑖), 

where �̃�𝑖 ∈ ℝ𝑛×𝑟𝑖 consists of orthonormal basis of 𝒫𝑖 and 𝑄𝑖 ∈ ℝ𝑛×𝑟𝑖 denotes the matrix product 𝐴�̃�𝑖, the 

next residual matrix 𝑅𝑖+1 derived from �̃�𝑖 is orthogonal to the search space 𝒫𝑖.  

Proof.   As �̃�𝑖 ∈ ℝ𝑛×𝑟𝑖 is the orthonormal basis of the search space 𝒫𝑖 and 𝑄𝑖 = 𝐴�̃�𝑖 ,  �̃�𝑖
𝑇
𝑄𝑖 ∈ ℝ𝑟𝑖×𝑟𝑖 is 

nonsingular. Therefore, there exists a matrix �̃�𝑖 ∈ ℝ𝑟𝑖×𝑠 such that 

�̃�𝑖 = (�̃�𝑖
𝑇
𝑄𝑖)

−1
(�̃�𝑖

𝑇
𝑅𝑖). 

(4) 

Since 𝑅𝑖+1 is constructed from  

𝑅𝑖+1 = 𝑅𝑖 − 𝑄𝑖�̃�𝑖, (5) 

in BFBCG, left multiplying (5) by �̃�𝑖
𝑇

, and then by definition of �̃�𝑖 in (4), we can get 

�̃�𝑖
𝑇
𝑅𝑖+1 = �̃�𝑖

𝑇
𝑅𝑖 − �̃�𝑖

𝑇
𝑄𝑖�̃�𝑖 

= �̃�𝑖
𝑇
𝑅𝑖 − �̃�𝑖

𝑇
𝑄𝑖 (�̃�𝑖

𝑇
𝑄𝑖)

−1
�̃�𝑖

𝑇
𝑅𝑖  

= 0, 

which indicates that the derived 𝑅𝑖+1 is orthogonal to the search space 𝒫𝑖.  

 

Based on Theorem 3.5, other orthogonality properties of BFBCG can be obtained easily, which 

are summarized as the following two corollaries. Corollary 3.6 extends Theorem 3.5 and shows that 𝑅𝑖+1 

is not only orthogonal to search space 𝒫𝑖 at the 𝑖th iteration, but to all previous search spaces 𝒫𝑗 (𝑗 < 𝑖 +

1). Moreover, observing that search spaces 𝒫𝑗 are derived from subspaces spanned by residual matrices 

𝑅𝑗  (𝑗 < 𝑖 + 1), Corollary 3.7 states that 𝑅𝑖+1  is 𝑀-orthogonal to all previous residual matrices under 

preconditioning matrix 𝑀 (assuming that 𝑀 is symmetric positive definite). 
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Corollary 3.6. 𝑅𝑖+1
𝑇�̃�𝑗 = 0 for all 𝑗 < 𝑖 + 1. 

Corollary 3.7. 𝑅𝑖+1
𝑇𝑀𝑅𝑗 = 𝑍𝑖+1

𝑇𝑅𝑗 = 0 for all 𝑗 < 𝑖 + 1. 

At the 𝑖th iteration, BFBCG explores the block Krylov subspace [67, 69] defined as  

𝐷𝑖(𝐴,𝑀, 𝑅0) = 𝑏𝑙𝑜𝑐𝑘_𝑠𝑝𝑎𝑛{𝑀𝑅0,𝑀𝐴𝑀𝑅0, … , (𝑀𝐴)𝑖𝑀𝑅0} 

= {∑(𝑀𝐴)𝑗𝑀𝑅0𝛹𝑗

𝑖

𝑗=0

;  𝛹𝑗 ∈ ℝ𝑠×𝑠} 

which is the union of the previous subspaces spanned by the matrices 𝑀𝑅𝑗 (𝑗 < 𝑖 + 1). By Corollary 3.7, 

𝑅𝑖+1is orthogonal to the Krylov subspace explored before as well, which implies that 𝑋𝑖+1 from BFBCG 

is the minimizer of the block nonnegative quadratic function of 

𝐹(𝑋) = 𝑡𝑟𝑎𝑐𝑒((𝑋 − 𝑋∗)𝑇𝐴(𝑋 − 𝑋∗)) 

over the Krylov subspace 𝑋0 + 𝑠𝑝𝑎𝑛{𝑀𝑅0, 𝑀𝐴𝑀𝑅0, … , (𝑀𝐴)𝑖𝑀𝑅0}  at the 𝑖 th iteration, where 𝑋∗ =

 𝐴−1𝐵 is the desired block solution. 

The other parameter matrix �̃�𝑖 in BFBCG is chosen to ensure that the next search space 𝒫𝑖+1 is 

conjugate to the previous search space 𝒫𝑗  (𝑗 < 𝑖 + 1) in case of rank deficiency, which is shown in 

Theorem 3.10. The following Lemmas 3.8 and 3.9 will be used for the proof of Theorem 3.10. The proofs 

for Lemmas 3.8 and 3.9 are included in Appendix A. 

 

Lemma 3.8. Suppose 𝑅𝑖  is an 𝑛 × 𝑠  residual matrix of rank 𝑟𝑖 (𝑟𝑖 ≤ 𝑠)  at the 𝑖 th iteration, then 

𝑟𝑎𝑛𝑘(�̃�𝑖
𝑇𝑅𝑖) = 𝑟𝑖. 

Lemma 3.9. 𝑍𝑖+1 is conjugate to search spaces 𝒫𝑗 where 𝑗 < 𝑖. 

 

Lemma 3.8 indicates that the matrix rank of �̃�𝑖
𝑇𝑅𝑖 is always equal to that of 𝑅𝑖. We can also learn 

from Lemma 3.8 that the parameter matrix �̃�𝑖 has rank 𝑟𝑖which is consistent with the rank of 𝑅𝑖 at every 
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iteration step 𝑖. In other words, �̃�𝑖 will not be a zero matrix unless 𝑅𝑖 is a zero matrix. This fundamentally 

prevents BFBCG from suffering the potential stagnation problem occurred in Krylov subspace methods 

[74, 75], where the solution matrices in two (and further) consecutive iterations will not be updated due to 

zero parameter matrix while convergence has not been reached yet.  

Lemma 3.9 indicates that 𝑍𝑖+1 from BFBCG is conjugate to all previous search spaces 𝒫𝑗  (𝑗 < 𝑖) 

except 𝒫𝑖. This inspires us to derive a parameter matrix �̃�𝑖 to construct a new search space 𝒫𝑖+1 from 𝑍𝑖+1 

by removing the conjugation part of 𝒫𝑖. Theorem 3.10 shows that, in case of rank deficiency occurring at 

the 𝑖th iteration, the rectangular parameter matrix �̃�𝑖 ensures that the new search space 𝒫𝑖+1 is conjugate 

to all previous search spaces 𝒫𝑗  (𝑗 < 𝑖 + 1). 

 

Theorem 3.10. Suppose 𝑅𝑖  loses full rank at the 𝑖th iteration. Let 𝒫𝑖  denote the corresponding search 

space with dimension 𝑟𝑖 (𝑟𝑖 < 𝑠). Given matrix �̃�𝑖 ∈ ℝ𝑟𝑖×𝑠 so that 

�̃�𝑖 = −(�̃�𝑖
𝑇
𝑄𝑖)

−1
𝑄𝑖

𝑇𝑍𝑖+1, 

where �̃�𝑖 ∈ ℝ𝑛×𝑟𝑖 consists of orthonormal basis for 𝒫𝑖 and 𝑄𝑖 ∈ ℝ𝑛×𝑟𝑖 denotes the matrices product 𝐴�̃�𝑖. 

Then, the new search space 𝒫𝑖+1 obtained from �̃�𝑖 is conjugate to all previous search spaces 𝒫𝑗 where 𝑗 <

𝑖 + 1. 

Proof. Based on Gram-Schmidt conjugation process, the new search directions 𝑃𝑖+1 at 𝑖th iteration can be 

generated by  

𝑃𝑖+1 = 𝑍𝑖+1 + ∑�̃�𝑗𝛽𝑖+1,𝑗

𝑖

𝑗=0

, 

where �̃�𝑗  is the orthonormal basis of 𝒫𝑗  and 𝛽𝑖+1,𝑗  is the associated weight matrix of �̃�𝑗 . As �̃�𝑖
𝑇
𝑄𝑖 ∈

ℝ𝑟𝑖×𝑟𝑖 is nonsingular, by selecting 𝛽𝑖+1,𝑗 = 0 for all 𝑗 < 𝑖 and �̃�𝑖 = 𝛽𝑖+1,𝑖 = −(�̃�𝑖
𝑇
𝑄𝑖)

−1
𝑄𝑖

𝑇𝑍𝑖+1, it is 

easy to show that 

(1) for any �̃�𝑗 where 𝑗 < 𝑖, according to Lemma 3.9,  
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�̃�𝑗
𝑇
𝐴𝑃𝑖+1 = �̃�𝑗

𝑇
𝐴𝑍𝑖+1 + �̃�𝑗

𝑇
𝐴 ∑ �̃�𝑘𝛽𝑖+1,𝑘

𝑗

𝑘=0

 

= �̃�𝑗
𝑇
𝐴𝑍𝑖+1 = 0. 

(2) for �̃�𝑗  where 𝑗 = 𝑖 ,      

�̃�𝑖
𝑇
𝐴𝑃𝑖+1 = �̃�𝑖

𝑇
𝐴𝑍𝑖+1 + �̃�𝑖

𝑇
𝐴 ∑ �̃�𝑘𝛽𝑖+1,𝑘

𝑖

𝑘=0

 

= �̃�𝑖
𝑇
𝐴𝑍𝑖+1 + �̃�𝑖

𝑇
𝐴�̃�𝑖𝛽𝑖+1,𝑖 

= �̃�𝑖
𝑇
𝐴𝑍𝑖+1 − �̃�𝑖

𝑇
𝐴�̃�𝑖 (�̃�𝑖

𝑇
𝐴�̃�𝑖)

−1
�̃�𝑖

𝑇
𝐴𝑍𝑖+1 

= �̃�𝑖
𝑇
𝐴𝑍𝑖+1 − �̃�𝑖

𝑇
𝐴𝑍𝑖+1 = 0. 

Let the range of 𝑃𝑖+1 be the new search space 𝒫𝑖+1 and then the new search space 𝒫𝑖+1 is conjugate to all 

previous search spaces 𝒫𝑗  (𝑗 < 𝑖 + 1).   

 

 In fact, �̃�𝑖 and �̃�𝑖 defined in BFBCG are generalized forms of the parameter matrices 𝛼𝑖 and 𝛽𝑖 in 

BCG algorithms to avoid breakdown during BFBCG iterations. When 𝑅𝑖’s have full column rank, the 

BFBCG algorithm is equivalent to the original BCG. In particular, �̃�𝑖 and �̃�𝑖 are square matrices with full 

rank that are coincide with 𝛼𝑖 and 𝛽𝑖 from the original BCG where 𝛾𝑖 in Algorithm 3.1 is replaced by the 

inverse of upper triangular part of QR decomposition, while a simplified form �̃�𝑖 is chosen in BFBCG to 

avoid augmented condition number of 𝑍𝑖
𝑇𝑅𝑖 . On the other hand, if 𝑅𝑖  loses full rank during BFBCG 

iterations, the rectangular parameter matrices �̃�𝑖 and �̃�𝑖 are employed to maintain orthogonality properties 

in block Krylov subspace and avoid breakdown due to the rank deficiency problem.  

 

3.2.4 Convergence Analysis 

We investigate the theoretical number of iterations of BFBCG. Then, the convergence rate of 

BCGLS is further estimated. 
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3.2.4.1 Number of Iterations 

To solve a linear system with 𝑠 multiple right hand sides using BCG, the block Krylov subspace  

𝐷𝑖(𝐴,𝑀, 𝑅0) = 𝑏𝑙𝑜𝑐𝑘_𝑠𝑝𝑎𝑛{𝑀𝑅0,𝑀𝐴𝑀𝑅0, … , (𝑀𝐴)𝑖𝑀𝑅0} 

= {∑(𝑀𝐴)𝑗𝑀𝑅0𝛹𝑗

𝑖

𝑗=0

;  𝛹𝑗 ∈ ℝ𝑠×𝑠} 

is constructed to find an approximate 𝑋𝑖+1  at next iteration, where 𝑀  is an SPD preconditioner. As 

pointed out by [76], if the effect of roundoff errors can be ignored, the BCG algorithm is able to find the 

exact solutions after at most ⌈𝑛/𝑠⌉ iterations, where 𝑠 is the number of right-hand sides.  

As a generalized form of BCG, BFBCG shares the same convergence property only if the residual 

matrix remains full rank 𝑠  during all iterations. When rank deficiency occurs, BFBCG continues to 

explore the Krylov subspaces from the reduced search spaces. Proposition 3.11 shows that once a residual 

matrix loses full rank, rank deficiency will be inherited in the subsequent residual matrices.  

 

Proposition 3.11. If residual matrix 𝑅𝑖 loses full column rank at the 𝑖th iteration, the subsequent residual 

matrices 𝑅𝑗 (𝑗 > 𝑖) are also rank deficient. 

Proof.  Since  

𝑅𝑖+1 = 𝑅𝑖 − 𝐴�̃�𝑖�̃�𝑖 

= 𝑅𝑖 − 𝐴�̃�𝑖(�̃�𝑖
𝑇𝐴�̃�𝑖)

−1
�̃�𝑖

𝑇𝑅𝑖 

= (𝐼 − 𝐴�̃�𝑖(�̃�𝑖
𝑇𝐴�̃�𝑖)

−1
�̃�𝑖

𝑇)𝑅𝑖, 

Then, 𝑟𝑎𝑛𝑘(𝑅𝑖) ≥ 𝑟𝑎𝑛𝑘(𝑅𝑖+1)  can be obtained based on the properties of matrix rank. For 𝑗 > 𝑖 , 

𝑟𝑎𝑛𝑘(𝑅𝑖) ≥ 𝑟𝑎𝑛𝑘(𝑅𝑗) can be derived in a similar way.  

 

In the case that rank deficiency occurs, the Krylov subspace can no longer be expanded by 𝑠 

dimensions in future iterations. Instead, the dimension of the corresponding Krylov subspace increases by 
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the rank of the residual matrix, which is less than the number of right hand side 𝑠, at each subsequent 

iteration step. Consequently, in general, more than ⌈𝑛/𝑠⌉ iterations are needed in BFBCG to find the 

solutions in case of rank deficiency.  

3.2.4.2 Convergence Rate 

Defining the error matrix 𝐸𝑖+1 as  

𝐸𝑖+1 = [𝑒𝑖+1
(0)

, 𝑒𝑖+1
(1)

, … , 𝑒𝑖+1
(𝑠−1)

] = 𝑋𝑖+1 − 𝑋∗ 

at the 𝑖th iteration, where 𝑒𝑖+1
(𝑘)

 be the 𝑘th column of 𝐸𝑖+1 and 𝑋∗ = 𝐴−1𝐵 is the desired block solution, 

the block nonnegative quadratic function can be represented as  

𝑡𝑟𝑎𝑐𝑒((𝑋𝑖+1 − 𝑋∗)𝑇𝐴(𝑋𝑖+1 − 𝑋∗)) = ∑ ‖𝑒𝑖+1
(𝑘)

‖
𝐴

2
𝑠−1

𝑘=0

. 

To determine the convergence rate of BCG, the initial residual matrix 𝑅0 = 𝐵 − 𝐴𝑋0 plays an 

important role in bounding the errors at each iteration step. Under the assumption that 𝑅0 has full column 

rank, O’Leary [69] showed that the minimum error square norm ‖𝑒𝑖+1
(𝑘)

‖
𝐴

2
, (0 ≤ 𝑘 ≤ 𝑠 − 1) is bounded as  

‖𝑒𝑖+1
(𝑘)

‖
𝐴

2
≤ 𝑐(𝑘) (

1 − √𝜅−1

1 + √𝜅−1
)

2(𝑖+1)

 

at each iteration. Here 𝜅 = 𝜆𝑛 𝜆𝑠⁄  where 𝜆𝑛 ≥ 𝜆𝑛−1 ≥ ⋯ ≥ 𝜆1 are the eigenvalues of 𝑀𝐴, respectively, 

and 𝑐(𝑘) is a constant only related to 𝑒0
(𝑘)

. Nevertheless, if 𝑅0 does not have full rank, the above error 

bound does not hold. Assuming that 𝑅0 has rank 𝑟0, Theorem 3.12 shows that the convergence rate of 

BFBCG method is bounded by  (
1−√𝜅′−1

1+√𝜅′−1
)

2

 where 𝜅′ = 𝜆𝑛 𝜆𝑟0
⁄ . 

 

Theorem 3.12. Suppose 𝑅0  is rank deficient with rank 𝑟0  (𝑟0 < 𝑠), the minimum error square norm 

‖𝑒𝑖+1
(𝑘)

‖
𝐴

2
 is bounded as 
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‖𝑒𝑖+1
(𝑘)

‖
𝐴

2
≤ 𝑐 (

1 − √𝜅′−1

1 + √𝜅′−1
)

2(𝑖+1)

, 

where 𝑐 is a constant related only with 𝐸0 and 𝜅′ = 𝜆𝑛 𝜆𝑟0
⁄ . 

Proof. Assuming that the 𝑛 × 𝑠 residual matrix 𝑅0 has rank 𝑟0, which is potentially rank deficient, then 

there exists a nonsingular 𝑠 × 𝑠 matrix 𝛿 such that 

𝑅0 = (𝑅0
′, 0)𝛿 

where 𝑅0 is an 𝑛 × 𝑟0 matrix with full rank. Since 𝐸0 = 𝐴−1𝑅0 and 𝐸𝑖+1 = 𝜙𝑖(𝑀𝐴)𝐸0, where 𝜙𝑖(𝑀𝐴) is 

a polynomial of degree 𝑖, we have that 𝐸𝑖+1 = (𝐸𝑖+1
′, 0)𝛿 and each column in 𝐸𝑖+1 can be expressed as 

𝑒𝑖+1
(𝑘)

= ∑ 𝛿𝑗𝑘

𝑟0−1

𝑗=0

𝑒′
𝑖+1
(𝑗)

 

where 𝑒′
𝑖+1
(𝑗)

 is the 𝑗th column of 𝐸𝑖+1
′.  Hence, the error bound of the square norm ‖𝑒𝑖+1

(𝑘)
‖

𝐴

2
 becomes 

‖𝑒𝑖+1
(𝑘)

‖
𝐴

2
= ‖∑ 𝛿𝑗𝑘𝑒′

𝑖+1
(𝑗)

𝑟0−1

𝑗=0

‖

𝐴

2

 

≤ ∑ 𝛿𝑗𝑘
2 ‖𝑒′

𝑖+1
(𝑗)

‖
𝐴

2
𝑟0−1

𝑗=0

 

≤ ∑ 𝛿𝑗𝑘
2

𝑟0−1

𝑗=0

𝑐(𝑗) (
1 − √𝜅′−1

1 + √𝜅′−1
)

2(𝑖+1)

 

≤ 𝑐 (
1 − √𝜅′−1

1 + √𝜅′−1
)

2(𝑖+1)

 

where  𝑐 = ∑ 𝛿𝑗𝑘
2𝑟0−1

𝑗=0 𝑐(𝑗), and 𝜅′ = 𝜆𝑛 𝜆𝑟0
⁄ .  

 

In the case of rank deficiency, if 𝑅𝑖 loses full rank to 𝑟𝑖, BCG has to restart with the reduced 

block size. Restart is unfavorable in parallel computing, where reinitiating processes and redistributing 

workload are necessary. More importantly, the restarting BCG uses the range of 𝑅𝑖 as the initial search 
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space and abandons all search spaces explored before. As a result, the restarted BCG has a lower 

convergence rate of (
1−√𝜅′′−1

1+√𝜅′′−1
)

2

, where 𝜅′′ = 𝜆𝑛 𝜆𝑟𝑖
⁄ . In contrast, without restarting, BFBCG yields 

faster convergence than restarting BCG, because BFBCG still takes advantage of search space 

information previously constructed. Hence, the overall convergence rate of BFBCG lies 

between  (
1−√𝜅′′−1

1+√𝜅′′−1
)

2

 and (
1−√𝜅−1

1+√𝜅−1
)
2

, where 𝜅′′ = 𝜆𝑛 𝜆𝑟𝑖
⁄  and 𝜅 = 𝜆𝑛 𝜆𝑠⁄ , respectively. 

 

3.2.5 Numerical Results 

3.2.5.1 Handling Rank Deficiency  

We use a matrix “Kuu” from the UFL sparse matrix collection [77] as the coefficient matrix of a 

block linear system with 200 right-hand sides to demonstrate the effectiveness of BFBCG in addressing 

the breakdown problem with combined rank deficiency situations. “Kuu” is a 7,102 × 7,102 SPD matrix 

with 340,200 nonzero elements arising from a structural problem whose sparse pattern is shown in Fig. 9. 

To construct linearly dependent vector components in the initial block residue 𝑅0, we intentionally set the 

elements in the first 198 columns of the right-hand side matrix 𝐵 as randomly generated numbers while 

the last two columns are created as linear combinations of the first 198 columns. The initial guess 𝑋0 is 

Fig. 9. Sparse pattern of matrix “Kuu” 
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set to be the same as 𝐵 and a preconditioner 𝑀 is constructed using the Crout version of ILU factorization 

[78] with the element drop tolerance “0.01”. The desired error tolerance of all solutions is 10−7. 

 

Fig. 10. Matrix rank of residue 𝑅𝑖, condition number of 𝑃𝑖
𝑇𝐴𝑃𝑖 , and the corresponding maximum and minimum 

residual norm for a block linear system with 200 right-hand sides using the Matrix “Kuu” as coefficient matrix along 

BFBCG iterations 

 

Fig. 10 illustrates the change of matrix rank of residual matrix 𝑅𝑖 (upper), condition number of 

𝑃𝑖
𝑇𝐴𝑃𝑖 (middle), as well as the maximum and minimum residual norms of columns in 𝑅𝑖 (lower) along 

the BFBCG iterations. The condition number of 𝑃𝑖
𝑇𝐴𝑃𝑖 is bounded by the condition number of 𝐴 during 

the iterations. One can find that rank deficiency happens at the very beginning because of the linearly 

dependent vectors in 𝐵 that we set intentionally. The rank of the residual matrix 𝑅𝑖 starts to drop down to 

150 when 𝑖 =  9 because linear dependence occurs during the BFBCG process; however, none of the 

systems converge to the desired resolution yet. When 𝑖 =  11, the residual norms in some columns in 𝑅𝑖 

are smaller than the given error tolerance indicating that some but not all systems have reached 

convergence. Correspondingly, the matrix rank of 𝑅𝑖 decreases further to 45. After all, BFBCG is able to 

deal with the combination of various rank deficiency situations and continues to improve the solution 

accuracy based on the reduced subspace. Eventually, all systems reach convergence at the 20th iteration. 

3.2.5.2 Handling the Near-breakdown Problem 
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Recent studies [79, 80] have shown that the almost linearly dependent vectors in the residual 

block matrices may cause loss of orthogonality during linear system solving iterations and thus slow 

down or even prevent convergence of the block Krylov subspace methods. This is referred to as the near-

breakdown problem. We hereby investigate the impacts of the near-breakdown problem on BFBCG in 

comparison with the original BCG algorithm. To simulate the near-breakdown situations, we use a linear 

system of a 10 × 10 random coefficient matrix with a small condition number to eliminate the impact 

from the matrix itself and initialize a block residual matrix 𝑅0 with two nearly linearly dependent vectors, 

where the second column is generated by multiplying the first one by 10 while adding small random 

perturbations. The coefficient matrix and the right-hand side block matrix are specified in Appendix B. 

TABLE 2 

Comparison between BCG and BFBCG in the Case of Near-Breakdown 

 BCG BFBCG 

Convergence 

  

Smallest 

singular 

values 

of 𝑅𝑖 

  

Condition 

number of 
𝑃𝑖

𝑇𝐴𝑃𝑖  
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TABLE 2 Continued 

 BCG BFBCG 

Colormap 

of 

𝐴-

orthogonali

ty 

between 

Search 

Matrices 
  

 

 

Table 2 compares BCG and BFBCG in the case when near-breakdown occurs. We monitor the 

smallest singular value of 𝑅𝑖 and a parameter 𝜏 is designated as a tolerance threshold of linear dependence 

among the block residual vectors in BFBCG. Here, 𝜏 is set to 10−12. One can find that the nearly linearly 

dependent vectors in 𝑅𝑖  result in a certain loss of 𝐴-orthogonality among search matrices during the 

iterations in both BCG and BFBCG, which is consistent with the analysis in [79, 81]. This is due to the 

fact that constructing the new search matrices is sensitive to the round-off errors when the residual 

matrices are nearly rank-deficient. Nevertheless, the computation of the parameter matrix 𝛽𝑖  in BCG 

requires an evaluation of 𝛾𝑖
−1(𝑍𝑖

𝑇𝑅𝑖)
−1

, where nearly linear dependence in 𝑅𝑖 can lead to large round-off 

errors. As shown in Table 2, BCG suffers from complete loss of 𝐴-orthogonality and fails to converge. In 

contrast, the computation of �̃�𝑖  in BFBCG relies only on calculating (𝑃𝑖
𝑇𝐴𝑃𝑖)

−1
 and thus maintains 

relatively better 𝐴-orthogonality. Moreover, BFBCG is designed to enforce 𝐴-orthogonality of every two 

consecutive search matrices. As a result, BFBCG is able to evolve with nearly linear dependence in 𝑅𝑖. 

When some singular values of 𝑅𝑖 fall under threshold 𝜏, search matrices of reduced size are generated in 

such a way that 𝐴-orthogonality with the previous search directions is maintained. Consequently, the 

relatively better 𝐴-orthogonality allows BFBCG to reach solutions with desired precision. 

3.2.5.3 Comparison with Restarting Scheme 

When a breakdown actually occurs, the original BCG algorithm has to restart with a reduced 
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block size. Table 3 compares the performance of BCG with restarting and BFBCG on a set of SPD 

matrices from structural engineering applications in the Harwell-Boeing sparse matrix collection [82].We 

use a right-hand side matrix 𝐵  consisting of 10 random column vectors. Particularly, we scale the 

elements in the first 8 columns of matrix 𝐵 by the matrix norm of 𝐴 to amplify the magnitude difference 

among column vectors so that rank deficiency can easily occur. The Crout version of ILU preconditioners 

is applied. The computational experiments are carried out on the XSEDE TACC Stampede System [83]. 

When breakdown happens, causing the loss of all search spaces that have been explored before restarting, 

BCG typically takes more iteration steps to reach convergence than BFBCG. In contrast, BFBCG is able 

to continue to update the solution blocks from the reduced search spaces without being interrupted. 

Moreover, restarting requires additional operations to reinitiate the computational process, which results 

in significantly more computational time in BCG than that in BFBCG. 

TABLE 3  

Performance Comparison between BFBCG and Restarting BCG on SPD Matrices from Static Analyses in Structural 

Engineering Application 

 

Name Rows Columns Nonzeros 

BCG with Restarting BFBCG 

# of 

Iterations 

# of 

Restarts 

Computational 

Time (s) 

# of 

Iterations 

Computational 

Time (s) 

BCSSTK14 1,806 1,806 32,630 9 5 1.54 8 0.68 

BCSSTK15 3,948 3,948 60,882 19 11 6.28 14 3.18 

BCSSTK16 4,884 4,884 147,631 8 4 3.8 8 2.44 

BCSSTK17 10,974 10,974 219,812 19 16 40.69 15 17.39 

BCSSTK18 11,948 11,948 80,519 14 8 28.49 14 18.44 

 

 

3.3 Block Conjugate Gradient for Least Square (BCGLS) Algorithm 

The applicability of BFBCG is limited to linear systems with symmetric positive definite (SPD) 

coefficient matrices. In this section, we extend the breakdown-free techniques in BFBCG to more general 

linear systems, where a Block Conjugate Gradient for Least Square (BCGLS) algorithm [151] is 

developed to handle the least squares problem and general linear systems at a large scale. 

 

3.3.1 The BCGLS Algorithm 
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Considering the least squares solutions to a linear system of equations with multiple right-hand 

sides 𝐴𝑋 = 𝐵, where 𝐴 is an 𝑚 × 𝑛  (𝑚 ≥ 𝑛)  sparse, rectangular or square matrix with rank 𝑛, 𝑋 is an 

𝑛 × 𝑠 unknown matrix, 𝐵 is an 𝑚 × 𝑠 right-hand side matrix, and 𝑠 (𝑠 ≥ 1) is the number of right-hand 

sides.  The block matrices operations in BCGLS are developed to approximate the least squares solutions 

by ensuring orthogonality properties while minimizing the residual (error) function  

𝑇𝑟𝑎𝑐𝑒((𝐵 − 𝐴𝑋)𝑇(𝐵 − 𝐴𝑋)), 

over the underlying Krylov subspace, where 𝑇𝑟𝑎𝑐𝑒(∙) refers to as the trace of a matrix.  

Algorithm 3.3 presents BCGLS to address the potential breakdown problem caused by rank 

deficiency. Similar to BFBCG, we perform a rank revealing operation 𝑜𝑟𝑡ℎ(∙) on 𝑆𝑖+1 + �̃�𝑖�̃�𝑖 to remove 

linearly dependent or zero vectors. When rank deficiency occurs, the dimension of space 𝒫𝑖 reduces from 

𝑠 to 𝑟𝑖 (𝑟𝑖 < 𝑠) and correspondingly the search block �̃�𝑖 shrinks to be an 𝑛 × 𝑟𝑖 matrix. Then, parameter 

matrices �̃�𝑖  and �̃�𝑖  are designed to be 𝑟𝑖 × 𝑠  rectangular matrices and �̃�𝑖  appears to be 𝑚 × 𝑟𝑖 , with 

respect to the change in search direction block �̃�𝑖.  

Algorithm 3.3: Block Conjugate Gradient for Least Square (BCGLS) Algorithm 

Input: matrix 𝐴 ∈ ℝ𝑚×𝑛, matrix 𝐵 ∈ ℝ𝑚×𝑠, initial guess 𝑋0 ∈ ℝ𝑛×𝑠 , tolerance 𝑡𝑜𝑙 ∈ ℝ, and 

maximum number of iterations 𝑚𝑎𝑥𝑖𝑡 ∈ ℝ   

Output: an approximate solution 𝑋𝑠𝑜𝑙 ∈ ℝ𝑛×𝑠 

 

𝑅0 = 𝐵 − 𝐴𝑋0  

𝑆0 = 𝐴𝑇𝑅0   

�̃�0 = 𝑜𝑟𝑡ℎ(𝑆0)  

for  𝑖 = 0,… ,𝑚𝑎𝑥𝑖𝑡 

�̃�𝑖 = 𝐴�̃�𝑖  

�̃�𝑖 = (�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖

𝑇
𝑅𝑖  

𝑋𝑖+1 = 𝑋𝑖 + �̃�𝑖�̃�𝑖  

𝑅𝑖+1 = 𝑅𝑖 − �̃�𝑖�̃�𝑖    

if converged within 𝑡𝑜𝑙, then stop. 

𝑆𝑖+1 = 𝐴𝑇𝑅𝑖+1  
if no rank deficiency occurs, then 

�̃�𝑖 = (𝑆𝑖
𝑇𝑆𝑖)

−1
𝑆𝑖+1

𝑇𝑆𝑖+1  

else 

�̃�𝑖 = −(�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖𝐴𝑆𝑖+1  

endif 

�̃�𝑖+1 = 𝑜𝑟𝑡ℎ(𝑆𝑖+1 + �̃�𝑖�̃�𝑖)   
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end  

𝑋𝑠𝑜𝑙 = 𝑋𝑖+1 

 

At the 𝑖th iteration step, an optimal point minimizing the underlying residual (error) function is 

chosen from 𝑋0 + 𝑠𝑝𝑎𝑛{𝐴𝑇𝑅0, (𝐴
𝑇𝐴)𝐴𝑇𝑅0, … , (𝐴𝑇𝐴)𝑖𝐴𝑇𝑅0}  to be the least squares approximation, 

which can be expressed as a polynomial 𝜙𝑖(𝐴
𝑇𝐴) of degree 𝑖. Therefore, as an analogue to the standard 

Block Conjugate Gradient (BCG) methods [84], BCGLS yields a faster convergence rate of (
1−√𝜅′−1

1+√𝜅′−1
)
2

, 

compared to Conjugate Gradient Least Squares (CGLS) [144,145] with a single right-hand side, where 

𝜅′ = 𝜆𝑛 𝜆𝑠⁄ , and 𝜆𝑛 and 𝜆𝑠 are the 𝑛th and 𝑠th eigenvalues of the product matrix 𝐴𝑇𝐴, respectively.  

In practice, it is very rare that the residual block has an exact linear dependency in BCGLS; 

however, much more often, vectors in the residual block will become nearly linearly dependent. In fact, 

linear dependency in the residual block 𝑆𝑖 is monitored during BCGLS. If the smallest eigenvalue of 𝑆𝑖 is 

lower than a designated threshold parameter 𝜏, the search space will be reduced accordingly. Studies [79, 

80] have shown that the nearly linear dependency in the block matrices may cause near-breakdown and 

have a serious impact to the convergence of block Krylov subspace methods. We use numerical examples 

to show that the linear dependency threshold parameter has an impact on solution precision as well as 

convergence speed and needs to be carefully selected.  

 

3.3.2 Numerical Results 

3.3.2.1 Handling Rank Deficiency  

We compute the least squares solutions of a linear system with coefficient matrix “illc1850” to 

demonstrate the robustness of BCGLS in the case of rank deficiency. “illc1850” is a 1,850 × 712 

rectangular matrix with 8,636 nonzero elements arisen from the least squares problem in surveying [77]. 

A right-hand side block matrix 𝐵 containing 100 column vectors with full column rank are generated 

randomly. A system is considered converged if the relative residual error of each solution with respect to 

its corresponding right-hand side is within the tolerance of 10−7.  
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We start BCGLS with a zero initial solution block. Fig. 11 shows the number of columns in 

search matrix 𝑃𝑖  after the rank-revealing operations (upper), the condition number of 𝑄𝑖
𝑇𝐴𝑄𝑖  (middle), 

and the maximum and minimum relative residual errors among all solution columns in 𝑋𝑖 (lower) along 

BFBCGLS iterations. One can find that rank deficiency (from 100 down to 88) starts to occur at the 6th 

iteration. After all, BCGLS is able to continue to explore the Krylov subspaces with reduced search space 

without suffering a breakdown, which leads to further residual error reduction in all systems as shown in 

Fig. 11 (lower). 

 
Fig. 11. Number of Columns in 𝑃𝑖  (upper), condition number of 𝑄𝑖

𝑇𝐴𝑄𝑖 (middle), and maximum and minimum 

relative residual norms of columns in 𝑋𝑖 (lower) along BFBCGLS iterations 

 

Fig. 12 compares the solution precision measured by the maximum residual norm among columns 

in 𝑋𝑖  with respect to different linear dependency threshold parameter 𝜏 values. It is interesting to note 

that, when a large 𝜏 value is used, only solutions in low precision are obtained in BCGLS. This is due to 

the fact that, when a large 𝜏 value is reached, some solutions or linear combinations of solutions are 

considered converged and the search space is reduced without further improving these solutions. More 

importantly, a large 𝜏 value slows down convergence because of early reduction of search space. On the 

other hand, a 𝜏 value close to float-point number representation precision (10−16.) does not necessarily 

lead to more precise solutions due to low-quality search spaces where the Galerkin conditions are not 
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fully satisfied anymore. Our results indicate that the appropriate 𝜏  value should be in the range of 

10−12~10−14 for BCGLS using double precision floating point operations. 

 
Fig. 12. Solution precisions obtained using different linear dependency threshold parameter τ values 

 

3.3.2.2 Reducing Number of Passes 

We compare CGLS and BCGLS to find the least squares solution of linear systems in terms of 

matrix passes. The least squares matrices chosen from the UFL sparse matrix collection [77] are used as 

coefficient matrices. In BCGLS, the right-hand side matrix 𝐵 is set to be with 10 columns, where the first 

column coincides with the right-hand vector in CGLS while other columns are Gaussian random vectors. 

A satisfactory solution is considered achieved if the relative residual error of the first solution vector is 

within the tolerance of 10−7.   

Fig. 13 shows the number matrix passes performed using CGLS and BCGLS. One can find that 

the number of passes on all of the coefficient matrices is significantly reduced by using BCGLS, because 

of the improved convergence rate achieved in the block form of BCGLS. For matrices like 

“photogrammetry”, the total number of matrix passes is reduced by about 100 times by using BCGLS. 



   

 

52 

 
 

Fig. 13. The number of passes over matrix 𝐴 

 

 

3.4 BCGLS Algorithm with Deflation (BCGLSD) 

In this section, we propose a BCGLS algorithm with Deflation (BCGLSD) to accelerate block 

linear system convergence with deflation matrices. To obtain a high-quality of deflation matrix, Monte 

Carlo importance sampling is carried out to estimate and continuously refine the approximate smallest 

eigenvalues and eigenvectors of the large coefficient matrix during the course of iterations. These 

approximated eigenvectors are used to build up the deflation matrices. Numerical examples are provided 

to demonstrate the effectiveness of BCGLSD.  

 

3.4.1 The BCGLSD Algorithm 

Deflation is one of the popular techniques used in Krylov subspace methods to accelerate 

convergence via pre-adding the Krylov subspace with a space spanned by a deflation matrix, which 

contains approximations to the extreme eigenvectors [85,86,87]. Deflation has been widely used to handle 

positive definite systems [88, 89] and unsymmetric systems [90,91,92,93]. Recently, when multiple right-

hand sides of a linear system are considered, the deflated algorithms are applied to BCG [71] and 

BGMRES [80]. More comprehensive analysis of deflated Krylov subspace methods can be found in [86, 
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85, 70, 94].  

Deflation can be applied to BCGLS to improve convergence speed in finding solutions for least 

squares problem. Given a deflation matrix 𝑊, an augmented block Krylov subspace 

𝑠𝑝𝑎𝑛{𝑊, 𝐴𝑇𝑅0, (𝐴
𝑇𝐴)1𝐴𝑇𝑅0, … , (𝐴𝑇𝐴)𝑖𝐴𝑇𝑅0, … }, 

is constructed. In BCGLSD, as shown in Algorithm 3.4, an initial guess 𝑋0 is formed as 

𝑋0 = 𝑋−1 + 𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝑅−1 

where 𝑋−1 is an arbitrary block matrix and 𝐿 = 𝐴𝑊. Meanwhile, matrix orthogonalization related to 𝑊 is 

carried out to generate the subsequent search matrices.  

Algorithm 3.4: BCGLS Algorithm with Deflation (BCGLSD) 

Input: matrix 𝐴 ∈ ℝ𝑚×𝑛, matrix 𝐵 ∈ ℝ𝑚×𝑠, matrix 𝑋−1 ∈ ℝ𝑛×𝑠 , tolerance 𝑡𝑜𝑙 ∈ ℝ, maximum number 

of iterations 𝑚𝑎𝑥𝑖𝑡 ∈ ℝ, and deflation matrix  𝑊 ∈ ℝ𝑛×𝑡 

Output: 𝑋𝑠𝑜𝑙 ∈ ℝ𝑛×𝑠 

 

𝐿 = 𝐴𝑊  

𝑅−1 = 𝐵 − 𝐴𝑋−1  

𝑋0 = 𝑋−1 + 𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝑅−1   

𝑅0 = 𝐵 − 𝐴𝑋0  

𝑆0 = 𝐴𝑇𝑅0   

�̃�0 = 𝑜𝑟𝑡ℎ(𝑆0 − 𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝐴𝑆0)  

for  𝑖 = 0,… ,𝑚𝑎𝑥𝑖𝑡 

�̃�𝑖 = 𝐴�̃�𝑖  

�̃�𝑖 = (�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖

𝑇
𝑅𝑖  

𝑋𝑖+1 = 𝑋𝑖 + �̃�𝑖�̃�𝑖   

𝑅𝑖+1 = 𝑅𝑖 − �̃�𝑖�̃�𝑖  

if converged within 𝑡𝑜𝑙, then stop. 

𝑆𝑖+1 = 𝐴𝑇𝑅𝑖+1  

�̃�𝑖 = −(�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖𝐴𝑆𝑖+1  

�̃�𝑖+1 = 𝑜𝑟𝑡ℎ(𝑆𝑖+1 + �̃�𝑖�̃�𝑖 − 𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝐴𝑆𝑖+1)  

end  

𝑋𝑠𝑜𝑙 = 𝑋𝑖+1 

 

Theorem 3.13 shows that the residual matrices 𝑅𝑖 and the search matrices �̃�𝑖 are constructed 𝐴-

orthogonal and 𝐴𝑇𝐴-orthogonal to deflation matrix 𝑊 in BCGLSD, respectively. 

 

Theorem 3.13. When deflated by a deflation matrix 𝑊, the following two orthogonality relations hold in 

DBCGLS, 
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(1) 𝑊𝑇𝐴𝑇𝐴�̃�𝑖 = 0; 

(2) 𝑊𝑇𝐴𝑇𝑅𝑖 = 0. 

Proof.  (1)  Since �̃�𝑖+1  is an orthogonal basis of the space spanned by the columns of 𝑆𝑖+1 + �̃�𝑖�̃�𝑖 −

𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝐴𝑆𝑖+1, there exists an 𝑛 × 𝑟𝑖matrix 𝛿 such that 

�̃�𝑖+1 = (𝑆𝑖+1 + �̃�𝑖�̃�𝑖 − 𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝐴𝑆𝑖+1)𝛿. 

Then, we have  

𝑊𝑇𝐴𝑇𝐴�̃�𝑖+1 = 𝑊𝑇𝐴𝑇𝐴(𝑆𝑖+1 + �̃�𝑖�̃�𝑖 − 𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝐴𝑆𝑖+1)𝛿 

= 𝑊𝑇𝐴𝑇𝐴�̃�𝑖�̃�𝑖𝛿 

Clearly, because 𝑊𝑇𝐴𝑇𝐴�̃�0 = 0, subsequently, 𝑊𝑇𝐴𝑇𝐴�̃�𝑖 = 0 for all 𝑖. 

(2) Since 𝑅𝑖+1 = 𝑅𝑖 − �̃�𝑖�̃�𝑖 and (1), we have  

𝑊𝑇𝐴𝑇𝑅𝑖+1 = 𝑊𝑇𝐴𝑇𝑅𝑖 − 𝑊𝑇𝐴𝑇�̃�𝑖�̃�𝑖 

= 𝑊𝑇𝐴𝑇𝑅𝑖 

As 𝑋0 = 𝑋−1 + 𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝑅−1 and 𝑅0 = (𝐼 − 𝐴𝑊(𝐿𝑇𝐿)−1𝐿𝑇)𝑅−1, it follows that  

𝑊𝑇𝐴𝑇𝑅0 = 𝑊𝑇𝐴𝑇(𝐼 − 𝐴𝑊(𝐿𝑇𝐿)−1𝐿𝑇)𝑅−1 = 0. 

As a deduction, we can get 𝑊𝑇𝐴𝑇𝑅𝑖 = 0  for all 𝑖 ≥ 0.   

 

According to Theorem 3.13, in subsequent iterations in DBCGLS algorithm, the block Krylov 

subspace  

𝑠𝑝𝑎𝑛{𝐴𝑇𝑅0, (𝐴
𝑇𝐴)1𝐴𝑇𝑅0, … , (𝐴𝑇𝐴)𝑖𝐴𝑇𝑅0, … } 

is constructed to be orthogonal to the subspace spanned by 𝑊. Let 𝐻 = I − 𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝐴 be a matrix 

projection onto the orthogonally complement subspace of 𝑊, DBCGLS is, in fact, equivalent to BCGLS 

starting with 𝐴𝑇𝑅0 on a system with the transformed coefficient matrix 𝐻𝑇𝐴𝑇𝐴𝐻.  

The effectiveness of BCGLSD depends strongly on the quality of the deflation matrix. The ideal 

deflation matrix 𝑊 is composed of the exact extreme eigenvectors of 𝐴𝑇𝐴. Suppose the columns in 𝑊 

contain 𝑡 eigenvectors of matrix 𝐴𝑇𝐴 corresponding to the 𝑡 smallest eigenvalues, the impacts from these 
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eigenvectors of matrix 𝐴𝑇𝐴 can be removed from matrix 𝐻𝑇𝐴𝑇𝐴𝐻 at the beginning, and thus DBCGLS 

algorithm has potentially faster convergence in a deflated system with a smaller condition number 𝜅′ =

𝜆𝑛 𝜆𝑠+𝑡⁄ , where 𝜆𝑛 and 𝜆𝑠+𝑡 are the 𝑛th and the (𝑠 + 𝑡)th eigenvalues of 𝐴𝑇𝐴, respectively.  

 

3.4.2 Importance Sampling 

When expanding a linear system to a block linear system, instead of adding arbitrary non-linearly 

dependent vectors to the multiple right-hand side 𝐵, we insert Gaussian distributed random vectors, such 

that 𝐵 = [𝑏, 𝛺], where 𝛺 is an 𝑛 × (𝑠 − 1) Gaussian matrix. As the iterations move on, the approximate 

solution vectors gradually approach the space spanned by the smallest 𝑠 eigenvectors of 𝐴, due to the 

effect of Monte Carlo sampling 𝐴−1𝛺 which will be discussed in Chapter IV.   

In BCGLSD, importance sampling is performed to improve the quality of the approximate 

smallest eigenvector vectors. Fig. 14 illustrates the importance sampling procedure of generating and 

refining deflation matrices. The basic idea is that after 𝑘  steps of iterations, we restart BCGLSD by 

supplying a set of new vectors – a basis of the space spanned by the current solution vectors, to the right-

hand side. In this way, the inverse power effect (𝐴−1)𝑝𝛺  is expected to be performed on the solution 

matrix, where 𝑝 denotes the number of restarts. As a result, this allows enhancing the accuracy of the 

approximate smallest 𝑠 eigenvectors of 𝐴, which can be used to build a better quality deflation matrix.  
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Fig. 14. Generate and refine deflation matrices via importance sampling 

 

3.4.3 Numerical Results 

3.4.3.1 Convergence Accelerations Using Deflation 

We compare the convergence of CGLS, BCGLS, and BCGLSD on the least squares problem with 

coefficient matrix “wang4" from semiconductor device problem [77]. “wang4" is a 26,068 × 26,068 

unsymmetric matrix with 177,196 nonzero elements. Assuming that we are only interested in the solution 

to one single right-hand side. To accommodate with the block form in BCGLS and BCGLSD, we expand 

the single right-hand side to a block form with 100 right-hand sides by supplying 99 Gaussian random 

vectors to the right-hand side. In BCGLSD, the importance sampling is carried out every 512 steps to 

refine the deflation matrix 𝑊.  

Fig. 15 displays the numerical results of CGLS, BCGLS, and BCGLSD. One can clearly observe 

that by expanding the linear system from a single right-hand side to a block form with multiple right-hand 

sides, BCGLS (1,834 steps) takes fewer iteration steps to converge to 10−7 relative residual error than 

CGLS (59,765 steps).  Even though overall BCGLS involves more computational operations measured 
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by the total number of matrix-vector multiplications than those of CGLS, it is important to note that 

BCGLS is a communication-efficient algorithm that can significantly reduce the number of passes over 

matrix 𝐴, the main computational bottleneck if passing over all elements in 𝐴 is extremely costly. More 

importantly, when an approximate deflation matrix is applied, convergence can be significantly 

accelerated, where the number of iterations to reach convergence is further reduced down to 935 steps. 

 
Fig. 15. Comparison of convergence in CGLS, BCGLS, and BCGLSD on a least squares problem using “wang4" as 

the coefficient matrix 

 
3.4.3.2 Handling ill-conditioned Coefficient matrices using Deflation 

We use a linear system with “gre_1107", a 1,107 × 1,107  unsymmetric matrix with 5,664 

nonzero elements, as the coefficient matrix to study the behavior of BCGLS in ill-conditioned least 

squares problems [77]. Fig. 16 shows the eigenvalue distribution of 𝐴𝑇𝐴. One can find that the 40 

extremely small eigenvalues lead to a large condition number in 𝐴𝑇𝐴. The condition number of 𝑄𝑖
𝑇𝑄𝑖 is 

bounded by that of 𝐴𝑇𝐴. 
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Fig. 16. Distribution of the eigenvalues in 𝐴𝑇𝐴 (“gre_1107") the condition 

  

As shown in Fig.s 17, when the condition number of 𝑄𝑖
𝑇𝑄𝑖 is small during BCGLS iterations 

before step 11, orthogonality is well preserved. However, at iteration step 11, the large condition number 

of 𝑄𝑖
𝑇𝑄𝑖 causes subsequent loss of orthogonality, as shown in the colormap of 𝐴𝑇𝐴-orthogonality among 

the first 31 search matrices. Consequently, BCGLS converges slowly and does not reach the desired 

precision of 10−7 even after 10,000 iterations. An appropriate deflation matrix can address this issue and 

accelerate the convergence of BCGLS. Here we use a deflation matrix consisting of 40 approximated 

eigenvectors corresponding to the 40 extreme eigenvalues obtained from importance sampling. When the 

deflation matrix is applied, the condition number of 𝑄𝑖
𝑇𝑄𝑖remains relatively small and orthogonality is 

mostly preserved during BCGLSD iterations, as shown in Fig. 18. As a result, BCGLSD converges at 

iteration step 11. 
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Fig. 17. Colormap of 𝐴𝑇𝐴 -orthogonality between Search Matrices in the first 31 iterations (upper), condition 

number of 𝑄𝑖
𝑇𝑄𝑖  (middle), and maximum and minimum relative residual norms of columns in 𝑋𝑖 (lower) for a block 

linear system with 100 right hand sides using “gre_1107" as the coefficient matrix along BCGLS iterations 
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Fig. 18. Colormap of 𝐴𝑇𝐴 -orthogonality between Search Matrices in the first 12 iterations (upper), condition 

number of 𝑄𝑖
𝑇𝑄𝑖  (middle), and maximum and minimum relative residual norms of columns in 𝑋𝑖 (lower) for a block 

linear system with 100 right hand sides using “gre_1107" as the coefficient matrix along BCGLSD iterations, where 

the deflation matrix consists of 40 approximated extreme eigenvectors 

 

 

3.5 Monte Carlo GMRES (MCGMRES) Algorithm 

In Krylov-subspace based solvers, performing precise matrix-vector multiplications at each 
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iteration can be expensive when coefficient matrices are very large or matrix elements need to be 

regenerated when accessed. In practice, an inexact scheme is suggested as a remedy to the costly matrix-

vector multiplication [95, 96, 97, 98], which uses a quick approximation. However, the inexact scheme 

relies on the underlying approximation error -- if the approximation error is high, the approximate matrix-

vector products may lead to divergence of the Krylov-subspace solvers [99, 100].   

Recent advances in Monte Carlo sampling algorithms enable approximating matrix-vector 

products with relatively low computation cost while yielding high confidence [22, 26, 27, 29]. Here, a 

Monte Carlo GMRES (MCGMRES) algorithm is developed where Monte Carlo sampling is used to 

approximate matrix-vector multiplications.  

 

3.5.1 Inexact Matrix Product using Sampling 

In the literature, a number of Monte Carlo sampling approaches have been used to approximate 

matrix products, such as random walk-based sampling [101] and row/column sampling [102]. Here, we 

use column sampling [102] as an example to carry out an inexact matrix-vector product. Let 𝐴 be an 𝑚 ×

𝑛  matrix and 𝑏  an 𝑛 × 1  vector, where both 𝑚  and 𝑛  are large. Then, the product 𝑐 = 𝐴𝑏  can be 

approximated based on 𝑠 sampled columns of matrix 𝐴, as shown in Algorithm 3.5.  

Algorithm 3.5: Inexact Matrix-vector Product with Column Sampling ( IMv ) 

Step 1: Generate a random integer 𝑘 between 1 and 𝑛 with probabilities 𝑝𝑗, 𝑗 = 1,… , 𝑛; 

Step 2: 𝑄(𝑖) = 𝐴(𝑘)/√𝑠𝑝𝑘 ,  𝑡(𝑖) = 𝑏(𝑘)/√𝑠𝑝𝑘 , and 𝑖 =  𝑖 + 1; 

Step 3: Repeat steps 1-2 until 𝑖 = 𝑠; 

Step 4: Compute matrix product 𝑄𝑡. 

 

Let 𝐴(𝑘) be the 𝑘th column of matrix 𝐴 and 𝑏(𝑘) be the 𝑘th element of 𝑏. Since the product 𝑐 can 

be expressed as 𝑐 = ∑ 𝐴(𝑘)𝑏(𝑘)
𝑛
𝑘=1 , if we assign 𝑥 as a discrete random variable with probability (𝑥𝑖 =

𝐴(𝑖)𝑏(𝑖)

 p𝑖
) = 𝑝𝑖  , 𝑖 = 1,… , 𝑛, where probability 𝑝𝑖  is assigned to 𝑖th column 𝐴(𝑖)  or the corresponding 𝑖th 

element of 𝑏(𝑖), one can find that the product 𝑐 is the expectation of 𝑥, such that  
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𝑐 = ∑
𝐴(𝑘)𝑏(𝑘)

 𝑝𝑘
𝑝𝑘

𝑛

𝑘=1

= 𝐸(𝑥) 

By constructing matrices 𝑄 and 𝑡 with contain 𝑠 samples from matrix 𝐴 and vector 𝑏, respectively, the 

product 𝑐 is approximated as 

𝑄𝑡 =
1

𝑠
∑

𝐴(𝑖𝑘)𝑏(𝑖𝑘)

 𝑝𝑖𝑘

𝑠

𝑘=1

≈ 𝐸(𝑥) = 𝑐 

where 𝑖𝑘’s are integers between 1 and 𝑛. Theoretically, the approximation error in column sampling is 

bounded as 

‖𝐴𝑏 − 𝑄𝑡‖2 = 𝑂 (
‖𝐴‖𝐹‖𝑏‖𝐹

√𝑠
) 

with high probability [102].  

 

3.5.2 The MCGMRES Algorithm 

The MCGMRES algorithm is built by integrating the GMRES algorithm with column sampling 

scheme. Algorithm 3.6 shows the procedure of MCGMRES to solve a system of linear equations  

𝐴𝑥 = 𝑏, 

where matrix 𝐴 ∈ ℝ𝑚×𝑛 and vector 𝑏 ∈ ℝ𝑚.  

Algorithm 3.6: Monte Carlo GMRES (MCGMRES) Algorithm  

Input: matrix 𝐴 ∈ ℝ𝑚×𝑛, vector 𝑏 ∈ ℝ𝑚, sampling size 𝑠 ∈ ℕ per iteration, initial solution guess 𝑥0 ∈
ℝ𝑛 , tolerance 𝑡𝑜𝑙 ∈ ℝ, and maximum number of iterations 𝑚𝑎𝑥𝑖𝑡 ∈ ℝ   

Output: 𝑥𝑠𝑜𝑙 ∈ ℝ𝑛 

 

𝑟0 = 𝑏 − 𝐼𝑀𝑣(𝐴, 𝑥0, 𝑠)  

ℎ10 = ‖𝑟0‖2  

for  𝑖 = 0,… ,𝑚𝑎𝑥𝑖𝑡 

𝑞𝑖+1 =
𝑟𝑖

ℎ𝑖+1,𝑖
⁄   

𝑟𝑖 = 𝐼𝑀𝑣(𝐴, 𝑞𝑖, 𝑠)  

for 𝑗 = 1,… , 𝑖 
ℎ𝑗,𝑖 = 𝑞𝑗

𝑇𝑟𝑖  

𝑟𝑖 = 𝑟𝑖 − ℎ𝑗,𝑖𝑞𝑗  

end 

ℎ𝑖+1,𝑖 = ‖𝑟𝑖‖2  

Solve the least-squares problem 𝑚𝑖𝑛‖ℎ10𝑒1 − �̃�𝑖𝑦𝑖‖2
  

𝑥𝑖+1 = 𝑥0 + 𝑄𝑖𝑦𝑖  
If converged, then stop. 
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end  

𝑥𝑠𝑜𝑙 = 𝑥𝑖+1 

 

Vector 𝑥0 is the initial solution guess and �̃�𝑖 is an upper Hessenberg matrix. At the 𝑖th iteration, 

𝑥𝑖+1 has the form 𝑥0 + 𝑄𝑖𝑦𝑖, where 𝑦𝑖 is the least squares solution to ‖ℎ10𝑒1 − �̃�𝑖𝑦𝑖‖2
 which locates 𝑥𝑖+1  

to minimize ‖𝑏 − 𝐴𝑥‖2 over space 

𝑥0 + 𝑠𝑝𝑎𝑛{𝑟0, 𝑟1, … , 𝑟𝑖}. 

Here 𝑟𝑖  is the 𝑖 th approximate residual vector. 𝐼𝑀𝑣(𝐴, 𝑞𝑖, 𝑠) performs column sampling to generate a 

vector approximating 𝐴𝑞𝑖 , based on the 𝑠  sampled columns of matrix 𝐴 . Thus, the space 𝑥0 +

𝑠𝑝𝑎𝑛{𝑟0, 𝑟1, … , 𝑟𝑖} is an approximation to the actual Krylov subspace 𝑥0 + {𝑟0, 𝐴𝑟0, 𝐴
2𝑟0, 𝐴

3𝑟0, … }. 

By writing inexact matrix-vector operation in the form 

𝑥′ = (𝐴 + ∆𝐴)𝑥, 

where ∆𝐴 is the perturbation on the matrix 𝐴, the study in [99] shows that inexact matrix-vector products 

would not significantly affect the convergence of GMRES, if the perturbation error ‖∆𝐴‖2 can satisfy the 

condition of 

‖∆𝐴‖2

‖𝐴‖2
∈ [𝑡𝑜𝑙, 1], 

where 𝑡𝑜𝑙 donotes the specified tolerance threshold. Suppose that column sampling without replacement 

is carried out in MCGMRES. Then, it is clearly seen that ‖∆𝐴‖2 < ‖𝐴‖2 holds, since column sampling 

uses only a subset of the columns in 𝐴 to produce inexact matrix-vector product. Therefore, MCGMRES 

based on column sampling not only can decrease the computational cost at each iteration, but also is able 

to greatly maintain the convergence properties of GMRES.  

 

3.5.3 Numerical Results 

We use a 10,000 × 10,000 random matrix to show the capability of MCGMRES in trading off 

speed and accuracy. The column sampling is carried out without replacement.  
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Fig. 19. Comparison of MCGMRES with different percentage of samples 

 

Fig. 19 shows the numerical results of MCGMRES with different percentage of samples. One can 

find that by using 10% randomly selected columns, MCGMRES takes only about 44% computational 

time of the original GMRES to obtain a solution with accuracy of 10−2. When more samples are used in 

MCGMRES, the computational costs gradually increases, but it allows higher accuracy solutions to be 

achieved. It is important to note that MCGMRES would be a good choice for some large-scale problems 

where a high-accuracy solution is not necessary but fast approximation of the solution is important. 
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CHAPTER IV 

MONTE CARLO METHODS FOR LOW-RANK MATRIX APPROXIMATIONS 

 

Constructing a low-rank matrix approximation with a suitable rank is critical to many data 

analytic applications. In this chapter, we present a Rank-Revealing Randomized Singular Value 

Decomposition (R3SVD) algorithm to incrementally construct a low-rank approximation while estimating 

the appropriate rank (Section 4.1).  

The main contribution of this work is the design of an importance sampling method - a new form 

of Gaussian sampling based on orthogonal projection to obtain the leftover dominant subspace and add up 

to existing low-rank approximation. Several application examples are provided to demonstrate that 

R3SVD is more efficient in terms of computation time and memory while providing a better rank 

estimation, compared to the other existing approaches. Moreover, R3SVD is a memory-aware algorithm 

that the computation can be tailored to tasks to fit in the constant amount of memory. 

 

4.1 Rank-Revealing Randomized Singular Value Decomposition (R3SVD) algorithm 

Our R3SVD algorithm [150] is based on the randomized SVD algorithm with Gaussian sampling 

(RSVD) proposed by Halko et al. [33, 103], although it can be straightforwardly extended to other 

randomized SVD strategies. In this section, we first overview the RSVD algorithm and existing strategies 

used to estimate rank value 𝑘. Then, we describe our R3SVD algorithm to adaptively estimate a low-rank 

approximation.  Finally, numerical examples are presented.  

 

4.1.1 RSVD and Rank Estimation 

The basic idea of RSVD is to use Gaussian vectors to construct a small condensed subspace from 

the range of 𝐴 , whose dominant actions could be quickly estimated from this small subspace with 

relatively low computation cost while yielding high confidence. The procedure of RSVD is described in 
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Algorithm 4.1.  

Algorithm 4.1: Randomized SVD Algorithm with Gaussian Sampling (RSVD) 

Input: 𝐴 ∈ ℝ𝑚×𝑛, a target matrix rank 𝑘 ∈ ℕ, and an oversampling parameter 𝑝 ∈ ℕ satisfying 𝑘 +
𝑝 ≤ 𝑚𝑖𝑛 (𝑚, 𝑛). 

Output: Low rank approximation 𝑈𝐿 ∈ ℝ𝑚×𝑘, 𝛴𝐿 ∈ ℝ𝑘×𝑘, and 𝑉𝐿 ∈ ℝn×𝑘 

 

Construct an 𝑛 × (𝑘 + 𝑝) Gaussian random matrix 𝛺 

𝑌 =  𝐴𝛺  

Compute an orthogonal basis 𝑄 = 𝑞𝑟(𝑌) 

𝐵 =  𝑄𝑇𝐴  
[𝑈𝐵,  𝛴𝐵, 𝑉𝐵]  =  𝑠𝑣𝑑(𝐵)  

Update 𝑈𝐵 = 𝑄𝑈𝐵 

𝑈𝐿 = 𝑈𝐵(: ,1: 𝑘), 𝛴𝐿 =  𝛴𝐵(1: 𝑘, 1: 𝑘) , and 𝑉𝐿 = 𝑉𝐵(: ,1: 𝑘) 

 

Given a desired rank 𝑘 and an oversampling parameter 𝑝 (typically a small constant), RSVD 

constructs an 𝑛 × (𝑘 + 𝑝) Gaussian random matrix block 𝛺, whose elements are normally distributed. 𝛺 

condenses a large matrix 𝐴 into a “tall-and-skinny,” dense block matrix 𝑌 by 𝑌 =  𝐴𝛺. 𝑌 captures the 

most important actions of 𝐴 and a basis 𝑄 is derived by decomposing 𝑌. 𝑄 is designed to approximate the 

left singular vectors of 𝐴 by minimizing ||𝑄𝑄𝑇𝐴 − 𝐴||𝐹
2 . Then, 𝑄 is applied back to 𝐴 to obtain a “short-

and-wide” block matrix 𝐵 = 𝑄𝑇𝐴. Calculation of SVD on 𝐵  yields an approximated Singular Value 

Decomposition of 𝐴. The result 𝑈𝐿𝛴𝐿𝑉𝐿
𝑇 forms a 𝑘-rank matrix approximation to 𝐴.  

The major operations in RSVD include matrix-block matrix multiplications as well as QR and 

SVD decompositions on the block matrices. Specifically, matrix-block matrix multiplications take 

𝑂(2(𝑘 + 𝑝)𝑇𝑚𝑢𝑙𝑡) floating-point operations, where 𝑇𝑚𝑢𝑙t  denotes the computational cost of a matrix-

vector multiplication. For a large matrix 𝐴 where 𝑚, 𝑛 ≫ 𝑘 + 𝑝, the computational cost of matrix-block 

matrix multiplications dominates those of the decomposition operations, which requires 𝑂((𝑘 + 𝑝)2(𝑚 +

𝑛)) floating operations. RSVD needs to store the intermediate matrices, such as 𝛺, 𝑌, 𝑄, and 𝐵, and thus 

its space complexity is 𝑂(2(𝑚 + 𝑛)(𝑘 + 𝑝)). As a result, with a tradeoff of accuracy, RSVD is usually 

more efficient than the full SVD algorithms in terms of computational and memory cost. 

The desired rank 𝑘 is a required input parameter in the randomized SVD algorithms. However, in 

many practical applications, the value of 𝑘  is unknown beforehand and needs to be appropriately 
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estimated. In the literature, two popular strategies are often used to estimate 𝑘. One is to evaluate a 

suitable basis 𝑄 and then determine the appropriate 𝑘 before carrying out RSVD. For instance, Voronin 

and Martinsson [104] proposed two algorithms, Autorank I and Autorank II, to evaluate a basis 𝑄 for a 

range space that captures the most actions of matrix 𝐴. Autorank I is based on overestimation by using a 

very large value 𝑘 at the beginning and then selecting dominant information from the resulting pool of 

singular values/vectors. Although Autorank I is often able to obtain good low-rank approximations, 

largely overestimated 𝑘 will result in significant computation cost increase, because the computational 

cost of decompositions on the tall-and-skinny or short-and-wide matrices in RSVD grows rapidly with 

𝑂(𝑘2) and is no longer negligible. At the same time, the memory requirement of Autorank I increases in 

the order of 𝑘. Instead of overestimating 𝑘, Autorank II gradually samples the range of 𝐴 to calculate 

error ||𝑄𝑄𝑇𝐴 − 𝐴||𝐹
2  in order to obtain an estimation of 𝑘 . Similar to Autorank II, the Adaptive 

Randomized Range Finder algorithm [33] employs the incremental sampling approach with a 

probabilistic error estimator based on the relation between the rank 𝑘 with respect to the theoretical error 

bound to predict a reasonable basis 𝑄 with a reasonable value of 𝑘. However, this theoretical error bound 

is loose and consequently 𝑘  is often largely overestimated, which will be shown in section 4. More 

recently, the Randomized Blocked algorithm [105], a block version of Randomized Range Finder 

algorithm, is developed to improve computational efficiency. Instead of using the probabilistic error 

estimator, the Randomized Blocked algorithm explicitly updates matrix 𝐴  by removing the portion 

projected on 𝑄 and terminates at a situation when matrix 𝐴 becomes small enough. An alternative strategy 

is to adaptively estimate a suitable rank 𝑘 during RSVD. A simple approach is restarting RSVD, which 

starts with a small guessed rank and then repeats RSVD computation until the low-rank approximation 

with the desired accuracy is reached. This restarting approach can often result in a good low-rank 

approximation; however, the previous RSVD trials are only used to estimate 𝑘 and do not contribute to 

final low-rank approximation.  
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4.1.2 The R3SVD Algorithm 

Algorithm 4.2 describes the proposed R3SVD algorithm. The rationale of R3SVD is to build a 

low-rank approximation incrementally based on orthogonal Gaussian projection. Initially, a 𝑡 -rank 

approximation is obtained, where 𝑡 is an initial guess of 𝑘 which can be justified according to the memory 

available. The energy percentage is estimated accordingly. If the energy percentage obtained so far does 

not satisfy the application requirement, a new 𝑡 -rank approximation is calculated in the subspace 

orthogonal to the space of the previous low-rank approximation. Then, the new 𝑡-rank approximation will 

be added to the previous one to form a 2𝑡-rank approximation and its corresponding energy percentage is 

estimated. The above process is repeated until the incrementally built low-rank approximation has secured 

a satisfactory percentage of energy from 𝐴.  

Compared to RSVD in Algorithm 4.1, R3SVD incorporates three major changes including 

importance sampling, orthogonalization process, and stopping criteria based on energy estimation. 

Algorithm 4.2: Rank Revealing Randomized SVD (R3SVD) Algorithm  

Input: 𝐴 ∈ ℝ𝑚×𝑛, sampling size 𝑡 ∈ ℕ per iteration, oversampling number 𝑝 ∈ ℕ, maximum number of 

iterations 𝑚𝑎𝑥𝑖𝑡 ∈ ℕ , and energy threshold 𝜏 ∈ ℝ. 

Output: Low rank approximation 𝑈𝐿 ∈ ℝ𝑚×𝑘′
, 𝛴𝐿 ∈ ℝ𝑘′×𝑘′

, 𝑉𝐿 ∈ ℝ𝑛×𝑘′
, and estimated rank k’ 

 

// initialization 

Construct an 𝑛 × (𝑡 + 𝑝) standard Gaussian matrix 𝛺 

𝐺0 = 𝛺 and 𝑉𝐿 = ∅, 𝑈𝐿 = ∅, 𝛴𝐿 = ∅ 

𝑘’ = 0  

for 𝑖 = 0:𝑚a𝑥𝑖𝑡 

𝑌𝑖  =  𝐴𝐺𝑖  

𝑄𝑖 = 𝑞𝑟(𝑌𝑖 , 0)  

𝐵𝑖  =  𝑄𝑖
𝑇𝐴  

[𝑈𝐵𝑖
,  𝛴𝐵𝑖

,  𝑉𝐵𝑖
]  =  𝑠𝑣𝑑(𝐵𝑖, 0)  

𝑈𝑖 = 𝑄𝑖𝑈𝐵𝑖
  

𝛴𝑖 =  𝛴𝐵𝑖
  

𝑉𝑖 = 𝑞𝑟( 𝑉𝐵𝑖
− 𝑉𝐿(𝑉𝐿

𝑇𝑉𝐵𝑖
), 0)            //  orthogonalization process 

𝑈𝐿 ← [𝑈𝐿 , 𝑈𝑖(: ,1: 𝑡)], 𝛴𝐿 ← [
𝛴𝐿 0

0  𝛴𝑖(1: 𝑡, 1: 𝑡)
] , 𝑉𝐿 ← [𝑉𝐿 , 𝑉𝑖(: ,1: 𝑡)] 

for 𝑗 =  1: 𝑡  

             𝑘′ = 𝑖 × 𝑡 + 𝑗  

�̃�𝑘′ =
∑ σ𝑖

′ 2𝑘′

𝑖=1

‖𝐴‖𝐹
2  

                  // estimate energy percentage 

if �̃�𝑘′ ≥ 𝜏, then stop;    

end 
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𝐺𝑖+1 = 𝐺𝑖 − 𝑉𝑖(𝑉𝑖
𝑇𝐺𝑖)       //  update Gaussian matrix  

end 

[𝛴𝐿, Idx] = sort(𝛴𝐿,'descend');         // sort the approximate singular values 

𝑉𝐿 = 𝑉𝐿 (:, Idx); 

𝑈𝐿 = 𝑈𝐿 (:, Idx); 

 

4.1.2.1 Importance Sampling 

Suppose that 𝑉𝐿  is an 𝑛 × 𝑡  matrix composed of 𝑡  right singular vectors of a low-rank 

approximation 𝑈𝐿𝛴𝐿𝑉𝐿 , which is supposed to capture most of the energy in 𝐴. Then, the range space 

𝑟𝑎𝑛(𝐴𝑇) can be divided into two orthogonal spaces: space 𝑟𝑎𝑛(𝑉𝐿) spanned by the columns in 𝑉𝐿 and its 

orthogonal complement 𝑟𝑎𝑛(𝑉𝐿)
⊥. Obviously, if 𝑉𝐿 consists of only partial dominant actions of 𝐴, the rest 

dominant information is left over in the space 𝑟𝑎𝑛(𝑉𝐿)
⊥. 

R3SVD is designed to incrementally add up a low-rank approximation. To this end, R3SVD needs 

to sample the space 𝑟𝑎𝑛(𝑉𝐿)
⊥ orthogonal to 𝑉𝐿 to extract the left-over dominant information of 𝐴. Here, 

we employ importance sampling by constructing a new sampling matrix 𝐺, such as 

𝐺 = (𝐼 − 𝑃𝑉)𝛺 

where 𝑃𝑉 is an orthogonal projection onto the space 𝑟𝑎𝑛(𝑉𝐿),  𝛺 is a standard Gaussian matrix, and 𝐼 is 

the identity matrix. Theorem 4.1 shows that 𝐺 is a Gaussian matrix orthogonal to 𝑟𝑎𝑛(𝑉𝐿). 

 

Theorem 4.1. Assuming that 𝑉𝐿 is an 𝑛 × 𝑡  non-empty matrix with orthonormal columns, then 

1) 𝐺 is orthogonal to 𝑉𝐿; and 

2) elements in 𝐺 are normally distributed. 

Proof. 1) Since 𝑉𝐿  is an 𝑛 × 𝑡  matrix with orthonormal columns, 𝑃𝑉  can be derived as 𝑃𝑉 = 𝑉𝐿𝑉𝐿
T . 

Obviously, 𝑉𝐿
𝑇(𝐼 − 𝑃𝑉) = 𝑉𝐿

𝑇 − 𝑉𝐿
𝑇𝑉𝐿𝑉𝐿

𝑇 = 0 holds.  

2) As 𝐼 − 𝑃𝑉  is the orthogonal projection onto 𝑟𝑎𝑛(𝑉𝐿)
⊥ , which is the orthogonal complement of 

space 𝑟𝑎𝑛(𝑉𝐿), we can denote an 𝑛 × (𝑛 − 𝑡)  matrix �̃� = (�̃�𝑖𝑗) as a basis of the space 𝑟𝑎𝑛(𝑉𝐿)
⊥ and 

then 𝐼 − 𝑃𝑉 = �̃��̃�𝑇. Then, each element 𝑔𝑖𝑗 in  𝐺 can be expressed as 
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𝑔𝑖𝑗 = ∑(∑ �̃�𝑖ℎ�̃�𝑠ℎ

𝑛−𝑡

ℎ=1

)𝜔𝑠𝑗

𝑛

𝑠=1

 

where 𝜔𝑠𝑗 denotes an element of  𝛺 in row 𝑠 of column 𝑗. Since element 𝜔𝑠𝑗’s are independent standard 

normal distributed variables, the characteristic function 𝛷𝑔𝑖𝑗
(𝑥) can be obtained as 

𝛷𝑔𝑖𝑗
(𝑥) = 𝛷∑ (∑ �̃�𝑖ℎ�̃�𝑠ℎ

𝑛−𝑡
ℎ=1 )𝜔𝑠𝑗

𝑛
𝑠=1

(𝑥) 

= ∏∏𝑒−
1
2
(�̃�iℎ�̃�𝑠ℎ𝑥)2

𝑛−𝑡

ℎ=1

𝑛

𝑠=1

 

= ∏∏𝑒−
1
2
(�̃�𝑖ℎ�̃�𝑠ℎ𝑥)2

𝑛

𝑠=1

𝑛−𝑡

ℎ=1

 

= ∏𝑒−
1
2
�̃�𝑖ℎ

2(∑ �̃�𝑠ℎ
2𝑛

𝑠=1 )𝑥2
𝑛−𝑡

ℎ=1

. 

As the columns of �̃� are orthonormal such that (∑ �̃�𝑠ℎ
2𝑛

𝑠=1 ) = 1, we have  

𝛷𝑔𝑖𝑗
(𝑥) = 𝑒−

1
2

∑ �̃�𝑖ℎ
2𝑛−𝑡

ℎ=1 𝑥2

. 

Since the characteristic function uniquely determines the probability distribution of a random variable 

[106], it suffices to show that 𝑔𝑖𝑗 is normally distributed with expected value zero and variance �̃�𝑖𝑗
2 =

∑ �̃�𝑖ℎ
2𝑛−𝑡

ℎ=1 , i.e., 𝑔𝑖𝑗~𝑁(0, �̃�𝑖𝑗
2).   

 

To avoid resampling of the space 𝑟𝑎𝑛(𝑉𝐿), the product of matrix 𝐴𝐺  in R3SVD focuses on 

revealing the dominant information from the space 𝑟𝑎𝑛(𝑉𝐿)
⊥ orthogonal to 𝑟𝑎𝑛(𝑉𝐿). Since the number of 

dominant singular values is unknown in advance, R3SVD generates a series of Gaussian matrices 

𝐺1, 𝐺2, … to iteratively explore the orthogonal subspace of the obtained low-rank approximation until a 

satisfactory low-rank approximation is obtained.  

4.1.2.2 Orthogonalization Process 

Let 𝑉𝐿 = [𝑉1, 𝑉2, …𝑉𝑖 ]   denote a matrix containing the approximate right singular vectors 

obtained in R3SVD at the 𝑖th iteration step. The singular vectors in the 𝑉𝑖+1 must be orthogonal to 𝑉𝐿. 
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However, the inherent numerical errors may cause loss of orthogonality between 𝑉𝑖+1 and 𝑉𝐿.  

To ensure the orthogonality property, we generate 𝑉𝑖+1  by employing an orthogonalization 

process to remove the components of 𝑉𝐵𝑖
 that are not orthogonal to the previous right singular vectors in 

𝑉𝐿 such that 

𝑉𝑖+1 = 𝑞𝑟(𝑉𝐵𝑖+1
− 𝑉𝐿(𝑉𝐿

𝑇𝑉𝐵𝑖+1
), 0). 

Proposition 4.2 indicates that the resulting matrix 𝑉𝑖+1 generated at the (𝑖 + 1)th iteration step in R3SVD 

is orthogonal to 𝑉𝐿.  

 

Proposition 4.2. Using the transformed matrix 𝑉𝑖+1, 𝑉𝐿
𝑇𝑉𝑖+1 = 0 holds.  

Proof.  Denoting 𝑍𝑖+1 = 𝑉𝐵𝑖+1
− 𝑉𝐿(𝑉𝐿

𝑇𝑉𝐵𝑖+1
), we can get 𝑉𝐿

𝑇𝑍𝑖+1 = 𝑉𝐿
𝑇 (𝑉𝐵𝑖+1

− 𝑉𝐿(𝑉𝐿
𝑇𝑉𝐵𝑖+1

)) = 0. 

Since 𝑉𝑖+1 is a basis of 𝑟𝑎𝑛(𝑍𝑖+1), 𝑉𝐿
𝑇𝑉𝑖+1 = 0 holds.   

 

Based on Proposition 4.2, the orthogonality property of the resulting left singular vectors 𝑈𝐿 can 

be proved, which is shown in Proposition 4.3.  

 

Proposition 4.3. Using the transformed matrix 𝑉𝑖+1, 𝑈𝐿
𝑇𝑈𝑖+1 = 0 holds.  

Proof.   Denoting the QR decomposition of 𝑌𝑖+1 by 𝑌𝑖+1 = 𝑄𝑖+1𝑅𝑖+1. We can have 

𝑄𝑗
𝑇𝑄𝑖+1 = 𝑄𝑗

𝑇𝑌𝑖+1𝑅𝑖+1
−1  

= 𝑄𝑗
𝑇𝐴𝐺𝑖+1𝑅𝑖+1

−1  

= 𝑄𝑗
𝑇𝐴(𝐼 − 𝑃𝑉𝐿

)𝛺𝑅𝑖+1
−1  

= 𝐵𝑗(𝐼 − 𝑃𝑉𝐿
)𝛺𝑅𝑖+1

−1  

= 𝑈𝐵𝑗
𝛴𝐵𝑗

𝑉𝐵𝑗

𝑇(𝐼 − 𝑃𝑉𝐿
)𝛺𝑅𝑖+1

−1  

where 𝑉𝐿 = [𝑉1, 𝑉2, …𝑉𝑖 ].  

Denote 𝑉− = [𝑉1, 𝑉2, …𝑉𝑗−1 ] and 𝑉+ = [𝑉𝑗+1, … , 𝑉𝑖 ] for 𝑗 ≤ 𝑖. According to Proposition 4.2, the 
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columns in  𝑉𝐿 are orthogonal to each other. Then, (𝐼 − 𝑃𝑉𝐿
) can be expressed as  

(𝐼 − 𝑃𝑉𝐿
) = (𝐼 − 𝑃𝑉−) (𝐼 − 𝑃𝑉𝑗

) (𝐼 − 𝑃𝑉+). 

Since 𝑉𝑗 = 𝑞𝑟 (𝑉𝐵𝑗
− 𝑉− (𝑉−𝑇𝑉𝐵𝑗

) , 0), it follows that  

(𝐼 − 𝑃𝑉−)𝑉𝐵𝑗
= 𝑉𝑗𝑅𝑗. 

Therefore,  

𝑉𝐵𝑗

𝑇(𝐼 − 𝑃𝑉𝐿
) = 𝑉𝐵𝑗

𝑇(𝐼 − 𝑃𝑉−) (𝐼 − 𝑃𝑉𝑗
) (𝐼 − 𝑃𝑉+) 

= 𝑅𝑗
𝑇𝑉𝑗

𝑇 (𝐼 − 𝑃𝑉𝑗
) (𝐼 − 𝑃𝑉+) 

= 0, 

and thus 𝑄𝑗
𝑇𝑄𝑖+1 = 0, for 𝑗 ≤ 𝑖. Hence,  

𝑈𝐿
𝑇𝑈𝑖+1 = [𝑈1, 𝑈2, …𝑈𝑖  ]

𝑇𝑈𝑖+1 =

[
 
 
 
 

𝑈𝐵1

𝑇 𝑄1
𝑇𝑄𝑖+1𝑈𝐵𝑖+1

𝑈𝐵2

𝑇 𝑄2
𝑇𝑄𝑖+1𝑈𝐵𝑖+1

⋮
𝑈𝐵𝑖+1

𝑇 𝑄𝑖
𝑇𝑄𝑖+1𝑈𝐵𝑖+1]

 
 
 
 

= 0. 

 

The orthogonalization process requires 𝑂( (2𝑡𝑖 + 1)(𝑡 + 𝑝)𝑛 )  operations to ensure the 

orthogonality properties of singular vectors obtained in the previous iterations. Moreover, by taking 

advantage of the orthogonality between 𝑉𝑖+1  and 𝑉𝐿 , the next Gaussian matrices 𝐺𝑖+1  can be fast 

generated using the following short recursive formula,  

𝐺𝑖+1 = (𝐼 − ∑𝑃𝑉𝑗

𝑖

𝑗=1

)𝛺 = 𝐺𝑖 − 𝑃𝑉𝑖
𝐺𝑖, 

where 𝑃𝑉𝑗
 is the orthogonal projection onto the space spanned by 𝑉𝑗, such that 𝑃𝑉𝑗

= 𝑉𝑗𝑉𝑗
𝑇, and 𝛺 is a 

standard Gaussian matrix. Since 𝐺𝑖+1 is generated directly from 𝐺𝑖 , the orthogonal Gaussian sampling 

takes only 𝑂((2𝑡 + 1)(𝑡 + 𝑝)𝑛 ) operations.     

4.1.2.3 Energy Estimation and Stopping Criteria 
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The incremental low-rank approximation buildup process in R3SVD will be terminated when 

sufficient percentage of energy of 𝐴 is secured. The percentage threshold 𝜏 is typically specified by the 

applications, which often ranges from 80% to 99%. 

Let 𝑈𝐿 = [𝑈1, 𝑈2, …𝑈𝑖  ]  denote a matrix of the approximate left singular vectors.  The actual 

energy percentage of the low-rank approximation obtained at the 𝑖th iteration step can be evaluated based 

on 

𝜑 =
‖𝑈𝐿𝑈𝐿

𝑇𝐴‖
𝐹

2

‖𝐴‖𝐹
2  

. 

However, calculating  ‖𝑈𝐿𝑈𝐿
𝑇𝐴‖

𝐹

2
  at each iteration is rather costly. In R3SVD, the following measure 

�̃�𝑘′ is carried out to quickly estimate the energy percentage of the obtained low-rank approximation, such 

that 

�̃�𝑘′ =
∑ 𝜎𝑖

′2𝑘′
𝑖=1

‖𝐴‖𝐹
2  

. 

where 𝜎𝑖
′ denotes the 𝑖th approximate singular value in R3SVD. It is important to note the approximate 

singular values 𝜎𝑖
′’s are available during calculation of SVD on 𝐵𝑖 , where 𝐵𝑖 = 𝑄𝑖

𝑇𝐴. Therefore, the 

energy percentage can be evaluated at (almost) no cost.  

Proposition 4.4 shows the estimated energy �̃�𝑘′ equals to the accurate energy 𝜑, and it guarantees 

that the low-rank approximation obtained by R3SVD satisfies the accuracy requirement of the 

applications.  

 

Proposition 4.4. �̃�𝑘′ = 𝜑′. 

Proof. Since the columns in 𝑈𝐿 are orthogonal, we have 

‖𝑈𝐿𝑈𝐿
𝑇𝐴‖

𝐹

2
= ∑‖𝑈𝑗𝑈𝑗

𝑇𝐴‖
𝐹

2
𝑖

𝑗=1

= ∑‖𝑈𝑗
𝑇𝐴‖

𝐹

2
𝑖

𝑗=1
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= ∑‖𝑈𝐵𝑗

𝑇𝑄𝑗
𝑇𝐴‖

𝐹

2
𝑖

𝑗=1

 

= ∑‖𝑈𝐵𝑗

𝑇𝑈𝐵𝑗
𝛴𝐵𝑗

𝑉𝐵𝑗

𝑇‖
𝐹

2
𝑖

𝑗=1

 

= ∑‖𝛴𝐵𝑗
‖

𝐹

2
𝑖

𝑗=1

= ∑𝜎𝑖
′2

𝑘′

𝑖=1

. 

Hence,  

�̃�𝑘′ =
∑ 𝜎𝑖

′2𝑘′
𝑖=1

‖𝐴‖𝐹
2  

= 𝜑′ =
‖𝑈𝐿𝑈𝐿

𝑇𝐴‖
F

2

‖𝐴‖𝐹
2  

. 

 

4.1.2.4 Complexity Analysis 

As discussed above, at each iteration, R3SVD carries out orthogonal Gaussian sampling to 

compute a new 𝑡-rank approximation of the leftover subspace orthogonal to the low-rank approximation 

obtained so far. Suppose that R3SVD uses 𝑠 iterations to achieve a satisfactory low rank approximation 

with 𝑘′ ≈ 𝑡𝑠  as the result rank and assume that the computational cost of matrix-block matrix 

multiplications dominates those of QR and SVD decompositions on the block matrices. The 

computational cost of R3SVD is   

𝑂(2(𝑘′ + 𝑠𝑝)𝑇𝑚𝑢𝑙𝑡). 

In the case that matrix 𝐴 is sparse and both 𝑚 and 𝑛 are large, we can obtain the time complexity with 

simpler terms. In particular, as 𝑇𝑚𝑢𝑙𝑡 ≈ 𝑐𝑚, where 𝑐 is sparsity ratio, the time complexity of R3SVD can 

be expressed as 𝑂(𝑘′2𝑚𝑖𝑛(𝑚, 𝑛)). 

In additional to the storage of matrix 𝐴, the major computations of R3SVD are carried out on a 

series of block matrices with (𝑡 + 𝑝) columns or rows. Therefore, since 𝑡 < 𝑘, R3SVD takes a constant 

space complexity of 𝑂(2(𝑚 + 𝑛)(𝑡 + 𝑝)), which is lower than that of RSVD, 𝑂(2(𝑚 + 𝑛)(𝑘 + 𝑝)). 
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4.1.3 Numerical Results 

In this section, we use several numerical examples to demonstrate the effectiveness of R3SVD for 

low-rank approximation in image compression and matrix completion.  

4.1.3.1 Comparisons with RSVD 

We compare the performance of R3SVD, full SVD, Autorank II, restarting RSVD, Adaptive 

Randomized Range Finder algorithm, and Randomized Blocked algorithm in constructing low rank 

approximations to compress a 7671 × 7680 NASA synthesis image chosen from the Mars Exploration 

Rover mission [107]. A compressed image is considered satisfactory if the low-rank approximation 

captures 99% energy of the original image matrix.  

Both R3SVD and RSVD start with an initial guess 𝑡 = 15 of the target rank and 𝑝 = 5 extra 

oversampling vectors. In restarting RSVD, as the approximate singular values are available during RSVD, 

the energy estimation introduced in Section 4.1.2.3 is used. If the guessed rank turns out to be insufficient 

to obtain a low rank approximation with satisfactory accuracy, the restarting approach repeats the RSVD 

computation with gradually increasing rank ∆𝑡=15. Table 4 compares the computational performance of 

full SVD, Autorank II algorithm, Adaptive Randomized Range Finder algorithm, Randomized Blocked 

Algorithm, R3SVD, and restarting RSVD in terms of rank, computational time, maximum memory usage, 

and energy percentage of the obtained low rank approximation. The optimal low-rank approximation 

(rank 46) to obtain 99% energy of the original matrix can be obtained by carrying out full SVD, which 

takes over 760 seconds on a Dell Precision-M6500 laptop (Intel CoreTM i5CPU, 2.67GHz, 4GBRAM). 

Restarting RSVD reduces the computational time to 13.77 seconds with a low-rank approximation of rank 

79. Compared to restarting RSVD, R3SVD further reduces both the computational time to 4.54 (32.97%) 

and rank to 62 (78.48%). This is because R3SVD carries out important sampling based on the 

approximate right singular vectors in 𝑉𝐿, which is computed by multiplying 𝐴 twice per iteration. The 

power iteration allows more precise estimation of the dominant actions than a single iteration of 𝐴 

multiplication in restarting RSVD. It is also important to notice that the algorithms based on the strategy 

of estimating 𝑘  before RSVD, including Autorank II, Adaptive Randomized Range Finder, and 
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Randomized Blocked algorithm require more computational time as well as the memory than restarting 

RSVD and R3SVD. The Adaptive Randomized Range Finder uses a probabilistic error estimator, which 

leads to a highly overestimated rank (641).  

TABLE 4  

R3SVD, Full SVD, Autorank II, Restarting RSVD, Adaptive Randomized Range Finder Algorithm, and 

Randomized Blocked Algorithm 

 

 Rank 
Computational Time 

(second) 

Maximum Memory Usage 

(bytes) 

Energy Percentage 

Achieved 

Full SVD 46 760.55 1.41 × 109 99.024% 

Autorank II Algorithm [104] 105 32.66 2.03 × 107 99.184% 

Adaptive Randomized Range 

Finder Algorithm [33]  
641 55.65 1.19 × 108 99.999% 

Randomized Blocked 

Algorithm [105]  
105 20.90 4.80 × 108 99.184% 

Restarting RSVD 79 13.77 1.60 × 107 99.000% 

R3SVD 62 4.54 4.91 × 106 99.006% 

 

Another important advantage of R3SVD is that R3SVD maintains constant memory usage in the 

computational process. Fig. 20 shows the memory usages in R3SVD and restarting RSVD as the guessed 

rank gradually increases. One can find that for a larger guessed rank, restating RSVD requires more 

memory because of decomposing block matrices with more columns or rows. In contrast, the 

decomposition operations in R3SVD are carried out on block matrices with fixed (𝑡 + 𝑝) number of 

columns or rows. As a result, the memory usage does not increase as the guessed rank increases. As 

shown in Table 4, the memory usage in R3SVD is significantly less than those of the other algorithms. 

 
Fig. 20. Memory usage in R3SVD and restarting RSVD 
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Fig. 21 presents the compressed images in R3SVD, where Fig. 21(a) is the original image and 

Figs 21(b) to 21(d) illustrate the adaptive compressed images with increasing ranks. With the resulting 

62-rank low-rank approximation, a compressed image with 99.006% energy of the original image is 

obtained.  

  

(a) The Original image 
(b) 15-rank Compressed image with energy 

97.290% 

  
(c) 30-rank Compressed image with energy 

98.410% 

(d) 62-rank Compressed image with energy 

99.006% 

Fig. 21. The original image and the compressed images with increasing ranks in R3SVD 

 

One advantage of R3SVD is that the computational process can be tailored into a series of 

sampling tasks that can fit into the available memory in a computer via adjusting the sampling size 

parameter 𝑡. Fig. 22 compares the energy percentage of the obtained low rank approximations (upper) and 
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the memory usage (lower) in R3SVD with 𝑡 = 20, 15, 10, and 5. One can find that a smaller sample size 

in R3SVD yields proportionally less consumption of memory but without significantly affecting the rank 

in the obtained low-rank approximation. The resulting ranks are 63, 62, 61, and 60, respectively. 

Therefore, calculating sampling size parameter 𝑡 according to the available memory in a computer can 

lead to the best performance of R3SVD. 

 
Fig. 22. The energy percentage of the obtained low rank approximations (upper) and the required memory space 

(lower) in R3SVD with 𝑡 = 20, 15, 10, and 5 and the oversampling parameter 𝑝 = 5. 

 

 

4.1.3.2 Application in Matrix Completion 

R3SVD can be effectively applied to applications of matrix completion, whose goal is to recover 

the missing (unknown) entries of an incomplete matrix [25, 108, 109, 110,156]. Matrix completion 

algorithms have been widely used in many applications, including machine learning [111, 112], computer 

vision [113], and image/video processing [114]. In the literature, matrix completion algorithms can be 

classified into two groups. One approach is based on semi-definite programming solvers to find the 

optimal matrix completion solution [109, 149]. While effective for completing matrices with missing 

entries, such methods need to solve large-scale systems of linear equations and are not suitable for large 

problem size. In fact, as pointed out in [25], the methods have difficulty in handling matrices with size 
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100 × 100, due to their high computational costs. In contrast, an alternative approach of using Singular 

Value Thresholding operation offers a rapid way to generate approximations to the exact matrix 

completion solution [25], which aims to efficiently address large-scale problems. In this class of matrix 

completion algorithms, low rank matrix approximation is a core component and the computational 

efficiency of constructing high-quality low rank approximation is essential to their performance.  

We modify the Singular Value Thresholding (SVT) algorithm in [25] by replacing the underlying 

Lanczos algorithm with our R3SVD algorithm to compute dominant singular values and vectors at each 

SVT iteration. Fig. 23 shows a 1024 × 1024 aerial image chosen from the USC-SIPI Image Database 

[115] as well as 10% of the pixels 𝒫Ω(𝐴) uniformly sampled from the image (the background is set to 

grey to highlight these samples), where Ω represents the set of indices of samples and  𝒫Ω(∙) denotes the 

operator that sets the entries outside Ω to be zero. As shown in Table 5, the modified SVT algorithm 

obtains the completed image with similar recovery errors and rank as that of the original SVT. However, 

R3SVD significantly reduces the computational time in SVT. This is due to the fact that the Lanczos 

bidiagonalization algorithm with partial reorthogonalization used in original SVT has computational 

complexity of 𝑂(𝑚𝑖𝑛 (𝑚, 𝑛)2𝑘)  [28,116] while R3SVD offers a faster way with computational 

complexity of 𝑂(𝑚𝑖𝑛 (𝑚, 𝑛)𝑘2) in contrast. As a result, the modified SVT method using R3SVD achieves 

about 1.69 times speedup over the original SVT method using Lanczos algorithm.  

  

(a) The Original Image 𝐴 (b) 10% uniform samples 𝒫Ω(𝐴) 

Fig. 23. The original image and the sample image 
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TABLE 5  

The Completed Images using the Original SVT Algorithm and the Modified SVT Algorithm using R3SVD 

 

 Completed Image 𝑋 
# of 

Iterations 

Elapsed 

Time (s) 
Rank 

‖𝒫Ω(𝐴 − 𝑋)‖𝐹
2

‖𝒫Ω(𝐴)‖𝐹
2  

‖𝐴 − 𝑋‖𝐹
2

‖𝐴‖𝐹
2  

Original 

SVT 

 

822 3457.122 190 9.981 × 10−3 6.772 × 10−2 

Modified 

SVT 

using 

R3SVD 

 

823 2045.295 189 9.979 × 10−3 6.772 × 10−2 
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CHAPTER V 

MONTE CARLO METHODS FOR EXTREME EIGENVALUES/EIGENVECTORS 

 

Finding the dominant eigenvector of a matrix is of great interest in many practical applications. In 

this chapter, we revisit the generalized block power method for approximating the eigenvector associated 

with the dominant eigenvalue 𝜆1 = 1 of the transition matrix 𝑃 associated with Markov chain (Section 

5.1). The convergence analysis of the block power method shows that when 𝑠  linearly independent 

random vectors are used, the block power method converges to the dominant eigenvector at a rate related 

to the (𝑠 + 1) th dominant eigenvalue |𝜆𝑠+1|  of 𝑃 , rather than the well-known second dominant 

eigenvalue |𝜆2| in Markov Chain Monte Carlo theory, which makes the block power method particularly 

powerful for Markov chains where |𝜆𝑠+1| and 𝜆1 = 1 are well separated but |𝜆2| and 𝜆1 = 1 are not.   

The block power method requires costly matrix-block multiplications at each iteration. To reduce 

the computational costs, we design a Sliding Window Power (SWP) algorithm to take advantage of the 

vectors generated in the previous iterations to build up the block matrices (Section 5.2). The numerical 

results on a Markov chain application in modeling stochastic luminal Calcium release site are provided to 

demonstrate the effectiveness of the SWP method.  

 

5.1 Block Power Method 

5.1.1 Block Power Iteration 

Let 𝑃 denote an 𝑛 × 𝑛 probability transition matrix of a finite state Markov chain 𝐾. Based on the 

fundamental theorem of Markov chains [7], if 𝐾 is irreducible, aperiodic, and positive-recurrent, there is 

an unique stationary distribution characterized by a probability vector 𝜋 such that  

𝜋𝑇𝑃 = 𝜋𝑇 . 

Here 𝜋 corresponds to the left eigenvector associated with the dominant eigenvalue 𝜆1= 1 of 𝑃 . The 

power method [34] is a simple numerical algorithm that can be applied to approximate the stationary 
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distribution vector of a discrete Markov chain. Starting from a random probability distribution vector 𝑥0, 

the power method is described by the power iteration 

𝑥𝑖+1 = 𝑃𝑇𝑥𝑖. 

The convergence speed of the power method is governed by the second dominant eigenvalue |𝜆2| of 𝑃. 

The block power method is a block generalization of the power method. Each iteration step 

consists of an iteration operation and a decomposition operation [155]. In the iteration operation, subspace 

iteration (a.k.a. orthogonal iteration or simultaneous iteration) [7, 117] is employed to compute the multi-

dimensional invariant subspace. Let 𝑋0 be an 𝑛 × 𝑠 matrix with orthonormal columns and the following 

subspace iteration process generates a series of matrices 𝑋𝑖. 

  for i = 1, 2, 3, …  

   𝑍𝑖 = 𝑃𝑇𝑋𝑖−1 

   𝑋𝑖𝑅𝑖 = 𝑍𝑖  // QR factorization of 𝑍𝑖 

  end 

As a result, 𝑋𝑖  tends towards the invariant subspace of 𝑃 with respect to the eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑠. 

Generally, the subspace iteration method is used to estimate the largest 𝑠 eigenvalues and eigenvectors of 

a matrix, which converges at a rate proportional to |𝜆𝑠+1|/|𝜆𝑠| [7].  

The subspace iteration can be tailored for Markov chain applications. Since the dominant 

eigenvalue 𝜆1 in the transition matrix 𝑃 is 1, the normalization step in the subspace iteration process is no 

longer necessary and the block power method can be simplified as 

for  𝑖 = 1,… , 𝑘 

 𝑋𝑖 = 𝑃𝑇𝑋𝑖−1   

end  

Due to the fact that the left eigenvector associated with the dominant eigenvalue is only of interest in 

Markov chain applications, the approximate eigenvector can be extracted from the space spanned by the 

block matrix 𝑋𝑘 by the following Schur-Rayleigh-Ritz step [117] in the decomposition step. 
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  𝑄𝑘𝑅𝑘 = 𝑋𝑘   // QR Decomposition  

  𝐵𝑘 = 𝑄𝑘
𝑇𝑃𝑇𝑄𝑘   // Projection 

  𝑈𝑘𝑇𝑘𝑈𝑘
𝑇 = 𝐵𝑘                // Schur Decomposition 

  𝑌𝑘 = 𝑄𝑘𝑈𝑘   

Provided that, in the Schur decomposition of 𝐵𝑘, 𝑈𝑘 is chosen so that the diagonal elements of 𝑇𝑘 are 

appeared in non-increasing order of absolute value, 𝑌𝑘
(1) , the first column vector in 𝑌𝑘 , is an 

approximation to the dominate left eigenvector 𝑣1 of 𝑃.  

 

5.1.2 Convergence Analysis 

Theorem 5.2 shows that the block power method converges to the dominant left eigenvector 𝑣1 of 

𝑃 at a rate of 𝑂(|𝜆𝑠+1|
𝑘). We first state a special case of a theorem (Theorem 3.2 described in [117]) as 

Lemma 5.1, which will be used in the proof of Theorem 5.2. When the Markov transition matrix is 

considered and only the dominant eigenvector is of interest, Lemma 5.1 shows that the Schur-Rayleigh-

Ritz approximation to the high powers of an upper triangular matrix converges to the first column of 

identity matrix. 

 

Lemma 5.1. Suppose that 𝑇  is an upper triangular matrix where 𝜆1 = 1, 𝜆2, 𝜆3, … , 𝜆𝑛  are diagonal 

elements appearing in non-increasing order of magnitude. Let 𝑌𝑘
′  denote the Schur-Rayleigh-Ritz 

approximation corresponding to 𝑇𝑘𝑋0, where 𝑋0 is an 𝑛 × 𝑠 initial block matrix and 𝑘 is the number of 

subspace iterations. Then,  

𝑑𝑖𝑠𝑡 (𝑠𝑝𝑎𝑛 {𝑌𝑘
′(1)

} , 𝑠𝑝𝑎𝑛{𝐼(1)} ) = 𝑂(|𝜆𝑠+1|
𝑘). 

where 𝑌𝑘
′(1)

 and 𝐼(1) denote the first column of matrix 𝑌𝑘
′ and identity matrix, respectively. 

 

Theorem 5.2. Let 𝑌𝑘 be the Schur-Rayleigh-Ritz approximation corresponding to 𝑃𝑇𝑘
𝑋0, where 𝑋0 is an 

𝑛 × 𝑠 initial block matrix. Assuming that the Schur decomposition of 𝐵𝑘 results in an upper triangular 
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matrix 𝑇𝑘  with all diagonal elements sorted in non-increasing order of magnitude, then vector 𝑌𝑘
(1)

 

converges to the dominate left eigenvector 𝑣1 of matrix 𝑃 at a rate that is O(|𝜆𝑠+1|
𝑘), such that 

𝑑𝑖𝑠𝑡(𝑠𝑝𝑎𝑛{𝑌𝑘
(1)}, 𝑠𝑝𝑎𝑛{𝑣1} ) = 𝑂(|𝜆𝑠+1|

𝑘). 

Proof.  Suppose that 𝑊𝑇𝑊−1 = 𝑃𝑇  is a Schur decomposition of 𝑃𝑇 , where 𝑊  is an unitary matrix 

consisting of the Schur vectors and the Schur form 𝑇 is an upper triangular matrix with its diagonal 

elements as 𝜆1 = 1, |𝜆2|, |𝜆3|, … , |𝜆𝑛| placed in non-increasing order of magnitude. Then the projection 

of 𝑃𝑇𝑘
 on 𝑋0 becomes 

𝑋𝑘 = 𝑃𝑇𝑘
𝑋0 = (𝑊𝑇𝑊−1)𝑘𝑋0 

= 𝑊𝑇𝑘𝑊−1𝑋0 

= 𝑇𝑘𝑊−1𝑋0 

where �̃�0 denotes 𝑊−1𝑋0. 

Let 𝑄𝑘𝑅𝑘 be a QR decomposition of 𝑋𝑘 and then we can get 𝑊−1𝑄𝑘𝑅𝑘 = 𝑇𝑘�̃�0. Because both 

𝑊−1 and 𝑄𝑆 are orthogonal matrices, denoting 𝑄𝑘
′ = 𝑊−1𝑄𝑘, we can find that 𝑄𝑘

′  is a basis for the range 

of 𝑇𝑘�̃�0. Afterward, considering projecting 𝑃𝑇 onto 𝑄𝑘 to construct an s × 𝑠 matrix 𝐵𝑘, we have 

𝐵𝑘 = 𝑄𝑘
𝑇𝑃𝑇𝑄𝑘 = 𝑄𝑘

′ 𝑇
𝑊−1𝑊𝑇𝑊−1𝑊𝑄𝑘

′ = 𝑄𝑘
′ 𝑇

𝑇𝑄𝑘
′ . 

Clearly, the Schur vectors 𝑈𝑘  of 𝐵𝑘  are also the Schur vectors of 𝑄𝑘
′ 𝑇

𝑇𝑄𝑘
′ . Let 𝑌𝑘

′  denote the 

Schur-Rayleigh-Ritz approximation corresponding to 𝑇𝑘�̃�0 . Then, the Schur-Rayleigh-Ritz 

approximation 𝑌𝑘 to 𝑋𝑘 can be expressed as 

𝑌𝑘 = 𝑄𝑘𝑈𝑘 = 𝑊𝑄𝑘
′ 𝑈𝑘 = 𝑊𝑌𝑘

′ . 

Based on the assumption that all diagonal elements in 𝑇𝑘 are sorted in non-increasing order of magnitude 

and according to Lemma 1, we have  

𝑑𝑖𝑠𝑡 (𝑠𝑝𝑎𝑛 {𝑌𝑘
′(1)

} , 𝑠𝑝𝑎𝑛{𝐼(1)} ) = 𝑂(|𝜆𝑠+1|
𝑘), 

and thus, 

𝑑𝑖𝑠𝑡(𝑠𝑝𝑎𝑛{𝑌𝑘
(1)}, 𝑠𝑝𝑎𝑛{𝑊(1)} ) = 𝑂(|𝜆𝑠+1|

𝑘). 
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Since 𝜆1 = 1, 𝜆2, 𝜆3, … , 𝜆𝑛 are placed in non-increasing order of magnitude in 𝑇, 𝑊(1) is exactly the 

principle left eigenvector 𝑣1 of matrix 𝑃. Hence, we can conclude that 𝑌𝑘
(1) converges to the principle left 

eigenvector of matrix 𝑃 at a rate that is 𝑂(|𝜆𝑠+1|
𝑘).  

 

Theorem 5.2 indicates that when 𝑠  linearly independent probability vectors are evolved 

simultaneously under Markov transition, correlating these vectors can lead to a faster approximation of 

the dominant eigenvector in the block power method. The convergence rate, instead of the well-known 

one related to 𝜆2  in the fundamental Markov chain theory, now depends on the (𝑠 + 1)th dominant 

eigenvalue 𝜆𝑠+1 of 𝑃. An intuitive explanation of the block power method is that the subspace iteration is 

able to fast remove the influence from the eigenvalues whose magnitudes are less than |𝜆𝑠| and the 

following Schur-Rayleigh-Ritz step is used as a direct method on the resulted block matrix leads to fast 

approximate the dominant eigenvector. Therefore, the block power method is particularly powerful for 

Markov chains where |𝜆𝑠+1| and 1 are well separated but |𝜆2| and 1 are not.  

Theorem 5.2 assumes that the upper triangular matrix 𝑇𝑘 generated in Schur decomposition of 𝐵𝑘 

have all diagonal elements sorted in non-increasing order of magnitude. However, this is not always 

guaranteed in Schur decomposition in practice. Therefore, in the literature, eigendecomposition is applied 

on 𝐵𝑘 instead to generate the Ritz pairs to approximate the eigenvalue/eigenvector pairs. 

  𝑉𝑘𝛬𝑘𝑉𝑘
−1 = 𝐵𝑘  //  Eigendecomposition 

  𝑌𝑘 = 𝑄𝑘𝑉𝑘  

The Ritz vector corresponding to the largest Ritz value is then outputted as the approximate dominant 

eigenvector of 𝑃. Moreover, as the transition matrix in the Markov chain applications typically has the 

dominant eigenvalue 𝜆1 = 1 , the norm ‖𝑃𝑌𝑘
(1) − 𝑌𝑘

(1)‖  is often used as an estimate for the error 

𝑑𝑖𝑠𝑡(𝑠𝑝𝑎𝑛{𝑌𝑘
(1)}, 𝑠𝑝𝑎𝑛{𝑣1} )  to indicate how well the computed  vector approximates the actual 

dominate eigenvector along power iterations. 

 



   

 

86 

5.1.3 Numerical Results 

We firstly use a simple Markov chain with five states as an example to illustrate how the block 

power method can gain the convergence acceleration. Then, a more “realistic” transition matrix from a 

Markov chain application [148] is examined to demonstrate the applicability of the block power method. 

In both examples, Gaussian random vectors are generated as the initial vectors, and the tolerance of 

convergence is set to 10−7. 

5.1.3.1 A Simple Example 

In this work, consider a Markov chain with 5 states {1,2,3,4,5}, as shown in Fig. 24. 

1

2

3

4

5

0.9090

0.0910

0.0002

0.6690

0.9998

0.9998

0.00020.3310

0.9989

0.0011

 
Fig. 24. A Markov chain with five states 

 

where the corresponding transition matrix 𝑃 is formed as 

𝑃 =

[
 
 
 
 

0 0 0
     0.0002     0 0.9998

0 0.9998 0

0.9090 0.0910
0 0

0.0002 0
0.6690 0   0
0.9989     0.0011      0

          
0      0.3310     
0 0 ]

 
 
 
 

. 

Fig. 25 displays the numerical results of using the power method as well as the block power 

method with block size 2 and 3 to compute the distribution over states. One can notice that once three 

linearly dependent vectors are used, the convergence of block power method to the stationary distribution 

can be significantly accelerated. The block power method with block size 3 requires only 28 iteration 

steps to converge, which is much less than those of the power method (78,813) and the block power 

method with block size 2 (18,826). This is consistent with the convergence rate analyzed in Theorem 5.2. 
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The distribution of the eigenvalues in the transition matrix 𝑃 is |𝜆1| = 1, |𝜆2| = 0.9998, |𝜆3| = 0.9996, 

|𝜆4| = 0.5483, and |𝜆5| = 0.5483. Due to the fact that |𝜆1|, |𝜆2|, |𝜆3| are clustered but |𝜆1|and |𝜆4| are 

well separated, the block power method block size 3 converges much faster than the power method and 

the block power method with smaller block size .   

 
Fig. 25. Convergence comparison of the power method and the block power method (block size 2 and 3) in terms of 

number of iterations 

 

5.1.3.2 Example with a Larger Matrix 

We apply the block power method to a 16,968 × 16,968 transition matrix arisen from a Markov 

chain application in modeling stochastic luminal Calcium release site [118]. Fig. 26 compares the 

computational results of the simple power method and the block power method with block size 𝑘 = 5 and 

10. One can find that using the strategy of correlating multiple linearly independent vectors in block 

power method has the potential to reduce the number of iteration steps to reach an approximate dominant 

vector with the desired accuracy. For example, the block power method with block size 5 (63,444 steps) 

requires fewer iteration steps to converge to 10−7  than the power method (164,454 steps). Further 

reduction is gained when larger block sizes are used. As shown in Fig. 26, when a relatively large block 

size 10 is employed, the number of iterations needed is further reduced down to 34,340 steps. 
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Fig. 26. Convergence of the power method and the block power method (𝑘 = 5 and 10) on a transition matrix of size 

 

 

5.2 Sliding Window Power (SWP) Method 

Despite the faster convergence rate, one of the main computational concerns in the block power 

method is that each block power iteration requires 𝑠 matrix-vector multiplications, where 𝑠 is the block 

size. For very large matrices that the element blocks are stored across distributed devices, the computation 

and memory requirements of the block power method are much higher than those of the simple power 

method. In this section, we describe a Sliding Window Power (SWP) method that we design to take 

advantage of the subsequent vectors within last 𝑠 iterations to build up the block matrix, while avoiding 

the costly matrix-block multiplications in the block power method.   

 

5.2.1 The SWP Algorithm 

The fundamental idea of the SWP method is to take advantage of the intermediate subsequent 

vectors in simple power iterations to form the multi-dimensional invariant subspace as follows, 

for  𝑖 = 1,… , 𝑘 
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  𝑥𝑖 = 𝑃𝑇𝑥𝑖−1    

end 

𝑊𝑘 = [𝑥𝑘−𝑠+1, 𝑥𝑘−𝑠+2 , … , 𝑥𝑘]   

where 𝑠 denotes the window size of 𝑊𝑘. In fact, the sliding window matrix represents a truncated Krylov 

subspace based on 𝑥0, i.e.,  

𝑊𝑘 = [𝑥𝑘−𝑠+1, 𝑥𝑘−𝑠+2 , … , 𝑥𝑘] = [𝑃𝑇𝑘−𝑠+1
𝑥0, 𝑃

𝑇𝑘−𝑠+2
𝑥0, … , 𝑃𝑇𝑘

𝑥0]. 

Then, the eigendecomposition step can be carried out on 𝑊𝑘
𝑇𝑃𝑇𝑊𝑘  to obtain the Ritz pairs and the 

approximated dominate eigenvector is extracted accordingly. 

𝑄𝑘𝑅𝑘 = 𝑊𝑘   // QR Decomposition 

𝐵𝑘 = 𝑄𝑘
𝑇𝑃𝑇𝑄𝑘   // Projection 

𝑉𝑘𝛬𝑘𝑉𝑘
−1 = 𝐵𝑘               // Eigendecomposition 

𝑌𝑘 = 𝑄𝑘𝑉𝑘  

SWP expects to yield fast convergence as block power methods. However, due to the fact that these 

intermediate vectors in the truncated Krylov subspace are highly correlated, the convergence rate of SWP 

depends on the actual rank of 𝑊𝑘 . In fact, the convergence speed of SWP with window size 𝑠  lies 

between |𝜆𝑠+1|
𝑘 and |𝜆2|

𝑘. In the best case, SWP will have the similar convergence rate related to 𝜆𝑠+1 as 

the block power method. If the rank of 𝑊𝑘 is 1, the performance of SWP is downgraded to the simple 

power method. Nevertheless, if this actually occurs, the power iteration should have already converged. 

While SWP has approximately equivalent computational cost compared to simple power method, in 

practice, SWP is usually more efficient than the block power method in terms of the computational cost. 

 

5.2.2 Numerical Results 

We apply SWP to compute the stationary distribution of the 16,968 × 16,968 transition matrix 

described in Section 5.1.3.2. Fig. 27 compares the performance of power method, block power method 

with block size 10, and SWP with window size 10 in terms of the number of iterations. As illustrated in 
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Fig. 27, one can find that the convergence trajectory of the SWP method lies in-between the block power 

method and the power method. This is because the convergence rate of the sliding window power method 

is theoretically bounded by that of the block power method. By reusing the previously generated vectors 

in the power iterations to form the block matrix, SWP gains convergence acceleration and reduces 

iteration steps to 96,232, which is fewer than that of the simple power method (165,454). 

 
Fig. 27. Convergence comparison of Power method, Block Power method, and Sliding Window Power method in 

terms of number of iterations 

 

One advantage of the SWP method is that it is possible to reduce the overall number of matrix-

vector multiplications needed to obtain the stationary distribution vector with satisfactory accuracy, which 

is particularly favorable for Markov chain applications with very large transition matrices, where the 

matrix-vector multiplication operations dominates the computational cost. Fig. 28 shows their comparison 

in terms of the number of matrix-vector multiplications. The SWP method, benefited from the accelerated 

convergence rate of the block form and matrix-vector multiplication per iteration, requires fewer matrix-

vector multiplications (96,232) than the others (165,454 and 343,400, respectively.)  
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Fig. 28. Convergence comparison of Power method, Block Power method, and SWP in terms of number of matrix-

vector multiplications 

 

Increasing the number of vectors in the block has the potential to improve the convergence rate of 

SWP and further reduce the number of Matrix-vector multiplications needed to reach convergence. 

However, with a larger number of vectors in the block, more memory storage would be required in SWP, 

as shown in Fig. 29. Thus, in practice, the appropriate window size of 𝑊𝑘 should be selected according to 

the memory available.  

 
Fig. 29. The number of matrix vector multiplications and the memory usage to convergence in SWP using different 

window size values 
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CHAPTER VI 

HYBRID CPU-GPU ACCELERATION OF MONTE CARLO ALGORITHMS 

 

Modern many-core devices, such as Graphics Processing Units (GPU) and Intel Xeon Phi 

processors, are capable of delivering higher computing power than multi-core CPUs. This has led to 

increasing interest in using GPU or Intel Xeon Phi as coprocessors (accelerators) to enable additional 

accelerations to scientific computations carried out on a host system. For instance, once a many-core 

device is attached to the host system, intensive computational operations can be offloaded to the many-

core hardware during execution, which is referred to as the “offload mode” [119,120]. In this Chapter, we 

take advantage of the GPU accelerators to improve the performance of two Monte Carlo algorithms, 

BFBCG (Section 6.1) and RSVD (Section 6.2).  

 

6.1 Accelerating BFBCG  

We first analyze the performance of various matrix operations of BFBCG in a GPU-only 

implementation to identify the main performance bottleneck. Then, to handle large linear systems whose 

coefficient matrices cannot fit in the GPU memory, a hybrid (offload) computing scheme is presented to 

offload compute-intensive matrix operations to GPU processors and to hide the CPU-GPU memory 

transaction overhead. Finally, we compare the performance of our BFBCG implementation on CPU-GPU 

processors with the one on CPU with Intel Xeon Phi as coprocessor using the automatic offload mode. 

The computational experiments described in this work are carried out on the 

XSEDE TACC Stampede System [83], where the compute node has dual Intel Xeon E5-2680 CPUs 

sharing 32 GB memory, one Intel Xeon Phi SE10P Coprocessor with 8GB memory, and one NVIDIA 

K20 GPU with 5GB memory. The BCG program is compiled using the Intel icc compiler with “-O3” 

optimization flag on CPU and Intel Xeon Phi processors while using NVIDIA nvcc compiler with "-O3" 

flag on GPU. 
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6.1.1 BFBCG on GPU 

We investigate the native implementation of BFBCG (Algorithm 3.2 in Section 3.2.3) on GPU 

processors, where all numerical operations are carried out on GPU and the coefficient matrix also resides 

in the GPU memory. This implementation uses the matrix functions in the CUDA Basic Linear Algebra 

Subroutines (CUBLAS) library [38] for dense matrix operations, advanced matrix decompositions 

functions in the MAGMA library [40] for Cholesky factorizations, and sparse matrix routines in the 

CUSPARSE library [13] for sparse matrix operations. For comparison purposes, a CPU implementation 

of BFBCG is built using the multithreaded Intel Math Kernel Library (MKL) [121]. 

Fig. 30 compares the average elapsed computational time per iteration for different matrix 

operations in BFBCG on CPU and GPU processors. The coefficient matrix is “nd12k” from the UFL 

sparse matrix collection [77], which is a 36,000 × 36,000 sparse, SPD matrix with 14,220,946 nonzero 

entries. The number of right hand sides is set to 2,048. The elements in the right-hand side matrix are 

random numbers generated uniformly from interval [0, 1). The reported execution times are obtained 

from an average over 10 runs.  

 
Fig. 30. The average elapsed computational time for different steps in BFBCG on CPU and GPU processors 

 

One can notice that the computational times of all matrix operations per iteration in BFBCG on 

GPU are less than those on CPU, where the improvements of tall-and-skinny matrix operations are of 

CPU-Only GPU-Only
0

5

10

15

20

25

30

35

40

45
 

E
la

p
s
e

d
 T

im
e

 (
 i
n

 s
e

c
o

n
d

s
)

 

 

  Q
i
 = AP

i

  
i
 = (P

T

i
Q

i
)
-1

(P
T

i
R

i
)

  X
i+1

 = X
i
+P

i


i

  R
i+1

 = R
i
-Q

i


i

  Z
i+1

 = MR
i+1

  
i
 = -(P

T

i
Q

i
)
-1

(Q
T

i
Z

i+1
)

  P
i+1

 = orth(Z
i+1

+P
i


i
)



   

 

94 

most significance. Nevertheless, the dominating operation in both CPU and GPU implementations is 

constructing the new search direction matrix 𝑃𝑖+1, i.e., 𝑃𝑖+1 = 𝑜𝑟𝑡ℎ(𝑍𝑖+1 + 𝑃𝑖𝛽𝑖).  

To reduce the computational cost in the constructing new search direction matrix 𝑃𝑖+1, we modify 

the BFBCG algorithm by using eigendecomposition on ZT𝑍, where 𝑍 = 𝑍𝑖+1 + 𝑃𝑖𝛽𝑖 , instead. In this 

case, ZT𝑍  is a small 𝑠 × 𝑠 symmetric matrix. Therefore, although calculation of ZT𝑍 leads to additional 

overhead of matrix-matrix multiplications, computing the eigendecomposition on ZT𝑍 is still significantly 

less costly than directly applying DGEQP3 to the 𝑛 × 𝑠 tall-and-skinny matrix 𝑍 for QR decomposition. 

As shown in Fig. 31, the eigenvectors V of ZT𝑍 can be computed by using the DSYEVD routine. Once 

the eigenvectors V is available, the search matrix 𝑃𝑖+1, as an orthogonal basis of the space spanned by 𝑍, 

can be very efficiently derived by normalizing each column of matrix product 𝑍𝑉 using DNRM2 routine.  
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Fig. 31. Eigendecomposition on ZT𝑍 to replace QR decomposition on 𝑍 to obtain orthogonal new search direction 

matrix 𝑃𝑖+1 

 

Fig. 32 shows the performance of the improved BFBCG implementation using 

eigendecomposition on ZT𝑍 to obtain new search directions. In comparison with Fig. 30, one can find that 
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the time spent on constructing new search direction matrix 𝑃𝑖+1 is significantly reduced by 60.7% and 

73.5% on CPU and GPU implementations, respectively. The overall speedup of the GPU-only 

implementation over the CPU implementation reaches 2.63. 

 
Fig. 32. Comparison of the average elapsed computational time per iteration for different steps in BFBCG on CPU 

and GPU processors when eigendecomposition on ZT𝑍 is used to replace QR decomposition on 𝑍 to obtain search 

direction matrix 𝑃𝑖+1 

 

6.1.2 BFBCG on Hybrid CPU-GPU 

In the case that the coefficient matrix is too big or the number of right hand sides is too many, 

consequently, the GPU memory is not big enough to fit all the matrices in BFBCG iterations. In this 

section, a BFBCG implementation on hybrid CPU-GPU processors is presented. In our implementation, 

CPU only coordinates data transfer and computation offload to GPU and does not directly participate in 

BFBCG computation. We use the routines in the CUBLAS-XT library [38] to support overlapping data 

transfers and execution for dense matrix operations. Page-locked memory is employed to increase the 

bandwidth between host memory and GPU memory.  

Based on the sparse matrix routines in CUSPARSE, we implement the tiled multiplication 

between a sparse matrix and a tall-and-skinny matrix. Similar to the tiling strategy used in the CUBLAS-

XT library, rows of sparse matrix is partitioned into tiles that can fit in the GPU memory while the tall-

and-skinny matrix is split into tiles by columns.  The tile size is selected so that the tiles can fit in the 

GPU memory. The procedure of tiling is illustrated in Fig. 33.  
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Fig. 33. Tiled multiplication between a sparse matrix and a tall-and-skinny matrix 

 

An important feature of the hybrid CPU-GPU BFBCG implementation is that data transfers and 

kernel computation for each tile can be performed concurrently so that memory transaction time can be 

hidden. We assign each tile with a GPU stream, and asynchronous operations are placed into each stream. 

Fig. 34 shows timeline of sparse matrix multiplication and data transfer in an instance of calculating the 

product of the sparse coefficient matrix and the tall-and-skinny solution matrix, and the elapsed 

computational time at different block sizes. One can find that except for initialization, more than half of 

data transfer operations occur concurrently with matrix multiplications, which can be hidden efficiently. 

  
(1) Overlap of computing and data transferring (2) The elapsed computational time 

Fig. 34. Data transfers and kernel computation for each tile are performed concurrently to hide the memory 

transaction time between CPU and GPU 

 

Fig. 35 shows the elapsed computational time per iteration in hybrid CPU-GPU BFBCG 

implementation in comparison with the GPU-only computational time and data transfer time without 

overlapping. In hybrid CPU-GPU scheme, 50.1% of the data transfer time is hidden due to concurrent 

execution with matrix operations. 
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Fig. 35. Comparison of the elapsed computational time per iteration in hybrid CPU-GPU BFBCG implementation 

with the GPU-only computational time and data transfer time. 50.1% of the data transfer time is hidden in the hybrid 

CPU-GPU scheme. 

 

6.1.3 Computational Results  

In this section, we compare the performance of the hybrid CPU-GPU implementation of BFBCG 

with the BFBCG implementation on CPU-Xeon Phi Processor using automatic offload mode against their 

theoretical performance peak, where MKL library provides the optimal computational work division for 

matrix operations of BFBCG over CPU- Xeon Phi Processor. The theoretical peak performance is widely 

used as upper bound in comparing computational power among parallel computing systems [122]. For a 

certain parallel computing system, the corresponding theoretical peak double precision performance 𝑃 can 

be calculated as  

𝑃 = 𝑛𝑐𝑜𝑟𝑒𝑠 × 𝑐𝑙𝑜𝑐𝑘𝑠𝑝𝑒𝑒𝑑 × 𝑓𝑙𝑜𝑝𝑠/𝑐𝑦𝑐𝑙𝑒 

where 𝑛𝑐𝑜𝑟𝑒𝑠  represents the number of cores in a processor, 𝑐𝑙𝑜𝑐𝑘𝑠𝑝𝑒𝑒𝑑  is the corresponding clock 

rate, and 𝑓𝑙𝑜𝑝𝑠/𝑐𝑦𝑐𝑙𝑒  denotes the number of double-precision floating point operations per cycle [123, 

124, 125].  

Each Dual Xeon E5 processor has 8 cores clocked at 2.7GHz. Because the Dual Xeon E5 

processor supports the Fused Multiply-Add (FMA) operations, in which one multiply and one add can be 

completed in a single cycle, each core of Dual Xeon E5 can perform up to 8 double-precision floating 
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point operations per clock cycle. As a result, the theoretical peak double precision performance 𝑃𝑐𝑝𝑢 of 

CPU can reach 

𝑃𝑐𝑝𝑢 = (8 × 2) × 2.7 × 8 = 345.6 𝐺𝐹𝐿𝑂𝑃S 

The NVIDIA K20 GPU [126,127] has 13 Streaming Multiprocessors  (SMs) clocked at 

0.706GHz while 64 double-precision floating point units on each SM. The theoretical peak double 

precision performance 
gpuP of GPU is calculated as 

𝑃𝑔𝑝𝑢 = (64 × 13) × 0.706 × 2 = 1,174.784 𝐺𝐹𝐿𝑂𝑃𝑆 

For the 61-core coprocessor Xeon Phi SE10P, each core clocked at 1.1GHz has 16 floating-point 

operations in double precision per clock cycle. As 60 cores are commonly used for computing, the 

theoretical peak performance 𝑃𝑚𝑖𝑐 of Xeon Phi coprocessor is 

𝑃𝑚𝑖𝑐 = 60 × 1.1 × 16 = 1,056 𝐺𝐹𝐿𝑂𝑃𝑆 

Ideally, if the linear algebra routines for those matrix operations in BFBCG can fully take 

advantage of the peak performance on hardware while the memory transaction overheads are hidden, 

executing BFBCG implementation directly on GPU or Intel Xeon Phi can roughly outperform CPU-only 

version by three times, according to the theoretical peak performance analysis on these hardware devices. 

 
Fig. 36. The overall speedup of CPU-GPU and CPU-Xeon Phi of BFBCG implementations with different number of 

right hand sides 

 

We use a large linear system with “thermomech_TC” from the UFL sparse matrix collection [77] 

as the coefficient matrix to test the CPU-GPU and CPU-Xeon Phi implementations of BFBCG. 
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“Thermomech_TC” is a 102,158 × 102,158 sparse, SPD matrix with 711,558 nonzero entries. Fig. 36 

compares the overall speedup factors for the CPU-GPU implementation and the CPU-MIC 

implementation of BCG algorithm over the CPU-Only version with different number of right hand sides 

𝑠. The overall speedup of CPU-GPU can reach up to 2.61 when 4,096 right hand sides are used, which is 

significantly higher than that of CPU-Xeon Phi (1.61) in automatic offload mode.  

 

6.2 Accelerating RSVD  

We use the randomized SVD algorithm with Gaussian Sampling (RSVD) as an example to 

illustrate our hybrid CPU-GPU accelerated implementation. First of all, we present a GPU-accelerated 

implementation to quickly obtain the approximate of dominant singular components of a given large 

matrix. Noticing that the main bottleneck in the GPU implementation is the deterministic SVD on GPU 

with "short-and-wide" matrix, we apply SVD decomposition on a derived square matrix to reduce the 

overall computational time. Then, in the case of matrices with a small dominant rank 𝑘 value, a hybrid 

GPU-CPU scheme is carried out to further improve the efficiency of our implementation. 

 

6.2.1 RSVD on GPU 

Fig. 37 shows the procedure of the RSVD algorithm (Algorithm 4.1 in Section 4.1.1). The overall 

performance of RSVD depends on the efficiency of matrix-matrix multiplication, QR factorization, and 

SVD on small matrices. Fortunately, after random matrix sampling by 𝛺, the large matrix 𝐴 is condensed 

into either "tall-and-skinny" or "short-and-wide" matrix, such as  𝑌  and 𝑄  are 𝑚 × (𝑘 + 𝑝) "Tall-and-

skinny" matrices, 𝐵  is an (𝑘 + 𝑝) × 𝑛  "short-and-wide" matrix where 𝑘 + 𝑝  is much smaller than 

𝑚𝑖𝑛(𝑚, 𝑛). These small and dense matrices are particularly suitable fit in GPU memory to take advantage 

of high-performance computation provided. We implemented RSVD on GPU using CUBLAS [38] and 

CULA [39], and its corresponding CPU version using the Intel multi-thread MKL (Math Kernel Library) 

for the sake of performance illustration.  
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Fig. 37. Procedure of RSVD to approximate right-singular vectors 

 

The elapsed time spent on each primary computational component in randomized SVD is shown 

in Fig. 38for a 4,096 × 4,096 random matrix where 𝑘 is 128 and 𝑝 is 3. Multiplication between 𝐴 and a 

“tall-and-skinny” or “short-and-wide” matrix can be efficiently carried out on the GPU’s SIMT 

architecture and hence the computational time in generating matrix 𝛺  and performing matrix-matrix 

multiplications shrinks to nearly negligible. Nevertheless, deterministic SVD, particularly when the target 

matrix is small, has difficulty in fully taking advantage of GPU architecture, due to the fact that a series of 

sequential Householder transformations need to be applied. As a result, deterministic SVD becomes the 

main bottleneck and thus this GPU implementation has only 1.65 over that of the CPU.  

 
Fig. 38. The elapsed computational time used in randomized SVD on CPU-only and GPU-only 
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To reduce the computational cost of deterministic SVD in GPU randomized SVD 

implementation, we alternatively calculate the top-𝑘 singular vectors of 𝐵𝐵𝑇 instead of directly carrying 

out deterministic SVD on the "short-and-wide" matrix 𝐵. Fig. 39 (1) depicts the procedure of obtaining 

approximate SVD decomposition of 𝐵. Note that SVD decomposition of  𝐵 is defined as 𝐵 = 𝑈𝐵𝛴𝐵𝑉𝐵
𝑇 . 

Since 𝐵𝐵𝑇 is a small square matrix whose size is independent of the size of the original matrix 𝐴, and has 

SVD format as, 

𝐵𝐵𝑇 = 𝑈𝐵𝛴𝐵𝑈𝐵
𝑇, 

𝑈𝐵 could be very efficiently derived from 𝐵𝐵𝑇 rather than from 𝐵. 
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(1)  Procedure of using 𝐵𝐵𝑇   (2) Elapsed time on CPU-only and GPU-only  

Fig. 39. Obtaining approximate SVD decomposition of 𝐵 

 

Once the left singular vectors 𝑈𝐵 become available, under the assumption that 𝑈𝐵
𝑇𝑈𝐵 ≈ 𝐼, where 𝐼 

is an identity matrix, the top 𝑘 singular components could be approximated effectively through a single 

matrix-matrix operation 

𝑈𝐵
𝑇𝐵 ≈ 𝛴𝐵𝑉𝐵

𝑇 . 

Fig. 39 (2) shows the elapsed time of the improved implementation by using 𝐵𝐵𝑇 on the same 4,096 × 

4,096 random matrix used in Fig. 38. One can find that the portion of SVD computation time is 
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significantly reduced on both CPU and GPU implementations. Consequently, the achieved speedup of 

GPU implementation grows up to 4.6. 

As shown in Fig. 39, even though the alternative approach of approximating top-𝑘  singular 

values/singular vectors on 𝐵𝐵𝑇  is used, the computational time of deterministic SVD on GPU is still 

more than that of the CPU version due to hidden setup on GPU. To further understand the performance of 

deterministic SVD on GPU, we compute deterministic SVD to a set of square matrices varying in size. 

Fig. 40 compares the computational time of deterministic SVD on CPU and GPU. One can find that the 

CPU implementation outperforms the GPU one on small matrices less than 2,500 × 2,500. Therefore, 

using GPU to run SVD operations on small matrices is not appropriate, particularly for applications 

where the singular values decay very quickly and 𝑘 is typically set with very small value. A simple hybrid 

GPU-CPU scheme is employed in our implementation that when the 𝑘 × 𝑘 square matrix is small, 

deterministic SVD decomposition will be transferred to the CPU to carry out instead.   

 
Fig. 40. Comparison of running time for performing deterministic SVD on GPU and CPU 
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We present the numerical results obtained with GPU-accelerated implementation on large random 

matrices and a Mars image. The experiments are carried out on a Linux computer with an Intel Core i5-

2500K CPU 3.30GHz, 8GB of RAM, and an NVIDIA GK110GL GPU.  

6.2.3.1 Random Matrices 

We generate a series of large random dense matrices of varying sizes to benchmark the 

performance achieved by using our GPU-accelerated randomized SVD algorithm. Fig. 41 compares the 

computational time in logarithmic scale of performing complete SVD and randomized SVD on CPU as 

well as GPU-accelerated randomized SVD algorithm. The same 𝑘 and 𝑝 (𝑘 =  256 and 𝑝 =  3) values 

are used. Compared to doing the complete SVD calculation on the matrix, randomized SVD has a clear 

computational advantage when only the top-𝑘 approximated singular components are needed.  Similar to 

many other GPU-based algorithms, our GPU randomized SVD implementation favors larger matrices. 

For a 20,000 × 20,000 matrix, the speedup can reach up to 6~7. 

 
Fig. 41. Comparison of elapsed time (logarithmic scale) of deterministic SVD, CPU versions of RSVD and GPU-

accelerated RSVD 

 

6.2.3.2 Image Compression 

We apply the randomized SVD algorithm for lossy data compression to a NASA synthesis image 

from the Mars Exploration Rover mission [107] shown in Fig. 42. The image is an RGB 7671 × 7680 ×

3 matrix, which requires 176.74 million bytes for memory storage.  
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Fig. 42. The original image Fig. 43. The reconstructed image 

 

In order to compress the image, we use our GPU-accelerated implementation to obtain its low 

rank approximation 𝐴𝑘 with rank 470,   

𝐴𝑘 = 𝑀 × 𝑁 

where 𝑀 is a 7671 ×  470 matrix and 𝑁 is a 470 × 7680 matrix on each color channel (R,G,B). Fig. 43 

shows the reconstructed image, where 𝑀 is computed by combining the 470 left singular vectors with the 

corresponding singular values while 𝑁 is stored as the 470 right singular vectors as columns. To outline 

the effectiveness of our implementation of randomized SVD, Table 6 lists the elapsed computational time 

and error used in compression with the Mars Image. As one can find, compared to deterministic SVD 

which consumes more than one thousand seconds to obtain the top 470 approximation, the GPU-

accelerated randomized SVD only takes slightly more than one second. The overall storage of the 

decomposed image requires less than 1/8 of that of the original matrix with an acceptable 1.63% error.   

TABLE 6 

Elapsed Computational Time and Error in Compression with the Mars Image 

 Elapsed Time (in seconds) Error in Compression 

Deterministic SVD 1144.71 1% 

Randomized SVD 1.29 1.63% 
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CHAPTER VII 

MATRIX PRODUCT VERIFICATION 

 

When matrices are very large, potential memory errors can no longer be neglected in large-scale 

linear algebra operations on high-performance computing (HPC) architectures. In this Chapter, we 

propose a Gaussian variant of Freivalds’ algorithm (GVFA) to verify the correctness of matrix-matrix 

multiplication (Section 7.1). Our theoretical analysis shows that when 𝐴 × 𝐵 ≠ 𝐶, the chance of GVFA 

produces 𝐶𝜔𝐺 = 𝐴𝐵𝜔𝐺  occurs has measure zero in exact arithmetic. We also analyze false positive 

probabilities in the GVFA, by taking floating point round-off error into account. In Section 7.2, we 

provide further discussions about potential advantages of GVFA in enhancing the resilience of linear 

algebraic computations. 

 

7.1 Gaussian Variant of Freivalds’ Algorithm (GVFA) 

7.1.1 The GVFA Algorithm 

The original Freivalds’ algorithm (see Section 2.4.2), and most of its extensions are based on 

integer matrices or matrices over a ring and sampling from discrete spaces. In this work, we extend 

Freivalds’ algorithm by using Gaussian random vectors for the projection [152]. We use the fact that the 

multivariate normal distribution has several nice properties [138], which have been used for detecting 

statistical errors in distributed Monte Carlo computations [139]. The extended algorithm is described in 

Algorithm 7.1, which requires three matrix-vector multiplications, and only one vector comparison for 

fault detection. 

Algorithm 7.1: Gaussian variant of Freivalds’ algorithm (GVFA)  

Step 1. Generate a Gaussian random vector, 𝜔𝐺 , where 𝜔𝐺  is an n-vector of independent (but not 

necessarily identically) distributed normal random variables with finite mean and variance. 

Step 2. Calculate the projection of 𝐶 on 𝜔𝐺: 𝐶𝜔𝐺 = 𝐶 × 𝜔𝐺. 

Step 3. Calculate the projection of product 𝐴 × 𝐵 on 𝜔𝐺: 𝐴𝐵𝜔𝐺 = 𝐴 × (𝐵 × 𝜔𝐺). 

 

7.1.2 Theoretical Justification 
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Similar to Freivalds’ algorithm, in GVFA if 𝐴 × 𝐵 = 𝐶 , 𝐶𝜔𝐺 = 𝐴𝐵𝜔𝐺  always holds within a 

certain floating point round-off threshold. When 𝐴 × 𝐵 ≠ 𝐶 , the chance that 𝐶𝜔𝐺 = 𝐴𝐵𝜔𝐺  is a false 

positive event occurs with measure zero in exact arithmetic, as shown in Theorem 7.2. 

We first state a result of Lukacs and King [140], shown as Proposition 7.1, which will be used in 

the proof of Theorem 7.2. The main assumption of Proposition 7.1 is the existence of the 𝑛th moment of 

each random variable, which many distributions, particularly the normal distribution, have. One important 

exception of the normal is that it is the limiting distribution for properly normalized sums of random 

variables with two finite moments. This is Lindeberg’s version of the Central Limit Theorem [141]. 

 

Proposition 7.1. Let 𝑋1 ,  𝑋2 , …,𝑋𝑛  be 𝑛  independently (but not necessarily identically) distributed 

random variables with variances 𝜎𝑖
2, and assume that the 𝑛th moment of each 𝑋𝑖 (𝑖 = 1,2,… , 𝑛) exists 

and is finite. The necessary and sufficient conditions for the existence of two statistically independent 

linear forms 𝑌1 = ∑ 𝑎𝑖𝑋𝑖
𝑛
𝑖=1  and 𝑌2 = ∑ 𝑏𝑖𝑋𝑖

𝑛
𝑖=1  are  

(1) Each random variable which has a nonzero coefficient in both forms in normally distributed. 

(2) ∑ 𝑎𝑖𝑏𝑖𝜎𝑖
2𝑛

𝑖=1 = 0. 

 

Theorem 7.2. If 𝐴 × 𝐵 ≠ 𝐶, the set of Gaussian vectors where 𝐶𝜔𝐺 = 𝐴𝐵𝜔𝐺 holds in Algorithm 7.1 has 

measure zero. 

Proof:  Let the matrix ∆ ∈ ℝ𝑛×𝑛  denote 𝐴𝐵 − 𝐶 .  Since 𝐴 × 𝐵 ≠ 𝐶 ,   𝑟𝑎𝑛𝑘(∆) = 𝑟 > 0 , and 

𝑑𝑖𝑚(𝑛𝑢𝑙𝑙(∆)) = 𝑛 − 𝑟𝑎𝑛𝑘(∆) = 𝑛 − 𝑟 < 𝑛.  Here 𝑑𝑖𝑚(∙)  denotes dimension and 𝑛𝑢𝑙𝑙(∙)  denotes the 

null space, i.e. 𝑛𝑢𝑙𝑙(∆) = {𝑥 ∈ ℝ𝑛 ∶ ∆ × x = 0}. 

We can now find 𝑛 − 𝑟 of orthonormal vectors, 𝑣1, 𝑣2, … , 𝑣𝑛−𝑟, to form a basis for 𝑛𝑢𝑙𝑙(∆), such 

that 𝑛𝑢𝑙𝑙(∆) = 𝑠𝑝𝑎𝑛{𝑣1, 𝑣2, … , 𝑣𝑛−𝑟},  and 𝑟 more orthonormal vectors, 𝑣𝑛−𝑟+1, 𝑣𝑛−𝑟+2, … , 𝑣𝑛, such that  

ℛ𝑛 = 𝑠𝑝𝑎𝑛{𝑣1, 𝑣2, … , 𝑣𝑛−𝑟, 𝑣𝑛−𝑟+1, 𝑣𝑛−𝑟+2, … , 𝑣𝑛}. 

Any vector, and in particular the Gaussian vector, 𝜔𝐺  can be written in this basis as 𝜔𝐺 = ∑ 𝛿𝑖𝑣𝑖
𝑛
𝑖=1 , 
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where 𝛿𝑖 ’s are the weights in this particular orthonormal coordinate system. If we denote 𝑉 =

[𝑣1, 𝑣2, … , 𝑣𝑛−𝑟, 𝑣𝑛−𝑟+1, 𝑣𝑛−𝑟+2, … , 𝑣𝑛], we have  

𝑉𝜔𝐺 = [𝛿1, 𝛿2, … , 𝛿𝑛−𝑟, 𝛿𝑛−𝑟+1, 𝛿𝑛−𝑟+2, … , 𝛿𝑛]. 

𝐶𝜔𝐺 = 𝐴𝐵𝜔𝐺 holds in Algorithm 7.1 only if 𝐴(𝐵𝜔𝐺) − 𝐶𝜔𝐺 = (𝐴𝐵 − 𝐶)𝜔𝐺 = ∆𝜔𝐺 = 0. This means 

𝜔𝐺 ∈ 𝑛𝑢𝑙𝑙(∆), i.e., 𝛿𝑛−𝑟+1 = 0, 𝛿𝑛−𝑟+2 = 0,… , 𝛿𝑛 = 0. Due to the fact that 𝜔𝐺  is a Gaussian random 

vector and 𝑉  is an orthogonal matrix, Proposition 7.1 tells us that the elements, 𝛿𝑖 , in the resulting 

vector  𝑉𝜔𝐺  are normally distributed and statistically independent. With a continuous probability 

distribution, the discrete event where 𝛿𝑖 = 0 for all 𝑖 > 𝑛 − 𝑟 occurs on a set of measure zero and we will 

say here that it has probability zero. Hence, GVFA using a Gaussian random projection will have 

unmatched 𝐶𝜔𝐺 and 𝐴𝐵𝜔𝐺  when 𝐴 × 𝐵 ≠ 𝐶 on all but a set of measure zero of Gaussian vectors, which 

we will say is probability one.  

 

This argument in Theorem 7.2 is rather direct, but we must point out that the arguments are true 

when the computations are exact. In next subsection, we will analyze GVFA when float-point errors are 

present. 

 

7.1.3 Practical Use in Floating-Point Matrix Product Verification 

In computer implementations of arithmetic with real numbers, one commonly uses floating-point 

numbers and floating-point arithmetic. Floating-point numbers are represented as finite numbers in the 

sense that they have a fixed mantissa and exponent size in number of bits. Therefore, there will be a small 

probability, 𝑝, that 𝐶𝜔𝐺 = 𝐴𝐵𝜔𝐺 still holds due to unfortunate floating-point operations in a system with 

a known machine epsilon, 𝜖, when 𝐴 × 𝐵 ≠ 𝐶. The value of 𝑝 depends on the magnitude of the error 

between 𝐴 × 𝐵 and 𝐶 as well as 𝜖, whose upper bound is justified in Theorem 7.3.  

 

Theorem 7.3. Assume that 𝜔𝐺 is a standard Gaussian random vector, whose elements are i.i.d. normal 
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variables with mean 0 and variance 1, i.e. the standard normal. Let 𝛥 = 𝐴 × 𝐵 − 𝐶, then the probability, 

𝑝, that 𝐶𝜔𝐺 = 𝐴𝐵𝜔𝐺 holds in Algorithm 7.1 using a standard Gaussian random vector 𝜔𝐺 under floating-

point uncertainty of size ϵ is 

𝑝 ≤ 2𝛷 (|
𝜖

�̃�
|) − 1, 

where 𝛷(∙) is the cumulative density function of the standard normal, and �̃� is a constant only related to 

𝛥. 

Proof: 𝐴 × 𝐵 ≠ 𝐶,   𝛥 = 𝐴 × 𝐵 − 𝐶 ≠ 0. Consider the 𝑖th element, 𝑔𝑖, of the product vector 𝑔 = 𝛥 × 𝜔𝐺, 

we have  

𝑔𝑖 = (𝛥 × 𝜔𝐺)𝑖 = ∑𝛥𝑖𝑗(𝜔𝐺)𝑗

𝑛

𝑗=1

. 

Given  𝜖 , only if |𝑔𝑖| ≤ 𝜖  for all  𝑖 = 1,… , 𝑛 , 𝐶𝜔𝐺 = 𝐴𝐵𝜔𝐺  can hold. Since 𝜔𝐺  is a standard normal 

random vector, 𝑔𝑖 for all 𝑖 = 1,… , 𝑛, are normally distributed as well. This is because they are linear 

combinations of normals themselves.  The key is to compute what the mean and variance is of the 𝑔𝑖.  

The components of  𝜔𝐺 are i.i.d. standard normals. Thus we have that 𝐸[(𝜔𝐺)𝑗] = 0 and 𝐸[(𝜔𝐺)𝑗
2
] = 1, 

for all 𝑗 = 1,… , 𝑛.  Also, we have that 𝐸[(𝜔𝐺)𝑖(𝜔𝐺)𝑗] = 0 when 𝑖 ≠ 𝑗.  This allows us to compute the 

mean: 

𝐸(𝑔𝑖) = 𝐸 [∑𝛥𝑖𝑗(𝜔𝐺)𝑗

𝑛

𝑗=1

] =  ∑𝛥𝑖𝑗𝐸[(𝜔𝐺)j]

𝑛

𝑗=1

= 0, 

and the second moment about the mean, i.e. the variance: 

𝐸[𝑔𝑖
2 − 𝐸(𝑔𝑖)

2] = 𝐸[𝑔𝑖
2] =  𝐸[∑ 𝛥𝑖𝑗(𝜔𝐺)𝑗

𝑛
𝑗=1 ]

2
= 𝐸[∑ 𝛥𝑖𝑗 

2  ×  1] =  ∑ 𝛥𝑖𝑗
2𝑛

𝑗=1
𝑛
𝑗=1 . 

So we have that 𝑔𝑖 ’s are normally distributed with mean zero and variance  �̃�𝑖
2 = ∑ 𝛥𝑖𝑗

2𝑛
𝑗=1 , i.e. 

𝑔𝑖~𝑁(0, �̃�𝑖
2).  

Then, the probability that |𝑔𝑖| ≤ 𝜖  can be computed as follows.  Since 𝑔𝑖~𝑁(0, �̃�𝑖
2), we know 

that 
𝑔𝑖

�̃�𝑖
2 ~𝑁(0,1), and so we define the new variables  𝑔�̃� = 

𝑔𝑖

�̃�𝑖
2 and 𝜖̃ =

𝜖

�̃�𝑖
2, and so we have  
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𝑝(|𝑔𝑖| ≤ 𝜖) = 𝑝(−𝜖 ≤ 𝑔𝑖 ≤ 𝜖) 

= 𝑝(−𝜖̃  ≤ 𝑔�̃�  ≤  𝜖̃) 

= ∫
1

√2𝜋

�̃�

−�̃�

𝑒−
1
2
𝑡2

𝑑𝑡 

= 𝛷(ϵ̃) − 𝛷(−𝜖̃). 

Since the probability density function of a standard normal is an even function, we have 𝛷(𝜖̃) +

𝛷(−𝜖̃) = 1, and so we can use − 𝛷(−𝜖̃) = 𝛷(𝜖̃) − 1 to get: 

𝑝(−𝜖 ≤ 𝑔𝑖 ≤ 𝜖) = 2𝛷(𝜖̃) − 1 = 2𝛷 (|
𝜖

�̃�𝑖
|) − 1. 

Now let us consider computing an upper bound on 𝑝(|𝑔𝑖| ≤ 𝜖, 𝑖 = 1,… , 𝑛). We have proved that 

𝑔𝑖’s are normal random variables, but they are not necessarily independent. And so for this we use some 

simple ideas from conditional probability. By example, consider 

𝑝(|𝑔1| ≤ 𝜖 𝑎𝑛𝑑 |𝑔2| ≤ 𝜖 ) = 𝑝(|𝑔2| ≤ 𝜖 | 𝑔𝑖𝑣𝑒𝑛 |𝑔1| ≤ 𝜖 )𝑝(|𝑔1| ≤ 𝜖 ) ≤ 𝑝(|𝑔1| ≤ 𝜖 ). 

The inequality holds due to the fact that the probabilities are numbers less than one. Now consider our 

goal of bounding 

𝑝(|𝑔𝑖| ≤ 𝜖 , 𝑖 = 1,… , 𝑛) ≤ 𝑝(|𝑔1| ≤ 𝜖 ) = 2𝛷 (|
𝜖

�̃�1
|) − 1, 

by iterating the conditional probability argument 𝑛 times. By reordering we could have chosen the bound 

utilizing any of 𝑔𝑖 's. However, let us define �̃� = 𝑚𝑎𝑥
𝑖

√∑ ∆𝑖𝑗
2𝑛

𝑗=1  , i.e., the maximal standard deviation 

over all the 𝑔𝑖’s, which is only related to the matrix ∆. We can use that value instead to get  

𝑝 = 𝑝(|𝑔𝑖| ≤ 𝜖 , 𝑖 = 1,… , 𝑛) ≤ 2𝛷 (|
𝜖

�̃�
|) − 1. 

 

As an interesting corollary, we can get a better bound in the case that 𝑔𝑖 's are independent. In that 

case 

𝑝(|𝑔𝑖| ≤ 𝜖 , 𝑖 = 1,… , 𝑛) = ∏𝑝(|𝑔𝑖| ≤ 𝜖 )

𝑛

𝑖=1

= ∏2𝛷 (|
𝜖

�̃�𝑖
|) − 1

𝑛

𝑖=1

. 
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Let �̃� = 𝑚𝑎𝑥
𝑖

√∑ ∆𝑖𝑗
2𝑛

𝑗=1  , i.e., i.e., the maximal standard deviation over all the 𝑔𝑖 's, which is only related 

to the matrix ∆. Hence for all 𝑖 = 1,… , 𝑛, we have that 

2𝛷 (|
𝜖

�̃�𝑖
|) − 1 ≤ 2𝛷 (|

𝜖

�̃�
|) − 1. 

And so, finally we get that 

𝑝 = 𝑝(|𝑔𝑖| ≤ 𝜖 , 𝑖 = 1,… , 𝑛) 

= ∏2𝛷 (|
𝜖

�̃�𝑖
|) − 1

𝑛

𝑖=1

 

≤ [2𝛷 (|
𝜖

�̃�
|) − 1]

𝑛

 

≤ 2𝛷 (|
𝜖

�̃�
|) − 1. 

The last inequality is true since the number raised to the 𝑛th power is less than one. 

Note, that independence gives probability of a false positive that is 𝑛 times smaller than in the 

general, dependent case. The conclusion of this seems to be that the bound in the dependent case is overly 

pessimistic, and we suspect that in cases where the matrix ∆ is very sparse, due to a very small number of 

errors, that we are in the independent 𝑔𝑖 's case or have very little dependence, and these more optimistic 

bounds reflect what happens, computationally. 

Theorem 7.3 reveals two interesting facts about GVFA in term of practical floating-point matrix 

product verification:  

(1) The bigger the error caused by the fault, the higher the probability that it can be captured. 𝑝 is usually 

very small because the floating point bound, 𝜖, is very small. 

(2) Similar to the original Freivalds’ algorithm, higher confidence can be obtained by iterating the 

algorithm multiple times. In fact, if we iterate 𝑘 times using independent Gaussian random vectors, 

the probability of false positive decreases exponentially as 𝑝𝑘 . Actually, due to the fact that 𝑝 is 

usually very small, one or a very small number of iterations will produce verification with sufficiently 

high confidence. 
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One comment that should be made is that if we consider ∫
1

√2𝜋

�̃�

−�̃�
𝑒−

1

2
𝑡2

𝑑𝑡 when 𝜖̃ is small, we can 

easily approximate this. Since the integrand is at its maximum at zero, and is a very smooth function, 

analytic actually, this integral is approximately the value of the integrand at zero times the length of the 

integration interval, i.e.  ∫
1

√2𝜋

ϵ̃

−�̃�
𝑒−

1

2
𝑡2

𝑑𝑡 ≤  2𝜖̃  
1

√2𝜋
= 𝜖̃√

2

𝜋
.  This is justified as 𝜖̃ is a number on the order 

of the machine epsilon, which is 2−23 in single precious or 2−52  in double precision floating point, 

divided by  �̃�𝑖
2 = ∑ 𝛥𝑖𝑗

2𝑛
𝑗=1 . 

Compared to the deterministic methods such as Huang-Abraham scheme (see Section 2.4.1), 

GVFA has the following advantages: 

(1) Certain fault patterns, as shown in Section 2.4, are undetectable in deterministic methods such as the 

Huang-Abraham scheme. Deterministic methods absolutely cannot detect faults with certain patterns, 

i.e., certain patterns are detected with probability zero. In contrast, there are no fault patterns that are 

undetectable by GVFA with 100% probability. Moreover, iterating the algorithm multiple times can 

increase the probability of detecting any fault pattern any value less than one by iteration. 

(2) From the computational point-of-view, normal random vectors are generated independently of 𝐴, 𝐵, 

and 𝐶, which avoids the costly computation of checksums. 

 

7.2 Extensions of GVFA 

7.2.1 Huang-Abraham-like GVFA 

GVFA can also be implemented in a way similar to that of Huang-Abraham scheme by providing 

row and column verifications. The Huang-Abraham-like GVFA is described in Algorithm 7.2. Similar to 

the Huang-Abraham scheme, a mismatch element of the row vectors of 𝜔𝑅𝐶 and 𝜔𝑅𝐴𝐵 as well as that of 

the column vectors of 𝐶𝜔𝑐 and 𝐴𝐵𝜔𝑐 uniquely identify a faulty element in 𝐶. By considering floating-

point errors, the false positive probability of identifying this fault becomes 𝑝2, according to the analysis in 

Section 7.1.3. However, the computational cost doubles with six matrix-vector multiplications and two 
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vector comparisons. This is essentially the same work as doing two independent iterations of GVFA, and 

obtains the same bound. 

Algorithm 7.2: Huang-Abraham-like GVFA 

Step 1. Generate a row Gaussian random vector, 𝜔𝑅 and a column Gaussian random vector 𝜔𝐶 where 

𝜔𝑅  and 𝜔𝑐  are n-vectors of independent (but not necessarily identically) distributed normal 

random variables with finite mean and variance. 

Step 2. Calculate the projection of 𝐶 on 𝜔𝑅 and 𝜔𝑐: 𝜔𝑅𝐶 = 𝜔𝑅 × 𝐶 and 𝐶𝜔𝑐 = 𝐶 × 𝜔𝑐. 

Step 3. Calculate the projection of product 𝐴 × 𝐵 on 𝜔𝑅 and 𝜔𝑐: 𝜔𝑅𝐴𝐵 = (𝜔𝑅 × 𝐴) × 𝐵 and 𝐴𝐵𝜔𝑐 =
𝐴 × (𝐵 × 𝜔𝑐). 

 

7.2.2 Implementation using Fused Multiply-Add Hardware 

The Fused Multiply-Add (FMA) machine instruction performs one multiply operation and one 

add operation with a single rounding step [142]. This was implemented to enable potentially faster 

performance in calculating the floating-point accumulation of products, 𝑎 ∶=  𝑎 + 𝑏 × 𝑐 . Recall that 

GVFA employs three matrix-vector multiplications to project 𝐴 × 𝐵 and 𝐶 onto a normal random vector, 

which requires a sequence of product accumulations that cost 3𝑛(2𝑛 − 1)  floating-point operations. 

Therefore, the performance of GVFA can be potentially boosted on modern computing architectures that 

support the FMA. More importantly, due to a single rounding step used in the FMA instruction instead of 

two roundings within separate instructions, less loss of accuracy occurs when using the FMA instruction 

in calculating the accumulation of products [143]. This should further reduce the floating-point rounding 

errors that cause false positives. 

 

7.2.3 Applicability 

GVFA can be easily extended to a more general matrix multiplication operation where 𝐴 is 𝑚 ×

𝑝, 𝐵 is 𝑝 × 𝑛, and 𝐶 is 𝑚 × 𝑛. The overall computational time then becomes 𝑂(𝑚𝑝 + 𝑛𝑝). The algorithm 

can be further extended to verify the product of 𝑁 matrices, which requires overall 𝑁 + 1 matrix-vector 

multiplications. GVFA can also be applied to verifying a wide variety of matrix decomposition operations 

such as LU, QR, Cholesky, as well as eigenvalue computations, and singular value decompositions. In 
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this case, faults are not in the product matrix but occur in the decomposed ones instead. Anyway, GVFA 

can be directly applied with no modifications necessary. 

GVFA is a new tool to detect faults in numerical linear algebra, and since it is based on random 

Gaussian projection, it is related to the many new randomized algorithms being used directly in numerical 

linear algebra [33,102]. The fundamental idea of these randomized algorithms is to apply efficient 

sampling on the potentially very large matrices to extract their important characteristics so as to fast 

approximate numerical linear algebra operations. We believe that GVFA will be a very useful tool in the 

development of fault-tolerant and otherwise resilient algorithms for solving large numerical linear algebra 

problems. In fact, it seems that GVFA's similarity to other, new, stochastic techniques in numerical linear 

algebra affords the possibility of creating stochastic linear solvers that are by their very nature resilient 

and fault-tolerant. This is highly relevant for new machines being developed in HPC to have maximal 

floating-point operations per second (FLOPS) while existing within restrictive energy budgets. These 

HPC systems will be operating at voltages lower than most current systems, and so they are expected to 

be particularly susceptible to soft errors. However, even if one is not anticipating the use of these high-

end machines, the trend in processor design is to lower power, and is being driven by the explosion of 

mobile computing. Thus, the ability to reliably perform complicated numerical linear algebraic 

computations on systems more apt to experience soft faults is a very general concern. GVFA will make it 

much easier to perform such computations with high fidelity in HPC, cloud computing, mobile 

applications, as well in big-data settings. 
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CHAPTER VIII 

SUMMARY AND POSTDISSERTATION REASEARCH 

 

The efficiency of large-scale linear algebra operations is essential for the performance of 

scientific computing and big data analysis applications. The large volume of matrices in these 

applications brings grand computational challenges to classical numerical linear algebra algorithms, 

including costly matrix pass, limited scalability to modern parallel and distributed computing 

architectures, as well as potential memory errors.  

The dissertation describes our past five years’ research work on designing new Monte Carlo 

algorithms to carry out efficient and reliable large-scale linear algebra operations while taking advantage 

of modern parallel computing architectures. In particular, Monte Carlo algorithms for addressing the 

problems of solving systems of linear equations, constructing low-rank approximations, finding extreme 

eigenvalues/eigenvectors, and verifying the correctness of matrix-matrix multiplications are developed 

with mathematical rigor and are supported with numerical results on real-life applications. 

The fundamental research on my dissertation provides me with a solid base of knowledge in 

numerical linear algebra for parallel high-performance computing systems. There are several interesting 

avenues for future work which we would like to explore. For example, enhancing sampling efficiency in 

matrix-vector products along MCGMRES iterations, implementing our R3SVD algorithm on big data 

analysis platforms, and applying the sliding window power method to fast estimate multiple extreme 

eigenvalues/eigenvectors for ab initio nuclear physics applications.  

 

 

 

  



   

 

115 

REFERENCES 

 

[1] H. Ji, and Y. Li, “Monte Carlo Methods and their Applications in Big Data Analysis,” Mathematical 

Problems in Data Science - Theoretical and Practical Methods, Springer, ISBN: 978-3-319-25127-1, 

2015. 

[2] R. L. Burden, and J. D. Faires, Numerical Analysis,  Brooks/Cole, Cengage Learning, 2011. 

[3] J. M. Hammersley, and D. C. Handscomb, Monte Carlo Methods, Chapman and Hall, Methuen & 

Co., London, and John Wiley & Sons, New York, 1964. 

[4] J. S. Liu, Monte Carlo strategies in scientific computing, Springer Science & Business Media, 2008. 

[5] Y. Li, and M. Mascagni, “Grid-based Monte Carlo Application,” Grid Computing Third International 

Conference, pp. 13–24, 2002. 

[6] Y. Li, and M. Mascagn, “Analysis of large-scale grid-based Monte Carlo applications,” Int. J. High 

Perform. Comput. Appl., vol. 17, pp. 369–382, 2003. 

[7] G. H. Golub, and C. F. Van Loan, Matrix computations, Johns Hopkins University Press, 2012. 

[8] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003. 

[9] J. R. Shewchuk, An Introduction to the Conjugate Gradient Method without the Agonizing Pain, 

Tech. Report, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1994. 

[10] R. Fletcher, “Conjugate gradient methods for indefinite systems,” Numerical analysis, Springer 

Berlin Heidelberg, pp. 73-89, 1976. 

[11] Y. Saad, and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving 

nonsymmetric linear systems,” SIAM J. Sci. and Stat. Comput., vol. 7. no. .3, pp. 856-869, 1986. 

[12] G. E. Forsythe, and R. A. Leibler, “Matrix inversion by a Monte Carlo method,”  Math. Tables 

Other Aids Comput., vol. 4, pp. 127–129, 1950. 

[13] I. Dimov, “Minimization of the probable error for some Monte Carlo methods,” in Proc. of the 

Summer School on Mathematical Modelling and Scientific Computations, Bulgarian Academy of 

Sciences, Sofia, pp. 159–170, 1991. 

[14] W. Wasow, “A note on the inversion of matrices by random walks,” Math. Tables Other Aids 

Comput., vol. 6, pp. 78–81, 1952. 

[15] J. H. Halton, “Sequential Monte Carlo techniques for the solution of linear systems,” J. Sci. 

Comput., vol. 9, pp. 213–257, 1994. 

[16] I. T. Dimov, T. T. Dimov, and T. V. Gurov, “A new iterative Monte Carlo Approach for Inverse 

Matrix Problem,” J. Comput. Appl. Math., vol. 92, pp. 15–35, 1998. 

[17] I. Dimov, Monte Carlo Methods for Applied Scientists, World Scientific Publishing, Singapore, 

2008. 

[18] C. J. K. Tan, “Antithetic Monte Carlo Linear Solver,” in Proc. of ICCS 2002, pp. 383–392, 2002. 

[19] A. Srinivasan, and V, Aggarwal, “Improved Monte Carlo linear solvers through non-diagonal 

splitting,” in Proc. of ICCSA, pp. 168–177, 2003. 

[20] K. Sabelfeld, and N. Mozartova, “Sparsified randomization algorithms for large systems of linear 

equations and a new version of the random walk on boundary method,” Monte Carlo Methods Appl., 

vol. 15, pp. 257–284, 2009. 

[21] M. Mascagni, and A. Karaivanova, “A Parallel Quasi-Monte Carlo Method for Solving Systems 

of Linear Equations,” in Proc. of ICCS 2002, pp. 598–608, 2002. 

[22] H. Ji, and Y. Li, “GPU accelerated randomized singular value decomposition and its application 

in image compression,”  in Proc. of MSVESCC, pp. 39-45, 2014. 

[23] I. Jolliffe, Principal Component Analysis, 2nd ed. New York, NY, USA: Springer-Verlag, 2002. 

[24] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 5406–5425, 2006.  

[25] J. F. Cai, E. J. Cande`s, and Z. Shen, “A Singular Value Thresholding Algorithm for Matrix 

Completion,” SIAM J. Optimiz., vol. 20, pp. 1956-1982, 2010.  

[26] M. W. Mahoney, “Randomized algorithms for matrices and data,” Found. Trends Mach. 

Learning, vol. 3, no. 2, pp. 123–224, 2011.  



   

 

116 

[27] E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, and M. Tygert, “Randomized algorithms for 

the low-rank approximation of matrices,” Proc. Natl. Acad. Sci.,vol. 104, no. 51, pp. 20167–20172, 

2007. 

[28] P. Drineas, E. Drinea, and P. S. Huggins, “An experimental evaluation of a Monte-Carlo 

algorithm for singular value decomposition,” in Proc. of 8th Panhellenic Conf. Informat., Nicosia, 

Cyprus, pp. 279–296, 2003. 

[29] P. Drineas, R. Kannan, and M. W. Mahoney, “Fast Monte-Carlo algorithms for matrices II: 

Computing a low-rank approximation to a matrix,” SIAM J. Comput., vol. 36, no. 1, pp. 158–183, 

2006.  

[30] S. Eriksson-Bique, M. Solbrig, M. Stefanelli, S. Warkentin, R. Abbey, and I. Ipsen, “Importance 

sampling for a Monte Carlo matrix multiplication algorithm, with application to information 

retrieval,” SIAM J. Sci. Comput., vol. 33, no. 4, pp. 1689–1706, 2011. 

[31] P. Drineas, and M. W. Mahoney, “On the Nyström method for approximating a Gram matrix for 

improved kernel-based learning,” J. Mach. Learn. Res., vol. 6, pp. 2153–2175, 2005. 

[32] K. Zhang, I. W. Tsang, and J. T. Kwok, “Improved Nyström lowrank approximation and error 

analysis,” in Proc. 25th Int. Conf. Mach. Learning, pp. 1232–1239, 2008. 

[33] N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding structure with randomness: Probabilistic 

algorithms for constructing approximate matrix decompositions,” SIAM Rev., vol. 53, no. 2, pp. 217–

288, 2011. 

[34] R. Motwani, and P. Raghavan,  Randomized Algorithms, Cambridge University Press, 1995.  

[35] L. Page,  “Pagerank: Bringing order to the web,” Technical report, Stanford Digital Library 

Project, 1997. 

[36] Y.  Kim, and K.  Shim,  “TWILITE:  A  recommendation  system  for  Twitter  using  a 

probabilistic model based on latent Dirichlet allocation,” Information Systems, vol. 42, pp. 59-77, 

2014.  

[37] Y. Yang, S. Yang, and B. Hu, “Fighting WebSpam: detecting Spam on the Graph via content and 

link features,” in Proceedings of PAKDD, 2008. 

[38] CUBLAS library, NVIDIA Corporation, Santa Clara, 2008.  

[39] J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, and E. J. Kelmelis, “CULA: hybrid 

gpu accelerated linear algebra routines,” SPIE Defense and Security Symposium (DSS), vol. 7705, 

2010. 

[40] S. Tomov, et al. ,  MAGMA Library. Univ. of Tennessee and Univ. of California, Knoxville, TN, 

and Berkeley, CA, 2014. 

[41] CUSPARSE library, NVIDIA Corporation, Santa Clara, California, 2014. 

[42] S. V. Kuznetsov, “An Approach of the QR Factorization for Tall-and-Skinny Matrices on 

Multicore Platforms,” Appl. Parallel Sci. Comput., pp. 235-249, 2013. 

[43] A. R.Benson, D. F. Gleich, and J. Demmel, “Direct QR factorizations for tall-and-skinny matrices 

in MapReduce architectures,” in Proc. of  IEEE BigData, 2013. 

[44] E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala, and S. A. Wender, “Predicting the 

number of fatal soft errors in los alamos national laboratory’s asc q supercomputer,” IEEE Trans. 

Device Mater. Rel., vol. 5, pp. 329–335, 2005. 

[45] J. N. Glosli, D. F. Richards, K. J. Caspersen, R. E. Rudd, J. A. Gunnels, and F. H. Streitz, “ 

Extending stability beyond cpu millennium: a micron-scale atomistic simulation of kelvin-helmholtz 

instability,” in Proc. of  SC 2007, pp. 1–11, 2007. 

[46] B. Schroeder, E. Pinheiro, and W. D. Weber, “DRAM errors in the wild: a large-scale field 

study,” Commun. ACM, vol. 54, pp. 100–107, 2011. 

[47] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi, “Modeling the effect of 

technology trends on the soft error rate of combinational logic,” in Proc. of DSN 2002, pp. 389–398, 

2002. 



   

 

117 

[48] J. J. Dongarra, J. D. Cruz, S. Hammerling, and I. S. Duff, “Algorithm 679: A set of level 3 basic 

linear algebra subprograms: model implementation and test programs,”  ACM Trans. Math. Softw., 

vol. 16, pp. 18–28, 1990. 

[49] J. W. Demmel, and N. J. Higham, “Stability of block algorithms with fast level-3 BLAS,” ACM 

Trans. Math. Softw., vol. 18, pp. 274–291, 1992. 

[50] K. Gallivan, W. Jalby, and U. Meier, “The use of BLAS3 in linear algebra on a parallel processor 

with a hierarchical memory,”  SIAM J. Sci. Stat. Comp.,vol. 8, pp. 1079–1084, 1987. 

[51] J. A. Gunnels, D. S. Katz, E. S. Quintana-Orti, and R. A. Van de Gejin, “Fault-tolerant high-

performance matrix multiplication: Theory and practice,”  in Proc. of DSN 2001, pp. 47–56, 2001. 

[52] K. H. Huang, and J. A. Abraham, “Algorithm-based fault tolerance for matrix operations,”  IEEE 

Trans. Comput., vol. 100, pp. 518–528, 1984. 

[53] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou, “Algorithm-based fault tolerance applied to 

high performance computing,”  J. Parallel Distrib. Comput., vol. 69, pp. 410–416, 2009. 

[54] R. Freivalds, “Probabilistic machines can use less running time,” in Proc. of IFIP Congress 77, 

pp. 839–842, 1977. 

[55] D. D. Chinn, and R. K. Sinha, “Bounds on sample space size for matrix product verification,” 

Inform. Process. Lett., vol. 48, pp. 87–91, 1993. 

[56] N. Alon, O. Goldreich, J. Hastad, and R. Peralta, “Simple construction of almost kwise 

independent random variables,” in Proc. of FOCS 1990, pp. 544–553, 1990. 

[57] J. Naor, and M. Naor, “Small-bias probability spaces: Efficient constructions and applications,” 

SIAM J. Comput., vol. 22, pp. 838–856, 1993. 

[58] C. Lisboa, M. Erigson, and L. Carro, “A low cost checker for matrix multiplication,” in Proc. of 

IEEE Latin-American Test Workshop, 2007. 

[59] D. P. O'Leary, “Parallel implementation of the block conjugate gradient algorithm,” Parallel 

Comput. vol. 5, no. 1, pp. 127-139, 1987. 

[60] H. Ji, M. Sosonkina, and Y. Li, “An implementation of block conjugate gradient algorithm on 

CPU-GPU processors,” in Proc. of Co-HPC 2014, pp. 72-77, 2014. 

[61] G.W. Stewart, “Block Gram-Schmidt orthogonalization,” SIAM J. Sci. Comput., vol. 31, no. 1, 

pp.  761-775, 2008. 

[62] J. J. Dongarra, J. D. Cruz, S. Hammerling, I. S. Duff, “Algorithm 679: A set of level 3 basic 

linear algebra subprograms: Model implementation and test programs,” ACM Trans. Math. Softw. 

vol. 16, no. 1, pp. 18-28, 1990. 

[63] K. Gallivan, W. Jalby, U. Meier, “The use of BLAS3 in linear algebra on a parallel processor 

with a hierarchical memory,” SIAM J. Sci. and Stat. Comput., vol. 8, no. 6, pp.1079-1084, 1987. 

[64] J. W. Demmel, and N. J. Higham, “Stability of block algorithms with fast level-3 BLAS,” ACM 

Trans. Math. Softw., vol. 18, no. 3, pp. 274-291,1992. 

[65] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Inc., 

New York, NY, USA, 2001. 

[66] C. G. Broyden, “A breakdown of the block CG method,” Optim. Methods Softw., vol. 7, pp. 41–

55, 1996. 

[67] M. H. Gutknecht, “Block Krylov space methods for linear systems with multiple right-hand sides: 

An introduction,” in Modern Mathematical Models, Methods and Algorithms for Real World Systems, 

Anamaya Publishers, New Delhi, India, pp. 420–447, 2006. 

[68] A. A. Nikishin, and A. Y. Yeremin, “Variable block CG algorithms for solving large sparse 

symmetric positive definite linear systems on parallel computers, I: general iterative scheme,” SIAM 

J. Matrix Anal. Appl., vol. 16, pp. 1135–1153, 1995. 

[69] D. P. O’Leary, “The block Conjugate Gradient algorithm and related methods,” Linear Algebra 

Appl., vol. 29, pp. 293–322, 1980. 

[70] M. Robb, and S. Miloud, “Exact and inexact breakdowns in the block GMRES method,” Linear 

Algebra Appl., vol. 419, pp. 265–285, 2006. 



   

 

118 

[71] J. Chen, “A deflated version of the block Conjugate Gradient algorithm with an application to 

Gaussian process maximum likelihood estimation,” Preprint ANL/MCS-P1927-0811, Argonne 

National Laboratory, Argonne, IL, 2011. 

[72] Y. T. Feng, D. R. J. Owen, and P. Peric, “A block Conjugate Gradient method applied to linear 

systems with multiple right-hand sides,” Comput. Methods Appl. Mech. Eng., vol. 127, pp. 203–215, 

1995. 

[73] A. A. Dubrulle, “Retooling the method of block Conjugate Gradients,” Electron. Trans. Numer. 

Anal., vol. 12, pp. 216–233, 2001. 

[74] Z. Ilya, D. P. O’Leary, and H. Elman, “Complete stagnation of GMRES,” Linear Algebra Appl., 

vol. 367, pp.165–183, 2003. 

[75] Z. Leyk, “Breakdowns and stagnation in iterative methods,” BIT, vol. 37, pp. 377-403, 1997. 

[76] R. Barrett, et al., Templates for the solution of linear systems: building blocks for iterative 

methods, SIAM, 1994. 

[77] T. A. Davis, University of Florida sparse matrix collection, http://www.cise.u.edu/research 

/sparse/matrices/. 

[78] N. Li, Y. Saad, and E. Chow, “Crout version of ILU for general sparse matrices,” SIAM J Sci. 

Comput., vol. 25, pp. 716–728, 2003. 

[79] T. Schmelzer, Block Krylov methods for Hermitian linear systems, Diploma thesis, Department of 

Mathematics, University of Kaiserslautern, Germany, 2004. 

[80] M. Robb, and S. Miloud, “Exact and inexact breakdowns in the block GMRES method,” Linear 

Algebra Appl., vol. 419,  pp. 265–285, 2006. 

[81] M. H. Gutknecht, Block Krylov space solvers: A survey, available online: 

http://www.sam.math.ethz.ch/ mhg/talks/bkss.pdf, 2005. 

[82] I. Duff, R. Grimes, and J. Lewis, Users guide for the Harwell-Boeing sparse matrix collection, 

Research and Technology Division, Boeing Computer Services, Seattle, Washington, USA, 1992. 

[83] J. Towns, et al., “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng., vol. 16, no. 5,  

pp.62–74, 2014. 

[84] H. Ji, and Y. Li, “A breakdown-free block conjugate gradient method,” BIT, submitted, 2016. 

[85] A. Gaul, M. H. Gutknecht, J. Liesen, and R. Nabben, “A framework for deflated and augmented 

krylov subspace methods,” SIAM J. Matrix Anal. Appl., vol. 34, no. 2, pp.495-518, 2013. 

[86] J. Erhel, and F. Guyomarc'h, “An augmented conjugate gradient method for solving consecutive 

symmetric positive definite linear systems,” SIAM J. Matrix Anal. Appl., vol. 21, no. 4, pp.1279-

1299, 2000. 

[87] Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc'h, “A deflated version of the conjugate gradient 

algorithm,” SIAM J. Sci. Comput., vol. 21, no. 5, pp.1909-1926, 2000. 

[88] R. A. Nicolaides, “Deflation of conjugate gradients with applications to boundary value 

problems,” SIAM J. Numer. Anal. vol. 24, no. 2, pp. 355-365, 1987. 

[89] Z. Dostal, “Conjugate gradient method with preconditioning by projector,” Internat J. Comput. 

Math., vol. 23, no. 34, pp. 315-323, 1988. 

[90] J. Erhel, K. Burrage, and B. Pohl, “Restarted GMRES preconditioned by deflation,” J. Comput. 

Appl. Math., vol. 69, no. 2, pp.303-318,1996. 

[91] R. B. Morgan, “A restarted GMRES method augmented with eigenvectors,” SIAM J. Matrix 

Anal. Appl., vol. 16, no. 4 , pp.1154-1171, 1995. 

[92] E. De Sturler, “Nested krylov methods based on GCR,” J. Comput. Appl. Math., vol. 67, no. 1, 

pp.15-41, 1996. 

[93] S. A. Kharchenko, and A. Y. Yeremin, “Eigenvalue translation based preconditioners for the 

GMRES (k) method,” Numer. Linear Algebra Appl., vol. 2, no. 1, pp.51-77, 1995. 

[94] M. H. Gutknecht, “Deated and augmented krylov subspace methods: A  framework for deated 

BiCG and related solvers,” SIAM J. Matrix Anal.Appl., vol. 35, no. 4, pp.1444-1466, 2014. 

[95] R.B. Sidje, and N. Winkles, “Evaluation of the performance of inexact GMRES,” J. Comput. 

Appl. Math., vol. 235, no. 8, pp.1956-1975, 2011. 

http://www.cise.u.edu/research%20/sparse/matrices/
http://www.cise.u.edu/research%20/sparse/matrices/


   

 

119 

[96] V. Simoncini.  “Variable Accuracy of Matrix-Vector Products in Projection Methods for 

Eigencomputation,” SIAM J.  Num. Anal., vol.43, no. 3, pp. 1155-1174, 2005. 

[97] X. Du, and D.B. Szyld, “Inexact GMRES for singular linear systems,” BIT, vol. 48, no. 3, pp.511-

531, 2008. 

[98] R.B. Sidje, “Inexact uniformization and GMRES methods for large Markov chains,” Numer. 

Linear Algebr., vol. 18, no.6, pp.947-960, 2011. 

[99] A. Bouras, and V., Frayssé. “Inexact matrix-vector products in Krylov methods for solving linear 

systems: A relaxation strategy,” SIAM J. Matrix Anal. A., vol. 26, no. 3, pp.660-678, 2005. 

[100] L. Giraud, S. Gratton, and J. Langou, “Convergence in Backward Error of Relaxed GMRES,” 

SIAM J. Sci. Comput., vol. 29, no. 2, pp.710-728, 2007. 

[101] B. W. David, “Generating random spanning trees more quickly than the cover time,” in Proc. of 

STOC 1996, ACM, New York, NY, USA, pp. 296-303, 1996. 

[102] P. Drineas, R. Kannan, and M. W. Mahoney, “Fast Monte Carlo Algorithms for Matrices I: 

Approximating Matrix Multiplication,” SIAM J. Comput., vol. 36, no. 1, pp. 158–183, 2006.  

[103] N. Halko, “Randomized methods for computing low-rank approximations of matrices,” Ph.D. 

dissertation, University of Colorado, 2012.  

[104] S. Voronin, and P.G. Martinsson, “RSVDPACK: Subroutines for computing partial singular 

value decompositions via randomized sampling on single core, multi core, and GPU architectures,” 

arXiv preprint arXiv:1502.05366, 2015. Available at: http://arxiv.org/abs/1502.05366  

[105] S. Voronin, and P.G. Martinsson, “A randomized blocked algorithm for efficiently computing 

rank-revealing factorizations of matrices,” arXiv preprint arXiv:1503.07157. 2015. Available at: 

http://arxiv.org/abs/1503.07157 

[106] A. Mathai, and G. Pederzoli, Characterizations of the Normal Probability Law. New Delhi, India: 

Wiley Eastern Ltd., 1977.  

[107] NASA's Planetary Photojournal. [Online] available at : http://photojournal.jpl.nasa.gov. 

[108] H. Ji, E. O’Saben,  A. Boudion, and Y. Li, “March Madness Prediction: A Matrix Completion 

Approach,” in Proc. of MSVESCC 2015, pp. 41-48, 2015. 

[109] E.J. Cande`s, and B. Recht, “Exact Matrix Completion via Convex Optimization,” Foundations 

on Computational Math., vol 9, pp. 717- 772, 2009. 

[110] B. Recht, M. Fazel, and P.A. Parrilo, “Guaranteed minimum-rank solutions of linear matrix 

equations via nuclear norm minimization,” SIAM Rev., vol. 52, no. 3, pp.471-501, 2010. 

[111] B. Recht, “A Simpler Approach to Matrix Completion,” J. Machine Learning Research, vol. 12, 

pp. 413-3430, 2011.  

[112] J. D. M. Rennie, and N. Srebro, “Fast maximum margin matrix factorization for collaborative 

prediction,” in Proc. ICML, 2005. 

[113] D. Zhang, Y. Hu, J. Ye, X. Li, and X. He, “Matrix completion by truncated nuclear norm 

regularization,” in Proc. of CVPR, pp. 2192–2199, 2012. 

[114] H. Ji, C. Liu, Z. Shen, and Y. Xu, “Robust video denoising using low rank matrix completion,” in 

Proc. of IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1791–1798, 2010. 

[115] A. Weber, SIPI image database, The USC-SIPI Image Database, Signal & Image Processing 

Institute, Department of Electrical Engineering, Viterbi School of Engineering, Univ. of Southern 

California (2012), available at : http://sipi.usc.edu/database 

[116] R. M. Larsen, Lanczos bidiagonalization with partial reorthogonalization, Department of 

Computer Science, Aarhus University, Technical report, DAIMI PB-357, 1998. 

[117] S. F. McCormick, and T. Noe, “Simultaneous iteration for the matrix eigenvalue problem,” 

Linear Algebra Appl., vol. 16, no.1, pp. 43-56, 1977. 

[118] H. Ji, Y. Li, and S. Weinberg, "Calcium Ion Fluctuations Alter Channel Gating in a Stochastic 

Luminal Calcium Release Site Model,” IEEE/ACM Trans. Comput. Biol. Bioinf., in press, 2015. 

[119] G. Teodoro, T. Kurc, J. Kong, L. Cooper, and J. Saltz, “Comparative performance analysis of 

Intel Xeon Phi, GPU, and CPU,” arXiv preprint arXiv:1311.0378, 2013. 

http://arxiv.org/abs/1503.07157
http://sipi.usc.edu/database


   

 

120 

[120] A. Yaseen, H. Ji, and Y. Li, “A Load-Balancing Workload Distribution Scheme for Three-Body 

Interaction Computation on Graphics Processing Units (GPU) ,” J. Parallel. Distrib. Comput., vol. 

87, pp. 91-101, 2016. 

[121] Intel, MKL. Intel Math Kernel Library, 2013. 

[122] G. Hager, and G. Wellein, Introduction to high performance computing for scientists and 

engineers. CRC Press, 2010. 

[123] S. S. Konstantin, Memory Bandwidth for Intel Xeon Phi (And Friends) , 2013. Retrieved from 

http://clusterdesign.org/2013/02/memory-bandwidth-for-intel-xeon-phi-and-friends/ 

[124] FLOPS. In Wikipedia. Retrieved from http://en.wikipedi a.org/wiki/FLOPS. 

[125]  F. Masci,  Benchmarking the Intel Xeon Phi Coprocessor, 2014.  

[126] NVIDIA, NVIDIA’s Next Generation CUDATM Compute Architecture: Kepler TM K110, 

Retrieved from http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-

Whitepaper.pdf. 

[127] NVIDIA, Tesla K20 GPU Active Accelerator, Retrieved from 

http://www.nvidia.com/content/PDF/kepler/Tesla-K20-Active-BD-06499-001-v02.pdf. 

[128] E. N. Elnozahy, L. Alvisi, Y.M. Wang, D.B. Johnson, “A survey of rollback-recovery protocols 

in message-passing systems,” ACM Comput. Surv., vol. 34, no. 3, pp. 375-408, 2002. 

[129] P. Banerjee, J.A. Abraham, “Bounds on algorithm-based fault tolerance in multiple processor 

systems,” IEEE Trans. Comput., vol. 100, no. 4, pp. 296-306, 1986. 

[130] F.T. Luk, and H. Park, “An analysis of algorithm-based fault tolerance techniques,” J. Parallel 

Distrib. Comput., vol. 5, no. 2, pp.172-184, 1988. 

[131] A. J. V. de Goor, Testing semiconductor memories: theory and practice. John Wiley & Sons, 

New York, 1991. 

[132] K. L. Cheng, C.W. Wang, and J.N. Lee, “FAME: a fault-pattern based memory failure analysis 

framework,” in Proc. of  ICCAD 2003, pp. 595-598, 2003. 

[133] D. D. Chinn, and R.K. Sinha, “Bounds on sample space size for matrix product verification,” 

Inform. Process. Lett., vol. 48, no. 2, pp.  87-91,  1993. 

[134] N. Alon, O. Goldreich, J. Hastad, and R. Peralta, “Simple construction of almost k-wise 

independent random variables,” in Proc. of  the 31st Annual Symposium on Foundations of Computer 

Science, pp. 544-553, 1990. 

[135] J. Naor, and M. Naor, “Small-bias probability spaces: Efficient constructions and applications,” 

SIAM J. Comput., vol. 22, no.4, pp. 838-856 , 1993. 

[136]  C. Lisboa, M. Erigson, and L. Carro, “A low cost checker for matrix multiplication,” In: IEEE 

Latin-American Test Workshop, 2007. 

[137]  L. Gasieniec, C. Levcopoulos, and A. Lingas, “Efficiently correcting matrix products,” In: 

Algorithms and Computation, pp. 53-64. Springer , 2014. 

[138] Y. Li, and M. Mascagni, “Analysis of large-scale grid-based Monte Carlo applications,” Int. J. 

High Perform. Comput. Appl., vol. 17, no. 4, pp. 369-382, 2003. 

[139] R. J. Muirhead, Aspects of multivariate statistical theory, Wiley, New York, 1982. 

[140] E. Lukacs, and E.P. King, “A property of the normal distribution,” Ann. Math. Stat., vol. 25, no.2,  

pp. 389-394, 1954. 

[141] J. W. Lindeberg, “Eine neue herleitung des exponentialgesetzes in der wahrscheinlichkeit- 

srechnung,” Math. Z, vol. 15, no. 1, pp. 211-225, 1922. 

[142]  E. Hokenek, R.K. Montoye, and P.W. Cook, “Second-generation risc floating point with 

multiply-add fused,” IEEE J. Solid-State Circuits, vol. 25, no. 5, pp. 1207-1213, 1990. 

[143]  S. Boldo, and J.M. Muller, “Exact and approximated error of the FMA,” IEEE Trans. Comput. 

vol. 60, no. 2, pp. 157-164, 2011. 

[144] M. R. Hestenes, and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. 

Res. Natl. Bur. Standards, vol. 49, pp. 409-436, 1952. 

[145] R. Fletcher, “Conjugate gradient methods for indefinite systems,” Numerical analysis, Lecture 

Notes in Mathematics, Springer, pp. 73-89, 1976. 

http://clusterdesign.org/2013/02/memory-bandwidth-for-intel-xeon-phi-and-friends/


   

 

121 

[146] R. Reddy, A. Lastovetsky, and P. Alonso, “Heterogeneous PBLAS: Optimization of PBLAS for 

Heterogeneous Computational Clusters,” in Proc. of  ISPDC 2008, pp. 73-80, 2008. 

[147] J. Choi, et al., “ScaLAPACK: A portable linear algebra library for distributed memory 

computers—Design issues and performance,” Applied Parallel Computing Computations in Physics, 

Chemistry and Engineering Science, Springer Berlin Heidelberg, pp.95-106, 1995. 

[148] H. Ji, Y. Li, and S. H. Weinberg, “Calcium ion fluctuations alter channel gating in a stochastic 

luminal calcium release site model,” in Proc. of ISBRA2015,  Norfolk, 2015. 

[149] Z. Liu, and L. Vandenberghe, “Interior-point method for nuclear norm approximation with 

application to system identification,” SIAM J. Matrix Anal. Appl., vol. 31, pp. 1235– 1256, 2009. 

[150] H. Ji, W. Yu, and Y. Li, “A Rank Revealing Randomized Singular Value Decomposition 

(R3SVD) Algorithm for Low-rank Matrix Approximations,” arXiv:1605.08134, 2016. 

[151] H. Ji, and Y. Li, “Block Conjugate Gradient Algorithms for Least Squares Problems”, J. Comput. 

Appl. Math., submitted, 2016. 

[152] H. Ji, M. Mascagni, and Y. Li, “Gaussian Variant of Freivalds’ Algorithm for Efficient and 

Reliable Matrix Product Verification,” Algorithmica, submitted , 2016. 

[153] H. Ji, M. Mascagni, and Y. Li, “Convergence Analysis of Markov Chain Monte Carlo Linear 

Solvers Using Ulam--von Neumann Algorithm,” SIAM J. Num. Anal., vol. 51, no. 4, pp. 2107-2122, 

2013. 

[154] H. Ji, and Y. Li, “Reusing random walks in Monte Carlo methods for linear systems,” in Proc. of 

ICCS 2012, vol 9, pp. 383-392, 2012. 

[155] H. Ji, S. H. Weinberg, M. Li, J. Wang, and Y. Li, “An Apache Spark Implementation of Block 

Power Method for Computing Dominant Eigenvalues and Eigenvectors of Large-Scale Matrices,” 

BDCloud 2016, submitted, 2016. 

[156] H. Ji, E. O’Saben,  R. Lambi, and Y. Li, “Matrix Completion Based Model V2.0: Predicting the 

Winning Probabilities of March Madness Matches,” in Proc. of MSVESCC 2016, in press, 2016. 

  



   

 

122 

APPENDIX A 

ADDITIONAL PROOFS  

 

Lemma 3.8. Suppose 𝑅𝑖 is an 𝑛 × 𝑠 residual matrix of rank 𝑟𝑖 (𝑟𝑖 ≤ 𝑠) at the 𝑖𝑡ℎ iteration, then  

𝑟𝑎𝑛𝑘(�̃�𝑖
𝑇𝑅𝑖) = 𝑟𝑖. 

Proof.  Let �̃�𝑖 denote an orthonormal basis of the search space  𝒫𝑖, which is spanned by 𝑍𝑖 + �̃�𝑖−1�̃�𝑖−1 

shown in Algorithm 3.2, then 𝑍𝑖 + �̃�𝑖−1�̃�𝑖−1 can be expressed as 

𝑍𝑖 + �̃�𝑖−1�̃�𝑖−1 = �̃�𝑖𝛿, (1) 

where 𝛿 is an 𝑟𝑖 × 𝑠 matrix of rank 𝑟𝑖. Left multiplying 𝑅𝑖
𝑇 to (1), we can get   

𝑅𝑖
𝑇𝑍𝑖 + 𝑅𝑖

𝑇�̃�𝑖−1�̃�𝑖−1 = 𝑅𝑖
𝑇�̃�𝑖𝛿. 

According to Corollary 3.6, 𝑅𝑖
𝑇�̃�𝑖−1 = 0. Then,  

𝑅𝑖
𝑇𝑍𝑖 = 𝑅𝑖

𝑇�̃�𝑖𝛿. 

According to Proposition 3.4, we can obtain 𝑟𝑎𝑛𝑘 ((𝑅𝑖
T�̃�𝑖)𝛿) = 𝑟𝑎𝑛𝑘(𝑅𝑖

𝑇𝑍𝑖) = 𝑟𝑎𝑛𝑘(𝑅𝑖).  Again, 

applying the basic rules of matrix rank, 𝑟𝑎𝑛𝑘(�̃�𝑖
𝑇𝑅𝑖) = 𝑟𝑎𝑛𝑘 ((𝑅𝑖

𝑇�̃�𝑖)𝛿) = 𝑟𝑖 is derived.   

 

Lemma 3.9. 𝑍𝑖+1 is conjugate to search spaces 𝒫𝑗 where 𝑗 < 𝑖. 

Proof.  Since 𝑅𝑗+1 is generated by  

𝑅𝑗+1 = 𝑅𝑗 − 𝐴�̃�𝑗�̃�𝑗, (2) 

left multiplying (2) by 𝑍𝑖+1
𝑇 and we have 

𝑍𝑖+1
𝑇𝑅𝑗+1 = 𝑍𝑖+1

𝑇𝑅𝑗 − 𝑍𝑖+1
𝑇𝐴�̃�𝑗�̃�𝑗 . 

When 𝑗 < 𝑖, according to Corollary 3.7, 𝑍𝑖+1
𝑇𝑅𝑗 = 0 and 𝑍𝑖+1

𝑇𝑅𝑗+1 = 0.  Thus, 𝑍𝑖+1
𝑇𝐴�̃�𝑗�̃�𝑗 = 0 for all 

𝑗 < 𝑖.   

Based on Theorem 3.5, �̃�𝑗 = (�̃�𝑗
𝑇
𝐴�̃�𝑗)

−1
�̃�𝑗

𝑇
𝑅𝑗, we have  
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𝑍𝑖+1
𝑇𝐴�̃�𝑗 (�̃�𝑗

𝑇
𝐴�̃�𝑗)

−1
�̃�𝑗

𝑇
𝑅𝑗 = 0 

Due to the facts that �̃�𝑗
𝑇
𝐴�̃�𝑗 is an 𝑟𝑗 × 𝑟𝑗 matrix with full rank, �̃�𝑗

𝑇
𝑅𝑗 is a 𝑟𝑗 × 𝑠 matrix with rank 𝑟𝑗  by 

Lemma 3.8, and 𝑟𝑗 ≤ 𝑠,  𝑍𝑖+1
𝑇𝐴�̃�𝑗 = 0   (𝑗 < 𝑖) is obtained.  
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APPENDIX B 

SYSTEMS OF LINEAR EQUATIONS 

 

The coefficient matrix 𝐴 and the right-hand side matrix 𝐵 used in Section 3.2.5.3 are presented 

below. 

𝐴 =

[
 
 
 
 
 
 
 
 
 
121.164272268116 17.8757971682236
17.8757971682236 123.317477848499
8.91160049194292 15.3784313056350

   
8.91160049194292 14.8013917105125 12.7809854465276
15.3784313056350 13.9826052710372 8.99969320736193
114.944841846832 14.0212707850901 18.3077854261355

14.8013917105125 13.9826052710372
12.7809854465276 8.99969320736193
14.7026896764278 12.0449732854894

   
14.0212707850901 112.181615127048 6.98849991034816
18.3077854261355 6.98849991034816 112.325588245555
14.5027264215831 15.6000866949538 9.62150309966732

16.6581592592829 14.8004340755219
17.7634024982886 6.47584364565590
13.6288388058580 6.74411759716316

   
12.0968055881465 15.6521797575797 9.91145010305920
16.0640864509010 17.5486159107531 7.70562137370861
14.2012968909398 11.8376249537951 19.8270052266075

12.6121271222844 11.8855805421895   6.14231789000198 13.0217718614950 17.6325001345481

  

14.7026896764278 16.6581592592829
12.0449732854894 14.8004340755219
14.5027264215831 12.0968055881465

   
17.7634024982886 13.6288388058580 12.6121271222844
6.47584364565590 6.74411759716316 11.8855805421895
16.0640864509010 14.2012968909398 6.14231789000198

15.6000866949538 15.6521797575797
9.62150309966732 9.91145010305920
102.912724285154 13.9592217854341

   
17.5486159107531 11.8376249537951 13.0217718614950
7.70562137370861 19.8270052266075 17.6325001345481
6.65030637918623 15.6299996128245 16.3450359607153

13.9592217854341 106.578021459235
6.65030637918623 7.87956983883075
15.6299996128245 10.6885329046362

   
7.87956983883075 10.6885329046362 7.63921835027445
113.736168684120 8.30021275368670 18.8043098692214
8.30021275368670 108.648495445339 20.4504103006764

16.3450359607153 7.63921835027445   18.8043098692214 20.4504103006764 117.313312551535]
 
 
 
 
 
 
 
 
 

  

 

B =

[
 
 
 
 
 
 
 
 
 
0.719862394959852 7.19862399356066
0.298498062508485 2.98498066864206
0.719943073352362 7.19943077821203
0.470645548592634 4.70645553655237
0.213065120059020 2.13065123100835
0.635136176538378 6.35136184705153
0.338215520218286 3.38215526612211
0.274120126028595 2.74120129843795
0.243954498892080 2.43954507177449
0.630536116636262 6.30536119819008]
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