
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Spring 2018

Leveraging Resources on Anonymous Mobile
Edge Nodes
Ahmed Salem
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Salem, Ahmed. "Leveraging Resources on Anonymous Mobile Edge Nodes" (2018). Doctor of Philosophy (PhD), dissertation,
Computer Science, Old Dominion University, DOI: 10.25777/v7rq-tz62
https://digitalcommons.odu.edu/computerscience_etds/35

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/35?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

LEVERAGING RESOURCES ON ANONYMOUS

MOBILE EDGE NODES

by

Ahmed Salem
B.S. May 2006, Arab Academy for Science and Technology, Egypt
M.S. May 2012,Arab Academy for Science and Technology, Egypt

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
May 2018

Approved by:

Tamer Nadeem (Director)

Ravi Mukkamala (Co-Director)

Stephan Olariu (Member)

Dimitrie Popescu (Member)

ABSTRACT

LEVERAGING RESOURCES ON ANONYMOUS MOBILE EDGE
NODES

Ahmed Salem
Old Dominion University, 2018
Director: Dr. Tamer Nadeem

Co-Director: Dr. Ravi Mukkamala

Smart devices have become an essential component in our lives. The rapid rise
of smartphones, IoTs, and wearable devices has enabled applications that were not
possible few years ago, e.g., health monitoring and online banking. Meanwhile, smart
sensing has laid the infrastructure for smart homes and smart cities. The intrusive
nature of smart devices has granted access to huge amounts of raw data. Researchers
have seized the moment with complex algorithms and data models used to process
the data over the cloud in order to extract as much information as possible. However,
with the pace and amount of data generation, in addition to the networking protocols
transmitting data to cloud servers only 20% of what has been generated on the edge
of the network was processed. On the other hand, smart devices carry a large set
of resources, e.g., CPU, memory, and camera, and these resources sit idle most of
the time. Studies have shown that, for much of the time, resources are either idle,
e.g., sleeping and eating, or underutilized, e.g. inertial sensors during phone calls.
These findings articulate a problem in processing large data sets, while having idle
resources in close proximity. In this dissertation, we propose harvesting underutilized
edge resources then using them in processing the huge amount of data generated, and
currently wasted, through applications running at the edge of the network.

We propose to flip the concept of cloud computing; instead of sending massive
amounts of data for processing over the cloud, we distribute lightweight applications
to process data on users’ smart devices. We envision that this approach will en-
hance the network’s bandwidth, grant access to larger datasets, provide low latency
responses, and most importantly include user’s contextual information in process-
ing. However, such benefits come with a set of challenges: How to locate suitable
resources? How to match resources with data providers? How to inform resources
about what to do and when to do it? How to orchestrate applications’ execution on
multiple devices? and How to communicate between devices at the edge?

Communication between devices at the edge uses different parameters in terms
of device mobility, topology, and data rate. Standard protocols, e.g., Wi-Fi or Blue-
tooth, were not designed for edge computing, hence, they do not offer a perfect
match. Edge computing requires a lightweight protocol that provides quick device
discovery, a decent data rate, and multicasting to devices in the proximity. Blue-
tooth features wide acceptance within the IoT community; however, its low data rate
and unicast communication limits its use on the edge. Despite its being the most
suitable communication protocol for edge computing and despite the fact that it is
unlike other protocols, Bluetooth uses a closed source code that blocks its lower layer
from all forms of research study, enhancement, and customization. Hence, we offer
an open source version of Bluetooth and then we customize it for edge computing
applications.

In this dissertation, we propose Leveraging Resources on Anonymous Mobile Edge
Nodes (LAMEN), a three-tier framework in which edge devices are clustered by prox-
imity. On finding an application to execute, LAMEN clusters discover and allocate
resources, share the application’s executable with resources, and estimate incentives
for each participating resource. In a cluster, a single head node, i.e. the mediator,
is responsible for resource discovery and allocation. Mediators orchestrate cluster
resources and present them as a virtually large homogeneous resource. For example,
two devices, each offering either a camera or a speaker are presented outside the
cluster as a single device with both camera and speaker; this can be extended to
any combination of resources. Then, the mediator handles applications’ distribution
within a cluster, as needed. Also, we provide a communication protocol that is cus-
tomizable to the edge environment and the application’s need. Pushing lightweight
applications that end devices can execute over their locally generated data has the
following benefits: First, it avoids sharing user data with a cloud server, which is a
privacy concern for many users; Second, it introduces mediators as local cloud con-
trollers, closer to the edge; Third, it hides the user’s identity behind the mediators;
and finally, it enhances bandwidth utilization by keeping the raw data at the edge
and by transmitting processed information. Our evaluation shows both an optimized
resource lookup and application assignment schemes, in addition to scalability in
handling networks with a large number of devices. In order to overcome the com-
munication challenges, we provide an open source communication protocol that we
customize for edge computing applications; however, it can be used beyond the scope

of LAMEN. Finally, we present three applications to show how LAMEN enables var-
ious application domains on the edge of the network.

In summary, we propose a framework to orchestrate underutilized resources at
the edge of the network and use them in processing data generated in their proximity.
Using the approaches explained later in the dissertation, we show how LAMEN en-
hances the performance of applications and enables a new set of applications that
were not previously feasible.

v

Copyright, 2018, by Ahmed Salem, All Rights Reserved.

ACKNOWLEDGEMENTS

All Praise is Due to Allah (God)

To my father Prof. Hesham Salem; my mother Nagwa; my siblings H. Elbarawy,
Nourane, Omar, & Youssef; and my kids Hesham & Yaseen. This would have not

been possible without your unlimited support and believe in me.

To my wife, Sarra, for enduring my miserable work-family balance and long nights
with love.

To my advisors, especially Dr. Tamer Nadeem. We had plenty of ups and downs
throughout the journey, I certainly learned a lot and will keep learning.

To my mentors Prof. Hussein Abdel-Wahab (RIP) and Prof. Stephan Olariu. I
cannot be more grateful for the support I received from both of you. All our
one-on-one talks kept me on track or I would have been another dropout.

To the Muslim Student Association (MSA) and the Egyptian Student Association
(ESA), especially Dr. Samy El-Tawab and Dr. Ahmed AlSum. Your help during

my early days and on made my boarding process so smooth.

To all I have mentioned, as well as those that I have not:
Thank You !

vii

TABLE OF CONTENTS

Page

LIST OF TABLES . xi

LIST OF FIGURES . xiv

CHAPTER

1 INTRODUCTION . 1
1.1 EDGE COMPUTING NETWORKS . 3

1.1.1 WHAT IS EDGE COMPUTING? . 3
1.1.2 WHY EDGE COMPUTING? . 4
1.1.3 COMMUNICATION ON THE EDGE . 4

1.2 USE CASES . 5
1.2.1 COMPUTATIONAL ALLIANCE . 5
1.2.2 COLLABORATIVE SENSING. 6

Media Coverage . 6
Restaurant Search . 7

1.2.3 I/O VIRTUALIZATION . 7
1.3 CHALLENGES ON THE EDGE . 7
1.4 LAMEN . 8
1.5 ORGANIZATION . 9

2 BACKGROUND . 11
2.1 CLOUD, CLOUDLETS, AND FOG. 11
2.2 CROWDSOURCING AND CROWDSENSING . 12
2.3 SENSOR NETWORKS . 13
2.4 P2P NETWORKS . 14
2.5 EDGE COMPUTING . 15

2.5.1 EDGE COMPUTING MIDDLEWARE . 15
2.5.2 USING THE EDGE . 16
2.5.3 MISSING ON THE EDGE . 17

2.6 COMMERCIAL SOLUTIONS . 18
2.6.1 ALLJOYN . 18
2.6.2 IOTIVITY . 19

2.7 BLUETOOTH FOR THE EDGE . 19

3 MOBILE EDGE COMPUTING ARCHITECTURE AND COMPONENTS . 21
3.1 SYSTEM OVERVIEW . 21
3.2 DESIGN PRINCIPLES AND ASSUMPTIONS . 22

The Edge is Dump . 22
The Edge is Ready . 22

viii

Dynamic Environment . 22
Distributed Design . 23
Resource Encapsulation . 23
Maintain User’s Privacy . 23

3.3 LAMEN EDGE COMPUTING. 23
3.4 LAMEN ’S LAYERED ARCHITECTURE . 23

3.4.1 LAMEN SYSTEM DESIGN . 26
3.4.2 APPLICATION HANDLING . 27

3.5 CLOUD SERVER . 27
3.5.1 APPLICATION REPOSITORY . 27

3.6 MEDIATOR . 28
3.6.1 RESOURCE DISCOVERY . 28
3.6.2 RECRUITMENT . 29

Shortest Path . 29
Estimate Time Departure (ETD) . 29
History . 30

3.6.3 ORCHESTRATOR . 30
Control Messages . 30
Proximal Applications . 31
Sideloader . 31
Aggregator . 32

3.6.4 REWARDS . 32
3.7 EDGE DEVICES . 32
3.8 HOW LAMEN WORKS . 32
3.9 MOBILITY MANAGEMENT . 33

4 KINAARA: DISTRIBUTED DISCOVERY AND ALLOCATION OF MO-
BILE EDGE RESOURCES . 34
4.1 OVERVIEW . 34
4.2 BACKGROUND OF DISTRIBUTED DISCOVERY AND AD-

DRESSING . 35
4.3 RESOURCE DISCOVERY . 37
4.4 RESOURCE REPRESENTATION. 38

4.4.1 RESOURCE ENCODING . 38
4.4.2 RESOURCE INDEXING. 41

Kinaara’s Ring . 41
Device Join . 43
Device Leave . 43

4.4.3 INDEXING SCENARIO . 45
4.4.4 MEDIATOR-TO-MEDIATOR INTERACTION 45

4.5 RESOURCE ALLOCATION . 46
4.5.1 RESOURCE REQUEST . 46

Request Language . 48
4.5.2 RESOURCE LOOKUP . 49

ix

4.5.3 MEDIATOR ALLOCATION . 51
4.6 IMPLEMENTATION AND EVALUATION . 51

4.6.1 SIMULATION PLATFORM . 52
Kinaara Simulator . 52
Dataset . 52
Reference Approaches . 52

4.6.2 KINAARA CLUSTERS IN WI-FIDOG . 54
4.6.3 SIMILARITY FUNCTION . 54
4.6.4 CENTRALIZED VS. DISTRIBUTED RESOURCE DISCOV-

ERY. 55
4.6.5 BASIC OPERATIONS . 55
4.6.6 EFFICIENT PATH LENGTH . 58
4.6.7 CLUSTER ALLOCATION . 58
4.6.8 RESOURCE REQUEST RATE (RR) . 59
4.6.9 MOBILITY RATE . 60

4.7 CONCLUSION. 60

5 BOSS : BLUETOOTH OPEN SOURCE STACK TO FACILITATE EDGE
COMMUNICATION . 62
5.1 OVERVIEW . 62
5.2 BOSS IN ACTION . 64

Wearable Communication . 64
Multi-hop Communication . 65

5.2.1 CUSTOMIZABLE DEVICE DISCOVERY 65
5.2.2 BLUETOOTH TESTBED . 65
5.2.3 BLUETOOTH ADAPTER . 66

Ubertooth One . 66
Ubertooth One Architecture . 67

5.3 BOSS PLATFORM . 69
5.3.1 FIRMWARE . 69

Fundamental Features . 69
Baseband Controller . 71
Link Manager . 74
HCI firmware . 75

5.4 TESTING . 76
5.5 CONCLUSION. 76

6 EDGE APPLICATIONS . 80
6.1 BLINK: MULTICASTING IN BLUETOOTH PICONETS 80

6.1.1 OVERVIEW . 80
6.1.2 USE CASE . 81
6.1.3 DESIGN . 81

Multicast Piconet Communication . 81
Packet Format . 83
Addressing Modes . 84

x

Instruction Set . 84
6.1.4 IMPLEMENTATION AND EVALUATION 84

Experiment Setup . 85
Experiment Scenario . 85
Multicast Piconets Communication . 86

6.1.5 CONCLUSION . 87
6.2 3D STORY TELLER . 87

6.2.1 OVERVIEW . 87
6.2.2 IMPLEMENTATION . 88
6.2.3 PERFORMANCE MEASURES . 89
6.2.4 CONCLUSION . 89

6.3 DRIVEBLUE: TRAFFIC INCIDENT PREDICTION THROUGH
SINGLE SITE BLUETOOTH . 89
6.3.1 OVERVIEW . 89
6.3.2 DESIGN . 92

Bluetooth Data Collection . 93
Lane Type Detection . 93
Traffic Estimator . 93
Report Incident . 94

6.3.3 PERFORMANCE EVALUATION . 94
Experiment Setup . 96
Data Cleaning and Analysis . 97
Lane Type Detection . 98
Highway Behavior Evaluation . 99

6.3.4 CONCLUSION . 101

7 CONCLUSIONS AND FUTURE WORK. 104

8 PUBLISHED WORK . 105
8.1 CONFERENCE PROCEEDINGS . 105
8.2 JOURNAL . 106
8.3 POSTER/DEMO. 106

APPENDICES

A INCENTIVIZING USERS TO PARTICIPATION IN EDGE COMPUTING 107
A.1 INCENTIVE MODELS FOR CROWD SENSING 107
A.2 INCENTIVES MODEL FOR EDGE COMPUTING. 107

REFERENCES. 108

VITA. 125

xi

LIST OF TABLES

Table Page

1 Resource/Feature Encoding Guide in Kinaara . 39

2 Search Query Prefix . 46

3 Search Key Prefix . 49

xii

LIST OF FIGURES

Figure Page

1 LAMEN ’s Edge Computing Architecture . 24

2 LAMEN System Design . 26

3 Side Loading vs. Downloading from 2 different cloud providers 50 times
each . 31

4 Kinaara Phases of Resource Discovery . 37

5 Kinaara Device Key . 40

6 Kinaara Device Join Algorithm . 42

7 Kinaara Sample Ring . 44

8 DiScript Sample . 47

9 Kinaara Lookup Algorithm . 50

10 Comparing 5 Similarity Functions to identify the one suitable for Kinaara 53

11 Centralized Vs. Kinaara Resource Discovery . 55

12 Basic Operations: Kinaara vs. ZHT [1] . 56

13 Kinaara’s selective lookup vs. Chord . 57

14 Cluster Allocation, impact of increasing resource usage ratio on discovery 59

15 Path Length under different Cluster Allocations on a 2k resource cluster. . 59

16 Impact of Request Rate (RR) on resource discovery 60

17 Mobility Rate and its impact on discovery. 61

18 Communication Stack Openness in IEEE 802.11 (Wi-Fi) vs Bluetooth . . . 63

19 Ubertooh One Hardware Design . 67

20 BOSS Components Architecture . 68

21 Bluetooth Protocol Stack . 70

xiii

22 Bluetooth State Diagram controlled through the link manager in the
firmware . 73

23 Bluetooth Advertising State . 74

24 Bluetooth Connection State . 75

25 Validating the performance of BOSS through pairing and data exchange
with a FitBit Charge 2 . 77

26 Validating the performance of BOSS through pairing with an iPhone 7 . . 78

27 Bluetooth v4.2 Data Channel PDU. 82

28 Payload for BOSS Multicast Communication’s data channel PDU. 82

29 Multicast Piconet Communication vs. Bluetooth default serial communi-
cation within a four device Piconet. 86

30 3D Story Teller uses multiple speakers to emulate surrounded sounds
experience . 88

31 Overall Power Consumption . 90

32 Single Smartphone Power Consumption . 90

33 Master Power Consumption . 90

34 Slave Power Consumption . 90

35 DriveBlue System Design with the components of the Edge processing unit 92

36 Traffic Estimation Modeled as (n+1)-state Markov chain 93

37 DriveBlue Field Experiments’ Setup. 95

38 Raw data from controlled experiment in DriveBlue . 96

39 Number of Samples Collected by DriveBlue per device from both lane types 97

40 Expected appearance time of Bluetooth devices on vehicles spanning the
coverage area of a high gain antenna collected by DriveBlue 98

41 Controlled Classifier Accuracy in Lane Type Detection 99

42 Effect of Speed on DriveBlue’s samples Appearance Time collected in
windows of 5 minutes each. 100

xiv

43 DriveBlue Highway Readings, 4 smartphones color coded, for Lane Type
Detection . 101

44 DriveBlue RSSI collected on Highway. Each window represents 5 minutes
comparison between motion categories . 102

1

CHAPTER 1

INTRODUCTION

In 2016, seven billion new smart devices were sold, e.g., smartphones and IoTs,
an increase of 30% from 2015 [2, 3], each holding large number of resources, e.g.,
sensors or CPUs. IoTs alone are estimated to capture more than 200EB (200 mil-
lion terabytes) of data annually, since inertial sensors are always on [4]. Using cloud
computing, it was estimated that less than 20% of this raw data was touched, i.e.,
stored or processed [5, 6]. Moreover, analysts envision that by 2020 the increase in
data generation will double the increase in bandwidth, further amplifying the com-
munication overhead [7, 8]. Hence, cloud computing falls short in processing this
large amount of data on backend servers. For example, smart vehicles are expected
to generate tons of traffic pattern data, which has to be uploaded to a cloud server
for traffic optimization analysis. Not only does this overwhelms the network band-
width and backend resources, but it overlooks a large amount of resources, including
the computational resources onboard of vehicles that can be orchestrated for traffic
optimization and for many other applications as we will explain later.

Cloud computing solutions like Amazon EC2 [9], the classical host for these ap-
plications, comes with a set of drawbacks: the need for continuous reliable Internet
connection, which is not guaranteed and can be expensive if using cellular service;
long setup time for cloud server instances; the high payment granularity (for exam-
ple, a short time job, e.g., single voice recognition, will hold cloud resources for the
whole hour and will require full payment); and misusing the network’s bandwidth
with massive raw data upload. Hence, cloud computing might not be the perfect
solution. We target an orchestration of resources at the edge of the network towards
executing applications beyond the capabilities of a single device, instead of uploading
data and computation to a cloud server. However, not only are end/smart devices
are far from hosting big tasks, but they were designed to work individually serving
their owners.

Smart devices are continuously receiving software and hardware upgrades in terms
of network connectivity, computational, and sensing capabilities. Despite their mas-
sive availability and their tie to their end users, they are still limited to simple tasks

2

serving a single owner including social media and personal sensing, leaving bigger
tasks for cloud computing. For example, iPhone, a top notch smartphone, carrying
state-of-the-art computational, connectivity, and sensing resources fails to execute
voice recognition, i.e., Siri, locally, and offloads it to the cloud for lack of sufficient
computation (100x regular queries) [10, 11]. Moreover, smart devices are proven to
have idle resources for a significant amount of time, i.e., inertial sensors during a
phone call [12].

Smart devices’ market penetration, along with their excessive data generation, are
accompanied by a shift in the way people think. In the last decade, it was not quite
natural for people to share their properties with others. Nowadays, we witness people
accepting to share even their personal stuff for a reward. Uber is an application that
allows car owners to offer paid rides in their personal cars [13]. AirBnB, enables
offering a room in a house for rent [14]. Moreover, AirPnP, enables people to offer
their bathrooms for short term rent in return of a small fee, e.g., $1-5 [15]. Further, in
the IT domain it is now likely that users can expose their Internet through tethering
it to unconnected ones. Many solutions have been developed to organize this process
in terms of reward calculation and bandwidth distribution, (ex. Karma Wi-Fi [16]).
In short, members of the public nowadays are open to sharing their unused personal
things if they are guaranteed a reasonable reward and a reliable security metric.

Edge computing, then, emerges as the natural evolution of such behavioral change
to explore the large amount of untouched data at the edge, using many of the idle
resources on smart devices. Edge computing is a new paradigm that addresses the
explosive growth in mobile data growth by pushing computation at the network
edge close to the data sources. Compared to cloud computing which transports all
mobile data to cloud servers for processing, edge computing reduces delay, network
bandwidth, and mobile device energy consumption. Most existing edge computing
approaches use computing resources on the static edge network infrastructure instead
of mobile devices. On the edge, however, the network infrastructure will not keep up
with the explosive edge data growth and real time application requirements [4, 5].

The collective computing, storage, connectivity, and sensing resources of network
edge mobile devices such as smartphones, wearables, and vehicles, offer a new op-
portunity to extend the boundaries of the network edge closer to the data sources,
not only for computation but also for other capabilities such as sensing, storage, and
connectivity. The IoT phenomenon amplifies the untapped potential that the fuels

3

rapid proliferation of edge devices in multiple forms.
The research conducted on the edge so far has been limited to using a standard

communication protocols, e.g., Wi-Fi or Bluetooth, none of which is designed to sup-
port the quick mobility and low latency required on the edge. Bluetooth, with the
advantage of being accepted by the IoT community, has an advantage; however, it is
limited with slow device discovery, a low data rate, and unicast communication be-
tween devices. Unlike Wi-Fi, Bluetooth comes with a firmware enclosed on hardware
chips that prohibits any attempt of addressing its limitations on the edge.

In this dissertation, we propose Leveraging Resources on Anonymous Mobile Edge
Nodes (LAMEN 1), an edge computing framework to harvest and orchestrate edge
resources for executing complex applications, like video analytics, that overwhelms
the backend, while they remain infeasible on a single smart device. In addition to
this, they use a communication protocol customized for edge computing to overcome
the limitation of current communication standards and minimize the communication
latency between edge devices. We envision this work to maximize the gain from edge
data and to enable a new set of applications.

1.1 EDGE COMPUTING NETWORKS

1.1.1 WHAT IS EDGE COMPUTING?

Edge computing is a new paradigm for pushing applications’ execution, away
from the backend towards the edge of the network [18, 19, 20]. Edge computing
prepares a wide variety of devices that does not belong to the network infrastructure
for taking over bigger roles. A plethora of research has focused on utilizing hardware
upgrades to increase intelligence at the edge, e.g., cellular base stations [21] and video
streaming on APs [22]. This approach aims to increase the responsiveness of services
and application to save on round trip communication latency and complicated man-
agement of cloud servers [23]. In this dissertation, we focus on end devices, one hop
from users, and we call them edge devices. Some examples are smartphones, smart
watches, security cameras, machine sensors, cars, and smart T.Vs. Each of these
can use its resources to execute an applications, or part of an application and com-
bine results, instead of relying on backend servers. For example, video analytics are

1This literally means, a magical pendant to fulfill wishes of its owner as in science fiction movies
and novels [17]

4

offloaded to cloud servers with large computation power despite the fact of having
an equivalent power distributed among devices at the edge that are waiting to be
harnessed.

1.1.2 WHY EDGE COMPUTING?

Edge computing is believed to be the brain behind IoT and smartphones [24]. It is
all about pushing processing closer to their data sources in order to solve four main
problems: communication, latency, cloud management, and data privacy [20, 25].
Communication avoids the overhead to communicate and to maintain large amounts
of data that results in traffic bottlenecks. Latency provides low latency responses to
applications that can hardly tolerate the round trip communication to data centers.
In Cloud Management, data centers and cloud servers requires high support costs
for continuous maintenance and upgrades, while edge devices are low cost devices
that can be easily handled. In Data Privacy, users are not comfortable sharing their
private data with the cloud, and assuming that this would reveal their privacy, track
their locations, or expose them to unexpected breaches. Thus, we propose pushing
computations to the edge, rather than bringing data to the backend.

In short, we propose the creation of a virtually homogeneous larger set of resources
out of the multiple heterogeneous resources sitting across multiple devices. This
computational unit should be large enough to compete with the cloud for hosting
a specific application whose resource requirements are beyond the capabilities of a
single device.

1.1.3 COMMUNICATION ON THE EDGE

The introduction of Bluetooth v1.0 in 1999 witnessed a wide community accep-
tance, despite some limitation. Bluetooth followed up with multiple versions that
enhanced power consumption, device interaction, and efficient packet design for band-
width optimization [26]. Unlike other technologies, such as ZigBee [27], Bluetooth
was adopted by hardware manufacturers and was included in handheld devices. Its
community acceptance and hardware availability made Bluetooth the de-facto com-
munication protocol for IoT and a strong candidate for edge computing. Despite
enhancements over versions, Bluetooth still carries four main limitations low transfer
rate, high latency device discovery, limited range, and interference [28]. Unlike other
communication standards such as Wi-Fi, Bluetooth limitations are unaddressable by

5

the research community, since its firmware is locked on hardware chips. Addressing
these limitations and customizing Bluetooth to work on the edge, will require an
open source Bluetooth stack. Hence, as a component of LAMEN we present BOSS,
a Bluetooth Open Source Stack, which will provide Bluetooth core specifications to
enable research and customization per edge applications’ need. Further, we present
BLINK, a customized Bluetooth version which will enhance the rate of data exchange
within a piconet, along with a case study that shows how edge computing can benefit
from a tailored communication protocol.

1.2 USE CASES

In this section, we present several use cases where LAMEN is needed. However,
LAMEN is not limited to these, it can be used to orchestrate the edge for hosting
any kind of scenario involving resources or data on the edge of the network.

1.2.1 COMPUTATIONAL ALLIANCE

Computational resources, the controller of all resources, are mandatory for the
execution of any application. In this section, we explain scenarios that requires com-
putations above the capabilities of a single device and we show how LAMEN provides
a better alternative.

Speech Recognition is a complex application that researchers have been ad-
dressing for long time. Whenever a voice query is available, it is compared to a
database of commands using speech recognition algorithms; this requires heavy com-
putations above the capabilities of state-of-the-art phones [11]. Hence, commercial
products can either limit their supported commands to a few that can be done lo-
cally, e.g., Garmen GPS [29], or can upload a recorded speech query for over the
cloud processing, e.g., Apple Siri [10] and Google Now [30]. The latter option was
estimated to require 100x the computational resources compared to regular queries,
e.g., looking up a contact. Therefore, LAMEN supports speech recognition applica-
tions by providing on demand resources from multiple devices in the proximity and
synthesizing them towards a single powerful computational unit.

Augmented Reality is getting plenty of momentum nowadays for applications
like online gaming. People have shown a huge interest in kits like Oculus Rift that
enables them in step into the game [31]. However, augmented reality requires contin-
uous connection with a PC to offload heavy computations. In LAMEN, we propose

6

to provide such computational resources through proximal devices that grant gamers
the freedom to walk around, not just stick to a chair close to their PCs. We envision
that this will open the horizon for developing a newer category of games that enables
player mobility.

Video Analytics target real time operations, e.g., face detection, while the video
is taken. This feature is currently not possible on single end devices; hence, the data
is uploaded to the cloud. Just as it does in previous applications, LAMEN steps
into the picture to prepare the medium to host computational tasks beyond the
capabilities of its requesting device.

1.2.2 COLLABORATIVE SENSING

Collaborative sensing describes a spectrum of applications in which multiple sen-
sors are required to detect an event. In cloud computing, every sensor transmits raw
data to the cloud for processing. The main theme of an edge computing contribution
in this application category is reducing the amount of raw data that is passed to the
cloud, especially if it is redundant; instead, it passes the result of processing from
multiple sources on a small scale that can be further extrapolated at the cloud.

Media Coverage

Assume that a media corporation, for example CNN, is rushing to cover an emer-
gency situation in New York City. They dispatch their correspondents with coverage
units to drive through the traffic. However, what might be a more convenient solution
would be to ask pedestrians to shoot videos and upload them until the reporters get
to the scene. However, although this solves the initial problem, but it might result
in a large number of videos from personnel seeking CNN’s reward. Not only does a
problem appears in communicating a large number of videos, but there will also be
a problem in processing them and selecting the best; this is another overwhelming
task that could take time equivalent to what could be spent waiting for the reporters
to arrive.

In edge computing systems, CNN would start by composing a resource request
using a language that LAMEN provides to specify the incident location (Manhattan),
the resources to be fetched (camera), the period of operations (5mins video). CNN
would then send the request for the edge devices to the corresponding location. These
scenarios consists of the following stages in order: composing a request, dispatching

7

to edge devices, extracting request resources, resource lookup, and reporting them
back.

Restaurant Search

Current restaurant lookup applications provide static information, like the restau-
rant’s hours of operation, menus, and addresses none of which could provide con-
textual information like current waiting time, serving times, or noise level. Edge
computing enables recruiting resources in a group of restaurants and using them to
execute noise level detection applications or estimating waiting times and report-
ing them back as a parameter in restaurant selection. Here is an example, Alice
and Bod are looking for a restaurant in Manhattan for their anniversary dinner.
Using their preferred app, Yelp, they are able to view various restaurants’ menus,
pictures, and operation times. However, they are interested in knowing some infor-
mation about the restaurants, right now, that no app provides, e.g., is this restaurant
noisy? What is its average waiting time? Using edge computing the couple opens a
similar app, chooses a target location, and requests the noise level feature. Unlike
other approaches that question users, like CrowdDB [32], which does not scale, edge
computing provides an accurate feedback by processing data at the network’s edge.

1.2.3 I/O VIRTUALIZATION

I/O devices are receiving their share of interest in smart device innovations, e.g.,
display resolution. However, the goal of keeping devices handheld limits both their
size and their overall quality. Hence, to get a larger display or a deeper sound, multi-
ple end devices have to be synchronized. 3D Story Teller is a sample application that
splits a story by character, each played on a different device [33, 34] as in this exam-
ple: During kindergarten story time, teacher Linda opens 3D Story Teller instead of
reading the children a story on her own. The application searched the surrounding
for collaborating devices and establishes a synchronized connection. Then, Linda’s
phone splits the story characters among the available phones, i.e., 1 to n, where n is
the number of characters, and dispatches them to corresponding phones. 3D Story
Teller tackles challenges on the edge to provide a movie theater-like experience for
the story audience.

1.3 CHALLENGES ON THE EDGE

8

Edge computing systems face a set of challenges: discovery, mobility, hardware
heterogeneity, service management, rewards, and communication protocol. Resource
Discovery, with plenty of resources in the proximity, is the discovery process re-
quired to discover and allocate suitable ones per incoming application. Mobility,
unlike data centers, edge nodes, are always moving which contradicts the need for
stationary resources. In Heterogeneity, users have different device preferences, e.g.,
iPhone, Fitbit, or Android, and such variations have to be seamless while executing
edge computing applications. Service Management has multiple challenges to handle
a service definition, recruiting a workforce, service dissemination, service-splitting
among devices, execution monitoring, collecting, and aggregating results from mul-
tiple devices. Rewards, which is the main incentive for user participation, have to
incorporate factors like the number of resources used, their scarceness level in the
region, and responsiveness. Moreover, the reward negotiation has to reach a fair deal
between the payer and the payee. A Communication Protocol, is needed as a prereq-
uisite for providing the aforementioned features. The IoT community has looked at
multiple communication protocols and has reached a consensus that Bluetooth v4.0
is the most suitable. However, with LAMEN, Bluetooth imposes a higher latency
than what edge applications can afford, which is caused by slow discovery, unicast
communication, and a low data rate.

1.4 LAMEN

In this dissertation, we present the design and implementation of LAMEN, a
three-tier framework to orchestrate anonymous devices in the proximity and prepare
them for hosting complex services currently performed over the cloud. LAMEN is
unlike existing solutions that use edge devices to execute individual applications or
to filter raw data before transmitting it to the cloud for processing. LAMEN hides
multiple device heterogeneity, synchronizes them, and uses their collective resources
towards a single application. Following is a the summary of LAMEN contributions:

1. We design LAMEN, a three-tier framework, to incorporate edge devices and to
prepare them to host complex applications. In LAMEN, we explain the mod-
ules required to organize and harvest underutilized resources on participating
devices.

9

2. We design and implement Kinaara, a framework that discovers and allocates re-
sources with suitable QoS features in order to execute applications. Kinaara en-
sures resource discovery, upon availability, by exploring a maximum of O(logN)
of the available devices. Moreover, Kinaara hides the identity of participants
and keeps their private data on their own devices.

3. We design DiScript, a scripting language to compose edge application requests
and to describe their detailed resource requests. DiScript, defines QoS metrics
for each resources to be used, while negotiating resource recruitment.

4. We design and implement DiCoder, a customized resource encoding scheme to
represent resource available in the system. DiCoder is used to express available
devices in terms of their resources. This enables Kinaara to efficiently locate
them whenever a service request is received.

5. Resource Recruitment following on the discovery results, the recruitment mod-
ules select the best subset to carry the incoming service.

6. Bluetooth Open Source Stack we design and implement an open source Blue-
tooth stack (BOSS). This module enables researchers to study and enhance
Bluetooth’s core components. Moreover, we present BLINK, a case study that
addresses a limitation in Bluetooth, i.e., multicast communication in piconets,
and shows how BOSS enhances the level of the data exchange.

7. We evaluate LAMEN using different metrics such as mobility, large network
size, limited resource availability, and request rates. Then, we record the per-
formance in terms of the accuracy of fulfilling a request, the number of hops,
the latency, and the limits of scalability.

8. We implement three applications to show the behavior and the benefits of
LAMEN enabled applications on the edge of the network.

1.5 ORGANIZATION

In Chapter 2, we discuss the background of cloud computing and edge computing
systems. We also discuss attempts to manage and recruit a workforce in similar sys-
tems, i.e., sensor networks and P2P, as well as practical approaches to solve hardware

10

heterogeneity. In Chapter 3, we describe LAMEN, a framework used to incorporate
edge devices in one system to enable complex application execution beyond the capa-
bilities of a single device. In Chapter 4, we design, implement and evaluate Kinaara,
a solution to index edge devices, and we locate suitable ones to serve every incom-
ing service request, based on resource features and availability. In Chapter 5, we
present BOSS, an open source Bluetooth stack for researchers to study and enhance
Bluetooth core specifications. In Chapter 6, we present three applications and show
the value of LAMEN contributes to multiple application categories on the edge of
the network. Finally, in Appendix A, we end with a discussion of the factors and
methods to incentivize users towards using LAMEN.

11

CHAPTER 2

BACKGROUND

Attempts to push computation to the edge have been happening for a while.
Backed up by various motivations like utilizing the co-existence of multiple re-
sources [35], decreasing the overhead of data communication [36], offloading [37], or
privacy concerns about keeping personal data close to the user rather than posting it
over the cloud [38]. Despite various motivations, researchers agree on the eligibility
of edge devices for performing tasks beyond a single user’s commands. However,
their main objective was collecting raw data or performing computations on static
networking components, e.g., AP, that doesn’t support scenarios for mobile devices.

2.1 CLOUD, CLOUDLETS, AND FOG

Cloud Computing is a model that grants users access to shared computational
resources, e.g., networks, servers, and storage, which are tailored towards a specific
application. Cloud systems consists of a large number of resources, which are not
affordable by regular users or by small business organizations [39, 40]. Commer-
cial cloud services offer the flexibility to define resource needs along with date/time
requirements for a pay-on-use only systems, which is cost efficient. Such services
are offered by many providers like, Amazon Web Services [41] and theGoogle Cloud
Platform [42].

The rise of cloud computing has granted access to the huge infrastructure on the
network’s backend servers, has provided a quick recovery from disastrous scenarios,
has guaranteed security through encryption, and has reduced carbon emissions at
the small business sites by 30% [43, 44]. However, it requires continuous Internet
connectivity, ongoing payments to cloud providers, and privacy concerns as to where
businesses should store their data [45, 46, 47, 48]. Hence, researchers are continuously
addressing such limitations as they appear in real-life scenarios.

Cloudlet is an architecture that provides a local version of cloud computing
as a virtual machines (VM) instantiated on a local server with LAN communica-
tion [49, 50, 51, 52]. This targets IoT devices to collect location-specific sensor

12

readings from large number of highly mobile nodes [53, 54, 55]. Another example is
smart traffic lights, where light switching is based on the current vehicle’s pattern
collected by nearby sensors [52]. Fog Computing is another term that represents the
same concepts and challenges as cloudlets.

Cloudlets enable the organization of the network’s edge into small co-located
groups, each of which acts as a local cloud. Since their inception, researchers have
been eager to study edge networks in order to define their lowest level building blocks,
their challenges, and what applications the edge can contribute to [56, 57, 58]. Much
of their work has agreed on the same concepts under different names: Task manage-
ment, to maintain information about tasks running at the edge; Device management,
to keep updated information about the status of participating devices [59, 60]; and
Scheduling, to synchronize the execution of multiple devices [61, 62]. However, dis-
covering devices and resources has been achieved through third party solutions like
Amazon Mechanical Turk (AMK) [63].

Although both Cloudlets and Fog applications targets target the formation of
small cloud networks, each group work alone. They are only concerned about smart
data collection. This is unlike LAMEN, which targets the orchestration of resources
available in the near proximity to serve a specific application, then dissolves the
orchestra. In other words, in LAMEN, whenever a task is available, a coalition is
built to serve it.

2.2 CROWDSOURCING AND CROWDSENSING

Crowdsourcing is recruiting a short term workforce without any rigid employment
obligations [64, 65]. Crowdsensing is using crowdsourcing devices with sensing capa-
bilities [66]. The evolution of mobile environments has triggered mobile crowdsensing
to collect sensing information from mobile devices [67].

Hence, Crowdsensing has been proposed as an approach for accessing sensing data
on edge devices. This collective sensing is used to reducing power consumption by
eliminating redundant sensing [68], creating video maps based on GPS locations [69],
and combining various sensors from different devices for a single task. For example,
RIO, enables Skype calls with camera, display, and microphone from different de-
vices [70] and CrowdDB asks questions to the crowd [32]. In addition, applications
targeting computational resources like Medusa [71], which recruits a set of devices,
select a routine from pre-installed ones to execute, and get the results back. They

13

all share negotiations with a set of registered physical users to take the task. They
maintain users, along with their device information in a database either through an
application specific system or AMK [66]. This assumption is acceptable for such
applications, but ones that need for low latency resource discovery can not afford the
waiting time until users receive a message and respond.

It is worth mentioning that some approaches perform predictive models for user’s
location [72]; this is completely different from the kind of resource/device discovery
that depends on the resource’s status as the search criteria, not on a specific user.
Also, in crowdsensing the status of devices is not a parameter in the selection. Hence,
we need an approach to discover resources based on their up-to-date status (e.g.
value, and availability) and to assign services in a low latency fashion. We envision
LAMEN, if used with crowdsensing applications to make them smarter through the
selection of the right candidates.

2.3 SENSOR NETWORKS

Similar to Edge networks, Sensor networks operate through nodes, i.e., motes,
at the edge of the network. These networks consist of small size, cheap, and low
powered motes with limited sensing and computation capabilities [73]. In Sensor
Networks, nodes are dispatched in large numbers to cover a certain location, mainly
for monitoring purposes [74, 75]. In a location, sensors are all programmed to perform
a certain task at dispatch time [76]. Efforts to reprogram sensors in run time, i.e.,
re-tasking, using customized languages, e.g., SNQL [77] or TinyDB [78], include the
massive selection of available nodes based on a criteria, for example, the amount
of remaining power, and does not provide selective recruitment towards a specific
application [79]. This would result in the over-recruitment of devices, which would
not all be used and would blocks other applications from allocating idle resources.

Due to their limited computational capabilities, sensor networks are not suit-
able for hosting edge computing applications. Also, since they lack the wide variety
of sensors per node, sensor networks are less intrusive to human life, when com-
pared to smart devices, e.g., smartphones and IoTs. Hence, they areless likely to
be available on the spot for an edge application in need. However, they have sim-
ilar management requirements for their devices [80, 81]. Self-managing nodes have
been addressed in electing leaders [82], choosing proper sleep/wake up intervals for

14

power constraints [83, 84, 76], mobility [85], resource discovery [86], and data aggre-
gation [87].

2.4 P2P NETWORKS

Another domain for of using edge devices is the Peer-to-Peer (P2P) network, a
distributed content sharing network in which all nodes are equivalent, i.e., peers, in
terms of their functionalities and the tasks they hold [88, 89]. P2P’s most prominent
application is file sharing, e.g., Napster and Gnutella [90], which connects a large
number of peers each carrying a file represented by a key/value pair. The key is
usually the hash of the file name, while the value is the device’s IP. Anyone who wants
to find a file hashes its name and looks for the corresponding IP in a hash table. For
scalability issues, centralized hash tables are proven to be inefficient solutions [91,
92]. Hence, Distributed Hash Table (DHT) approaches were introduced to split the
hash table among all of the participating nodes. The hash table splitting and key
generation hash function differ across multiple DHT solutions. The most famous
solutions are Chord [93], Pastery [94], Tapestry [95], and CAN [96]. They all share
the same concept of hashing the file name to represent the device where it is stored.
Despite their efficient addressing, DHTs in this form are not suitable for dynamic
applications, as their basic operations, i.e., node join, leave, and lookup, require
O(log2 n) time complexity, where n is the number of nodes in the network. Also, the
naming convention does not reflect the node capabilities. PHT [97] and Hamming-
DHT [98], proposed sorting P2P files based on the key similarity. Mapping their
approaches to edge computing networks the former resulted in O(n2) operations,
while the latter used an ambiguous key generation process when mapping the multiple
resources of a single device. In general, P2P addressing was designed to map a single
file (single resource), and falls short when representing a multiple of them in one
key on the same device. Finally, ZHT [1], a highly optimized implementation for
DHT applications, was evaluated on IBM Blue Gene with 160K-cores, and the Linux
cluster with 512-core to result in very low latency operations, i.e., 1.1ms.

All of the aforementioned P2P solutions were built to reach a file stored on a
stationary device, unlike edge computing systems where devices are mobile, and
have plenty of resources not a single file with one feature, i.e., name. Also, P2P
systems do not face the problem of heterogeneous devices. Therefore, if LAMEN is
to support edge systems, it needs to consider mobility, resource status variations,

15

and heterogeneity which were not addressed in the P2P domain.

2.5 EDGE COMPUTING

Edge computing targets performing computations on devices close to end users
and away from the backend [99, 90]. The recent evolution of smartphones and IoTs
facilitates the bringing of Edge computing framework to life. However, these devices
were originally designed to serve a single user. In the rest of this section, we will
present attempts to use edge devices.

2.5.1 EDGE COMPUTING MIDDLEWARE

Middleware design is needed to support mobile device collaboration. MECA pro-
posed an initial middleware architecture to bring raw data analytics to the network’s
edge. However, the architecture was very abstract and was only used for selecting
data sources [59].

Medusa is a programmable framework to facilitate crowdsensing. It adopts the
following five-step scenario for Alice to collect videos of a specific incident: she re-
cruits volunteers to receive tasks, e.g., shoot videos, via sms or mms; they shoot and
upload summaries; a reviewer picks the best summaries, and asks for the uploading
of their full videos. To achieve this scenario, Medusa requires the service requester
to write an XML, called a MedScript, to describe the subtask components and their
order and the feeds it to the Medusa system. Medusa consists of the following mod-
ules: MedScript Interpreter, which analyze the input XML and makes sure that the
sequence of components is correct, e.g., shoot video then extract summary; Task
Tracker, which makes sure that tasks didn’t exceed the time limit, decides the num-
ber of workers needed, and the monitors task; Worker Manager, which connects with
Amazon Mechanical Turk to recruit volunteers, and assign incentives; Stage Library,
which maintains code snippets required to execute system stages, e.g., face detection
and data upload; Stage Tracker, which maintains user privacy and supports multiple
stage execution; and MedusaBox, which makes sure that the tasks does not use more
resources than the worker specified and maintains the worker’s current state, in case
of a limited time outage. Assuming that smartphones are dump, they only use it
to perform the latter two modules, leaving all of the management and smartness to
the cloud. It also requires continuous user involvement in approving every stage of
execution. For example, to execute a code, the user receives an sms with a link to

16

download a video recording and summary extraction app. Then, the user receives
another sms with a link to manually upload the full version of the video. Also, the
XML creation by the service requester is not a user-friendly process, in fact it is
rather primitive, if a user needs to capture a video, he or she will complete steps 1,
2, and 3, so there is no need for users to specify it every time. [71].

2.5.2 USING THE EDGE

CoMon establishes a Bluetooth connection between nearby devices; then, it per-
forms sensing on a single device and broadcasts the results to others, to reduce the
overall power consumption [68].

MiroBlog is used to build a location based on a map of videos. It collects videos
from multiple sources, detects their location, and then displays a pin on every map
location they have a video for. MicroBlog depends on users sharing videos to a cloud
server through their cellular connectivity. It does not support direct collaboration
between devices. However, the whole task to be completed requires the participation
of many devices [69].

RIO is an Android system for virtualizing I/O resources between devices. For
example, Skype video calls requires a microphone, a camera, and a display. RIO can
use these three devices, with each providing a resource to perform the Skype call.
RIO receives messages from multiple devices and writes them in a kernel file that
is accessed by the currently running app. However, this approach enables only one
service to be running at a time, which raises a scalability concern [70].

GameOn enables users in proximity to rely on their Wi-Fi Direct connectivity
instead of on cellular for multi-player gaming scenarios. It provides wrapper functions
for every game, to map the prospective P2P communication to cellular incoming data
formats. This approach avoids any modifications in gaming apps, but requires the
development of a wrapper function for every game the system supports. GameOn
provides device-to-device coordination, to save time and the cost of using cellular
service. However, the system lacks real collaboration between devices [36].

CrowdDB provides a scheme to crowdsource the results of customized SQL
queries. CrowdDB provides a modified version of SQL which enables new fields
or tables to carry a specific value, i.e., CNULL, stating this field or table is retrieved
through crowdsourcing. Similar to Medusa, CrowdDB depends on AMT to recruit
users to assign incentives. However, it provides the set of users with a customized UI

17

to provide results, e.g., select url from university, and compares the received results
over the cloud to select the most repeated answer as the correct one. This approach is
also used to map record values, for example, by IBM and International Business Ma-
chines, or to locate the shot for a specific picture. CrowdDB’s dependency on AMT
for user recruitment and incentive is a drawback. Also, the DB nature of Crowded
makes it suitable for answering questions, labeling pictures, and performing simple
tasks that require human feedback. It is clearly not suitable for tasks that include
data processing on mobile devices [32].

Paradrop used the definition of static edge to reprogram access point with light
weight code snippets [100]. The static edge refers to network infrastructure compo-
nents that are close to the users, e.g., AP. In the work, the authors used a repro-
grammable AP to install home automation application. The work used a case study
to monitor the differences on room temperature and try to keep all rooms in the
house at the same temperature. This work as others whose focus is the static edge
limits their scope to applications that depends on an infrastructure leaving them
with mostly indoor scenarios.

MAUI divides program execution between mobile phones and cloud servers based
on annotations enforced in the code. More specifically MAUI maintains two copies
of the program code, one running on the server and the other on the phone. Upon
assessing the current situation in terms of energy consumption and networking, MAUI
decides where to execute each code snippet [37].

Code-In-The-Air (CITA) provides location-based actions, it detects the user’s
current location, then performs an action accordingly; some examples include chang-
ing the phone ringing mode when entering a meeting room or notifying the user
when a friend is close by. CITA has three main components: the Tasking framework,
which allows writing scripts, compiles them into server/mobile codes, and manages
task execution; the Activity Layer, which provides task abstraction through exten-
sible modules to recognize a number of activities, e.g., isWalking, isDriving, and
enterPlace, through old approaches, and then acts accordingly; Push communica-
tion, in which CITA claims high overhead in performing TCP sessions to inform the
mobile side code to execute. Hence, they maintain a DB of phone numbers, each
mapped to a service on the phone, and call the phone using one of the numbers. If
a CITA client detects a call from a pre-saved number, it rejects the call and initiates
the corresponding response [58]

18

2.5.3 MISSING ON THE EDGE

In this section, we presented a breadth of how the edge is currently used. However,
none of the previous approaches have been concerned with managing the edge to
execute applications. Most of the work has been concerned with supporting a specific
type of applications for a narrow purpose, e.g., power consumption. Also, addressing
is targeting devices regardless of the resources they carry, or what is their current
status? This leads to recruiting unsuitable candidates. Further, users decide whether
or not to accept an application, which imposes the latency of waiting for user’s
response. It is also worth mentioning that previous research has considered the edge
as a static networking entity close to the user, e.g., AP, which has eliminated a wide
spectrum of mobile devices with both a large resource set and technical readiness to
be part of the edge.

2.6 COMMERCIAL SOLUTIONS

Commercial solutions provide D2D communication between devices within a cer-
tain proximity. They offer open APIs for easily adoption in industrial products, some
of which are now in the market. In LAMEN, we adapt some of these solutions to
provide D2D interaction between the heterogeneous devices in our testbed.

2.6.1 ALLJOYN

AllJoyn is an open source software framework, makes it easy for devices and apps
to discover each other and to communicate with each other. Developers can write
applications for interoperability regardless of transport layer, or the manufacturer,
and without the need for Internet access. The software has been and will continue to
be openly available for developers to download, and it runs on popular platforms such
as Linux, Android, iOS, and Windows, including many other lightweight real-time
operating systems [101].

AllJoyn is supported by the AllSeen Alliance lead by Qualcomm [102]. The al-
liance has over 200 members including Microsoft, L.G., Phillips, Sony, and IBM.
In 2015, they introduced products that supports AllJoyn like the Panasonic Wire-
less Speaker [103] and LinkSys Routers [104], and others can be found on the al-
liance’s documentation [105]. These products are ready to support intercommunica-
tion through AllJoyn messages and could be programmed to exchange information

19

and execute services.

2.6.2 IOTIVITY

IoTivity, is the AllJoyn counterpart adopted by Intel, Cisco, and Samsung. Sim-
ilar to AllJoyn, IoTivity sends IP-multicast requests over LAN and receives unicast
responses. It follows the same concept as AllJoyn, but it has a simpler implementa-
tion. Nodes receiving the multicast requests decide whether to accept by sending a
unicast response to the source, or to reject by remaining silent [106].

2.7 BLUETOOTH FOR THE EDGE

Bluetooth operates in the 2.4GHz spectrum by splitting it into 79 channels, each
with 1MHz bandwidth. In a single connection, Bluetooth guides the communicating
parties, i.e., master and slave, to hop over the same channels each period of time in
a process called Frequency Hopping. This allows devices to exchange information on
a different channel each hopping time interval then move to the next and keep doing
it till they decide to end the connection [107]. Despite enhancement over different
versions, Bluetooth still carries four main limitations low transfer rate, high latency
device discovery, limited range, and interference [28]. The problem, for the research
community, with addressing such limitations, is that the firmware is locked on hard-
ware chips. In other words, manufacturers have exclusive access to the firmware they
develop for their chips. It is not expected that any manufacturer would either open
his firmware implementation or address problems beyond the limited scope of his
applications. We envision that the pre-requisite for addressing Bluetooth limitation
is having an open source Bluetooth stack.

The Bluetooth stack consists of two components: host and controller. There has
been some attempts made towards providing each of them alone. The Bluetooth
host operates in the kernel space to provide high level features that are not tied to
the Bluetooth core specifications. For example, it provides image profiles or device
profiles. The host communicates with lower layers through APIs and use their data
for high level features. Multiple implementations have been offered, each with limited
scope. For example, BlueZ introduced the Bluetooth standard to the Linux kernel
to interact with Bluetooth hardware chips [108], BlueDroid was adopted by Android
OS to implement mobile specific features for a group of hardware chips [109], and
BlueSoleil is a Windows-based application to enable interaction with other Bluetooth

20

devices [110]. These attempts were kernel-level implementations providing high level
features, none of which included firmware or addressed core Bluetooth limitations,
e.g., frequency hopping.

Bluetooth controllers, or firmware, are the main component missing towards an
open source Bluetooth stack. There are some available development kits, how-
ever, these remain either closed-source and/or very limited. For example, Texas
Instruments provide several Bluetooth development kits; such as PAN1323 [111] and
EZ430-RF256x [112], as well as the corresponding Bluetooth Software Development
Kit (SDK) such as EZ430-RF256x Bluetooth SDK GA [113]. Also, RetroPi is one of
the few available open source kernels [114]. It is specific to raspberry pi with limited
core Bluetooth features and support. However, the tools provided and the software
does not grant developers any flexibility or access to the lower layers of the Bluetooth
stack, such as the Bluetooth baseband layer.

Open source Bluetooth full stack is extremely scarce. To the best of our knowledge
Mynewt is the only solution to offer a full open source attempt for Bluetooth [115].
Mynewt is an operating system for IoT devices that offers a Bluetooth open source
stack with implementations for both host and controller. However, its master cannot
act as a central device to manage multiple connections and piconets. Also, Mynewt
is not compatible with BlueZ, since its implements its own host, which limits its
interaction with other devices.

21

CHAPTER 3

MOBILE EDGE COMPUTING ARCHITECTURE AND

COMPONENTS

3.1 SYSTEM OVERVIEW

In this chapter, we discuss LAMEN 1, an edge computing framework for orches-
trating edge devices and using their resources in executing an application [116, 117].
We define an application as a code routine ready to run on end devices, e.g., noise
level detection and health activity within a location. Each application requires a
group of resources to operate on, e.g., sensors and a CPU; thus LAMEN needs to
provide four main modules: resource lookup, resource orchestration, application de-
livery, and a rewards model. Resource lookup is used to discover and allocate the
resources required by the application. Resource Orchestration is used to synchronize
the performance of heterogeneous resources and present themselves to the applica-
tion as a virtually single homogeneous resource. Application Delivery is an efficient
way to deliver applications for end devices, as well as to monitor their performance,
and to return their results. Finally, a Reward Model is used to compensate resources
donors for their role. LAMEN locates and hires resources without revealing their
owner’s/device’s identity or continuously tracking their location, i.e., GPS. In short,
LAMEN prepares edge devices to host applications whose resource requirements ex-
ceeds what a single device could offer, in a way that is more efficient than going to
the cloud.

Unlike centralized solutions, e.g., Micro-Blog [69], LAMEN proposes a layered
architecture in which devices are clustered based on their proximity. Each cluster
has a head node, i.e., a mediator, acting as the cluster coordinator and the contact
to other layers. In LAMEN, we design mediators to keep track of devices and their
resources within a cluster, to organize them according to their resource similarity, and
then to recruit a group to execute incoming services. This design enables optimized

1A magical pendent to fulfill the wishes of its owner.

22

discovery for a group of resources, since they will be close to each other. Also, users
can keep their data locally for privacy concerns. Moreover, resource owners maintain
their identity anonymously at the mediator level, such that incoming services from
different clusters have no clue who executed them, and know only the mediator who
keeps the record to be used for incentives estimation.

3.2 DESIGN PRINCIPLES AND ASSUMPTIONS

The Edge is Dump

Despite the continuously increasing smartness of devices on the edge, they cannot
benefit from their coexistence. Smartphones and IoTs are designed for personal use,
although at a close proximity, e.g., university campus, the collective number and
the quality of resources could easily exceed the capability of backend servers. We
envision orchestrating the performance of these devices to result in high capabilities
at the edge without the overhead of maintaining data centers. Hence, in LAMEN,
we aim to change the nature of edge devices from being dump collaborators to being
an active piece of the larger puzzle.

The Edge is Ready

Despite any dumbness at the edge, individual devices are getting smarter day
by day. The previous few years have witnessed significant enhancements to serve
their owners. We envision that edge devices in the market are ready to host edge
computing if they are properly orchestrated. Hence, in all our upcoming design
choices, we favor practical options despite others that could be theoretically better.

Dynamic Environment

In edge computing networks, devices in the user’s custody are continuously on the
move. This is unlikely to maintain any constant network topology, e.g., neighbor con-
nections or APs, which contradict the goal of building a coalition of devices towards
a service execution. Therefore, LAMEN has to seamlessly handle user mobility and
guarantee resource availability throughout a service execution time.

23

Distributed Design

The dynamic nature at the edge does not fit centralized solutions, even though
centralized systems requires easier management, guarantees accurate results, and
generate quick responses. In such a dynamic environment replicas have to be main-
tained; this is not available on the edge. Thus, LAMEN should consider a distributed
solution to locate resources, and to handle their service storage, and execution.

Resource Encapsulation

In LAMEN, we target harvesting edge resources for service execution. However,
resources are not on their own rather, they are packaged on end devices, e.g., smart-
phones, laptops, or wearables. In this dissertation, we define a device2 as a container
of resources. Although our target is the resource, we will end up recruiting devices.
Hence, LAMEN will consider optimizing the resource/device relationship in both
recruitment and execution, according to the service requirements. In LAMEN, a
device can be recruited by more than one application each using a different resource,
while a resource, once recruited, is exclusive to a single application.

Maintain User’s Privacy

Users are not comfortable revealing their identity, it is psychologically linked to
compromising their privacy, either through location tracking or through resource us-
age patterns. Unless carefully handled, privacy concerns could discourage participa-
tion in LAMEN. This might seem to contradict maintaining a rating and history per
user either for estimating rewards or for selecting historically reliable nodes. Hence,
LAMEN ’s mediator is designed to balance the trade-off between a user’s anonymity
and history tracking.

3.3 LAMEN EDGE COMPUTING

3.4 LAMEN ’S LAYERED ARCHITECTURE

LAMEN, a three-tier architecture, consists of a cloud server, mediators and edge
devices as shown in Fig. 1. LAMEN users interact using a mobile app to authenti-
cate, to grant access to their device resources at their convenient time slots, and to

2We use the terms device, and node interchangeably

24

Cloud Server

Mediator

Proximal Cluster

Mediator

Proximal Cluster

FIG. 1: LAMEN ’s Edge Computing Architecture

25

issue resource requests.
Edge devices and proximal clusters. At the lowest layer are edge devices

that opt-in to LAMEN to share their computing and sensing resources. Each
LAMEN edge device may advertise local or non-IP connected resources. For ex-
ample, a smartphone may advertise a gyroscope either as an on-board sensor or as a
wearable sensor connected to it via Bluetooth. We say that devices sharing a certain
context and a degree of trust among them form a proximal cluster, wherein devices
communicate with each other either in a peer-to-peer fashion or via a gateway. For
example, devices in a retail store, a restaurant, or a home form proximal clusters.

LAMEN supports multiple flavors of proximal clusters. The simplest proximal
cluster can be a single wireless LAN in which devices communicate using wireless
AP(s), Wi-Fi Direct, or Bluetooth. This is common for IoT scenarios and is cur-
rently being standardized, by AllJoyn [101], for example. Further, LAMEN envisions
proximal clusters in which devices across multiple locations need to collaborate. For
example, video surveillance cameras over a larger area may collaborate to infer that
a theft is taking place, although such an inference may not be possible based on any
single video stream.

Mediators are proximal cluster managers that play a key role in orchestrating
cluster resources without the need for a cloud. Mediators have the following respon-
sibilities: (a) establish a communication channel to the cloud server as well as to
other mediators, (b) aggregate and expose the cluster resources to the cloud and to
other mediators while protecting the identities of edge devices and their owners, (c)
discover and register new devices and their resources in the cluster as well as detect
their departure, and (d) respond to requests for resources. A mediator is a logical
entity that can be physically hosted on any of the edge devices, e.g., laptop, AP,
WLAN controller, or smartphone. Although a mediator can sit in an AP, its area of
operation, i.e., cluster, spans beyond the AP limits. For example, in an enterprise,
e.g., mall, covered by multiple APs a single mediator brings together all resources
using an inter-AP communication, e.g., AllJoyn [101]. Further mediator-to-mediator
interactions offer a wider variety of resources for edge applications.

If a mediator device leaves the cluster, a decentralized consensus algorithm elects
a new mediator. Since the mediator election is expensive, the election algorithm
takes into account the expected mobility of a candidate mediator and elects a device
that has least expected mobility. Since such algorithms are well-known, this paper

26

does not provide details beyond using a k-leader election algorithm [118].
A cloud server is a repository for sensing and computing tasks (applications). It

deploys them on proximal clusters and acts as a communication channel between
proximal clusters. Also, it receives user requests for executing applications with
known resource requirements. During resource discovery, it probes mediators for
resources in their clusters. After resource discovery, it notifies the mediators to
reserve resources and to send them the application code for execution.

Users. LAMEN engages three kinds of users: (a) device owners, (b) applica-
tion users, and (c) application developers. Application developers submit resource
requests to the cloud service, allowing them to develop and deploy applications with-
out having direct access to the sensing and computing resources. The device owners
opt-in to LAMEN by registering their devices and by specifying expected incentives.
Smart contracts and Blockchain [119] can be readily applied for this purpose. Users
acquire the application from the cloud server.

Cloud server
Mediator

End Device

Discovery

Recruitment

Orchestrator

R
ew

ar
ds

R
eq

ue
st

Application Repository

R
eq

ue
st

D
ow

nl
oa

d
Si

de
lo

ad

R
es

ul
t

 D
ec

is
io

n

Se
ar

ch

K
ey

R
es

ul
t

 D
ec

is
io

n

FIG. 2: LAMEN System Design

27

3.4.1 LAMEN SYSTEM DESIGN

In LAMEN, the Cloud Server maintains a set of applications, while mediators
maintain information on available devices, select suitable ones per received service,
deliver services to be executed, aggregate results, and finally reward devices for shar-
ing. For that, LAMEN exempts Mediator from hosting applications in other words
clears it from any job except managing the proximity.

In the case of multiple geographically collocated mediators, over-the-cloud com-
munication between them might not be the best option. Hence, we propose the
construction of a hierarchy of mediators between the cloud server and the edge de-
vices to handle such situations. Each layer of mediators is managed in the same
way as a group of proximal clusters. Details of such scenarios will be presented in
Chapter 4.

3.4.2 APPLICATION HANDLING

Applications in LAMEN are code binaries ready for execution on the edge when-
ever LAMEN deploys them. Some examples include using a microphone to collect
surrounding noise levels, using cellular connectivity to support uncovered devices, or
even granting access to public pictures on devices for users who are looking for an in-
cident. For those users, an edge application is designed to utilize resources previously
offered by device owners. In LAMEN, any developer can prepare his application and
can make it open for public use, in return for a reward. Details of what the applica-
tion does are the developer’s responsibility. However, LAMEN makes sure that the
application can smoothly execute within an environment and that devices that can
fulfill its prerequisites without compromising the user’s security or privacy.

3.5 CLOUD SERVER

3.5.1 APPLICATION REPOSITORY

Cloud Server, the first LAMEN module shown in FIG. 2, facilitates communica-
tion between multiple proximal clusters, as shown in FIG.1. Also, it is an open layer
for developers to upload their applications, so LAMEN users to request. To post
an application in LAMEN, a developer has to register and upload his application in
Application Repository.

28

Similar to Google and Apple App Stores, we coin the term LAMEN Store
to describe the place that holds edge applications. Located over the cloud, the
LAMEN store requires a developer’s registration before posting their applications.
Then, LAMEN users can select an application to be executed at their preferred lo-
cation and time. The store carries the following features: it tracks service usage,
maintains user rating per service, recommends services to users, estimates the price
per service, and calculates the developer’s reward.

Edge applications run on multiple heterogeneous devices and generate results in
a different form. Therefore, each needs a different aggregation towards a unified
decision or information. This takes us back to the question: is it a quiet restaurant?
Thus, each developer has to include the corresponding aggregation service within his
application.

3.6 MEDIATOR

The Mediator, the second layer, consists of the following modules: Resource Dis-
covery, which locates a set of devices that hold the required resources; Recruitment,
which selects suitable ones out of the previous set based on the service requirements;
Orchestrator, which establishes communication between devices within a proximal
cluster, sends services to recruited devices, monitors their performance, receives re-
sults from devices, aggregates them, and, if needed, reports back final results to the
cloud; and Rewards, which receives resource utilization from the previous module,
and uses it to estimate a reward to be used within the proximal cluster.

3.6.1 RESOURCE DISCOVERY

LAMEN ’s initial step in executing applications on the edge is locating resource
requirements. Resources are scattered across multiple smart devices, e.g., smart-
phones, IoTs, or TVs. Thus, a resource discovery approach has to find devices that
hold the proper resource, and has to make sure that they are available at the re-
quested execution time. Moreover, resources of a kind have different QoS features.
For example, twp devices may have cameras, but each have different frame rate,
zoom level, resolution, etc. Hence, the LAMEN discovery approach has to provide a
device with the right resources and availability to execute a service. To carry such
discovery, first we must identify a procedure to compose a detailed resource request,
post it on devices in the target proximity, and identify available ones to be used in

29

the next module: Recruitment. The resource discovery process is discussed in detail
in Chapter 4

3.6.2 RECRUITMENT

Recruitment is extracting a subset of discovered devices to fulfill the request. In
this section, we present the fundamentals of the recruiter module. Once a group of
resources are discovered, the mediator should decide which nodes to appoint accord-
ing to the following features: Shortest Path, Expected Time Departure (ETD), and
History.

Shortest Path

Shortest path selects the minimum number of devices needed to fulfill the resource
request. For example, if the discovery request was looking for three camera, and
three accelerometers, and one GPS, the discovery path might came back with five
devices all with accelerometer, three with cameras, and three with GPS as follows: A:
Accelerometer, GPS; B: Accelerometer, Camera, GPS; C : Accelerometer, Camera; D:
Accelerometer, GPS; and E : Accelerometer, Camera. In this case the request could
be handled only through devices A, B, and E. In case of an explicit mention that
specific resources need to be on separate devices, the optimal allocation is replaced
by the user’s request.

Estimate Time Departure (ETD)

Every proximal cluster has to maintain track of its mobility pattern and estimates
the average time spent by a device within its range. LAMEN through the recruitment
module tracks that time and generates a continuously updated local average. Once
a device joins a proximal cluster, the time is recorded and when it leaves, the time
spent is calculated to update the local average. Therefore, when a group of devices
is discovered that contains at least one device that spent more than or equal the
local average it is discarded from the ongoing recruitment. Further, if the estimated
execution time will exceed the local average, the device will be exempted from the
current recruitment.

30

History

The tracking history is the cumulative ranking received per device upon execut-
ing a service. Seeking the best candidates, LAMEN maintains history of devices
in terms of latency, service completion, and accuracy. Latency measures the time
spent on execution, and studies whether the device usually performs other concur-
rent apps delaying the execution. Service Completion is the percentage of times that
the device has to quit after accepting a service. Finally, Accuracy describes the way
in which the returned result from a device is compared to peers in the proximal
cluster, and the percentage of generating outliers. According to the previous three
metrics, LAMEN generates a rank per device this rank is updated upon every service
completion and is used as a parameter in recruiting it for the upcoming service.

3.6.3 ORCHESTRATOR

Orchestrator is the point of contact between end devices, and serves as their me-
diator. It is responsible for passing services to devices, and for receiving their results,
as shown in FIG. 2. Moreover, it receives a request from proximal users, and deter-
mines whether it can be fulfilled within the current cluster using available services. If
not, the request and its service are forwarded to the corresponding mediator through
the cloud server. Then, the orchestrator can initiate discovery and can distribute
the service among the recruited candidates. To achieve those responsibilities Orches-
trator must provide three features: Proximal Services, Sideloading, and Aggregation
using a set of Control Messages.

Control Messages

Upon establishing a communication channel between devices, middleware uses
five types of messages to reach out to other layers: Request, which describes the to
receiving of service requests from end users and the passing of them to the cloud
server; Download, which describes bringing services from the cloud to the mediators;
Sideload, which describes the passing of services between end devices under a single
mediator; Result, which describes the collection of results from end devices and the
passing of them to decision blocks; and finally Decision, which describes the passing
of the information to the initial requesting device.

31

Proximal Applications

Proximal applications are used by mediators to specify the amount of applications
he can hold with their last usage timestamp, given that all LAMEN users are within
proximal clusters and that each of them can issue a request. When orchestrator
receives a request, it checks whether the mediator is within the area of operation,
whether the requested application is available within proximal list, and whether
the available resources can perform the service. Otherwise, cloud server downloads
the application to the right mediator. Once a new application is received it has to
be placed in the proximal application list. Least Recent Used (LRU) is used for
replacement in the case of a full list. Then, it is passed to the corresponding end
devices.

Google Drive DropBox Sideload
0.0

0.5

1.0

1.5

T
im

e(
se

c.
)

FIG. 3: Side Loading vs. Downloading from 2 different cloud providers 50 times each

Sideloader

Sideloading is downloading applications through local storage media, rather than
through servers over the cloud [120]. In LAMEN, we choose to perform sideloading
through the mediator, rather than to provide a URL for every device to download.

32

We envision that this will save the device’s bandwidth and network usage, and will
maintain privacy as we explained earlier, and as is shown in FIG.3.

Aggregator

Aggregators are used for the same reasons as the sideloader, but in the uplink.
Results received from recruited devices are used as an input to the corresponding
aggregator, which generates a single result to be passed to the cloud server. Finally,
the cloud sends to the service requesting user through his mediator.

3.6.4 REWARDS

Unless they are rewarded, users will be reluctant to using LAMEN. Hence, we pro-
pose the use of a cooperative approach to reach a mutual and fair agreement between
both the requesting user and the recruited devices. LAMEN cloud servers provide
mediators with rates per resource. Mediators monitor the performance, calculate the
resource usage per service, and distribute the reward over participating devices. So
far, we have kept it simple; however, we will consider a more adaptive approach in
our future work. For example, the rate for seizing an accelerometer available while
having 10 units should be different from having a single unit within a cluster. Also,
a user rated for good results should differ from others. Moreover, requesting users
should be enabled to bid or to limit their payments.

3.7 EDGE DEVICES

LAMEN targets the utilization of resources on edge devices at the user’s hold.
Users willing to be part of LAMEN have to register their devices and install a
container app. The app enables selecting resources to share, to select time sharing
preference if any, and optionally to specify a value per resource usage. Later, the
App works in the background to receive services and to set up their binaries to run,
as well as to remove them after task completion.

3.8 HOW LAMEN WORKS

LAMEN consists of a collection of applications available over the cloud for reg-
istered users to request as shown in FIG. 2. Let’s revisit the restaurant lookup

33

scenario as mentioned earlier in § 1.2. Users select the noise level application, iden-
tify the lookup region, and submit a request to the cloud server, which downloads
the application to mediators in Manhattan.

Mediators parses the request, and generate a search key for devices with a mi-
crophone, an accelerometer, and a CPU available for sharing. Then, it initiates
the device discovery module to match the search key with available devices, and
the corresponding devices are passed on to the recruitment module. Checking their
availability and features, a subset is selected and is passed to the service middle-
ware, which sends the service to the recruited devices for execution, i.e., side loading.
Each service operates on a device and retrieves the noise levels from the seated users
(because others might be just walking around the restaurant and would not provide
accurate readings). Results are averaged per mediator to express the proximity, and
sent back to the cloud. Upon sorting them, Bob and Alice receives feedback in the
form of list containing N restaurants, e.g., 5, sorted by their noise levels in Manhat-
tan to pick accordingly. Meanwhile, devices in the selected restaurant will receive
their compensation through coupons towards their orders.

3.9 MOBILITY MANAGEMENT

Since edge devices are mobile, it is common for them to move across proximal
clusters, e.g., a device owner might be leaving the home cluster to join the work
cluster. Mediators detect device departures using heartbeat and network timeout
techniques. Similarly, the device itself detects a loss of connection to a cluster and
starts discovering other clusters via standard service discovery protocols [121]. If a
device leaves the cluster while executing an application, the mediator assigns the
same application component to a different edge device. This transition may cause a
loss of data and computation that LAMEN handles in a variety of ways depending on
the application requirements. Mediator notifies the application of such events and the
application handles such losses. For example, the loss of an application component
processing a video stream requires no special handling given that the missed video
frames.

34

CHAPTER 4

KINAARA: DISTRIBUTED DISCOVERY AND

ALLOCATION OF MOBILE EDGE RESOURCES

4.1 OVERVIEW

Kinaara is a framework for discovering and allocating collective computing and
sensing resources for edge computing applications [122, 123]. Kinaara has three fun-
damental design principles. First, it uses a multi-tier architecture to geographically
organize proximal edge devices in clusters and provides their collective resources via
trusted mediator entities. Second, it uses a novel resource representation to name
and encode devices in terms of their user-advertised resources. Third, it uses a novel
distributed indexing scheme to organize devices in a proximal cluster based on their
resource similarity.

Kinaara possesses a variety of distinguishing features. First, Kinaara enables
scalable and fast discovery of collective edge resources without revealing the identities
of individual edge devices or exposing them to a public network.

Second, Kinaara enables a rich set of resource discovery primitives. Ki-
naara queries can identify multiple devices that satisfy a wide range of requirements
particular to edge applications, including exact, aggregate and range query matches,
multiple and heterogeneous resources and devices, and co-location constraints of re-
sources on devices.

Third, the Kinaara indexing scheme’s design, a ring logical structure, effectively
handles device mobility and changes in resource status by encoding multiple resources
and their features in a single key and by employing efficient basic ring operations
(join/leave/lookup) that incur minimum overhead.

Fourth, Kinaara empowers edge application developers to express application re-
source requirements that go beyond single device boundaries. For example, in a
video analytics application, the developer can express requirements such as the num-
ber of cameras and their resolutions for video acquisition and the collective CPU
and memory requirements (which may exceed a single device’s capabilities) required

35

for timely video processing. Kinaara also enables application users to specify ap-
plication context such as location and execution duration. Based on user-provided
context and application requirements, the Kinaara resource discovery and allocation
mechanism can automatically identify a set of matching devices and can allocate re-
sources for deploying the application components to these devices. During execution,
the mediators act as aggregation points that disseminate results from edge devices
to users.

We evaluate Kinaara using extensive simulations and mobility traces from a large
public Wi-Fi Internet dataset with 150K users and 345 Wi-Fi Access Points (APs).
The evaluations include Kinaara performance under different system parameters and
mobility dynamics, and comparison with alternative resource discovery approaches.
Our evaluation shows that Kinaara reduces discovery overhead by 70% and 40%
compared to Chord [93] and that it offers a centralized scheme, and that performance
degrades gracefully under high mobility.

4.2 BACKGROUND OF DISTRIBUTED DISCOVERY AND
ADDRESSING

The vision of Edge Computing has been initially articulated through
Cloudlets [49] and fog computing [55], which focus on the computing resources of the
edge network infrastructure instead of on mobile devices. Recent work has proposed
that using computation of clusters of mobile devices [124, 125]. Resource discovery
has not been the focus of the Edge Computing work. Most work has been focused
on problems such as migration [49], decreasing data communication overhead [36],
computation offloading [37], scheduling [124], or fault tolerance [125].

Grid Computing systems have addressed distributed resource discovery and typ-
ically employed P2P overlays [126]. P2P systems are designed mainly for file shar-
ing applications (also considered file discovery), which maps to resources in our
case [93, 96]. The key space of such approaches is typically generated with hash
functions and therefore devices are not grouped based on their resource similarity.
In addition, P2P discovery approaches target exact match queries and, as we will
show in the evaluation section, they are not efficient for searching collective and
heterogeneous resources.

Resource discovery has recently been addressed in the context of the Internet
of Things (IoT), which is a form of edge computing. Recent IoT standards, i.e.,

36

AllJoyn [101] and IoTivity [106], offer name-based discovery using IP multicasting,
where a device either advertises its presence or identifies others. These approaches do
not support a notion of single or collective resource discovery such as Kinaara, how-
ever, their open source is programmable. These approaches also operate under single
WLAN scenarios, and scaling them to larger networks is challenging. Moreover, they
require enhancements to execute low latency applications. The work in [127] pro-
posed a global resource registry that would provide open APIs for search and resource
matching. This is a centralized approach and has scalability issues. Furthermore, it
targets returning the addresses of individual devices instead of using a mediator that
exposes just their resources. This work offers a visionary approach without any evalu-
ation metric. A recent work proposed a hierarchical architecture in which distributed
gateways index devices connected to them and report them to the cloud [128]. This
approach reaches to the gateway in a distributed fashion, while the gateway indexes
the resources connected to it in a centralized manner. This approach introduces a
single point of failure. It also supports simple exact match queries based on resource
type and location and does not support complex queries for collective and heteroge-
neous device sensing and computation resources like Kinaara. DRAGON uses a tree
structures to index resources and support range queries [129], and aims at indexing
each resource separately to guarantee efficient tree search. Maintaining this large tree
is not robust, as to mobility, and it requires efficient aggregation between multiple
devices, which consume edge resources.

CrowdSensing is similar to Kinaara’s envisioned applications. It leverages the
sensing capabilities of edge devices for multiple applications. Examples include re-
ducing power consumption from redundant sensing [68] and I/O virtualization [70].
Discovery is either not addressed or is achieved through third party solutions, e.g.,
Amazon Mechanical Turk (AMK), which do not expose the resources per device [71].
Also, they require a human to be in the loop, which is different from than the appli-
cations envisioned by Kinaara, in which there are complex computation and sensing
applications with real time requirements running on the edge and there is collective
resource usage that may exceed the device boundaries.

In summary, although the above approaches were efficient in their domains, us-
ing them on Kinaara edge computing applications would result in communication
overhead and would raise security concerns about exposing devices to public net-
works. In this work, we introduce mediators to eliminate redundant communication

37

and to hide the identities of collaborating devices. In addition, previous work does
not efficiently support the scalable and efficient resource discovery of collective and
heterogeneous resources with dynamic values and device mobility.

Earlier in Chapter 2 we explained prior attempts for using the edge. More specif-
ically, we mentioned ways in which other systems using edge nodes have considered
the issue of discovering (e.g. Crowdsensing, Sensor Networks). However, in this sec-
tion we focus on Distributed Hash Tables (DHT) [130, 131], since they inspired our
resource discovery solution Kinaara.

Discovery	
Allocation	Representation	

Resource
Encoding	

Resource	
Indexing	

Resource
Request	

Resource
Lookup	

FIG. 4: Kinaara Phases of Resource Discovery

4.3 RESOURCE DISCOVERY

In the remainder of the paper, we will focus on resource discovery and its modules,
as shown in FIG. 4.

Kinaara discovers resources at the network’s edge based on their availability and
their readiness to execute an application. As shown in FIG. 4, the discovery process

38

has two phases: resource representation and resource allocation. Resource Represen-
tation (§ 4.4) names and indexes devices within a proximal cluster; Resource Allo-
cation (§ 4.5), analyzes resource requirements per incoming requests and discovers
devices matching these requirements.

Throughout both phases, Kinaara uses the following components: a key to rep-
resent resources and their attributes for each edge device; a Similarity Table wherein
each device holds pointers to other devices with similar resources; and a Similarity
Function used to identify how similar two or more keys are to each other, e.g., via
Hamming distance.

4.4 RESOURCE REPRESENTATION

Devices consist of a set of computing, memory, and sensing resources. Each is
characterized by a set of features. For example, (a) a camera resource has a frame
rate and resolution features, (b) an accelerometer resource has a sampling frequency
and accuracy features. A key challenge in representing such resources is the sheer
heterogeneity of the types of device resources and features. Another challenge is in
enabling scalable search for suitable resources across all proximal clusters. In this
section, we describe the novel techniques of resource encoding and resource indexing
that enable Kinaara.

4.4.1 RESOURCE ENCODING

Discovery Encoder (Dicoder), pronounced as "Die Coder", is the module respon-
sible for mapping resources on a device to a name, which will be called the key, from
now on.

The main novelty of the Kinaara resource encoding scheme is to enable each
mediator to encode a small subset of all the resource types and features. The cloud
service maintains a dictionary of all the resource types and features recognized by
Kinaara. The dictionary maps each resource type, feature types, and feature values to
a unique binary code, e.g., {camera→ 1011000110011111}. When a mediator opts-in
to Kinaara, the cloud service shares the current dictionary. Each mediator chooses
the maximum number of resource types it encodes, for scalability, and comes up with
its own local dictionary. For example, if a mediator chooses to support a maximum
of eight resource types, it allocates three bits for the mapping of first eight resources
it encounters in the proximal cluster. Thus, the domain of the local dictionary is

39

TABLE 1: Resource/Feature Encoding Guide in Kinaara

R
es
ou

rc
e

Fe
at
ur
e

N
am

e
V
al
ue

N
am

e
V
al
ue

C
am

er
a

00
1

Si
ze

4
bi
ts

to
ex
pr
es
s
m
in
.
of

14
co
m
m
on

pi
ct
ur
e
siz

es
[1
32
]

O
rie

nt
at
io
n

0
=

no
t
su
pp

or
te
d,

1
=

su
pp

or
te
d

Bi
t
pe

r
pi
xe
l

4b
its

fla
g,

w
ith

4m
eg
ap

ix
el
s
in
cr
em

en
t.

up
to

64
m
eg
ap

ix
el
s

Fr
am

e
ra
te

2
bi
ts
,w

ith
an

in
cr
em

en
t
of

10
fp
s
to

su
pp

or
t
up

to
40
fp
s

Fo
cu
s

0
=

no
t
su
pp

or
te
d,

1
=

su
pp

or
te
d

Fl
as
h

0
=

no
t
su
pp

or
te
d,

1
=

su
pp

or
te
d

Sn
ap

sh
ot

0=
Pi
c.
,1
=
V
id
eo

N
et
wo

rk
St
at
us

01
0

In
te
rfa

ce
00
=
Bl
ue
to
ot
h,

01
=
W

i-F
i,
11
=
C
el
lu
la
r,
10
=
W

i-F
iD

ire
ct

A
ud

io
[1
33
]

01
1

Fr
eq
ue
nc
y

2
bi
ts
,e

ac
h
in
cr
em

en
t
su
pp

or
ts

3
of

th
e
9
co
m
m
on

ra
te
s

C
ha

nn
el

3
bi
t
to

m
ap

th
e
6
ch
an

ne
ls

of
5.
1
so
un

d
sy
st
em

Sa
m
pl
in
g
R
at
e

2
bi
ts
,e

ac
h
in
cr
em

en
t
su
pp

or
ts

3
of

th
e
9
co
m
m
on

ra
te
s

G
PS

10
0

—
—

Se
ns
or

M
ag
ne
to
m
et
er

10
1

Fr
eq
ue
nc
y

2
bi
ts
,w

ith
an

in
cr
em

en
t
of

10
H
z
to

su
pp

or
t
up

to
40
H
z

A
cc
el
er
om

et
er

11
0

R
an

ge
2
bi
t,

ea
ch

in
cr
em

en
t
re
pr
es
en
ts

5r
ad

/s
ec

G
yr
os
co
pe

11
1

D
ire

ct
io
n

2b
its

to
ex
pr
es
s
th
e
3
ax

es

40

a much smaller subset of the global dictionary, which is dynamically constructed as
Kinaara discovers edge devices. For example, assume that the first resource witnessed
by the mediator is a camera, the local dictionary would be {camera → 000}. When
the mediator communicates its aggregated resources to a cloud service or to other
mediators, it maps the local codes to the global ones. In the case of expanding the
cluster-supported resources, the mediator informs all of the devices to modify their
keys by padding 0s to the MSB per resource. The padded 0s double the resource bits
to minimize any repetition of such low performance operation.

Similar to the resource encoding described above, each feature associated with
a resource type is also encoded via a dictionary mapping. For simplicity, without
loss of generality, we assume two feature types: binary and range. Binary features
indicate whether or not the corresponding feature is available on the resource, e.g.,
a camera flash. Range features discretize a domain of values to a small number of
categories wherein the domain itself can be discrete or continuous. For example, they
can discretize a range of camera resolution features into "high", "medium", or "low".

DiCoder(Resources) DiCoder(Features)

Device’s Key

FIG. 5: Kinaara Device Key

The codes for a resource and its associated features are combined into a chunk
via their concatenation in a pre-defined order. Similarly, chunks corresponding to all
resources offered by a device in the ascending order of resource codes are combined
to form a key in the format shown in Fig.5. Note that Kinaara does not require
the key to be unique, i.e., devices with identical resources will have identical keys.
For example, device A with key "0010111101111" consists of two resources camera
(code="001") and accelerometer (code="011") shown in bold. The camera supports
a resolution of 8 Mpixel images (code="0111") and frame-rate 10 fps (code="1"),
while the accelerometer reads with frequency 10 Hz (code="11"). Table 1 shows the
encoding function used by Kinaara.

Finally, resource similarity plays a major role in the indexing strategy, as de-
scribed later. Kinaara employs hamming distance between keys to estimate any
similarity in the resources offered by two devices. If the keys correspond to devices

41

with no common resources, their distance is deemed infinite.

4.4.2 RESOURCE INDEXING

Kinaara indexes resources in a distributed fashion in order to avoid maintain-
ing replicas for centralized indexing and to cope with the mediator’s mobility. In
this component, we explain how devices join and leave Kinaara using their keys.
Kinaara creates a link between resource-similar devices through a structure we call
"ring" to enable easy resource lookup. For example, a request for a camera from a
device whose camera is currently busy is forwarded to another device with a sim-
ilar camera instead of denying the request. In this work, similarity expresses how
close resource features are between devices and is measured by the sum of Hamming
distances between keys.

In Kinaara, resources are dynamic in Magnitude and in Availability. Magnitude
represents the number of resources that an edge device selects to share at any time.
Availability shows whether a resource is currently busy. Modifying the magnitude
requires a new key generation, which then joins the ring as a new device. Kinaara de-
tects availability during resource discovery. Our experiments have shown that repre-
senting the magnitude only in the key yields better performance. Kinaara’s indexes
cluster through a ring supporting device as they join and leave operations.

Kinaara’s Ring

Inside a proximal cluster, Kinaara sorts devices on a logical ring by their resource
similarity. In order to maintain the ring structure each device carries a direct link to
its successor and to its predecessor. Moreover, each device carries a data structure
called a Similarity Table, whose entries are the most resource similar devices on the
ring. This structure creates a link between similar resources on the ring enhancing the
lookup operation. To mitigate an oversized similarity table, mediators limit similarity
entries to logN of cluster devices.

During the initiation of the ring, Kinaara will have similarity gaps, in which non-
similar devices are placed next to each other on the ring. The reason is that initially,
devices with different resources may be joining the ring. Our assumption is that the
number of devices will be much larger than the number of distinct resources within
each device. After multiple devices join, the distance gaps between the devices will
be smoothed out as more devices with similar resources join.

42

1: Function deviceJoin (Node n, Key k, Node nearestNode){
2: IF (simFunction (n.key, k) <= 1)
3: appendNode(n,k)
4: else
5: IF(isEmpty(n.successor))
6: appendNode(nearestNode, k)
7: else
8: nearestNode = nearestNode.closer(n)
9: deviceJoin(n.successor, k, nearestNode)

10: end IF
11: end IF
12: end Function
13:
14: Function appendNode(Node n, Key k)
15: Node newN = new Node(k)
16: newN.successor = n.successor
17: newN.predecessor = n
18: n.successor = newN
19: (newN.successor).predecessor = newN
20: newN.similarityTable.add(“0000”)
21: Loop (count(newN.simTable) < length(k))
22: newN.simTable.add(newN.successor.simTable)
23: IF (count(newN.simTable) < length(k))
24: newN.simTable.add(newN.predecessor.simTable)
25: end IF
26: end Loop
27: announcePresence(newNode)
28: end Function
29:
30: Function announcePresence(Node n)
31: Loop i = 1:length(n.similarityTable)
32: Node p = n.similarityTable(i)
33: IF (simFunction(p.simEntriess, n.key) < simFunction (p.key, n.key))
34: p.similarityEntry.updateSimTable(n.key)
35: ELSE
36: p.updateSimilarityTable(n.key)
37: END IF
38: END LOOP
39: END Function

FIG. 6: Kinaara Device Join Algorithm

43

Device Join

An edge device joining the ring sends the mediator resources that it is offering,
along with time slots. The mediator generates a key and forwards the join request
to the closest device in its similarity table. This is repeated until it finds the closest
device, places the new device after, creates links to predecessor and successor, and
builds the similarity table.

Throughout its search for the right location on the ring, Kinaara maintains a
variable called "nearestNode", that is updated every hop between two edge devices if
the current device is more similar than the previous. When the similarity function
cannot find closer entries, it uses nearestNode as the new location. In case of duplicate
keys, it places them as successors and the lookup can fetch their resources.

FIG. 6 depicts the details of device joining algorithm. After Kinaara finds the
location for the new device on the ring (lines 2-9), it creates a two-way pointer
with successor and predecessor (lines 15-19). Then it builds its Similarity table, and
the first entry is always the mediator to maintain a direct link, i.e., "0000", (line
20). Then device’s spatial locality, in terms of resources, enables borrowing the
similarity table entries from the successor, in order to save the effort in having to
look through the entire cluster. Kinaara applies the Hamming distance similarity
check on the borrowed table entries, and the new device selects candidates for its
similarity entries by iterating between predecessors and successors repeatedly until
it fills its table entries (lines 21-26).

Moreover, the new device announces its presence to cluster devices (line 27) by
reaching out to its similarity entries and their entries and contacts eligible devices to
include the new devices in their tables (lines 33-37).

Device Leave

Detected by the successor and predecessor, once their direct link with the device
drops, they establish a link together to mend the broken ring using a knowledge
that every device keeps, i.e., successor of successor and predecessor of predecessor.
Since the device which left is still in other similarity tables, Kinaara removes these
links individually whenever any results in a communication failure. We chose this
approach, rather than broadcasting a device leaving the event, in order to eliminate
the overhead imposed by reaching out to the whole cluster.

44

Mediator
Level

0001

 Key
 Similarity Table

1100

0011 1011

1010

1110

0000
1011
1010
1010

0000
1011
1110
0011

Mediator
0000

0001
0011
1100
1111

1111

0111

FIG. 7: Kinaara Sample Ring

45

4.4.3 INDEXING SCENARIO

FIG. 7 shows a sample ring in Kinaara. For simplicity each device holds a single
resource represented by four bits chunk (resource and features), this can be extrap-
olated on the application’s need. When the new device "1010" joins, the mediator
searches his similarity table for the most similar device and forwards its control to its
similarity table, i.e., "0011", which has a closer device, i.e., "1011". Hence, the new
device request is forwarded to a new ring location and after checking its similarity
table and the two following hops, it finds its location prior to 1011. Therefore, the
new device is placed on the ring and readjusts pointers to "1110" and "1011" such
that it is the successor of the former and the predecessor of the latter. Meanwhile, it
points to "1110", and "1011" as its predecessor and successors respectively. Building
a four-entry similarity table, the mediator comes first and the rest is borrowed from
neighbors. Now, the ring is ready for resource requests.

4.4.4 MEDIATOR-TO-MEDIATOR INTERACTION

In an effort to incorporate the largest possible resources per application, Ki-
naara employs direct mediator interaction. This enables applications to fetch re-
sources from the surrounding mediators either because of resource shortage or to
expand the geographical area of operation.

Similar to devices in Kinaara, mediators follow the same procedures in establish-
ing a ring, except for the key generation and the similarity table. In a mediator
ring, Kinaara uses only available resources in the key generation excluding features.
Our experiments showed that mobility caused high feature variation compared to re-
sources, hence, they were ignored to generate a mediator key that would be less sus-
ceptible to changes. In the mediators ring, similarity tables holds two extra columns,
location and LRU. The location holds a geographical location (i.e., latitude, longi-
tude and elevation) that enables applications to expand their operations in specific
locations. The LRU field holds the latest time of calling the corresponding mediator.
Eliminating features from mediator keys generate higher redundancy; hence, LRU
ensures a fair distribution of resources on applications.

The mediator’s life cycle on the ring has three phases: join, modify, and leave.
After establishing the device ring, a mediator can generate its key and use it to join
in the mediators ring and create the corresponding similarity table. In the case of a

46

new resource showing up at a mediator, a new key is the generated and another round
of mediator advertisement takes place to modify the previous key. When a mediator
leaves its cluster, we follow the same lazy approach as the devices to discover the
failure through failed communication (§ 4.4.2). Then, a new mediator is elected and
joins the mediators ring.

4.5 RESOURCE ALLOCATION

On an established ring, Kinaara is ready to receive resource requests. To initiate
resource allocation, Kinaara goes through two steps resource request, and lookup. On
mediators, the former generates a request out of the application’s required resources,
while the latter performs the resource lookup.

TABLE 2: Search Query Prefix
Feature Value
Count 4 bits, 4 devices per increment
Priority 1 bits showing optional or mandatory
Diversity 1 bit, "1" = resources on a single device

4.5.1 RESOURCE REQUEST

Mediators intercept incoming requests to create a resource query for discovery.
The request is an application that includes a manifest file with detailed resource and
feature requirements, like an android app’s structure, which Kinaara uses to generate
a search query with the same format as keys (§4.4.1), except for a prefix. Table 3
shows features of the prefix: Count, required amount per resource; Priority, whether
the resource is mandatory or optional; and Diversity, which says whether resources
must be discovered on the same device.

Range Queries target a range of features per resource. Kinaara codes its fea-
tures in small ranges; if the query range is wider than the feature ranges, it is split
among them, generating multiple requests corresponding to the main request’s fea-
ture ranges.

47

<xml> 1	
 <dscript> 2	
 <user>WillSmith</user> 3	
 <lifetime>18:00 7/15/16</lifetime> 4	
 <location>36.886, -76.304021</location> 5	
 <range>5mile</range> 6	
 <distribution>uniform</distribution> 7	
 <count>150</count> 8	
 <resource> 9	
 <name>Accelerometer</name> 10	
 <complimentary> 11	
 <freq>20</freq> 12	
 <direction>gravity</direction> 13	
 </complimentary> 14	
 </resource> 15	
 <resource> 16	
 <name>GPS</name> 17	
 </resource> 18	
 <resource> 19	
 <name>Camera</name> 20	
 <priority>optional</priority> 21	
 <count>50</count> 22	
 <complimentary> 23	
 <resolution>10M</resolution> 24	
 <framerate>30</framerate> 25	
 <flash>1</flash> 26	
 <c_1>facedetection</c_1> 27	
 </complimentary> 28	
 </resource> 29	
 <resource> 30	
 <name>Audio</name> 31	
 <complimentary> 32	
 <channel>mono signal</channel> 33	
 <sample_rate>44100Hz</ sample_rate > 34	
 </complimentary> 35	
 </resource> 36	
 <aggregation> 37	
 <r>GPS</r> 38	
 <r>Accelerometer</r> 39	
 <count>40</count> 40	
 <distribution>NW</distribution> 41	
 </aggregation> 42	
 <aggregation> 43	
 <r>Audio</r> 44	
 <r>Accelerometer</r> 45	
 <count>50</count> 46	
 <distribution>uniform</distribution> 47	
 </aggregation> 48	
 <memo> capture faces as possible</memo> 49	
</dscript > 50	
</xml> 51	

FIG. 8: DiScript Sample

48

Request Language

Discovery Script (DiScript) pronounced as "dee script", an XML-based language
to express the need for a set of resources, and all pf the details around their features1.
It has three parts: DiScript Initialization, Resource Specifications, and Resource
Aggregation as shown in Fig 8.

DiScript Initialization is the set of attributes that define the request (i.e. user,
lifetime, operation range, count, and resource distribution). User, holds Kinaara’s
ID for the user in creating the script. Lifetime, holds the expiry date of the discovery
process. The start date is not included as a parameter, since we assume that sending
the script is the kickoff date. Although, the script can be composed any time, but
once it is dispatched, it will be in action. The dynamic nature of the edge networks
would impose the needles overhead keeping a script on mobile nodes if dispatched
before its designated execution time. Location is the GPS location of the origin
where discovery should be performed. Then, range and distribution to declare an
area of operation in miles starting from the origin, and the distribution of devices to
discover in this region, respectively. For example, we can request to locate samples
from the North West area from origin as shown in Fig 8 line 4. Count, mentions the
required number of each upcoming resource unless overridden in the resource tag.
Finally, memo (line 49), is a message sent to device owners, in case a verbal message
is required.

Resource Specification, is the core part delivered by DiScripts, which details
the required resources with their features. Each script should hold at least one
resource, otherwise it is discarded. Each resource has two types of features: Basic,
which includes common features by any resource type (i.e. name, count, priority,
and distribution); and Complimentary, which are resource-specific features (e.g. only
camera has frame rate feature). Basic features, are included in every resource. It
consists of name, count of the units to look for, and priority, which states if the
resource in question is mandatory to find or is optional, and the distribution, if a
specific sensor has to override the selected option in initialization. Complementary
features are resource-specific features which differ from one resource to another. For
example: Camera (Video, Pictures), has encoding bit rate, orientation, size, frame
rate, focus area, focus mode, face detection, snapshot, flash mode, light exposure;
Sensors have type (e.g. accelerometer), frequency, accuracy, range, delay, direction

1In the future, we will provide a user friendly GUI to generate DiScripts

49

(3-axis sensors) or all three axes; Audio has bit rate, channels, and sampling rate;
Network Status, which has interface to monitor (e.g. Wi-Fi, Cellular, or Bluetooth),
and bandwidth; and GPS reporting frequency, and provider [134].

The Resource Aggregation tag is used to inform the mediator about what
resources are required to be collocated one a single device. Later in this section, we
will explain how this will reflect on the actual device lookup process.

Fig 8 shows a sample DiScript used to recruit 150 resources of four types to
monitor an earthquake in action. It starts by initializing the DiScript (lines 3-8,
and 49). Then, it request four resources: Accelerometer (lines 9-15), GPS (lines
16-18), Camera (lines 19-29), and Audio (lines 30-36) respectively. Within each of
theses, a different complementary configuration applies. For example, the camera is
required to provide a minimum of 10Mb resolution, 30fps, have its flash working, and
face detection capabilities. Finally, two aggregation features (lines 37-42 and 43-48)
specify subsets of the request which are needed on one device.

TABLE 3: Search Key Prefix

Feature Value
Count 4 bits, 4 devices per increment
Priority 2 bits dividing task to four levels

Distribution 4 bits each representing a direction
(N, S, E, W), with 0000 as uniform

Device 1 bit, "1" means resources on a 1 device

4.5.2 RESOURCE LOOKUP

Fig. 9 depicts Kinaara’s resource lookup algorithm. The mediators initiate lookup
comparing chunks from the search query against its similarity entries. Then, they
hop to the most resource similar device (line 3). On each hop, Kinaara checks
the resource availability and searches the similarity entries for similar devices to
visit (lines 4-7). Available resources are held for a Holding Period, waiting for an
application to execute; otherwise they are free for other resource requests.

In the case of finding all or a subset of the request on a device, the following
operations are preformed: first, the resources found by the request are removed by
eliminating their portion of the search query; and second, the selected resources are
temporarily marked as on-hold until the mediator decides on whether to recruit or
not. During the holding time, these resources are viewed as busy by other resource

50

 1: function lookup(Node n, SearchKey s, Path p)
 2: loop r = s.resources [1 to m]
 3: if (n.checkAvailability(r))
 4: s.remove(r)
 5: n.remove(r)
 6: p.add(n,r)
 7: r.hold(t)
 8: end if
 9: end loop
10: if (not empty (s.resouces))
11: lookup (n.successor, s, p)
12: else
13: return p
14: end if
15: end lookup

FIG. 9: Kinaara Lookup Algorithm

requests. If these resources are not utilized by the mediator, they become available
after a holding period timeout. Finally, this procedure is repeated with the upcoming
similarities until forming a path of devices is formed to fulfill the resource request
(lines 2-9). The lookup algorithm has two outputs: Path Length, the number of de-
vices visited to match the resource request; and Discovered Devices, whose resources
are on-hold waiting for recruitment.

In designing the lookup operation, we had to consider two aspects, the similarity
function and lookup style. Similarity function compares search strings with device
keys as shown in the lookup algorithm Fig. 9, where we compared multiple token
comparison algorithms and chose the Hamming distance for consistency and low
latency. Lookup style defines how to select the next hop between proximal cluster
devices. It can be either looking through the current node’s similarity entries one by
one or the closest entry in each visited node until the path is established. The former

51

is a Breadth First Search (BFS), while the latter is Depth First Search (DFS). As
the similarity between devices and the number of hops are inversely proportional,
Kinaara favors the BFS approach, since it utilizes the spatial locality created on the
similarity table.

4.5.3 MEDIATOR ALLOCATION

In case an application needs to borrow resources from other mediators, the cur-
rent mediator searches its mediator similarity table for the corresponding resources
and selects a target. The target mediator receives a request similar cloud server’s
resource request, except that the source is another mediator. Mediators comply with
such requests, as explained earlier, and report their resources back to the request-
ing mediator. The requesting mediator appends the returned results to the list of
Discovered Devices to be used by the edge application.

4.6 IMPLEMENTATION AND EVALUATION

In this section, we evaluate Kinaara through simulation, using two kinds of exper-
iments:first, we evaluate Kinaara against similar approaches and validate its design
choices (e.g. similarity function, lookup techniques); second, we focus on Kinaara’s
performance under various conditions including varying the percentage of available
network resources, changing the number of service requests received per minute, im-
pact of real mobility scenarios, testing Kinaara under intensive mobility patterns,
and monitoring the impact of holding a resource on the following service requests.

In our experiments we used the following set of parameters: Network Size, the to-
tal number of devices in the network; Path Length, the total number of devices visited
till fulfilling a service request; Discovered devices, a subset of Path Length sufficient
to fulfill the service request; Request Success, the number of discovered resources as a
percentage of the requested ones; Request Rate(RR), the number of received service
requests per minute; Holding Time, the period used to label a resource unavailable to
other service requests; and Mobility Rate, the percentage of available resource joining
or leaving the experiment.

Throughout our experiments, we simulated devices carrying four resources each,
given that we support 16 types of resources. Also, our simulated service requests ask
for 2% of the network resources per request. Note that all results presented are the
average of 100 operations, each simulating one day (1440minutes) in length. Our key

52

findings include:

• Kinaara is as efficient as Chord in discovery with 70% shorter path length.

• Kinaara’s distributed design results in ≈50% smaller path length, compared to
the Centralized scheme.

• The impact of resource scarceness decreases as the network size increases.

• An increased Request Rate (RR) per minute can significantly affect the Request
Success.

• Mobility affects discovering the first resource holding device, and then the sim-
ilarity table smoothly finds others.

4.6.1 SIMULATION PLATFORM

Kinaara Simulator

The Kinaara simulator is a Java-based simulator consisting of ≈2500 lines of
code with no external dependencies to carry all the features explained earlier in the
text. The implementation was designed in a modular way (27 classes) for future
extensions. We executed our simulator on two machines: First, i7 2.6GHz quad core,
with 4GB RAM running Ubuntu 14.04; second, an i7 2.2GHz quad core, with 8GB
RAM running OSX 10.9.

Dataset

We used WiFiDog, an extensive 6-year dataset of user mobility traces from public
Wi-Fi Access Points (APs) [135]. It contains 2,177,835 records of data with 149,861
users moving between 345 Wi-Fi APs. An average of 5732 users visited each AP,
each spending an average of 78min/AP. Also, on the average, each user visited 14
different APs. In our simulations, we assume the WiFiDog users are Kinaara edge
devices and the mediators are deployed at the Wi-Fi APs.

Reference Approaches

IWe compared Kinaara to two alternative approaches Centralized and Chord [93].
In Centralized, mediators maintain a dataset of all of the edge devices in a cluster,

53

(a) Similarity Ratio

Hamming Dice DL Jaccard JW

1

10

100

1000

10000

1e+05

1e+06

(b) Throughput (ops/sec)

FIG. 10: Comparing 5 Similarity Functions to identify the one suitable for Kinaara

54

on a single table, without using the ring structure. Mediator can lookup his dataset
to locate devices, but must query them sequentially for availability. Assuming that
mediators up-to-date knowledge of resource availability would fit the purpose of dis-
covery, but would be impractical in predicting the application’s execution time. This
is required to determine the resource availability for hosting edge applications. Chord,
a P2P approach to locating files over a large number of nodes, and allow a node to
look up a query through hopping to one of its known nodes, with no knowledge of
inter-node similarity. Since Chord has a similar strategy to Kinaara, we compared
them to evaluate the similarity table and the resource based keying design.

4.6.2 Kinaara CLUSTERS IN WI-FIDOG

To understand the need for Kinaara, we analyzed the Wi-FiDog dataset, for real-
time device coexistence. In Kinaara, resources are related to the number of available
devices; hence, we needed to explore the device availability. Wi-FiDog users spend
an average of 78min/AP; hence, we split the dataset to time intervals nearly half
this time, i.e., 40mins, and studied those carefully. Our findings showed ≈12K time
intervals, Kinaara’s ring holds at least 1000 distinct devices (8000 resources) from
collocated APs, either through single or multiple mediator scenarios. This means that
for those time intervals, the Kinaara ring would experience join and leave operations
but at least 1000 devices stayed for the whole period. Investigating the APs in the
corresponding intervals, we collected those resources from as low as 9APs, which is
a low number in enterprise networks, e.g., a mall. Results from such real traces as
Wi-FiDog shows the feasibility and the need for a distributed approach to managing
those resources.

4.6.3 SIMILARITY FUNCTION

We examined five token based similarity functions: Hamming Distance [136],
Dice’s Coefficient [137], Damerau-Levenshtein (DL) [138], Jaccard [138], and Jaro-
Winkler [138].

In this experiment, we started with two identical 128-bit strings. We had 128
iterations to alter one of them, each flipping one random bit that had not been
previously flipped. At the end of each iteration, we compared the two strings using
the functions mentioned above. FIG. 10a depicts the string comparison at each
iteration. Although Hamming distance and Jaccard were consistent with the key

55

FIG. 11: Centralized Vs. Kinaara Resource Discovery

changes, we chose Hamming distance for its throughput superiority as shown in
FIG. 10b.

4.6.4 CENTRALIZED VS. DISTRIBUTED RESOURCE DISCOVERY

In this experiment, we compared Kinaara to the Centralized approach explained
earlier. Centralized places all of the logic on the mediator without using rings or
similarity tables. When receiving a resource request, the mediator shortlists devices
with the required resources and contacts them one by one to check their resource
availability. In this experiment, we mimic real-life scenarios, in which the mediator
has no control over the application execution; hence, it has no way to predict if a
resource is busy or has finished executing its application. In this experiment, we
modeled a busy resource as the summation of two parameters: (a) a holding time of
2 minutes and (b) an app execution time, a random period between 1-10mins.

FIG. 11 shows that Kinaara visited fewer number of devices, as Centralized has
higher failure rate from visiting devices with busy resource. FIG. 11 shows that
Kinaara visited fewer devices, e.g., 40% in 2K resource cluster, with 90% request
success.

56

10 50 100 500 1000 5000 10000

0.0

0.5

1.0

1.5

2.0

2.5

Number of nodes

La
te

nc
y(

se
c.

)

● ● ● ● ● ● ● ●
●

●

●

●

●

ZHT
PALANTIR

(a) New Devices Joining

10 50 100 500 1000 5000 10000

0.0

0.5

1.0

1.5

2.0

2.5

Number of nodes

La
te

nc
y(

se
c.

)
● ● ● ● ● ● ●

●
●

●

●

●

●

ZHT
Palantir

(b) Resource Lookup

10 50 100 500 1000 5000 10000

0.0

0.5

1.0

1.5

Number of nodes

La
te

nc
y(

se
c.

)

● ● ● ● ● ● ● ● ● ● ● ●

●

ZHT
Palantir

(c) Remove Devices

FIG. 12: Basic Operations: Kinaara vs. ZHT [1]

57

(a) Path Length

(b) Discovered Devices

FIG. 13: Kinaara’s selective lookup vs. Chord

58

4.6.5 BASIC OPERATIONS

In this section, we evaluate three basic operations any discovery approach has to
handle: add node, remover node, lookup. Unlike Chord, which has no latency eval-
uation, Kinaara is designed to fulfill low latency requirements. Thus, we compare
Kinaara to ZHT, which is known for its low latency (i.e. 1.1ms basic operations).
However, running ZHT on our machines instead of the IBM Blue Gene 32k-core
showed a performance degradation of ≈200X. Also, ZHT generated a large number
of threads (proportional to the network size), that prevented our evaluation from
exceeding the 8K node network on our machines, and probably degraded the perfor-
mance.

FIG. 12 shows how our basic operations outperformed ZHT. FIG. 12a and
FIG. 12b, show almost the same latency for Join, and for lookup operations, re-
spectively. However, our remove in FIG. 12c shows almost a constant value to delete
the node from the ring, leaving its appearance in other similarity tables to be fixed
upon discovery.

4.6.6 EFFICIENT PATH LENGTH

In this experiment, we investigate the number of device hops needed to fulfill
a search query. We compare Kinaara to Chord’s open source code [93] with both
subject to the same input. Kinaara selects its next device to look for resources
through resource similarity comparison with the search query, while Chord hops
sequentially between devices until it finds its target. Using randomly generated
queries, we performed this experiment on a 1K device cluster (8000 resources, a
practical number from § 4.6.2).

FIG. 13b shows that Chord and Kinaara to discovered almost the same number
of devices. Kinaara, however, visited fewer devices, which resulted in a customized
resource lookup that could reach 70% fewer device visits as shown in FIG. 13a.
This experiment shows that the similarity table significantly decreases the number
of device hops per search query.

4.6.7 CLUSTER ALLOCATION

In this experiment, we measured the impact of a congested cluster over Kinaara.
This occurs when resources are either scarce or are pre-allocated to other applications.

59

FIG. 14: Cluster Allocation, impact of in-
creasing resource usage ratio on discovery

FIG. 15: Path Length under different
Cluster Allocations on a 2k resource clus-
ter.

In this experiment, we used variable cluster sizes, each was subject to an assumption
that a portion of its resources was pre-allocated.

FIG. 14 showed an increase in the path length to fulfill the same search query as
the initial assumption of decreased available resources. We monitored a decreasing
rate of the path length increase as shown in FIG. 15, while achieving the same request
success. This shows another benefit of using a key that conveys available resources
and a similarity table that rectifies the scope of lookup to the most similar peer, not
to just any peer.

4.6.8 RESOURCE REQUEST RATE (RR)

In this experiment, we monitored the impact of multiple Request Rates (RR) on
path length and request success.

FIG. 16a shows the path length to increase as the request rate increases, however,
the spaces between the curves decrease implying a controlled path length increase.
The path length behavior came along with a decrease request success due to discovery
failure under intensive requests as shown in FIG. 16b. Increasing the request rate
holds a large number of resources, for example request rate=10 on a 2000 resource
network resulting in 400 resource request per minute, which leads to requesting the
whole network’s resources in 20 minutes. Therefore a mediator has to control the Ki-
naara request rate while considering the number of resources available in the cluster.

60

(a) Path Length (b) Request Success

FIG. 16: Impact of Request Rate (RR) on resource discovery

Also, it has to report to the cloud server that a proximal cluster is receiving many
requests asking to target other clusters.

4.6.9 MOBILITY RATE

In this experiment, we measured the impact of variable mobility patterns on
Kinaara. A mobility pattern involves various devices joining and leaving the cluster
that does not belong to the WiFiDog dataset. This means that within each time
interval, i.e., 1 minute, a percentage of the cluster devices move in or out. This
scenario shows the impact on discovery by Kinaara’s device leave strategy (§ 4.4.2)
that does not remove entries in similarity tables for devices that left the cluster.

We investigated multiple mobility patterns, i.e., 10-80%, and all had similar im-
pact on Kinaara. FIG. 17 depicts the zero and 20% patterns. We witnessed low
impact on clusters having up to 3000 resources, while path length increased between
20-45% in larger clusters. Hence, mediators should consider mobility prior to ex-
panding the cluster size from neighboring APs.

4.7 CONCLUSION

In this work, we presented Kinaara, a distributed resource discovery solution
for mobile edge networks. First, we proposed the concept of keys encoding the
resources of each device and designed and implemented the Resource Encoder that

61

FIG. 17: Mobility Rate and its impact on discovery.

maps resources to keys. Second, we used keys to sort devices on a logical ring
structure, each with a data structure, i.e., similarity table, pointing to devices with
similar keys, i.e., resources. Third, we leveraged previous modules for an optimized
resource lookup. Finally, we evaluated Kinaara against other approaches and under
stress testing conditions. Our evaluation showed that Kinaara efficiently discovered
resources per incoming request, showing Kinaara to be 70% better than Chord and
40% than Centralized. In terms of mobility, Kinaara had low overhead at high
mobility rates in clusters up to 3K resource compared to stationary modes.

On the other hand, our results showed some lessons to be learned. First, they
showed the need for a smart load balancing system at the cloud to avoid overwhelming
a specific mediator with a high request rates, more than the cluster can accommodate,
which degrades the request success rate. Second, we learned, from the mobility
experiments, is the limit that Kinaara could scale to, i.e. 3000 resources per cluster.
While creating proximal clusters and sharing resources between mediators, we need
to keep the resources within a cluster below the threshold that would lead to a
degraded performance.

62

CHAPTER 5

BOSS: BLUETOOTH OPEN SOURCE STACK TO

FACILITATE EDGE COMMUNICATION

The dynamic nature of Mobile Edge devices requires a flexible communication
strategy. Bluetooth showed up as a prominent candidate for communication; how-
ever, it has some limitations in terms of communication latency, data rate, and inter-
ference [28]. All of these limitations are not addressable, so far, due to the absence
of an open source firmware, as explained earlier in Chapter 2. In this dissertation,
we propose BOSS : a Bluetooth Open Source Stack to tailor Bluetooth for edge com-
munication and grant researchers access to low level Bluetooth layers [139]. Unlike
other IEEE standards, e.g., Wi-Fi, Bluetooth is always considered a black box to be
used as is without the ability to customize its module. This negates the dynamic
nature that edge systems should have. We designed BOSS to adhere with Blue-
tooth v4.0 core specifications in order to provide the community with a reliable open
source version. In this dissertation, we present the challenges to realizing the unique
Bluetooth features, and ways to address them, in addition to a full implementation
of Bluetooth core specifications detailed in the IEEE standard [107].

5.1 OVERVIEW

Communication is a major concern in any system; however, there is a wide belief
in the research community that Bluetooth v4.0 is the best candidate to host edge
communication. Not only because of the low power consumption of Bluetooth v4.0,
but because its efficient design fulfills the needs for mobile edge in terms of peer
discovery, establishing a connection, and device-to-device data exchange. Moreover,
nowadays all wearables are fabricated with Bluetooth support.

Unlike other communication protocols, e.g., Wi-Fi and Zigbee, Bluetooth has no
open source firmware. During the last decade, there has been a the huge community
contribution in implementing, and testing the Wi-Fi protocol lower layers, some
of which made its way to the IEEE standard (e.g., MIMO). On the other hand,
researchers tend to use Zigbee for one-to-one applications despite its requirement for

63

FIG. 18: Communication Stack Openness in IEEE 802.11 (Wi-Fi) vs Bluetooth

an extra hardware, because of its open source structure. FIG. 18 shows the how the
communication layers are distributed, both in Wi-Fi and in Bluetooth. Unlike in Wi-
Fi, in Bluetooth, all of the firmware design and implementation is enclosed on a chip
controlled by the manufactures, who are less likely to either expose their design or
address issues beyond their scope. The goal of this work is to decouple the Bluetooth
firmware from hardware chip to customize Bluetooth for edge communication for
grant researchers’ control over these layers.

In this dissertation, we present BOSS, a Bluetooth Open Source Stack to grant
access to lower layer Bluetooth core specification. Bluetooth’s lower layer has differ-
ent baseband capabilities compared to other communication protocols, e.g., inquiry
and frequency hopping. These features are enclosed in the firmware provided by each
manufacturer. BOSS, following the Bluetooth v4.0 standard, provides an open source
implementation of Bluetooth features. For example, the Bluetooth inquiry process
starts with a master device sending requests to locate peers over the 79 channels of
the 2.4GHz spectrum one by one. Bluetooth sends an inquiry request on the current
channels and waits 625µsec for a response from another device. Upon receiving a re-
sponse both devices synchronize their frequency hopping pattern. If none is received
throughout the waiting period the master hops to the next channel until it covers
the whole spectrum in one inquiry cycle. The hopping pattern, is assigned by the

64

frequency hopping algorithm with parameters from both master and slave. Upon
completing the device discovery process a master and a slave associated together and
starts their data communication. BOSS provides an open source implementation to
this process and to others.

BOSS is hosted on Ubertooth One hardware: an open source 2.4GHz wireless de-
velopment platform [140]. Ubertooth is a cheap hardware with assembly instructions
that from scratch is available online. Ubertooth is designed to perform passive packet
sniffing tasks for spectrum monitoring. However, its hardware is capable of trans-
mitting and channel hopping, in order to support the Bluetooth hardware standard
pre-requisites.

BOSS, upon public exposure, can be used by research communities. The rise of
edge computing can benefit from BOSS in creating a communication strategy cus-
tomized for each application. Moreover, researchers trying to resolve the interference
resulting from the co-existence of Wi-Fi and Bluetooth on the same device will find
a practical solution, other than simulation-based approaches.

The focus of BOSS is to provide an open source Bluetooth stack for researchers
following the Bluetooth standard design details. BOSS has the following contribu-
tions. It offers:

1. A pioneering attempt to provide an open source repository for Bluetooth core
specifications.

2. A detailed design of the Bluetooth stack modules.

3. Hardware-level implementation and evaluation for Bluetooth device discovery
and packet transmission.

5.2 BOSS IN ACTION

In this section, we provide sample use cases for BOSS that are not in any way
inclusive.

Wearable Communication

Wearable communication has a significant presence on the edge. Wearable devices
are used to collect data and send it to a host device for processing. If more than
one device is used every device performs its communication task to the host, which

65

collects all of the data and performs its own processing. This includes plenty of
control message exchange to establish communication between each single device and
the host. Moreover, there is the Bluetooth limitation in communicating with a single
device at a time. This not only leads to a queue of devices waiting to communicate
with a host, but to a delayed processing until all of the data is collected [141].

Multi-hop Communication

Bluetooth is originally designed for peer-to-peer communication. However, with
the release of v4.0 along with IoT evolution, Bluetooth can support multi-hop rout-
ing in a multi-node edge network to handle a huge number of devices. The IoT
mesh network requires the development of scalable, reliable, and efficient cross layer
protocols for Bluetooth networking layers. Open source Bluetooth stack is needed to
enable prototype development and to encourage researchers to work on this domain.

5.2.1 CUSTOMIZABLE DEVICE DISCOVERY

Bluetooth device discovery with its frequency hopping mechanism has always been
a delaying component in Bluetooth v2.0 communication. The release of Bluetooth
v4.0 with BLE features has modified the discovery component to hop over only three
channels (i.e., advertising channels), instead of 79. This has decreased the inquiry
delay time from 10ms to 3ms. However, this came on the data rate to also decrease
to ≈200kbps instead of 1-3Mbps. In addition, the communication range was almost
halved to ≈50m [142].

Despite the enhancements of Bluetooth v4.0, many applications finds it not suit-
able. For example, vehicular applications due to their high mobility nature require
an extended communication rate and range. For example, Bluetooth is used to esti-
mate vehicles’ speed and road congestion by collecting data from Bluetooth devices
on board of vehicles crossing a specific location [143, 144]. Bluetooth v2.0 are likely
to spot them for ≈35sec, while v4.0 devices will only spot it for ≈10sec. In this
short a time devices needs to collect multiple responses from Bluetooth devices on
vehicles. In such a scenario, the need for a mixed features from Bluetooth v2.0 and
v4.0 shows the need for an open source Bluetooth stack.

BOSS shows itself to be a perfect candidate to tune Bluetooth to application
specific needs. This feature is not currently available due to the absence of an open
source Bluetooth stack, which limits the spectrum of edge applications.

66

5.2.2 BLUETOOTH TESTBED

The wide availability of 802.11 testbeds (e.g. USRP [145] and WARP [146]) have
opened research directions and innovations. On the other hand, Bluetooth with its
community acceptance still lacks the openness of 802.11. The presence of a testbed
will motivate researchers to modify and address deficiencies within the Bluetooth
standard.

Hardware co-existence of Wi-Fi and Bluetooth chipsets is in almost all mobile
devices. However, it still causes signal interference that degrades both performances.
The research community has tried hardly to address this problem, but the lack
of open source Bluetooth firmware has directed this research to simulation-based
studies [147, 148]. As a result, only Bluetooth devices manufacturers can work on
this, eliminating the efforts of a wide majority of networking researchers.

Frequency hopping is considered a point of delay in Bluetooth communication.
Attempts have been made to enhance the process through simulation, but none of this
has made it through to real devices due to a lack of real-life evaluation. Manufacturers
can hardly risk their products for a less than perfect solution.

5.2.3 BLUETOOTH ADAPTER

Attempts to open Bluetooth to the public started using the tools GNU-
Radio [149], and USRP boards [145]. Despite the technical challenges, user-friendly
tools have been developed to easily attempt the technical challenges. However, the
main burden for community use have been the hardware costs, which can reach thou-
sands of US dollars, and the large size. Hence, the Ubertooth team began working
and released Ubertooth Zero, followed by Ubertooth One.

Ubertooth One

Ubertooth One is an open source 2.4GHz wireless development platform [140].
Ubertooth One hardware shown in FIG. 19 comes with an RF Connector for the an-
tenna, an ARM microcontroller, and a wireless transceiver. Moreover, it features an
inexpensive hardware that can be easily or acquired or assembled using the publicly
available instructions.

Ubertooth One’s hardware is designed to support Bluetooth’s transmit/receive

67

FIG. 19: Ubertooh One Hardware Design

features. The main objective of the Ubertooth project is to develop simple Blue-
tooth packet sniffing via a USB port with a host application on a PC. In late 2014,
Ubertooth One introduced the capability of sniffing BLE packets. Moreover, the
Ubertooth team maintains an open source repository for all codes from firmware to
applications. Although the hardware is capable of transmission, Ubertooth One does
not support it, by any means.

Ubertooth One Architecture

FIG. 19 depicts the 5 hardware modules provided by Ubertooth. I/O is done
through the USB, and RP-SMA RF antenna connector. CC2591 is an RF from end
to extend communication range. LPC175x is an ARM Cortex-M3 microcontroller
to support multiple high-bandwidth data streams. A CC2400 wireless transceiver is
used to provide a low power communication over the 2.4GHz band.

In this dissertation, LAMEN modifies the firmware to support various Bluetooth
features other than packet receiving which is currently supported. The modified
firmware is loaded to the LPC175x microcontroller for further usage.

68

FIG. 20: BOSS Components Architecture

69

5.3 BOSS PLATFORM

FIG. 20 depicts the modules that BOSS is providing towards an open source
Bluetooth stack. The BOSS contribution comes two parts: the firmware shown in
green, which is currently locked by manufacturers, and the software extension shown
in blue, which provides APIs to facilitate the modified firmware usage by the kernel
space software.

5.3.1 FIRMWARE

BOSS uses Ubertooth One to introduce firmware modules, as shown in FIG. 21:
Baseband, Link Manager, and HCI. In this section, we will explain the contribution
of BOSS on the corresponding firmware modules.

Fundamental Features

BOSS relies on Ubertooth One to host the open source framework, despite its
exclusive support for passive packet sniffing. Therefore, we needed to implement the
following fundamental features in order to comply with BOSS ’s needs.

Transmission: Ubertooth firmware support only packet sniffing but not trans-
mission. Hence, we introduced the transmission feature module on Ubertooth One
hardware. Using the Ubertooth transceiver’s (i.e., CC2400) data sheet, we could
transmit and receive packets on two Ubertooth devices each connected to a different
PC. We used an Ellisys sniffer [150] to capture and trace transmitted packets to
detect problems (such as CRC calculation problem) and to validate our developed
transmission module.

Circuit Switching: Establishing a Bluetooth connection requires fast switching
between the transmission and the reception modes. This was not supported by
Ubertooth One firmware with no available documentation. BOSS provides support
and implementation to fast switching functionality in runtime (microsecond level).
BOSS alternates between the Tx/Rx modes to exchange messages between multiple
Ubertooth devices.

Frequency Hopping: Building on both the transmission and circuit switching,
we had to introduce both features with continuous change in the channel. This
channel modification required handling a large number of buffers in the Bluetooth
as it is usually accompanied by a change of mode, either transmission or reception.

70

FIG. 21: Bluetooth Protocol Stack

71

Baseband Controller

The Bluetooth standard requires any host to have a Baseband (BB) controller
that supports one of the following functionalities: Basic Rate/Enhanced Data Rate
(BR/EDR) only, Low Energy (LE) only, or BR/EDR/LE. In BOSS implementation,
our contribution was in the Low Energy Mode, as follows:

Bluetooth Clock supports different clock modes (e.g. native clock and master
clock), and the corresponding clock management. The Clock is a 28-bit counter with
the least significant bit will tick in units of 312.4µsec providing a clock rate of 3.2kHz.
Once a Slave receives the master’s clock, it adapts its clocks accordingly. Ubertooth
provided the basic clocking functionalities and BOSS added to it variations of the
clocking sequences used to adjusting the transmission and receiving time slots.

Bluetooth Addressing a 48-bit address to uniquely identify the device. The
address consists of 24-bit Lower Address Portion, 16-bit Non-significant Address Por-
tion (NAP), and 8-bit Upper Address Portion (UAP). This code is used to generate
Device Access Code (DAC), Channel Access Code (CAC), and Inquiry Access Code
(IAC). These codes are used in various procedures (e.g. Inquiry process). BOSS uti-
lizes the 48bit Bluetooth Address provided by Ubertooth One, unused so far, to
generate a unique ID per device in each connection. This enables two or more de-
vices to participate in the ongoing communication without presetting their IDs.

Physical Channels, this feature is responsible for the frequency hopping process,
specifying a time slot for transmission, and Bluetooth supported access codes and
packet header encoding. This module should carry six modes of frequency hopping
supported by Bluetooth: page hopping, page response hopping, inquiry hopping,
inquiry response hopping, basic channel hopping, and adapted channel hopping. The
hoping mode uses the UAP/LAP, and clock as parameters to decide the next channel
in the hopping sequence. BOSS implemented the corresponding 2 modes required
by the sender and the receiver (i.e. inquiry hopping sequence, and inquiry response
sequence).

Physical Links are established between master/slave or piconet members to be
used in communication.BOSS enables the master to maintain a list slaves, up to 7,
and use their Bluetooth addresses in sending directed messages.

Logical Links provides communication APIs between two of the firmware com-
ponents. i.e., Baseband and Link Manager. BOSS provides the APIs to exchange
control and data message between both layers.

72

Bluetooth Packets is the data structure that defines the information exchanged
between Bluetooth devices. It supports the following parts: access code, header, and
payload. The Access code is used to limit the number of responses when looking
for devices in range. The header provides the type of exchanges message as the
Bluetooth supports a large set of message types. Finally, the payload is the data to
be transmitted. Ubertooth One supports that packet structure. However, it has a
static value for access code in the firmware is not accessible by the kernel space. This
constraint has to be relaxed as it limits the communication to devices carrying the
same static address.

out of the thousands of packets defined by the standard, BOSS support 32 pack-
ets, some of which covers the four of the the BLE states:

1. Advertising state:
ADV_IND, ADV_DIRECT_IND, ADV_NONCONN_IND, and
ADV_SCAN_IND.

2. Scanning state:
SCAN_REQ and SCAN_RSP.

3. Initiating state:
CONNECT_REQ.

4. Connection state:
LL Data PDU, LL Control
PDU, LL_CONNECTION_UPDATE_PDU, LL_CHANNEL_MAP_REQ,
LL_TERMINATE_IND, LL_ENC_REQ, LL_ENQ_RSP,
LL_START_ENQ_REQ, LL_START_ENQ_RSP, LL_UNKOWN_RSP,
LL_FEATURE_REQ, LL_FEATURE_RSP, LL_PAUSE_ENC_REQ,
LL_PAUSE_ENC_RSP, LL_VERSION_IND, and LL_REJECT_IND.

Bitstream Processing is responsible for extracting packet information and error
correction. In addition to packet whitening, a Bluetooth process performed on the
packet’s payload and CRC to hide the correlation between the data stream. The
whitening process is executed at the transmitting side and reversed on the receiving
side. BOSS provides packet processing and the whitening process for all the 23
packet types supported.

73

FIG. 22: Bluetooth State Diagram controlled through the link manager in the
firmware

74

FIG. 23: Bluetooth Advertising State

Link Manager

Link manager utilizes the low level features provided by the baseband to execute
the Bluetooth logic features. All components of the link manager were not part of
the Ubertooth project and an exclusive to BOSS. Link manager consists of three
components as follows:

Link Control (LC) manages the transition between the 5 states of Bluetooth
connection, i.e., Scanning, Standby, Initiating, Advertising, and Connection. It also
provides the interface for link manager functionalities through HCI. BOSS supports
the 5 states of Bluetooth and the transition between them based on the status of
communicating parties, as shown in FIG. 22.

BOSS implemented the following features in every state. The standby state is
whenever a Bluetooth device is idle, while the scanning is sniffing packets but a
special frequency hopping mechanism described in the standard. The remaining
three states are the ones responsible for communication. A device in the advertising
state, called advertiser, keeps sending ADV_IND packet to introduce him self to
others. Frequency hopping in this state is limited to three channels (37, 38, and 39)
with no specific order, every manufacturer can have his own algorithm here, the only
specification is that the listing period per channel should be a factor of 612µsec with
a maximum value of 10ms. This state, eventually, results in a slave device should
the data communication be established.

Initiating state, is the contrary of the Advertising, a device performing it is called
the initiator. An initiator picks a channel at random and listens for a random
period with the same timing specifications as the advertiser’s time slot. Unless

75

FIG. 24: Bluetooth Connection State

an ADV_IND packet is received the initiator hops to the next channel. Once an
ADV_IND packet is received the initiator replies back with a packet called CON-
NECT_REQ that includes all the information needs for both devices to synchronize
their hops. Also, the initiating state yields a master device. At this point both de-
vices enter the final state, connection and exchange data packets with by hopping to
the same channels until they decide to end the connection. In case any connection
parameter has to change, e.g., hopping sequence, both devices use the flow control
component of the link manger explained later in this section.

Link Manager controls the radio link between two devices through the link
manager protocol (LMP). It is responsible for link establishment, collecting device
capabilities, and power control. LMP interprets the received signals without prop-
agating them to upper layers. BOSS provides LMP messages transfer through the
payload. These messages are distinguished by flags in the header.

Flow Control avoids losing packets due to an overflow at the receiver’s buffer,
bad channels, or frequency hopping errors. BOSS uses packet formats in the Blue-
tooth, e.g., LL_CONNECTION_UPDATE_REQ, to rectify the connection based
on the channel status.

HCI firmware

This module is responsible for the communication between the firmware and the
host, e.g., BlueZ [108]. Commands sent from the host are filtered and redirected to
the corresponding link manager module. Also, the host can acquire hardware status
information through this module, e.g., the connection state. BOSS provides a set of
APIs to communicate with the firmware in a manner similar to that of any Bluetooth

76

commodity device. In addition to this, it offers the possibility of adding any set of
APIs and their corresponding firmware modification.

5.4 TESTING

In order to validate the performance of BOSS we carried out one experiment
with two Ubertooth devices and two experiments with commodity hardware, i.e.,
Fitbit [151] and iPhone. Using Ubertooth devices, we were able to exchange control
information with each device randomly executing a state from the initiating and ad-
vertising. Both devices successfully negotiated the connection and exchanged empty
data packets until we ended the connection.

Testing BOSS with commodity devices Fitbit and iPhone, the former passed
the control and initiated the data exchange with an empty data packet while the
latter only passed the control phase. FIG. 25 shows the message exchange between
BOSS running on an Ubertooth One device and Fitbit Charge 2. BOSS entered
the session as an initiator by receiving an ADV_IND packet and responding with
a CONNECT_REQ. At that point, the session entered the Bluetooth connection
state. The two devices exchanged an empty data packet on a data channel (13 in
the experiment shown by FIG. 25). The session could not carry on any further, since
the Fitbit, at this point, was expecting an encryption negotiation with the other
device to carry on with the connection. We envision that BOSS will carry a full
connection, upon implementing Bluetooth encryption features. FIG. 26 depicts the
message exchange between BOSS and an iPhone 7. It showed almost the same steps;
however, the iPhone connection did not go through any empty data packet exchange,
unlike Fitbit, as the iPhone expects encryption negotiation to start with the devices
entering the connection state. The difference between Fitbit and iPhone behavior
was detected through close monitoring of both device interaction together and with
BOSS using the ElliSys spectrum monitor [150].

5.5 CONCLUSION

In this chapter, we presented BOSS : a Bluetooth Open Source Stack. BOSS en-
ables the customization of Bluetooth v4.0 for the specific needs of edge computing.
In addition to this, it enables researchers to customize and explore Bluetooth fea-
tures to fit their applications. Researchers have used Zigbee despite its low market
presence compared to Bluetooth, for its code openness. BOSS is available to the

77

FIG. 25: Validating the performance of BOSS through pairing and data exchange
with a FitBit Charge 2

78

FIG. 26: Validating the performance of BOSS through pairing with an iPhone 7

79

public through Git. We envision that BOSS will receive the community’s attention,
and will contribute towards its code upon the release of a stable version. Also, we
are developing an application to leverage the BOSS capabilities in various domains
(e.g. wearable and vehicular).

80

CHAPTER 6

EDGE APPLICATIONS

In this chapter, we present three applications BLINK, 3D Story Teller, and
DriveBlue to utilize edge computing, with each representing a different category.
BLINK depicts the merits of having an open source Bluetooth stack. In 3D Story
Teller, a single application splits its execution on more than one device. Drive-
Blue collects data from multiple devices and processes them on the edge to avoid
misusing the bandwidth with raw data transmission. In the remainder of this chap-
ter, we will explain the three applications and the lessons learned from each.

6.1 BLINK: MULTICASTING IN BLUETOOTH PICONETS

6.1.1 OVERVIEW

BLINK a customized Bluetooth v4.0 that enables multicast communication
within a piconet. BLINK is built on top of BOSS to target IoT applications in
need of low latency communication, e.g., drone fleet management. In order to sup-
port multicasting, we proposed a new packet design to address any subset of the
piconet devices. Moreover, BLINK packets enable any applications to design their
own set of instructions and features. Also, we proposed a modified Bluetooth time
allocation scheme that allows multiple devices within a piconet to simultaneously
exchange packets with no collision. To evaluate BLINK, we created a testbed of four
devices, one master and three slaves, to exchange low latency packets in managing a
fleet of drones. Our experiments showed that BLINK enhances the amount of data
exchange between 1.5-3 folds compared to classical Bluetooth v4.0.
BLINK offers three main contributions:

1. Design BLINK, a customized version of Bluetooth v4.0 which enables mul-
ticast communication within a Bluetooth piconet. The design includes new
packet format for multicast communication and modified time scheduling be-
tween master and slave devices.

81

2. Implementation and evaluation of BLINK in comparison to classical Bluetooth
v4.0 and the ability to show data exchange enhancements more than 1.5 folds.

6.1.2 USE CASE

Intel is leading the way in drones with its projects Drone 100, Drone 300, and
Drone 500 [152]. These projects enable a group of drones to fly together to perform
a certain mission, e.g., a light work display, as in Super Bowl 2017, or search and
rescue. Upgrading from a 100 to a 500 drones fleet has been challenged, in part,
by how to coordinate changes in flight parameters, e.g., altitude and speed, for the
large number, especially with an inter-drone distance of 5ft. Complex algorithms
have been used to calculate trajectories for all of the fleet and an Intel IoT Gateway
per drone has enabled communicating the information from a cloud server [153].
However, expanding further is challenged in part by communication latency.

In this paper, we present LAMEN to target this category of applications in need
of low latency interactions. LAMEN offers creating a groups of 8, the max piconet
size, with a master in charge of cloud communication and command dissemination
within its piconet. In managing a fleet of drones, we expect the close ones to be
performing similar action; hence, organizing them in piconets sounds practical. We
envision that this will cut the communication overhead by a factor of the piconet size.
For example, in an 8 device piconet, 1 master and 7 slaves, the cloud communication
will be reduced by a factor of 8, in theory, managing 800 drones as if they were 100.

6.1.3 DESIGN

We describe the design of BLINK including its multicast communication support,
packet format, addressing modes, and instruction set.

Multicast Piconet Communication

BLINK, is built on top of BOSS, a customized Bluetooth version for IoT appli-
cations. BLINK targets applications in need of low latency communication through
modifying the communication strategy within a piconet from unicast to multicast
while maintaining other Bluetooth features. Currently, within a piconet, the mas-
ter communicates with one slave at a time. For example, if the same message is
sent to three slaves, it would be equivalent to exchanging three messages between

82

Header
(2B)

Payload
(0-255B)

MIC
(8B)

FIG. 27: Bluetooth v4.2 Data Channel PDU.

Header (2B)

OpCode
(5bits)

Slaves
(3bits)

Length
(8bits)

BT IDs
(0-42B)

Msgs
(0-205B)

Multicast Payload (0-253B)

nextSlave
(6B)

FIG. 28: Payload for BOSS Multicast Communication’s data channel PDU.

a master and a slave. This clearly imposes communication latency, as shown later
in § 6.1.4, that contradicts the rapid pace expected by IoT applications, e.g., drone
flight management.

On the other hand, BLINK enables multicast communication through two phases
control and data exchange. First, in the control phase, while establishing the piconet
connections, the master assigns the same frequency hopping parameters to all of the
slaves; hence, they all reside on the same channel at the same time. Second, in the
data exchange phase, BLINK uses the payload in Bluetooth data packets, shown in
FIG. 27, to send application-specific information, e.g., drone flight assistance, and
collision avoidance.

Bluetooth piconets enable full duplex communication between master and slave.
In case of downstream, a master transmitting to any number of slaves, no collision
is expected. However, in the upstream, if two or more slaves attempt to respond in
the same time slots on the same channel, messages will fail, due to packet collision.
Hence, BLINK uses a round robin approach to listen to one slave at a time. Bluetooth
assigns specific time slots for both master and slave to transmit in. Since all of
the slaves are set on the same channel, whenever a master is transmitting it will
announce the ID of the slave to use the upstream slot. This approach will limit the
multicast communication to the downstream only, which is critical in enhancing the
IoT communication latency.

83

Packet Format

The BLINK packet, shown in Fig 28, is hosted in the payload of the Bluetooth
data packet, which enables up to 255B of payload in its packet as shown in Fig 27.
BLINK splits this payload into two portions: two bytes of header and up to 253
bytes of multicast payload.

Header carries three pieces of information within its two bytes: OpCode, Slaves,
and Length. OpCode, a 5 bits of Operation Code to define what this message has to
offer. It enables defining up to 32 (25) different message types. Slaves, a 3 bit field
to declare the number of slaves this message has to target. It supports addressing
up to 7 devices as the maximum number of slaves within a piconet. Length, an 8
bit field to identify the length of the payload in bytes. Although it supports up to
255 bytes (28), it can only address up to 253 remaining in the Bluetooth data packet
after consuming 2 bytes by the header.

Multicast Payload, carries the actual message transmitted within a piconet. It
consists of two fields: BT_IDs and Msgs. BT_IDs or Bluetooth IDs carry the IDs of
intended recipients of the message within a piconet. Excluding the transmitter, the
piconet remains with up to 7 active devices eligible to receive the message; hence,
the BT_IDs field holds up to 42 bytes, since every Bluetooth address consists of 6
bytes. This field is only used when addressing a subset of the piconet, however, if a
broadcast is required this field remains empty and the slave field in the header is set
to {000}. This increases bandwidth optimization through eliminating useless data
transmission and minimizing the time taken by each receiver to process the packet
checking its presence in the receivers list. The end of the BT_IDs field is identified
through counting the number of slave bytes from the header. Also, this declares the
beginning of Msgs fields, which carries the actual payload in BLINK. The end of
Msgs is identified by the length field in the header taking away 6 bytes for the next
field. nextSlave, a 6 bytes field used exclusively for masters to assign which slave
will receive the token and transmit, which is used to prevent multiple slave packets
from collision. Slaves set this field to 0, since they are not authorized to pick another
slave.

84

Addressing Modes

Bluetooth support for unicast communication is controlled by source and desti-
nation addresses. In BLINK, for backward compatibility, we keep the destination
field holding the first slave’s ID and expand on it in the payload. This enables the
sending of dedicated messages to a subset of the Bluetooth piconet; hence, it sup-
ports both multicast and broadcast. Multicast support is achieved through specifying
a list of devices in BLINK ’s packet to declare the set of eligible receivers. Broadcast
is supported through setting the slaves field in BLINK ’s header to {000} and leaving
the BT_IDs field empty. In Broadcast, with the absence of BT_IDs other devices
outside the piconet will receive and process the packet. This is solved by adding an
extra check if the receivers list is blank, confirm the sender ID is the piconet master.

Instruction Set

In support of the drone flight management scenario, BLINK provides an initial
set of instructions. In this section, BLINK introduces 5 instructions: maintainSta-
tus, moveHorizontal, moveVertical, rotate, and changeColor. Each instruction has a
unique 5 bit code to be used in the OpCode field of BLINK ’s header. All BLINK in-
structions share the same Bluetooth header (2 bytes) and MIC (8 bytes) fields, shown
in Fig. 27. In generating BLINK ’s packet, the header, BT_IDs, and nextSlave are
set by the master based on the instruction. In the Msgs field each instruction carries
different information. maintainStatus comes with an empty Msgs field as its OpCode
suffices for the intent, it is only needed to maintain a connection active between mas-
ter and slave as required by Bluetooth v4.0. moveHorizontal and moveVertical both
comes with a 2 byte signed integer to represent the required motions distance with
a specific direction. A positive integer implies forward or up while a negative value
implies backward of down. rotate comes with a 2 byte signed integer to represent the
angle of rotation, with the positive value implying clockwise rotation. changeColor
carries a 4 byte field to represent the new color the drone has to show. The 4 byte
length was assigned by Intel’s Drone 500 project to illuminate in 4 billion different
color combinations.

The instruction list is not inclusive; it only aims to illustrate how to define a new
instruction and include it the packet format. It also leaves room for adding more
instructions as needed by the target application.

85

6.1.4 IMPLEMENTATION AND EVALUATION

In this section, we evaluate multicast communication in Bluetooth piconet, how-
ever, our ultimate goal is to show the value of having an open source Bluetooth stack.
Using 4 Ubertooth One devices, we emulate a Bluetooth Piconet and show how data
is exchanged between devices. Our key finding is that, despite extra control message
exchange using multicast communication within a Bluetooth Piconet results in an
overall larger data exchange per minute, between 1.5-3 folds, compared Bluetooth to
4.0 unicast piconet communication.

Experiment Setup

In evaluating LAMEN we connected 4 Ubertooth One devices to two laptops each
running a different operating system, i.e., macOS and Ubuntu. All Ubertooth One
devices run the same version of BOSS or BLINK based on the experiment mode.

The experiment begins by connecting Ubertooth One devices to the laptops and
giving each a unique Bluetooth ID. Then, establishing a Bluetooth connection of two
phases control and data exchange. The control phase begins by randomly choosing a
device to be the master; the remaining devices initiate communication with slaves by
sending ADV_IND packets, and the master replies to each with a CONNECT_REQ
packet to establish a connection and to create a piconet. The data exchange phase
begins with all devices synchronized and ready to exchange messages. In this section,
we use the data exchange phase in three modes: unicast, multicast downstream, and
multicast upstream. Unicast, with an unmodified version of BOSS, represents the
Bluetooth 4.0 standard using unicast in series communication between the piconet
slaves receiving messages from the master. The multicast downstream mode runs
BLINK to provide multicast/broadcast communication enabling master to commu-
nicate with all slaves concurrently. The multicast upstream mode is similar to Multi-
cast downstream, – it enables slave to exchange messages with master one at a time,
to avoid packet collision. In the latter two modes, we use LAMEN packets, as shown
in Fig. 28, while in the former mode we use the Bluetooth PDU, as shown in Fig. 27.

Experiment Scenario

In this experiment, we emulate a scenario in which multiple Bluetooth devices are
exchanging messages, e.g., a fleet of drones passing flight management information.

86

0

500

1000

1500

2000

2500

3000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

D
at

a
Ex

ch
an

ge
 (B

yt
es

)

Time (minute)

Multicast Downstream
Multicast Upstream
Unicast

FIG. 29: Multicast Piconet Communication vs. Bluetooth default serial communi-
cation within a four device Piconet.

On the master’s turn to transmit, we generate a random set of 2-15 instructions;
unless the first one is the maintainStatus instruction. In this case, we send it alone.
This emulates a master that informs the piconet members to adjust their coordinates
or their illumination colors. Also, the master assigns a slave at a time to reply, based
on a round-robin approach. Slaves respond to the master to report status, to report
a problem, or to communicate messages from proximal piconets. The latter enables
a multi-hop message between the piconets in order to coordinate between a large
groups of devices.

Multicast Piconets Communication

In this experiment, we exchange messages between piconet devices for 10 minutes
in three modes: unicast, which is the standard Bluetooth v4.0 in the form of BOSS ;
multicast downstream, which is BLINK ’s master sending multicast messages to pi-
conet slaves and not expecting responses; and multicast upstream, which is BLINK ’s

87

master sending messages to piconet slaves and collecting their responses in series.
FIG. 29 depicts the behavior of all the three approaches. Multicast downstream

has a clear advantage in terms overall data transmission within a piconet. It enables
master communication with all of the slaves at the same time showing an overall
data transfer of 2.8 folds more than unicast over the 10 minute experiment time.
This increase in data exchange is almost a factor of the number of slaves within the
piconet, showing multicasting to be efficient. However, when two-way communication
between the master and the slaves is performed, the factor of data exchange dropped
to ≈1.5, as shown in multicast upstream. This drop is a result of waiting for one slave
at a time to respond, which is mandatory to avoid packet collision on the channel.

In real life, despite no way to evaluate on a large scale, we envision that not each
slave will have a message to transmit at all time slots leaving the master more time
slots to utilize. Hence, we anticipate that the overall enhancement will be somewhere
between the multicast downstream and upstream data exchange rates.

6.1.5 CONCLUSION

In this application, we presented BLINK, an open source customized version of
Bluetooth v4.0 to enable multicasting between devices within a Bluetooth Piconet.
First, we implemented a full stack Bluetooth v4.0. Second, we proposed a new design
for Bluetooth data packets to carry multicast communication. Third, we proposed
a scheme to organize the transmission time slots between master and slave devices,
in order to avoid packet collision. Fourth, on a real testbed, we evaluated BLINK,
compared to classical Bluetooth v4.0, and showed an enhanced data exchange rate
between 1.5-3 folds in a three slave piconet.

6.2 3D STORY TELLER

6.2.1 OVERVIEW

Streaming applications are widely available on smartphones and tablets. People
use them to listen to news, stories, and movies; however, in a professional setting,
sound systems have various techniques to enhance the listening experience of users.
For example, 5.1 surround sound creates a feeling that the sound is coming from 6
directions [154].

88

FIG. 30: 3D Story Teller uses multiple speakers to emulate surrounded sounds ex-
perience

3D Story Teller is a streaming application that utilizes speakers from devices
available in its proximity. Once the main device starts to play any track, it discovers
available speakers in the proximity and splits the track characters on the available
devices [34, 33]. This creates the surround sound experience with up to 6 devices
available nearby.

6.2.2 IMPLEMENTATION

We implemented a prototype for 3D Story Teller using Android SDK on Samsung
Galaxy Note N7000 and Samsung S5 phones. Further, we generated audio tracks of
2 characters each and used Pure Data (PD) [155] for audio signal processing.

The implementation comes in three phases: initiation, discovery, and execution.
First, a phone initiates playing a track. Second, 3D Story Teller discovers and
allocates speakers from phones in the proximity. Third, code orchestration with the
new phone is done, in order to assign a character and start playing. Through out
the execution, 3D Story Teller faces incidents like having a device join or leave, each
with a special handling.

89

Device Join, When a 3D Story Teller supporting devices shows in the proximity, it
immediately joins the cluster. The master then utilizes available resources as needed
by the application, up to 5 phones besides itself to emulate the 5.1 surround sound
feature [154].

Device Leave, is detected through a communication failure within the cluster. If
the device was executing a task, the master claims back the character and plays it
until its claim for another speaker is granted of the track ends.

6.2.3 PERFORMANCE MEASURES

We monitored the execution of the smartphones, using Monsoon power [156], in
three situations: executing the application alone in a single device scenario, master
who initiates the application and assign roles to other devices, and slave who receives
a character to play when available within the master’s proximity.

Further, in order to investigate the communication overhead we monitored each
device individually in the single situation in FIG. 32, in the master situation in
FIG. 33, and in the slave situation in FIG. 34. The figures show the all situations
operate within the 2000mW range except for the initial part in both master and
slave. This suggests the communication overhead is imposed only during the com-
munication initiation, while the single messages to start/stop execution on the slaves
are insignificant.

6.2.4 CONCLUSION

In this application, we showed how devices could be orchestrated towards execut-
ing an application that was not possible using a single device. We showed that, using
a small communication overhead we can utilize resources in the proximity without
hampering the power consumption of edge devices, which is a major concern for
all wearables, smartphones, and IoT devices in general. Although this attempt is
preliminary, we can build more robust applications on top of it.

6.3 DRIVEBLUE: TRAFFIC INCIDENT PREDICTION THROUGH
SINGLE SITE BLUETOOTH

6.3.1 OVERVIEW

In this application, we target processing large datasets at the edge of the network

90

Master SlaveSingle

FIG. 31: Overall Power Consumption FIG. 32: Single Smartphone Power Con-
sumption

FIG. 33: Master Power Consumption FIG. 34: Slave Power Consumption

91

in order to avoid bandwidth misuse in transmitting them to a cloud server for pro-
cessing. DriveBlue works in the domain of intelligent transportation systems, which
is getting much interest, with smart vehicles and smart city initiatives.

Traffic delays puts on 5.5 billion hours on the annual commute time, wasting 1.9
billion gallons of gas [157]. It has been estimated that every driver wastes approxi-
mately 34hrs/year, spending almost $713 because of traffic congestion. Two million
new vehicles added to the US market annually drag these numbers worse year after
year [158]. Traffic incidents (e.g. congestion, weather, and accidents) contribute by
45% to the annual congestion rates [159].

Real-time sensing is widely accepted with the evolution of smartphones, smart
vehicles, and the Internet of Things (IoT). Smartphone usage doubled from 2010 to
2014, and is expected to double again in 2018 [160]. Smartphones loaded with sensors
and above all available to commuters all the time can be easily utilized in the real-
time sensing. Smart vehicles, e.g., Tesla, with all of their sensing, and communication
capabilities, e.g., Bluetooth, are not far from the market. In 2013 they showed a 48%
selling increase in California [157].

In this application, we propose DriveBlue: a single-site Bluetooth system to pre-
dict, analyze, and inform authorities of the current traffic conditions. Drivers’ with
Bluetooth devices (e.g., smartphones, the car’s Bluetooth, and hands-free devices)
turned on while driving, will enable DriveBlue to collect data expressing traffic con-
ditions [143, 144]. DriveBlue places edge units each consisting of multiple Bluetooth
adapters on a single site to compensate for the Bluetooth’s randomness. Bluetooth
units collect and process data on the edge of the network and report back to the
authorities if they detect an incident. Traces collected from all vehicles on the road
show an average of 10 devices per minute –which advocates for the use of Bluetooth
in transportation applications.

Considering the highway case, we realized the presence of two types of lanes
regular and High Occupancy Vehicle (HOV) lanes. The latter lanes are used to
provide a carpooling incentive for extra speed. DriveBlue provides a module to
separate data from those 2 lane types through machine learning techniques with an
accuracy of ≈ 80%. Clearly, using the data without separation will give misleading
results. For example, low traffic HOV lane readings can show a congested regular
lane as a smooth traffic one. Moreover, DriveBlue provides a model to estimate
traffic incidents from collected data, per lane type over time. Finally, DriveBlue uses

92

Data
Collection

Lane
Detection

Traffic
Estimation

Report
Incident

DriveBlue

FIG. 35: DriveBlue System Design with the components of the Edge processing unit

LAMEN to process the data on the edge of the network to save the bandwidth for
worthy usages, and to communicate back only a detected suspicious incidents. We
evaluate the performance of DriveBlue using data collected from the highway to show
its feasibility.

DriveBlue provides a traffic incident prediction system using single site Bluetooth
adapters. DriveBlue, built on top of LAMEN, is used to process large data traces
collected at the edge of the network instead of sending them for execution over the
cloud.

6.3.2 DESIGN

In this application, we describe the design details of DriveBlue: a system to
detect and report early symptoms of traffic incidents (e.g., traffic congestion), as
shown in FIG. 35. First, we explain how to collect Bluetooth traces, and then lane

93

type detection, followed by how to predict upcoming traffic conditions, and finally
how DriveBlue reports a situation that might escalate to a traffic jam.

Bluetooth Data Collection

Transportation authorities, e.g., VDOT, have Bluetooth adapters deployed on
highways [161]. In this application, DriveBlue utilizes pre-installed infrastructure to
initiate the discovery process for the Bluetooth data sample collection from devices
passing by. The collected data provides the sender’s device ID, timestamp, and
received signal strength indicator (RSSI). The collected data is cleaned of noise, and
outliers as explained later in section 6.3.3. The clean data is fed to the next module.

Lane Type Detection

It is critical to differentiate between various types of lanes on highways. This
module uses the Support Vector Machine (SVM), a machine learning classifier to
separate data received from regular and HOV lanes. SVM training phase uses k-fold
cross validation to get the most out of the training data. The data used to train
the classifier as follows: the Bluetooth device ID from the raw collected data; the
Appearance time of the corresponding device is calculated by subtracting its initial
appearance from the last; and Mean, and Variance of the RSSI values care ollected
per device.

FIG. 36: Traffic Estimation Modeled as (n+1)-state Markov chain

Traffic Estimator

Upon receiving lane-specific data samples, this module begins to monitor the flow
of traffic in the area of coverage. The module divides the time series into windows
(e.g., 5 minutes) of data, each with the following values: number of devices recorded;

94

number of responses collected; mean, and variance of all of the RSSI values collected
during the window. The traffic estimator declares a suspicious situation whenever
three consecutive windows show higher-than-normal rates.

The traffic estimator is modeled as an (n+1) state Markov chain (Tu) shown
in FIG. 36, where circles representing the traffic window marked an incident. The
transition probability is denoted by px,y where x, and y are the rows, and columns
of the transition matrix. px,y of the Markov chain are written as follows:

Pr{Tu+1 = y | Tu = x} =

1 y=x=n
or y=1-x x<1,

p y=x+1,
1− p y=1 0<x<n,
0 otherwise,

where x, y = {0, 1, 2,n}.

To decrease the error of miss detection, n is chosen to be 4, as 3 consecutive
windows detecting an incident are less likely to have an error less than 13%, assuming
that probabilities of having an incident or not are equally likely.

Report Incident

Vehicular communication introduced the use of Road Side Unit (RSU): infras-
tructure units on roads to bridge the gap between vehicles and an authority over the
cloud [162].

In DriveBlue, we adopt the same architecture, in which Bluetooth units will have
secure communication with the authorities. Upon notification of a suspicious situa-
tion from the traffic estimator, the reporter communicates it back to the authorities.
It is now the authorities turn to validate, and to mitigate the upcoming situation.

6.3.3 PERFORMANCE EVALUATION

In this section, we evaluate the performance of DriveBlue through experiments.
For logistic, and legislative conditions, we were allowed limited access to public roads
for our data collection. Hence, the scope of our evaluation will not consider the traffic
estimator module presented in § 4.4, since it requires larger dataset.

95

(a) Controlled

(b) Highway

FIG. 37: DriveBlue Field Experiments’ Setup

96

FIG. 38: Raw data from controlled experiment in DriveBlue

Experiment Setup

To evaluated DriveBlue we used: Android phones (i.e., Samsung Galaxy Note II
and Nexus 4), Parani-UD100 industrial Bluetooth adapters [163], high gain antennas
(i.e., 9dBi [164] and 15dBi [165]) to provide large coverage area ≈1600ft, and Lenovo
Core i5 laptops running Ubuntu 12.04. In our experiments, we used multiple Blue-
tooth adapters at a single site to overcome the randomness of the discovery process.
Also, we used two types of vehicles (i.e., SUV and full size) to consider the impact
of different car design on Bluetooth signals.

We used two experiment setups as follows:

1. Controlled Experiment: The experiment was performed on Old Dominion
University’s (ODU’s) campus to collect data from known devices. 6 Bluetooth
receivers were placed on two sides of the road (3ft. width) as shown in FIG. 37a.
To emulate multiple vehicles on the road, we loaded a vehicle with four Android

97

FIG. 39: Number of Samples Collected by DriveBlue per device from both lane types

devices with Bluetooth enabled. The vehicle spanned the antennas’ coverage
areas with two speed categories: fast (≥40mph), and slow (≤35). The exper-
iment was performed at 12 runs per speed category (4 samples per run), and
we collected a total of 96 samples. The collected samples were not linearly
separable, as shown in FIG. 38; the bubble size represents the appearance time
in seconds.

2. Highway Experiment: Upon receiving limited time allowance to perform
our experiments (45 min.), 5 Bluetooth adapters were set on Virginia highway
I-64, as shown in FIG. 37b. Two vehicles, each with 4 Android devices were
used to commute through regular, and HOV lanes for 2 runs each.

Data Cleaning and Analysis

Controlled experiments collected 263 samples out of which 96 were used. On the
other hand, Highway experiment collected 2230 samples from 300 different devices
(promising number of devices considering the limited time). 1148 samples from 263
devices were used; 804 samples representing slow speed from 222 devices, and 344

98

FIG. 40: Expected appearance time of Bluetooth devices on vehicles spanning the
coverage area of a high gain antenna collected by DriveBlue

samples representing fast speed from 41 device.
Samples collected from both experiments were subject to the following: elimi-

nating smartphone samples with only 1 appearance (0 Controlled, and 37 Highway),
and eliminating samples sent by co-located Bluetooth adapters (117 controlled, and
232 Highway).

Data collected from highway experiment shows a tendency for a devices to provide
more than 5 samples every time they span the adapter’s coverage area regardless of
the motion speed as shown in FIG. 39. Collected samples were subject to 2 kinds of
analysis: data from known devices, and unknown source data. Due to the absence
of ground truth in the later type, ambiguous data that fall between the ranges of
our speed categories (35-40mph) were eliminated (813 samples from 62 different
devices). FIG. 40 depicts the expected appearance time of Bluetooth devices loaded
on a vehicles, based on the high gain antennas’ coverage range.

Lane Type Detection

In DriveBlue, we map the speed categories to lane types, were slow represents
driving in a regular lane, while fast represents driving on HOV lanes. Samples from
controlled experiments were used to train two machine learning classifiers using 3-
fold cross validation: SVM got an accuracy of 79%, and Logistic Regression (LR)

99

FIG. 41: Controlled Classifier Accuracy in Lane Type Detection

got 40% accuracy as in FIG. 41.
SVM shows an acceptable accuracy considering the limited set of training samples.

The classifier was used to successfully detect the motion type of the known source
samples used in the highway experiment as shown in FIG. 43. It is worth mentioning
that, appearance time ,when used, showed enhancement in the classifier’s accuracy.
However, the main parameter that enhanced the accuracy was RSSI. This can be
seen in FIG. 38, where the bubble size represents the appearance time, and shows
no significant bubble size difference between the two motion categories.

SVM results advocate for the eligibility of single site Bluetooth for lane detection,
especially if granted access to collect more data samples in realistic scenarios.

Highway Behavior Evaluation

The previous subsection, interpreted results from known source samples. How-
ever, this subsection considers unknown source samples. As mentioned earlier, due
to the absence of ground truth and limited experiment time, samples that fall in
the ambiguous range of the classifier were eliminated. Nevertheless, the remaining
samples provided insights that prove the eligibility of single site Bluetooth, and shed
light on future experiment setups.

Appearance Time: FIG. 42 depicts the difference of smartphone show ups
between the slow and fast speed categories. The slow category collected an average
of 134 samples per 5 minutes, while the fast category collected an average of 38 in the
same range. Although, this finding needs to be validated with massive data collection

100

(a) Slow Speed

(b) Fast Speed

FIG. 42: Effect of Speed on DriveBlue’s samples Appearance Time collected in win-
dows of 5 minutes each.

101

FIG. 43: DriveBlue Highway Readings, 4 smartphones color coded, for Lane Type
Detection

at different times of the day, but the proposed approach can be used to generate a
time series of expected appearance times per day. Continuous road monitoring can
detect early gradual increase in these levels, and can report the likelihood of traffic
jams in specific locations.

RSSI: FIG. 44 depicts the RSSI behavior spotted by slow, and fast motion per 5
minutes window. It is clear that slow motion shows almost steady reading levels; we
envision this to change over larger time periods. Nevertheless, it provides the required
average value that needs to be monitored for estimating future traffic congestion. Fast
motion, shows variation of values due to the nature of HOV lanes where vehicles shows
up less frequently than regular lanes. However, the average variation still shows a
trend for the recorded period, which will be extended in the future work.

6.3.4 CONCLUSION

Data Collection: Data Collection needs to be extended on a wide scale of roads
for longer times. Moreover, collecting data at different times of the day to account
for congested, and free-flow traffic conditions. In addition to massive data collection,
volunteers needs yo be recruited to provide a sufficient amount of ground truth. We
envision that results from this work will encourage relaxed restrictions towards our
data collection phase.

Direction Detection: Experiments were conducted in a location where traffic
from both directions (e.g. north, and south) is significantly separated. This scenario
was chosen to avoid Bluetooth traces from vehicles in the opposite direction as shown

102

FIG. 44: DriveBlue RSSI collected on Highway. Each window represents 5 minutes
comparison between motion categories

103

in FIG. 37b. Clearly, this is not the general case of highways. We envision direc-
tion classification to be done through the comparison of RSSI signals collected from
different adapters on the same site, using a machine learning classifier.

Window Size: Traffic signals are divided into windows, which are compared
together to monitor traffic over time. We envision the window size as an application
specific parameter. For example, travel time estimation is less critical, and requires
larger samples, than congestion prediction. Therefore, it is likely to separate applica-
tions by category,to define the features of each, and investigate the suitable window
size for each of them.

In DriveBlue, we proposed an initial attempt for processing vehicular data at
the edge of the network. DriveBlue, is a single site use of Bluetooth adapters for
predicting traffic conditions. DriveBlue provided enough modularity to facilitate
further modifications. First, we presented data collection and cleaning modules.
Second, we showed how to differentiate between devices on regular and HOV lanes
with ≈80% accuracy given the limited dataset. Third, we showed how to estimate
the upcoming traffic condition. Fourth, we showed how to communicate our detected
incident to the responsible authority. Finally, we used real data from highways to
evaluate DriveBlue’s performance.

104

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation, we presented our design and implementation for a framework
to leverage mobile resources at the edge of the network in executing applications
beyond the capabilities of a single device. Our attempt was motivated in part by
the large data wasted at the edge of the network, in addition to the availability
of idle resources on smart devices. We showed that using this approach we not
only use idle resources, but we enhance the bandwidth utilization through avoiding
transmission of raw and redundant data. To achieve this goal, we reported three
systems LAMEN, Kinaara, and BOSS that implement edge resource organization,
discovery and allocation, and IoT communication, as explained earlier. Moreover,
we reported three applications, BLINK, 3D Story Teller, and DriveBlue to show a
variety of directions in which edge computing can be applied. Finally, we shed light
on the need for an incentive model to encourage using our systems and we identified
the key metrics of the model.

In the future, we envision the role and demand for edge computing to increase,
hence, we would like to point on some aspects that would help such growth. First,
Applications. We showed a variety of applications that rely on edge computing.
Their variation depends on how people define the edge, e.g., whether it is static or
mobile. Applications have to be flexible to support both modes of edge computing.
Second, Scalability within a cluster. We showed the scalability that we achieved,
which works well for the applications in our scope. However, to go beyond that
level requires a serious look into the clustering mechanism and into how multiple
clusters can cooperate. Third Mobility. We have shown the impact of mobility of our
edge computing approach. The overhead imposed came from two phases: finding a
replacement and restarting execution on the new device. However, it would be worth
studying whether a hand-off approach could be introduced to minimize the impact
of restarting the application. Fourth Resource Orchestration. In our application,
we have shown I/O resource orchestration; however, addressing other resources, i.e.,
memory and CPU, would require serious modifications on kernel level drivers.

105

CHAPTER 8

PUBLISHED WORK

8.1 CONFERENCE PROCEEDINGS

• Ahmed Salem, Nirmit Desai, Theodoros Salonidis, and Tamer Nadeem, "Ki-
naara: Distributed Discovery and Allocation of Mobile Edge Resources, " Proc.
of the 13th IEEE Int’l Conference on Mobile Ad Hoc and Sensor Systems
(MASS), 2017.

• Ahmed Salem, and Tamer Nadeem, "Exposing Bluetooth lower layers for IoT
communication," Proc. of the 3rd IEEE World Forum on Internet of Things
(WF-IoT), 2016.

• Ahmed Salem, and Tamer Nadeem, "LAMEN: Towards Orchestrating the
Growing Intelligence on the Edge," Proc. of the 3rd IEEE World Forum on
Internet of Things (WF-IoT), 2016.

• Ahmed Salem and Tamer Nadeem, "LAMEN: leveraging resources on anony-
mous mobile edge nodes," Proc. of the Eighth ACM Wireless of the Students,
by the Students, and for the Students Workshop, 2016.

• Ahmed Salem, Tamer Nadeem, Mecit Cetin, and Samy El-Tawab, "Drive-
Blue: Traffic Incident Prediction through Single Site Bluetooth," Proc. of
the 18th IEEE International Conference on Intelligent Transportation Systems
(ITSC), 725-730, 2015.

• Mostafa Uddin, Ahmed Salem, Ilho Nam, and Tamer Nadeem, "Wearable
Sensing Framework for Human Activity Monitoring," Proc. of the 2015 ACM
workshop on Wearable Systems and Applications, 21-26, 2015.

• Ahmed Salem, Ayman Abdel-Hamid, and Mohamad Abou El-Nasr, "A dy-
namic key distribution protocol for PKI-based VANETs," Proc. of the IEEE
IFIP Wireless Days (WD), 1-3, 2011.

106

8.2 JOURNAL

• Ahmed Salem, Ayman Abdel-Hamid, and Mohamad Abou El-Nasr, "The
Case For Dynamic Key Distribution For PKI-Based VANETS," International
Journal of Computer Networks & Communications 6, no. 1 (2014): 61.

8.3 POSTER/DEMO

• Ahmed Salem, Nirmit Desai, Theodoros Salonidis, and Tamer Nadeem, "Re-
source Hunting on the Edge," Proc. of IEEE/ACM Symposium on Edge Com-
puting (SEC), 2016.

• Ahmed Salem, and Tamer Nadeem, "Poster: MU-MIMO throughput En-
hancement for Enterprise Networks," Proc. of the 16th ACM International
Workshop on Mobile Computing Systems and Applications, 2015.

• Ahmed Salem, and Tamer Nadeem, "Demo: ColPhone: a smartphone is just
a piece of the puzzle," Proc. of the ACM International Joint Conference on
Pervasive and Ubiquitous Computing: Adjunct Publication,263-266, 2014.

• Ahmed Salem, and Tamer Nadeem, "Poster: ColPhone: a smartphone is just
a piece of the puzzle," Proc. of the 20th annual Int’l conference on Mobile
computing and networking, 417-420, 2014.

• Ahmed Salem, Tamer Nadeem, and Mecit Cetin, "Poster: DriveBlue: Can
Bluetooth Enhance your Driving Experience?," Proc. of the 12th ACM annual
Int’l conference on Mobile systems, applications, and services 382-382, 2014.

107

APPENDIX A

INCENTIVIZING USERS TO PARTICIPATION IN EDGE

COMPUTING

Edge Computing and Crowd Sensing have many similar components. Both collect
data on the edge of the network, however, edge computing performs processing close
to the data sources instead of on the cloud servers. This similarity enables the reuse
of similar components, e.g., incentive models, upon proper customization. In this
chapter, we will explain two models of incentive estimation that can be adopted and
we will show where they need customization towards edge computing.

A.1 INCENTIVE MODELS FOR CROWD SENSING

In crowd sensing we have two models for incentive calculation static price and
bidding approach. In the static pricing model, resource/data requesters announce
the price that they are willing to pay and resource owners opt-in if they accept
the terms [63]. Bidding approaches comes into two flavors single and multiple bid-
dings, meaning that a resource owner can bid to execute one or multiple tasks at
a time [166, 167]. The bidding process begins with a set of tasks made available
by cloud servers and resource owners begin to compete over them. A central unit
is responsible for receiving the bids, processing them, and linking winners to tasks.
Different approaches vary in terms of how they define bids or how they process and
select winners.

A.2 INCENTIVES MODEL FOR EDGE COMPUTING

Applying the static price model in edge computing sounds like a straightforward
method. Mediators maintain price rates per resource, monitor the performance,
calculate resource usage per service, and distribute the reward over participating de-
vices. In this approach price rates can be adjusted according to the cluster situation.
For example, the rate for seizing an accelerometer available while having 10 units
should be different from having a single unit within a cluster. Also, a user rated for

108

good results should differ than others. Moreover, resource requesting users should
be enabled to bid or to limit their payments.

Bidding approaches require different handling in order to avoid an increased la-
tency. In edge computing waiting for edge devices to bid, processing the bids, and
declaring winners is a very lengthy process. It can be overridden, since all of the
devices participating in LAMEN have already submitted their resources to the me-
diator. In LAMEN, we envision doing the bidding process between the cloud and the
mediator layers; hence, all resources behind the mediator are virtually aggregated.
In this customized approach, a mediator can place his bid for applications at the
cloud that are ready for execution.

The details of how to design the bidding algorithm, what parameters are required,
and how this impacts edge computing in terms of application latency and execution
accuracy are left for future work.

109

REFERENCES

[1] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran, Z. Zhang,
and I. Raicu, “Zht: A light-weight reliable persistent dynamic scalable zero-hop
distributed hash table,” 27th IEEE Int’l Symposium on Parallel & Distributed
Processing (IPDPS), pp. 775–787, 2013.

[2] Canalys, “Media alert: Over 1.5 billion smart phones to
ship worldwide in 2016,” https://www.canalys.com/newsroom/
media-alert-over-15-billion-smart-phones-ship-worldwide-2016, Feb. 2016.

[3] Gartner, “Gartner Says 6.4 Billion Connected Things Will Be in Use in 2016,
Up 30 Percent From 2015,” http://www.gartner.com/newsroom/id/3165317,
2015.

[4] ABI research, “Data Captured by IoT Connections to Top 1.6 Zettabytes in
2020, As Analytics Evolve from Cloud to Edge,” https://www.abiresearch.
com/press/data-captured-by-iot-connections-to-top-16-zettaby/, 2015.

[5] EMC Digital Universe, “The Digital Universe of Opportunities: Rich Data
and the Increasing Value of the Internet of Things,” http://www.emc.com/
leadership/digital-universe/2014iview/executive-summary.htm, April 2014.

[6] P. McGarry, “Why Edge Computing Is Here to Stay: Five Use Cases,” https://
www.rtinsights.com/why-edge-computing-is-here-to-stay-five-use-cases/, Oct.
2015.

[7] IT Business Edge, “How the Internet of Things Will Trans-
form the Data Center,” https://www.itbusinessedge.com/slideshows/
how-the-internet-of-things-will-transform-the-data-center.html.

[8] C. McLellan, “The internet of things and big data:
Unlocking the power,” http://www.zdnet.com/article/
the-internet-of-things-and-big-data-unlocking-the-power/, March 2015.

[9] Amazon AWS, “Amazon EC2 - Virtual Server Hosting,” https://aws.amazon.
com/ec2/.

110

[10] R. King, “Siri requires 100 times more computing power than
text-based Web searches,” http://www.biometricupdate.com/201504/
siri-requires-100-times-more-computing-power-than-text-based-web-searches,
April 2015.

[11] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khurana,
R. G. Dreslinski, T. Mudge, V. Petrucci, L. Tang et al., “Sirius: An open
end-to-end voice and vision personal assistant and its implications for future
warehouse scale computers,” ACM SIGPLAN Notices, vol. 50, no. 4, pp. 223–
238, 2015.

[12] Y. Chen, S. He, F. Hou, Z. Shi, and J. Chen, “Promoting device-to-device
communication in cellular networks by contract-based incentive mechanisms,”
IEEE Network, vol. 31, no. 3, pp. 14–20, 2017.

[13] Uber, “Uber,” https://www.uber.com/.

[14] AirBnB, “Airbnb,” https://www.airbnb.com/.

[15] AirPnP, “Airpnp,” https://app.airpnp.co/.

[16] Karama, “Karma WiFi,” https://yourkarma.com/.

[17] J. M. Greer, Circles of Power: An Introduction to Hermetic Magic. Red
Wheel/Weiser, 2017.

[18] M. T. Beck, M. Werner, S. Feld, and S. Schimper, “Mobile edge computing: A
taxonomy,” Proc. of the Sixth Int’l Conference on Advances in Future Internet,
2014.

[19] M. T. Beck, S. Feld, C. Linnhoff-Popien, and U. Pützschler, “Mobile edge
computing,” Informatik-Spektrum, vol. 39, no. 2, pp. 108–114, 2016.

[20] D. LeClair, “The Edge of Computing: It’s Not All
About the Cloud,” http://insights.wired.com/profiles/blogs/
the-edge-of-computing-it-s-not-all-about-the-cloud#axzz478jVsSBi, July
2014.

111

[21] S. Agarwal, M. Philipose, and P. Bahl, “Vision: the case for cellular small
cells for cloudlets,” Proc. of the Fifth ACM Int’l Workshop on Mobile Cloud
Computing & Services, pp. 1–5, 2014.

[22] I. B. Mustafa, M. Uddin, and T. Nadeem, “Understanding the intermittent
traffic pattern of http video streaming over wireless networks,” 14th IEEE Int’l
Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks (WiOpt), pp. 1–8, 2016.

[23] M. Patel, Y. Hu, P. Hédé, J. Joubert, C. Thornton, B. Naughton,
J. Joubert, C. Thornton, B. Naughton, N. Sprecher, T. Musiol,
C. Manzanares, U. Rauschenbach, S. Abeta, L. Chen, K. Shimizu,
A. Neal, P. Cosimini, A. Pollard, and G. Klas, “Mobile-Edge Comput-
ing,” https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_
computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf,
Sep. 2014.

[24] C. Wood, “Is Edge Computing Key to the Inter-
net of Things?” http://www.govtech.com/transportation/
Is-Edge-Computing-Key-to-the-Internet-of-Things.html, July 2015.

[25] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading
for mobile-edge cloud computing,” 2015.

[26] R. Want, B. Schilit, and D. Laskowski, “Bluetooth le finds its niche,” IEEE
Pervasive Computing, no. 4, pp. 12–16, 2013.

[27] P. Kinney, “Zigbee technology: Wireless control that simply works,” Commu-
nications design conference, vol. 2, pp. 1–7, 2003.

[28] R. Shorey and B. A. Miller, “The bluetooth technology: merits and limita-
tions,” IEEE Int’l Conference on Personal Wireless Communications, pp. 80–
84, 2000.

[29] B. Cha, “Are voice commands on GPS worth it?” http://www.cnet.com/
roadshow/news/are-voice-commands-on-gps-worth-it-ask-the-editors/, 2009.

112

[30] R. Amadeo, “Google to take on Nuance with speech
recognition API,” http://arstechnica.com/gadgets/2016/03/
google-to-take-on-nuance-with-speech-recognition-api/, Mar. 2016.

[31] Oculus, “Oculus Rift,” https://www.oculus.com/rift/.

[32] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin, “Crowddb:
answering queries with crowdsourcing,” Proc. of the ACM SIGMOD Int’l Con-
ference on Management of data, pp. 61–72, 2011.

[33] A. Salem and T. Nadeem, “Colphone: a smartphone is just a piece of the puz-
zle,” Proc. of the 2014 ACM Int’l Joint Conference on Pervasive and Ubiquitous
Computing: Adjunct Publication, pp. 263–266, 2014.

[34] A. Salem and T. Nadeem, “Colphone: a smartphone is just a piece of the
puzzle,” Proc. of the 20th ACM annual Int’l conference on Mobile computing
and networking, pp. 417–420, 2014.

[35] T. Okoshi, J. Ramos, H. Nozaki, J. Nakazawa, A. K. Dey, and H. Tokuda,
“Reducing users’ perceived mental effort due to interruptive notifications in
multi-device mobile environments,” Proc. of the 2015 ACM Int’l Joint Confer-
ence on Pervasive and Ubiquitous Computing, pp. 475–486, 2015.

[36] N. Zhang et al., “Gameon: P2p gaming on public transport,” Proc. of the 13th
ACM Annual Int’l Conference on Mobile Systems, Applications, and Services,
pp. 105–119, 2015.

[37] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra,
and P. Bahl, “Maui: making smartphones last longer with code offload,” Proc.
of the 8th ACM Int’l conference on Mobile systems, applications, and services,
pp. 49–62, 2010.

[38] G. Sun and J. Shen, “Facilitating social collaboration in mobile cloud-based
learning: a teamwork as a service (taas) approach,” IEEE Transactions on
Learning Technologies, vol. 7, no. 3, pp. 207–220, 2014.

[39] P. Mell and T. Grance, “The NIST definition of cloud computing,” 2011.

113

[40] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud computing,” Com-
munications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[41] Amazon Web Services, “Amazon Web Services,” https://aws.amazon.com/.

[42] Google, “Google Cloud Platform,” https://cloud.google.com/.

[43] L. Alton, “The Pros and Cons of Cloud Computing,” http://www.
smallbusinesscomputing.com/biztools/the-pros-and-cons-of-cloud-computing.
html, April 2015.

[44] L. Qian, Z. Luo, Y. Du, and L. Guo, “Cloud computing: an overview.”
Springer, 2009, pp. 626–631.

[45] Level Cloud, “Advantages and Disadvantages of Cloud Comput-
ing,” http://www.levelcloud.net/why-levelcloud/cloud-education-center/
advantages-and-disadvantages-of-cloud-computing/.

[46] D. Reilly, C. Wren, and T. Berry, “Cloud computing: Pros and cons for com-
puter forensic investigations,” Int’l Journal Multimedia and Image Processing
(IJMIP), vol. 1, no. 1, pp. 26–34, 2011.

[47] Cloud Computing, “Cloud computing privacy concerns on our doorstep,” Com-
munications of the ACM, vol. 54, no. 1, pp. 36–38, 2011.

[48] H. Li, Y. Dai, L. Tian, and H. Yang, “Identity-based authentication for cloud
computing.” Springer, 2009, pp. 157–166.

[49] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-
based cloudlets in mobile computing,” IEEE on Pervasive Computing, vol. 8,
no. 4, pp. 14–23, 2009.

[50] S. Ibrahim, H. Jin, B. Cheng, H. Cao, S. Wu, and L. Qi, “Cloudlet: towards
mapreduce implementation on virtual machines,” Proc. of the 18th ACM Int’l
symposium on High performance distributed computing, pp. 65–66, 2009.

[51] M. Chen, Y. Hao, Y. Li, C.-F. Lai, and D. Wu, “On the computation offloading
at ad hoc cloudlet: architecture and service modes,” IEEE Communications
Magazine, vol. 53, no. 6, pp. 18–24, 2015.

114

[52] Y. Jararweh, F. Ababneh, A. Khreishah, and F. Dosari, “Scalable cloudlet-
based mobile computing model,” Procedia Computer Science, vol. 34, pp. 434–
441, 2014.

[53] S. J. Stolfo, M. B. Salem, and A. D. Keromytis, “Fog computing: Mitigating
insider data theft attacks in the cloud,” IEEE Symposium on Security and
Privacy Workshops (SPW), pp. 125–128, 2012.

[54] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role
in the internet of things,” Proc. of the first edition of the ACM MCC workshop
on Mobile cloud computing, pp. 13–16, 2012.

[55] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A platform
for internet of things and analytics.” Springer, 2014, pp. 169–186.

[56] A. Ahmed and A. Ejaz, “A survey on mobile edge computing,” Proc. of the
10th Int’l Conference on Intelligent Systems and Control (ISCO), 2016.

[57] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud com-
puting: architecture, applications, and approaches,” Wireless communications
and mobile computing, vol. 13, no. 18, pp. 1587–1611, 2013.

[58] L. Ravindranath, A. Thiagarajan, H. Balakrishnan, and S. Madden, “Code
in the air: simplifying sensing and coordination tasks on smartphones,” Proc.
of the Twelfth Workshop on Mobile Computing Systems & Applications, p. 4,
2012.

[59] F. Ye, R. Ganti, R. Dimaghani, K. Grueneberg, and S. Calo, “Meca: mobile
edge capture and analysis middleware for social sensing applications,” Proc. of
the 21st ACM Int’l conference companion on World Wide Web, pp. 699–702,
2012.

[60] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A sur-
vey,” Future Generation Computer Systems, vol. 29, no. 1, pp. 84–106, 2013.

[61] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds: Leveraging
mobile devices to provide cloud service at the edge,” Proc. of 8th IEEE Int’l
Conference on Cloud Computing (CLOUD), pp. 9–16.

115

[62] D. Chu, Z. Zhang, A. Wolman, and N. Lane, “Prime: a framework for co-
located multi-device apps,” Proc. of the 2015 ACM Int’l Joint Conference on
Pervasive and Ubiquitous Computing, pp. 203–214.

[63] Amazon Mechanical Turk, “Amazon Mechanical Turk,” http://tinyurl.com/
hd346cs.

[64] J. Howe, “Crowdsourcing: A definition,” Crowdsourcing: Tracking the rise of
the amateur, 2006.

[65] J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 14, no. 6, pp. 1–4,
2006.

[66] A. Kittur, E. H. Chi, and B. Suh, “Crowdsourcing user studies with mechan-
ical turk,” Proc. of the ACM Special Interest Group on Computer-Human In-
teraction (SIGCHI) conference on human factors in computing systems, pp.
453–456, 2008.

[67] H. Ma, D. Zhao, and P. Yuan, “Opportunities in mobile crowd sensing,” Proc.
IEEE Communications Magazine, vol. 52, no. 8, pp. 29–35, 2014.

[68] Y. Lee, Y. Ju, C. Min, S. Kang, I. Hwang, and J. Song, “Comon: cooperative
ambience monitoring platform with continuity and benefit awareness,” Proc. of
the 10th ACM Int’l conference on Mobile systems, applications, and services,
pp. 43–56, 2012.

[69] S. Gaonkar, J. Li, R. R. Choudhury, L. Cox, and A. Schmidt, “Micro-blog:
sharing and querying content through mobile phones and social participation,”
Proc. of the 6th ACM Int’l conference on Mobile systems, applications, and
services, pp. 174–186, 2008.

[70] A. Amiri Sani, K. Boos, M. H. Yun, and L. Zhong, “Rio: a system solution
for sharing i/o between mobile systems,” Proc. of the 12th ACM annual Int’l
conference on Mobile systems, applications, and services, pp. 259–272, 2014.

[71] M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan, “Medusa: A program-
ming framework for crowd-sensing applications,” Proc. of the 10th ACM Int’l
conference on Mobile systems, applications, and services, pp. 337–350, 2012.

116

[72] M. Karaliopoulos, O. Telelis, and I. Koutsopoulos, “User recruitment for mobile
crowdsensing over opportunistic networks,” Proc. IEEE Conference on Com-
puter Communications (INFOCOM), pp. 2254–2262, 2015.

[73] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Com-
puter networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[74] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, “Wireless
sensor networks for habitat monitoring,” Proc. of the 1st ACM Int’l workshop
on Wireless sensor networks and applications, pp. 88–97, 2002.

[75] S. M. Puzi, S. Salleh, R. Ishak, and S. Olariu, “Neighborhood discovery in a
wireless sensor networks,” Proc. of the 9th ACM Int’l Conference on Advances
in Mobile Computing and Multimedia, pp. 80–86, 2011.

[76] H. S. AbdelSalam and S. Olariu, “Toward adaptive sleep schedules for balanc-
ing energy consumption in wireless sensor networks,” IEEE Transactions on
Computers, vol. 61, no. 10, pp. 1443–1458, 2012.

[77] M. San Martın, C. Gutierrez, and P. T. Wood, “Snql: A social networks query
and transformation language,” cities, vol. 5, p. r5, 2011.

[78] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb: an
acquisitional query processing system for sensor networks,” ACM Transactions
on database systems (TODS), vol. 30, no. 1, pp. 122–173, 2005.

[79] M. Ruffing, Y. He, M. Kelly, J. O. Hallstrom, S. Olariu, and M. C. Weigle,
“A retasking framework for wireless sensor networks,” Proc. IEEE Military
Communications Conference (MILCOM), pp. 1066–1071, 2014.

[80] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on
sensor networks,” IEEE Communications magazine, vol. 40, no. 8, pp. 102–114,
2002.

[81] H. S. AbdelSalam and S. Olariu, “Energy-efficient task management,” The Art
of Wireless Sensor Networks, pp. 385–425, 2014.

[82] H. S. AbdelSalam and S. Olariu, “Bees: Bioinspired backbone selection in wire-
less sensor networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 23, no. 1, pp. 44–51, 2012.

117

[83] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie, “Protocols for self-
organization of a wireless sensor network,” IEEE personal communications,
vol. 7, no. 5, pp. 16–27, 2000.

[84] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, “Optimizing sensor
networks in the energy-latency-density design space,” IEEE Transactions on
Mobile Computing, vol. 1, no. 1, pp. 70–80, 2002.

[85] I. Eyal, I. Keidar, and R. Rom, “LiMoSense: live monitoring in dynamic sensor
networks,” Distributed Computing, vol. 27, no. 5, pp. 313–328, 2014.

[86] S. Tilak, K. Chiu, N. B. Abu-Ghazaleh, and T. Fountain, “Dynamic resource
discovery for sensor networks,” Embedded and Ubiquitous Computing–EUC
2005 Workshops, pp. 785–796, 2005.

[87] X. Wang, A. Walden, M. C. Weigle, and S. Olariu, “Strategies for sensor data
aggregation in support of emergency response,” Proc. IEEE Military Commu-
nications Conference (MILCOM), pp. 1120–1126, 2014.

[88] G. Fox, “Peer-to-peer networks,” Computing in Science & Engineering, vol. 3,
no. 3, pp. 75–77, 2001.

[89] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer content
distribution technologies,” ACM computing surveys (CSUR), vol. 36, no. 4, pp.
335–371, 2004.

[90] P. K. Gummadi, S. Saroiu, and S. D. Gribble, “A measurement study of nap-
ster and gnutella as examples of peer-to-peer file sharing systems,” ACM SIG-
COMM Computer Communication Review, vol. 32, no. 1, pp. 82–82, 2002.

[91] W. You, B. Mathieu, P. Truong, J.-F. Peltier, and G. Simon, “Dipit: A dis-
tributed bloom-filter based pit table for ccn nodes,” Proc. of the 21st IEEE
Int’l Conference on Computer Communications and Networks (ICCCN), pp.
1–7, 2012.

[92] Y.-S. Shim, Y.-S. Kim, and K.-H. Lee, “A mobility-based clustering and dis-
covery of web services in mobile ad-hoc networks,” Proc. of the IEEE Int’l
Conference on Web Services. ICWS 2009, pp. 374–380, 2009.

118

[93] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord:
A scalable peer-to-peer lookup service for internet applications,” ACM SIG-
COMM Computer Communication Review, vol. 31, no. 4, pp. 149–160, 2001.

[94] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems,” Middleware 2001, pp. 329–
350, 2001.

[95] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Ku-
biatowicz, “Tapestry: A resilient global-scale overlay for service deployment,”
IEEE Journal on selected areas in communications, vol. 22, no. 1, pp. 41–53,
2004.

[96] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A scalable
content-addressable network. ACM, 2001, vol. 31, no. 4.

[97] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and S. Shenker, “Prefix
hash tree: An indexing data structure over distributed hash tables,” Proc. of
the 23rd ACM symposium on principles of distributed computing, vol. 37, 2004.

[98] R. da Silva Villaca, L. B. de Paula, R. Pasquini, and M. F. Magalhães, “Ham-
ming dht: Taming the similarity search,” IEEE Consumer Communications
and Networking Conference (CCNC), pp. 7–12, 2013.

[99] M. Rabinovich, Z. Xiao, and A. Aggarwal, “Computing on the edge: A platform
for replicating internet applications,” Web content caching and distribution, pp.
57–77, 2004.

[100] P. Liu, D. Willis, and S. Banerjee, “Paradrop: Enabling lightweight multi-
tenancy at the network’s extreme edge,” IEEE/ACM Symposium on Edge
Computing (SEC), pp. 1–13, 2016.

[101] Open Connectivity Foundation, “AllJoyn Open Source Project,” https://
openconnectivity.org/developer/reference-implementation/alljoyn.

[102] Open Connectivity Foundation, “AllJoyn Members,” https://openconnectivity.
org/foundation/our-partners.

[103] Panasonic, “Wireless Speaker System SC-ALL3,” http://www.panasonic.com/
uk/consumer/home-entertainment/wireless-speaker-systems/sc-all3.html.

119

[104] LinkSys, “LinkSys EA8500 Max Stream AC2600 MU-MIMO Smart Wi-Fi
Router,” http://www.linksys.com/us/p/P-EA8500/.

[105] Open Connectivity Foundation, “The OCF Internet of Things Industries,”
https://openconnectivity.org/business/markets.

[106] Open Connectivity Foundation, “Iotivity, finding a resource,” https://www.
iotivity.org/documentation/linux/programmers-guide/finding-resource.

[107] S. Bluetooth, “The bluetooth core specification, v4. 0,” Bluetooth SIG: San
Jose, CA, USA, 2010.

[108] M. Krasnyansky, “Bluez: Official linux bluetooth protocol stack,” http://www.
bluez.org/, 2003.

[109] Android, “Android bluetooth, bluedroid,” https://source.android.com/
devices/bluetooth/.

[110] BlueSoleil, “Bluesoleil 10,” http://www.bluesoleil.com/.

[111] Texus Instruments, “PAN1323 Bluetooth Evaluation Module Kit,” http://
www.ti.com/tool/ez430-rf256x, May 2014.

[112] Texus Instruments, “EZ430-RF256x Bluetooth Evaluation Tool,” http://www.
ti.com/tool/ez430-rf256x, May 2014.

[113] Texus Instruments, “MindTree EtherMind Bluetooth R© Stack and SDK,”
http://www.embeddeddeveloper.com/tools/2319/Texas-Instruments/
MT-BT-SDK.htm.

[114] Stephan, H. Fargus, J. Will, and Florian, “Retropi,” https://retropie.org.uk/.

[115] Apache Mynewt, “Mynewt ble introduction,” https://mynewt.apache.org/
latest/network/ble/ble_intro/.

[116] A. Salem and T. Nadeem, “LAMEN: leveraging resources on anonymous mobile
edge nodes,” Proc. of the Eighth ACM Wireless of the Students, by the Students,
and for the Students Workshop, pp. 15–17, 2016.

120

[117] A. Salem and T. Nadeem, “LAMEN: Towards orchestrating the growing intel-
ligence on the edge,” 3rd IEEE World Forum on Internet of Things (WF-IoT),
pp. 508–513, 2016.

[118] V. Raychoudhury, J. Cao, R. Niyogi, W. Wu, and Y. Lai, “Top k-leader election
in mobile ad hoc networks,” Pervasive and Mobile Computing, vol. 13, pp. 181–
202, 2014.

[119] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The
blockchain model of cryptography and privacy-preserving smart contracts,”
IEEE Symposium on Security and Privacy (SP), pp. 839–858, 2016.

[120] J. Hildenbrand, “What is sideloading?” http://www.androidcentral.com/
what-sideloading-android-z, Feb. 2012.

[121] F. Baccelli, N. Khude, R. Laroia, J. Li, T. Richardson, S. Shakkottai, S. Tavil-
dar, and X. Wu, “On the design of device-to-device autonomous discovery,”
Proc. of the Fourth IEEE Int’l Conference on Communication Systems and
Networks (COMSNETS), pp. 1–9, 2012.

[122] A. Salem, N. Desai, T. Salonidis, and T. Nadeem, “Resource hunting on the
edge,” Proc. of the IEEE/ACM Symposium Edge Computing (SEC), pp. 83–84,
2016.

[123] A. Salem, T. Salonidis, N. Desai, and T. Nadeem, “Kinaara: Distributed dis-
covery and allocation of mobile edge resources,” Proc. of the 13th IEEE Int’l
Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2017.

[124] Q. Ning, C.-A. Chen, R. Stoleru, and C. Chen, “Mobile storm: Distributed
real-time stream processing for mobile clouds,” Proc. of the IEEE 4th IEEE
Int’l Conference on Cloud Networking (CloudNet), pp. 139–145, 2015.

[125] H. Wang and L.-S. Peh, “Mobistreams: A reliable distributed stream processing
system for mobile devices,” Proc. of the 28th IEEE Int’l Parallel and Distributed
Processing Symposium, 2014.

[126] N. J. Navimipour, A. M. Rahmani, A. H. Navin, and M. Hosseinzadeh, “Re-
source discovery mechanisms in grid systems: A survey,” Journal of Network
and Computer Applications, vol. 41, pp. 389–410, 2014.

121

[127] S. K. Datta, R. P. F. Da Costa, and C. Bonnet, “Resource discovery in internet
of things: Current trends and future standardization aspects,” Proc. of the 2nd
IEEE World Forum on Internet of Things (WF-IoT), pp. 542–547, 2015.

[128] Y. Fathy, P. Barnaghi, S. Enshaeifar, and R. Tafazolli, “A Distributed In-
network Indexing Mechanism for the Internet of Things,” Proc. of the 3rd
IEEE World Forum on Internet of Things, 2016.

[129] E. Carlini, A. Lulli, and L. Ricci, “Dragon: Multidimensional range queries on
distributed aggregation trees,” Future Generation Computer Systems, vol. 55,
pp. 101–115, 2016.

[130] H. Zhang, Y. Wen, H. Xie, and N. Yu, Distributed hash table: Theory, platforms
and applications. Springer, 2013.

[131] T. Li, X. Zhou, K. Brandstatter, and I. Raicu, “Distributed key-value store on
hpc and cloud systems,” 2nd Greater Chicago Area System Research Workshop
(GCASR)., pp. 775–787, 2013.

[132] Kevik, “Camera in Android, how to get best size, preview size, picture size,
view size, image distorted?” https://tinyurl.com/jfxl4su.

[133] Audacity Team, “Audio sampling rates,” https://tinyurl.com/q7x9msm.

[134] Android Developers Guide, “Introduction to Android, Resource features,” http:
//developer.android.com/guide/index.html.

[135] M. Lenczner and A. G. Hoen, “CRAWDAD ilesansfil/wifidog (v. 2015-11-06),”
http://crawdad.org/ilesansfil/wifidog/20151106/session, Nov. 2015, traceset:
session.

[136] M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov, “Hamming distance metric
learning,” Advances in neural information processing systems, pp. 1061–1069,
2012.

[137] D. Lin et al., “An information-theoretic definition of similarity.” International
Conference on Machine Learning (ICML), vol. 98, no. 1998, pp. 296–304, 1998.

122

[138] Y. Sun, L. Ma, and S. Wang, “A comparative evaluation of string similar-
ity metrics for ontology alignment,” Journal of Information & Computational
Science, vol. 12, no. 3, pp. 957–964, 2015.

[139] A. Salem and T. Nadeem, “Exposing bluetooth lower layers for iot communi-
cation,” Proc. of the 3rd IEEE World Forum on Internet of Things (WF-IoT),
pp. 147–152, 2016.

[140] M. Ossmann, “Project ubertooth: Building a better bluetooth adapter,” https:
//github.com/greatscottgadgets/ubertooth/wiki/Ubertooth-One, 2011.

[141] M. Uddin, A. Salem, I. Nam, and T. Nadeem, “Wearable sensing framework
for human activity monitoring,” Proc. of the 2015 ACM workshop on Wearable
Systems and Applications, pp. 21–26, 2015.

[142] D. Hughes, “Ble overview,” http://www.summitdata.com/blog/ble-overview/,
2013.

[143] A. Salem, T. Nadeem, and M. Cetin, “Driveblue: can bluetooth enhance your
driving experience?” Proc. of the 12th ACM annual Int’l conference on Mobile
systems, applications, and services, pp. 382–382, 2014.

[144] A. Salem, T. Nadeem, M. Cetin, and S. El-Tawab, “Driveblue: Traffic inci-
dent prediction through single site bluetooth,” 18th IEEE Int’l Conference on
Intelligent Transportation Systems (ITSC), pp. 725–730, 2015.

[145] M. Ettus, “USRP User’s and Developer’s Guide,” Ettus Research LLC, 2005.

[146] K. Amiri, Y. Sun, P. Murphy, C. Hunter, J. R. Cavallaro, and A. Sabharwal,
“Warp, a unified wireless network testbed for education and research,” IEEE
Int’l Conference on Microelectronic Systems Education (MSE’07), pp. 53–54,
2007.

[147] Q. Wang and D. Agrawal, “UCBT - Bluetooth Extension for NS-2,” http:
//www.cs.uc.edu/~cdmc/ucbt/.

[148] G. Tan, “Blueware: Bluetooth Simulator for NS-2,” http://tinyurl.com/
lksdg39.

123

[149] E. Blossom, “Gnu radio: Tools for exploring the radio frequency spectrum,”
Linux J., vol. 2004, no. 122, Jun. 2004.

[150] Ellisys, “Ellisys bluetooth explorer, all-in-one bluetooth R© analysis system,”
http://www.ellisys.com/products/bex400/.

[151] Fitbit, “Fitbit,” https://www.fitbit.com.

[152] Intel, “Intel Drone Light Up the Sky,” https://www.intel.com/content/www/
us/en/technology-innovation/aerial-technology-light-show.html.

[153] Intel, “Intel IoT Gateway Technology,” https://www.intel.com/content/www/
us/en/embedded/solutions/iot-gateway/overview.html.

[154] X. Bosun, “Signal mixing for a 5.1-channel surround sound system’analysis
and experiment,” Journal of the Audio Engineering Society, vol. 49, no. 4, pp.
263–274, 2001.

[155] Pure Data, “Pure Data,” http://puredata.info/.

[156] Monsoon Solutions Inc., “Monsoon Power Monitor.” http://www.msoon.com/.

[157] Hedges and Company, “United states vehicle registration data,
automobile statistics and trends,” http://hedgescompany.com/
automotive-market-research-statistics/auto-mailing-lists-and-marketing,
2015.

[158] D. Schrank, E. Bill, and L. Tim, “Ttiís 2012 urban mobility report,” Texas
A&M Transportation Institute. The Texas A&M University System, 2012.

[159] NationWide, “The real cost of traffic jams,” http://www.nationwide.com/
road-congestion-infographic.jsp.

[160] Statista, “Forecast: number of smartphone users in the u.s. 2010-2018,” http://
www.statista.com/statistics/201182/forecast-of-smartphone-users-in-the-us/,
2017.

[161] Federal Highway Administration, “Traffic congestion and reliability: Trends
and advanced strategies for congestion mitigation,” https://ops.fhwa.dot.gov/
congestion_report/, Sep. 2005.

124

[162] A. Hesham, A. Abdel-Hamid, and M. A. El-Nasr, “A dynamic key distribution
protocol for pki-based vanets,” Proc. of the IEEE IFIP Wireless Days (WD),
pp. 1–3, 2011.

[163] SENA, “Parani-ud100 bluetooth 4.0 class1 usb adapter, exchangeable an-
tenna,” http://www.senanetworks.com/?utm_source=tr.im&utm_medium=
no_referer&utm_campaign=tr.im%2FXiPIx&utm_content=direct_input.

[164] Hawking Technology, “9dbi antenna,” https://tr.im/WBJJG.

[165] Hawking Technology, “15dbi antenna,” https://hawkingtech.com/product/
hai15sc/.

[166] M. Li, J. Lin, D. Yang, G. Xue, and J. Tang, “Quac: Quality-aware contract-
based incentive mechanisms for crowdsensing,” Proc. of the 14th IEEE Int’l
Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2017.

[167] J. Xu, Z. Rao, L. Xu, D. Yang, and T. Li, “Mobile crowd sensing via online
communities: Incentive mechanisms for multiple cooperative tasks,” Proc. of
the 14th IEEE Int’l Conference on Mobile Ad Hoc and Sensor Systems (MASS),
2017.

125

VITA

Ahmed Salem
Department of Computer Science
Old Dominion University
Norfolk, VA 23529

EDUCATION
PhD. in Computer Science, Old Dominion University, USA, 2018.
M.S. in Computer Engineering, Arab Academy For Science and Technology, Egypt
2012.
B.S. in Computer Engineering, Arab Academy For Science and Technology, Egypt
2006.

PROFESSIONAL EXPERIENCE
2018 - **** Software Engineer, Amazon AWS Inc., USA.
2015 - 2015 Research Intern, IBM T.J. Watson Research Center, USA.
2013 - 2018 Graduate Research Assistant, Old Dominion University, USA.
2012 - 2013 Teaching Assistant, Old Dominion University, USA.
2011 - 2012 Software Engineer, POET A.G., Egypt.
2007 - 2011 Software Engineer, Integrated Solution For Ports (ISFP), Egypt.

PROFESSIONAL SOCIETIES
Association for Computing Machinery (ACM)
Institute of Electrical and Electronics Engineers (IEEE)
The ACM Special Interest Group on Mobility of Systems, Users, Data, and Com-
puting (SIGMOBILE)

Typeset using LATEX.

