
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Summer 2016

Novel Monte Carlo Methods for Large-Scale
Linear Algebra Operations
Hao Ji
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Numerical Analysis and Scientific Computing Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Ji, Hao. "Novel Monte Carlo Methods for Large-Scale Linear Algebra Operations" (2016). Doctor of Philosophy (PhD), dissertation,
Computer Science, Old Dominion University, DOI: 10.25777/pg8q-s553
https://digitalcommons.odu.edu/computerscience_etds/15

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/15?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

 NOVEL MONTE CARLO METHODS FOR LARGE-SCALE LINEAR ALGEBRA

OPERATIONS

by

Hao Ji

B.S. June 2007, Hefei University of Technology, China

M.S. December 2010, Hefei University of Technology, China

A Dissertation Submitted to the Faculty of

Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY

August 2016

 Approved by:

 Yaohang Li (Director)

 Stephan Olariu (Member)

 Nikos Chrisochoides (Member)

 Masha Sosonkina (Member)

 Seth H. Weinberg (Member)

ABSTRACT

NOVEL MONTE CARLO METHODS FOR LARGE-SCALE LINEAR ALGEBRA

OPERATIONS

Hao Ji

Old Dominion University, 2016

Director: Dr. Yaohang Li

Linear algebra operations play an important role in scientific computing and data analysis. With

increasing data volume and complexity in the "Big Data" era, linear algebra operations are important tools

to process massive datasets. On one hand, the advent of modern high-performance computing

architectures with increasing computing power has greatly enhanced our capability to deal with a large

volume of data. One the other hand, many classical, deterministic numerical linear algebra algorithms

have difficulty to scale to handle large data sets.

Monte Carlo methods, which are based on statistical sampling, exhibit many attractive properties

in dealing with large volume of datasets, including fast approximated results, memory efficiency, reduced

data accesses, natural parallelism, and inherent fault tolerance. In this dissertation, we present new Monte

Carlo methods to accommodate a set of fundamental and ubiquitous large-scale linear algebra operations,

including solving large-scale linear systems, constructing low-rank matrix approximation, and

approximating the extreme eigenvalues/ eigenvectors, across modern distributed and parallel computing

architectures. First of all, we revisit the classical Ulam-von Neumann Monte Carlo algorithm and derive

the necessary and sufficient condition for its convergence. To support a broad family of linear systems,

we develop Krylov subspace Monte Carlo solvers that go beyond the use of Neumann series. New

algorithms used in the Krylov subspace Monte Carlo solvers include (1) a Breakdown-Free Block

Conjugate Gradient algorithm to address the potential rank deficiency problem occurred in block Krylov

subspace methods; (2) a Block Conjugate Gradient for Least Squares algorithm to stably approximate the

least squares solutions of general linear systems; (3) a BCGLS algorithm with deflation to gain

convergence acceleration; and (4) a Monte Carlo Generalized Minimal Residual algorithm based on

iii

sampling matrix-vector products to provide fast approximation of solutions. Secondly, we design a rank-

revealing randomized Singular Value Decomposition (R3SVD) algorithm for adaptively constructing low-

rank matrix approximations to satisfy application-specific accuracy. Thirdly, we study the block power

method on Markov Chain Monte Carlo transition matrices and find that the convergence is actually

depending on the number of independent vectors in the block. Correspondingly, we develop a sliding

window power method to find stationary distribution, which has demonstrated success in modeling

stochastic luminal Calcium release site. Fourthly, we take advantage of hybrid CPU-GPU computing

platforms to accelerate the performance of the Breakdown-Free Block Conjugate Gradient algorithm and

the randomized Singular Value Decomposition algorithm. Finally, we design a Gaussian variant of

Freivalds’ algorithm to efficiently verify the correctness of matrix-matrix multiplication while avoiding

undetectable fault patterns encountered in deterministic algorithms.

iv

Copyright, 2016, by Hao Ji, All Rights Reserved.

v

This thesis is dedicated to my family,

for their endless love, support, and encouragement.

vi

ACKNOWLEDGMENTS

First of all, I would like to express my sincerest gratitude to my Ph.D. supervisor Dr. Yaohang Li,

for providing me with the opportunity to study in his research group at Old Dominion University. He

offered me constant support and encouragement throughout this dissertation work. Without his guidance,

this work would not have been possible.

I would also like to thank my committee members: Dr. Stephan Olariu, Dr. Nikos Chrisochoides,

Dr. Masha Sosonkina, and Dr. Seth Weinberg, for their helpful comments and invaluable suggestions to

improve the contents of this work. I gratefully acknowledge the generous support of Old Dominion

University Modeling and Simulation fellowship on this research.

I am grateful for the companionship of my friends. I want to express my special thanks to Dr.

Xiaoping Liu from Hefei University of Technology and Dr. Kurt Maly from Old Dominion University,

for introducing me to the Ph.D. program in Computer Science at Old Dominion University when I was in

China.

Finally, I am especially grateful to my family. Regardless of my successes or failures, they

always stand by me, support me, and love me.

vii

TABLE OF CONTENTS

 Page

LIST OF TABLES .. x

LIST OF FIGURES ... xi

Chapter

I. INTRODUCTION ... 1

1.1 Statement of the Problem ... 1

1.2 Our Approaches .. 2

1.3 Dissertation Organization ... 3

II. LITERATURE REVIEW ... 4

2.1 Monte Carlo Methods ... 4

2.1.1 The Basic of Monte Carlo ... 4

2.1.2 Importance Sampling .. 6

2.2 Linear Algebra Operations ... 7

2.2.1 Linear System Solvers ... 8

2.2.2 Constructing Low-rank Matrix Approximations ... 11

2.2.3 Approximating Extreme Eigenvalues and Eigenvectors ... 13

2.3 Parallelism in Matrix Computations .. 14

2.4 Numerical Verification Techniques ... 16

2.4.1 The Huang-Abraham Scheme ... 17

2.4.2 The Freivalds’ Algorithm .. 20

III. MONTE CARLO METHODS FOR LINEAR SYSTEMS SOLVERS.. 21

3.1 Convergence Analysis of Ulam-von Neumann Algorithm ... 21

3.1.1 Suggestive Examples .. 21

3.1.2 A Necessary and Sufficient Condition .. 24

3.1.3 Limitations of Conventional Monte Carlo Solvers ... 28

3.2 Breakdown-Free Block Conjugate Gradient (BFBCG) Algorithm .. 29

3.2.1 Sampling Krylov Subspace ... 29

3.2.2 BCG and Rank Deficiency .. 30

3.2.3 The BFBCG Algorithm ... 34

3.2.4 Convergence Analysis ... 39

3.2.5 Numerical Results ... 43

3.3 Block Conjugate Gradient for Least Square (BCGLS) Algorithm ... 47

3.3.1 The BCGLS Algorithm ... 47

3.3.2 Numerical Results ... 49

3.4 BCGLS Algorithm with Deflation (BCGLSD) .. 52

3.4.1 The BCGLSD Algorithm .. 52

viii

3.4.2 Importance Sampling .. 55

3.4.3 Numerical Results ... 56

3.5 Monte Carlo GMRES (MCGMRES) Algorithm .. 60

3.5.1 Inexact Matrix Product using Sampling .. 61

3.5.2 The MCGMRES Algorithm .. 62

3.5.3 Numerical Results ... 63

IV. MONTE CARLO METHODS FOR LOW-RANK MATRIX APPROXIMATIONS 65

4.1 Rank-Revealing Randomized Singular Value Decomposition (R3SVD) algorithm 65

4.1.1 RSVD and Rank Estimation .. 65

4.1.2 The R3SVD Algorithm .. 68

4.1.3 Numerical Results ... 75

V. MONTE CARLO METHODS FOR EXTREME EIGENVALUES/EIGENVECTORS 81

5.1 Block Power Method .. 81

5.1.1 Block Power Iteration .. 81

5.1.2 Convergence Analysis ... 83

5.1.3 Numerical Results ... 86

5.2 Sliding Window Power (SWP) Method ... 88

5.2.1 The SWP Algorithm .. 88

5.2.2 Numerical Results ... 89

VI. HYBRID CPU-GPU ACCELERATION OF MONTE CARLO ALGORITHMS 92

6.1 Accelerating BFBCG .. 92

6.1.1 BFBCG on GPU .. 93

6.1.2 BFBCG on Hybrid CPU-GPU .. 95

6.1.3 Computational Results .. 97

6.2 Accelerating RSVD .. 99

6.2.1 RSVD on GPU .. 99

6.2.2 RSVD on Hybrid GPU-CPU ... 100

6.2.3 Computational Results .. 102

VII. MATRIX PRODUCT VERIFICATION ... 105

7.1 Gaussian Variant of Freivalds’ Algorithm (GVFA) ... 105

7.1.1 The GVFA Algorithm ... 105

7.1.2 Theoretical Justification .. 105

7.1.3 Practical Use in Floating-Point Matrix Product Verification .. 107

7.2 Extensions of GVFA .. 111

7.2.1 Huang-Abraham-like GVFA ... 111

7.2.2 Implementation using Fused Multiply-Add Hardware .. 112

7.2.3 Applicability .. 112

VIII. SUMMARY AND POSTDISSERTATION REASEARCH ... 114

REFERENCES ... 115

APPENDICES

ix

A. ADDITIONAL PROOFS .. 122

B. SYSTEMS OF LINEAR EQUATIONS ... 124

VITA ... 125

x

LIST OF TABLES

Table Page

1. Behavior of the Monte Carlo linear solver using Ulam-von Neumann algorithm in 6 cases of 2 × 2
matrices under different conditions and transition matrices. 𝐻+ is an 𝑁 × matrix where 𝐻𝑖𝑗

+ = |𝐻𝑖𝑗| and

𝐻∗ is an 𝑁 × 𝑁 matrix where 𝐻𝑖𝑗
∗ = 𝐻𝑖𝑗

2/𝑃𝑖𝑗 given 𝐻 and 𝑃 .. 22

2. Comparison between BCG and BFBCG in case of near-breakdown.. 45

3. Performance comparison between BFBCG and restarting BCG on SPD Matrices from static analyses in

structural engineering application ... 47

4. R3SVD, Full SVD, Autorank II, restarting RSVD, Adaptive Randomized Range Finder algorithm, and

Randomized Blocked algorithm.. 76

5. The completed images using the original SVT algorithm and the modified SVT algorithm using R3SVD

 .. 80

6. Elapsed computational time and error in compression with the Mars image 104

xi

LIST OF FIGURES

Figure Page

1. Numerical integration using deterministic methods ... 5

2. Monte Carlo linear solver using Ulam-von Neumann scheme ... 10

3. Modern parallel/distributed computing paradigms/architectures .. 15

4. The computation of a QR decomposition of a “Tall-and-Skinny,” dense matrix 𝐻 16

5. The Huang-Abraham scheme for detecting faults in matrix-matrix multiplication 18

6. Underdetermined CSP system in the Huang-Abraham Scheme ... 19

7. Summary of relationship between matrix 𝐻 and convergence in Monte Carlo linear solver using Ulam-

von Neumann algorithm ... 27

8. Expanding a single right-hand side to multiple right-hand sides by supplying Gaussian random vectors

 .. 29

9. Sparse pattern of matrix “Kuu” ... 43

10. Matrix rank of residue 𝑅𝑖, condition number of 𝑃𝑖
𝑇𝐴𝑃𝑖, and the corresponding maximum and

minimum residual norm for a block linear system with 200 right-hand sides using the Matrix “Kuu” as

coefficient matrix along BFBCG iterations .. 44

11. Number of Columns in 𝑃𝑖 (upper), condition number of 𝑄𝑖
𝑇𝐴𝑄𝑖 (middle), and maximum and minimum

relative residual norms of columns in 𝑋𝑖 (lower) along BFBCGLS iterations ... 50

12. Solution precisions obtained using different linear dependency threshold parameter τ values 51

13. The number of passes over matrix 𝐴 ... 52

14. Generate and refine deflation matrices via importance sampling ... 56

15. Comparison of convergence in CGLS, BCGLS, and BCGLSD on a least squares problem using

“wang4" as the coefficient matrix ... 57

16. Distribution of the eigenvalues in 𝐴𝑇𝐴 (“gre_1107") the condition ... 58

17. Colormap of 𝐴𝑇𝐴 -orthogonality between Search Matrices in the first 31 iterations (upper), condition

number of 𝑄𝑖
𝑇𝐴𝑄𝑖 (middle), and maximum and minimum relative residual norms of columns in 𝑋𝑖 (lower)

for a block linear system with 100 right hand sides using “gre_1107" as the coefficient matrix along

BCGLS iterations .. 59

18. Colormap of 𝐴𝑇𝐴 -orthogonality between Search Matrices in the first 12 iterations (upper), condition

number of 𝑄𝑖
𝑇𝐴𝑄𝑖 (middle), and maximum and minimum relative residual norms of columns in 𝑋𝑖 (lower)

file://cifs-ecs/grad/hji/spring-2015/PhD%20Dissertation/PhD%20Dissertation%20-%20v3/formating/Hao%20Ji%20-%20Dissertation%20(revised)%20-v4%20-%20Copy.docx%23_Toc453105507

xii

for a block linear system with 100 right hand sides using “gre_1107" as the coefficient matrix along

BCGLSD iterations, where the deflation matrix consists of 40 approximated extreme eigenvectors 60

19. Comparison of MCGMRES with different percentage of samples... 64

20. Memory usage in R3SVD and restarting RSVD ... 76

21. The original image and the compressed images with increasing ranks in R3SVD 77

22. The energy percentage of the obtained low rank approximations (upper) and the required memory

space (lower) in R3SVD with 𝑡 = 20, 15, 10, and 5 and the oversampling parameter 𝑝 = 5. 78

23. The original image and the sample image... 79

24. A Markov chain with five states ... 86

25. Convergence comparison of the power method and the block power method (block size 2 and 3) in

terms of number of iterations .. 87

26. Convergence of the power method and the block power method (𝑘 = 5 and 10) on a transition matrix

of size .. 88

27. Convergence comparison of Power method, Block Power method, and Sliding Window Power

method in terms of number of iterations ... 90

28. Convergence comparison of Power method, Block Power method, and SWP in terms of number of

matrix-vector multiplications .. 91

29. The number of matrix vector multiplications and the memory usage to convergence in SWP using

different window size values .. 91

30. The average elapsed computational time for different steps in BFBCG on CPU and GPU processors 93

31. Eigendecomposition on 𝑍𝑇𝑍 to replace QR decomposition on 𝑍 to obtain orthogonal new search

direction matrix 𝑃𝑖+1 ... 94

32. Comparison of the average elapsed computational time per iteration for different steps in BFBCG on

CPU and GPU processors when eigendecomposition on 𝑍𝑇𝑍 is used to replace QR decomposition on 𝑍 to

obtain search direction matrix 𝑃𝑖+1 ... 95

33. Tiled multiplication between a sparse matrix and a tall-and-skinny matrix ... 96

34. Data transfers and kernel computation for each tile are performed concurrently to hide the memory

transaction time between CPU and GPU .. 96

35. Comparison of the elapsed computational time per iteration in hybrid CPU-GPU BFBCG

implementation with the GPU-only computational time and data transfer time. 50.1% of the data transfer

time is hidden in the hybrid CPU-GPU scheme. .. 97

36. The overall speedup of CPU-GPU and CPU-Xeon Phi of BFBCG implementations with different

number of right hand sides .. 98

xiii

37. Procedure of RSVD to approximate right-singular vectors .. 100

38. The elapsed computational time used in randomized SVD on CPU-only and GPU-only 100

39. Obtaining approximate SVD decomposition of 𝐵 .. 101

40. Comparison of running time for performing deterministic SVD on GPU and CPU 102

41. Comparison of elapsed time (logarithmic scale) of deterministic SVD, CPU versions of RSVD and

GPU-accelerated RSVD .. 103

42. The original image .. 104

43. The reconstructed image ... 104

1

CHAPTER I

INTRODUCTION

1.1 Statement of the Problem

Numerical linear algebra operations, such as solving systems of linear equations, linear

regression, constructing low-rank matrix approximation, approximating extreme eigenvalues/eigenvectors

of a matrix, and so on, are behind many real-life applications, ranging from data mining to large-scale

simulations and machine learning. The efficiency of these linear algebra applications is crucial for the

performance of many big data applications.

With the increasing size and complexity of datasets in the "Big Data" era, many problems involve

operations on matrices with millions, billions, or even trillions of elements. The large volume of matrices

brings new computational challenges to classical numerical linear algebra algorithms. For example,

(1) Costly matrix pass: When a matrix is too large, it may be unable to fit in the core memory. Very often,

in many practical applications, the large matrices are not explicitly stored and the matrix elements

will be regenerated when needed. Consequently, the cost of transferring a matrix from slow memory

to core memory or regenerating matrix elements easily dominates that of arithmetic calculations. As a

result, a pass over the matrix elements becomes a new computational bottleneck in many operations

on large matrices. For extremely large matrices, a complete matrix pass is even prohibited.

(2) Scalability to modern parallel and distributed computing architectures: Many traditional, deterministic

numerical methods are typically designed to obtain highly accurate solutions with high consumptions

of computational power or memory storage, which make them less effective or even infeasible to

scale to a large dataset. Modern linear algebra algorithms are expected to fully take advantage of

modern parallel and distributed computing paradigms to achieve good performance.

(3) Potential memory errors: When a matrix is large enough, the matrix computations are vulnerable to

faults in computer systems. Errors that corrupt the data being processed are no longer negligible, and

2

fault-tolerant and resilient numerical algorithms are demanded for large-scale linear algebra

operations.

Consequently, many traditional algorithms for linear algebra operations, especially those

designed to minimize floating-point operations, have difficulty in scaling up to handle increasingly large

matrices. Addressing these computational challenges to improve the performance of large-scale linear

algebra operations is the key in support of scientific computing and data analysis applications with large

volume of data, which will eventually lead to broad scientific and economic impacts. Hence, the objective

of this dissertation is to design new computational methods to accommodate large-scale numerical linear

algebra operations across modern distributed and parallel computing architectures.

1.2 Our Approaches

The Monte Carlo methods benefit from random sampling and exhibit many attractive advantages

when handling extremely large matrices. For instance,

(1) Monte Carlo methods are based on statistical sampling, where most operations are carried out on a

small portion of carefully sampled matrix elements, and, thus, the number of passes on all matrix

elements can be limited, often by orders of magnitude.

(2) Monte Carlo methods are naturally parallel. Therefore, they are well-suitable to large-scale

computing platforms, which are equipped with a large number of multi-core CPUs, many-core

coprocessors, and multi-general purpose graphics process units (GPGPU).

(3) Monte Carlo methods are often able to obtain low-accuracy solution approximation quickly, which is

particularly suitable for many applications where high-accuracy solutions are not necessary.

Motivated by the attractive features of Monte Carlo methods, in this dissertation, we develop

efficient Monte Carlo methods to carry out a set of fundamental and ubiquitous linear algebra operations.

The major contributions of this work include,

(1) A necessary and sufficient condition for the convergence of the classical Monte Carlo linear solver

using the Ulam-von Neumann algorithm (Chapter III).

3

(2) Krylov subspace Monte Carlo solvers to handle general large-scale linear systems with pass reduction

and convergence acceleration, such as a Breakdown-Free Block Conjugate Gradient algorithm

(BFBCG), a Block Conjugate Gradient for Least Squares algorithm (BCGLS), a BCGLS algorithm

with Deflation (BCGLSD), and a Monte Carlo Generalized Minimal Residual algorithm

(MCGMRES) (Chapter III).

(3) A Rank-Revealing Randomized Singular Value Decomposition (R3SVD) algorithm to adaptively

construct low-rank matrix approximations (Chapter IV).

(4) A Sliding Window Power (SWP) method to rapidly approximate the extreme

eigenvalues/eigenvectors of large matrices (Chapter V).

(5) Using GPUs to accelerate matrix computations in BFBCG and Randomized Singular Value

Decomposition (RSVD) (Chapter VI).

(6) A Gaussian variant of Freivalds’ algorithm (GVFA) to efficiently and reliably validate the correctness

of matrix-matrix multiplication (Chapter VII).

1.3 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter II presents a review of the

relevant literature to Monte Carlo methods, numerical linear algebra operations, and acceleration and

validation techniques of matrix operations on modern parallel/distributed platforms. We present our new

Monte Carlo methods with rigorous mathematical analysis for solving large-scale linear systems,

constructing low-rank matrix approximation, and approximating extreme eigenvalues and eigenvectors in

Chapters III, IV, and V, respectively. Chapter VI investigates the accelerated implementations of the

Monte Carlo algorithms on hybrid CPU-GPU platforms. Chapter VII proposes a novel approach based on

random sampling to verify the correctness of matrix products. Finally, Chapter VIII summarizes the

dissertation and discusses our future (post-dissertation) research directions.

4

CHAPTER II

LITERATURE REVIEW

2.1 Monte Carlo Methods

Numerical methods known as Monte Carlo methods can be loosely defined in general terms to be

any methods that rely on random sampling to estimate the solutions [1]. Monte Carlo methods are often

applied to problems which are either too complicated to be described by a mathematical model or whose

parameter space is too large to be explored systematically.

2.1.1 The Basic of Monte Carlo

Monte Carlo methods provide approximate solutions to a variety of mathematical problems by

random sampling. To illustrate the principles of Monte Carlo methods, we use the numerical integration

as an example.

Suppose we want to calculate a one-dimensional definite numerical integral, 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. A

common numerical integral method is to divide the one-dimensional interval into 𝑁 subintervals and then

to sum the area corresponding to each subinterval using either rectangular, trapezoidal, or Simpson’s rules

(Fig. 1(a)) [2]. Similarly, for two-dimensional intervals, the number of 2D subintervals becomes 𝑁2 (Fig.

1(b)). In general, for 𝑑-dimensional integration problems, the 𝑑-dimensional space needs to be divided

into 𝑁𝑑 subintervals. For a not very high dimensional problem with 𝑑 = 20 and 𝑁 = 100, the total

number of subintervals that need to be evaluated goes up to 1040, which is unapproachable by many

numerical integration algorithms.

5

(a) 1D integral (b) 2D integral

Fig. 1. Numerical integration using deterministic methods

In contrast, Monte Carlo methods estimate the integral by statistical sampling techniques [3]. Let

us consider a one-dimensional integral 𝐼0−1 = ∫ 𝑓(𝑥)𝑑𝑥
1

0
, which can be easily extended to a more general

integral of 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. Suppose that the random variables 𝑥1, 𝑥2, … , 𝑥𝑁 are drawn independently from

the probability density function 𝑝(𝑥). A function 𝐹 may be defined as

𝐹 = ∑𝑓(𝑥𝑖)𝑝(𝑥𝑖)

𝑁

𝑖=1

.

The expectation value of F becomes

𝐸(𝐹) = ∫ 𝑓(𝑥)𝑝(𝑥)𝑑𝑥
1

0

.

The crude Monte Carlo integration method assumes that the probability density function 𝑝(𝑥) is uniform,

i.e., the random samples 𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑁) are equally important, and then

𝐸(𝐹) = ∫ 𝑓(𝑥)𝑑𝑥
1

0

.

Correspondingly, the variance of 𝐹 becomes

𝑉𝑎𝑟(𝐹) =
1

𝑁
∫ (𝑓(𝑥) − 𝐸(𝐹))2𝑑𝑥 =

1

𝑁
𝜎2

1

0

,

where 𝜎2 is the inherent variance of the integrant function 𝑓(𝑥). Clearly, we can find that the standard

deviation of the estimator is 𝜎𝑁−
1

2. This means that as 𝑁 → ∞, the distribution of 𝐹 narrows around its

mean at the rate of O(𝑁−
1

2).

6

Now, let us extend the Monte Carlo integration method to a 𝑑 -dimensional integral 𝐼𝑑 =

∫ …∫ 𝑓(𝑥)𝑑𝑥
1

0

1

0
, the expectation of 𝐹𝑑 = ∑ 𝑓(𝑥𝑖)

𝑁
𝑖=1 /𝑁 on uniformly distributed random variable vectors

𝑥1, 𝑥2, … , 𝑥𝑁 becomes

𝐸(𝐹𝑑) = ∫ …∫ 𝑓(𝑥)𝑑𝑥
1

0

1

0

= 𝐼𝑑 .

The variance of the estimator 𝐹𝑑 is 𝜎𝑑
2/𝑁, where 𝜎𝑑

2 is the inherent variance of the integrand function

𝑓(𝑥) . If 𝑓(𝑥) is given, 𝜎𝑑
2 is a constant and therefore, similar to one-dimensional integral, the

convergence rate of Monte Carlo is O(𝑁−
1

2), which is independent of dimensionality.

In summary, compared to the deterministic numerical integration methods, whose convergence

rate is O(𝑁−

𝑑), where is the algorithm-related constant and 𝑑 is the dimension, Monte Carlo integration

method yields a convergence rate of O(𝑁−
1

2) [4], which can avoid the “curse of dimensionality.”

Moreover, computations on each random sample are independent, which can be carried out in an

embarrassingly parallel manor to harness the power of large-scale parallel and distributed computing

architectures [5, 6].

2.1.2 Importance Sampling

Crude Monte Carlo treats all random samples in an equally important way. In reality, we can

often gain additional knowledge from the application domain, which can be taken advantage to come up

with better estimators. Variance reduction is a procedure of deriving an alternative estimator to obtain a

smaller variance than the crude Monte Carlo estimator and to improve the accuracy of the Monte Carlo

estimates given a certain number of samples. In practical applications, a good estimator leading to million

times more accurate than a bad one is not rarely seen. Some of the popular variance reduction techniques

[1, 3, 4] include stratified sampling, control variates, antithetic variates, and importance sampling. These

variance reduction methods, if appropriately used, can significantly improve the efficiency of Monte

7

Carlo methods in processing and analyzing big data sets. Here, we concentrate on describing the idea of

importance sampling. The details of other variance reduction techniques can be found in [1].

The importance sampling technology is often used in statistical resampling, which reduces

statistical variance by emphasizing the sampling on regions of interest with higher probability. For

example, by introducing a new proposal function 𝑔(𝑥), the original integral 𝐼0−1 = ∫ 𝑓(𝑥)𝑑𝑥
1

0
 can be

rewritten as

𝐼0−1 = ∫
𝑓(𝑥)

𝑔(𝑥)
𝑔(𝑥)𝑑𝑥

1

0

= ∫
𝑓(𝑥)

𝑔(𝑥)
𝑑𝐺(𝑥)

1

0

,

where 𝐺(𝑥) is a cumulative density function (CDF). 𝑓(𝑥)/𝑔(𝑥) is called the likelihood ratio. With

random samples drawn from a proposal distribution whose CDF is 𝐺(𝑥) instead of sampling from a

uniform distribution, the variance of the importance sampling estimator 𝐹𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 becomes

𝑉𝑎𝑟(𝐹𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔) = ∫ (
𝑓(𝑥)

𝑔(𝑥)
− 𝐸(𝐹))

2

𝑑𝐺(𝑥)
1

0

.

A good likelihood ratio
𝑓(𝑥)

𝑔(𝑥)
 close to 𝐸(𝐹) can result in a significant statistical variance reduction.

In practice, assuming that we know nothing about the target distribution at the very beginning, we

may have to start from uniform sampling. However, after initial sampling, we have a better estimation of

the target distribution, which results in a more precise proposal function. The resampling process can be

guided by the new proposal function and leads to a better approximation of the target distribution.

2.2 Linear Algebra Operations

Linear algebra operations, such as solving linear systems, constructing low-rank matrix

approximation, and approximating extreme eigenvalues and eigenvectors are pervasive in various

scientific and engineering domains.

8

2.2.1 Linear System Solvers

2.2.1.1 Classes of Linear Systems Solvers

Considering a linear system in the form of

𝐴𝑥 = 𝑏,

where 𝐴 is an 𝑛 × 𝑛 non-singular matrix, 𝑏 is a given constant vector, and 𝑥 is an unknown vector,

existing numerical solvers can be roughly categorized into the following four main groups:

(1) Direct methods [7], such as Gaussian elimination and LU decomposition. These methods transform

the original linear system into a form that can be solved in an easier manner. For example, denoting

𝐴 = 𝑀𝑁 as the LU factorization of 𝐴, the original linear system 𝐴𝑥 = 𝑏 is then transformed into two

relatively easy-to-solve linear systems 𝑀𝑦 = 𝑏 and 𝑁𝑥 = 𝑦. These direct methods are numerically

stable and suitable for cases involving small and dense matrices.

(2) Stationary iterative methods [8], such as Jacobi method and Gauss-Seidel method. These methods

transform 𝐴𝑥 = 𝑏 into a new linear form 𝑥 = 𝐻𝑥 + 𝑐. Based on this, starting with a given initial 𝑥0,

stationary iterative methods update the solution vector by 𝑥𝑘+1 = 𝐻𝑥𝑘 + 𝑐 at each iteration. This

iteration process repeats until convergence is reached. The stationary iterative methods are applicable

to large and sparse systems, but its convergence condition is theoretically limited, such as requiring

the spectral radius of 𝐻 to be less than 1.

(3) Krylov subspace methods, including Conjugate Gradient (CG) method [9], Biconjugate Gradients

(BiCG) method [10], and Generalized Minimal Residual (GMRES) method [11]. In general, Krylov

subspace {𝑟, 𝐴𝑟, 𝐴2𝑟, … , 𝐴𝑠𝑟, … } is constructed to search a good approximation to the solution.

Compared to stationary iterative methods, Krylov subspace methods often yield broader convergence

conditions than stationary iterative methods.

(4) Monte Carlo methods, such as Ulam and von Neumann algorithm [12] and Monte Carlo Almost

Optimal (MAO) [13], which apply stochastic sampling to estimate the solution. Consider a linear

system 𝑥 = 𝐻𝑥 + 𝑐 , Monte Carlo methods first build up a probability matrix 𝑃 with an unbiased

9

estimator 𝑋(𝛾) =
𝐻𝑟0𝑟1𝐻𝑟1𝑟2…𝐻𝑟𝑘−1𝑟𝑘

𝑃𝑟0𝑟1𝑃𝑟1𝑟2…P𝑟𝑘−1𝑟𝑘

𝑐𝑟𝑘
𝑇𝑟𝑘

⁄ , and independent random samples are then spawned to

approximate the solution.

2.2.1.2 Conventional Monte Carlo Solvers

Applying Monte Carlo methods to estimate solutions of linear systems is originally proposed by

Ulam and von Neumann and later described by Forsythe and Leibler in [12]. Considering a linear system

in the form of

𝑥 = 𝐻𝑥 + 𝑏

where 𝐻 is an 𝑛 × 𝑛 non-singular matrix, 𝑏 is a given constant vector, and 𝑥 is the unknown vector, the

fundamental idea of the Monte Carlo linear solver using Ulam-von Neumann algorithm is to construct

Markov chains by spawning terminating random walks. The transition probabilities of the random walks

are defined by a transition matrix 𝑃 satisfying the following transition conditions:

𝑃𝑖𝑗 ≥ 0;

∑𝑃𝑖𝑗 ≤ 1

𝑗

;

𝐻𝑖𝑗 ≠ 0 → 𝑃𝑖𝑗 ≠ 0

and the termination probability 𝑇𝑖 at row 𝑖 is defined as

𝑇𝑖 = 1 − ∑ 𝑃𝑖𝑗𝑗 .

Then, a random walk starting at 𝑟0 and terminating after 𝑘 steps is defined as

𝛾𝑘: 𝑟0 → 𝑟1 → 𝑟2 → ⋯ → 𝑟𝑘

where the integers 𝑟0, 𝑟1, 𝑟2, … , 𝑟𝑘 are the row indices of matrix 𝐻 visited during the random walk. A

random variable 𝑋(𝛾𝑘) defined as

𝑋(𝛾𝑘) =
𝐻𝑟0𝑟1𝐻𝑟1𝑟2 … 𝐻𝑟𝑘−1𝑟𝑘

𝑃𝑟0𝑟1𝑃𝑟1𝑟2 … 𝑃𝑟𝑘−1𝑟𝑘

𝑏𝑟𝑘
/𝑇𝑟𝑘

is an unbiased estimator of component 𝑥𝑟0 in the unknown vector 𝑥. The fundamental idea of Ulam-von

Neumann algorithm is to statistically sample the underlying Neumann series

10

𝐼 + 𝐻 + 𝐻2 + 𝐻3 + ⋯

of the linear system. Denoting || . || to be the L-∞ norm, as specified in the Monte Carlo linear solver

literature [3], if ||𝐻|| < 1, the Neumann series converge to (𝐼 − 𝐻)−1 and, hence, 𝑋(𝛾𝑘) is an unbiased

estimator of (𝐻𝑘𝑏)𝑟0 , while ∑ 𝑋(𝛾𝑘)𝑃(𝛾𝑘
∞
𝑘=1) equals to the solution 𝑥𝑟0. Fig. 2 shows the procedure of

Monte Carlo linear solver using Ulam-von Neumann scheme.

Fig. 2. Monte Carlo linear solver using Ulam-von Neumann scheme

The original Monte Carlo linear solver by Ulam-von Neumann is not efficient and its

convergence relies on the properties of 𝐻 and 𝑃. Later algorithms have also been developed to improve

the Monte Carlo solver, by selecting a better transition matrix 𝑃 or applying alternative transformations

from 𝐴𝑥 = 𝑏 to 𝑥 = 𝐻𝑥 + 𝑏 to accelerate convergence. Wasow [14] modified the scheme by Ulam

and von Neumann by designing another unbiased estimator, which has been shown to have smaller

variance under some special conditions. Halton [15] proposed a sequential Monte Carlo method to

accelerate the Monte Carlo process by taking advantage of the rough estimate of the solution to transform

the original linear system 𝑥 = 𝐻𝑥 + 𝑏 to a new system 𝑦 = 𝐻𝑦 + 𝑑, where ||𝑑|| < ||𝑏||. Dimov et

al. [16, 17] developed an accelerating Monte Carlo scheme to control the convergence of the Monte Carlo

algorithm for different unknown elements with different relaxation parameters, which can increase the

1st: 1 4 4 5 5 4 4 5 5 4

2nd: 1 3 3 5 5 2 2 5 5 4 4 1
3rd: 1 3 3 6 6 3 3 6 6 3
 …
50th: 1 4 4 1 1 3 3 6 6 3

1st: 4 5 5 3 3 1 1 3 3 6 6 3
2nd: 4 1 1 4 4 5 5 4 4 5
3rd: 4 5 5 4 4 5 5 2
…
50th: 4 5 5 2 2 5 5 2 2 5

x1 x4

1st: 5 3 3 1 1 3 3 6 6 3
2nd: 5 4 4 1 1 3 3 5 5 4 4 1
3rd: 5 2 2 5 5 2 2 5 5 4
…
50th: 5 4 4 5 5 4 4 1

x5

1st: 3 1 1 3 3 5 5 4 4 5 5 2 2 5

2nd: 3 5 5 2 2 5 5 2 2 5 5 2
3rd: 3 6 6 3 3 6 6 3

…
50th: 3 1 1 3 3 6 6 3 3 6 6 3

1st: 6 3 3 5 5 2 2 5
2nd: 6 3 3 6 6 3
3rd: 6 3 3 1 1 3 3 5 5 2
…
50th: 6 3 3 5 5 4 4 5

x3 x6

Random Walks

1st: 2 5 5 4 4 5 5 4 4 5

2nd: 2 5 5 2 2 5 5 4 4 5

3rd: 2 5 5 3 3 5 5 2 2 5 5 4

 …
50th: 2 5 5 2 2 5 5 4 4 5

x2

Matrix H

Transition Matrix Termination
Probability Ti

An unbiased estimator

1

11

efficiency of the random walk estimators. Tan [18] studied the antithetic variates techniques for variance

reduction in Monte Carlo linear solvers. Srinivasan and Aggarwal [19] used non-diagonal splitting to

improve the Monte Carlo linear solvers. Moreover, for applications with large linear systems, Sabelfeld

and Mozartova [20] designed a sparsified randomization algorithm by using a sparse, random matrix 𝐺,

which is an unbiased estimator of 𝐻 , to replace the original matrix 𝐻 during the sampling process.

Furthermore, Mascagni and Karaivanova [21] investigated the usage of quasirandom numbers in the

Monte Carlo solver.

Compared to the deterministic linear solvers, the Monte Carlo linear solvers have several

uniquely attractive advantages in handling extremely large coefficient matrices [153,154]. First of all, the

Monte Carlo linear solvers are based on sampling, which do not need to access all elements in 𝐴 at every

iteration step. This is particularly suitable for applications such as large-scale sensor networks where

every element in 𝐴 is available for access but getting the complete picture of the matrix 𝐴 is costly or

practically infeasible. This is also helpful for handling incomplete or imperfect data. Secondly, random

walks in the Monte Carlo linear solvers can be carried out independently in a distributed manner, which is

favorable for the nowadays large-scale parallel and distributed processing platforms. Thirdly, the Monte

Carlo linear solvers can obtain a quick approximation to solutions with low resolution. Fourthly, random

walks in the Monte Carlo linear solvers have little memory requirements and the random walk algorithm

is scalable with the size of the matrices. Finally, for applications interested in only a few elements in the

unknown vector, using the Monte Carlo linear solvers based on Ulam-von Neumann algorithm can

eliminate unnecessary computations for other elements in the unknown vector.

2.2.2 Constructing Low-rank Matrix Approximations

2.2.2.1 Low-rank Matrix Approximations

Considering an 𝑚 × 𝑛 matrix 𝐴 with rank 𝑟 , the optimal 𝑘-rank (𝑘 ≤ 𝑟) approximation 𝐴𝑘 of

matrix 𝐴 yields minimum approximation error among all possible 𝑚 × 𝑛 matrices of rank 𝑘 [7], i.e.,

12

‖𝐴 − 𝐴𝑘‖𝐹
2 = 𝑚𝑖𝑛

 𝑟𝑎𝑛𝑘(𝑋)=𝑘
‖𝐴 − 𝑋‖𝐹

2 .

Within controllable approximation error, a good low-rank approximation of a large matrix can reduce

storage requirement and accelerate matrix operations such as matrix-vector or matrix-matrix

multiplications. If 𝐴 is a matrix representing data affinity in a large dataset, low-rank approximation can

be used for dimension reduction or noise elimination. As a result, constructing low-rank approximations

of large matrices plays a central role in many data analytic applications [1, 22, 23, 24, 25], such as

principle component analysis, compressed sensing, data compression, manifold learning, and matrix

completion.

The optimal 𝑘 -rank approximation 𝐴𝑘 can be straightforwardly obtained by computing full

Singular Value Decomposition (SVD) and truncating it by selecting the dominant singular values and

their corresponding singular vectors such that

𝐴𝑘 = ∑𝜎𝑖𝑢𝑖𝑣𝑖
𝑇

𝑘

𝑖=1

,

where 𝑘 ≤ 𝑟, 𝜎1, 𝜎2, … , 𝜎𝑘 are the singular values of 𝐴 in non-increasing order, and 𝑢1,⋯ , 𝑢𝑘 and

𝑣1,⋯ , 𝑣𝑘 are the corresponding left and right singular vectors, respectively. Here, by tuning the value of

𝑘, the low-rank matrix approximation error measured by Frobenius norm can be controlled by

‖𝐴 − 𝐴𝑘‖𝐹
2 = ∑ 𝜎𝑖

2

𝑟

𝑖=𝑘+1

.

2.2.2.2 Fast Monte Carlo methods for Low-rank approximation

Numerically computing the full SVD of a matrix when both 𝑚 and 𝑛 are large is often

prohibitively computationally costly as well as memory intensive. As the efficient alternatives,

randomized algorithms to approximate SVD have attracted great interest recently and become competitive

for rapid low-rank approximations of large matrices [22, 26, 27, 28]. Instead of passing over the large

matrix in full SVD, the randomized SVD algorithms focus on efficiently sampling the important matrix

elements. Many sampling strategies, including uniform column sampling (with or without replacement)

13

[29, 30], diagonal sampling or column-norm sampling [31], sampling with 𝑘-means clustering [32], and

Gaussian sampling [33], have been proposed. As a result, compared to full SVD, randomized SVD

methods are memory efficient and can often obtain low-rank approximation in a significantly faster way.

Nevertheless, most of these randomized SVD algorithms require the rank value 𝑘 to be given as

an input parameter in advance. In many practical applications, 𝑘 is unknown beforehand but is of great

importance to the accuracy of the solutions. In general, underestimating 𝑘 can introduce unacceptable

large error in the low-rank approximation while overestimating 𝑘 can lead to unnecessary computational

and memory costs. Without prior knowledge of the distribution of the singular values, in practice, it is not

uncommon to re-run fast Monte Carlo methods many times until a good value of 𝑘 is determined, which

is a waste of computational resources.

2.2.3 Approximating Extreme Eigenvalues and Eigenvectors

2.2.3.1 Extreme Eigenvalues and Eigenvectors

Calculating the extreme eigenvalues/eigenvectors of a matrix is often required in many fields of

science and engineering. An eigenvector 𝑢 of an 𝑛 × 𝑛 matrix 𝐴 is a vector that satisfies

𝐴𝑢 = 𝜆𝑢,

where 𝜆 is an eigenvalue of matrix 𝐴. A few of the largest or smallest eigenvalues and the corresponding

eigenvectors are called extreme eigenvalues and eigenvectors. In particular, the dominant eigenvalue of

matrix 𝐴 refers to the eigenvalue with the largest absolute value.

2.2.3.2 Power method for Extreme Eigenvalues/Eigenvectors

Let 𝜆1, 𝜆2, … , 𝜆𝑛, (|𝜆1| ≥ |𝜆2| ≥,… ,≥ |𝜆𝑛|) be eigenvalues of matrix 𝐴 of order 𝑛 and 𝑣1, 𝑣2, …,

𝑣𝑛 the corresponding eigenvectors. The direct method of calculating extreme eigenvalues and

eigenvectors is to obtain the eigenvalues from the polynomial equation 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0, and then the

eigenvectors can be computed by solving each linear system (𝐴 − 𝜆𝑖𝐼)𝑢𝑖 = 0 accordingly. However, this

procedure is not practical for large matrices, due to its high computational cost and memory requirement.

14

To handle a very large, sparse matrix, one of the most popular methods is power method [34].

Starting from a random vector 𝑥0, the power method is described by the power iteration

𝑥𝑖+1 = 𝐴𝑥𝑖 ,

which eventually converges to the dominant eigenvalue and eigenvector [7]. In general, normalizing 𝑥𝑖+1

to the unit norm is carried out to avoid a vector of large magnitude. The power method has been popularly

used in a variety of real-life applications, which is regarded as the only feasible method with least

memory requirement when the matrix is very large and sparse. For example, the power method is used in

Google’s PageRank algorithm to rank webpages in the Internet in their search engine results [35]; Twitter

employs the power method to recommend “who to follow” to its users [36]; by exploring the graph

constructed via content and link features, the power iteration is also applied to calculate the trust vector as

the stationary distribution vector of the graph to fight spams [37].

Similarly, under the assumption of the existence of (𝐴 − 𝜇𝐼)−1, the inverse iteration [7] employs

𝑥𝑖+1 = (𝐴 − 𝜇𝐼)−1𝑥𝑖 to approximate the eigenvector corresponding to eigenvalue closest to 𝜇, where 𝐼

is the identity matrix. Typically, when 𝜇 is set to 0, the resulting vector approximates the eigenvector

corresponding to the eigenvalue with smallest magnitude.

One of the main disadvantages in the power method is that its convergence speed is governed by

the eigengap between the first two largest eigenvalues 𝜆1 and 𝜆2 of 𝐴 in absolute values. If |𝜆2| is very

close to |𝜆1|, a large number of power iterations are often needed to reach convergence, even for a small

matrix. This is particularly unfavorable for large matrices where passing over all elements is costly.

2.3 Parallelism in Matrix Computations

Implementations of large-scale linear algebra, including matrix-vector multiplication, matrix-

matrix multiplication, QR decomposition, and Singular Value Decomposition (SVD), require fully taking

advantage of modern parallel and distributed computing paradigms to achieve good performance. For

15

instance, General Purpose Graphics Process Units (GPGPU), Intel Xeon Phi, and Cloud Distributed

Systems (Fig. 3).

GPGPU Intel Xeon Phi Cloud Distributed Systems

Fig. 3. Modern parallel/distributed computing paradigms/architectures

Many high-performance linear algebra libraries are available to increase application performance

on specific hardware architecture. For instance, to support linear algebra computations on GPU, CUBLAS

(CUDA Basic Linear Algebra Subroutines) [38] contains the GPU-accelerated functions of basic dense

matrix operations. Complementary to CUBLAS, CULA [39] is an extended linear algebra library

provides high-level equivalent routines of LAPACK over CUDA runtime, MAGMA library [40] contains

advanced matrix decompositions functions, and CUSPARSE [41] is a library for sparse matrix operations.

Moreover, on multi-core CPUs and Intel Xeon Phi, MKL (Math Kernel Library) [121] is widely used to

accelerate linear algebra routines. Furthermore, on distributed-memory systems, PBLAS (Parallel Basic

Linear Algebra Subprograms) [146] and ScaLAPACK (Scalable Linear Algebra PACKage) [147] are

popular libraries used in many parallel computing applications.

 With the growing size of large matrices in linear algebra operations, efficiently implementing

large-scale matrix computations on the emerging big data platforms are of primary interest nowadays. For

example, Fig. 4 shows the flowchart of a QR decomposition implementation on a tall-and-skinny matrix

using MapReduce [42, 43] in an uneven, distributed fashion, which achieves load balancing and has a

clear performance advantage over the classic Householder QR algorithm.

16

H
T
H

Distributed

H
H

T

R
-1

R

H2

H4

H3

H1

H4
T

H1
T

H2
T

H3
T

Q1H1

H * R
-1

H
T
 * H

H2

H3

H4

Cholesky

Decomposition

Q2

Q3

Q4

R

H
Q

Tall

and

Skinny

H

Distributed

H

Distributed

Q
Q

M
a
p

S
h
u

ff
le

R
e

d
u
c
e

M
a
p

R
e

d
u
c
e

Fig. 4. The computation of a QR decomposition of a “Tall-and-Skinny,” dense matrix 𝐻

2.4 Numerical Verification Techniques

As the demands on modern linear algebra applications created by the latest development of high-

performance computing (HPC) architectures continue to grow, so does the likelihood that they are

vulnerable to faults. Soft faults in computer systems, defined as intermittent events that corrupt the data

being processed, are among the most worrying, particularly when the computation is carried out in a low-

voltage computing environment. For example, the 2,048-node ASC Q supercomputer at Los Alamos

National Laboratory reports an average of 24.0 board-level cache tag parity errors and 27.7 CPU failures

per week [44]; the 131, 072-CPU BlueGene/L supercomputer at Lawrence Livermore National

Laboratory experiences one soft error in its L1 cache every 4–6 hours [45]; more recently, a field study on

Google’s servers reported an average of 5 single bit errors occur in 8 Gigabytes of RAM per hour using

the top-end error rate [46]. The reliability of computations on HPC systems can suffer from soft errors

that occur in memory, cache, as well as microprocessor logic [47], and thus produce potentially incorrect

results in a wide variety of ways. Therefore, the appropriate approaches to remedy the consequences of

soft errors for certain linear algebra applications are needed.

17

Matrix-matrix multiplication is one of the most fundamental numerical operations in linear

algebra. Many important linear algebraic algorithms, including linear solvers, least squares solvers, matrix

decompositions, factorizations, subspace projections, and eigenvalue/singular values computations, rely

on the casting the algorithm as a series of matrix-matrix multiplications. This is partly because matrix-

matrix multiplication is one of the level-3 Basic Linear Algebra Subprograms (BLAS) [48, 49, 50].

Efficient implementation of the BLAS remains an important area for research, and often computer

vendors spend significant resources to provide highly optimized versions of the BLAS for their machines.

Therefore, if a matrix-matrix multiplication can be carried out free of faults, the linear algebraic

algorithms that spend most of their time in matrix-matrix multiplication can themselves be made

substantially fault-tolerant [51]. Two relevant algorithms from the literature for error detection in matrix-

matrix multiplication are described below.

2.4.1 The Huang-Abraham Scheme

The Huang and Abraham scheme [52] is an algorithm-based fault tolerance (ABFT) method that

simplifies detecting and correcting errors when carrying out matrix-matrix multiplication operations.

This is slightly different from the matrix product verification problem. The fundamental idea of the

Huang-Abraham scheme is to address the fault detection and correction problem at the algorithmic level

by calculating matrix checksums, encoding them as redundant data, and then redesigning the algorithm to

operate on these data to produce encoded output. Compared to the traditional fault tolerant techniques,

such as checkpointing [53], the overhead of storing additional checksum data in the Huang-Abraham

scheme is small, particularly when the matrices are large. Moreover, no global communication is

necessary in the Huang-Abraham scheme [11]. The Huang and Abraham scheme forms the basis of many

subsequent checking schemes, and has been extended for use in various HPC architectures [128,129,130].

Fig. 5 illustrates the Huang and Abraham scheme [52] for detecting faults in matrix-matrix

multiplication. First of all, column sums for 𝐴 and row sums for 𝐵 are generated and are added to an

augmented representation of 𝐴 and 𝐵 . These are treated as particular checksums in the subsequent

18

multiplication. Then, multiplication of the extended matrices produces the augmented matrix for 𝐶 (Fig. 5

(a)) where the checksums can be readily compared. Mismatches in the row and column checksums

indicate an element fault in matrix product, 𝐶 (Fig. 5 (b)).

=xA B C

(a): Generation of column checksum for 𝐴 and row checksum for 𝐵 and multiplication of the extended matrices to

produce the checksum matrix for 𝐶

x

Matrix Element Checksum Mismatch x Fault

(b): Mismatches in the row and column checksums indicate an element fault in matrix product

Fig. 5. The Huang-Abraham scheme for detecting faults in matrix-matrix multiplication

However, there are certain patterns of faults undetectable by the Huang-Abraham scheme. Here is

a simple 2 × 2 example to illustrate such an undetectable pattern.

Consider the matrices

𝐴 = [
2 3
3 4

] , 𝐵 = [
1 −6
1 6

] , 𝐶 = [
5 6
7 6

].

Clearly 𝐴 × 𝐵 = 𝐶 holds in this example. Then we use the Huang-Abraham scheme to calculate the

column checksum for 𝐴 and row checksum for 𝐵 and we can get

𝐴𝐹 = [
2 3
3 4
5 7

] and 𝐵𝐹 = [
1 −6 −5
1 6 7

].

Then

19

𝐴𝐹 × 𝐵𝐹 = [
5 6 11
7 6 13
12 12 24

] = 𝐶𝐹 .

However, if there is a fault during the computation of 𝐶 which causes the swap between the first and

second column, an erroneous result matrix 𝐶′ = [
6 5
6 7

] is generated by swapping columns of 𝐶. Column

or row swapping, usually caused by address decoding faults [131], is a commonly observed memory fault

pattern [132]. The problem is that the checksum matrix of 𝐶′ becomes 𝐶′𝐹 = [
6 5 11
6 7 13
12 12 24

], where both

the row and column checksums match those of the true product of 𝐴 × 𝐵. Consequently, the Huang-

Abraham scheme fails to detect this fault.

The Huang-Abraham scheme can be viewed as a linear constraint satisfaction problem (CSP),

where the variables are the 𝑛2 entries in the resulting matrix, the constraints are the 2𝑛 row and column

checksums, and the 2𝑛 × 𝑛2 coefficient matrix in the underdetermined linear CSP system equation

specifies the selection of row or column elements, as shown in Fig. 6. Clearly, a result matrix, 𝐶, that

does not satisfy the CSP equations indicates errors in 𝐶 detectable by the Huang-Abraham scheme. The

unique, correct result matrix, 𝐶, satisfies the CSP equations. Nevertheless, other possible result matrices

satisfying the CSP equations are the fault patterns undetectable by the Huang-Abraham scheme. Only

when at least 𝑛2 constraints with different element selection are incorporated so that the rank of the

coefficient matrix in the CSP equation is 𝑛2, can the undetectable fault patterns be eliminated. However,

in this case, it is equivalent to simply checking every element in 𝐶.

Fig. 6. Underdetermined CSP system in the Huang-Abraham Scheme

20

It is important to notice that there are an infinite number of existing fault patterns that satisfy the

checksum constraints and thus are undetectable by the Huang-Abraham scheme, even in the above simple

2 × 2 example (the rank of the CSP coefficient matrix is 3). Moreover, as dimension, 𝑛, increases, the

number of checksum constraints increases only linearly but the number of elements in a matrix has

quadratic growth. Therefore, the undetectable patterns in Huang-Abraham scheme increase dramatically

with 𝑛. As a result, for multiplications in large matrices, fault detection methods based on the Huang-

Abraham scheme can generate false positive results for a large number of circumstances.

2.4.2 The Freivalds’ Algorithm

The fault detection methods based on the Huang-Abraham scheme are deterministic algorithms.

With the tradeoff of random uncertainty, Freivalds [54] showed that a probabilistic machine can verify the

correctness of matrix product faster than direct recalculation. The procedure of the corresponding method,

later named Freivalds’ algorithm (Algorithm 2.1), is described as follows.

Algorithm 2.1: Freivalds’ Algorithm

Step 1. Step 1. Randomly sample a vector 𝜔 ∈ {0, 1}𝑛 with probability ½ of 0 or 1.

Step 2. Step 2. Calculate the projection of C onto 𝜔: 𝐶𝜔 = 𝐶 × 𝜔.

Step 3. Calculate the projection of the product 𝐴 × 𝐵 onto 𝜔: 𝐴𝐵𝜔 = 𝐴 × (𝐵 × 𝜔).

Obviously, if 𝐴 × 𝐵 = 𝐶, 𝐶𝜔 = 𝐴𝐵𝜔 always holds. Freivalds proved that when 𝐴 × 𝐵 ≠ 𝐶, the

probability of 𝐶𝜔 = A𝐵𝜔 is less than or equal to 1/2. The runtime of the above procedure is 𝑂(𝑛2) with

an implied multiplier of 3, as it is comprised of three matrix-vector multiplications. This is an upper

bound as one can perhaps optimize the evaluation of 𝐵𝜔 and 𝐶𝜔. By iterating the Freivalds’ algorithm 𝑘

times, the runtime becomes 𝑂(𝑘𝑛2) and the probability of a false positive becomes less than or equal to

2−𝑘, according to the one-sided error. More generalized forms of Freivalds’ algorithm have also been

developed, mainly based on using different sampling spaces [133,134,135,136]. Given at most 𝑝

erroneous entries in the resulted matrix product, Gasieniec, Levcopoulos, and Lingas extended Freivalds'

algorithm to one with correcting capability running in 𝑂(√𝑝𝑛2𝑙𝑜𝑔(𝑛)𝑙𝑜𝑔(𝑝)) time [137].

21

CHAPTER III

MONTE CARLO METHODS FOR LINEAR SYSTEMS SOLVERS

3.1 Convergence Analysis of Ulam-von Neumann Algorithm

The fundamental idea behind conventional Monte Carlo solvers as introduced in Chapter II, is to

construct Markov chains based on random walks to estimate the underlying Neumann series

𝐼 + 𝐻 + 𝐻2 + 𝐻3 + …

to evaluate solutions of the linear systems.

As pointed out in [3], if ‖𝐻‖ > 1, the Monte Carlo method breaks down. Nevertheless, it is well

known that the necessary and sufficient condition for the Neumann series to converge is 𝜌(𝐻) < 1,

where 𝜌(𝐻) is the spectral radius of 𝐻. Proposition 3.1 shows that ‖𝐻‖ < 1 is a stricter condition than

𝜌(𝐻) < 1. Therefore, there exists a family of matrices whose corresponding Neumann series converge

but that the Monte Carlo linear solver cannot converge.

Proposition 3.1. For an 𝑁 × 𝑁, nonsingular matrix 𝐻, 𝜌(𝐻) ≤ ‖𝐻‖.

Proof. Let 𝜆 be an eigenvalue of 𝐻 and 𝑦 the corresponding eigenvector. Thus 𝜆𝑦 = 𝐻𝑦, and ‖𝜆𝑦‖ =

 ‖𝜆‖‖𝑦‖ = ‖𝐻𝑦‖ ≤ ‖𝐻‖‖𝑦‖ . Finally, ‖𝜆‖ ≤ ‖𝐻‖ for all eigenvalues of 𝐻 and 𝜌(𝐻) ≤ ‖𝐻‖ , since

𝜌(𝐻) is the largest absolute value of the eigenvalues of 𝐻.

3.1.1 Suggestive Examples

To investigate the condition for convergence of conventional Monte Carlo linear solvers, we start

considering a set of suggestive examples with 2 × 2 matrices (Table 1) to study the behavior of the Monte

Carlo linear solver using Ulam-von Neumann algorithm [153]. We find that although the Monte Carlo

solver is based on sampling the Neumann series, the convergence of Neumann series is not a sufficient

condition for the convergence of the Monte Carlo solver. Actually, properties of 𝐻 are not the only

22

factors determining the convergence of the Monte Carlo solver; the underlying transition probability

matrix 𝑃 plays an important role.

TABLE 1

Behavior of the Monte Carlo Linear Solver using Ulam-von Neumann Algorithm in 6 Cases of 2 × 2 Matrices

under Different Conditions and Transition Matrices

Case 𝐻 and 𝑃 Conditions Converged? 𝑉𝑎𝑟 (∑𝑋(𝛾𝑘)

𝑘

)

1

𝐻 = [
0.1 0.3
0.3 −0.05

]

𝑃 = [
0.1 0.3
0.3 0.05

]

‖𝐻‖ < 1

𝜌(𝐻) < 1

𝜌(𝐻+) < 1

𝜌(𝐻∗) < 1

Yes

2

𝐻 = [
0.1 0.3
0.3 −0.05

]

𝑃 = [
0.009 0.891
0.8 0.1

]

‖𝐻‖ < 1

𝜌(𝐻) < 1

𝜌(𝐻+) < 1

𝜌(𝐻∗) > 1

No

3

𝐻 = [
0.8 0.35
0.1 −0.01

]

𝑃 = [
0.8 0.1
0.7 0.2

]

‖𝐻‖ > 1

∑ |𝐻𝑖𝑗|
𝑁
𝑗=1 > 1

for some but not

all 𝑖

𝜌(𝐻) < 1

𝜌(𝐻+) < 1

𝜌(𝐻∗) < 1

Yes

4

𝐻 = [
0.8 0.35
0.1 −0.01

]

𝑃 = [
0.1 0.8
0.7 0.2

]

‖𝐻‖ > 1

∑ |𝐻𝑖𝑗|
𝑁
𝑗=1 > 1

for some but not

all 𝑖
𝜌(𝐻) < 1

𝜌(𝐻+) < 1

𝜌(𝐻∗) > 1

No

23

TABLE 1 Continued

Case 𝐻 and 𝑃 Conditions Converged? 𝑉𝑎𝑟 (∑𝑋(𝛾𝑘)

𝑘

)

5

𝐻 = [
0.4012 0.5305
0.5305 −0.7023

]

𝑃 = [
0.3306 0.5694
0.3303 0.5697

]

‖𝐻‖ > 1

∑ |𝐻𝑖𝑗|
𝑁
𝑗=1 > 1

for some but not

all 𝑖
𝜌(𝐻) < 1

𝜌(𝐻+) > 1

𝜌(𝐻∗) > 1

No

6

𝐻 = [
0.3968 −0.7162

−0.7162 −0.6226
]

𝑃 = [
0.2565 0.6435
0.5350 0.3650

]

‖𝐻‖ > 1

∑ |𝐻𝑖𝑗|
𝑁
𝑗=1 > 1

for all i

𝜌(𝐻) < 1

𝜌(𝐻+) > 1

𝜌(𝐻∗) > 1

No

One can find that in all of these six suggestive cases in Table 1, the 𝐻 matrices satisfy the spectral

radius condition where 𝜌(𝐻) < 1; however, the Monte Carlo linear solver does not converge in all of

these cases. Hence, it is clear that the convergence of the underlying Neumann series is not a sufficient

condition for the Monte Carlo linear solver to converge. More interestingly, cases 1 and 2 use the same 𝐻

matrix where ||𝐻|| < 1 but different transition matrices 𝑃. The Monte Carlo linear solver converges in

case 1 but diverges in case 2, indicating that the selection of transition matrix 𝑃 is important. If 𝑃 is

selected improperly, the Monte Carlo linear solver may diverge even if ||𝐻|| < 1 holds. Furthermore, the

𝐻 matrix in case 3 does not satisfy condition ||𝐻|| < 1, but the Monte Carlo linear solver does not break

down, which disagrees with the analysis in [3] that “if ||𝐻|| > 1, the Monte Carlo method breaks down.”

The phenomenon in case 3 suggests that there are some situations when ||𝐻|| > 1 but 𝜌(𝐻) < 1 that the

Monte Carlo linear solver can still converge, i.e., ||𝐻|| < 1 is not a necessary condition for convergence

in the Monte Carlo linear solver. Similar to the situation in cases 1 and 2, case 4 has the same 𝐻 matrix as

case 3 but different transition matrix 𝑃, which results in divergence. Cases 5 and 6 show the behavior of

24

the Monte Carlo linear solver under 𝜌(𝐻+) > 1 when ∑ |𝐻𝑖𝑗|
𝑁
𝑗=1 > 1 for some but not all 𝑖 and

∑ |𝐻𝑖𝑗|
𝑁
𝑗=1 > 1 for all 𝑖, respectively.

3.1.2 A Necessary and Sufficient Condition

We consider a Monte Carlo linear solver as converging if the variance of the estimator ∑ 𝑋(𝛾𝑘)𝑘 ,

𝑉𝑎𝑟 (∑𝑋(𝛾𝑘)

𝑘

) = ∑𝑉𝑎𝑟(𝑋(𝛾𝑘))

𝑘

is bounded as 𝑘 → ∞, provided that every random walk 𝛾𝑘 is independent. We first investigate the impact

of selecting a transition matrix 𝑃 on the convergence of the Monte Carlo linear solver. For convenience,

we state what mathematical results are needed as lemmas. Also note that 𝑉𝑎𝑟(𝑋(𝛾𝑘)) diverging as 𝑘 →

∞, implies the same of 𝑉𝑎𝑟(∑ 𝑋(𝛾𝑘)𝑘). Hence, when we study the convergence/divergence behavior of

the Monte Carlo linear solver in the theorems, we only consider 𝑉𝑎𝑟(𝑋(𝛾𝑘)) instead of 𝑉𝑎𝑟(∑ 𝑋(𝛾𝑘)𝑘).

Without loss of generality and for simplicity, we also assume that the Markov chains in the Monte Carlo

linear solver are ergodic and that every element in the constant vector 𝑏 in the linear system satisfies 𝑏𝑖 ≠

0, for all 𝑖.

By taking both 𝐻 and 𝑃 into consideration, we derive a necessary and sufficient condition for

convergence of the Ulam–von Neumann Monte Carlo method, as shown in Theorem 3.3. Lemma 3.2 is

used in the proof of Theorem 3.3.

Lemma 3.2. Let 𝐻 be an 𝑁 × 𝑁 nonsingular matrix and 𝑏 be a nonzero vector. If 𝜌(𝐻) < 1 ,

 ∑ (𝐻𝑘𝑏)
𝑟0

2∞
𝑘=0 is bounded.

Proof: For any 휀 > 0, a matrix 𝑅 is generated such that

𝑅 =
𝐻

𝜌(𝐻) + 휀
.

Due to that 0 < 𝜌(𝐻) < 1, it is easy to show that 𝜌(𝑅) =
𝜌(𝐻)

𝜌(𝐻)+𝜀
< 1. Then,

25

lim
𝑘→∞

𝑅𝑘 = 0.

Or, equivalently, this indicates that a natural number 𝐾 exists such that ∀𝑘 > 𝐾, ‖𝑅𝑘‖ < 1 .

Accordingly,

∀𝑘 > 𝐾, ‖𝑅𝑘‖ = ‖(
𝐻

𝜌(𝐻) + 휀
)
𝑘

‖ =
‖𝐻𝑘‖

(𝜌(𝐻) + 휀)𝑘
< 1

That is,

∀𝑘 > 𝐾, ‖𝐻𝑘‖ < (𝜌(𝐻) + 휀)𝑘 .

Therefore, ∀𝑘 > 𝐾,

|(𝐻𝑘𝑏)
𝑟0

 | ≤ ‖𝐻𝑘𝑏‖ ≤ ‖𝐻𝑘‖‖𝑏‖ < (𝜌(𝐻) + 휀)𝑘‖𝑏‖

and

(𝐻𝑘𝑏)
𝑟0

2
≤ ‖𝐻𝑘𝑏‖

2
< (𝜌(𝐻) + 휀)2𝑘‖𝑏‖2.

In particular, since 휀 can be any positive number, we can set 휀 = 𝑐
1

2 − 𝜌(𝐻) > 0, where 𝑐 is a positive

number such that 𝜌(𝐻)2 < 𝑐 < 1. Then

(𝐻𝑘𝑏)
𝑟0

2
< 𝑐𝑘‖𝑏‖2, ∀𝑘 > 𝐾

Hence,

∑(𝐻𝑘𝑏)
𝑟0

2
∞

𝑘=0

= ∑(𝐻𝑘𝑏)
𝑟0

2
𝐾

𝑘=0

+ ∑ (𝐻𝑘𝑏)
𝑟0

2
∞

𝑘=𝐾+1

≤ ∑(𝐻𝑘𝑏)
𝑟0

2
𝐾

𝑘=0

+ ∑ 𝑐𝑘‖𝑏‖2

∞

𝑘=𝐾+1

= ∑(𝐻𝑘𝑏)
𝑟0

2
𝐾

𝑘=0

+ ‖𝑏‖2 ∑ 𝑐𝑘

∞

𝑘=𝐾+1

= ∑(𝐻𝑘𝑏)
𝑟0

2
𝐾

𝑘=0

+
‖𝑏‖2𝑐𝐾+1

1 − 𝑐

Since ∑ (𝐻𝑘𝑏)
𝑟0

2𝐾
𝑘=0 has finite number of terms, and

‖𝑏‖2𝑐𝐾+1

1−𝑐
 is a constant, ∑ (𝐻𝑘𝑏)

𝑟0

2∞
𝑘=0 is bounded.

26

Theorem 3.3. Given an 𝑁 × 𝑁 nonsingular matrix 𝐻 such that 𝜌(𝐻) < 1, a nonzero vector 𝑏 , and a

transition matrix 𝑃, the necessary and sufficient condition for convergence of the Monte Carlo linear

solver using the Ulam-von Neumann algorithm is 𝜌(𝐻∗) < 1, where 𝐻∗ is an 𝑁 × 𝑁 matrix such that

𝐻𝑖𝑗
∗ =

𝐻𝑖𝑗
2

P𝑖𝑗
.

Proof. Since

𝑉𝑎𝑟(𝑋(𝛾𝑘)) = 𝐸((𝑋(𝛾𝑘))2) − (𝐸(𝑋(𝛾𝑘)))
2

= ∑ ∑ … ∑ 𝑃𝑟0𝑟1𝑃𝑟1𝑟2 …𝑃𝑟𝑘−1𝑟𝑘
𝑇𝑟𝑘

(
𝐻𝑟0𝑟1𝐻𝑟1𝑟2 …𝐻𝑟𝑘−1𝑟𝑘

𝑏𝑟𝑘

𝑃𝑟0𝑟1𝑃𝑟1𝑟2 …𝑃𝑟𝑘−1𝑟𝑘
𝑇𝑟𝑘

)

2𝑁

𝑟𝑘=1

𝑁

𝑟2=1

𝑁

𝑟1=1

− (𝐻𝑘𝑏)
𝑟0

2

= ∑ ∑ … ∑
𝐻𝑟0𝑟1

2 𝐻𝑟1𝑟2
2 …𝐻𝑟𝑘−1𝑟𝑘

2 𝑏𝑟𝑘
2

𝑃𝑟0𝑟1P𝑟1𝑟2 …𝑃𝑟𝑘−1𝑟𝑘
𝑇𝑟𝑘

𝑁

𝑟𝑘=1

𝑁

𝑟2=1

𝑁

𝑟1=1

− (𝐻𝑘𝑏)
𝑟0

2

= (𝐻∗𝑘𝑏∗)
𝑟0

− (𝐻𝑘𝑏)
𝑟0

2

where 𝑏∗ is a nonzero vector such that 𝑏𝑖
∗ =

𝑏𝑖
2

𝑇𝑖
, and 𝑇𝑖 is the termination probability at row 𝑖, in the Ulam-

von Neumann algorithm. If the 𝑘 random walks are independent, it follows that

𝑉𝑎𝑟 (∑ 𝑋(𝛾𝑘)

∞

𝑘=0

) = ∑ 𝑉𝑎𝑟(𝑋(𝛾𝑘))

∞

𝑘=0

= ∑ ((𝐻∗𝑘𝑏∗)
𝑟0

− (𝐻𝑘𝑏)
𝑟0

2
)

∞

𝑘=0

= ∑(𝐻∗𝑘𝑏∗)
𝑟0

∞

𝑘=0

− ∑(𝐻𝑘𝑏)
𝑟0

2
∞

𝑘=0

Since 𝜌(𝐻) < 1 , Lemma 3.2 implies the second term ∑ (𝐻𝑘𝑏)
𝑟0

2∞
𝑘=0 is bounded. Therefore, whether

𝑉𝑎𝑟(∑ 𝑋(𝛾𝑘)∞
𝑘=0) is bounded depends solely on the first term, ∑ (𝐻∗𝑘𝑏∗)

𝑟0

∞
𝑘=0 , which is bounded if and

only if 𝜌(𝐻∗) < 1. In conclusion, 𝜌(𝐻∗) < 1 is the necessary and sufficient condition for convergence of

the Monte Carlo linear solver using Ulam-von Neumann algorithm.

27

The derived necessary and sufficient condition clarifies the confusions on the convergence of the

Ulam–von Neumann Monte Carlo linear solver [153]. Fig. 7 summarizes the relationship between matrix

𝐻 and the convergence of the Monte Carlo linear solver using Ulam-von Neumann algorithm below,

(1) The convergence of Neumann series is not a sufficient condition for the convergence of Monte Carlo.

(2) The transition matrix 𝑃 plays an important role. An improper selection of transition matrix may result

in divergence even though the condition ||𝐻|| < 1 holds.

(3) If ||𝐻|| < 1 is satisfied, there always exist certain transition matrices that guarantee convergence of

the Monte Carlo linear solver. These transition matrices are trivial to find.

(4) The Monte Carlo linear solver may or may not converge if ||𝐻|| < 1 and 𝜌(𝐻) < 1. If ∑ |𝐻𝑖𝑗|
𝑁
𝑗=1 > 1

for every row 𝑖 in 𝐻 or, more generally, 𝜌(𝐻+) > 1 where 𝐻+ is a nonnegative matrix that 𝐻𝑖𝑗
+ =

|𝐻𝑖𝑗|, the Monte Carlo linear solver cannot converge, regardless how transition matrix 𝑃 is selected.

(5) The sufficient and necessary condition for the Monte Carlo linear solver to converge is 𝜌(𝐻∗) <

1, where 𝐻𝑖𝑗
∗ = 𝐻𝑖𝑗

2 𝑃𝑖𝑗⁄ given 𝐻 and a transition matrix 𝑃.

No transition matrices exist to achieve convergence

Transition matrices exist and trivial to find to achieve Monte Carlo convergence

Monte Carlo may converge, but transition matrices may be hard to find

Fig. 7. Summary of relationship between matrix 𝐻 and convergence in Monte Carlo linear solver using Ulam-von

Neumann algorithm

28

3.1.3 Limitations of Conventional Monte Carlo Solvers

The fundamental mechanism of conventional Monte Carlo solvers is constructing Markov chains

based on random walks to estimate the underlying Neumann series to evaluate solutions of the linear

systems. Therefore, provided that the random walks are based on Markov chains and the estimation is for

the Neumann series, our convergence analysis in this section is applicable to the other conventional

Monte Carlo solvers.

In practice, the general form of a linear system 𝐴𝑥 = 𝑏 is often considered, instead of the form

𝑥 = 𝐻𝑥 + 𝑐. When applying conventional Monte Carlo solvers to the linear system 𝐴𝑥 = 𝑏, it may

face the following difficulties,

(1) Unless 𝐴 is diagonally dominant, not all general 𝐴𝑥 = 𝑏 can be easily recast into 𝑥 = 𝐻𝑥 + 𝑐 with

||𝐻|| < 1 to guarantee that the Monte Carlo solvers converge.

(2) In the case of ||𝐻|| ≥ 1, finding a transition matrix 𝑃 becomes a constraints satisfaction problem

defined as follows:

Variables: {𝑃𝑖𝑗| 𝑖 = 1…𝑁, 𝑗 = 1…𝑁};

Domain: [0,1];

Constraints: 𝑃𝑖𝑗 ≥ 0;∑ 𝑃𝑖𝑗 ≤ 1𝑗 ; 𝐻𝑖𝑗 ≠ 0 → 𝑃𝑖𝑗 ≠ 0; 𝜌(𝐻∗) < 1.

Unfortunately, solving this constraint satisfaction problem can be at least as hard as solving the

original problem of 𝑥 = 𝐻𝑥 + 𝑐 . More seriously, for in the case of 𝜌(𝐻+) > 1 where 𝐻+ is a

nonnegative matrix that 𝐻𝑖𝑗
+ = |𝐻𝑖𝑗|, there exists no transition matrix 𝑃 to make the Monte Carlo

linear solvers converge.

(3) The convergence rate of the conventional Monte Carlo is dominated by || 𝐻 ||. In the case that || 𝐻 ||

is close to 1.0, the convergence of the underlying Neumann series is quite slow.

Therefore, due to the restricted convergence conditions, the applicability of conventional Monte

Carlo solvers using Neumann series to general large-scale systems of linear equations is severely limited.

29

If the convergence condition of Monte Carlo linear solvers can be loosened, a much wider collection of

matrices can be solved by Monte Carlo linear solvers.

3.2 Breakdown-Free Block Conjugate Gradient (BFBCG) Algorithm

Our analysis on the classical Monte Carlo linear solver using Ulam-von Neumann algorithm

indicates its limitation in convergence condition as well as convergence speed in solving general linear

systems. Here, rather than sampling the Neumann series, we focus on developing new Monte Carlo

method to sample Krylov subspace to approximate the solution to the linear system.

3.2.1 Sampling Krylov Subspace

To sample the underlying Krylov subspace of a linear system 𝐴𝑥 = 𝑏 in an efficient way, we

convert the linear system into a block form by appending the right-hand side vector 𝑏 and a Gaussian

matrix 𝛺, such as

𝐴𝑋 = 𝐵

where 𝐵 = [𝑏, 𝛺] is a block matrix containing 𝑠 (𝑠 ≥ 1) multiple right-hand sides. Fig. 8 illustrates the

procedure of converting the original system to a block form.

× =

x bA

× =

X B

A

n

n

n

n s s

x x' b ω

Fig. 8. Expanding a single right-hand side to multiple right-hand sides by supplying Gaussian random vectors

The columns of matrix 𝐵 are expected to be statistically independent vectors, which can explore

the Krylov subspace in a block manner, such that

30

1st random direction: 𝑟0
(0)

, 𝐴𝑟0
(0)

, 𝐴2𝑟0
(0)

, 𝐴3𝑟0
(0)

, …

2nd random direction: 𝑟0
(1)

, 𝐴𝑟0
(1)

, 𝐴2𝑟0
(1)

, 𝐴3𝑟0
(1)

, …

 …

𝑠th random direction: 𝑟0
(𝑠−1)

, 𝐴𝑟0
(𝑠−1)

, 𝐴2𝑟0
(𝑠−1)

, 𝐴3𝑟0
(𝑠−1)

, …

where 𝑟0
(𝑖)

 denotes the 𝑖 th initial residual direction. In fact, using block Krylov subspace has many

attractive features,

(1) A block formulation can potentially accelerate convergence and reduce the total number of passes

over 𝐴, which is particularly favorable in handling large-scale matrices in which a pass over all

elements in 𝐴 is costly.

(2) Block matrix computations can lead to computational efficiency [59, 60, 61] for linear systems

involving very large coefficient matrices. If 𝑠 ≪ 𝑛, the block methods involve a lot of multiplication

operations on “tall-and-skinny” matrices, which can be easily parallelized with Level 3 BLAS

subroutines [62, 63, 64].

(3) Solutions corresponding to multiple right-hand sides can be evaluated simultaneously. This is

particularly useful for applications such as multi-objective optimization [65] being interested in

finding solutions with respect to different right-hand side vectors.

(4) When the right-hand sides are augmented with Gaussian random vectors, extreme

eigenvalues/eigenvectors of the coefficient matrix can be rapidly approximated via Monte Carlo

sampling. These approximate eigenvectors can later be used in the deflation process to further

accelerate convergence speed of the solvers.

3.2.2 BCG and Rank Deficiency

Despite the attractive features, a well-known practical issue of the blocking scheme is the rank

deficiency problem that can lead to block methods breakdown. More specifically, in constructing block

Krylov subspace, inverting block matrices is often needed to evaluate multiple right-hand sides

31

simultaneously. During the iterations, some of these block matrices may lose rank. Consequently,

inverting a block matrix with rank defect is one of the roots of the breakdown problem in block-type

Krylov subspace methods. As a result, breakdown becomes a major cause of numerical instability in

almost every block Krylov subspace method [66, 67, 68, 69, 70]. Although certain work in the literature

[71] indicates that breakdown usually happens with a very small probability in practice, breakdown, if it

actually occurs, may seriously hurt the computational performance. For mission-critical applications, this

is particularly unfavorable.

We use the original Block Conjugate Gradient (BCG) algorithm by O’Leary [69] as an example

to illustrate the rank deficiency problem.

Algorithm 3.1: Original Block Conjugate Gradient (BCG) Algorithm

Input: matrix 𝐴 ∈ ℝ𝑛×𝑛, matrix 𝐵 ∈ ℝ𝑛×𝑠, initial guess 𝑋0 ∈ ℝ𝑛×𝑠 , preconditioner 𝑀 ∈ ℝ𝑛×𝑛, tolerance

𝑡𝑜𝑙 ∈ ℝ, and maximum number of iterations 𝑚𝑎𝑥𝑖𝑡 ∈ ℝ

Output: an approximate solution 𝑋𝑠𝑜𝑙 ∈ ℝ𝑛×𝑠

𝑅0 = 𝐵 − 𝐴𝑋0

𝑍0 = 𝑀𝑅0

𝑃0 = 𝑍0𝛾0

for 𝑖 = 0,… ,𝑚𝑎𝑥𝑖𝑡

𝛼𝑖 = (𝑃𝑖
𝑇𝐴𝑃𝑖)

−1
𝛾𝑖

𝑇(𝑍𝑖
𝑇𝑅𝑖)

𝑋𝑖+1 = 𝑋𝑖 + 𝑃𝑖𝛼𝑖

𝑅𝑖+1 = 𝑅𝑖 − 𝐴𝑃𝑖𝛼𝑖
if converged, then stop.

𝑍𝑖+1 = 𝑀𝑅𝑖+1

𝛽𝑖 = 𝛾𝑖
−1(𝑍𝑖

𝑇𝑅𝑖)
−1

(𝑍𝑖+1
𝑇𝑅𝑖+1)

𝑃𝑖+1 = (𝑍𝑖+1 + 𝑃𝑖𝛽𝑖)𝛾𝑖+1
end

𝑋𝑠𝑜𝑙 = 𝑋𝑖+1

As shown in Algorithm 3.1, 𝑋0 is the initial solution guess and 𝑀 is a symmetric and positive

definite (SPD) preconditioner. 𝑃𝑖 denotes the search directions. 𝛼𝑖 and 𝛽𝑖 are 𝑠 × 𝑠 parameter matrices to

ensure orthogonality of 𝑅𝑖+1 and 𝑃𝑖 as well as conjugacy (𝐴-orthogonality) of 𝑃0, … , 𝑃𝑖+1, respectively. 𝛾𝑖

is an arbitrary non-singular 𝑠 × 𝑠 matrix, which in practice is selected, for example, to orthogonalize 𝑃𝑖 to

decrease round-off errors and to enhance numerical stability [69].

Proposition 3.4 states that the preconditioned residual matrix 𝑍𝑖 and the search matrix 𝑃𝑖 have the

32

same matrix rank as the residual block 𝑅𝑖. Therefore, loss of full rank in 𝑅𝑖 will lead to rank deficiency of

𝑍𝑖 and 𝑃𝑖 during BCG iterations. Consequently, 𝑍𝑖
𝑇𝑅𝑖 and 𝑃𝑖

𝑇𝐴𝑃𝑖 become singular and thus it is

improbable to obtain (𝑍𝑖
𝑇𝑅𝑖)

−1
and (𝑃𝑖

𝑇𝐴𝑃𝑖)
−1

 to evaluate 𝛼𝑖 and 𝛽𝑖 . As a result, BCG breakdown

occurs.

Proposition 3.4. Suppose 𝑅𝑖 is an 𝑛 × 𝑠 residual matrix of rank 𝑟𝑖 (𝑟𝑖 ≤ 𝑠) at the 𝑖th iteration, then

𝑟𝑎𝑛𝑘(𝑃𝑖) = 𝑟𝑎𝑛𝑘(𝑍𝑖) = 𝑟𝑎𝑛𝑘(𝑅𝑖) = 𝑟𝑖,

where 𝑟𝑎𝑛𝑘(∙) denotes the rank of a matrix.

Proof. First, we show that 𝑟𝑎𝑛𝑘(𝑍𝑖) = 𝑟𝑎𝑛𝑘(𝑅𝑖) = 𝑟𝑖. From Algorithm 3.1, matrix 𝑍𝑖 is defined as

𝑍𝑖 = 𝑀𝑅𝑖. Since M is assumed to be SPD, then 𝑟𝑎𝑛𝑘(𝑍𝑖) = 𝑟𝑎𝑛𝑘(𝑅𝑖) = 𝑟𝑖.

Next we show that 𝑟𝑎𝑛𝑘(𝑃𝑖) = 𝑟𝑎𝑛𝑘(𝑅𝑖). The search matrix 𝑃𝑖 is given by

𝑃𝑖 = (𝑍𝑖 + 𝑃𝑖−1𝛽𝑖−1)𝛾𝑖. (1)

Left multiplying (1) by 𝑃𝑖
𝑇𝐴 on both sides, we get

𝑃𝑖
𝑇𝐴𝑃𝑖 = 𝑃𝑖

𝑇𝐴𝑍𝑖𝛾𝑖 + 𝑃𝑖
𝑇𝐴𝑃𝑖−1𝛽𝑖−1𝛾𝑖.

Notice that columns in 𝑃𝑖 are A-orthogonal to 𝑃𝑖−1, i.e., 𝑃𝑖
𝑇𝐴𝑃𝑖−1 = 0, then

𝑃𝑖
𝑇𝐴𝑃𝑖 = 𝑃i

𝑇𝐴𝑍𝑖𝛾𝑖.

Using the basic properties of matrix rank, we can get

𝑟𝑎𝑛𝑘(𝑃𝑖) = 𝑟𝑎𝑛𝑘(𝑃𝑖
𝑇𝐴𝑃𝑖)

= 𝑟𝑎𝑛𝑘(𝑃𝑖
𝑇𝐴𝑍𝑖𝛾𝑖)

≤ 𝑟𝑎𝑛𝑘(𝑍𝑖)

= 𝑟𝑎𝑛𝑘(𝑅𝑖).

(2)

On the other hand, since columns in 𝑅𝑖 are orthogonal to 𝑃𝑖−1, i.e., 𝑅𝑖
𝑇𝑃𝑖−1 = 0, left multiplying both

sides of (1) by 𝑅𝑖
𝑇 and eliminating the zero terms, we obtain

𝑅𝑖
𝑇𝑃𝑖 = 𝑅𝑖

𝑇𝑍𝑖𝛾𝑖 = 𝑅𝑖
𝑇𝑀𝑅𝑖𝛾𝑖.

According to the basic properties of matrix rank again, we have

33

𝑟𝑎𝑛𝑘(𝑃𝑖) ≥ 𝑟𝑎𝑛𝑘(𝑅𝑖
𝑇𝑃𝑖)

 = 𝑟𝑎𝑛𝑘(𝑅𝑖
𝑇𝑀𝑅𝑖𝛾𝑖)

 = 𝑟𝑎𝑛𝑘(𝑅𝑖).

 (3)

Based on (2) and (3), 𝑟𝑎𝑛𝑘(𝑃𝑖) = 𝑟𝑎𝑛𝑘(𝑅𝑖) = 𝑟𝑖 is concluded.

In practice, rank deficiency may be caused by many different reasons, for instances, inappropriate

guess of initial vectors, unbalanced convergence speeds of solutions with respect to multiple right-hand

sides, and accumulation of round-off errors. The possible situations of rank deficiency in BCG are

summarized as follows.

(1) Two or more vector components in the initial block residue 𝑅0 are linearly dependent. For example, if

the multiple right-hand sides in matrix 𝐵 contain linearly dependent vectors and 𝑋0 simply takes zero

vectors as the initial guess, then the initial block residue 𝑅0 will include linearly dependent vectors. In

practice, this breakdown situation can be eliminated by ensuring the linear independence of column

vectors in 𝑅0, such as carefully selecting initial guess 𝑋0. An alternative approach is orthogonalizing

𝑅0 [72] to eliminate the dependent vectors in 𝑅0.

(2) Convergence of one or more vector components in the block residue 𝑅𝑖 . During BCG iterations,

solutions with respect to some right-hand sides may converge faster than the others, which results in

near zero vectors in 𝑅𝑖. This typically happens when the norms of the component vectors in 𝑅0 are

significantly different in magnitude. An obvious approach is to normalize the right-hand sides in 𝐵 so

as to keep the norms of the component vectors of 𝑅0 at a similar scale [71] to hopefully balance the

number of convergence steps for the multiple right-hand sides. Since convergence has already been

achieved in some solutions, removing these solutions and their corresponding residual vectors [69]

not only avoids BCG breakdown, but also eliminates unnecessary numerical computations.

(3) Two or more vector components in the block residue 𝑅𝑖 at the 𝑖 th iteration become linearly

dependent. If one is only interested in a single solution with respect to a specific right-hand side, for

34

example, the multiple right-hand sides block expanded from a single right-hand side, the variable

BCG algorithm [68] by constructing an 𝐴 -orthogonal projector to reduce the block size can

sufficiently address the breakdown problem caused by this factor. Nevertheless, if solutions to all

right-hand sides are of interest, assuming that the right-hand sides of the corresponding linearly

dependent vectors have not converged yet and thus none of the vector components in 𝑅𝑖 are zero,

reducing the block sizes will result in loss of solutions.

3.2.3 The BFBCG Algorithm

We present a simple solution to address the rank deficiency problem in BCG, which results in a

Breakdown Free Block Conjugate Gradient (BFBCG) algorithm (Algorithm 3.2). The fundamental idea

of BFBCG is, in case of the rank of the block search direction vectors being reduced, the parameter

matrices are calculated in the reduced Krylov subspace to minimize the block nonnegative quadratic

function of

𝐹(𝑋) = 𝑡𝑟𝑎𝑐𝑒((𝑋 − 𝑋∗)𝑇𝐴(𝑋 − 𝑋∗)),

where 𝑡𝑟𝑎𝑐𝑒(∙) is the trace of a matrix and 𝑋∗ = 𝐴−1𝐵 is the desired block solution. As a result, BFBCG

avoids estimation of the inverse of a potentially non-full rank matrix and thus addresses the rank

deficiency problem.

Algorithm 3.2: Breakdown-Free BCG (BFBCG) Algorithm

Input: matrix 𝐴 ∈ ℝ𝑛×𝑛, right hand side matrix 𝐵 ∈ ℝ𝑛×𝑠, initial guess 𝑋0 ∈ ℝ𝑛×𝑠, preconditioner 𝑀 ∈
ℝ𝑛×𝑛, tolerance 𝑡𝑜𝑙 ∈ ℝ, and maximum number of iterations 𝑚𝑎𝑥𝑖𝑡 ∈ ℝ

Output: an approximate solution 𝑋𝑠𝑜𝑙 ∈ ℝ𝑛×𝑠

𝑅0 = 𝐵 − 𝐴𝑋0

𝑍0 = 𝑀𝑅0

�̃�0 = 𝑜𝑟𝑡ℎ(𝑍0)

for 𝑖 = 0,… ,𝑚𝑎𝑥𝑖𝑡

 𝑄𝑖 = 𝐴�̃�𝑖

�̃�𝑖 = (�̃�𝑖
𝑇
𝑄𝑖)

−1
(�̃�𝑖

𝑇
𝑅𝑖)

𝑋𝑖+1 = 𝑋𝑖 + �̃�𝑖�̃�𝑖

𝑅𝑖+1 = 𝑅𝑖 − 𝑄𝑖�̃�𝑖
if converged, then stop.

𝑍𝑖+1 = 𝑀𝑅𝑖+1

35

�̃�𝑖 = −(�̃�𝑖
𝑇
𝑄𝑖)

−1
(𝑄𝑖

𝑇𝑍𝑖+1)

�̃�𝑖+1 = 𝑜𝑟𝑡ℎ(𝑍𝑖+1 + �̃�𝑖�̃�𝑖)

end

𝑋𝑠𝑜𝑙 = 𝑋𝑖+1

To illustrate the differences in comparison with the BCG algorithm described in Algorithm 3.1,

the matrix symbols with a “~” notation are used to indicate that the dimension of these matrices may

reduce in case of rank deficiency in BFBCG. New forms of calculating parameter matrices �̃�𝑖 and �̃�𝑖 are

derived based on potentially reduced search subspace. In case of lost rank in search directions or residual

vectors, �̃�𝑖 is designed to ensure that the next residual vectors 𝑅𝑖+1 are orthogonal to search space 𝒫𝑖. A

new form of �̃�𝑖 is derived so that the new search space 𝒫𝑖+1 is conjugate to all previous search spaces

𝒫𝑗 (𝑗 < 𝑖 + 1).

Compared to the original BCG algorithm [69], our BFBCG algorithm has the following major

differences:

(1) Matrix operation 𝑜𝑟𝑡ℎ(∙) is employed for extracting an orthogonal basis �̃�𝑖 ∈ ℝ𝑛×𝑟𝑖 from the search

space 𝒫𝑖. 𝑜𝑟𝑡ℎ(∙) can be efficiently implemented using QR decomposition with column pivoting. In

case of rank deficiency, the dimension of the search space 𝒫𝑖 will be reduced, which avoids the

situations of revisiting the subspace already visited in the BCGAdQ algorithm described in [73].

(2) If rank deficiency occurs at the 𝑖th iteration, �̃�𝑖 and �̃�𝑖 turn into rectangular matrices of size 𝑟𝑖 × 𝑠,

where 𝑟𝑖 is the dimension of search space 𝒫𝑖 at the 𝑖th iteration, while they are restricted as square

matrices in BCG.

(3) Matrices 𝛾𝑖 are no longer necessary in the BFBCG algorithm.

In addition to breakdown avoidance, the BFBCG algorithm maintains several favorable features

in practice. For example, at each iteration, matrix 𝐴 is visited only once. Meanwhile, (�̃�𝑖
𝑇
𝑄𝑖)

−1

calculated in �̃�𝑖 can be reused for computing �̃�𝑖.

We use Theorems 3.5 and 3.10 to justify the derivation of �̃�𝑖 and �̃�𝑖, respectively. Theorem 3.5

shows, in case of rank deficiency at the 𝑖th iteration in BFBCG, the rectangular parameter matrix �̃�𝑖

36

ensures that 𝑅𝑖+1 is orthogonal to the search space 𝒫𝑖.

Theorem 3.5. Suppose 𝑅𝑖 loses full rank at the 𝑖th iteration. Let 𝒫𝑖 denote the corresponding search space

with dimension 𝑟𝑖 (𝑟𝑖 < 𝑠). Given matrix �̃�𝑖 ∈ ℝ𝑟𝑖×𝑠 so that

�̃�𝑖 = (�̃�𝑖
𝑇
𝑄𝑖)

−1
(�̃�𝑖

𝑇
𝑅𝑖),

where �̃�𝑖 ∈ ℝ𝑛×𝑟𝑖 consists of orthonormal basis of 𝒫𝑖 and 𝑄𝑖 ∈ ℝ𝑛×𝑟𝑖 denotes the matrix product 𝐴�̃�𝑖, the

next residual matrix 𝑅𝑖+1 derived from �̃�𝑖 is orthogonal to the search space 𝒫𝑖.

Proof. As �̃�𝑖 ∈ ℝ𝑛×𝑟𝑖 is the orthonormal basis of the search space 𝒫𝑖 and 𝑄𝑖 = 𝐴�̃�𝑖 , �̃�𝑖
𝑇
𝑄𝑖 ∈ ℝ𝑟𝑖×𝑟𝑖 is

nonsingular. Therefore, there exists a matrix �̃�𝑖 ∈ ℝ𝑟𝑖×𝑠 such that

�̃�𝑖 = (�̃�𝑖
𝑇
𝑄𝑖)

−1
(�̃�𝑖

𝑇
𝑅𝑖).

(4)

Since 𝑅𝑖+1 is constructed from

𝑅𝑖+1 = 𝑅𝑖 − 𝑄𝑖�̃�𝑖, (5)

in BFBCG, left multiplying (5) by �̃�𝑖
𝑇

, and then by definition of �̃�𝑖 in (4), we can get

�̃�𝑖
𝑇
𝑅𝑖+1 = �̃�𝑖

𝑇
𝑅𝑖 − �̃�𝑖

𝑇
𝑄𝑖�̃�𝑖

= �̃�𝑖
𝑇
𝑅𝑖 − �̃�𝑖

𝑇
𝑄𝑖 (�̃�𝑖

𝑇
𝑄𝑖)

−1
�̃�𝑖

𝑇
𝑅𝑖

= 0,

which indicates that the derived 𝑅𝑖+1 is orthogonal to the search space 𝒫𝑖.

Based on Theorem 3.5, other orthogonality properties of BFBCG can be obtained easily, which

are summarized as the following two corollaries. Corollary 3.6 extends Theorem 3.5 and shows that 𝑅𝑖+1

is not only orthogonal to search space 𝒫𝑖 at the 𝑖th iteration, but to all previous search spaces 𝒫𝑗 (𝑗 < 𝑖 +

1). Moreover, observing that search spaces 𝒫𝑗 are derived from subspaces spanned by residual matrices

𝑅𝑗 (𝑗 < 𝑖 + 1), Corollary 3.7 states that 𝑅𝑖+1 is 𝑀-orthogonal to all previous residual matrices under

preconditioning matrix 𝑀 (assuming that 𝑀 is symmetric positive definite).

37

Corollary 3.6. 𝑅𝑖+1
𝑇�̃�𝑗 = 0 for all 𝑗 < 𝑖 + 1.

Corollary 3.7. 𝑅𝑖+1
𝑇𝑀𝑅𝑗 = 𝑍𝑖+1

𝑇𝑅𝑗 = 0 for all 𝑗 < 𝑖 + 1.

At the 𝑖th iteration, BFBCG explores the block Krylov subspace [67, 69] defined as

𝐷𝑖(𝐴,𝑀, 𝑅0) = 𝑏𝑙𝑜𝑐𝑘_𝑠𝑝𝑎𝑛{𝑀𝑅0,𝑀𝐴𝑀𝑅0, … , (𝑀𝐴)𝑖𝑀𝑅0}

= {∑(𝑀𝐴)𝑗𝑀𝑅0𝛹𝑗

𝑖

𝑗=0

; 𝛹𝑗 ∈ ℝ𝑠×𝑠}

which is the union of the previous subspaces spanned by the matrices 𝑀𝑅𝑗 (𝑗 < 𝑖 + 1). By Corollary 3.7,

𝑅𝑖+1is orthogonal to the Krylov subspace explored before as well, which implies that 𝑋𝑖+1 from BFBCG

is the minimizer of the block nonnegative quadratic function of

𝐹(𝑋) = 𝑡𝑟𝑎𝑐𝑒((𝑋 − 𝑋∗)𝑇𝐴(𝑋 − 𝑋∗))

over the Krylov subspace 𝑋0 + 𝑠𝑝𝑎𝑛{𝑀𝑅0, 𝑀𝐴𝑀𝑅0, … , (𝑀𝐴)𝑖𝑀𝑅0} at the 𝑖 th iteration, where 𝑋∗ =

 𝐴−1𝐵 is the desired block solution.

The other parameter matrix �̃�𝑖 in BFBCG is chosen to ensure that the next search space 𝒫𝑖+1 is

conjugate to the previous search space 𝒫𝑗 (𝑗 < 𝑖 + 1) in case of rank deficiency, which is shown in

Theorem 3.10. The following Lemmas 3.8 and 3.9 will be used for the proof of Theorem 3.10. The proofs

for Lemmas 3.8 and 3.9 are included in Appendix A.

Lemma 3.8. Suppose 𝑅𝑖 is an 𝑛 × 𝑠 residual matrix of rank 𝑟𝑖 (𝑟𝑖 ≤ 𝑠) at the 𝑖 th iteration, then

𝑟𝑎𝑛𝑘(�̃�𝑖
𝑇𝑅𝑖) = 𝑟𝑖.

Lemma 3.9. 𝑍𝑖+1 is conjugate to search spaces 𝒫𝑗 where 𝑗 < 𝑖.

Lemma 3.8 indicates that the matrix rank of �̃�𝑖
𝑇𝑅𝑖 is always equal to that of 𝑅𝑖. We can also learn

from Lemma 3.8 that the parameter matrix �̃�𝑖 has rank 𝑟𝑖which is consistent with the rank of 𝑅𝑖 at every

38

iteration step 𝑖. In other words, �̃�𝑖 will not be a zero matrix unless 𝑅𝑖 is a zero matrix. This fundamentally

prevents BFBCG from suffering the potential stagnation problem occurred in Krylov subspace methods

[74, 75], where the solution matrices in two (and further) consecutive iterations will not be updated due to

zero parameter matrix while convergence has not been reached yet.

Lemma 3.9 indicates that 𝑍𝑖+1 from BFBCG is conjugate to all previous search spaces 𝒫𝑗 (𝑗 < 𝑖)

except 𝒫𝑖. This inspires us to derive a parameter matrix �̃�𝑖 to construct a new search space 𝒫𝑖+1 from 𝑍𝑖+1

by removing the conjugation part of 𝒫𝑖. Theorem 3.10 shows that, in case of rank deficiency occurring at

the 𝑖th iteration, the rectangular parameter matrix �̃�𝑖 ensures that the new search space 𝒫𝑖+1 is conjugate

to all previous search spaces 𝒫𝑗 (𝑗 < 𝑖 + 1).

Theorem 3.10. Suppose 𝑅𝑖 loses full rank at the 𝑖th iteration. Let 𝒫𝑖 denote the corresponding search

space with dimension 𝑟𝑖 (𝑟𝑖 < 𝑠). Given matrix �̃�𝑖 ∈ ℝ𝑟𝑖×𝑠 so that

�̃�𝑖 = −(�̃�𝑖
𝑇
𝑄𝑖)

−1
𝑄𝑖

𝑇𝑍𝑖+1,

where �̃�𝑖 ∈ ℝ𝑛×𝑟𝑖 consists of orthonormal basis for 𝒫𝑖 and 𝑄𝑖 ∈ ℝ𝑛×𝑟𝑖 denotes the matrices product 𝐴�̃�𝑖.

Then, the new search space 𝒫𝑖+1 obtained from �̃�𝑖 is conjugate to all previous search spaces 𝒫𝑗 where 𝑗 <

𝑖 + 1.

Proof. Based on Gram-Schmidt conjugation process, the new search directions 𝑃𝑖+1 at 𝑖th iteration can be

generated by

𝑃𝑖+1 = 𝑍𝑖+1 + ∑�̃�𝑗𝛽𝑖+1,𝑗

𝑖

𝑗=0

,

where �̃�𝑗 is the orthonormal basis of 𝒫𝑗 and 𝛽𝑖+1,𝑗 is the associated weight matrix of �̃�𝑗 . As �̃�𝑖
𝑇
𝑄𝑖 ∈

ℝ𝑟𝑖×𝑟𝑖 is nonsingular, by selecting 𝛽𝑖+1,𝑗 = 0 for all 𝑗 < 𝑖 and �̃�𝑖 = 𝛽𝑖+1,𝑖 = −(�̃�𝑖
𝑇
𝑄𝑖)

−1
𝑄𝑖

𝑇𝑍𝑖+1, it is

easy to show that

(1) for any �̃�𝑗 where 𝑗 < 𝑖, according to Lemma 3.9,

39

�̃�𝑗
𝑇
𝐴𝑃𝑖+1 = �̃�𝑗

𝑇
𝐴𝑍𝑖+1 + �̃�𝑗

𝑇
𝐴 ∑ �̃�𝑘𝛽𝑖+1,𝑘

𝑗

𝑘=0

= �̃�𝑗
𝑇
𝐴𝑍𝑖+1 = 0.

(2) for �̃�𝑗 where 𝑗 = 𝑖 ,

�̃�𝑖
𝑇
𝐴𝑃𝑖+1 = �̃�𝑖

𝑇
𝐴𝑍𝑖+1 + �̃�𝑖

𝑇
𝐴 ∑ �̃�𝑘𝛽𝑖+1,𝑘

𝑖

𝑘=0

= �̃�𝑖
𝑇
𝐴𝑍𝑖+1 + �̃�𝑖

𝑇
𝐴�̃�𝑖𝛽𝑖+1,𝑖

= �̃�𝑖
𝑇
𝐴𝑍𝑖+1 − �̃�𝑖

𝑇
𝐴�̃�𝑖 (�̃�𝑖

𝑇
𝐴�̃�𝑖)

−1
�̃�𝑖

𝑇
𝐴𝑍𝑖+1

= �̃�𝑖
𝑇
𝐴𝑍𝑖+1 − �̃�𝑖

𝑇
𝐴𝑍𝑖+1 = 0.

Let the range of 𝑃𝑖+1 be the new search space 𝒫𝑖+1 and then the new search space 𝒫𝑖+1 is conjugate to all

previous search spaces 𝒫𝑗 (𝑗 < 𝑖 + 1).

 In fact, �̃�𝑖 and �̃�𝑖 defined in BFBCG are generalized forms of the parameter matrices 𝛼𝑖 and 𝛽𝑖 in

BCG algorithms to avoid breakdown during BFBCG iterations. When 𝑅𝑖’s have full column rank, the

BFBCG algorithm is equivalent to the original BCG. In particular, �̃�𝑖 and �̃�𝑖 are square matrices with full

rank that are coincide with 𝛼𝑖 and 𝛽𝑖 from the original BCG where 𝛾𝑖 in Algorithm 3.1 is replaced by the

inverse of upper triangular part of QR decomposition, while a simplified form �̃�𝑖 is chosen in BFBCG to

avoid augmented condition number of 𝑍𝑖
𝑇𝑅𝑖 . On the other hand, if 𝑅𝑖 loses full rank during BFBCG

iterations, the rectangular parameter matrices �̃�𝑖 and �̃�𝑖 are employed to maintain orthogonality properties

in block Krylov subspace and avoid breakdown due to the rank deficiency problem.

3.2.4 Convergence Analysis

We investigate the theoretical number of iterations of BFBCG. Then, the convergence rate of

BCGLS is further estimated.

40

3.2.4.1 Number of Iterations

To solve a linear system with 𝑠 multiple right hand sides using BCG, the block Krylov subspace

𝐷𝑖(𝐴,𝑀, 𝑅0) = 𝑏𝑙𝑜𝑐𝑘_𝑠𝑝𝑎𝑛{𝑀𝑅0,𝑀𝐴𝑀𝑅0, … , (𝑀𝐴)𝑖𝑀𝑅0}

= {∑(𝑀𝐴)𝑗𝑀𝑅0𝛹𝑗

𝑖

𝑗=0

; 𝛹𝑗 ∈ ℝ𝑠×𝑠}

is constructed to find an approximate 𝑋𝑖+1 at next iteration, where 𝑀 is an SPD preconditioner. As

pointed out by [76], if the effect of roundoff errors can be ignored, the BCG algorithm is able to find the

exact solutions after at most ⌈𝑛/𝑠⌉ iterations, where 𝑠 is the number of right-hand sides.

As a generalized form of BCG, BFBCG shares the same convergence property only if the residual

matrix remains full rank 𝑠 during all iterations. When rank deficiency occurs, BFBCG continues to

explore the Krylov subspaces from the reduced search spaces. Proposition 3.11 shows that once a residual

matrix loses full rank, rank deficiency will be inherited in the subsequent residual matrices.

Proposition 3.11. If residual matrix 𝑅𝑖 loses full column rank at the 𝑖th iteration, the subsequent residual

matrices 𝑅𝑗 (𝑗 > 𝑖) are also rank deficient.

Proof. Since

𝑅𝑖+1 = 𝑅𝑖 − 𝐴�̃�𝑖�̃�𝑖

= 𝑅𝑖 − 𝐴�̃�𝑖(�̃�𝑖
𝑇𝐴�̃�𝑖)

−1
�̃�𝑖

𝑇𝑅𝑖

= (𝐼 − 𝐴�̃�𝑖(�̃�𝑖
𝑇𝐴�̃�𝑖)

−1
�̃�𝑖

𝑇)𝑅𝑖,

Then, 𝑟𝑎𝑛𝑘(𝑅𝑖) ≥ 𝑟𝑎𝑛𝑘(𝑅𝑖+1) can be obtained based on the properties of matrix rank. For 𝑗 > 𝑖 ,

𝑟𝑎𝑛𝑘(𝑅𝑖) ≥ 𝑟𝑎𝑛𝑘(𝑅𝑗) can be derived in a similar way.

In the case that rank deficiency occurs, the Krylov subspace can no longer be expanded by 𝑠

dimensions in future iterations. Instead, the dimension of the corresponding Krylov subspace increases by

41

the rank of the residual matrix, which is less than the number of right hand side 𝑠, at each subsequent

iteration step. Consequently, in general, more than ⌈𝑛/𝑠⌉ iterations are needed in BFBCG to find the

solutions in case of rank deficiency.

3.2.4.2 Convergence Rate

Defining the error matrix 𝐸𝑖+1 as

𝐸𝑖+1 = [𝑒𝑖+1
(0)

, 𝑒𝑖+1
(1)

, … , 𝑒𝑖+1
(𝑠−1)

] = 𝑋𝑖+1 − 𝑋∗

at the 𝑖th iteration, where 𝑒𝑖+1
(𝑘)

 be the 𝑘th column of 𝐸𝑖+1 and 𝑋∗ = 𝐴−1𝐵 is the desired block solution,

the block nonnegative quadratic function can be represented as

𝑡𝑟𝑎𝑐𝑒((𝑋𝑖+1 − 𝑋∗)𝑇𝐴(𝑋𝑖+1 − 𝑋∗)) = ∑ ‖𝑒𝑖+1
(𝑘)

‖
𝐴

2
𝑠−1

𝑘=0

.

To determine the convergence rate of BCG, the initial residual matrix 𝑅0 = 𝐵 − 𝐴𝑋0 plays an

important role in bounding the errors at each iteration step. Under the assumption that 𝑅0 has full column

rank, O’Leary [69] showed that the minimum error square norm ‖𝑒𝑖+1
(𝑘)

‖
𝐴

2
, (0 ≤ 𝑘 ≤ 𝑠 − 1) is bounded as

‖𝑒𝑖+1
(𝑘)

‖
𝐴

2
≤ 𝑐(𝑘) (

1 − √𝜅−1

1 + √𝜅−1
)

2(𝑖+1)

at each iteration. Here 𝜅 = 𝜆𝑛 𝜆𝑠⁄ where 𝜆𝑛 ≥ 𝜆𝑛−1 ≥ ⋯ ≥ 𝜆1 are the eigenvalues of 𝑀𝐴, respectively,

and 𝑐(𝑘) is a constant only related to 𝑒0
(𝑘)

. Nevertheless, if 𝑅0 does not have full rank, the above error

bound does not hold. Assuming that 𝑅0 has rank 𝑟0, Theorem 3.12 shows that the convergence rate of

BFBCG method is bounded by (
1−√𝜅′−1

1+√𝜅′−1
)

2

 where 𝜅′ = 𝜆𝑛 𝜆𝑟0
⁄ .

Theorem 3.12. Suppose 𝑅0 is rank deficient with rank 𝑟0 (𝑟0 < 𝑠), the minimum error square norm

‖𝑒𝑖+1
(𝑘)

‖
𝐴

2
 is bounded as

42

‖𝑒𝑖+1
(𝑘)

‖
𝐴

2
≤ 𝑐 (

1 − √𝜅′−1

1 + √𝜅′−1
)

2(𝑖+1)

,

where 𝑐 is a constant related only with 𝐸0 and 𝜅′ = 𝜆𝑛 𝜆𝑟0
⁄ .

Proof. Assuming that the 𝑛 × 𝑠 residual matrix 𝑅0 has rank 𝑟0, which is potentially rank deficient, then

there exists a nonsingular 𝑠 × 𝑠 matrix 𝛿 such that

𝑅0 = (𝑅0
′, 0)𝛿

where 𝑅0 is an 𝑛 × 𝑟0 matrix with full rank. Since 𝐸0 = 𝐴−1𝑅0 and 𝐸𝑖+1 = 𝜙𝑖(𝑀𝐴)𝐸0, where 𝜙𝑖(𝑀𝐴) is

a polynomial of degree 𝑖, we have that 𝐸𝑖+1 = (𝐸𝑖+1
′, 0)𝛿 and each column in 𝐸𝑖+1 can be expressed as

𝑒𝑖+1
(𝑘)

= ∑ 𝛿𝑗𝑘

𝑟0−1

𝑗=0

𝑒′
𝑖+1
(𝑗)

where 𝑒′
𝑖+1
(𝑗)

 is the 𝑗th column of 𝐸𝑖+1
′. Hence, the error bound of the square norm ‖𝑒𝑖+1

(𝑘)
‖

𝐴

2
 becomes

‖𝑒𝑖+1
(𝑘)

‖
𝐴

2
= ‖∑ 𝛿𝑗𝑘𝑒′

𝑖+1
(𝑗)

𝑟0−1

𝑗=0

‖

𝐴

2

≤ ∑ 𝛿𝑗𝑘
2 ‖𝑒′

𝑖+1
(𝑗)

‖
𝐴

2
𝑟0−1

𝑗=0

≤ ∑ 𝛿𝑗𝑘
2

𝑟0−1

𝑗=0

𝑐(𝑗) (
1 − √𝜅′−1

1 + √𝜅′−1
)

2(𝑖+1)

≤ 𝑐 (
1 − √𝜅′−1

1 + √𝜅′−1
)

2(𝑖+1)

where 𝑐 = ∑ 𝛿𝑗𝑘
2𝑟0−1

𝑗=0 𝑐(𝑗), and 𝜅′ = 𝜆𝑛 𝜆𝑟0
⁄ .

In the case of rank deficiency, if 𝑅𝑖 loses full rank to 𝑟𝑖, BCG has to restart with the reduced

block size. Restart is unfavorable in parallel computing, where reinitiating processes and redistributing

workload are necessary. More importantly, the restarting BCG uses the range of 𝑅𝑖 as the initial search

43

space and abandons all search spaces explored before. As a result, the restarted BCG has a lower

convergence rate of (
1−√𝜅′′−1

1+√𝜅′′−1
)

2

, where 𝜅′′ = 𝜆𝑛 𝜆𝑟𝑖
⁄ . In contrast, without restarting, BFBCG yields

faster convergence than restarting BCG, because BFBCG still takes advantage of search space

information previously constructed. Hence, the overall convergence rate of BFBCG lies

between (
1−√𝜅′′−1

1+√𝜅′′−1
)

2

 and (
1−√𝜅−1

1+√𝜅−1
)
2

, where 𝜅′′ = 𝜆𝑛 𝜆𝑟𝑖
⁄ and 𝜅 = 𝜆𝑛 𝜆𝑠⁄ , respectively.

3.2.5 Numerical Results

3.2.5.1 Handling Rank Deficiency

We use a matrix “Kuu” from the UFL sparse matrix collection [77] as the coefficient matrix of a

block linear system with 200 right-hand sides to demonstrate the effectiveness of BFBCG in addressing

the breakdown problem with combined rank deficiency situations. “Kuu” is a 7,102 × 7,102 SPD matrix

with 340,200 nonzero elements arising from a structural problem whose sparse pattern is shown in Fig. 9.

To construct linearly dependent vector components in the initial block residue 𝑅0, we intentionally set the

elements in the first 198 columns of the right-hand side matrix 𝐵 as randomly generated numbers while

the last two columns are created as linear combinations of the first 198 columns. The initial guess 𝑋0 is

Fig. 9. Sparse pattern of matrix “Kuu”

44

set to be the same as 𝐵 and a preconditioner 𝑀 is constructed using the Crout version of ILU factorization

[78] with the element drop tolerance “0.01”. The desired error tolerance of all solutions is 10−7.

Fig. 10. Matrix rank of residue 𝑅𝑖, condition number of 𝑃𝑖
𝑇𝐴𝑃𝑖 , and the corresponding maximum and minimum

residual norm for a block linear system with 200 right-hand sides using the Matrix “Kuu” as coefficient matrix along

BFBCG iterations

Fig. 10 illustrates the change of matrix rank of residual matrix 𝑅𝑖 (upper), condition number of

𝑃𝑖
𝑇𝐴𝑃𝑖 (middle), as well as the maximum and minimum residual norms of columns in 𝑅𝑖 (lower) along

the BFBCG iterations. The condition number of 𝑃𝑖
𝑇𝐴𝑃𝑖 is bounded by the condition number of 𝐴 during

the iterations. One can find that rank deficiency happens at the very beginning because of the linearly

dependent vectors in 𝐵 that we set intentionally. The rank of the residual matrix 𝑅𝑖 starts to drop down to

150 when 𝑖 = 9 because linear dependence occurs during the BFBCG process; however, none of the

systems converge to the desired resolution yet. When 𝑖 = 11, the residual norms in some columns in 𝑅𝑖

are smaller than the given error tolerance indicating that some but not all systems have reached

convergence. Correspondingly, the matrix rank of 𝑅𝑖 decreases further to 45. After all, BFBCG is able to

deal with the combination of various rank deficiency situations and continues to improve the solution

accuracy based on the reduced subspace. Eventually, all systems reach convergence at the 20th iteration.

3.2.5.2 Handling the Near-breakdown Problem

45

Recent studies [79, 80] have shown that the almost linearly dependent vectors in the residual

block matrices may cause loss of orthogonality during linear system solving iterations and thus slow

down or even prevent convergence of the block Krylov subspace methods. This is referred to as the near-

breakdown problem. We hereby investigate the impacts of the near-breakdown problem on BFBCG in

comparison with the original BCG algorithm. To simulate the near-breakdown situations, we use a linear

system of a 10 × 10 random coefficient matrix with a small condition number to eliminate the impact

from the matrix itself and initialize a block residual matrix 𝑅0 with two nearly linearly dependent vectors,

where the second column is generated by multiplying the first one by 10 while adding small random

perturbations. The coefficient matrix and the right-hand side block matrix are specified in Appendix B.

TABLE 2

Comparison between BCG and BFBCG in the Case of Near-Breakdown

 BCG BFBCG

Convergence

Smallest

singular

values

of 𝑅𝑖

Condition

number of
𝑃𝑖

𝑇𝐴𝑃𝑖

46

TABLE 2 Continued

 BCG BFBCG

Colormap

of

𝐴-

orthogonali

ty

between

Search

Matrices

Table 2 compares BCG and BFBCG in the case when near-breakdown occurs. We monitor the

smallest singular value of 𝑅𝑖 and a parameter 𝜏 is designated as a tolerance threshold of linear dependence

among the block residual vectors in BFBCG. Here, 𝜏 is set to 10−12. One can find that the nearly linearly

dependent vectors in 𝑅𝑖 result in a certain loss of 𝐴-orthogonality among search matrices during the

iterations in both BCG and BFBCG, which is consistent with the analysis in [79, 81]. This is due to the

fact that constructing the new search matrices is sensitive to the round-off errors when the residual

matrices are nearly rank-deficient. Nevertheless, the computation of the parameter matrix 𝛽𝑖 in BCG

requires an evaluation of 𝛾𝑖
−1(𝑍𝑖

𝑇𝑅𝑖)
−1

, where nearly linear dependence in 𝑅𝑖 can lead to large round-off

errors. As shown in Table 2, BCG suffers from complete loss of 𝐴-orthogonality and fails to converge. In

contrast, the computation of �̃�𝑖 in BFBCG relies only on calculating (𝑃𝑖
𝑇𝐴𝑃𝑖)

−1
 and thus maintains

relatively better 𝐴-orthogonality. Moreover, BFBCG is designed to enforce 𝐴-orthogonality of every two

consecutive search matrices. As a result, BFBCG is able to evolve with nearly linear dependence in 𝑅𝑖.

When some singular values of 𝑅𝑖 fall under threshold 𝜏, search matrices of reduced size are generated in

such a way that 𝐴-orthogonality with the previous search directions is maintained. Consequently, the

relatively better 𝐴-orthogonality allows BFBCG to reach solutions with desired precision.

3.2.5.3 Comparison with Restarting Scheme

When a breakdown actually occurs, the original BCG algorithm has to restart with a reduced

47

block size. Table 3 compares the performance of BCG with restarting and BFBCG on a set of SPD

matrices from structural engineering applications in the Harwell-Boeing sparse matrix collection [82].We

use a right-hand side matrix 𝐵 consisting of 10 random column vectors. Particularly, we scale the

elements in the first 8 columns of matrix 𝐵 by the matrix norm of 𝐴 to amplify the magnitude difference

among column vectors so that rank deficiency can easily occur. The Crout version of ILU preconditioners

is applied. The computational experiments are carried out on the XSEDE TACC Stampede System [83].

When breakdown happens, causing the loss of all search spaces that have been explored before restarting,

BCG typically takes more iteration steps to reach convergence than BFBCG. In contrast, BFBCG is able

to continue to update the solution blocks from the reduced search spaces without being interrupted.

Moreover, restarting requires additional operations to reinitiate the computational process, which results

in significantly more computational time in BCG than that in BFBCG.

TABLE 3

Performance Comparison between BFBCG and Restarting BCG on SPD Matrices from Static Analyses in Structural

Engineering Application

Name Rows Columns Nonzeros

BCG with Restarting BFBCG

of

Iterations

of

Restarts

Computational

Time (s)

of

Iterations

Computational

Time (s)

BCSSTK14 1,806 1,806 32,630 9 5 1.54 8 0.68

BCSSTK15 3,948 3,948 60,882 19 11 6.28 14 3.18

BCSSTK16 4,884 4,884 147,631 8 4 3.8 8 2.44

BCSSTK17 10,974 10,974 219,812 19 16 40.69 15 17.39

BCSSTK18 11,948 11,948 80,519 14 8 28.49 14 18.44

3.3 Block Conjugate Gradient for Least Square (BCGLS) Algorithm

The applicability of BFBCG is limited to linear systems with symmetric positive definite (SPD)

coefficient matrices. In this section, we extend the breakdown-free techniques in BFBCG to more general

linear systems, where a Block Conjugate Gradient for Least Square (BCGLS) algorithm [151] is

developed to handle the least squares problem and general linear systems at a large scale.

3.3.1 The BCGLS Algorithm

48

Considering the least squares solutions to a linear system of equations with multiple right-hand

sides 𝐴𝑋 = 𝐵, where 𝐴 is an 𝑚 × 𝑛 (𝑚 ≥ 𝑛) sparse, rectangular or square matrix with rank 𝑛, 𝑋 is an

𝑛 × 𝑠 unknown matrix, 𝐵 is an 𝑚 × 𝑠 right-hand side matrix, and 𝑠 (𝑠 ≥ 1) is the number of right-hand

sides. The block matrices operations in BCGLS are developed to approximate the least squares solutions

by ensuring orthogonality properties while minimizing the residual (error) function

𝑇𝑟𝑎𝑐𝑒((𝐵 − 𝐴𝑋)𝑇(𝐵 − 𝐴𝑋)),

over the underlying Krylov subspace, where 𝑇𝑟𝑎𝑐𝑒(∙) refers to as the trace of a matrix.

Algorithm 3.3 presents BCGLS to address the potential breakdown problem caused by rank

deficiency. Similar to BFBCG, we perform a rank revealing operation 𝑜𝑟𝑡ℎ(∙) on 𝑆𝑖+1 + �̃�𝑖�̃�𝑖 to remove

linearly dependent or zero vectors. When rank deficiency occurs, the dimension of space 𝒫𝑖 reduces from

𝑠 to 𝑟𝑖 (𝑟𝑖 < 𝑠) and correspondingly the search block �̃�𝑖 shrinks to be an 𝑛 × 𝑟𝑖 matrix. Then, parameter

matrices �̃�𝑖 and �̃�𝑖 are designed to be 𝑟𝑖 × 𝑠 rectangular matrices and �̃�𝑖 appears to be 𝑚 × 𝑟𝑖 , with

respect to the change in search direction block �̃�𝑖.

Algorithm 3.3: Block Conjugate Gradient for Least Square (BCGLS) Algorithm

Input: matrix 𝐴 ∈ ℝ𝑚×𝑛, matrix 𝐵 ∈ ℝ𝑚×𝑠, initial guess 𝑋0 ∈ ℝ𝑛×𝑠 , tolerance 𝑡𝑜𝑙 ∈ ℝ, and

maximum number of iterations 𝑚𝑎𝑥𝑖𝑡 ∈ ℝ

Output: an approximate solution 𝑋𝑠𝑜𝑙 ∈ ℝ𝑛×𝑠

𝑅0 = 𝐵 − 𝐴𝑋0

𝑆0 = 𝐴𝑇𝑅0

�̃�0 = 𝑜𝑟𝑡ℎ(𝑆0)

for 𝑖 = 0,… ,𝑚𝑎𝑥𝑖𝑡

�̃�𝑖 = 𝐴�̃�𝑖

�̃�𝑖 = (�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖

𝑇
𝑅𝑖

𝑋𝑖+1 = 𝑋𝑖 + �̃�𝑖�̃�𝑖

𝑅𝑖+1 = 𝑅𝑖 − �̃�𝑖�̃�𝑖

if converged within 𝑡𝑜𝑙, then stop.

𝑆𝑖+1 = 𝐴𝑇𝑅𝑖+1
if no rank deficiency occurs, then

�̃�𝑖 = (𝑆𝑖
𝑇𝑆𝑖)

−1
𝑆𝑖+1

𝑇𝑆𝑖+1

else

�̃�𝑖 = −(�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖𝐴𝑆𝑖+1

endif

�̃�𝑖+1 = 𝑜𝑟𝑡ℎ(𝑆𝑖+1 + �̃�𝑖�̃�𝑖)

49

end

𝑋𝑠𝑜𝑙 = 𝑋𝑖+1

At the 𝑖th iteration step, an optimal point minimizing the underlying residual (error) function is

chosen from 𝑋0 + 𝑠𝑝𝑎𝑛{𝐴𝑇𝑅0, (𝐴
𝑇𝐴)𝐴𝑇𝑅0, … , (𝐴𝑇𝐴)𝑖𝐴𝑇𝑅0} to be the least squares approximation,

which can be expressed as a polynomial 𝜙𝑖(𝐴
𝑇𝐴) of degree 𝑖. Therefore, as an analogue to the standard

Block Conjugate Gradient (BCG) methods [84], BCGLS yields a faster convergence rate of (
1−√𝜅′−1

1+√𝜅′−1
)
2

,

compared to Conjugate Gradient Least Squares (CGLS) [144,145] with a single right-hand side, where

𝜅′ = 𝜆𝑛 𝜆𝑠⁄ , and 𝜆𝑛 and 𝜆𝑠 are the 𝑛th and 𝑠th eigenvalues of the product matrix 𝐴𝑇𝐴, respectively.

In practice, it is very rare that the residual block has an exact linear dependency in BCGLS;

however, much more often, vectors in the residual block will become nearly linearly dependent. In fact,

linear dependency in the residual block 𝑆𝑖 is monitored during BCGLS. If the smallest eigenvalue of 𝑆𝑖 is

lower than a designated threshold parameter 𝜏, the search space will be reduced accordingly. Studies [79,

80] have shown that the nearly linear dependency in the block matrices may cause near-breakdown and

have a serious impact to the convergence of block Krylov subspace methods. We use numerical examples

to show that the linear dependency threshold parameter has an impact on solution precision as well as

convergence speed and needs to be carefully selected.

3.3.2 Numerical Results

3.3.2.1 Handling Rank Deficiency

We compute the least squares solutions of a linear system with coefficient matrix “illc1850” to

demonstrate the robustness of BCGLS in the case of rank deficiency. “illc1850” is a 1,850 × 712

rectangular matrix with 8,636 nonzero elements arisen from the least squares problem in surveying [77].

A right-hand side block matrix 𝐵 containing 100 column vectors with full column rank are generated

randomly. A system is considered converged if the relative residual error of each solution with respect to

its corresponding right-hand side is within the tolerance of 10−7.

50

We start BCGLS with a zero initial solution block. Fig. 11 shows the number of columns in

search matrix 𝑃𝑖 after the rank-revealing operations (upper), the condition number of 𝑄𝑖
𝑇𝐴𝑄𝑖 (middle),

and the maximum and minimum relative residual errors among all solution columns in 𝑋𝑖 (lower) along

BFBCGLS iterations. One can find that rank deficiency (from 100 down to 88) starts to occur at the 6th

iteration. After all, BCGLS is able to continue to explore the Krylov subspaces with reduced search space

without suffering a breakdown, which leads to further residual error reduction in all systems as shown in

Fig. 11 (lower).

Fig. 11. Number of Columns in 𝑃𝑖 (upper), condition number of 𝑄𝑖

𝑇𝐴𝑄𝑖 (middle), and maximum and minimum

relative residual norms of columns in 𝑋𝑖 (lower) along BFBCGLS iterations

Fig. 12 compares the solution precision measured by the maximum residual norm among columns

in 𝑋𝑖 with respect to different linear dependency threshold parameter 𝜏 values. It is interesting to note

that, when a large 𝜏 value is used, only solutions in low precision are obtained in BCGLS. This is due to

the fact that, when a large 𝜏 value is reached, some solutions or linear combinations of solutions are

considered converged and the search space is reduced without further improving these solutions. More

importantly, a large 𝜏 value slows down convergence because of early reduction of search space. On the

other hand, a 𝜏 value close to float-point number representation precision (10−16.) does not necessarily

lead to more precise solutions due to low-quality search spaces where the Galerkin conditions are not

51

fully satisfied anymore. Our results indicate that the appropriate 𝜏 value should be in the range of

10−12~10−14 for BCGLS using double precision floating point operations.

Fig. 12. Solution precisions obtained using different linear dependency threshold parameter τ values

3.3.2.2 Reducing Number of Passes

We compare CGLS and BCGLS to find the least squares solution of linear systems in terms of

matrix passes. The least squares matrices chosen from the UFL sparse matrix collection [77] are used as

coefficient matrices. In BCGLS, the right-hand side matrix 𝐵 is set to be with 10 columns, where the first

column coincides with the right-hand vector in CGLS while other columns are Gaussian random vectors.

A satisfactory solution is considered achieved if the relative residual error of the first solution vector is

within the tolerance of 10−7.

Fig. 13 shows the number matrix passes performed using CGLS and BCGLS. One can find that

the number of passes on all of the coefficient matrices is significantly reduced by using BCGLS, because

of the improved convergence rate achieved in the block form of BCGLS. For matrices like

“photogrammetry”, the total number of matrix passes is reduced by about 100 times by using BCGLS.

52

Fig. 13. The number of passes over matrix 𝐴

3.4 BCGLS Algorithm with Deflation (BCGLSD)

In this section, we propose a BCGLS algorithm with Deflation (BCGLSD) to accelerate block

linear system convergence with deflation matrices. To obtain a high-quality of deflation matrix, Monte

Carlo importance sampling is carried out to estimate and continuously refine the approximate smallest

eigenvalues and eigenvectors of the large coefficient matrix during the course of iterations. These

approximated eigenvectors are used to build up the deflation matrices. Numerical examples are provided

to demonstrate the effectiveness of BCGLSD.

3.4.1 The BCGLSD Algorithm

Deflation is one of the popular techniques used in Krylov subspace methods to accelerate

convergence via pre-adding the Krylov subspace with a space spanned by a deflation matrix, which

contains approximations to the extreme eigenvectors [85,86,87]. Deflation has been widely used to handle

positive definite systems [88, 89] and unsymmetric systems [90,91,92,93]. Recently, when multiple right-

hand sides of a linear system are considered, the deflated algorithms are applied to BCG [71] and

BGMRES [80]. More comprehensive analysis of deflated Krylov subspace methods can be found in [86,

1

10

100

1000

10000

100000

1000000

d
e

lt
aX

ES
O

C

ill
c1

0
3

3

ill
c1

8
5

0

im
ag

e
_i

n
te

rp

K
em

e
lm

ac
h

er

la
n

d
m

ar
k

La
rg

eR
eg

Fi
le

lp
i_

gr
an

M
ar

ag
al

_2

M
ar

ag
al

_3

M
ar

ag
al

_4

M
ar

ag
al

_5

M
ar

ag
al

_6

M
ar

ag
al

_7

m
es

h
_d

ef
o

rm

p
h

o
to

gr
am

m
e

tr
y

p
h

o
to

gr
am

m
e

tr
y2

p
ss

e0

p
ss

e1

p
ss

e2

R
u

cc
i1 sl
s

to
m

o
gr

ap
h

ic
1

w
el

l1
0

3
3

w
el

l1
8

5
0

Number of Passes

BCGLS CGLS

53

85, 70, 94].

Deflation can be applied to BCGLS to improve convergence speed in finding solutions for least

squares problem. Given a deflation matrix 𝑊, an augmented block Krylov subspace

𝑠𝑝𝑎𝑛{𝑊, 𝐴𝑇𝑅0, (𝐴
𝑇𝐴)1𝐴𝑇𝑅0, … , (𝐴𝑇𝐴)𝑖𝐴𝑇𝑅0, … },

is constructed. In BCGLSD, as shown in Algorithm 3.4, an initial guess 𝑋0 is formed as

𝑋0 = 𝑋−1 + 𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝑅−1

where 𝑋−1 is an arbitrary block matrix and 𝐿 = 𝐴𝑊. Meanwhile, matrix orthogonalization related to 𝑊 is

carried out to generate the subsequent search matrices.

Algorithm 3.4: BCGLS Algorithm with Deflation (BCGLSD)

Input: matrix 𝐴 ∈ ℝ𝑚×𝑛, matrix 𝐵 ∈ ℝ𝑚×𝑠, matrix 𝑋−1 ∈ ℝ𝑛×𝑠 , tolerance 𝑡𝑜𝑙 ∈ ℝ, maximum number

of iterations 𝑚𝑎𝑥𝑖𝑡 ∈ ℝ, and deflation matrix 𝑊 ∈ ℝ𝑛×𝑡

Output: 𝑋𝑠𝑜𝑙 ∈ ℝ𝑛×𝑠

𝐿 = 𝐴𝑊

𝑅−1 = 𝐵 − 𝐴𝑋−1

𝑋0 = 𝑋−1 + 𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝑅−1

𝑅0 = 𝐵 − 𝐴𝑋0

𝑆0 = 𝐴𝑇𝑅0

�̃�0 = 𝑜𝑟𝑡ℎ(𝑆0 − 𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝐴𝑆0)

for 𝑖 = 0,… ,𝑚𝑎𝑥𝑖𝑡

�̃�𝑖 = 𝐴�̃�𝑖

�̃�𝑖 = (�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖

𝑇
𝑅𝑖

𝑋𝑖+1 = 𝑋𝑖 + �̃�𝑖�̃�𝑖

𝑅𝑖+1 = 𝑅𝑖 − �̃�𝑖�̃�𝑖

if converged within 𝑡𝑜𝑙, then stop.

𝑆𝑖+1 = 𝐴𝑇𝑅𝑖+1

�̃�𝑖 = −(�̃�𝑖
𝑇
�̃�𝑖)

−1
�̃�𝑖𝐴𝑆𝑖+1

�̃�𝑖+1 = 𝑜𝑟𝑡ℎ(𝑆𝑖+1 + �̃�𝑖�̃�𝑖 − 𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝐴𝑆𝑖+1)

end

𝑋𝑠𝑜𝑙 = 𝑋𝑖+1

Theorem 3.13 shows that the residual matrices 𝑅𝑖 and the search matrices �̃�𝑖 are constructed 𝐴-

orthogonal and 𝐴𝑇𝐴-orthogonal to deflation matrix 𝑊 in BCGLSD, respectively.

Theorem 3.13. When deflated by a deflation matrix 𝑊, the following two orthogonality relations hold in

DBCGLS,

54

(1) 𝑊𝑇𝐴𝑇𝐴�̃�𝑖 = 0;

(2) 𝑊𝑇𝐴𝑇𝑅𝑖 = 0.

Proof. (1) Since �̃�𝑖+1 is an orthogonal basis of the space spanned by the columns of 𝑆𝑖+1 + �̃�𝑖�̃�𝑖 −

𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝐴𝑆𝑖+1, there exists an 𝑛 × 𝑟𝑖matrix 𝛿 such that

�̃�𝑖+1 = (𝑆𝑖+1 + �̃�𝑖�̃�𝑖 − 𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝐴𝑆𝑖+1)𝛿.

Then, we have

𝑊𝑇𝐴𝑇𝐴�̃�𝑖+1 = 𝑊𝑇𝐴𝑇𝐴(𝑆𝑖+1 + �̃�𝑖�̃�𝑖 − 𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝐴𝑆𝑖+1)𝛿

= 𝑊𝑇𝐴𝑇𝐴�̃�𝑖�̃�𝑖𝛿

Clearly, because 𝑊𝑇𝐴𝑇𝐴�̃�0 = 0, subsequently, 𝑊𝑇𝐴𝑇𝐴�̃�𝑖 = 0 for all 𝑖.

(2) Since 𝑅𝑖+1 = 𝑅𝑖 − �̃�𝑖�̃�𝑖 and (1), we have

𝑊𝑇𝐴𝑇𝑅𝑖+1 = 𝑊𝑇𝐴𝑇𝑅𝑖 − 𝑊𝑇𝐴𝑇�̃�𝑖�̃�𝑖

= 𝑊𝑇𝐴𝑇𝑅𝑖

As 𝑋0 = 𝑋−1 + 𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝑅−1 and 𝑅0 = (𝐼 − 𝐴𝑊(𝐿𝑇𝐿)−1𝐿𝑇)𝑅−1, it follows that

𝑊𝑇𝐴𝑇𝑅0 = 𝑊𝑇𝐴𝑇(𝐼 − 𝐴𝑊(𝐿𝑇𝐿)−1𝐿𝑇)𝑅−1 = 0.

As a deduction, we can get 𝑊𝑇𝐴𝑇𝑅𝑖 = 0 for all 𝑖 ≥ 0.

According to Theorem 3.13, in subsequent iterations in DBCGLS algorithm, the block Krylov

subspace

𝑠𝑝𝑎𝑛{𝐴𝑇𝑅0, (𝐴
𝑇𝐴)1𝐴𝑇𝑅0, … , (𝐴𝑇𝐴)𝑖𝐴𝑇𝑅0, … }

is constructed to be orthogonal to the subspace spanned by 𝑊. Let 𝐻 = I − 𝑊(𝐿𝑇𝐿)−1𝐿𝑇𝐴 be a matrix

projection onto the orthogonally complement subspace of 𝑊, DBCGLS is, in fact, equivalent to BCGLS

starting with 𝐴𝑇𝑅0 on a system with the transformed coefficient matrix 𝐻𝑇𝐴𝑇𝐴𝐻.

The effectiveness of BCGLSD depends strongly on the quality of the deflation matrix. The ideal

deflation matrix 𝑊 is composed of the exact extreme eigenvectors of 𝐴𝑇𝐴. Suppose the columns in 𝑊

contain 𝑡 eigenvectors of matrix 𝐴𝑇𝐴 corresponding to the 𝑡 smallest eigenvalues, the impacts from these

55

eigenvectors of matrix 𝐴𝑇𝐴 can be removed from matrix 𝐻𝑇𝐴𝑇𝐴𝐻 at the beginning, and thus DBCGLS

algorithm has potentially faster convergence in a deflated system with a smaller condition number 𝜅′ =

𝜆𝑛 𝜆𝑠+𝑡⁄ , where 𝜆𝑛 and 𝜆𝑠+𝑡 are the 𝑛th and the (𝑠 + 𝑡)th eigenvalues of 𝐴𝑇𝐴, respectively.

3.4.2 Importance Sampling

When expanding a linear system to a block linear system, instead of adding arbitrary non-linearly

dependent vectors to the multiple right-hand side 𝐵, we insert Gaussian distributed random vectors, such

that 𝐵 = [𝑏, 𝛺], where 𝛺 is an 𝑛 × (𝑠 − 1) Gaussian matrix. As the iterations move on, the approximate

solution vectors gradually approach the space spanned by the smallest 𝑠 eigenvectors of 𝐴, due to the

effect of Monte Carlo sampling 𝐴−1𝛺 which will be discussed in Chapter IV.

In BCGLSD, importance sampling is performed to improve the quality of the approximate

smallest eigenvector vectors. Fig. 14 illustrates the importance sampling procedure of generating and

refining deflation matrices. The basic idea is that after 𝑘 steps of iterations, we restart BCGLSD by

supplying a set of new vectors – a basis of the space spanned by the current solution vectors, to the right-

hand side. In this way, the inverse power effect (𝐴−1)𝑝𝛺 is expected to be performed on the solution

matrix, where 𝑝 denotes the number of restarts. As a result, this allows enhancing the accuracy of the

approximate smallest 𝑠 eigenvectors of 𝐴, which can be used to build a better quality deflation matrix.

56

× =

bA

After k iterations

× =

xk+1 bA x k+1

ω k

ωk+1

Importance
Sampling

New Search Directions
Pk+1 ωk

Repeat

x0 x 0 ωk

Fig. 14. Generate and refine deflation matrices via importance sampling

3.4.3 Numerical Results

3.4.3.1 Convergence Accelerations Using Deflation

We compare the convergence of CGLS, BCGLS, and BCGLSD on the least squares problem with

coefficient matrix “wang4" from semiconductor device problem [77]. “wang4" is a 26,068 × 26,068

unsymmetric matrix with 177,196 nonzero elements. Assuming that we are only interested in the solution

to one single right-hand side. To accommodate with the block form in BCGLS and BCGLSD, we expand

the single right-hand side to a block form with 100 right-hand sides by supplying 99 Gaussian random

vectors to the right-hand side. In BCGLSD, the importance sampling is carried out every 512 steps to

refine the deflation matrix 𝑊.

Fig. 15 displays the numerical results of CGLS, BCGLS, and BCGLSD. One can clearly observe

that by expanding the linear system from a single right-hand side to a block form with multiple right-hand

sides, BCGLS (1,834 steps) takes fewer iteration steps to converge to 10−7 relative residual error than

CGLS (59,765 steps). Even though overall BCGLS involves more computational operations measured

57

by the total number of matrix-vector multiplications than those of CGLS, it is important to note that

BCGLS is a communication-efficient algorithm that can significantly reduce the number of passes over

matrix 𝐴, the main computational bottleneck if passing over all elements in 𝐴 is extremely costly. More

importantly, when an approximate deflation matrix is applied, convergence can be significantly

accelerated, where the number of iterations to reach convergence is further reduced down to 935 steps.

Fig. 15. Comparison of convergence in CGLS, BCGLS, and BCGLSD on a least squares problem using “wang4" as

the coefficient matrix

3.4.3.2 Handling ill-conditioned Coefficient matrices using Deflation

We use a linear system with “gre_1107", a 1,107 × 1,107 unsymmetric matrix with 5,664

nonzero elements, as the coefficient matrix to study the behavior of BCGLS in ill-conditioned least

squares problems [77]. Fig. 16 shows the eigenvalue distribution of 𝐴𝑇𝐴. One can find that the 40

extremely small eigenvalues lead to a large condition number in 𝐴𝑇𝐴. The condition number of 𝑄𝑖
𝑇𝑄𝑖 is

bounded by that of 𝐴𝑇𝐴.

58

Fig. 16. Distribution of the eigenvalues in 𝐴𝑇𝐴 (“gre_1107") the condition

As shown in Fig.s 17, when the condition number of 𝑄𝑖
𝑇𝑄𝑖 is small during BCGLS iterations

before step 11, orthogonality is well preserved. However, at iteration step 11, the large condition number

of 𝑄𝑖
𝑇𝑄𝑖 causes subsequent loss of orthogonality, as shown in the colormap of 𝐴𝑇𝐴-orthogonality among

the first 31 search matrices. Consequently, BCGLS converges slowly and does not reach the desired

precision of 10−7 even after 10,000 iterations. An appropriate deflation matrix can address this issue and

accelerate the convergence of BCGLS. Here we use a deflation matrix consisting of 40 approximated

eigenvectors corresponding to the 40 extreme eigenvalues obtained from importance sampling. When the

deflation matrix is applied, the condition number of 𝑄𝑖
𝑇𝑄𝑖remains relatively small and orthogonality is

mostly preserved during BCGLSD iterations, as shown in Fig. 18. As a result, BCGLSD converges at

iteration step 11.

59

Fig. 17. Colormap of 𝐴𝑇𝐴 -orthogonality between Search Matrices in the first 31 iterations (upper), condition

number of 𝑄𝑖
𝑇𝑄𝑖 (middle), and maximum and minimum relative residual norms of columns in 𝑋𝑖 (lower) for a block

linear system with 100 right hand sides using “gre_1107" as the coefficient matrix along BCGLS iterations

60

Fig. 18. Colormap of 𝐴𝑇𝐴 -orthogonality between Search Matrices in the first 12 iterations (upper), condition

number of 𝑄𝑖
𝑇𝑄𝑖 (middle), and maximum and minimum relative residual norms of columns in 𝑋𝑖 (lower) for a block

linear system with 100 right hand sides using “gre_1107" as the coefficient matrix along BCGLSD iterations, where

the deflation matrix consists of 40 approximated extreme eigenvectors

3.5 Monte Carlo GMRES (MCGMRES) Algorithm

In Krylov-subspace based solvers, performing precise matrix-vector multiplications at each

61

iteration can be expensive when coefficient matrices are very large or matrix elements need to be

regenerated when accessed. In practice, an inexact scheme is suggested as a remedy to the costly matrix-

vector multiplication [95, 96, 97, 98], which uses a quick approximation. However, the inexact scheme

relies on the underlying approximation error -- if the approximation error is high, the approximate matrix-

vector products may lead to divergence of the Krylov-subspace solvers [99, 100].

Recent advances in Monte Carlo sampling algorithms enable approximating matrix-vector

products with relatively low computation cost while yielding high confidence [22, 26, 27, 29]. Here, a

Monte Carlo GMRES (MCGMRES) algorithm is developed where Monte Carlo sampling is used to

approximate matrix-vector multiplications.

3.5.1 Inexact Matrix Product using Sampling

In the literature, a number of Monte Carlo sampling approaches have been used to approximate

matrix products, such as random walk-based sampling [101] and row/column sampling [102]. Here, we

use column sampling [102] as an example to carry out an inexact matrix-vector product. Let 𝐴 be an 𝑚 ×

𝑛 matrix and 𝑏 an 𝑛 × 1 vector, where both 𝑚 and 𝑛 are large. Then, the product 𝑐 = 𝐴𝑏 can be

approximated based on 𝑠 sampled columns of matrix 𝐴, as shown in Algorithm 3.5.

Algorithm 3.5: Inexact Matrix-vector Product with Column Sampling (IMv)

Step 1: Generate a random integer 𝑘 between 1 and 𝑛 with probabilities 𝑝𝑗, 𝑗 = 1,… , 𝑛;

Step 2: 𝑄(𝑖) = 𝐴(𝑘)/√𝑠𝑝𝑘 , 𝑡(𝑖) = 𝑏(𝑘)/√𝑠𝑝𝑘 , and 𝑖 = 𝑖 + 1;

Step 3: Repeat steps 1-2 until 𝑖 = 𝑠;

Step 4: Compute matrix product 𝑄𝑡.

Let 𝐴(𝑘) be the 𝑘th column of matrix 𝐴 and 𝑏(𝑘) be the 𝑘th element of 𝑏. Since the product 𝑐 can

be expressed as 𝑐 = ∑ 𝐴(𝑘)𝑏(𝑘)
𝑛
𝑘=1 , if we assign 𝑥 as a discrete random variable with probability (𝑥𝑖 =

𝐴(𝑖)𝑏(𝑖)

 p𝑖
) = 𝑝𝑖 , 𝑖 = 1,… , 𝑛, where probability 𝑝𝑖 is assigned to 𝑖th column 𝐴(𝑖) or the corresponding 𝑖th

element of 𝑏(𝑖), one can find that the product 𝑐 is the expectation of 𝑥, such that

62

𝑐 = ∑
𝐴(𝑘)𝑏(𝑘)

 𝑝𝑘
𝑝𝑘

𝑛

𝑘=1

= 𝐸(𝑥)

By constructing matrices 𝑄 and 𝑡 with contain 𝑠 samples from matrix 𝐴 and vector 𝑏, respectively, the

product 𝑐 is approximated as

𝑄𝑡 =
1

𝑠
∑

𝐴(𝑖𝑘)𝑏(𝑖𝑘)

 𝑝𝑖𝑘

𝑠

𝑘=1

≈ 𝐸(𝑥) = 𝑐

where 𝑖𝑘’s are integers between 1 and 𝑛. Theoretically, the approximation error in column sampling is

bounded as

‖𝐴𝑏 − 𝑄𝑡‖2 = 𝑂 (
‖𝐴‖𝐹‖𝑏‖𝐹

√𝑠
)

with high probability [102].

3.5.2 The MCGMRES Algorithm

The MCGMRES algorithm is built by integrating the GMRES algorithm with column sampling

scheme. Algorithm 3.6 shows the procedure of MCGMRES to solve a system of linear equations

𝐴𝑥 = 𝑏,

where matrix 𝐴 ∈ ℝ𝑚×𝑛 and vector 𝑏 ∈ ℝ𝑚.

Algorithm 3.6: Monte Carlo GMRES (MCGMRES) Algorithm

Input: matrix 𝐴 ∈ ℝ𝑚×𝑛, vector 𝑏 ∈ ℝ𝑚, sampling size 𝑠 ∈ ℕ per iteration, initial solution guess 𝑥0 ∈
ℝ𝑛 , tolerance 𝑡𝑜𝑙 ∈ ℝ, and maximum number of iterations 𝑚𝑎𝑥𝑖𝑡 ∈ ℝ

Output: 𝑥𝑠𝑜𝑙 ∈ ℝ𝑛

𝑟0 = 𝑏 − 𝐼𝑀𝑣(𝐴, 𝑥0, 𝑠)

ℎ10 = ‖𝑟0‖2

for 𝑖 = 0,… ,𝑚𝑎𝑥𝑖𝑡

𝑞𝑖+1 =
𝑟𝑖

ℎ𝑖+1,𝑖
⁄

𝑟𝑖 = 𝐼𝑀𝑣(𝐴, 𝑞𝑖, 𝑠)

for 𝑗 = 1,… , 𝑖
ℎ𝑗,𝑖 = 𝑞𝑗

𝑇𝑟𝑖

𝑟𝑖 = 𝑟𝑖 − ℎ𝑗,𝑖𝑞𝑗

end

ℎ𝑖+1,𝑖 = ‖𝑟𝑖‖2

Solve the least-squares problem 𝑚𝑖𝑛‖ℎ10𝑒1 − �̃�𝑖𝑦𝑖‖2

𝑥𝑖+1 = 𝑥0 + 𝑄𝑖𝑦𝑖
If converged, then stop.

63

end

𝑥𝑠𝑜𝑙 = 𝑥𝑖+1

Vector 𝑥0 is the initial solution guess and �̃�𝑖 is an upper Hessenberg matrix. At the 𝑖th iteration,

𝑥𝑖+1 has the form 𝑥0 + 𝑄𝑖𝑦𝑖, where 𝑦𝑖 is the least squares solution to ‖ℎ10𝑒1 − �̃�𝑖𝑦𝑖‖2
 which locates 𝑥𝑖+1

to minimize ‖𝑏 − 𝐴𝑥‖2 over space

𝑥0 + 𝑠𝑝𝑎𝑛{𝑟0, 𝑟1, … , 𝑟𝑖}.

Here 𝑟𝑖 is the 𝑖 th approximate residual vector. 𝐼𝑀𝑣(𝐴, 𝑞𝑖, 𝑠) performs column sampling to generate a

vector approximating 𝐴𝑞𝑖 , based on the 𝑠 sampled columns of matrix 𝐴 . Thus, the space 𝑥0 +

𝑠𝑝𝑎𝑛{𝑟0, 𝑟1, … , 𝑟𝑖} is an approximation to the actual Krylov subspace 𝑥0 + {𝑟0, 𝐴𝑟0, 𝐴
2𝑟0, 𝐴

3𝑟0, … }.

By writing inexact matrix-vector operation in the form

𝑥′ = (𝐴 + ∆𝐴)𝑥,

where ∆𝐴 is the perturbation on the matrix 𝐴, the study in [99] shows that inexact matrix-vector products

would not significantly affect the convergence of GMRES, if the perturbation error ‖∆𝐴‖2 can satisfy the

condition of

‖∆𝐴‖2

‖𝐴‖2
∈ [𝑡𝑜𝑙, 1],

where 𝑡𝑜𝑙 donotes the specified tolerance threshold. Suppose that column sampling without replacement

is carried out in MCGMRES. Then, it is clearly seen that ‖∆𝐴‖2 < ‖𝐴‖2 holds, since column sampling

uses only a subset of the columns in 𝐴 to produce inexact matrix-vector product. Therefore, MCGMRES

based on column sampling not only can decrease the computational cost at each iteration, but also is able

to greatly maintain the convergence properties of GMRES.

3.5.3 Numerical Results

We use a 10,000 × 10,000 random matrix to show the capability of MCGMRES in trading off

speed and accuracy. The column sampling is carried out without replacement.

64

Fig. 19. Comparison of MCGMRES with different percentage of samples

Fig. 19 shows the numerical results of MCGMRES with different percentage of samples. One can

find that by using 10% randomly selected columns, MCGMRES takes only about 44% computational

time of the original GMRES to obtain a solution with accuracy of 10−2. When more samples are used in

MCGMRES, the computational costs gradually increases, but it allows higher accuracy solutions to be

achieved. It is important to note that MCGMRES would be a good choice for some large-scale problems

where a high-accuracy solution is not necessary but fast approximation of the solution is important.

65

CHAPTER IV

MONTE CARLO METHODS FOR LOW-RANK MATRIX APPROXIMATIONS

Constructing a low-rank matrix approximation with a suitable rank is critical to many data

analytic applications. In this chapter, we present a Rank-Revealing Randomized Singular Value

Decomposition (R3SVD) algorithm to incrementally construct a low-rank approximation while estimating

the appropriate rank (Section 4.1).

The main contribution of this work is the design of an importance sampling method - a new form

of Gaussian sampling based on orthogonal projection to obtain the leftover dominant subspace and add up

to existing low-rank approximation. Several application examples are provided to demonstrate that

R3SVD is more efficient in terms of computation time and memory while providing a better rank

estimation, compared to the other existing approaches. Moreover, R3SVD is a memory-aware algorithm

that the computation can be tailored to tasks to fit in the constant amount of memory.

4.1 Rank-Revealing Randomized Singular Value Decomposition (R3SVD) algorithm

Our R3SVD algorithm [150] is based on the randomized SVD algorithm with Gaussian sampling

(RSVD) proposed by Halko et al. [33, 103], although it can be straightforwardly extended to other

randomized SVD strategies. In this section, we first overview the RSVD algorithm and existing strategies

used to estimate rank value 𝑘. Then, we describe our R3SVD algorithm to adaptively estimate a low-rank

approximation. Finally, numerical examples are presented.

4.1.1 RSVD and Rank Estimation

The basic idea of RSVD is to use Gaussian vectors to construct a small condensed subspace from

the range of 𝐴 , whose dominant actions could be quickly estimated from this small subspace with

relatively low computation cost while yielding high confidence. The procedure of RSVD is described in

66

Algorithm 4.1.

Algorithm 4.1: Randomized SVD Algorithm with Gaussian Sampling (RSVD)

Input: 𝐴 ∈ ℝ𝑚×𝑛, a target matrix rank 𝑘 ∈ ℕ, and an oversampling parameter 𝑝 ∈ ℕ satisfying 𝑘 +
𝑝 ≤ 𝑚𝑖𝑛 (𝑚, 𝑛).

Output: Low rank approximation 𝑈𝐿 ∈ ℝ𝑚×𝑘, 𝛴𝐿 ∈ ℝ𝑘×𝑘, and 𝑉𝐿 ∈ ℝn×𝑘

Construct an 𝑛 × (𝑘 + 𝑝) Gaussian random matrix 𝛺

𝑌 = 𝐴𝛺

Compute an orthogonal basis 𝑄 = 𝑞𝑟(𝑌)

𝐵 = 𝑄𝑇𝐴
[𝑈𝐵, 𝛴𝐵, 𝑉𝐵] = 𝑠𝑣𝑑(𝐵)

Update 𝑈𝐵 = 𝑄𝑈𝐵

𝑈𝐿 = 𝑈𝐵(: ,1: 𝑘), 𝛴𝐿 = 𝛴𝐵(1: 𝑘, 1: 𝑘) , and 𝑉𝐿 = 𝑉𝐵(: ,1: 𝑘)

Given a desired rank 𝑘 and an oversampling parameter 𝑝 (typically a small constant), RSVD

constructs an 𝑛 × (𝑘 + 𝑝) Gaussian random matrix block 𝛺, whose elements are normally distributed. 𝛺

condenses a large matrix 𝐴 into a “tall-and-skinny,” dense block matrix 𝑌 by 𝑌 = 𝐴𝛺. 𝑌 captures the

most important actions of 𝐴 and a basis 𝑄 is derived by decomposing 𝑌. 𝑄 is designed to approximate the

left singular vectors of 𝐴 by minimizing ||𝑄𝑄𝑇𝐴 − 𝐴||𝐹
2 . Then, 𝑄 is applied back to 𝐴 to obtain a “short-

and-wide” block matrix 𝐵 = 𝑄𝑇𝐴. Calculation of SVD on 𝐵 yields an approximated Singular Value

Decomposition of 𝐴. The result 𝑈𝐿𝛴𝐿𝑉𝐿
𝑇 forms a 𝑘-rank matrix approximation to 𝐴.

The major operations in RSVD include matrix-block matrix multiplications as well as QR and

SVD decompositions on the block matrices. Specifically, matrix-block matrix multiplications take

𝑂(2(𝑘 + 𝑝)𝑇𝑚𝑢𝑙𝑡) floating-point operations, where 𝑇𝑚𝑢𝑙t denotes the computational cost of a matrix-

vector multiplication. For a large matrix 𝐴 where 𝑚, 𝑛 ≫ 𝑘 + 𝑝, the computational cost of matrix-block

matrix multiplications dominates those of the decomposition operations, which requires 𝑂((𝑘 + 𝑝)2(𝑚 +

𝑛)) floating operations. RSVD needs to store the intermediate matrices, such as 𝛺, 𝑌, 𝑄, and 𝐵, and thus

its space complexity is 𝑂(2(𝑚 + 𝑛)(𝑘 + 𝑝)). As a result, with a tradeoff of accuracy, RSVD is usually

more efficient than the full SVD algorithms in terms of computational and memory cost.

The desired rank 𝑘 is a required input parameter in the randomized SVD algorithms. However, in

many practical applications, the value of 𝑘 is unknown beforehand and needs to be appropriately

67

estimated. In the literature, two popular strategies are often used to estimate 𝑘. One is to evaluate a

suitable basis 𝑄 and then determine the appropriate 𝑘 before carrying out RSVD. For instance, Voronin

and Martinsson [104] proposed two algorithms, Autorank I and Autorank II, to evaluate a basis 𝑄 for a

range space that captures the most actions of matrix 𝐴. Autorank I is based on overestimation by using a

very large value 𝑘 at the beginning and then selecting dominant information from the resulting pool of

singular values/vectors. Although Autorank I is often able to obtain good low-rank approximations,

largely overestimated 𝑘 will result in significant computation cost increase, because the computational

cost of decompositions on the tall-and-skinny or short-and-wide matrices in RSVD grows rapidly with

𝑂(𝑘2) and is no longer negligible. At the same time, the memory requirement of Autorank I increases in

the order of 𝑘. Instead of overestimating 𝑘, Autorank II gradually samples the range of 𝐴 to calculate

error ||𝑄𝑄𝑇𝐴 − 𝐴||𝐹
2 in order to obtain an estimation of 𝑘 . Similar to Autorank II, the Adaptive

Randomized Range Finder algorithm [33] employs the incremental sampling approach with a

probabilistic error estimator based on the relation between the rank 𝑘 with respect to the theoretical error

bound to predict a reasonable basis 𝑄 with a reasonable value of 𝑘. However, this theoretical error bound

is loose and consequently 𝑘 is often largely overestimated, which will be shown in section 4. More

recently, the Randomized Blocked algorithm [105], a block version of Randomized Range Finder

algorithm, is developed to improve computational efficiency. Instead of using the probabilistic error

estimator, the Randomized Blocked algorithm explicitly updates matrix 𝐴 by removing the portion

projected on 𝑄 and terminates at a situation when matrix 𝐴 becomes small enough. An alternative strategy

is to adaptively estimate a suitable rank 𝑘 during RSVD. A simple approach is restarting RSVD, which

starts with a small guessed rank and then repeats RSVD computation until the low-rank approximation

with the desired accuracy is reached. This restarting approach can often result in a good low-rank

approximation; however, the previous RSVD trials are only used to estimate 𝑘 and do not contribute to

final low-rank approximation.

68

4.1.2 The R3SVD Algorithm

Algorithm 4.2 describes the proposed R3SVD algorithm. The rationale of R3SVD is to build a

low-rank approximation incrementally based on orthogonal Gaussian projection. Initially, a 𝑡 -rank

approximation is obtained, where 𝑡 is an initial guess of 𝑘 which can be justified according to the memory

available. The energy percentage is estimated accordingly. If the energy percentage obtained so far does

not satisfy the application requirement, a new 𝑡 -rank approximation is calculated in the subspace

orthogonal to the space of the previous low-rank approximation. Then, the new 𝑡-rank approximation will

be added to the previous one to form a 2𝑡-rank approximation and its corresponding energy percentage is

estimated. The above process is repeated until the incrementally built low-rank approximation has secured

a satisfactory percentage of energy from 𝐴.

Compared to RSVD in Algorithm 4.1, R3SVD incorporates three major changes including

importance sampling, orthogonalization process, and stopping criteria based on energy estimation.

Algorithm 4.2: Rank Revealing Randomized SVD (R3SVD) Algorithm

Input: 𝐴 ∈ ℝ𝑚×𝑛, sampling size 𝑡 ∈ ℕ per iteration, oversampling number 𝑝 ∈ ℕ, maximum number of

iterations 𝑚𝑎𝑥𝑖𝑡 ∈ ℕ , and energy threshold 𝜏 ∈ ℝ.

Output: Low rank approximation 𝑈𝐿 ∈ ℝ𝑚×𝑘′
, 𝛴𝐿 ∈ ℝ𝑘′×𝑘′

, 𝑉𝐿 ∈ ℝ𝑛×𝑘′
, and estimated rank k’

// initialization

Construct an 𝑛 × (𝑡 + 𝑝) standard Gaussian matrix 𝛺

𝐺0 = 𝛺 and 𝑉𝐿 = ∅, 𝑈𝐿 = ∅, 𝛴𝐿 = ∅

𝑘’ = 0

for 𝑖 = 0:𝑚a𝑥𝑖𝑡

𝑌𝑖 = 𝐴𝐺𝑖

𝑄𝑖 = 𝑞𝑟(𝑌𝑖 , 0)

𝐵𝑖 = 𝑄𝑖
𝑇𝐴

[𝑈𝐵𝑖
, 𝛴𝐵𝑖

, 𝑉𝐵𝑖
] = 𝑠𝑣𝑑(𝐵𝑖, 0)

𝑈𝑖 = 𝑄𝑖𝑈𝐵𝑖

𝛴𝑖 = 𝛴𝐵𝑖

𝑉𝑖 = 𝑞𝑟(𝑉𝐵𝑖
− 𝑉𝐿(𝑉𝐿

𝑇𝑉𝐵𝑖
), 0) // orthogonalization process

𝑈𝐿 ← [𝑈𝐿 , 𝑈𝑖(: ,1: 𝑡)], 𝛴𝐿 ← [
𝛴𝐿 0

0 𝛴𝑖(1: 𝑡, 1: 𝑡)
] , 𝑉𝐿 ← [𝑉𝐿 , 𝑉𝑖(: ,1: 𝑡)]

for 𝑗 = 1: 𝑡

 𝑘′ = 𝑖 × 𝑡 + 𝑗

�̃�𝑘′ =
∑ σ𝑖

′ 2𝑘′

𝑖=1

‖𝐴‖𝐹
2

 // estimate energy percentage

if �̃�𝑘′ ≥ 𝜏, then stop;

end

69

𝐺𝑖+1 = 𝐺𝑖 − 𝑉𝑖(𝑉𝑖
𝑇𝐺𝑖) // update Gaussian matrix

end

[𝛴𝐿, Idx] = sort(𝛴𝐿,'descend'); // sort the approximate singular values

𝑉𝐿 = 𝑉𝐿 (:, Idx);

𝑈𝐿 = 𝑈𝐿 (:, Idx);

4.1.2.1 Importance Sampling

Suppose that 𝑉𝐿 is an 𝑛 × 𝑡 matrix composed of 𝑡 right singular vectors of a low-rank

approximation 𝑈𝐿𝛴𝐿𝑉𝐿 , which is supposed to capture most of the energy in 𝐴. Then, the range space

𝑟𝑎𝑛(𝐴𝑇) can be divided into two orthogonal spaces: space 𝑟𝑎𝑛(𝑉𝐿) spanned by the columns in 𝑉𝐿 and its

orthogonal complement 𝑟𝑎𝑛(𝑉𝐿)
⊥. Obviously, if 𝑉𝐿 consists of only partial dominant actions of 𝐴, the rest

dominant information is left over in the space 𝑟𝑎𝑛(𝑉𝐿)
⊥.

R3SVD is designed to incrementally add up a low-rank approximation. To this end, R3SVD needs

to sample the space 𝑟𝑎𝑛(𝑉𝐿)
⊥ orthogonal to 𝑉𝐿 to extract the left-over dominant information of 𝐴. Here,

we employ importance sampling by constructing a new sampling matrix 𝐺, such as

𝐺 = (𝐼 − 𝑃𝑉)𝛺

where 𝑃𝑉 is an orthogonal projection onto the space 𝑟𝑎𝑛(𝑉𝐿), 𝛺 is a standard Gaussian matrix, and 𝐼 is

the identity matrix. Theorem 4.1 shows that 𝐺 is a Gaussian matrix orthogonal to 𝑟𝑎𝑛(𝑉𝐿).

Theorem 4.1. Assuming that 𝑉𝐿 is an 𝑛 × 𝑡 non-empty matrix with orthonormal columns, then

1) 𝐺 is orthogonal to 𝑉𝐿; and

2) elements in 𝐺 are normally distributed.

Proof. 1) Since 𝑉𝐿 is an 𝑛 × 𝑡 matrix with orthonormal columns, 𝑃𝑉 can be derived as 𝑃𝑉 = 𝑉𝐿𝑉𝐿
T .

Obviously, 𝑉𝐿
𝑇(𝐼 − 𝑃𝑉) = 𝑉𝐿

𝑇 − 𝑉𝐿
𝑇𝑉𝐿𝑉𝐿

𝑇 = 0 holds.

2) As 𝐼 − 𝑃𝑉 is the orthogonal projection onto 𝑟𝑎𝑛(𝑉𝐿)
⊥ , which is the orthogonal complement of

space 𝑟𝑎𝑛(𝑉𝐿), we can denote an 𝑛 × (𝑛 − 𝑡) matrix �̃� = (�̃�𝑖𝑗) as a basis of the space 𝑟𝑎𝑛(𝑉𝐿)
⊥ and

then 𝐼 − 𝑃𝑉 = �̃��̃�𝑇. Then, each element 𝑔𝑖𝑗 in 𝐺 can be expressed as

70

𝑔𝑖𝑗 = ∑(∑ �̃�𝑖ℎ�̃�𝑠ℎ

𝑛−𝑡

ℎ=1

)𝜔𝑠𝑗

𝑛

𝑠=1

where 𝜔𝑠𝑗 denotes an element of 𝛺 in row 𝑠 of column 𝑗. Since element 𝜔𝑠𝑗’s are independent standard

normal distributed variables, the characteristic function 𝛷𝑔𝑖𝑗
(𝑥) can be obtained as

𝛷𝑔𝑖𝑗
(𝑥) = 𝛷∑ (∑ �̃�𝑖ℎ�̃�𝑠ℎ

𝑛−𝑡
ℎ=1)𝜔𝑠𝑗

𝑛
𝑠=1

(𝑥)

= ∏∏𝑒−
1
2
(�̃�iℎ�̃�𝑠ℎ𝑥)2

𝑛−𝑡

ℎ=1

𝑛

𝑠=1

= ∏∏𝑒−
1
2
(�̃�𝑖ℎ�̃�𝑠ℎ𝑥)2

𝑛

𝑠=1

𝑛−𝑡

ℎ=1

= ∏𝑒−
1
2
�̃�𝑖ℎ

2(∑ �̃�𝑠ℎ
2𝑛

𝑠=1)𝑥2
𝑛−𝑡

ℎ=1

.

As the columns of �̃� are orthonormal such that (∑ �̃�𝑠ℎ
2𝑛

𝑠=1) = 1, we have

𝛷𝑔𝑖𝑗
(𝑥) = 𝑒−

1
2

∑ �̃�𝑖ℎ
2𝑛−𝑡

ℎ=1 𝑥2

.

Since the characteristic function uniquely determines the probability distribution of a random variable

[106], it suffices to show that 𝑔𝑖𝑗 is normally distributed with expected value zero and variance �̃�𝑖𝑗
2 =

∑ �̃�𝑖ℎ
2𝑛−𝑡

ℎ=1 , i.e., 𝑔𝑖𝑗~𝑁(0, �̃�𝑖𝑗
2).

To avoid resampling of the space 𝑟𝑎𝑛(𝑉𝐿), the product of matrix 𝐴𝐺 in R3SVD focuses on

revealing the dominant information from the space 𝑟𝑎𝑛(𝑉𝐿)
⊥ orthogonal to 𝑟𝑎𝑛(𝑉𝐿). Since the number of

dominant singular values is unknown in advance, R3SVD generates a series of Gaussian matrices

𝐺1, 𝐺2, … to iteratively explore the orthogonal subspace of the obtained low-rank approximation until a

satisfactory low-rank approximation is obtained.

4.1.2.2 Orthogonalization Process

Let 𝑉𝐿 = [𝑉1, 𝑉2, …𝑉𝑖] denote a matrix containing the approximate right singular vectors

obtained in R3SVD at the 𝑖th iteration step. The singular vectors in the 𝑉𝑖+1 must be orthogonal to 𝑉𝐿.

71

However, the inherent numerical errors may cause loss of orthogonality between 𝑉𝑖+1 and 𝑉𝐿.

To ensure the orthogonality property, we generate 𝑉𝑖+1 by employing an orthogonalization

process to remove the components of 𝑉𝐵𝑖
 that are not orthogonal to the previous right singular vectors in

𝑉𝐿 such that

𝑉𝑖+1 = 𝑞𝑟(𝑉𝐵𝑖+1
− 𝑉𝐿(𝑉𝐿

𝑇𝑉𝐵𝑖+1
), 0).

Proposition 4.2 indicates that the resulting matrix 𝑉𝑖+1 generated at the (𝑖 + 1)th iteration step in R3SVD

is orthogonal to 𝑉𝐿.

Proposition 4.2. Using the transformed matrix 𝑉𝑖+1, 𝑉𝐿
𝑇𝑉𝑖+1 = 0 holds.

Proof. Denoting 𝑍𝑖+1 = 𝑉𝐵𝑖+1
− 𝑉𝐿(𝑉𝐿

𝑇𝑉𝐵𝑖+1
), we can get 𝑉𝐿

𝑇𝑍𝑖+1 = 𝑉𝐿
𝑇 (𝑉𝐵𝑖+1

− 𝑉𝐿(𝑉𝐿
𝑇𝑉𝐵𝑖+1

)) = 0.

Since 𝑉𝑖+1 is a basis of 𝑟𝑎𝑛(𝑍𝑖+1), 𝑉𝐿
𝑇𝑉𝑖+1 = 0 holds.

Based on Proposition 4.2, the orthogonality property of the resulting left singular vectors 𝑈𝐿 can

be proved, which is shown in Proposition 4.3.

Proposition 4.3. Using the transformed matrix 𝑉𝑖+1, 𝑈𝐿
𝑇𝑈𝑖+1 = 0 holds.

Proof. Denoting the QR decomposition of 𝑌𝑖+1 by 𝑌𝑖+1 = 𝑄𝑖+1𝑅𝑖+1. We can have

𝑄𝑗
𝑇𝑄𝑖+1 = 𝑄𝑗

𝑇𝑌𝑖+1𝑅𝑖+1
−1

= 𝑄𝑗
𝑇𝐴𝐺𝑖+1𝑅𝑖+1

−1

= 𝑄𝑗
𝑇𝐴(𝐼 − 𝑃𝑉𝐿

)𝛺𝑅𝑖+1
−1

= 𝐵𝑗(𝐼 − 𝑃𝑉𝐿
)𝛺𝑅𝑖+1

−1

= 𝑈𝐵𝑗
𝛴𝐵𝑗

𝑉𝐵𝑗

𝑇(𝐼 − 𝑃𝑉𝐿
)𝛺𝑅𝑖+1

−1

where 𝑉𝐿 = [𝑉1, 𝑉2, …𝑉𝑖].

Denote 𝑉− = [𝑉1, 𝑉2, …𝑉𝑗−1] and 𝑉+ = [𝑉𝑗+1, … , 𝑉𝑖] for 𝑗 ≤ 𝑖. According to Proposition 4.2, the

72

columns in 𝑉𝐿 are orthogonal to each other. Then, (𝐼 − 𝑃𝑉𝐿
) can be expressed as

(𝐼 − 𝑃𝑉𝐿
) = (𝐼 − 𝑃𝑉−) (𝐼 − 𝑃𝑉𝑗

) (𝐼 − 𝑃𝑉+).

Since 𝑉𝑗 = 𝑞𝑟 (𝑉𝐵𝑗
− 𝑉− (𝑉−𝑇𝑉𝐵𝑗

) , 0), it follows that

(𝐼 − 𝑃𝑉−)𝑉𝐵𝑗
= 𝑉𝑗𝑅𝑗.

Therefore,

𝑉𝐵𝑗

𝑇(𝐼 − 𝑃𝑉𝐿
) = 𝑉𝐵𝑗

𝑇(𝐼 − 𝑃𝑉−) (𝐼 − 𝑃𝑉𝑗
) (𝐼 − 𝑃𝑉+)

= 𝑅𝑗
𝑇𝑉𝑗

𝑇 (𝐼 − 𝑃𝑉𝑗
) (𝐼 − 𝑃𝑉+)

= 0,

and thus 𝑄𝑗
𝑇𝑄𝑖+1 = 0, for 𝑗 ≤ 𝑖. Hence,

𝑈𝐿
𝑇𝑈𝑖+1 = [𝑈1, 𝑈2, …𝑈𝑖]

𝑇𝑈𝑖+1 =

[

𝑈𝐵1

𝑇 𝑄1
𝑇𝑄𝑖+1𝑈𝐵𝑖+1

𝑈𝐵2

𝑇 𝑄2
𝑇𝑄𝑖+1𝑈𝐵𝑖+1

⋮
𝑈𝐵𝑖+1

𝑇 𝑄𝑖
𝑇𝑄𝑖+1𝑈𝐵𝑖+1]

= 0.

The orthogonalization process requires 𝑂((2𝑡𝑖 + 1)(𝑡 + 𝑝)𝑛) operations to ensure the

orthogonality properties of singular vectors obtained in the previous iterations. Moreover, by taking

advantage of the orthogonality between 𝑉𝑖+1 and 𝑉𝐿 , the next Gaussian matrices 𝐺𝑖+1 can be fast

generated using the following short recursive formula,

𝐺𝑖+1 = (𝐼 − ∑𝑃𝑉𝑗

𝑖

𝑗=1

)𝛺 = 𝐺𝑖 − 𝑃𝑉𝑖
𝐺𝑖,

where 𝑃𝑉𝑗
 is the orthogonal projection onto the space spanned by 𝑉𝑗, such that 𝑃𝑉𝑗

= 𝑉𝑗𝑉𝑗
𝑇, and 𝛺 is a

standard Gaussian matrix. Since 𝐺𝑖+1 is generated directly from 𝐺𝑖 , the orthogonal Gaussian sampling

takes only 𝑂((2𝑡 + 1)(𝑡 + 𝑝)𝑛) operations.

4.1.2.3 Energy Estimation and Stopping Criteria

73

The incremental low-rank approximation buildup process in R3SVD will be terminated when

sufficient percentage of energy of 𝐴 is secured. The percentage threshold 𝜏 is typically specified by the

applications, which often ranges from 80% to 99%.

Let 𝑈𝐿 = [𝑈1, 𝑈2, …𝑈𝑖] denote a matrix of the approximate left singular vectors. The actual

energy percentage of the low-rank approximation obtained at the 𝑖th iteration step can be evaluated based

on

𝜑 =
‖𝑈𝐿𝑈𝐿

𝑇𝐴‖
𝐹

2

‖𝐴‖𝐹
2

.

However, calculating ‖𝑈𝐿𝑈𝐿
𝑇𝐴‖

𝐹

2
 at each iteration is rather costly. In R3SVD, the following measure

�̃�𝑘′ is carried out to quickly estimate the energy percentage of the obtained low-rank approximation, such

that

�̃�𝑘′ =
∑ 𝜎𝑖

′2𝑘′
𝑖=1

‖𝐴‖𝐹
2

.

where 𝜎𝑖
′ denotes the 𝑖th approximate singular value in R3SVD. It is important to note the approximate

singular values 𝜎𝑖
′’s are available during calculation of SVD on 𝐵𝑖 , where 𝐵𝑖 = 𝑄𝑖

𝑇𝐴. Therefore, the

energy percentage can be evaluated at (almost) no cost.

Proposition 4.4 shows the estimated energy �̃�𝑘′ equals to the accurate energy 𝜑, and it guarantees

that the low-rank approximation obtained by R3SVD satisfies the accuracy requirement of the

applications.

Proposition 4.4. �̃�𝑘′ = 𝜑′.

Proof. Since the columns in 𝑈𝐿 are orthogonal, we have

‖𝑈𝐿𝑈𝐿
𝑇𝐴‖

𝐹

2
= ∑‖𝑈𝑗𝑈𝑗

𝑇𝐴‖
𝐹

2
𝑖

𝑗=1

= ∑‖𝑈𝑗
𝑇𝐴‖

𝐹

2
𝑖

𝑗=1

74

= ∑‖𝑈𝐵𝑗

𝑇𝑄𝑗
𝑇𝐴‖

𝐹

2
𝑖

𝑗=1

= ∑‖𝑈𝐵𝑗

𝑇𝑈𝐵𝑗
𝛴𝐵𝑗

𝑉𝐵𝑗

𝑇‖
𝐹

2
𝑖

𝑗=1

= ∑‖𝛴𝐵𝑗
‖

𝐹

2
𝑖

𝑗=1

= ∑𝜎𝑖
′2

𝑘′

𝑖=1

.

Hence,

�̃�𝑘′ =
∑ 𝜎𝑖

′2𝑘′
𝑖=1

‖𝐴‖𝐹
2

= 𝜑′ =
‖𝑈𝐿𝑈𝐿

𝑇𝐴‖
F

2

‖𝐴‖𝐹
2

.

4.1.2.4 Complexity Analysis

As discussed above, at each iteration, R3SVD carries out orthogonal Gaussian sampling to

compute a new 𝑡-rank approximation of the leftover subspace orthogonal to the low-rank approximation

obtained so far. Suppose that R3SVD uses 𝑠 iterations to achieve a satisfactory low rank approximation

with 𝑘′ ≈ 𝑡𝑠 as the result rank and assume that the computational cost of matrix-block matrix

multiplications dominates those of QR and SVD decompositions on the block matrices. The

computational cost of R3SVD is

𝑂(2(𝑘′ + 𝑠𝑝)𝑇𝑚𝑢𝑙𝑡).

In the case that matrix 𝐴 is sparse and both 𝑚 and 𝑛 are large, we can obtain the time complexity with

simpler terms. In particular, as 𝑇𝑚𝑢𝑙𝑡 ≈ 𝑐𝑚, where 𝑐 is sparsity ratio, the time complexity of R3SVD can

be expressed as 𝑂(𝑘′2𝑚𝑖𝑛(𝑚, 𝑛)).

In additional to the storage of matrix 𝐴, the major computations of R3SVD are carried out on a

series of block matrices with (𝑡 + 𝑝) columns or rows. Therefore, since 𝑡 < 𝑘, R3SVD takes a constant

space complexity of 𝑂(2(𝑚 + 𝑛)(𝑡 + 𝑝)), which is lower than that of RSVD, 𝑂(2(𝑚 + 𝑛)(𝑘 + 𝑝)).

75

4.1.3 Numerical Results

In this section, we use several numerical examples to demonstrate the effectiveness of R3SVD for

low-rank approximation in image compression and matrix completion.

4.1.3.1 Comparisons with RSVD

We compare the performance of R3SVD, full SVD, Autorank II, restarting RSVD, Adaptive

Randomized Range Finder algorithm, and Randomized Blocked algorithm in constructing low rank

approximations to compress a 7671 × 7680 NASA synthesis image chosen from the Mars Exploration

Rover mission [107]. A compressed image is considered satisfactory if the low-rank approximation

captures 99% energy of the original image matrix.

Both R3SVD and RSVD start with an initial guess 𝑡 = 15 of the target rank and 𝑝 = 5 extra

oversampling vectors. In restarting RSVD, as the approximate singular values are available during RSVD,

the energy estimation introduced in Section 4.1.2.3 is used. If the guessed rank turns out to be insufficient

to obtain a low rank approximation with satisfactory accuracy, the restarting approach repeats the RSVD

computation with gradually increasing rank ∆𝑡=15. Table 4 compares the computational performance of

full SVD, Autorank II algorithm, Adaptive Randomized Range Finder algorithm, Randomized Blocked

Algorithm, R3SVD, and restarting RSVD in terms of rank, computational time, maximum memory usage,

and energy percentage of the obtained low rank approximation. The optimal low-rank approximation

(rank 46) to obtain 99% energy of the original matrix can be obtained by carrying out full SVD, which

takes over 760 seconds on a Dell Precision-M6500 laptop (Intel CoreTM i5CPU, 2.67GHz, 4GBRAM).

Restarting RSVD reduces the computational time to 13.77 seconds with a low-rank approximation of rank

79. Compared to restarting RSVD, R3SVD further reduces both the computational time to 4.54 (32.97%)

and rank to 62 (78.48%). This is because R3SVD carries out important sampling based on the

approximate right singular vectors in 𝑉𝐿, which is computed by multiplying 𝐴 twice per iteration. The

power iteration allows more precise estimation of the dominant actions than a single iteration of 𝐴

multiplication in restarting RSVD. It is also important to notice that the algorithms based on the strategy

of estimating 𝑘 before RSVD, including Autorank II, Adaptive Randomized Range Finder, and

76

Randomized Blocked algorithm require more computational time as well as the memory than restarting

RSVD and R3SVD. The Adaptive Randomized Range Finder uses a probabilistic error estimator, which

leads to a highly overestimated rank (641).

TABLE 4

R3SVD, Full SVD, Autorank II, Restarting RSVD, Adaptive Randomized Range Finder Algorithm, and

Randomized Blocked Algorithm

 Rank
Computational Time

(second)

Maximum Memory Usage

(bytes)

Energy Percentage

Achieved

Full SVD 46 760.55 1.41 × 109 99.024%

Autorank II Algorithm [104] 105 32.66 2.03 × 107 99.184%

Adaptive Randomized Range

Finder Algorithm [33]
641 55.65 1.19 × 108 99.999%

Randomized Blocked

Algorithm [105]
105 20.90 4.80 × 108 99.184%

Restarting RSVD 79 13.77 1.60 × 107 99.000%

R3SVD 62 4.54 4.91 × 106 99.006%

Another important advantage of R3SVD is that R3SVD maintains constant memory usage in the

computational process. Fig. 20 shows the memory usages in R3SVD and restarting RSVD as the guessed

rank gradually increases. One can find that for a larger guessed rank, restating RSVD requires more

memory because of decomposing block matrices with more columns or rows. In contrast, the

decomposition operations in R3SVD are carried out on block matrices with fixed (𝑡 + 𝑝) number of

columns or rows. As a result, the memory usage does not increase as the guessed rank increases. As

shown in Table 4, the memory usage in R3SVD is significantly less than those of the other algorithms.

Fig. 20. Memory usage in R3SVD and restarting RSVD

15 30 45 60 75
0

2

4

6

8

10

12

14

16
x 10

6

Rank

M
e
m

o
ry

 C
o

s
t

(b
y
te

s
)

R
3
SVD

Restarting RSVD

77

Fig. 21 presents the compressed images in R3SVD, where Fig. 21(a) is the original image and

Figs 21(b) to 21(d) illustrate the adaptive compressed images with increasing ranks. With the resulting

62-rank low-rank approximation, a compressed image with 99.006% energy of the original image is

obtained.

(a) The Original image
(b) 15-rank Compressed image with energy

97.290%

(c) 30-rank Compressed image with energy

98.410%

(d) 62-rank Compressed image with energy

99.006%

Fig. 21. The original image and the compressed images with increasing ranks in R3SVD

One advantage of R3SVD is that the computational process can be tailored into a series of

sampling tasks that can fit into the available memory in a computer via adjusting the sampling size

parameter 𝑡. Fig. 22 compares the energy percentage of the obtained low rank approximations (upper) and

78

the memory usage (lower) in R3SVD with 𝑡 = 20, 15, 10, and 5. One can find that a smaller sample size

in R3SVD yields proportionally less consumption of memory but without significantly affecting the rank

in the obtained low-rank approximation. The resulting ranks are 63, 62, 61, and 60, respectively.

Therefore, calculating sampling size parameter 𝑡 according to the available memory in a computer can

lead to the best performance of R3SVD.

Fig. 22. The energy percentage of the obtained low rank approximations (upper) and the required memory space

(lower) in R3SVD with 𝑡 = 20, 15, 10, and 5 and the oversampling parameter 𝑝 = 5.

4.1.3.2 Application in Matrix Completion

R3SVD can be effectively applied to applications of matrix completion, whose goal is to recover

the missing (unknown) entries of an incomplete matrix [25, 108, 109, 110,156]. Matrix completion

algorithms have been widely used in many applications, including machine learning [111, 112], computer

vision [113], and image/video processing [114]. In the literature, matrix completion algorithms can be

classified into two groups. One approach is based on semi-definite programming solvers to find the

optimal matrix completion solution [109, 149]. While effective for completing matrices with missing

entries, such methods need to solve large-scale systems of linear equations and are not suitable for large

problem size. In fact, as pointed out in [25], the methods have difficulty in handling matrices with size

79

100 × 100, due to their high computational costs. In contrast, an alternative approach of using Singular

Value Thresholding operation offers a rapid way to generate approximations to the exact matrix

completion solution [25], which aims to efficiently address large-scale problems. In this class of matrix

completion algorithms, low rank matrix approximation is a core component and the computational

efficiency of constructing high-quality low rank approximation is essential to their performance.

We modify the Singular Value Thresholding (SVT) algorithm in [25] by replacing the underlying

Lanczos algorithm with our R3SVD algorithm to compute dominant singular values and vectors at each

SVT iteration. Fig. 23 shows a 1024 × 1024 aerial image chosen from the USC-SIPI Image Database

[115] as well as 10% of the pixels 𝒫Ω(𝐴) uniformly sampled from the image (the background is set to

grey to highlight these samples), where Ω represents the set of indices of samples and 𝒫Ω(∙) denotes the

operator that sets the entries outside Ω to be zero. As shown in Table 5, the modified SVT algorithm

obtains the completed image with similar recovery errors and rank as that of the original SVT. However,

R3SVD significantly reduces the computational time in SVT. This is due to the fact that the Lanczos

bidiagonalization algorithm with partial reorthogonalization used in original SVT has computational

complexity of 𝑂(𝑚𝑖𝑛 (𝑚, 𝑛)2𝑘) [28,116] while R3SVD offers a faster way with computational

complexity of 𝑂(𝑚𝑖𝑛 (𝑚, 𝑛)𝑘2) in contrast. As a result, the modified SVT method using R3SVD achieves

about 1.69 times speedup over the original SVT method using Lanczos algorithm.

(a) The Original Image 𝐴 (b) 10% uniform samples 𝒫Ω(𝐴)

Fig. 23. The original image and the sample image

80

TABLE 5

The Completed Images using the Original SVT Algorithm and the Modified SVT Algorithm using R3SVD

 Completed Image 𝑋
of

Iterations

Elapsed

Time (s)
Rank

‖𝒫Ω(𝐴 − 𝑋)‖𝐹
2

‖𝒫Ω(𝐴)‖𝐹
2

‖𝐴 − 𝑋‖𝐹
2

‖𝐴‖𝐹
2

Original

SVT

822 3457.122 190 9.981 × 10−3 6.772 × 10−2

Modified

SVT

using

R3SVD

823 2045.295 189 9.979 × 10−3 6.772 × 10−2

81

CHAPTER V

MONTE CARLO METHODS FOR EXTREME EIGENVALUES/EIGENVECTORS

Finding the dominant eigenvector of a matrix is of great interest in many practical applications. In

this chapter, we revisit the generalized block power method for approximating the eigenvector associated

with the dominant eigenvalue 𝜆1 = 1 of the transition matrix 𝑃 associated with Markov chain (Section

5.1). The convergence analysis of the block power method shows that when 𝑠 linearly independent

random vectors are used, the block power method converges to the dominant eigenvector at a rate related

to the (𝑠 + 1) th dominant eigenvalue |𝜆𝑠+1| of 𝑃 , rather than the well-known second dominant

eigenvalue |𝜆2| in Markov Chain Monte Carlo theory, which makes the block power method particularly

powerful for Markov chains where |𝜆𝑠+1| and 𝜆1 = 1 are well separated but |𝜆2| and 𝜆1 = 1 are not.

The block power method requires costly matrix-block multiplications at each iteration. To reduce

the computational costs, we design a Sliding Window Power (SWP) algorithm to take advantage of the

vectors generated in the previous iterations to build up the block matrices (Section 5.2). The numerical

results on a Markov chain application in modeling stochastic luminal Calcium release site are provided to

demonstrate the effectiveness of the SWP method.

5.1 Block Power Method

5.1.1 Block Power Iteration

Let 𝑃 denote an 𝑛 × 𝑛 probability transition matrix of a finite state Markov chain 𝐾. Based on the

fundamental theorem of Markov chains [7], if 𝐾 is irreducible, aperiodic, and positive-recurrent, there is

an unique stationary distribution characterized by a probability vector 𝜋 such that

𝜋𝑇𝑃 = 𝜋𝑇 .

Here 𝜋 corresponds to the left eigenvector associated with the dominant eigenvalue 𝜆1= 1 of 𝑃 . The

power method [34] is a simple numerical algorithm that can be applied to approximate the stationary

82

distribution vector of a discrete Markov chain. Starting from a random probability distribution vector 𝑥0,

the power method is described by the power iteration

𝑥𝑖+1 = 𝑃𝑇𝑥𝑖.

The convergence speed of the power method is governed by the second dominant eigenvalue |𝜆2| of 𝑃.

The block power method is a block generalization of the power method. Each iteration step

consists of an iteration operation and a decomposition operation [155]. In the iteration operation, subspace

iteration (a.k.a. orthogonal iteration or simultaneous iteration) [7, 117] is employed to compute the multi-

dimensional invariant subspace. Let 𝑋0 be an 𝑛 × 𝑠 matrix with orthonormal columns and the following

subspace iteration process generates a series of matrices 𝑋𝑖.

 for i = 1, 2, 3, …

 𝑍𝑖 = 𝑃𝑇𝑋𝑖−1

 𝑋𝑖𝑅𝑖 = 𝑍𝑖 // QR factorization of 𝑍𝑖

 end

As a result, 𝑋𝑖 tends towards the invariant subspace of 𝑃 with respect to the eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑠.

Generally, the subspace iteration method is used to estimate the largest 𝑠 eigenvalues and eigenvectors of

a matrix, which converges at a rate proportional to |𝜆𝑠+1|/|𝜆𝑠| [7].

The subspace iteration can be tailored for Markov chain applications. Since the dominant

eigenvalue 𝜆1 in the transition matrix 𝑃 is 1, the normalization step in the subspace iteration process is no

longer necessary and the block power method can be simplified as

for 𝑖 = 1,… , 𝑘

 𝑋𝑖 = 𝑃𝑇𝑋𝑖−1

end

Due to the fact that the left eigenvector associated with the dominant eigenvalue is only of interest in

Markov chain applications, the approximate eigenvector can be extracted from the space spanned by the

block matrix 𝑋𝑘 by the following Schur-Rayleigh-Ritz step [117] in the decomposition step.

83

 𝑄𝑘𝑅𝑘 = 𝑋𝑘 // QR Decomposition

 𝐵𝑘 = 𝑄𝑘
𝑇𝑃𝑇𝑄𝑘 // Projection

 𝑈𝑘𝑇𝑘𝑈𝑘
𝑇 = 𝐵𝑘 // Schur Decomposition

 𝑌𝑘 = 𝑄𝑘𝑈𝑘

Provided that, in the Schur decomposition of 𝐵𝑘, 𝑈𝑘 is chosen so that the diagonal elements of 𝑇𝑘 are

appeared in non-increasing order of absolute value, 𝑌𝑘
(1) , the first column vector in 𝑌𝑘 , is an

approximation to the dominate left eigenvector 𝑣1 of 𝑃.

5.1.2 Convergence Analysis

Theorem 5.2 shows that the block power method converges to the dominant left eigenvector 𝑣1 of

𝑃 at a rate of 𝑂(|𝜆𝑠+1|
𝑘). We first state a special case of a theorem (Theorem 3.2 described in [117]) as

Lemma 5.1, which will be used in the proof of Theorem 5.2. When the Markov transition matrix is

considered and only the dominant eigenvector is of interest, Lemma 5.1 shows that the Schur-Rayleigh-

Ritz approximation to the high powers of an upper triangular matrix converges to the first column of

identity matrix.

Lemma 5.1. Suppose that 𝑇 is an upper triangular matrix where 𝜆1 = 1, 𝜆2, 𝜆3, … , 𝜆𝑛 are diagonal

elements appearing in non-increasing order of magnitude. Let 𝑌𝑘
′ denote the Schur-Rayleigh-Ritz

approximation corresponding to 𝑇𝑘𝑋0, where 𝑋0 is an 𝑛 × 𝑠 initial block matrix and 𝑘 is the number of

subspace iterations. Then,

𝑑𝑖𝑠𝑡 (𝑠𝑝𝑎𝑛 {𝑌𝑘
′(1)

} , 𝑠𝑝𝑎𝑛{𝐼(1)}) = 𝑂(|𝜆𝑠+1|
𝑘).

where 𝑌𝑘
′(1)

 and 𝐼(1) denote the first column of matrix 𝑌𝑘
′ and identity matrix, respectively.

Theorem 5.2. Let 𝑌𝑘 be the Schur-Rayleigh-Ritz approximation corresponding to 𝑃𝑇𝑘
𝑋0, where 𝑋0 is an

𝑛 × 𝑠 initial block matrix. Assuming that the Schur decomposition of 𝐵𝑘 results in an upper triangular

84

matrix 𝑇𝑘 with all diagonal elements sorted in non-increasing order of magnitude, then vector 𝑌𝑘
(1)

converges to the dominate left eigenvector 𝑣1 of matrix 𝑃 at a rate that is O(|𝜆𝑠+1|
𝑘), such that

𝑑𝑖𝑠𝑡(𝑠𝑝𝑎𝑛{𝑌𝑘
(1)}, 𝑠𝑝𝑎𝑛{𝑣1}) = 𝑂(|𝜆𝑠+1|

𝑘).

Proof. Suppose that 𝑊𝑇𝑊−1 = 𝑃𝑇 is a Schur decomposition of 𝑃𝑇 , where 𝑊 is an unitary matrix

consisting of the Schur vectors and the Schur form 𝑇 is an upper triangular matrix with its diagonal

elements as 𝜆1 = 1, |𝜆2|, |𝜆3|, … , |𝜆𝑛| placed in non-increasing order of magnitude. Then the projection

of 𝑃𝑇𝑘
 on 𝑋0 becomes

𝑋𝑘 = 𝑃𝑇𝑘
𝑋0 = (𝑊𝑇𝑊−1)𝑘𝑋0

= 𝑊𝑇𝑘𝑊−1𝑋0

= 𝑇𝑘𝑊−1𝑋0

where �̃�0 denotes 𝑊−1𝑋0.

Let 𝑄𝑘𝑅𝑘 be a QR decomposition of 𝑋𝑘 and then we can get 𝑊−1𝑄𝑘𝑅𝑘 = 𝑇𝑘�̃�0. Because both

𝑊−1 and 𝑄𝑆 are orthogonal matrices, denoting 𝑄𝑘
′ = 𝑊−1𝑄𝑘, we can find that 𝑄𝑘

′ is a basis for the range

of 𝑇𝑘�̃�0. Afterward, considering projecting 𝑃𝑇 onto 𝑄𝑘 to construct an s × 𝑠 matrix 𝐵𝑘, we have

𝐵𝑘 = 𝑄𝑘
𝑇𝑃𝑇𝑄𝑘 = 𝑄𝑘

′ 𝑇
𝑊−1𝑊𝑇𝑊−1𝑊𝑄𝑘

′ = 𝑄𝑘
′ 𝑇

𝑇𝑄𝑘
′ .

Clearly, the Schur vectors 𝑈𝑘 of 𝐵𝑘 are also the Schur vectors of 𝑄𝑘
′ 𝑇

𝑇𝑄𝑘
′ . Let 𝑌𝑘

′ denote the

Schur-Rayleigh-Ritz approximation corresponding to 𝑇𝑘�̃�0 . Then, the Schur-Rayleigh-Ritz

approximation 𝑌𝑘 to 𝑋𝑘 can be expressed as

𝑌𝑘 = 𝑄𝑘𝑈𝑘 = 𝑊𝑄𝑘
′ 𝑈𝑘 = 𝑊𝑌𝑘

′ .

Based on the assumption that all diagonal elements in 𝑇𝑘 are sorted in non-increasing order of magnitude

and according to Lemma 1, we have

𝑑𝑖𝑠𝑡 (𝑠𝑝𝑎𝑛 {𝑌𝑘
′(1)

} , 𝑠𝑝𝑎𝑛{𝐼(1)}) = 𝑂(|𝜆𝑠+1|
𝑘),

and thus,

𝑑𝑖𝑠𝑡(𝑠𝑝𝑎𝑛{𝑌𝑘
(1)}, 𝑠𝑝𝑎𝑛{𝑊(1)}) = 𝑂(|𝜆𝑠+1|

𝑘).

85

Since 𝜆1 = 1, 𝜆2, 𝜆3, … , 𝜆𝑛 are placed in non-increasing order of magnitude in 𝑇, 𝑊(1) is exactly the

principle left eigenvector 𝑣1 of matrix 𝑃. Hence, we can conclude that 𝑌𝑘
(1) converges to the principle left

eigenvector of matrix 𝑃 at a rate that is 𝑂(|𝜆𝑠+1|
𝑘).

Theorem 5.2 indicates that when 𝑠 linearly independent probability vectors are evolved

simultaneously under Markov transition, correlating these vectors can lead to a faster approximation of

the dominant eigenvector in the block power method. The convergence rate, instead of the well-known

one related to 𝜆2 in the fundamental Markov chain theory, now depends on the (𝑠 + 1)th dominant

eigenvalue 𝜆𝑠+1 of 𝑃. An intuitive explanation of the block power method is that the subspace iteration is

able to fast remove the influence from the eigenvalues whose magnitudes are less than |𝜆𝑠| and the

following Schur-Rayleigh-Ritz step is used as a direct method on the resulted block matrix leads to fast

approximate the dominant eigenvector. Therefore, the block power method is particularly powerful for

Markov chains where |𝜆𝑠+1| and 1 are well separated but |𝜆2| and 1 are not.

Theorem 5.2 assumes that the upper triangular matrix 𝑇𝑘 generated in Schur decomposition of 𝐵𝑘

have all diagonal elements sorted in non-increasing order of magnitude. However, this is not always

guaranteed in Schur decomposition in practice. Therefore, in the literature, eigendecomposition is applied

on 𝐵𝑘 instead to generate the Ritz pairs to approximate the eigenvalue/eigenvector pairs.

 𝑉𝑘𝛬𝑘𝑉𝑘
−1 = 𝐵𝑘 // Eigendecomposition

 𝑌𝑘 = 𝑄𝑘𝑉𝑘

The Ritz vector corresponding to the largest Ritz value is then outputted as the approximate dominant

eigenvector of 𝑃. Moreover, as the transition matrix in the Markov chain applications typically has the

dominant eigenvalue 𝜆1 = 1 , the norm ‖𝑃𝑌𝑘
(1) − 𝑌𝑘

(1)‖ is often used as an estimate for the error

𝑑𝑖𝑠𝑡(𝑠𝑝𝑎𝑛{𝑌𝑘
(1)}, 𝑠𝑝𝑎𝑛{𝑣1}) to indicate how well the computed vector approximates the actual

dominate eigenvector along power iterations.

86

5.1.3 Numerical Results

We firstly use a simple Markov chain with five states as an example to illustrate how the block

power method can gain the convergence acceleration. Then, a more “realistic” transition matrix from a

Markov chain application [148] is examined to demonstrate the applicability of the block power method.

In both examples, Gaussian random vectors are generated as the initial vectors, and the tolerance of

convergence is set to 10−7.

5.1.3.1 A Simple Example

In this work, consider a Markov chain with 5 states {1,2,3,4,5}, as shown in Fig. 24.

1

2

3

4

5

0.9090

0.0910

0.0002

0.6690

0.9998

0.9998

0.00020.3310

0.9989

0.0011

Fig. 24. A Markov chain with five states

where the corresponding transition matrix 𝑃 is formed as

𝑃 =

[

0 0 0
 0.0002 0 0.9998

0 0.9998 0

0.9090 0.0910
0 0

0.0002 0
0.6690 0 0
0.9989 0.0011 0

0 0.3310
0 0]

.

Fig. 25 displays the numerical results of using the power method as well as the block power

method with block size 2 and 3 to compute the distribution over states. One can notice that once three

linearly dependent vectors are used, the convergence of block power method to the stationary distribution

can be significantly accelerated. The block power method with block size 3 requires only 28 iteration

steps to converge, which is much less than those of the power method (78,813) and the block power

method with block size 2 (18,826). This is consistent with the convergence rate analyzed in Theorem 5.2.

87

The distribution of the eigenvalues in the transition matrix 𝑃 is |𝜆1| = 1, |𝜆2| = 0.9998, |𝜆3| = 0.9996,

|𝜆4| = 0.5483, and |𝜆5| = 0.5483. Due to the fact that |𝜆1|, |𝜆2|, |𝜆3| are clustered but |𝜆1|and |𝜆4| are

well separated, the block power method block size 3 converges much faster than the power method and

the block power method with smaller block size .

Fig. 25. Convergence comparison of the power method and the block power method (block size 2 and 3) in terms of

number of iterations

5.1.3.2 Example with a Larger Matrix

We apply the block power method to a 16,968 × 16,968 transition matrix arisen from a Markov

chain application in modeling stochastic luminal Calcium release site [118]. Fig. 26 compares the

computational results of the simple power method and the block power method with block size 𝑘 = 5 and

10. One can find that using the strategy of correlating multiple linearly independent vectors in block

power method has the potential to reduce the number of iteration steps to reach an approximate dominant

vector with the desired accuracy. For example, the block power method with block size 5 (63,444 steps)

requires fewer iteration steps to converge to 10−7 than the power method (164,454 steps). Further

reduction is gained when larger block sizes are used. As shown in Fig. 26, when a relatively large block

size 10 is employed, the number of iterations needed is further reduced down to 34,340 steps.

88

Fig. 26. Convergence of the power method and the block power method (𝑘 = 5 and 10) on a transition matrix of size

5.2 Sliding Window Power (SWP) Method

Despite the faster convergence rate, one of the main computational concerns in the block power

method is that each block power iteration requires 𝑠 matrix-vector multiplications, where 𝑠 is the block

size. For very large matrices that the element blocks are stored across distributed devices, the computation

and memory requirements of the block power method are much higher than those of the simple power

method. In this section, we describe a Sliding Window Power (SWP) method that we design to take

advantage of the subsequent vectors within last 𝑠 iterations to build up the block matrix, while avoiding

the costly matrix-block multiplications in the block power method.

5.2.1 The SWP Algorithm

The fundamental idea of the SWP method is to take advantage of the intermediate subsequent

vectors in simple power iterations to form the multi-dimensional invariant subspace as follows,

for 𝑖 = 1,… , 𝑘

89

 𝑥𝑖 = 𝑃𝑇𝑥𝑖−1

end

𝑊𝑘 = [𝑥𝑘−𝑠+1, 𝑥𝑘−𝑠+2 , … , 𝑥𝑘]

where 𝑠 denotes the window size of 𝑊𝑘. In fact, the sliding window matrix represents a truncated Krylov

subspace based on 𝑥0, i.e.,

𝑊𝑘 = [𝑥𝑘−𝑠+1, 𝑥𝑘−𝑠+2 , … , 𝑥𝑘] = [𝑃𝑇𝑘−𝑠+1
𝑥0, 𝑃

𝑇𝑘−𝑠+2
𝑥0, … , 𝑃𝑇𝑘

𝑥0].

Then, the eigendecomposition step can be carried out on 𝑊𝑘
𝑇𝑃𝑇𝑊𝑘 to obtain the Ritz pairs and the

approximated dominate eigenvector is extracted accordingly.

𝑄𝑘𝑅𝑘 = 𝑊𝑘 // QR Decomposition

𝐵𝑘 = 𝑄𝑘
𝑇𝑃𝑇𝑄𝑘 // Projection

𝑉𝑘𝛬𝑘𝑉𝑘
−1 = 𝐵𝑘 // Eigendecomposition

𝑌𝑘 = 𝑄𝑘𝑉𝑘

SWP expects to yield fast convergence as block power methods. However, due to the fact that these

intermediate vectors in the truncated Krylov subspace are highly correlated, the convergence rate of SWP

depends on the actual rank of 𝑊𝑘 . In fact, the convergence speed of SWP with window size 𝑠 lies

between |𝜆𝑠+1|
𝑘 and |𝜆2|

𝑘. In the best case, SWP will have the similar convergence rate related to 𝜆𝑠+1 as

the block power method. If the rank of 𝑊𝑘 is 1, the performance of SWP is downgraded to the simple

power method. Nevertheless, if this actually occurs, the power iteration should have already converged.

While SWP has approximately equivalent computational cost compared to simple power method, in

practice, SWP is usually more efficient than the block power method in terms of the computational cost.

5.2.2 Numerical Results

We apply SWP to compute the stationary distribution of the 16,968 × 16,968 transition matrix

described in Section 5.1.3.2. Fig. 27 compares the performance of power method, block power method

with block size 10, and SWP with window size 10 in terms of the number of iterations. As illustrated in

90

Fig. 27, one can find that the convergence trajectory of the SWP method lies in-between the block power

method and the power method. This is because the convergence rate of the sliding window power method

is theoretically bounded by that of the block power method. By reusing the previously generated vectors

in the power iterations to form the block matrix, SWP gains convergence acceleration and reduces

iteration steps to 96,232, which is fewer than that of the simple power method (165,454).

Fig. 27. Convergence comparison of Power method, Block Power method, and Sliding Window Power method in

terms of number of iterations

One advantage of the SWP method is that it is possible to reduce the overall number of matrix-

vector multiplications needed to obtain the stationary distribution vector with satisfactory accuracy, which

is particularly favorable for Markov chain applications with very large transition matrices, where the

matrix-vector multiplication operations dominates the computational cost. Fig. 28 shows their comparison

in terms of the number of matrix-vector multiplications. The SWP method, benefited from the accelerated

convergence rate of the block form and matrix-vector multiplication per iteration, requires fewer matrix-

vector multiplications (96,232) than the others (165,454 and 343,400, respectively.)

91

Fig. 28. Convergence comparison of Power method, Block Power method, and SWP in terms of number of matrix-

vector multiplications

Increasing the number of vectors in the block has the potential to improve the convergence rate of

SWP and further reduce the number of Matrix-vector multiplications needed to reach convergence.

However, with a larger number of vectors in the block, more memory storage would be required in SWP,

as shown in Fig. 29. Thus, in practice, the appropriate window size of 𝑊𝑘 should be selected according to

the memory available.

Fig. 29. The number of matrix vector multiplications and the memory usage to convergence in SWP using different

window size values

92

CHAPTER VI

HYBRID CPU-GPU ACCELERATION OF MONTE CARLO ALGORITHMS

Modern many-core devices, such as Graphics Processing Units (GPU) and Intel Xeon Phi

processors, are capable of delivering higher computing power than multi-core CPUs. This has led to

increasing interest in using GPU or Intel Xeon Phi as coprocessors (accelerators) to enable additional

accelerations to scientific computations carried out on a host system. For instance, once a many-core

device is attached to the host system, intensive computational operations can be offloaded to the many-

core hardware during execution, which is referred to as the “offload mode” [119,120]. In this Chapter, we

take advantage of the GPU accelerators to improve the performance of two Monte Carlo algorithms,

BFBCG (Section 6.1) and RSVD (Section 6.2).

6.1 Accelerating BFBCG

We first analyze the performance of various matrix operations of BFBCG in a GPU-only

implementation to identify the main performance bottleneck. Then, to handle large linear systems whose

coefficient matrices cannot fit in the GPU memory, a hybrid (offload) computing scheme is presented to

offload compute-intensive matrix operations to GPU processors and to hide the CPU-GPU memory

transaction overhead. Finally, we compare the performance of our BFBCG implementation on CPU-GPU

processors with the one on CPU with Intel Xeon Phi as coprocessor using the automatic offload mode.

The computational experiments described in this work are carried out on the

XSEDE TACC Stampede System [83], where the compute node has dual Intel Xeon E5-2680 CPUs

sharing 32 GB memory, one Intel Xeon Phi SE10P Coprocessor with 8GB memory, and one NVIDIA

K20 GPU with 5GB memory. The BCG program is compiled using the Intel icc compiler with “-O3”

optimization flag on CPU and Intel Xeon Phi processors while using NVIDIA nvcc compiler with "-O3"

flag on GPU.

93

6.1.1 BFBCG on GPU

We investigate the native implementation of BFBCG (Algorithm 3.2 in Section 3.2.3) on GPU

processors, where all numerical operations are carried out on GPU and the coefficient matrix also resides

in the GPU memory. This implementation uses the matrix functions in the CUDA Basic Linear Algebra

Subroutines (CUBLAS) library [38] for dense matrix operations, advanced matrix decompositions

functions in the MAGMA library [40] for Cholesky factorizations, and sparse matrix routines in the

CUSPARSE library [13] for sparse matrix operations. For comparison purposes, a CPU implementation

of BFBCG is built using the multithreaded Intel Math Kernel Library (MKL) [121].

Fig. 30 compares the average elapsed computational time per iteration for different matrix

operations in BFBCG on CPU and GPU processors. The coefficient matrix is “nd12k” from the UFL

sparse matrix collection [77], which is a 36,000 × 36,000 sparse, SPD matrix with 14,220,946 nonzero

entries. The number of right hand sides is set to 2,048. The elements in the right-hand side matrix are

random numbers generated uniformly from interval [0, 1). The reported execution times are obtained

from an average over 10 runs.

Fig. 30. The average elapsed computational time for different steps in BFBCG on CPU and GPU processors

One can notice that the computational times of all matrix operations per iteration in BFBCG on

GPU are less than those on CPU, where the improvements of tall-and-skinny matrix operations are of

CPU-Only GPU-Only
0

5

10

15

20

25

30

35

40

45

E
la

p
s
e

d
 T

im
e

 (
 i
n

 s
e

c
o

n
d

s
)

 Q
i
 = AP

i

i
 = (P

T

i
Q

i
)
-1

(P
T

i
R

i
)

 X
i+1

 = X
i
+P

i

i

 R
i+1

 = R
i
-Q

i

i

 Z
i+1

 = MR
i+1

i
 = -(P

T

i
Q

i
)
-1

(Q
T

i
Z

i+1
)

 P
i+1

 = orth(Z
i+1

+P
i

i
)

94

most significance. Nevertheless, the dominating operation in both CPU and GPU implementations is

constructing the new search direction matrix 𝑃𝑖+1, i.e., 𝑃𝑖+1 = 𝑜𝑟𝑡ℎ(𝑍𝑖+1 + 𝑃𝑖𝛽𝑖).

To reduce the computational cost in the constructing new search direction matrix 𝑃𝑖+1, we modify

the BFBCG algorithm by using eigendecomposition on ZT𝑍, where 𝑍 = 𝑍𝑖+1 + 𝑃𝑖𝛽𝑖 , instead. In this

case, ZT𝑍 is a small 𝑠 × 𝑠 symmetric matrix. Therefore, although calculation of ZT𝑍 leads to additional

overhead of matrix-matrix multiplications, computing the eigendecomposition on ZT𝑍 is still significantly

less costly than directly applying DGEQP3 to the 𝑛 × 𝑠 tall-and-skinny matrix 𝑍 for QR decomposition.

As shown in Fig. 31, the eigenvectors V of ZT𝑍 can be computed by using the DSYEVD routine. Once

the eigenvectors V is available, the search matrix 𝑃𝑖+1, as an orthogonal basis of the space spanned by 𝑍,

can be very efficiently derived by normalizing each column of matrix product 𝑍𝑉 using DNRM2 routine.

DGEQP3

s

n

r

× = DSYEVD

=× DNRM2

r
s

r

&

r

n

s

n

Construction of Orthogonal Matrix Pi+1 for New

Search Directions via QR Decomposition with

Column Pivoting

Construction of Orthogonal Matrix Pi+1 for New Search

Directions via Eigendecomposition

Z Pi+1

Pi+1

Z

ZT V

V

Z

λ
s

DORGQR

s

n

Fig. 31. Eigendecomposition on ZT𝑍 to replace QR decomposition on 𝑍 to obtain orthogonal new search direction

matrix 𝑃𝑖+1

Fig. 32 shows the performance of the improved BFBCG implementation using

eigendecomposition on ZT𝑍 to obtain new search directions. In comparison with Fig. 30, one can find that

95

the time spent on constructing new search direction matrix 𝑃𝑖+1 is significantly reduced by 60.7% and

73.5% on CPU and GPU implementations, respectively. The overall speedup of the GPU-only

implementation over the CPU implementation reaches 2.63.

Fig. 32. Comparison of the average elapsed computational time per iteration for different steps in BFBCG on CPU

and GPU processors when eigendecomposition on ZT𝑍 is used to replace QR decomposition on 𝑍 to obtain search

direction matrix 𝑃𝑖+1

6.1.2 BFBCG on Hybrid CPU-GPU

In the case that the coefficient matrix is too big or the number of right hand sides is too many,

consequently, the GPU memory is not big enough to fit all the matrices in BFBCG iterations. In this

section, a BFBCG implementation on hybrid CPU-GPU processors is presented. In our implementation,

CPU only coordinates data transfer and computation offload to GPU and does not directly participate in

BFBCG computation. We use the routines in the CUBLAS-XT library [38] to support overlapping data

transfers and execution for dense matrix operations. Page-locked memory is employed to increase the

bandwidth between host memory and GPU memory.

Based on the sparse matrix routines in CUSPARSE, we implement the tiled multiplication

between a sparse matrix and a tall-and-skinny matrix. Similar to the tiling strategy used in the CUBLAS-

XT library, rows of sparse matrix is partitioned into tiles that can fit in the GPU memory while the tall-

and-skinny matrix is split into tiles by columns. The tile size is selected so that the tiles can fit in the

GPU memory. The procedure of tiling is illustrated in Fig. 33.

CPU-Only GPU-Only
0

5

10

15

20

25

30

35

40

45

E
la

p
s
e

d
 T

im
e

 (
 i
n

 s
e

c
o

n
d

s
)

 Q
i
 = AP

i

i
 = (P

T

i
Q

i
)
-1

(P
T

i
R

i
)

 X
i+1

 = X
i
+P

i

i

 R
i+1

 = R
i
-Q

i

i

 Z
i+1

 = MR
i+1

i
 = -(P

T

i
Q

i
)
-1

(Q
T

i
Z

i+1
)

 P
i+1

 = orth(Z
i+1

+P
i

i
)

96

× =

GPU Memory

System Memory

Fig. 33. Tiled multiplication between a sparse matrix and a tall-and-skinny matrix

An important feature of the hybrid CPU-GPU BFBCG implementation is that data transfers and

kernel computation for each tile can be performed concurrently so that memory transaction time can be

hidden. We assign each tile with a GPU stream, and asynchronous operations are placed into each stream.

Fig. 34 shows timeline of sparse matrix multiplication and data transfer in an instance of calculating the

product of the sparse coefficient matrix and the tall-and-skinny solution matrix, and the elapsed

computational time at different block sizes. One can find that except for initialization, more than half of

data transfer operations occur concurrently with matrix multiplications, which can be hidden efficiently.

(1) Overlap of computing and data transferring (2) The elapsed computational time

Fig. 34. Data transfers and kernel computation for each tile are performed concurrently to hide the memory

transaction time between CPU and GPU

Fig. 35 shows the elapsed computational time per iteration in hybrid CPU-GPU BFBCG

implementation in comparison with the GPU-only computational time and data transfer time without

overlapping. In hybrid CPU-GPU scheme, 50.1% of the data transfer time is hidden due to concurrent

execution with matrix operations.

1024 2048 3072 4096 5120 6144
0

1

2

3

4

5

6

E
la

p
s
e
d
 T

im
e
 (

 i
n
 s

e
c
o
n
d
s
)

CPU

GPU

The Value of s

97

Fig. 35. Comparison of the elapsed computational time per iteration in hybrid CPU-GPU BFBCG implementation

with the GPU-only computational time and data transfer time. 50.1% of the data transfer time is hidden in the hybrid

CPU-GPU scheme.

6.1.3 Computational Results

In this section, we compare the performance of the hybrid CPU-GPU implementation of BFBCG

with the BFBCG implementation on CPU-Xeon Phi Processor using automatic offload mode against their

theoretical performance peak, where MKL library provides the optimal computational work division for

matrix operations of BFBCG over CPU- Xeon Phi Processor. The theoretical peak performance is widely

used as upper bound in comparing computational power among parallel computing systems [122]. For a

certain parallel computing system, the corresponding theoretical peak double precision performance 𝑃 can

be calculated as

𝑃 = 𝑛𝑐𝑜𝑟𝑒𝑠 × 𝑐𝑙𝑜𝑐𝑘𝑠𝑝𝑒𝑒𝑑 × 𝑓𝑙𝑜𝑝𝑠/𝑐𝑦𝑐𝑙𝑒

where 𝑛𝑐𝑜𝑟𝑒𝑠 represents the number of cores in a processor, 𝑐𝑙𝑜𝑐𝑘𝑠𝑝𝑒𝑒𝑑 is the corresponding clock

rate, and 𝑓𝑙𝑜𝑝𝑠/𝑐𝑦𝑐𝑙𝑒 denotes the number of double-precision floating point operations per cycle [123,

124, 125].

Each Dual Xeon E5 processor has 8 cores clocked at 2.7GHz. Because the Dual Xeon E5

processor supports the Fused Multiply-Add (FMA) operations, in which one multiply and one add can be

completed in a single cycle, each core of Dual Xeon E5 can perform up to 8 double-precision floating

98

point operations per clock cycle. As a result, the theoretical peak double precision performance 𝑃𝑐𝑝𝑢 of

CPU can reach

𝑃𝑐𝑝𝑢 = (8 × 2) × 2.7 × 8 = 345.6 𝐺𝐹𝐿𝑂𝑃S

The NVIDIA K20 GPU [126,127] has 13 Streaming Multiprocessors (SMs) clocked at

0.706GHz while 64 double-precision floating point units on each SM. The theoretical peak double

precision performance
gpuP of GPU is calculated as

𝑃𝑔𝑝𝑢 = (64 × 13) × 0.706 × 2 = 1,174.784 𝐺𝐹𝐿𝑂𝑃𝑆

For the 61-core coprocessor Xeon Phi SE10P, each core clocked at 1.1GHz has 16 floating-point

operations in double precision per clock cycle. As 60 cores are commonly used for computing, the

theoretical peak performance 𝑃𝑚𝑖𝑐 of Xeon Phi coprocessor is

𝑃𝑚𝑖𝑐 = 60 × 1.1 × 16 = 1,056 𝐺𝐹𝐿𝑂𝑃𝑆

Ideally, if the linear algebra routines for those matrix operations in BFBCG can fully take

advantage of the peak performance on hardware while the memory transaction overheads are hidden,

executing BFBCG implementation directly on GPU or Intel Xeon Phi can roughly outperform CPU-only

version by three times, according to the theoretical peak performance analysis on these hardware devices.

Fig. 36. The overall speedup of CPU-GPU and CPU-Xeon Phi of BFBCG implementations with different number of

right hand sides

We use a large linear system with “thermomech_TC” from the UFL sparse matrix collection [77]

as the coefficient matrix to test the CPU-GPU and CPU-Xeon Phi implementations of BFBCG.

512 1024 2048 3072 4096
0.5

1

1.5

2

2.5

3

The Value of s

S
p
e
e
d
u
p

CPU-GPU

CPU-MIC

99

“Thermomech_TC” is a 102,158 × 102,158 sparse, SPD matrix with 711,558 nonzero entries. Fig. 36

compares the overall speedup factors for the CPU-GPU implementation and the CPU-MIC

implementation of BCG algorithm over the CPU-Only version with different number of right hand sides

𝑠. The overall speedup of CPU-GPU can reach up to 2.61 when 4,096 right hand sides are used, which is

significantly higher than that of CPU-Xeon Phi (1.61) in automatic offload mode.

6.2 Accelerating RSVD

We use the randomized SVD algorithm with Gaussian Sampling (RSVD) as an example to

illustrate our hybrid CPU-GPU accelerated implementation. First of all, we present a GPU-accelerated

implementation to quickly obtain the approximate of dominant singular components of a given large

matrix. Noticing that the main bottleneck in the GPU implementation is the deterministic SVD on GPU

with "short-and-wide" matrix, we apply SVD decomposition on a derived square matrix to reduce the

overall computational time. Then, in the case of matrices with a small dominant rank 𝑘 value, a hybrid

GPU-CPU scheme is carried out to further improve the efficiency of our implementation.

6.2.1 RSVD on GPU

Fig. 37 shows the procedure of the RSVD algorithm (Algorithm 4.1 in Section 4.1.1). The overall

performance of RSVD depends on the efficiency of matrix-matrix multiplication, QR factorization, and

SVD on small matrices. Fortunately, after random matrix sampling by 𝛺, the large matrix 𝐴 is condensed

into either "tall-and-skinny" or "short-and-wide" matrix, such as 𝑌 and 𝑄 are 𝑚 × (𝑘 + 𝑝) "Tall-and-

skinny" matrices, 𝐵 is an (𝑘 + 𝑝) × 𝑛 "short-and-wide" matrix where 𝑘 + 𝑝 is much smaller than

𝑚𝑖𝑛(𝑚, 𝑛). These small and dense matrices are particularly suitable fit in GPU memory to take advantage

of high-performance computation provided. We implemented RSVD on GPU using CUBLAS [38] and

CULA [39], and its corresponding CPU version using the Intel multi-thread MKL (Math Kernel Library)

for the sake of performance illustration.

100

ΩA Y Q

AQ
T

B U ∑

QR

SVD
V

T
B

V
T

B B

(1)

(2)

(3)

(4) (5)

Fig. 37. Procedure of RSVD to approximate right-singular vectors

The elapsed time spent on each primary computational component in randomized SVD is shown

in Fig. 38for a 4,096 × 4,096 random matrix where 𝑘 is 128 and 𝑝 is 3. Multiplication between 𝐴 and a

“tall-and-skinny” or “short-and-wide” matrix can be efficiently carried out on the GPU’s SIMT

architecture and hence the computational time in generating matrix 𝛺 and performing matrix-matrix

multiplications shrinks to nearly negligible. Nevertheless, deterministic SVD, particularly when the target

matrix is small, has difficulty in fully taking advantage of GPU architecture, due to the fact that a series of

sequential Householder transformations need to be applied. As a result, deterministic SVD becomes the

main bottleneck and thus this GPU implementation has only 1.65 over that of the CPU.

Fig. 38. The elapsed computational time used in randomized SVD on CPU-only and GPU-only

6.2.2 RSVD on Hybrid GPU-CPU

CPU GPU
0

50

100

150

200

250

300

350
Randomized SVD

E
la

p
s
e
d
 T

im
e
 (

 i
n
 m

il
li
s
e
c
o
n
d
s
)

 Generate

 Y = A*

 QR(Y)

 B = Q
T
*A

 SVD(B)

101

To reduce the computational cost of deterministic SVD in GPU randomized SVD

implementation, we alternatively calculate the top-𝑘 singular vectors of 𝐵𝐵𝑇 instead of directly carrying

out deterministic SVD on the "short-and-wide" matrix 𝐵. Fig. 39 (1) depicts the procedure of obtaining

approximate SVD decomposition of 𝐵. Note that SVD decomposition of 𝐵 is defined as 𝐵 = 𝑈𝐵𝛴𝐵𝑉𝐵
𝑇 .

Since 𝐵𝐵𝑇 is a small square matrix whose size is independent of the size of the original matrix 𝐴, and has

SVD format as,

𝐵𝐵𝑇 = 𝑈𝐵𝛴𝐵𝑈𝐵
𝑇,

𝑈𝐵 could be very efficiently derived from 𝐵𝐵𝑇 rather than from 𝐵.

B U ∑
SVD

V
T

B

V
T

B B

SVDB BT ∑ BUB UB
T2

UB
T B V

T

text

(1) Procedure of using 𝐵𝐵𝑇 (2) Elapsed time on CPU-only and GPU-only

Fig. 39. Obtaining approximate SVD decomposition of 𝐵

Once the left singular vectors 𝑈𝐵 become available, under the assumption that 𝑈𝐵
𝑇𝑈𝐵 ≈ 𝐼, where 𝐼

is an identity matrix, the top 𝑘 singular components could be approximated effectively through a single

matrix-matrix operation

𝑈𝐵
𝑇𝐵 ≈ 𝛴𝐵𝑉𝐵

𝑇 .

Fig. 39 (2) shows the elapsed time of the improved implementation by using 𝐵𝐵𝑇 on the same 4,096 ×

4,096 random matrix used in Fig. 38. One can find that the portion of SVD computation time is

CPU GPU
0

50

100

150

200

250

300

350
Randomized SVD

E
la

p
s
e
d
 T

im
e
 (

 i
n
 m

il
li
s
e
c
o
n
d
s
)

 Generate

 Y = A*

 QR(Y)

 B = Q
T
*A

 SVD(B)

102

significantly reduced on both CPU and GPU implementations. Consequently, the achieved speedup of

GPU implementation grows up to 4.6.

As shown in Fig. 39, even though the alternative approach of approximating top-𝑘 singular

values/singular vectors on 𝐵𝐵𝑇 is used, the computational time of deterministic SVD on GPU is still

more than that of the CPU version due to hidden setup on GPU. To further understand the performance of

deterministic SVD on GPU, we compute deterministic SVD to a set of square matrices varying in size.

Fig. 40 compares the computational time of deterministic SVD on CPU and GPU. One can find that the

CPU implementation outperforms the GPU one on small matrices less than 2,500 × 2,500. Therefore,

using GPU to run SVD operations on small matrices is not appropriate, particularly for applications

where the singular values decay very quickly and 𝑘 is typically set with very small value. A simple hybrid

GPU-CPU scheme is employed in our implementation that when the 𝑘 × 𝑘 square matrix is small,

deterministic SVD decomposition will be transferred to the CPU to carry out instead.

Fig. 40. Comparison of running time for performing deterministic SVD on GPU and CPU

6.2.3 Computational Results

1K 2K 3K 4K 5K
0

1

2

3

4

5

6

7

8

9

10
x 10

4 Deterministic SVD on Square Matrices

Matrix Size (number of rows)

E
la

p
s
e
d
 T

im
e
 (

 i
n
 m

il
li
s
e
c
o
n
d
s
)

 CPU

 GPU

103

We present the numerical results obtained with GPU-accelerated implementation on large random

matrices and a Mars image. The experiments are carried out on a Linux computer with an Intel Core i5-

2500K CPU 3.30GHz, 8GB of RAM, and an NVIDIA GK110GL GPU.

6.2.3.1 Random Matrices

We generate a series of large random dense matrices of varying sizes to benchmark the

performance achieved by using our GPU-accelerated randomized SVD algorithm. Fig. 41 compares the

computational time in logarithmic scale of performing complete SVD and randomized SVD on CPU as

well as GPU-accelerated randomized SVD algorithm. The same 𝑘 and 𝑝 (𝑘 = 256 and 𝑝 = 3) values

are used. Compared to doing the complete SVD calculation on the matrix, randomized SVD has a clear

computational advantage when only the top-𝑘 approximated singular components are needed. Similar to

many other GPU-based algorithms, our GPU randomized SVD implementation favors larger matrices.

For a 20,000 × 20,000 matrix, the speedup can reach up to 6~7.

Fig. 41. Comparison of elapsed time (logarithmic scale) of deterministic SVD, CPU versions of RSVD and GPU-

accelerated RSVD

6.2.3.2 Image Compression

We apply the randomized SVD algorithm for lossy data compression to a NASA synthesis image

from the Mars Exploration Rover mission [107] shown in Fig. 42. The image is an RGB 7671 × 7680 ×

3 matrix, which requires 176.74 million bytes for memory storage.

1K 2K 4K 8K 10K 20K
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Random Matrices

Matrix Size

E
la

p
s
e

d
 T

im
e

 (
 i
n

 m
il
li
s
e

c
o

n
d

s
)

 Complete SVD (CPU)

 Randomized SVD (CPU)

 Randomized SVD (GPU/CPU)

104

Fig. 42. The original image Fig. 43. The reconstructed image

In order to compress the image, we use our GPU-accelerated implementation to obtain its low

rank approximation 𝐴𝑘 with rank 470,

𝐴𝑘 = 𝑀 × 𝑁

where 𝑀 is a 7671 × 470 matrix and 𝑁 is a 470 × 7680 matrix on each color channel (R,G,B). Fig. 43

shows the reconstructed image, where 𝑀 is computed by combining the 470 left singular vectors with the

corresponding singular values while 𝑁 is stored as the 470 right singular vectors as columns. To outline

the effectiveness of our implementation of randomized SVD, Table 6 lists the elapsed computational time

and error used in compression with the Mars Image. As one can find, compared to deterministic SVD

which consumes more than one thousand seconds to obtain the top 470 approximation, the GPU-

accelerated randomized SVD only takes slightly more than one second. The overall storage of the

decomposed image requires less than 1/8 of that of the original matrix with an acceptable 1.63% error.

TABLE 6

Elapsed Computational Time and Error in Compression with the Mars Image

 Elapsed Time (in seconds) Error in Compression

Deterministic SVD 1144.71 1%

Randomized SVD 1.29 1.63%

105

CHAPTER VII

MATRIX PRODUCT VERIFICATION

When matrices are very large, potential memory errors can no longer be neglected in large-scale

linear algebra operations on high-performance computing (HPC) architectures. In this Chapter, we

propose a Gaussian variant of Freivalds’ algorithm (GVFA) to verify the correctness of matrix-matrix

multiplication (Section 7.1). Our theoretical analysis shows that when 𝐴 × 𝐵 ≠ 𝐶, the chance of GVFA

produces 𝐶𝜔𝐺 = 𝐴𝐵𝜔𝐺 occurs has measure zero in exact arithmetic. We also analyze false positive

probabilities in the GVFA, by taking floating point round-off error into account. In Section 7.2, we

provide further discussions about potential advantages of GVFA in enhancing the resilience of linear

algebraic computations.

7.1 Gaussian Variant of Freivalds’ Algorithm (GVFA)

7.1.1 The GVFA Algorithm

The original Freivalds’ algorithm (see Section 2.4.2), and most of its extensions are based on

integer matrices or matrices over a ring and sampling from discrete spaces. In this work, we extend

Freivalds’ algorithm by using Gaussian random vectors for the projection [152]. We use the fact that the

multivariate normal distribution has several nice properties [138], which have been used for detecting

statistical errors in distributed Monte Carlo computations [139]. The extended algorithm is described in

Algorithm 7.1, which requires three matrix-vector multiplications, and only one vector comparison for

fault detection.

Algorithm 7.1: Gaussian variant of Freivalds’ algorithm (GVFA)

Step 1. Generate a Gaussian random vector, 𝜔𝐺 , where 𝜔𝐺 is an n-vector of independent (but not

necessarily identically) distributed normal random variables with finite mean and variance.

Step 2. Calculate the projection of 𝐶 on 𝜔𝐺: 𝐶𝜔𝐺 = 𝐶 × 𝜔𝐺.

Step 3. Calculate the projection of product 𝐴 × 𝐵 on 𝜔𝐺: 𝐴𝐵𝜔𝐺 = 𝐴 × (𝐵 × 𝜔𝐺).

7.1.2 Theoretical Justification

106

Similar to Freivalds’ algorithm, in GVFA if 𝐴 × 𝐵 = 𝐶 , 𝐶𝜔𝐺 = 𝐴𝐵𝜔𝐺 always holds within a

certain floating point round-off threshold. When 𝐴 × 𝐵 ≠ 𝐶 , the chance that 𝐶𝜔𝐺 = 𝐴𝐵𝜔𝐺 is a false

positive event occurs with measure zero in exact arithmetic, as shown in Theorem 7.2.

We first state a result of Lukacs and King [140], shown as Proposition 7.1, which will be used in

the proof of Theorem 7.2. The main assumption of Proposition 7.1 is the existence of the 𝑛th moment of

each random variable, which many distributions, particularly the normal distribution, have. One important

exception of the normal is that it is the limiting distribution for properly normalized sums of random

variables with two finite moments. This is Lindeberg’s version of the Central Limit Theorem [141].

Proposition 7.1. Let 𝑋1 , 𝑋2 , …,𝑋𝑛 be 𝑛 independently (but not necessarily identically) distributed

random variables with variances 𝜎𝑖
2, and assume that the 𝑛th moment of each 𝑋𝑖 (𝑖 = 1,2,… , 𝑛) exists

and is finite. The necessary and sufficient conditions for the existence of two statistically independent

linear forms 𝑌1 = ∑ 𝑎𝑖𝑋𝑖
𝑛
𝑖=1 and 𝑌2 = ∑ 𝑏𝑖𝑋𝑖

𝑛
𝑖=1 are

(1) Each random variable which has a nonzero coefficient in both forms in normally distributed.

(2) ∑ 𝑎𝑖𝑏𝑖𝜎𝑖
2𝑛

𝑖=1 = 0.

Theorem 7.2. If 𝐴 × 𝐵 ≠ 𝐶, the set of Gaussian vectors where 𝐶𝜔𝐺 = 𝐴𝐵𝜔𝐺 holds in Algorithm 7.1 has

measure zero.

Proof: Let the matrix ∆ ∈ ℝ𝑛×𝑛 denote 𝐴𝐵 − 𝐶 . Since 𝐴 × 𝐵 ≠ 𝐶 , 𝑟𝑎𝑛𝑘(∆) = 𝑟 > 0 , and

𝑑𝑖𝑚(𝑛𝑢𝑙𝑙(∆)) = 𝑛 − 𝑟𝑎𝑛𝑘(∆) = 𝑛 − 𝑟 < 𝑛. Here 𝑑𝑖𝑚(∙) denotes dimension and 𝑛𝑢𝑙𝑙(∙) denotes the

null space, i.e. 𝑛𝑢𝑙𝑙(∆) = {𝑥 ∈ ℝ𝑛 ∶ ∆ × x = 0}.

We can now find 𝑛 − 𝑟 of orthonormal vectors, 𝑣1, 𝑣2, … , 𝑣𝑛−𝑟, to form a basis for 𝑛𝑢𝑙𝑙(∆), such

that 𝑛𝑢𝑙𝑙(∆) = 𝑠𝑝𝑎𝑛{𝑣1, 𝑣2, … , 𝑣𝑛−𝑟}, and 𝑟 more orthonormal vectors, 𝑣𝑛−𝑟+1, 𝑣𝑛−𝑟+2, … , 𝑣𝑛, such that

ℛ𝑛 = 𝑠𝑝𝑎𝑛{𝑣1, 𝑣2, … , 𝑣𝑛−𝑟, 𝑣𝑛−𝑟+1, 𝑣𝑛−𝑟+2, … , 𝑣𝑛}.

Any vector, and in particular the Gaussian vector, 𝜔𝐺 can be written in this basis as 𝜔𝐺 = ∑ 𝛿𝑖𝑣𝑖
𝑛
𝑖=1 ,

107

where 𝛿𝑖 ’s are the weights in this particular orthonormal coordinate system. If we denote 𝑉 =

[𝑣1, 𝑣2, … , 𝑣𝑛−𝑟, 𝑣𝑛−𝑟+1, 𝑣𝑛−𝑟+2, … , 𝑣𝑛], we have

𝑉𝜔𝐺 = [𝛿1, 𝛿2, … , 𝛿𝑛−𝑟, 𝛿𝑛−𝑟+1, 𝛿𝑛−𝑟+2, … , 𝛿𝑛].

𝐶𝜔𝐺 = 𝐴𝐵𝜔𝐺 holds in Algorithm 7.1 only if 𝐴(𝐵𝜔𝐺) − 𝐶𝜔𝐺 = (𝐴𝐵 − 𝐶)𝜔𝐺 = ∆𝜔𝐺 = 0. This means

𝜔𝐺 ∈ 𝑛𝑢𝑙𝑙(∆), i.e., 𝛿𝑛−𝑟+1 = 0, 𝛿𝑛−𝑟+2 = 0,… , 𝛿𝑛 = 0. Due to the fact that 𝜔𝐺 is a Gaussian random

vector and 𝑉 is an orthogonal matrix, Proposition 7.1 tells us that the elements, 𝛿𝑖 , in the resulting

vector 𝑉𝜔𝐺 are normally distributed and statistically independent. With a continuous probability

distribution, the discrete event where 𝛿𝑖 = 0 for all 𝑖 > 𝑛 − 𝑟 occurs on a set of measure zero and we will

say here that it has probability zero. Hence, GVFA using a Gaussian random projection will have

unmatched 𝐶𝜔𝐺 and 𝐴𝐵𝜔𝐺 when 𝐴 × 𝐵 ≠ 𝐶 on all but a set of measure zero of Gaussian vectors, which

we will say is probability one.

This argument in Theorem 7.2 is rather direct, but we must point out that the arguments are true

when the computations are exact. In next subsection, we will analyze GVFA when float-point errors are

present.

7.1.3 Practical Use in Floating-Point Matrix Product Verification

In computer implementations of arithmetic with real numbers, one commonly uses floating-point

numbers and floating-point arithmetic. Floating-point numbers are represented as finite numbers in the

sense that they have a fixed mantissa and exponent size in number of bits. Therefore, there will be a small

probability, 𝑝, that 𝐶𝜔𝐺 = 𝐴𝐵𝜔𝐺 still holds due to unfortunate floating-point operations in a system with

a known machine epsilon, 𝜖, when 𝐴 × 𝐵 ≠ 𝐶. The value of 𝑝 depends on the magnitude of the error

between 𝐴 × 𝐵 and 𝐶 as well as 𝜖, whose upper bound is justified in Theorem 7.3.

Theorem 7.3. Assume that 𝜔𝐺 is a standard Gaussian random vector, whose elements are i.i.d. normal

108

variables with mean 0 and variance 1, i.e. the standard normal. Let 𝛥 = 𝐴 × 𝐵 − 𝐶, then the probability,

𝑝, that 𝐶𝜔𝐺 = 𝐴𝐵𝜔𝐺 holds in Algorithm 7.1 using a standard Gaussian random vector 𝜔𝐺 under floating-

point uncertainty of size ϵ is

𝑝 ≤ 2𝛷 (|
𝜖

�̃�
|) − 1,

where 𝛷(∙) is the cumulative density function of the standard normal, and �̃� is a constant only related to

𝛥.

Proof: 𝐴 × 𝐵 ≠ 𝐶, 𝛥 = 𝐴 × 𝐵 − 𝐶 ≠ 0. Consider the 𝑖th element, 𝑔𝑖, of the product vector 𝑔 = 𝛥 × 𝜔𝐺,

we have

𝑔𝑖 = (𝛥 × 𝜔𝐺)𝑖 = ∑𝛥𝑖𝑗(𝜔𝐺)𝑗

𝑛

𝑗=1

.

Given 𝜖 , only if |𝑔𝑖| ≤ 𝜖 for all 𝑖 = 1,… , 𝑛 , 𝐶𝜔𝐺 = 𝐴𝐵𝜔𝐺 can hold. Since 𝜔𝐺 is a standard normal

random vector, 𝑔𝑖 for all 𝑖 = 1,… , 𝑛, are normally distributed as well. This is because they are linear

combinations of normals themselves. The key is to compute what the mean and variance is of the 𝑔𝑖.

The components of 𝜔𝐺 are i.i.d. standard normals. Thus we have that 𝐸[(𝜔𝐺)𝑗] = 0 and 𝐸[(𝜔𝐺)𝑗
2
] = 1,

for all 𝑗 = 1,… , 𝑛. Also, we have that 𝐸[(𝜔𝐺)𝑖(𝜔𝐺)𝑗] = 0 when 𝑖 ≠ 𝑗. This allows us to compute the

mean:

𝐸(𝑔𝑖) = 𝐸 [∑𝛥𝑖𝑗(𝜔𝐺)𝑗

𝑛

𝑗=1

] = ∑𝛥𝑖𝑗𝐸[(𝜔𝐺)j]

𝑛

𝑗=1

= 0,

and the second moment about the mean, i.e. the variance:

𝐸[𝑔𝑖
2 − 𝐸(𝑔𝑖)

2] = 𝐸[𝑔𝑖
2] = 𝐸[∑ 𝛥𝑖𝑗(𝜔𝐺)𝑗

𝑛
𝑗=1]

2
= 𝐸[∑ 𝛥𝑖𝑗

2 × 1] = ∑ 𝛥𝑖𝑗
2𝑛

𝑗=1
𝑛
𝑗=1 .

So we have that 𝑔𝑖 ’s are normally distributed with mean zero and variance �̃�𝑖
2 = ∑ 𝛥𝑖𝑗

2𝑛
𝑗=1 , i.e.

𝑔𝑖~𝑁(0, �̃�𝑖
2).

Then, the probability that |𝑔𝑖| ≤ 𝜖 can be computed as follows. Since 𝑔𝑖~𝑁(0, �̃�𝑖
2), we know

that
𝑔𝑖

�̃�𝑖
2 ~𝑁(0,1), and so we define the new variables 𝑔�̃� =

𝑔𝑖

�̃�𝑖
2 and 𝜖̃ =

𝜖

�̃�𝑖
2, and so we have

109

𝑝(|𝑔𝑖| ≤ 𝜖) = 𝑝(−𝜖 ≤ 𝑔𝑖 ≤ 𝜖)

= 𝑝(−𝜖̃ ≤ 𝑔�̃� ≤ 𝜖̃)

= ∫
1

√2𝜋

�̃�

−�̃�

𝑒−
1
2
𝑡2

𝑑𝑡

= 𝛷(ϵ̃) − 𝛷(−𝜖̃).

Since the probability density function of a standard normal is an even function, we have 𝛷(𝜖̃) +

𝛷(−𝜖̃) = 1, and so we can use − 𝛷(−𝜖̃) = 𝛷(𝜖̃) − 1 to get:

𝑝(−𝜖 ≤ 𝑔𝑖 ≤ 𝜖) = 2𝛷(𝜖̃) − 1 = 2𝛷 (|
𝜖

�̃�𝑖
|) − 1.

Now let us consider computing an upper bound on 𝑝(|𝑔𝑖| ≤ 𝜖, 𝑖 = 1,… , 𝑛). We have proved that

𝑔𝑖’s are normal random variables, but they are not necessarily independent. And so for this we use some

simple ideas from conditional probability. By example, consider

𝑝(|𝑔1| ≤ 𝜖 𝑎𝑛𝑑 |𝑔2| ≤ 𝜖) = 𝑝(|𝑔2| ≤ 𝜖 | 𝑔𝑖𝑣𝑒𝑛 |𝑔1| ≤ 𝜖)𝑝(|𝑔1| ≤ 𝜖) ≤ 𝑝(|𝑔1| ≤ 𝜖).

The inequality holds due to the fact that the probabilities are numbers less than one. Now consider our

goal of bounding

𝑝(|𝑔𝑖| ≤ 𝜖 , 𝑖 = 1,… , 𝑛) ≤ 𝑝(|𝑔1| ≤ 𝜖) = 2𝛷 (|
𝜖

�̃�1
|) − 1,

by iterating the conditional probability argument 𝑛 times. By reordering we could have chosen the bound

utilizing any of 𝑔𝑖 's. However, let us define �̃� = 𝑚𝑎𝑥
𝑖

√∑ ∆𝑖𝑗
2𝑛

𝑗=1 , i.e., the maximal standard deviation

over all the 𝑔𝑖’s, which is only related to the matrix ∆. We can use that value instead to get

𝑝 = 𝑝(|𝑔𝑖| ≤ 𝜖 , 𝑖 = 1,… , 𝑛) ≤ 2𝛷 (|
𝜖

�̃�
|) − 1.

As an interesting corollary, we can get a better bound in the case that 𝑔𝑖 's are independent. In that

case

𝑝(|𝑔𝑖| ≤ 𝜖 , 𝑖 = 1,… , 𝑛) = ∏𝑝(|𝑔𝑖| ≤ 𝜖)

𝑛

𝑖=1

= ∏2𝛷 (|
𝜖

�̃�𝑖
|) − 1

𝑛

𝑖=1

.

110

Let �̃� = 𝑚𝑎𝑥
𝑖

√∑ ∆𝑖𝑗
2𝑛

𝑗=1 , i.e., i.e., the maximal standard deviation over all the 𝑔𝑖 's, which is only related

to the matrix ∆. Hence for all 𝑖 = 1,… , 𝑛, we have that

2𝛷 (|
𝜖

�̃�𝑖
|) − 1 ≤ 2𝛷 (|

𝜖

�̃�
|) − 1.

And so, finally we get that

𝑝 = 𝑝(|𝑔𝑖| ≤ 𝜖 , 𝑖 = 1,… , 𝑛)

= ∏2𝛷 (|
𝜖

�̃�𝑖
|) − 1

𝑛

𝑖=1

≤ [2𝛷 (|
𝜖

�̃�
|) − 1]

𝑛

≤ 2𝛷 (|
𝜖

�̃�
|) − 1.

The last inequality is true since the number raised to the 𝑛th power is less than one.

Note, that independence gives probability of a false positive that is 𝑛 times smaller than in the

general, dependent case. The conclusion of this seems to be that the bound in the dependent case is overly

pessimistic, and we suspect that in cases where the matrix ∆ is very sparse, due to a very small number of

errors, that we are in the independent 𝑔𝑖 's case or have very little dependence, and these more optimistic

bounds reflect what happens, computationally.

Theorem 7.3 reveals two interesting facts about GVFA in term of practical floating-point matrix

product verification:

(1) The bigger the error caused by the fault, the higher the probability that it can be captured. 𝑝 is usually

very small because the floating point bound, 𝜖, is very small.

(2) Similar to the original Freivalds’ algorithm, higher confidence can be obtained by iterating the

algorithm multiple times. In fact, if we iterate 𝑘 times using independent Gaussian random vectors,

the probability of false positive decreases exponentially as 𝑝𝑘 . Actually, due to the fact that 𝑝 is

usually very small, one or a very small number of iterations will produce verification with sufficiently

high confidence.

111

One comment that should be made is that if we consider ∫
1

√2𝜋

�̃�

−�̃�
𝑒−

1

2
𝑡2

𝑑𝑡 when 𝜖̃ is small, we can

easily approximate this. Since the integrand is at its maximum at zero, and is a very smooth function,

analytic actually, this integral is approximately the value of the integrand at zero times the length of the

integration interval, i.e. ∫
1

√2𝜋

ϵ̃

−�̃�
𝑒−

1

2
𝑡2

𝑑𝑡 ≤ 2𝜖̃
1

√2𝜋
= 𝜖̃√

2

𝜋
. This is justified as 𝜖̃ is a number on the order

of the machine epsilon, which is 2−23 in single precious or 2−52 in double precision floating point,

divided by �̃�𝑖
2 = ∑ 𝛥𝑖𝑗

2𝑛
𝑗=1 .

Compared to the deterministic methods such as Huang-Abraham scheme (see Section 2.4.1),

GVFA has the following advantages:

(1) Certain fault patterns, as shown in Section 2.4, are undetectable in deterministic methods such as the

Huang-Abraham scheme. Deterministic methods absolutely cannot detect faults with certain patterns,

i.e., certain patterns are detected with probability zero. In contrast, there are no fault patterns that are

undetectable by GVFA with 100% probability. Moreover, iterating the algorithm multiple times can

increase the probability of detecting any fault pattern any value less than one by iteration.

(2) From the computational point-of-view, normal random vectors are generated independently of 𝐴, 𝐵,

and 𝐶, which avoids the costly computation of checksums.

7.2 Extensions of GVFA

7.2.1 Huang-Abraham-like GVFA

GVFA can also be implemented in a way similar to that of Huang-Abraham scheme by providing

row and column verifications. The Huang-Abraham-like GVFA is described in Algorithm 7.2. Similar to

the Huang-Abraham scheme, a mismatch element of the row vectors of 𝜔𝑅𝐶 and 𝜔𝑅𝐴𝐵 as well as that of

the column vectors of 𝐶𝜔𝑐 and 𝐴𝐵𝜔𝑐 uniquely identify a faulty element in 𝐶. By considering floating-

point errors, the false positive probability of identifying this fault becomes 𝑝2, according to the analysis in

Section 7.1.3. However, the computational cost doubles with six matrix-vector multiplications and two

112

vector comparisons. This is essentially the same work as doing two independent iterations of GVFA, and

obtains the same bound.

Algorithm 7.2: Huang-Abraham-like GVFA

Step 1. Generate a row Gaussian random vector, 𝜔𝑅 and a column Gaussian random vector 𝜔𝐶 where

𝜔𝑅 and 𝜔𝑐 are n-vectors of independent (but not necessarily identically) distributed normal

random variables with finite mean and variance.

Step 2. Calculate the projection of 𝐶 on 𝜔𝑅 and 𝜔𝑐: 𝜔𝑅𝐶 = 𝜔𝑅 × 𝐶 and 𝐶𝜔𝑐 = 𝐶 × 𝜔𝑐.

Step 3. Calculate the projection of product 𝐴 × 𝐵 on 𝜔𝑅 and 𝜔𝑐: 𝜔𝑅𝐴𝐵 = (𝜔𝑅 × 𝐴) × 𝐵 and 𝐴𝐵𝜔𝑐 =
𝐴 × (𝐵 × 𝜔𝑐).

7.2.2 Implementation using Fused Multiply-Add Hardware

The Fused Multiply-Add (FMA) machine instruction performs one multiply operation and one

add operation with a single rounding step [142]. This was implemented to enable potentially faster

performance in calculating the floating-point accumulation of products, 𝑎 ∶= 𝑎 + 𝑏 × 𝑐 . Recall that

GVFA employs three matrix-vector multiplications to project 𝐴 × 𝐵 and 𝐶 onto a normal random vector,

which requires a sequence of product accumulations that cost 3𝑛(2𝑛 − 1) floating-point operations.

Therefore, the performance of GVFA can be potentially boosted on modern computing architectures that

support the FMA. More importantly, due to a single rounding step used in the FMA instruction instead of

two roundings within separate instructions, less loss of accuracy occurs when using the FMA instruction

in calculating the accumulation of products [143]. This should further reduce the floating-point rounding

errors that cause false positives.

7.2.3 Applicability

GVFA can be easily extended to a more general matrix multiplication operation where 𝐴 is 𝑚 ×

𝑝, 𝐵 is 𝑝 × 𝑛, and 𝐶 is 𝑚 × 𝑛. The overall computational time then becomes 𝑂(𝑚𝑝 + 𝑛𝑝). The algorithm

can be further extended to verify the product of 𝑁 matrices, which requires overall 𝑁 + 1 matrix-vector

multiplications. GVFA can also be applied to verifying a wide variety of matrix decomposition operations

such as LU, QR, Cholesky, as well as eigenvalue computations, and singular value decompositions. In

113

this case, faults are not in the product matrix but occur in the decomposed ones instead. Anyway, GVFA

can be directly applied with no modifications necessary.

GVFA is a new tool to detect faults in numerical linear algebra, and since it is based on random

Gaussian projection, it is related to the many new randomized algorithms being used directly in numerical

linear algebra [33,102]. The fundamental idea of these randomized algorithms is to apply efficient

sampling on the potentially very large matrices to extract their important characteristics so as to fast

approximate numerical linear algebra operations. We believe that GVFA will be a very useful tool in the

development of fault-tolerant and otherwise resilient algorithms for solving large numerical linear algebra

problems. In fact, it seems that GVFA's similarity to other, new, stochastic techniques in numerical linear

algebra affords the possibility of creating stochastic linear solvers that are by their very nature resilient

and fault-tolerant. This is highly relevant for new machines being developed in HPC to have maximal

floating-point operations per second (FLOPS) while existing within restrictive energy budgets. These

HPC systems will be operating at voltages lower than most current systems, and so they are expected to

be particularly susceptible to soft errors. However, even if one is not anticipating the use of these high-

end machines, the trend in processor design is to lower power, and is being driven by the explosion of

mobile computing. Thus, the ability to reliably perform complicated numerical linear algebraic

computations on systems more apt to experience soft faults is a very general concern. GVFA will make it

much easier to perform such computations with high fidelity in HPC, cloud computing, mobile

applications, as well in big-data settings.

114

CHAPTER VIII

SUMMARY AND POSTDISSERTATION REASEARCH

The efficiency of large-scale linear algebra operations is essential for the performance of

scientific computing and big data analysis applications. The large volume of matrices in these

applications brings grand computational challenges to classical numerical linear algebra algorithms,

including costly matrix pass, limited scalability to modern parallel and distributed computing

architectures, as well as potential memory errors.

The dissertation describes our past five years’ research work on designing new Monte Carlo

algorithms to carry out efficient and reliable large-scale linear algebra operations while taking advantage

of modern parallel computing architectures. In particular, Monte Carlo algorithms for addressing the

problems of solving systems of linear equations, constructing low-rank approximations, finding extreme

eigenvalues/eigenvectors, and verifying the correctness of matrix-matrix multiplications are developed

with mathematical rigor and are supported with numerical results on real-life applications.

The fundamental research on my dissertation provides me with a solid base of knowledge in

numerical linear algebra for parallel high-performance computing systems. There are several interesting

avenues for future work which we would like to explore. For example, enhancing sampling efficiency in

matrix-vector products along MCGMRES iterations, implementing our R3SVD algorithm on big data

analysis platforms, and applying the sliding window power method to fast estimate multiple extreme

eigenvalues/eigenvectors for ab initio nuclear physics applications.

115

REFERENCES

[1] H. Ji, and Y. Li, “Monte Carlo Methods and their Applications in Big Data Analysis,” Mathematical

Problems in Data Science - Theoretical and Practical Methods, Springer, ISBN: 978-3-319-25127-1,

2015.

[2] R. L. Burden, and J. D. Faires, Numerical Analysis, Brooks/Cole, Cengage Learning, 2011.

[3] J. M. Hammersley, and D. C. Handscomb, Monte Carlo Methods, Chapman and Hall, Methuen &

Co., London, and John Wiley & Sons, New York, 1964.

[4] J. S. Liu, Monte Carlo strategies in scientific computing, Springer Science & Business Media, 2008.

[5] Y. Li, and M. Mascagni, “Grid-based Monte Carlo Application,” Grid Computing Third International

Conference, pp. 13–24, 2002.

[6] Y. Li, and M. Mascagn, “Analysis of large-scale grid-based Monte Carlo applications,” Int. J. High

Perform. Comput. Appl., vol. 17, pp. 369–382, 2003.

[7] G. H. Golub, and C. F. Van Loan, Matrix computations, Johns Hopkins University Press, 2012.

[8] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.

[9] J. R. Shewchuk, An Introduction to the Conjugate Gradient Method without the Agonizing Pain,

Tech. Report, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1994.

[10] R. Fletcher, “Conjugate gradient methods for indefinite systems,” Numerical analysis, Springer

Berlin Heidelberg, pp. 73-89, 1976.

[11] Y. Saad, and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems,” SIAM J. Sci. and Stat. Comput., vol. 7. no. .3, pp. 856-869, 1986.

[12] G. E. Forsythe, and R. A. Leibler, “Matrix inversion by a Monte Carlo method,” Math. Tables

Other Aids Comput., vol. 4, pp. 127–129, 1950.

[13] I. Dimov, “Minimization of the probable error for some Monte Carlo methods,” in Proc. of the

Summer School on Mathematical Modelling and Scientific Computations, Bulgarian Academy of

Sciences, Sofia, pp. 159–170, 1991.

[14] W. Wasow, “A note on the inversion of matrices by random walks,” Math. Tables Other Aids

Comput., vol. 6, pp. 78–81, 1952.

[15] J. H. Halton, “Sequential Monte Carlo techniques for the solution of linear systems,” J. Sci.

Comput., vol. 9, pp. 213–257, 1994.

[16] I. T. Dimov, T. T. Dimov, and T. V. Gurov, “A new iterative Monte Carlo Approach for Inverse

Matrix Problem,” J. Comput. Appl. Math., vol. 92, pp. 15–35, 1998.

[17] I. Dimov, Monte Carlo Methods for Applied Scientists, World Scientific Publishing, Singapore,

2008.

[18] C. J. K. Tan, “Antithetic Monte Carlo Linear Solver,” in Proc. of ICCS 2002, pp. 383–392, 2002.

[19] A. Srinivasan, and V, Aggarwal, “Improved Monte Carlo linear solvers through non-diagonal

splitting,” in Proc. of ICCSA, pp. 168–177, 2003.

[20] K. Sabelfeld, and N. Mozartova, “Sparsified randomization algorithms for large systems of linear

equations and a new version of the random walk on boundary method,” Monte Carlo Methods Appl.,

vol. 15, pp. 257–284, 2009.

[21] M. Mascagni, and A. Karaivanova, “A Parallel Quasi-Monte Carlo Method for Solving Systems

of Linear Equations,” in Proc. of ICCS 2002, pp. 598–608, 2002.

[22] H. Ji, and Y. Li, “GPU accelerated randomized singular value decomposition and its application

in image compression,” in Proc. of MSVESCC, pp. 39-45, 2014.

[23] I. Jolliffe, Principal Component Analysis, 2nd ed. New York, NY, USA: Springer-Verlag, 2002.

[24] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 5406–5425, 2006.

[25] J. F. Cai, E. J. Cande`s, and Z. Shen, “A Singular Value Thresholding Algorithm for Matrix

Completion,” SIAM J. Optimiz., vol. 20, pp. 1956-1982, 2010.

[26] M. W. Mahoney, “Randomized algorithms for matrices and data,” Found. Trends Mach.

Learning, vol. 3, no. 2, pp. 123–224, 2011.

116

[27] E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, and M. Tygert, “Randomized algorithms for

the low-rank approximation of matrices,” Proc. Natl. Acad. Sci.,vol. 104, no. 51, pp. 20167–20172,

2007.

[28] P. Drineas, E. Drinea, and P. S. Huggins, “An experimental evaluation of a Monte-Carlo

algorithm for singular value decomposition,” in Proc. of 8th Panhellenic Conf. Informat., Nicosia,

Cyprus, pp. 279–296, 2003.

[29] P. Drineas, R. Kannan, and M. W. Mahoney, “Fast Monte-Carlo algorithms for matrices II:

Computing a low-rank approximation to a matrix,” SIAM J. Comput., vol. 36, no. 1, pp. 158–183,

2006.

[30] S. Eriksson-Bique, M. Solbrig, M. Stefanelli, S. Warkentin, R. Abbey, and I. Ipsen, “Importance

sampling for a Monte Carlo matrix multiplication algorithm, with application to information

retrieval,” SIAM J. Sci. Comput., vol. 33, no. 4, pp. 1689–1706, 2011.

[31] P. Drineas, and M. W. Mahoney, “On the Nyström method for approximating a Gram matrix for

improved kernel-based learning,” J. Mach. Learn. Res., vol. 6, pp. 2153–2175, 2005.

[32] K. Zhang, I. W. Tsang, and J. T. Kwok, “Improved Nyström lowrank approximation and error

analysis,” in Proc. 25th Int. Conf. Mach. Learning, pp. 1232–1239, 2008.

[33] N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions,” SIAM Rev., vol. 53, no. 2, pp. 217–

288, 2011.

[34] R. Motwani, and P. Raghavan, Randomized Algorithms, Cambridge University Press, 1995.

[35] L. Page, “Pagerank: Bringing order to the web,” Technical report, Stanford Digital Library

Project, 1997.

[36] Y. Kim, and K. Shim, “TWILITE: A recommendation system for Twitter using a

probabilistic model based on latent Dirichlet allocation,” Information Systems, vol. 42, pp. 59-77,

2014.

[37] Y. Yang, S. Yang, and B. Hu, “Fighting WebSpam: detecting Spam on the Graph via content and

link features,” in Proceedings of PAKDD, 2008.

[38] CUBLAS library, NVIDIA Corporation, Santa Clara, 2008.

[39] J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, and E. J. Kelmelis, “CULA: hybrid

gpu accelerated linear algebra routines,” SPIE Defense and Security Symposium (DSS), vol. 7705,

2010.

[40] S. Tomov, et al. , MAGMA Library. Univ. of Tennessee and Univ. of California, Knoxville, TN,

and Berkeley, CA, 2014.

[41] CUSPARSE library, NVIDIA Corporation, Santa Clara, California, 2014.

[42] S. V. Kuznetsov, “An Approach of the QR Factorization for Tall-and-Skinny Matrices on

Multicore Platforms,” Appl. Parallel Sci. Comput., pp. 235-249, 2013.

[43] A. R.Benson, D. F. Gleich, and J. Demmel, “Direct QR factorizations for tall-and-skinny matrices

in MapReduce architectures,” in Proc. of IEEE BigData, 2013.

[44] E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala, and S. A. Wender, “Predicting the

number of fatal soft errors in los alamos national laboratory’s asc q supercomputer,” IEEE Trans.

Device Mater. Rel., vol. 5, pp. 329–335, 2005.

[45] J. N. Glosli, D. F. Richards, K. J. Caspersen, R. E. Rudd, J. A. Gunnels, and F. H. Streitz, “

Extending stability beyond cpu millennium: a micron-scale atomistic simulation of kelvin-helmholtz

instability,” in Proc. of SC 2007, pp. 1–11, 2007.

[46] B. Schroeder, E. Pinheiro, and W. D. Weber, “DRAM errors in the wild: a large-scale field

study,” Commun. ACM, vol. 54, pp. 100–107, 2011.

[47] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi, “Modeling the effect of

technology trends on the soft error rate of combinational logic,” in Proc. of DSN 2002, pp. 389–398,

2002.

117

[48] J. J. Dongarra, J. D. Cruz, S. Hammerling, and I. S. Duff, “Algorithm 679: A set of level 3 basic

linear algebra subprograms: model implementation and test programs,” ACM Trans. Math. Softw.,

vol. 16, pp. 18–28, 1990.

[49] J. W. Demmel, and N. J. Higham, “Stability of block algorithms with fast level-3 BLAS,” ACM

Trans. Math. Softw., vol. 18, pp. 274–291, 1992.

[50] K. Gallivan, W. Jalby, and U. Meier, “The use of BLAS3 in linear algebra on a parallel processor

with a hierarchical memory,” SIAM J. Sci. Stat. Comp.,vol. 8, pp. 1079–1084, 1987.

[51] J. A. Gunnels, D. S. Katz, E. S. Quintana-Orti, and R. A. Van de Gejin, “Fault-tolerant high-

performance matrix multiplication: Theory and practice,” in Proc. of DSN 2001, pp. 47–56, 2001.

[52] K. H. Huang, and J. A. Abraham, “Algorithm-based fault tolerance for matrix operations,” IEEE

Trans. Comput., vol. 100, pp. 518–528, 1984.

[53] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou, “Algorithm-based fault tolerance applied to

high performance computing,” J. Parallel Distrib. Comput., vol. 69, pp. 410–416, 2009.

[54] R. Freivalds, “Probabilistic machines can use less running time,” in Proc. of IFIP Congress 77,

pp. 839–842, 1977.

[55] D. D. Chinn, and R. K. Sinha, “Bounds on sample space size for matrix product verification,”

Inform. Process. Lett., vol. 48, pp. 87–91, 1993.

[56] N. Alon, O. Goldreich, J. Hastad, and R. Peralta, “Simple construction of almost kwise

independent random variables,” in Proc. of FOCS 1990, pp. 544–553, 1990.

[57] J. Naor, and M. Naor, “Small-bias probability spaces: Efficient constructions and applications,”

SIAM J. Comput., vol. 22, pp. 838–856, 1993.

[58] C. Lisboa, M. Erigson, and L. Carro, “A low cost checker for matrix multiplication,” in Proc. of

IEEE Latin-American Test Workshop, 2007.

[59] D. P. O'Leary, “Parallel implementation of the block conjugate gradient algorithm,” Parallel

Comput. vol. 5, no. 1, pp. 127-139, 1987.

[60] H. Ji, M. Sosonkina, and Y. Li, “An implementation of block conjugate gradient algorithm on

CPU-GPU processors,” in Proc. of Co-HPC 2014, pp. 72-77, 2014.

[61] G.W. Stewart, “Block Gram-Schmidt orthogonalization,” SIAM J. Sci. Comput., vol. 31, no. 1,

pp. 761-775, 2008.

[62] J. J. Dongarra, J. D. Cruz, S. Hammerling, I. S. Duff, “Algorithm 679: A set of level 3 basic

linear algebra subprograms: Model implementation and test programs,” ACM Trans. Math. Softw.

vol. 16, no. 1, pp. 18-28, 1990.

[63] K. Gallivan, W. Jalby, U. Meier, “The use of BLAS3 in linear algebra on a parallel processor

with a hierarchical memory,” SIAM J. Sci. and Stat. Comput., vol. 8, no. 6, pp.1079-1084, 1987.

[64] J. W. Demmel, and N. J. Higham, “Stability of block algorithms with fast level-3 BLAS,” ACM

Trans. Math. Softw., vol. 18, no. 3, pp. 274-291,1992.

[65] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Inc.,

New York, NY, USA, 2001.

[66] C. G. Broyden, “A breakdown of the block CG method,” Optim. Methods Softw., vol. 7, pp. 41–

55, 1996.

[67] M. H. Gutknecht, “Block Krylov space methods for linear systems with multiple right-hand sides:

An introduction,” in Modern Mathematical Models, Methods and Algorithms for Real World Systems,

Anamaya Publishers, New Delhi, India, pp. 420–447, 2006.

[68] A. A. Nikishin, and A. Y. Yeremin, “Variable block CG algorithms for solving large sparse

symmetric positive definite linear systems on parallel computers, I: general iterative scheme,” SIAM

J. Matrix Anal. Appl., vol. 16, pp. 1135–1153, 1995.

[69] D. P. O’Leary, “The block Conjugate Gradient algorithm and related methods,” Linear Algebra

Appl., vol. 29, pp. 293–322, 1980.

[70] M. Robb, and S. Miloud, “Exact and inexact breakdowns in the block GMRES method,” Linear

Algebra Appl., vol. 419, pp. 265–285, 2006.

118

[71] J. Chen, “A deflated version of the block Conjugate Gradient algorithm with an application to

Gaussian process maximum likelihood estimation,” Preprint ANL/MCS-P1927-0811, Argonne

National Laboratory, Argonne, IL, 2011.

[72] Y. T. Feng, D. R. J. Owen, and P. Peric, “A block Conjugate Gradient method applied to linear

systems with multiple right-hand sides,” Comput. Methods Appl. Mech. Eng., vol. 127, pp. 203–215,

1995.

[73] A. A. Dubrulle, “Retooling the method of block Conjugate Gradients,” Electron. Trans. Numer.

Anal., vol. 12, pp. 216–233, 2001.

[74] Z. Ilya, D. P. O’Leary, and H. Elman, “Complete stagnation of GMRES,” Linear Algebra Appl.,

vol. 367, pp.165–183, 2003.

[75] Z. Leyk, “Breakdowns and stagnation in iterative methods,” BIT, vol. 37, pp. 377-403, 1997.

[76] R. Barrett, et al., Templates for the solution of linear systems: building blocks for iterative

methods, SIAM, 1994.

[77] T. A. Davis, University of Florida sparse matrix collection, http://www.cise.u.edu/research

/sparse/matrices/.

[78] N. Li, Y. Saad, and E. Chow, “Crout version of ILU for general sparse matrices,” SIAM J Sci.

Comput., vol. 25, pp. 716–728, 2003.

[79] T. Schmelzer, Block Krylov methods for Hermitian linear systems, Diploma thesis, Department of

Mathematics, University of Kaiserslautern, Germany, 2004.

[80] M. Robb, and S. Miloud, “Exact and inexact breakdowns in the block GMRES method,” Linear

Algebra Appl., vol. 419, pp. 265–285, 2006.

[81] M. H. Gutknecht, Block Krylov space solvers: A survey, available online:

http://www.sam.math.ethz.ch/ mhg/talks/bkss.pdf, 2005.

[82] I. Duff, R. Grimes, and J. Lewis, Users guide for the Harwell-Boeing sparse matrix collection,

Research and Technology Division, Boeing Computer Services, Seattle, Washington, USA, 1992.

[83] J. Towns, et al., “XSEDE: Accelerating scientific discovery,” Comput. Sci. Eng., vol. 16, no. 5,

pp.62–74, 2014.

[84] H. Ji, and Y. Li, “A breakdown-free block conjugate gradient method,” BIT, submitted, 2016.

[85] A. Gaul, M. H. Gutknecht, J. Liesen, and R. Nabben, “A framework for deflated and augmented

krylov subspace methods,” SIAM J. Matrix Anal. Appl., vol. 34, no. 2, pp.495-518, 2013.

[86] J. Erhel, and F. Guyomarc'h, “An augmented conjugate gradient method for solving consecutive

symmetric positive definite linear systems,” SIAM J. Matrix Anal. Appl., vol. 21, no. 4, pp.1279-

1299, 2000.

[87] Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc'h, “A deflated version of the conjugate gradient

algorithm,” SIAM J. Sci. Comput., vol. 21, no. 5, pp.1909-1926, 2000.

[88] R. A. Nicolaides, “Deflation of conjugate gradients with applications to boundary value

problems,” SIAM J. Numer. Anal. vol. 24, no. 2, pp. 355-365, 1987.

[89] Z. Dostal, “Conjugate gradient method with preconditioning by projector,” Internat J. Comput.

Math., vol. 23, no. 34, pp. 315-323, 1988.

[90] J. Erhel, K. Burrage, and B. Pohl, “Restarted GMRES preconditioned by deflation,” J. Comput.

Appl. Math., vol. 69, no. 2, pp.303-318,1996.

[91] R. B. Morgan, “A restarted GMRES method augmented with eigenvectors,” SIAM J. Matrix

Anal. Appl., vol. 16, no. 4 , pp.1154-1171, 1995.

[92] E. De Sturler, “Nested krylov methods based on GCR,” J. Comput. Appl. Math., vol. 67, no. 1,

pp.15-41, 1996.

[93] S. A. Kharchenko, and A. Y. Yeremin, “Eigenvalue translation based preconditioners for the

GMRES (k) method,” Numer. Linear Algebra Appl., vol. 2, no. 1, pp.51-77, 1995.

[94] M. H. Gutknecht, “Deated and augmented krylov subspace methods: A framework for deated

BiCG and related solvers,” SIAM J. Matrix Anal.Appl., vol. 35, no. 4, pp.1444-1466, 2014.

[95] R.B. Sidje, and N. Winkles, “Evaluation of the performance of inexact GMRES,” J. Comput.

Appl. Math., vol. 235, no. 8, pp.1956-1975, 2011.

http://www.cise.u.edu/research%20/sparse/matrices/
http://www.cise.u.edu/research%20/sparse/matrices/

119

[96] V. Simoncini. “Variable Accuracy of Matrix-Vector Products in Projection Methods for

Eigencomputation,” SIAM J. Num. Anal., vol.43, no. 3, pp. 1155-1174, 2005.

[97] X. Du, and D.B. Szyld, “Inexact GMRES for singular linear systems,” BIT, vol. 48, no. 3, pp.511-

531, 2008.

[98] R.B. Sidje, “Inexact uniformization and GMRES methods for large Markov chains,” Numer.

Linear Algebr., vol. 18, no.6, pp.947-960, 2011.

[99] A. Bouras, and V., Frayssé. “Inexact matrix-vector products in Krylov methods for solving linear

systems: A relaxation strategy,” SIAM J. Matrix Anal. A., vol. 26, no. 3, pp.660-678, 2005.

[100] L. Giraud, S. Gratton, and J. Langou, “Convergence in Backward Error of Relaxed GMRES,”

SIAM J. Sci. Comput., vol. 29, no. 2, pp.710-728, 2007.

[101] B. W. David, “Generating random spanning trees more quickly than the cover time,” in Proc. of

STOC 1996, ACM, New York, NY, USA, pp. 296-303, 1996.

[102] P. Drineas, R. Kannan, and M. W. Mahoney, “Fast Monte Carlo Algorithms for Matrices I:

Approximating Matrix Multiplication,” SIAM J. Comput., vol. 36, no. 1, pp. 158–183, 2006.

[103] N. Halko, “Randomized methods for computing low-rank approximations of matrices,” Ph.D.

dissertation, University of Colorado, 2012.

[104] S. Voronin, and P.G. Martinsson, “RSVDPACK: Subroutines for computing partial singular

value decompositions via randomized sampling on single core, multi core, and GPU architectures,”

arXiv preprint arXiv:1502.05366, 2015. Available at: http://arxiv.org/abs/1502.05366

[105] S. Voronin, and P.G. Martinsson, “A randomized blocked algorithm for efficiently computing

rank-revealing factorizations of matrices,” arXiv preprint arXiv:1503.07157. 2015. Available at:

http://arxiv.org/abs/1503.07157

[106] A. Mathai, and G. Pederzoli, Characterizations of the Normal Probability Law. New Delhi, India:

Wiley Eastern Ltd., 1977.

[107] NASA's Planetary Photojournal. [Online] available at : http://photojournal.jpl.nasa.gov.

[108] H. Ji, E. O’Saben, A. Boudion, and Y. Li, “March Madness Prediction: A Matrix Completion

Approach,” in Proc. of MSVESCC 2015, pp. 41-48, 2015.

[109] E.J. Cande`s, and B. Recht, “Exact Matrix Completion via Convex Optimization,” Foundations

on Computational Math., vol 9, pp. 717- 772, 2009.

[110] B. Recht, M. Fazel, and P.A. Parrilo, “Guaranteed minimum-rank solutions of linear matrix

equations via nuclear norm minimization,” SIAM Rev., vol. 52, no. 3, pp.471-501, 2010.

[111] B. Recht, “A Simpler Approach to Matrix Completion,” J. Machine Learning Research, vol. 12,

pp. 413-3430, 2011.

[112] J. D. M. Rennie, and N. Srebro, “Fast maximum margin matrix factorization for collaborative

prediction,” in Proc. ICML, 2005.

[113] D. Zhang, Y. Hu, J. Ye, X. Li, and X. He, “Matrix completion by truncated nuclear norm

regularization,” in Proc. of CVPR, pp. 2192–2199, 2012.

[114] H. Ji, C. Liu, Z. Shen, and Y. Xu, “Robust video denoising using low rank matrix completion,” in

Proc. of IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1791–1798, 2010.

[115] A. Weber, SIPI image database, The USC-SIPI Image Database, Signal & Image Processing

Institute, Department of Electrical Engineering, Viterbi School of Engineering, Univ. of Southern

California (2012), available at : http://sipi.usc.edu/database

[116] R. M. Larsen, Lanczos bidiagonalization with partial reorthogonalization, Department of

Computer Science, Aarhus University, Technical report, DAIMI PB-357, 1998.

[117] S. F. McCormick, and T. Noe, “Simultaneous iteration for the matrix eigenvalue problem,”

Linear Algebra Appl., vol. 16, no.1, pp. 43-56, 1977.

[118] H. Ji, Y. Li, and S. Weinberg, "Calcium Ion Fluctuations Alter Channel Gating in a Stochastic

Luminal Calcium Release Site Model,” IEEE/ACM Trans. Comput. Biol. Bioinf., in press, 2015.

[119] G. Teodoro, T. Kurc, J. Kong, L. Cooper, and J. Saltz, “Comparative performance analysis of

Intel Xeon Phi, GPU, and CPU,” arXiv preprint arXiv:1311.0378, 2013.

http://arxiv.org/abs/1503.07157
http://sipi.usc.edu/database

120

[120] A. Yaseen, H. Ji, and Y. Li, “A Load-Balancing Workload Distribution Scheme for Three-Body

Interaction Computation on Graphics Processing Units (GPU) ,” J. Parallel. Distrib. Comput., vol.

87, pp. 91-101, 2016.

[121] Intel, MKL. Intel Math Kernel Library, 2013.

[122] G. Hager, and G. Wellein, Introduction to high performance computing for scientists and

engineers. CRC Press, 2010.

[123] S. S. Konstantin, Memory Bandwidth for Intel Xeon Phi (And Friends) , 2013. Retrieved from

http://clusterdesign.org/2013/02/memory-bandwidth-for-intel-xeon-phi-and-friends/

[124] FLOPS. In Wikipedia. Retrieved from http://en.wikipedi a.org/wiki/FLOPS.

[125] F. Masci, Benchmarking the Intel Xeon Phi Coprocessor, 2014.

[126] NVIDIA, NVIDIA’s Next Generation CUDATM Compute Architecture: Kepler TM K110,

Retrieved from http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-

Whitepaper.pdf.

[127] NVIDIA, Tesla K20 GPU Active Accelerator, Retrieved from

http://www.nvidia.com/content/PDF/kepler/Tesla-K20-Active-BD-06499-001-v02.pdf.

[128] E. N. Elnozahy, L. Alvisi, Y.M. Wang, D.B. Johnson, “A survey of rollback-recovery protocols

in message-passing systems,” ACM Comput. Surv., vol. 34, no. 3, pp. 375-408, 2002.

[129] P. Banerjee, J.A. Abraham, “Bounds on algorithm-based fault tolerance in multiple processor

systems,” IEEE Trans. Comput., vol. 100, no. 4, pp. 296-306, 1986.

[130] F.T. Luk, and H. Park, “An analysis of algorithm-based fault tolerance techniques,” J. Parallel

Distrib. Comput., vol. 5, no. 2, pp.172-184, 1988.

[131] A. J. V. de Goor, Testing semiconductor memories: theory and practice. John Wiley & Sons,

New York, 1991.

[132] K. L. Cheng, C.W. Wang, and J.N. Lee, “FAME: a fault-pattern based memory failure analysis

framework,” in Proc. of ICCAD 2003, pp. 595-598, 2003.

[133] D. D. Chinn, and R.K. Sinha, “Bounds on sample space size for matrix product verification,”

Inform. Process. Lett., vol. 48, no. 2, pp. 87-91, 1993.

[134] N. Alon, O. Goldreich, J. Hastad, and R. Peralta, “Simple construction of almost k-wise

independent random variables,” in Proc. of the 31st Annual Symposium on Foundations of Computer

Science, pp. 544-553, 1990.

[135] J. Naor, and M. Naor, “Small-bias probability spaces: Efficient constructions and applications,”

SIAM J. Comput., vol. 22, no.4, pp. 838-856 , 1993.

[136] C. Lisboa, M. Erigson, and L. Carro, “A low cost checker for matrix multiplication,” In: IEEE

Latin-American Test Workshop, 2007.

[137] L. Gasieniec, C. Levcopoulos, and A. Lingas, “Efficiently correcting matrix products,” In:

Algorithms and Computation, pp. 53-64. Springer , 2014.

[138] Y. Li, and M. Mascagni, “Analysis of large-scale grid-based Monte Carlo applications,” Int. J.

High Perform. Comput. Appl., vol. 17, no. 4, pp. 369-382, 2003.

[139] R. J. Muirhead, Aspects of multivariate statistical theory, Wiley, New York, 1982.

[140] E. Lukacs, and E.P. King, “A property of the normal distribution,” Ann. Math. Stat., vol. 25, no.2,

pp. 389-394, 1954.

[141] J. W. Lindeberg, “Eine neue herleitung des exponentialgesetzes in der wahrscheinlichkeit-

srechnung,” Math. Z, vol. 15, no. 1, pp. 211-225, 1922.

[142] E. Hokenek, R.K. Montoye, and P.W. Cook, “Second-generation risc floating point with

multiply-add fused,” IEEE J. Solid-State Circuits, vol. 25, no. 5, pp. 1207-1213, 1990.

[143] S. Boldo, and J.M. Muller, “Exact and approximated error of the FMA,” IEEE Trans. Comput.

vol. 60, no. 2, pp. 157-164, 2011.

[144] M. R. Hestenes, and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J.

Res. Natl. Bur. Standards, vol. 49, pp. 409-436, 1952.

[145] R. Fletcher, “Conjugate gradient methods for indefinite systems,” Numerical analysis, Lecture

Notes in Mathematics, Springer, pp. 73-89, 1976.

http://clusterdesign.org/2013/02/memory-bandwidth-for-intel-xeon-phi-and-friends/

121

[146] R. Reddy, A. Lastovetsky, and P. Alonso, “Heterogeneous PBLAS: Optimization of PBLAS for

Heterogeneous Computational Clusters,” in Proc. of ISPDC 2008, pp. 73-80, 2008.

[147] J. Choi, et al., “ScaLAPACK: A portable linear algebra library for distributed memory

computers—Design issues and performance,” Applied Parallel Computing Computations in Physics,

Chemistry and Engineering Science, Springer Berlin Heidelberg, pp.95-106, 1995.

[148] H. Ji, Y. Li, and S. H. Weinberg, “Calcium ion fluctuations alter channel gating in a stochastic

luminal calcium release site model,” in Proc. of ISBRA2015, Norfolk, 2015.

[149] Z. Liu, and L. Vandenberghe, “Interior-point method for nuclear norm approximation with

application to system identification,” SIAM J. Matrix Anal. Appl., vol. 31, pp. 1235– 1256, 2009.

[150] H. Ji, W. Yu, and Y. Li, “A Rank Revealing Randomized Singular Value Decomposition

(R3SVD) Algorithm for Low-rank Matrix Approximations,” arXiv:1605.08134, 2016.

[151] H. Ji, and Y. Li, “Block Conjugate Gradient Algorithms for Least Squares Problems”, J. Comput.

Appl. Math., submitted, 2016.

[152] H. Ji, M. Mascagni, and Y. Li, “Gaussian Variant of Freivalds’ Algorithm for Efficient and

Reliable Matrix Product Verification,” Algorithmica, submitted , 2016.

[153] H. Ji, M. Mascagni, and Y. Li, “Convergence Analysis of Markov Chain Monte Carlo Linear

Solvers Using Ulam--von Neumann Algorithm,” SIAM J. Num. Anal., vol. 51, no. 4, pp. 2107-2122,

2013.

[154] H. Ji, and Y. Li, “Reusing random walks in Monte Carlo methods for linear systems,” in Proc. of

ICCS 2012, vol 9, pp. 383-392, 2012.

[155] H. Ji, S. H. Weinberg, M. Li, J. Wang, and Y. Li, “An Apache Spark Implementation of Block

Power Method for Computing Dominant Eigenvalues and Eigenvectors of Large-Scale Matrices,”

BDCloud 2016, submitted, 2016.

[156] H. Ji, E. O’Saben, R. Lambi, and Y. Li, “Matrix Completion Based Model V2.0: Predicting the

Winning Probabilities of March Madness Matches,” in Proc. of MSVESCC 2016, in press, 2016.

122

APPENDIX A

ADDITIONAL PROOFS

Lemma 3.8. Suppose 𝑅𝑖 is an 𝑛 × 𝑠 residual matrix of rank 𝑟𝑖 (𝑟𝑖 ≤ 𝑠) at the 𝑖𝑡ℎ iteration, then

𝑟𝑎𝑛𝑘(�̃�𝑖
𝑇𝑅𝑖) = 𝑟𝑖.

Proof. Let �̃�𝑖 denote an orthonormal basis of the search space 𝒫𝑖, which is spanned by 𝑍𝑖 + �̃�𝑖−1�̃�𝑖−1

shown in Algorithm 3.2, then 𝑍𝑖 + �̃�𝑖−1�̃�𝑖−1 can be expressed as

𝑍𝑖 + �̃�𝑖−1�̃�𝑖−1 = �̃�𝑖𝛿, (1)

where 𝛿 is an 𝑟𝑖 × 𝑠 matrix of rank 𝑟𝑖. Left multiplying 𝑅𝑖
𝑇 to (1), we can get

𝑅𝑖
𝑇𝑍𝑖 + 𝑅𝑖

𝑇�̃�𝑖−1�̃�𝑖−1 = 𝑅𝑖
𝑇�̃�𝑖𝛿.

According to Corollary 3.6, 𝑅𝑖
𝑇�̃�𝑖−1 = 0. Then,

𝑅𝑖
𝑇𝑍𝑖 = 𝑅𝑖

𝑇�̃�𝑖𝛿.

According to Proposition 3.4, we can obtain 𝑟𝑎𝑛𝑘 ((𝑅𝑖
T�̃�𝑖)𝛿) = 𝑟𝑎𝑛𝑘(𝑅𝑖

𝑇𝑍𝑖) = 𝑟𝑎𝑛𝑘(𝑅𝑖). Again,

applying the basic rules of matrix rank, 𝑟𝑎𝑛𝑘(�̃�𝑖
𝑇𝑅𝑖) = 𝑟𝑎𝑛𝑘 ((𝑅𝑖

𝑇�̃�𝑖)𝛿) = 𝑟𝑖 is derived.

Lemma 3.9. 𝑍𝑖+1 is conjugate to search spaces 𝒫𝑗 where 𝑗 < 𝑖.

Proof. Since 𝑅𝑗+1 is generated by

𝑅𝑗+1 = 𝑅𝑗 − 𝐴�̃�𝑗�̃�𝑗, (2)

left multiplying (2) by 𝑍𝑖+1
𝑇 and we have

𝑍𝑖+1
𝑇𝑅𝑗+1 = 𝑍𝑖+1

𝑇𝑅𝑗 − 𝑍𝑖+1
𝑇𝐴�̃�𝑗�̃�𝑗 .

When 𝑗 < 𝑖, according to Corollary 3.7, 𝑍𝑖+1
𝑇𝑅𝑗 = 0 and 𝑍𝑖+1

𝑇𝑅𝑗+1 = 0. Thus, 𝑍𝑖+1
𝑇𝐴�̃�𝑗�̃�𝑗 = 0 for all

𝑗 < 𝑖.

Based on Theorem 3.5, �̃�𝑗 = (�̃�𝑗
𝑇
𝐴�̃�𝑗)

−1
�̃�𝑗

𝑇
𝑅𝑗, we have

123

𝑍𝑖+1
𝑇𝐴�̃�𝑗 (�̃�𝑗

𝑇
𝐴�̃�𝑗)

−1
�̃�𝑗

𝑇
𝑅𝑗 = 0

Due to the facts that �̃�𝑗
𝑇
𝐴�̃�𝑗 is an 𝑟𝑗 × 𝑟𝑗 matrix with full rank, �̃�𝑗

𝑇
𝑅𝑗 is a 𝑟𝑗 × 𝑠 matrix with rank 𝑟𝑗 by

Lemma 3.8, and 𝑟𝑗 ≤ 𝑠, 𝑍𝑖+1
𝑇𝐴�̃�𝑗 = 0 (𝑗 < 𝑖) is obtained.

124

APPENDIX B

SYSTEMS OF LINEAR EQUATIONS

The coefficient matrix 𝐴 and the right-hand side matrix 𝐵 used in Section 3.2.5.3 are presented

below.

𝐴 =

[

121.164272268116 17.8757971682236
17.8757971682236 123.317477848499
8.91160049194292 15.3784313056350

8.91160049194292 14.8013917105125 12.7809854465276
15.3784313056350 13.9826052710372 8.99969320736193
114.944841846832 14.0212707850901 18.3077854261355

14.8013917105125 13.9826052710372
12.7809854465276 8.99969320736193
14.7026896764278 12.0449732854894

14.0212707850901 112.181615127048 6.98849991034816
18.3077854261355 6.98849991034816 112.325588245555
14.5027264215831 15.6000866949538 9.62150309966732

16.6581592592829 14.8004340755219
17.7634024982886 6.47584364565590
13.6288388058580 6.74411759716316

12.0968055881465 15.6521797575797 9.91145010305920
16.0640864509010 17.5486159107531 7.70562137370861
14.2012968909398 11.8376249537951 19.8270052266075

12.6121271222844 11.8855805421895 6.14231789000198 13.0217718614950 17.6325001345481

14.7026896764278 16.6581592592829
12.0449732854894 14.8004340755219
14.5027264215831 12.0968055881465

17.7634024982886 13.6288388058580 12.6121271222844
6.47584364565590 6.74411759716316 11.8855805421895
16.0640864509010 14.2012968909398 6.14231789000198

15.6000866949538 15.6521797575797
9.62150309966732 9.91145010305920
102.912724285154 13.9592217854341

17.5486159107531 11.8376249537951 13.0217718614950
7.70562137370861 19.8270052266075 17.6325001345481
6.65030637918623 15.6299996128245 16.3450359607153

13.9592217854341 106.578021459235
6.65030637918623 7.87956983883075
15.6299996128245 10.6885329046362

7.87956983883075 10.6885329046362 7.63921835027445
113.736168684120 8.30021275368670 18.8043098692214
8.30021275368670 108.648495445339 20.4504103006764

16.3450359607153 7.63921835027445 18.8043098692214 20.4504103006764 117.313312551535]

B =

[

0.719862394959852 7.19862399356066
0.298498062508485 2.98498066864206
0.719943073352362 7.19943077821203
0.470645548592634 4.70645553655237
0.213065120059020 2.13065123100835
0.635136176538378 6.35136184705153
0.338215520218286 3.38215526612211
0.274120126028595 2.74120129843795
0.243954498892080 2.43954507177449
0.630536116636262 6.30536119819008]

125

VITA

Hao Ji was born in Anhui, China, on August 03, 1985. He received his Bachelor's degree in

Mathematics and Applied Mathematics and his Master's degree in Computer Software and Theory from

Hefei University of Technology, Hefei, China, in 2007 and 2010, respectively. After that, he began to

pursue his Ph.D. degree in the Department of Computer Science at Old Dominion University, Norfolk,

VA, USA. His research interests include Monte Carlo Methods for Big Data Analysis, Large-Scale Linear

Algebra, and High Performance Scientific Computing.

