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ABSTRACT 

EFFICIENT ALGORITHMS FOR PROKARYOTIC WHOLE GENOME ASSEMBLY 

AND FINISHING 

Abhishek Biswas 

Old Dominion University, 2015 

Director: Dr. Desh Ranjan 

Co-Director: Dr. Mohammad Zubair   

 

De-novo genome assembly from DNA fragments is primarily based on sequence 

overlap information. In addition, mate-pair reads or paired-end reads provide linking 

information for joining gaps and bridging repeat regions. Genome assemblers in general 

assemble long contiguous sequences (contigs) using both overlapping reads and linked 

reads until the assembly runs into an ambiguous repeat region. These contigs are further 

bridged into scaffolds using linked read information. However, errors can be made in 

both phases of assembly due to high error threshold of overlap acceptance and linking 

based on too few mate reads. Identical as well as similar repeat regions can often cause 

errors in overlap and mate-pair evidence. In addition, the problem of setting the correct 

threshold to minimize errors and optimize assembly of reads is not trivial and often 

requires a time-consuming trial and error process to obtain optimal results. The typical 

trial-and-error with multiple assembler, which  can be computationally intensive, and is 

very inefficient, especially when users must learn how to use a wide variety of 

assemblers, many of which may be serial requiring long execution time and will not 

return usable or accurate results. Further, we show that the comparison of assembly 

results may not provide the users with a clear winner under all circumstances.  Therefore, 

we propose a novel scaffolding tool, Correlative Algorithm for Repeat Placement 



 
 

(CARP), capable of joining short low error contigs using mate pair reads, 

computationally resolved repeat structures and synteny with one or more reference 

organisms. The CARP tool requires a set of repeat sequences such as insertion sequences 

(IS) that can be found computationally found without assembling the genome. 

Development of methods to identify such repeating regions directly from raw sequence 

reads or draft genomes led to the development of the ISQuest software package. ISQuest 

identifies bacterial ISs and their sequence elements—inverted and direct repeats—in raw 

read data or contigs using flexible search parameters. ISQuest is capable of finding ISs in 

hundreds of partially assembled genomes within hours; making it a valuable high-

throughput tool for a global search of IS and repeat elements.  

The CARP tool matches very low error contigs with strong overlap using the 

ambiguous partial repeat sequence at the ends of the contig annotated using the repeat 

sequences discovered using ISQuest. These matches are verified by synteny with 

genomes of one or more reference organisms. We show that the CARP tool can be used 

to verify low mate pair evidence regions, independently find new joins and significantly 

reduce the number of scaffolds. Finally, we are demonstrate a novel viewer that presents 

to the user the computationally derived joins along with the evidence used to make the 

joins. The viewer allows the user to independently assess their confidence in the joins 

made by the finishing tools and make an informed decision of whether to invest the 

resources necessary to confirm a particular portion of the assembly. Further, we allow 

users to manually record join evidence, re-order contigs, and track the assembly finishing 

process.  
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CHAPTER 1 

INTRODUCTION 

1. Overview  

Genome sequencing is the method of breaking multiple copies of the genome of 

an organism into many small fragments (reads) whose sequence can then be determined 

using a genome sequencer machine. The problem of combining these reads to reconstruct 

the source genome is known as whole genome assembly. The human genome project 

completed in 2003, primarily used a technique called Sanger dideoxynucleotide 

termination sequencing to accomplish the goal of determining all ~3 billion DNA bases 

of the human genome.  This technology used thousands of dedicated sequencing 

instruments running around the clock and serviced by full-time technical staff.  In 2005, 

newer technology, so called “Next-Generation Sequencing” (NGS) was introduced, with 

the result that the sequencing capacity of an entire building of Sanger sequencers could 

be replaced with a single machine roughly the size of a large laser printer.  NGS 

technology has since advanced to the point where gigabases (Gb) of data can be produced 

in a matter of hours, and generating sequence data for small genomes (such as bacteria) 

can be performed in hours for  less than $1000.   

Despite this massive advance in technology, sequencing still has the fundamental 

limitation that relatively short (<1000 bp) sequences are produced, and these sequences 

need to be put back together to recreate the genome of interest.  
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Next-generation sequencing technologies (e.g. Roche 454, Illumina®, Ion 

Torrent™, SOLiD™, etc.) provide unprecedented capacity for extremely high-throughput 

DNA sequencing relative to older Sanger-type methods.  These methods are limited by 

size of individual reads (800bp, 454; 300bp, Illumina®; 400bp Ion Torrent™). However, 

these methods generate overlapping reads that cover the same portion of the genome 

many times over (see Figure 1). Therefore, De novo genome assembly from DNA reads 

is primarily based on overlapping sequence fragments (see Figure 2). The number of 

sequences covering a portion of the genome is called the coverage of the reads. In 

addition, mate-pair or paired-end reads can provide linking information for joining gaps 

and bridging problematic repetitive regions. This is done by generating sequence for two 

short reads that are a known distance apart in the genome. 

 

Fig. 1. Illustration of DNA sequencing 
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A simplistic formulation of this problem, the Shortest Common Superstring 

(SCS), assumes that the original genome should be the shortest sequence that contains 

every fragment as a substring. Additional complexity arises when there are repeats i.e. 

there are multiple identical or nearly identical stretches of DNA in the original sequence 

and sequencing errors (see Figure 3). Generating a final genome entails correctly 

ordering the short sequence fragments and closure (joining) of all regions into a complete 

genome in presence of repeats and errors. Ambiguous and repeat elements are ubiquitous 

in all genomes, bacterial and eukaryotic, with the result that generating sequence data for 

a genome is quite simple, but reassembling the genome from these data can be quite 

challenging.  

Several assemblers such as Celera WGS (Miller, et al., 2008), MIRA (Chevreux, 

et al., 1999), Newbler (Margulies, et al., 2005) and ABySS (Simpson, et al., 2009)have 

been developed to perform genome assembly from fragments; however, the effectiveness 

of these assemblers is impacted by the characteristics of the genome under assembly. For 

example, repetitive elements in genomes are well known to negatively affect assemblies.  

Fig. 2. Illustration of genome assembly process 
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Moreover, assemblers may disagree on the assembly of a particular genome, even 

when working from the same fragment data, and certain assemblers have been shown to 

assemble some organisms better. Uncertainty in assembly accuracy is further complicated 

by lack of comprehensive measures for determining the quality of assembly.  Even 

assembly of “simple” bacterial genomes, with very few repeat regions, usually results in 

multiple, unjoined large fragments that cannot be assembled automatically.  These breaks 

in the assembly must be closed with relatively laborious PCR and Sanger sequencing 

methods, with the result that completing the last 5% of the final genome can often require 

significant time and expense.  

When considering bacterial genomes published in public repositories such as 

GenBank, it is important to note that while a limited number are “final,” and represented 

by one completed contiguous sequence (contig) of the bacterial chromosome, most are 

“draft” and composed of tens to thousands of unjoined contigs.  Production of a final 

genome generally requires expensive PacBio® sequencing that generates long reads (up 

to 25,000bp). These long reads have high sequence error and cannot be used to directly 

assemble the genome accurately but are used to order the contigs assembled using 

Illimina reads that have high sequence fidelity. Further gap filling has to be done using 

older targeted PCR and Sanger sequencing techniques.  Fragmented draft genomes are 

Fig. 3. The repeat problem and examples of “good” and “bad” joins 
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still useful for many types of analyses, and can be used, for example, to generate genome-

wide phylogenetic trees based on the presence of single nucleotide polymorphisms 

(SNPs) between strains.  Many useful data are lost with this approach, however, 

including overall chromosomal arrangement and presence or absence of repetitive regions 

such as insertion sequences (IS) and phages (these are often excluded altogether from 

draft assemblies).  Further, disruption of coding genes (such as via interruption by an IS) 

cannot be completely examined without a final genome, therefore relative analysis of 

bacterial metabolic capabilities is limited when using draft genomes.  

We therefore developed an economical, user friendly, end-to-end computational 

pipeline for identifying insertion sequences and other repetitive elements, performing 

guided assembly of contigs around these elements, and producing more highly finished 

genomes from Illumina Paired-End data than have previously been possible.  The goals 

of this approach are twofold: 1) to use computational methods to dramatically reduce the 

number of unresolved contigs resulting from standard sequence assembly, and 2) to 

provide a user-friendly framework for assessing the quality of a near-final genome and 

guiding gap-closure sequencing in the most efficient way possible.  We propose a novel 

scaffolding tool, Correlative Algorithm for Repeat Placement (CARP), for 

computationally assembling and correctly placing repeat sequences in a genome from 

raw reads. Computational identification and assembly of the repeat elements is performed 

using a tool named ISQuest (Biswas, et al., 2015) developed to provide CARP the 

required input data.  

ISQuest uses BLAST search to identify reads belonging to known mobile 

elements. These reads are further assembled until unique sequence is encountered, and a 
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library of full and partial repeats is generated. We initially concentrate on finding 

insertion sequences and attempt to find all IS elements in a strain and map them based on 

a reference genome. The list of potentially interrupted genes is compiled from the above 

mapping to study large re-arrangements in the genome.  

The scaffolding module using the assembled repeat regions is designed to join 

very low error contigs based on the assembled repeat elements placed correctly within the 

draft genome. The placement of the repeat elements is ensured using several lines of 

evidence such as: 1) presence of incomplete repeat element fragments on the ends of 

unjoined contigs, 2) mate-pair evidence, and 3) synteny (similarity in gene organization) 

with reference genomes.  Importantly, any joins made by this method will be presented to 

the user along with the evidence used to make the joins.  This will provide the end user 

with a much clearer picture of the likelihood of correctness of every join in a draft 

assembly, in order that the labor- and resource-intensive process of finishing via PCR 

amplification and Sanger sequencing can be made as efficient as possible by reducing 

attempts to join misassembled regions. Therefore, users can independently assess their 

confidence in the joins made by the tool. 

The pipeline makes generation of near-final bacterial genomes accessible to 

smaller laboratories for which sequencing resources are more limited than major 

sequencing centers, and will thus make prokaryotic genomics accessible to a wider user 

base.   

2. Thesis Statement  

Our analysis of the assembly problem has revealed that different assemblers can generate 

different assemblies given the same data. These assemblers can make mistakes, which 
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can lead to very time-consuming and expensive trial-and-error when it comes to 

finalizing the genome as assemblers may take hours to complete an assembly. Further, 

there are few tools available that allow quick and intuitive comparison among assemblies, 

therefore one is often left to guess as to which assembly was “best,” and more 

importantly, which joins in the assembly are “good”, “bad” or “acceptable” for further 

analysis.  Further, there are currently no adequate tools for intuitive and convenient 

visualization of draft genomes, which would assist users in the final assembly process 

and track joins that have to be manually verified before publication.   

We therefore explored three major areas of research:  

a. We explore a suite of quality measures for comparison of assemblies and 

assessment of accuracy and reliability of sequence assemblies. 

b. We design and develop a parallel framework to for speeding up bacterial whole 

genome assembly and implementing it for a serial assembler so that at the quality 

of the assembler can be analyzed under various input parameters.   

c. We develop a suit of intuitive tools for generation of draft genomes and guidance 

in joining of final sequences. 

3. Thesis Organization 

The thesis document is organized as follows: 

a. Chapter 2 provides a detailed literature survey of the related works in the area of 

genome assembly and finishing. Relevant work on finding insertion sequences 

and other mobile genetic elements is also included.  

b. Chapter 3 states the genome assembly problem in detail and provides a survey of 

assembly quality of popular assemblers using various assembly quality metrics. 
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The design and implementation details of an efficient parallel framework for 

assembly are provided along with results showing significant assembly speedup.  

c. Chapter 4 describes the Correlative Algorithm for Repeat Placement (CARP) 

genome-finishing algorithm proposed in this thesis. The ISQuest tool designed to 

assemble the biologically significant genomic repeats from raw fragment 

sequence data is presented. The CARP algorithm steps are discussed in detail and 

results showing improved assemblies are presented. 

d. Chapter 5 provides a concluding discussion on the utility and benefits of tools 

developed and presented in this dissertation.  
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

1. Genome Assembly 

   The development of new genome assembly software is being driven by the emergence 

and evolution of sequencing technologies generating reads with significantly different 

lengths, overlap lengths and error characteristics. The first popular sequencing 

technology was based on the chain-terminating inhibitor method by Sanger et al. (Sanger, 

et al., 1977). The technique was automated with a computer and fluorescence detection 

and generates low error reads over 1000bp in length (Smith, et al., 1986). The assembly 

programs to assemble first generation sequences were based on greedy algorithms 

(Tarhio and Ukkonen, 1988) or the overlap-layout-consensus (OLC) graph model 

(Kececioglu and Myers, 1995). The prominent assemblers used to assemble drosophila 

and human genomes include Phrap (Green, 1996), Celera (Myers, et al., 2000) and 

ARACHNE (Batzoglou, et al., 2002).  

   The next generation sequencing technologies with massively-parallel flow-cell 

sequencing and sequencing-by-synthesis generate a large number of reads with shorter 

lengths and higher error than Sanger, but which are significantly more economical. Roche 

454 (Margulies, et al., 2005) can currently generate read lengths less than 800 bp, and Ion 

Torrent
TM

 (Rothberg, et al., 2011) generates read lengths less than 400 bp, with longer 

reads projected in the future. Illumina (Quail, et al., 2008) and ABI SOLiD (Pandey, et 

al., 2008) are short read sequencers with typical read lengths less than 300bp. The 

second-generation sequencing technologies have also developed the capability to read 

from both ends of a fragment and produce reads with a pair at approximate distance. This 
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approach ranges from short-range (<1kb) paired ends (Illumina) to very long-range (>10 

kb) mate-paired reads typically implemented in 454 sequencing.  Paired reads have been 

shown to be sufficient for de novo assembly (Chaisson, et al., 2009), although assembly 

problems persist when repeat elements are present. The read lengths of short-read 

sequencers are not expected to increase drastically and algorithms have been developed 

to handle large quantities of short sequence data. Additionally, error correction 

algorithms have been designed to improve assembly quality (Yang, et al., 2012). Parallel 

implementations of various phases of the assembly algorithms have been developed to 

handle these large datasets efficiently. A popular model based on de-Bruijn graphs has 

been accepted by assembler developers for its ability to model repeat structure of 

genomes. The de-Bruijn graph model  groups the reads into shorter stretches of length k 

(called k-mers) and representing each read as a path in the graph (Idury and Waterman, 

1995). This model was improved by graph reduction to untangle the loops in the graph 

and model the graph traversal as an Eulerian walk (Pevzner, et al., 2001). Major short 

read assemblers include Trinity (Grabherr, et al., 2011), Velvet (Zerbino and Birney, 

2008), ABySS (Simpson, et al., 2009), ALLPATHS (Butler, et al., 2008), SHORTY 

(Hossain, et al., 2009) and Ray (Boisvert, et al., 2010). ABySS and Ray are parallel 

implementations of this model. 

   Efficient implementations of the OLC graph model are also very popular for next 

generation genome assembly particularly to handle whole prokaryotic genomes. Major 

open source assemblers include Celera assembler (Pauchet, et al., 2009), Arachne 

(Batzoglou, et al., 2002) and MIRA (Chevreux, 2005). The OLC graph model was 

implemented for assembly of Roche/454 reads and the sequencer is distributed with 



11 
 

Newbler (Pauchet, et al., 2009). A recently developed assembler based on this model is 

EDENA (Hernandez, et al., 2008) and is capable of assembling short reads (35 bases). 

Parallel implementation of OLC model has been mostly limited to the overlap and layout 

phases of the process. However, a full parallel version of MIRA has been implemented 

(Biswas, et al., 2013). A memory efficient representation of the OLC graph model uses 

string graphs (Myers, 2005). The String Graph Assembler(SGA) (Simpson and Durbin, 

2012) implements distributed construction of FM-indices (Simpson and Durbin, 2010) 

used to represent the reads in the string graph and perform graph operations like overlap 

construction on the FM-index values instead of the reads, thus reducing memory footprint 

of the assembler. A parallel framework for string graph assembler has been proposed 

(Jackson, et al., 2010). 

“Third generation” sequencing machines capable of long- to very-long reads are in 

development but not yet commercially available, with the exception of the Pacific 

Biosciences.  This instrument produces long sequences (e.g., median > 2kbp, maximum = 

25kbp) and supports short turn-around time (Eid, et al., 2009), however current data 

indicates this instrument suffers from low (81-83%) accuracy (Chin, et al., 2011). The 

low accuracy of the data requires error correction before assembly and OLC model of 

assembly seems to be most appropriate (Koren, et al., 2012). Assemblers supporting 

assembly of PacBio reads include Celera (Koren, et al., 2012), ALLPATHS-LG (Gnerre, 

et al., 2011) and MIRA (Chevreux, et al., 1999). A detailed description of the assembly 

techniques and the history of their various implementations can be found in (Imelfort and 

Edwards, 2009; Miller, et al., 2010).      
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2. Genome Assembly Quality 

The selection of the assembler is largely guided by the sequencing technology used to 

obtain the reads. However, considering the various assemblers available for each 

sequencing generation the selection process is not trivial and is generally based on 

guesswork and multiple assembly trials. The fundamental theoretical relationship 

between the input factors like read length, coverage, repeat lengths, mate distance etc. 

and the assembly problem has been developed (Nagarajan and Pop, 2009). Experimental 

results often show that certain assemblers perform better on some datasets and it is not 

easy to declare a clear winner (Lin, et al., 2011; Narzisi and Mishra, 2011; Zhang, et al., 

2011). Certain inferences may be drawn from empirical data but the set of significant 

input parameters that determine the assembly quality generated by an assembler is not 

known. On the other hand metrics for assessing quality of an assembly and comparison of 

different assemblies have been extensively studied. The GAGE (Salzberg, et al., 2011) 

assembler comparison attempts to provide some empirical assessment of assembly 

quality for some input datasets.  The amosvalidate tool uses five basic characteristics to 

validate an assembly by measuring the goodness of fit of the input data and assembly 

output (Phillippy, et al., 2008). The Assemblathon 1 (Earl, et al., 2011) is a proposed 

annual assembly competition and lists an extensive list of assembly quality parameters 

for judging the best assembly. In presence of a reference genome or genome of a related 

organism a reference mapping can be performed using software like MUMMER 3 

(Kurtz, et al., 2004), progressiveMauve (Darling, et al., 2010) and BLAST (Altschul, et 

al., 1990). Comparing assembler quality requires studying the tradeoffs between various 
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quality measures and Feature-Response curves (FRC) have been proposed to account for 

such relationships (Narzisi and Mishra, 2011; Narzisi and Mishra, 2011). The impact of 

the various input parameters on the assembly quality metrics seems to be an open 

problem whose solution is vital in appropriate selection of the assembler for a project.  

Various parameters of the given data can be used to compare assemblers. Read 

lengths have been shown to significantly affect the assembly quality. A study of the best 

possible assembly quality using short reads of size varying from 25bp to 1000bp is 

presented in (Kingsford, et al., 2010). This work measured the complexity of the final 

assembly graph for 375 organisms and empirically derived an upper bound on the 

achievable assembly quality. The relationship between read lengths and the resolution of 

repeats and the expected number of gaps is explored in (Cahill, et al., 2010). This work 

provided a measure of expected number of contigs, gaps and their sizes. The inherent 

repeat structure of a genome is an important input parameter as it is the property of the 

organism and not of the technology used to sequence the genome. Various techniques 

have been proposed to detect repeats and repeat families in complete and partial 

genomes. Though various models and parameters have been proposed to express the 

repeat structure of the genome, profiles have not been developed to classify the 

assemblers based on their capability to handle these repeat models. Two algorithms for 

derivation of repeat structure from a partially assembled genome are proposed in 

(Quitzau and Stoye, 2008). A repeat classification algorithm and a model for representing 

longer repeats as an overlay of sub-repeats is proposed in (Pevzner, et al., 2004). The 

RepeatGluer algorithm identifies the repeats and generates their consensus sequence and 

copy number.  A theoretical measure to estimate the repeat structure, DNA length, is 
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proposed by (Li and Waterman, 2003) using parameters derived from the input reads like 

coverage, nucleotide distribution and l-tuples. Finally, repeat sequence family detection 

in complete genomes (Bao and Eddy, 2002; Price, et al., 2005) classify repeats based on 

length and frequency into various repeat elements. 

3. Genome Assembly Finishing 

Most assemblers generate a set of contiguous non-overlapping sequences 

covering some part of the genome. These contigs are ordered and oriented through the 

process of scaffolding to generate a gapped representation of the genome.  Scaffolding 

algorithms can use mate pair information of the reads at the ends of a contig to join it to 

other contigs. Joining can also be done by mapping the contigs to a reference genome or 

by inspecting other assemblies and checking for possible joins missed by the assembler. 

Some of the  assemblers like Celera WGS  are capable of utilizing mate pair data for 

scaffolding. Other tools for scaffolding include Bambus (Pop, et al., 2004), 

SUPERCONTIGS (Puiu, 2004) and Autofinish (Gordon, et al., 2001). 

 

4. Genomic Repeat Finding 

High-throughput sequencing methods allow generation of large amounts of 

sequence data making the annotation process the bottleneck for genomic research. In 

addition to open reading frames (ORFs) and regulatory elements, correct annotation and 

regulatory elements, correct annotation of other features such as mobile genetic elements 

(MGEs) is also essential. These MGEs include bacteriophages, conjugative transposons, 

integrons, unit transposons, composite transposons and insertion sequences (ISs). Such 

transposable elements are defined as specific DNA segments that can repeatedly insert 
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into one or more sites in one or more genomes. ISs are transposable elements that are 

regarded as genomic parasites proliferating in their host and surviving only through 

horizontal gene transfer (Schaack, et al., 2010). ISs play a major role in genome 

evolution and plasticity, mediating gene transfers and promoting genome duplication, 

deletion and rearrangement (Frost, et al., 2005). Insertion sequences may be abundant in 

host genomes and are intimately involved in mediating horizontal gene transfer, 

generation of pseudogenes, genomic rearrangement and alteration of regulatory elements 

(Frost, et al., 2005; Schaack, et al., 2010).  

The abundance and diversity of MGE elements in prokaryotic genomes poses 

significant challenges in automated identification and annotation using computational 

methods. The ISFinder database is currently the most comprehensive dedicated resource 

for high-quality, manually curated ISs annotations (ISFinder at https://www-

is.biotoul.fr/). Therefore, we assume this database to be an accurate set of ISs, but 

incomplete because genomes are being sequenced faster than they are annotated to this 

extent. However, several studies have used the referenced sequences in the ISFinder 

database to mine various collections of genomic data using BLAST-based software 

(Cerveau, et al., 2011; Filée, et al., 2007; Leclercq and Cordaux, 2011; Mahillon and 

Chandler, 1998; Wagner, 2006).  

The development of high-throughput sequencing techniques has led to the 

availability of thousands of sequenced genomes and metagenomes that require automated 

identification of ISs. Genome annotation pipelines such as Prokka (Seemann, 2014) and 

Manatee (Ablordey, et al., 2005) stop at the point of labeling ORFs as ‘transposase’ or 

‘integrase’ where sufficient homology is observed. Without classification of ISs into 

https://www-is.biotoul.fr/
https://www-is.biotoul.fr/
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families and enumeration within genomes, broad-scale comparison studies across closely 

related strains are not possible. The first automated approach to annotate ISs was used for 

an analysis of 19 cyanobacterial and 31 archaeal genomes, but this has yet to be made 

publicly available as an automated pipeline (Zhou, et al., 2008). ISSaga is a web 

application pipeline that allows semi-automated IS annotation in complete genomes 

(Varani, et al., 2011). ISSaga employs a library-based method using BLAST seeded with 

the ISFinder sequences to classify ORFs into IS families. Although ISSaga represents 

significant progress in automated IS annotation, the efficiency of this approach in 

identifying transposable elements is questionable due to its dependency on the ISFinder 

database; ISSaga cannot automatically identify novel ISs not already present in ISFinder. 

IScan is a publicly available application that makes use of BLAST with a single reference 

transposase sequence per IS family to scan whole genomes for ISs, and includes in its 

prediction pipeline searches for transposases and inverted and direct repeats (Wagner, et 

al., 2007). IScan was used to investigate ISs in 438 prokaryotic genomes and found a 

limited number of ISs in most taxa (Wagner and de la Chaux, 2008). OASIS, or 

Optimized Annotation System for Insertion Sequences, is another publicly available 

computational tool for automated annotation of ISs (Robinson, et al., 2012) in whole 

genomes. OASIS takes advantage of widely available transposase annotations to identify 

candidate ISs and then uses a computationally efficient maximum likelihood method of 

multiple sequence alignment to identify the edges of each element. Although OASIS is 

capable of predicting IS families, this functionality seems to be deprecated in the current 

version of the software. Through comparisons across 1319 genomes to a benchmark of 

ISFinder annotations, OASIS detected 37,427 ISs while IScan (Wagner, et al., 2007) 
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detected only 2902 ISs. 

Software tools have also been developed to predict IS sequences and families 

based on profile-sequence comparisons. These tools employ Hidden Markov Models 

(HMMs) based on transposases of characterized IS families. HMMs have been generated 

for transposases belonging to 19 characterized families of ISs in the PFAM database 

(Finn, et al., 2014).  The Superfamily database of structural and functional annotation of 

genomes currently hosts 6 HMM profiles from domains belonging to two prokaryotic 

families of transposases: mu bacteriophage transposase and IS200 (Gough and Chothia, 

2002). The TnpPred web service provides profile HMMs for the remaining IS families 

and improves on the accuracy of the HMMs in the PFAM database (Riadi, et al., 2012). 

Effective prediction of ISs and Miniature Inverted repeat Transposable elements (MITEs) 

using HMMs has been shown for 30 archaeal genomes (Kamoun, et al., 2013), 

demonstrating that HMM-based predictions can augment BLAST-based sequence-

sequence IS search methods to improve accuracy and find novel ISs. 

The current software tools described above operate only on complete genomes 

with fully annotated ORFs. Complete genome assembly of a single strain of bacteria can 

be time-consuming and costly, and draft genomes or raw read sets are increasingly used 

for comparative genomics studies of prokaryotes. Here, we present the ISQuest tool for 

global investigation of ISs in unassembled or partially assembled prokaryote genomes. 

The impact of the various input parameters on the assembly quality metrics seems 

to be an open problem whose solution is vital in appropriate selection of the assembler 

for a project. Comprehensive end-to-end genome assembly packages capable of 

assembling various sequencing reads are freely available for users to download and 
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install. Perhaps the most popular assembler is Celera WGS (Miller, et al., 2010), which is 

capable of handling large number of reads from various sequencing machines. The Celera 

assembler in conjunction with the AMOS (Koren, et al., 2012; Treangen, et al., 2002) 

analysis package form a complete genome assembly package. A similar package 

designed specifically for prokaryotic genomes provides assembly capability with 

automated result analysis and gene annotation (Kislyuk, et al., 2010). This package 

assembles the data using a small set of assemblers and selects the best assembly based on 

certain quality metrics.  These assembly packages are, however, not capable of selecting 

an appropriate assembler based on the input characteristics of the dataset. In many cases, 

there is no clear winner in terms of standard assembly quality metrics. For example, an 

assembler may generate an assembly with very short contigs, which are all correct, but 

the assembly is too fragmented to be useful to the user while another assembler generated 

long useful contigs with some misassembles. The tool proposed here requires the user to 

assemble the read libraries using an assembler with strict thresholds to ensure no 

assembly errors. The proposed novel scaffolding tool, Correlative Algorithm for Repeat 

Placement (CARP) (Biswas, et al., 2013), is capable of joining short low error contigs 

using mate pair reads, computationally resolved repeat structures and synteny with one or 

more reference organisms (Galardini, et al., 2011). The CARP tool requires a set of 

repeat sequences such as insertion sequences (IS) that can be found computationally 

found without assembling the genome. Development of methods to identify such 

repeating regions directly from raw sequence reads or draft genomes led to the 

development of the ISQuest software package (Biswas, et al., 2015). ISQuest identifies 

bacterial ISs and their sequence elements—inverted and direct repeats—in raw read data 
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or contigs using flexible search parameters. ISQuest is capable of finding ISs in hundreds 

of partially assembled genomes within hours, making it a valuable high-throughput tool 

for a global search of IS and repeat elements.  

The CARP tool matches very low error contigs with strong overlap using the 

ambiguous partial repeat sequence at the ends of the contig annotated using the repeat 

sequences discovered using ISQuest. These matches are verified by synteny with 

genomes of one or more reference organisms. We show that the CARP tool can be used 

to verify low mate pair evidence regions, independently find new joins and significantly 

reduce the number of scaffolds. Finally, we are demonstrate, Unverified Join Viewer 

(UJV) (Biswas, et al., 2015), a novel viewer that presents to the user the computationally 

derived joins along with the evidence used to make the joins. The viewer allows the user 

to independently assess their confidence in the joins made by the finishing tools and 

make an informed decision of whether to invest the resources necessary to confirm a 

particular portion of the assembly. Further, we allow users to manually record join 

evidence, re-order contigs, and track the assembly finishing process. The UJV finishing 

tool allows the user to track analyses PCR finishing (Kislyuk, et al., 2010; Steve Rozen, 

1998; Ye, et al., 2012) of the current assembly. This tool is expected to reduce the time 

spent by biologists on end-to-end assembly, assembly analysis and computational 

finishing from months to a few days. 
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CHAPTER 3 

GENOME ASSEMBLY AND ASSEMBLY QUALITY 

1. Overview 

The whole-genome assembly problem has been a center of significant research in the 

last 20 years. Assembly of a genome using the data available from genome sequencing 

processes is an NP-hard problem (shortest superstring problem (Kececioglu and Myers, 

1995)) even in the absence of errors. Four major assembly modeling techniques have 

been proposed to solve the problem of combining short sequence reads to reconstruct the 

source DNA. Graph-based representation of the genome assembly problem has resulted 

in three models. The OLC model (Kececioglu and Myers, 1995) represents each read as a 

vertex in a graph connected by edges, weighted by their pairwise alignment scores. The 

assembly algorithm seeks to find a path in this graph such that all the nodes are included 

only once in the assembled sequence. A disadvantage of this method is that repeat 

sequences (identical or nearly identical stretches of DNA) can be collapsed and cause 

misassembled joins resulting in rearrangement of large genome fragments. The de-Bruijn 

graph model (Pevzner and Tang, 2001) groups the reads into shorter stretches of length k 

(called k-mers) and representing each read as a path in the graph. The assembly can then 

be represented as a superpath, a path that includes all of the input paths. Since an edge 

can be traversed multiple times, repeat sequences are not compressed during assembly. 

An alternative model for of sequence assembly uses string graphs (Myers, 2005). An 

overlap graph is built where nodes correspond to reads and edges correspond to overlaps. 

The shortest walk that includes all of the required edges represents the assembly. The 

assembly of very short read sequencers has been modeled as greedy algorithm using 
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index tables for faster assembly (Whiteford, et al., 2005). Based on these techniques, over 

30 assemblers have been developed. A major problem is that these assemblers do not 

agree on the assembly and certain assemblers have been shown to assemble some 

organisms better, but fail for others. Therefore, selection of an assembler for a particular 

project is an important task in itself. This task is non-trivial for a typical life science 

researcher who may not have a great deal of expertise in computing or access to 

resources or to determine in a reasonable time the accuracy of assembly produced by an 

assembler. Frequently, assemblers are customized to assemble reads generated from a 

certain sequencing technologies and the sequencing technology is the first parameter 

considered for assembler selection. Other parameters include coverage, uniformity of 

coverage, read lengths, GC-ratio, and repeat structure and frequency. These parameters of 

the input reads are properties of the sequencing technology or the original sequence and 

must be correlated to the assembly results of the assembler. Real-life genomes contain 

repeats of various lengths, making it unlikely that any assembler will reproduce the 

original complete genome. The heuristic algorithms for contig assembly (contiguous 

assembly of reads) are greedy by design as searching for the overall best read to assemble 

into a contig is computationally intractable even in absence of errors. Therefore, all the 

algorithms optimize a cost function such as overlap score to select the next read for 

assembly. For example, MIRA assembler builds a pairwise overlap graph with edge 

weights scoring the overlap. The pathfinder algorithm finds paths in this graph starting 

from high density low error start nodes and constructs the contigs. Celera assembler first 

eliminates reads that are substrings of other reads and then builds a best overlap graph. 

This graph is then traversed to find contigs and other reads aligned to the contig to get the 
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consensus. While both these assemblers are based on the OLC model various error 

thresholds and internal statistics calculation for error correction and consensus generation 

are different between assemblers and contribute to different assemblies.  

 

2. Comparing Genome Assembly Quality 

Next-generation sequencing technologies (e.g. 454, Illumina, Ion TorrentTM, 

SoLiD, etc.) provide unprecedented capacity for extremely high-throughput DNA 

sequencing relative to older Sanger-type methods.  Like Sanger sequencing, however, 

these methods are limited by size of individual reads (800bp, 454; 300bp, Illumina; 

400bp Ion TorrentTM), thus organismal genomes must be sequenced in fragments, rather 

than as a continuous molecule.  The problem of combining sequence fragments to 

reconstruct the source genome is known as sequence (or genome) assembly. Several 

assemblers have been created to perform genome assembly from fragments; however, the 

effectiveness of these assemblers is impacted by the characteristics of the genome under 

assembly. Complete computational assembly of genomes is rare and assemblers generally 

generate a set of long contiguous sequences (contigs), which are disjoint portions of the 

genome, cannot be further joined. For example, repetitive elements in genomes are well-

known to negatively impact assemblies as they represent ambiguous joins that are 

difficult to computationally join. Also, assemblers may disagree on the assembly of a 

particular genome, even when working from the same fragment data, and certain 

assemblers have been shown to assemble some organisms better than others. Uncertainty 

in assembly accuracy is further complicated by lack of comprehensive measures for 

determining the quality of assembly. Two commonly used assembly quality metrics are 

N50 score and CE statistic. N50 score is the length of the longest contig such that half of 
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the sequence fragments belong to longer contigs and CE statistic is the number of 

standard deviations the average local mate pair lengths differ from the global mean. Such 

quality characteristics like N50 score and CE statistic are not always conclusive in 

determining the best assembly. N50 scores, in particular, may be misleading, as they 

reflect only the length of assemblies, ignoring the fact that increased length may result 

from misassembly of fragments. CE statistics also may be satisfied by a poor quality 

assembly of short contiguous sequences that do not correctly assemble long repeat 

regions. Therefore, to study the correlation between input and output characteristics of 

assemblers we focus on output parameters derived from comparing the assembled contigs 

to the original sequences. In this study, we propose to answer the following questions. (a) 

What characteristics of a genome sequence and the sequenced read fragments make one 

assembler more suitable than others? (b) How do we know that a sequence assembler is 

generating a “good assembly” (i.e. faithful to the original sequence)?  (c) Can we provide 

a simple yet effective model to estimate the expected error of an assembly for selection of 

the most appropriate assembler for a given genomic sequence? 

   Studying the assembly quality of genome assemblers to determine the 

correctness of assembly and achieve optimal assembly, reducing the need for expensive 

genome finishing, is of great interest to biologists. Broadly speaking, we focus on the 

following aspects, namely, (1) on investigating the assembly characteristics of an 

assembler as a whole or (2) on investigating the relationship between the input 

parameters and the assembly quality generated by the assembler. The first study is useful 

for comparison of assemblers and selection of the appropriate assembler. Likewise, the 

second study is useful for various purposes such as deciding on the sequencing 
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technology, determining the parameters such as read lengths, coverage and mate pair 

distances of the input fragments. The input parameters are classified into two categories - 

(1) Genome fragmentation parameters: read length, coverage and mate pair distances (2) 

Genome sequence parameters: repeat length, repeat frequency and insertion sequences. 

The assembly quality metrics used to assess correctness of assembly are also classified 

into two categories - (1) Metrics measured by direct comparison to the original sequence 

such as misassembled contigs and correctly assembled repeat areas (2) Metrics measured 

by testing the fit of input data to assembled contigs such as mate pair consistency and 

error rates of assembled reads. 

   The first big data challenge is the generation of the simulated read libraries with 

various input parameters varied to cover the spectrum of values obtained from major 

sequencers available to biologists today. To generate reads for experimentation we 

developed a simulator for generating read libraries. Earlier sequencing simulation 

techniques, such as Genfrag by (Engle and Burks, 1994) and CelSim (Myers, 1999) 

concentrated on shotgun data, and MetaSim (Richter, et al., 2008) and Flowsim (Balzer, 

et al., 2010) simulated data from 454 pyrosequencing process. Generating a simulator 

based on an empirical distribution is a better fit, we developed a fast simulator, that 

applies a parametric log normal distribution to simulate the shotgun process based on 

user specified read length and standard deviation. Quality values however are estimated 

from a position specific error function based on the read length and base type similar to 

(Balzer, et al., 2010). The simulator allows us to quickly generate read libraries for 

assembly and allows us to vary certain basic fragmentation parameters such as read 

lengths, coverage and mate pair distances.  
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Table 1. MIRA assembly time breakup 

Organism Reads
a
 Total Time Graph Const

b
 Path Finder

c
 Cons.

d
 Error Corr.

e
 

M. Marinum 
500,000 624 413 103 86 22 

1,000,000 1,327 867 261 146 53 

E. Coli 
500,000 589 342 132 79 36 

1,000,000 959 612 192 113 42 

M. Tuberculosis 
500,000 581 374 96 84 27 

1,000,000 1,123 712 219 130 62 

Average %   63.51 19.05 12.65 4.68 
       a

The number of simulated reads with mean length of 600bp and standard deviation of 100bp. 
       b

The time (in minutes) to construct the assembly graph. 
      c

The time (in minutes) to find all the paths in the graph and assemble the contigs. 
      d

The time (in minutes) to construct the consensus sequence of the contigs. 
      e

The time (in minutes) to error correct the contigs in the assembly. 
 

 

The biggest computational challenge is the assembly of the simulated read 

libraries generated. Most assemblers take a long time to work with large number of 

sequences, for example, it takes around 18.3 hours to assemble a dataset with 1 million 

reads with MIRA (see Table 1). The comparative analysis of five assemblers show the 

time and memory requirement of some major assemblers on a 3GHz quad core machine 

(Kumar and Blaxter, 2010). This limits the number of genomes we can use to perform the 

study as we need to run the assembly process several times with different parameters. 

Currently there are over 2,773 strains of bacteria alone and creating simulated read 

libraries with various input parameters and assembling them is the major computational 

challenge. Additionally, assembling read libraries with multiple input parameters varying 

is too time consuming and the relationship among the input parameters becomes hard to 

explore. Therefore, in this study we vary the input parameters of the read libraries only 

along one dimension at a time. 

    Due to the above big data challenges we perform the study on a smaller scale 

by selecting a representative set of bacterial genomes. To perform this study we selected 

20 sample prokaryotic genomes based on the genome structure. The first set of 10 sample 
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organisms was selected based on the number of repeat elements. The number of repeats 

sequences were counted in all known bacteria genomes from NCBI database using  

RepeatScout (Price, et al., 2005). The top 10 genomes with the greatest number of repeat 

sequences were selected for the study. The second set of 10 sample organisms was 

selected based on the number of insertion sequences in the genome. Insertion sequences 

are mobile genetic sequences which copy themselves at different locations on the 

genome. The insertion sequences belonging to the same family are very close copies of 

each other and are often not correctly assembled by assemblers. Therefore we selected 10 

genomes with large number of insertion sequences with largest insertion sequence copies 

from the ISFinder database (Kichenaradja, et al., 2010). The sample genomes selected are 

highly repetitive real genomes and a simulator is used to generate fragment libraries with 

different read lengths, coverage and mate pair distances. The selection of only 20 

prokaryotic genomes can be seen as a very small sample size but, the long execution time 

of most open source assemblers is the major limiting factor in the scale of this study. We 

selected assemblers with parallel implementations and covered a wide range of the input 

parameters to study the correlations between the input and output parameters in detail.   

  The fragment libraries are assembled using the four assemblers Celera WGS 

(Miller, et al., 2008), ABySS (Simpson, et al., 2009), Velvet (Zerbino and Birney, 2008) 

and parallel version of MIRA (Biswas, et al., 2013). The assembly characteristics are 

correlated with the fragment library and genome structure parameters to derive a 

polynomial relationship that can be used to estimate the expected quality of assembly. 

The correctness of the polynomial regression is measured by 10 fold cross validation. The 

set of genomes is divided in to 10 subsamples out of which 9 subsamples are used for the 
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polynomial regression and the remaining subsample is used for calculating the mean 

square error (MSE). This process is repeated 10 times so that each subsample is used as 

test set in one of the iterations. The average MSE provides a measure of correctness of 

the model. The study in itself is interesting and useful for finding parameters that make 

significant differences to assembler output and must be considered during selection 

among assembler. For example high coverage seems to deteriorate assembler quality for 

Celera WGS and Velvet but, the does not make a significant difference to ABySS and 

MIRA assemblies. 

   In this section we present the results of the study correlating assembler output to 

the input parameters. The sample genomes selected are highly repetitive real genomes 

and a simulator is used to generate fragment libraries with different read lengths, 

coverage and mate pair distances. The fragment libraries are assembled using the four 

assemblers Celera WGS, ABySS, Velvet and MIRA. The assembly characteristics are 

correlated with the fragment library and genome structure parameters to derive a 

polynomial relationship. The degree of the polynomial used to approximate the 

correlation curve is progressively increased until no major improvement in the coefficient 

of determination (R2) is achieved. The range of values for R2 is between 1 and 0 where 1 

indicates strong directly proportional relation and 0 indicated no correlation. Therefore, a 

value of R2 close to +1 indicates the strong relationship between the X and Y variables.  

The polyfit function from MATLAB was used to fit the data and obtain coefficients of 

the polynomial. 

   The correctness of the polynomial regression is measured by 10 fold cross 

validation. The set of genomes is divided in to 10 subsamples out of which 9 subsamples 
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are used for the polynomial regression and the remaining subsample is used for 

calculating the mean square error (MSE). This process is repeated 10 times so that each 

subsample is used as test set in one of the iterations. The average MSE from the 10 

iterations provides the measure of correctness expected from the estimating polynomial.    

2.1. Read Length Experiment 

   The read length experiment varies the average fragment length of the dataset 

and correlates it to the number of correctly assembled contigs.  A contig is considered 

correctly assembled if there are no incorrect joins and the whole contig can be aligned to 

original genome sequence using MegaBLAST (Altschul, et al., 1997) with standard 

parameters. We first generate 50 read length values in the range of 100bp to 500bp 

sampled uniformly at random. The simulator simulates the fragmentation process with 

each read length for each of the 20 genomes. This process generates 50 datasets with 

mean read length in the range of 100bp to 500bp for each of the 20 genomes. The mean 

coverage of the datasets is constant at 40 and the datasets contain no mate pair 

information. The read lengths in each dataset are normally distributed with a standard 

deviation of 50bp.  

   The fraction of correctly assembled contigs, i.e. number of correct contigs 

divided by the total number of contigs, is obtained from assembly of the 50 datasets for 

each of the 20 genomes. The fraction of correctly assembled contigs is averaged over the 

20 genomes for each assembler to obtain the mean fraction of correctly assembled 

contigs at each of the 50 data points. This curve of 50 points represents the assembler 

misassembly characteristic over the range of read lengths from 100bp to 500bp.       

   The fraction of correctly assembled contigs for each assembler is averaged 
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within equal intervals of 25bp from 100bp to 500bp for easier visualization (see Graph 

1.). 

ABySS assembler performs best with only about 5% incorrect contigs and 

remains consistent for the whole range of read lengths. Celera WGS and Velvet have 

similar misassembly characteristics and MIRA performs worst with over 10% of contigs 

misassembled.  

 

 
Graph 1. Mean of the fraction of correctly assembled contigs in intervals of 25 vs read 

length (bp) 

 

 

The 50 data points generated for each assembler can be approximated by a 

polynomial and 10 fold cross validation is used to obtain the average error of the 

estimator polynomial (see Table 2). The curves can be approximated with low error using 

a quadratic or cubic polynomial with very strong coefficient of determination (Table 2 

Column 3). This indicates that read length is a highly significant parameter for correct 

assembly for all the assemblers. The average mean square error is very low 

demonstrating that these polynomials are good predictors of misassembly (Table 2 

Column 6). 
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 Table 2. Correlating read length and correct contigs 

Assembler Degree
a
 R

2b
 D.F.

 c
 P-value

d
 Avg. MSE

e
 

ABySS 2 0.974 398 0.000 4.667e-4 

Celera WGS 3 0.980 397 0.000 8.975e-4 

MIRA 3 0.987 397 0.000 1.039e-2 

Velvet 3 0.978 397 0.000 1.454e-3 

a
Degree of the polynomial fitting the assembler output characteristics. 

b
Coefficient of determination: Expresses the strength of the relationship between the X and Y variables. 

c
Degrees of freedom. 

d
Probability of getting an R

2
 with a polynomial of this degree. 

e
Average of the mean square error generated by each iteration of 10-fold cross validation. 

 

 

2.2. Coverage Experiment 

   The coverage experiment varies the coverage of the dataset keeping read length 

constant and correlates it to the number of correctly assembled contigs. We simulate 

fragmentation process for 20 different coverage values starting from 10 to 200 with equal 

gaps of 10 for each of the 20 genomes. The read length of the dataset is constant at 400bp 

and the datasets contain no mate pair information.  

 

 
Graph 2. Correctly assembled contigs vs coverage 

 

 

The fraction of correctly assembled contigs, i.e. number of correct contigs divided 
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by the total number of contigs, is obtained from assembly of the 20 datasets for each of 

the 20 genomes. The fraction of correctly assembled contigs is averaged for each 

assembler at each of the 20 coverage values to obtain the mean fraction of correctly 

assembled contigs at each of the 20 coverage points. This curve of 20 points represents 

the assembler misassembly characteristic over the coverage of 10 to 200 (see Graph 2.). 

The increase in coverage initially improves the percentage of correct contigs (see Graph 

2.). However, at very large coverage the both Velvet and Celera WGS perform 

increasingly worse. MIRA and ABySS seem to perform consistently at higher coverage. 

   The 20 data points generated for each assembler can be approximated by a 

polynomial and 10 fold cross validation is used to obtain the average error of the 

estimator polynomial (see Table 3). The curves in this case are better approximated by a 

quartic polynomial with low coefficient of determination in case of ABySS and MIRA 

(Table 3 Column 3). This indicates that coverage plays a role in assembly generated by 

Celera and Velvet but, not quite as significant in the other two assemblers.  

 

Table 3. Correlating coverage and correct contigs 

Assembler Degree
a
 R

2b
 D.F.

 c
 P-value

d
 Avg. MSE

e
 

ABySS 4 0.753 15 1.83e-3 4.551e-3 

Celera WGS 4 0.919 15 5.07e-8 2.750e-3 

MIRA 4 0.814 15 2.3e-5 5.97e-3 

Velvet 4 0.899 15 6.2e-8 1.250e-3 
a
Degree of the polynomial fitting the assembler output characteristics. 

b
Coefficient of determination: Expresses the strength of the relationship between the X and Y variables.   

c
Degrees of freedom. 

d
Probability of getting an R

2
 with a polynomial of this degree. 

e
Average of the mean square error generated by each iteration of 10-fold cross validation.     

 

 

 Therefore, coverage seems to be a parameter that must be considered during 

assembly selection. The average mean square error is very low demonstrating that these 
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polynomials are good predictors of misassembly (Table 3 Column 6). 

2.3. Mate Pair Experiment 

   The mate pair experiment varies the mate pair of the reads in the dataset keeping 

read length and coverage constant. The fragmentation simulation is done for each of the 

20 genomes generating 5 datasets with mate pair distance from 2kbp to 6kbp with equal 

gaps of 1kbp. The mean coverage is constant at 40 and the mean read length is 400 bp. 

The percentage of mated reads in the dataset is also a constant at 70%.   

 

 
Graph 3. Correctly assembled contigs vs mate pair distance 

 

   The fraction of correctly assembled contigs, i.e. number of correct contigs 

divided by the total number of contigs, is obtained from assembly of the 5 datasets for 

each of the 20 genomes. The fraction of correctly assembled contigs is averaged for each 

assembler at each mate pair distance point to obtain the mean fraction of correctly 

assembled contigs at each of the 5 mate pair distances. This curve of 5 points represents 

the assembler misassembly characteristic over the mate pair distance of 2kbp to 6kbp (see 

Graph 3). In presence of mate-pair, data Celera assembler performs best and makes 
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almost no errors in presence of long distance mates. The performance of the other 

assemblers is comparably good with MIRA making the largest number of incorrect joins.  

The 5 data points generated for each assembler can be approximated by a 

polynomial and 10 fold cross validation is used to obtain the average error of the 

estimator polynomial (see Table 4). Quadratic polynomials give good approximations of 

these curves showing high coefficient of determination (Table 4 Column 3). This 

indicates that mate pair distance is a highly significant parameter for correct assembly. 

The average mean square error is very low for all the polynomials (Table 4 Column 6). 

 

Table 4. Correlating mate pair distance and correct contigs 

Assembler Degree
a
 R

2b
 D.F.

 c
 P-value

d
 Avg. MSE

e
 

ABySS 2 0.974 2 0.127 2.47e-5 

Celera WGS 2 0.982 2 0.087 5.31e-4 

MIRA 3 0.993 1 0.106 1.83e-4 

Velvet 2 0.927 2 0.288 2.76e-5 
a
Degree of the polynomial fitting the assembler output characteristics. 

b
Coefficient of determination: Expresses the strength of the relationship between the X and Y variables.   

c
Degrees of freedom. 

d
Probability of getting an R

2
 with a polynomial of this degree. 

e
Average of the mean square error generated by each iteration of 10-fold cross validation.     

 

 

 

2.4. Repeat Experiments 

The repeat experiments study the assembly of repeat structure of the genomes. 

We perform four repeat experiments by measuring the fraction of repeats assembled and 

the longest repeat assembled by an assembler for given data of certain read length and 

coverage.  
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Graph 4. Mean of the fraction of repeats correctly assembled in intervals of 25 vs read 

length 

 

  

2.4.1. Repeats Assembled for given Read Length 

   This experiment studies the correlation between assemblies of repeat structure 

over a certain read length for an assembler (see Graph 4). All of the assemblers are 

capable of assembling at least 50% of the repeat sequences. However, none of the 

assemblers can assembly more that 85% of the repeats and all the assemblers perform 

well for longer reads. However, ABySS and Celera WGS perform much better for shorter 

read lengths. 

2.4.2. Repeats Assembled for given Coverage 

   This experiment studies the correlation between assemblies of repeat structure 

over a certain range of coverage (see Graph 5). All of the assemblers show moderate 

improvement in the number of repeat assembled as coverage increases. However, at very 

high coverage ABySS, Celera and Velvet show some deterioration in the percentage of 

repeats assembled.  
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Graph 5. Fraction of repeats correctly assembled vs coverage 

 

 

 

2.4.3. Longest Repeats Length Assembled for given Reads Length 

This experiment studies the correlation between the longest repeat correctly 

assembled over a certain read length for an assembler (see Graph 6). This is interesting as 

we can estimate the longest repeat family that will be assembled by an assembler for 

input dataset.  

 

 
Graph 6. Mean of the length of the longest repeat sequence correctly assembled intervals 

of 25 vs read length 

 

The longest repeat assembled seems to be close to twice to the read length and all the 
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assemblers seems to reach that limit for longer read length. However, at smaller read 

lengths ABySS and Celera WGS seem to perform best. 

2.4.4. Longest Repeat Sequence Assembled given Coverage 

   This experiment studies the correlation between the longest repeat correctly 

assembled over a certain range of coverage for an assembler (see Graph 7). This is 

interesting as we can estimate the longest repeat family that will be assembled by an 

assembler for input dataset. The longest repeat assembled does not seem to be 

significantly correlated to the coverage. However, at higher coverage the some of the 

repeats are disassembled due to threshold miscalculations.  

 

 
Graph 7. Length of the longest repeat sequence correctly assembled vs coverage 

 

 

3. Parallel Genome Assembly 

The strategy used for assembling a genome should be guided by a priori 

knowledge and the data available. As discussed in the earlier sections, nature of the 

genome, sequencing technology, read lengths, coverage etc. affect the choice of assembly 

technique.  The choice of assemblers for a given set of input parameters is increasing and 
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requires intelligent selection. A detailed description of the assembly techniques and the 

history of their various implementations can be found in (Imelfort and Edwards, 2009; 

Miller, et al., 2010).  

The assemblers are the most computationally intensive processes and efficient 

execution of the assembly process is essential in scalability of this tool. The general 

process of genome assembly using graph algorithms is the most successful and has three 

basic stages. The first stage is the graph construction by overlap calculation with 

candidate selection or k-mer extension. The second phase is graph reduction for 

simplifying computation and error correction. Finally, the contig generation phase is 

implemented, where the graph is traversed to find long paths. Assemblers may take 

anywhere from several hours to few days to complete an assembly e.g. MIRA 3.2.0 

(Chevreux, et al., 1999) takes 18.3 hours to complete an assembly for 1 million 454 

reads. A comparative study of assembly execution times and memory requirements in 

covered in (Kumar and Blaxter, 2010). 

 The first phase, i.e. overlap computation, is the most computationally 

expensive and memory- intensive phase and can account for 30-50% of the total 

assembly time. This phase can be easily parallelized to significantly reduce the assembly 

time (Miller, et al., 2008). Our effort in parallel refactoring of this phase using OpenMP 

in MIRA 3.2.0 has significantly improved assembly time (Biswas, et al., 2011). 

Specialized hardware (Sarje and Aluru, 2008) for this phase has also been proposed, 

however this is very expensive and not acceptable for small genomic labs. A distributed 

campus grid based approach to parallelize this phase has been proposed (Moretti, et al., 

2009), but this requires managing movement of sequence data across the network to 
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worker processes’ local address space.  Hadoop map-reduce algorithms for short read 

mapping (Schatz, 2009) have been proposed and we propose  to extend this approach to 

improve the performance of this phase. A fast alignment toolbox will be developed 

leveraging Hadoop’s map-reduce framework and will be used instead of the assemblers’ 

native overlapper module. 

 The next two phases of assembly vary significantly from assembler to 

assembler. Each assembler implements different schemes for error correction and 

reductions for repeat handling. Efforts to parallelize these phases have not been very 

successful due the dependencies and inter-computation communication requirements. A 

Hadoop based assembler for de-novo assembly of genomes using de-Bruijn graph model 

is proposed in (Michael Schatz and 2010). Our implementation of a parallel framework 

for contig construction for OLC assemblers in MIRA 3.2.0 has improved performance 

without sacrificing assembly quality (Biswas, et al., 2012). We here propose to develop a 

middleware for provisioning assemblers with required resources. The cloud application 

service will profile each assembler and provide required resources for execution. 

Scalability issues and implementation challenges must be overcome to deploy the tool as 

a cloud application service that will initiate multiple assemblers.  

Most assemblers generate a set of contiguous non-overlapping sequences 

covering some part of the genome. These contigs are ordered and oriented through the 

process of scaffolding to generate a gapped representation of the genome.  Scaffolding 

algorithms can use mate pair information of the reads at the ends of a contig to join it to 

other contigs. Joining can also be done by mapping the contigs to a reference genome or 

by inspecting other assemblies and checking for possible joins missed by the assembler. 
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Some of the  assemblers like Celera WGS (Miller, et al., 2008) are capable of utilizing 

mate pair data for scaffolding. Other tools for scaffolding include Bambus (Pop, et al., 

2004), SUPERCONTIGS (Puiu, 2004) and Autofinish (Gordon, et al., 2001).  

Current DNA sequencing methodologies (with the exception of emerging 

experimental technologies) cannot sequence DNA fragments of greater than ~1 kilobase 

(kB) in length.  We rely on computational methods to assemble a complete DNA 

sequence from a large number of DNA fragments of smaller size. One popular and cost 

effective method of generating these short fragments of a genome is based on shotgun 

sequencing such as 454 pyrosequencing.  Shotgun sequencing generates DNA fragments 

by breaking up multiple copies of the original sequence at random points. Next a 

software program is used to construct the original DNA from a large set of DNA 

fragments generated by shogun sequencing. The problem of combining DNA fragments 

(reads) to reconstruct the source DNA is known as sequence (or genome) assembly 

problem. The assembly problem is usually modeled as computing the shortest common 

superstring (SCS), which is a reasonable approximation of the original sequence. These 

assembled sequences are pieces of the original sequence and are called contagious 

sequences (contigs). The SCS problem can be modeled as a graph problem and is shown 

to be NP hard (Kececioglu and Myers, 1995; Wang and Jiang, 1994). Additional 

complexity arises when there are repeats in the original sequence. Repeats are multiple 

identical or nearly identical stretches of DNA which the SCS solution represents only 

once in the assembled genome. This problem is known as repeat collapse and can lead to 

serious assembly errors.  

MIRA  (Chevreux, et al., 1999) is an open source assembler, which is widely used 
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by biologist and works effectively in presence of repeats. However, it is computation 

intensive, for example an assembly of one million reads requires about 18.3 hours.  There 

is a need to parallelize the assembly process for speeding up this computation so as to 

take advantage of cheap parallel computing power available in multicore systems. This is 

a challenging task because (a) MIRA is complex software consisting of 90447 lines and 

uses a number of heuristics to generate a good quality assembly; and (b) the critical 

computation phase is inherently sequential.  The MIRA assembler consists of four 

phases: (i) edge detection (ii) graph construction, (iii) contigs building, (iv) consensus 

computing and error correction. The contigs building phase of building non-overlapping 

paths in the underlying graph is inherently sequential. We propose a modification to this 

phase that enables building of non-overlapping paths concurrently while preserving the 

quality of assembly. 

We implemented the modified MIRA assembler to speedup of contigs building 

phase. In addition we parallelize the other three phases which are straightforward. We 

implemented the modified MIRA assembler on a 64-core system with eight Intel(R) 

Xeon(R) X7560 processors. We were able to speedup the building contigs phase by a 

factor of 55 on the 64-core system. Additionally, we parallelized the other phases of the 

MIRA assembler. The speedup achieved for graph construction phase was 55.32 and the 

consensus computing with error correction was improved by a factor of 58.73. Finally, 

we were able to reduce the total sequential execution time of assembly from 18.3 hours to 

3.4 hours (speedup of 5.57) without sacrificing assembly quality. It is worth noting that 

the overall speedup is limited by Amdahl’s Law as parts of original MIRA assembler are 

inherently sequential. For example for one million reads the sequential portion of the 



41 
 

MIRA assembler takes about 2.78 hours doing I/O or other operations which limits the 

overall speedup to 6.58. Therefore, the overall speedup achieved was close to the limit 

with a parallel efficiency of 84.65%. 

The sub-sections focus on the core assembly pipeline of MIRA assembler and 

describes the parallel algorithms for the assembly phases and parallel implementation 

details and the APIs used to implement the parallel algorithms. The experimentation 

results, experiment environment and resulting assembly quality are presented.  

3.1. MIRA Assembler Overview 

    MIRA is an open source assembler based on the OLC graph model that 

addresses the assembly problem and is widely used by the life sciences community. 

MIRA is capable of handling next generation shotgun reads from 454, Ion Torrent, 

Solexa and PacBio machines along with Sanger sequences.  MIRA has been used at IMB 

Jena Genome Sequencing Centre and has been shown to be capable of assembling 

cosmid sequences in Human genome (Chevreux, 2005). MIRA has also been used for de 

novo assembly of 454 pyrosequencing transcriptome projects (Barker, et al., 2009; 

Papanicolaou, et al., 2009; Pauchet, et al., 2009; Pauchet, et al., 2010; Roeding, et al., 

2009; Zagrobelny, et al., 2009). The MIRA assembler is designed to work with a small 

memory footprint so that it can be executed on regular desktop computers and is 

generally used for small to medium scale assembly projects.   

 MIRA provides specific routines for handling various read types, for example, 

mate pair information can be leveraged to improve assembly. The assembly process is 

based on the Overlap Layout Consensus (OLC) graph model (Kececioglu and Myers, 

1995) with critical code for handling repeats of various lengths.  MIRA has four major 
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stages as shown by the assembly pipeline diagram (see Figure 4). The input reads are 

preprocessed based on quality values and ancillary data if provided and presented to the 

iterative portion of the assembly process.  

 

Table 5. MIRA assembly time breakup (2) 

Organism Reads
a
 

Total 

Time 

Graph 

Const.
b
 

Contigs 

Building
c
 

Consensus
d
 & Error 

Correction
e
 

M. Marinum 
500,000 624 413 103 108 

1,000,000 1,327 867 261 199 

E. Coli 
500,000 589 342 132 115 

1,000,000 959 612 192 155 

M. Tuberculosis 
500,000 581 374 96 111 

1,000,000 1,123 712 219 192 

Average %   63.51 19.05 17.33 
a
The number of simulated reads with mean length of 600bp and standard deviation of 100bp. 

b
The time (in minutes) to detect potential edges and construct the assembly graph using smith-waterman 

overlap. 
c
The time (in minutes) to find all the paths in the graph and assemble the contigs. 

d
The time (in minutes) to construct the consensus sequence of the contigs. 

e
The time (in minutes) to error correct the contigs in the assembly. 

 

 

3.1.1. Edge Detection Phase 

The assembly process proceeds with each read as a vertex in a graph and the first 

phase determines the high confidence region (HCR) of each read and scans all the n2 

edge possibilities using heuristic match algorithms (Grillo, et al., 1996; Wu and Manber, 

1992). The match determines if a sequence of length k is present in the matching read 

with at most l errors. For each sequence the complement is also matched to find all 

potential edges from it. This SKIM algorithm creates two potential edge files named, 

post-match files, for the forward and complement matches. Each record in these files 

corresponds to a potential edge, containing the identifiers of the two reads and some 

offset information for matching. This phase is implemented in parallel in the standard 

implementation of the software and uses the boost threading library. 
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3.1.2. Graph Construction Phase 

The second stage of graph construction is the most time consuming phase of the 

assembler accounting for over 60% of the assembly time (Table 5, row 4, column 4). This 

phase processes the reads, finds the edges in the graph, and computes the edge weights of 

the graph. The edge weights are computed by banded Smith Waterman overlap 

calculation (Chevreux, 2005; Smith and Waterman, 1981) for each of the pair of reads 

generated by the SKIM algorithm. Some edges are rejected based on various conditions 

and overlap computation is avoided if the overlap length satisfies certain conditions. 

 

Fig. 4. MIRA assembly pipeline 
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The third phase of the assembly is the central path finding algorithm to determine 

the paths in the graph and consumed over 19% of the assembly time (Table 5, row 4, 

column 5). This phase is a greedy heuristic to find the partial paths in the graph and build 

the best contiguous sequences (contigs). In this phase the path finder algorithm identifies 

vertices with high degree and low error and begins the assembly process by adding 

neighboring reads to it and forming contigs. A contig can grow in length, depth or both 

when a read is added to it and every addition increases the expected error based on the 

edge weight. 

The length of a contig refers to the number of base pairs the overlapping reads 

cover. The depth of a contig at each base pair position is the number of reads that overlap 

at that position. Each contig is a consensus sequence of all the overlapping reads that 

capture a certain region of the genome. Ideally, a contig should have a depth close to the 

coverage of the input data as each base in the contig should correspond to a base in reads 

stacked up correctly. Also, the length of the contig must be close to the length of the 

genome. However, due to presence of repeats and errors the contigs cannot be extended 

beyond a certain length as the total acceptable mismatch error crosses the allowed 

threshold. The backbone build strategy increases the length of the contig and the in-depth 

strategy adds reads to increase the coverage. Each has advantages and disadvantages, but, 

both must be used to successfully build non redundant and correct contigs (Chevreux, 

2005). 

A (n, m) look-ahead version of a simple greedy strategy is applied to select the 

most probable overlap candidate for a given contig. The algorithm extends n paths from 
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the last n vertices of a contig upto m levels and the vertex generating the best path upto m 

levels is selected for assimilation into the contig. The new read selected is checked 

against the existing contig consensus for errors and if the mismatches are within a certain 

threshold, the read is accepted into the contig consensus. This read is then not used by the 

other contigs in the same pass of the assembly. Therefore, a contig building iteration is 

dependent on all the previous contigs making the process intuitively serial in nature.  

3.1.3. Consensus Construction and Error Correction Phase 

The next two steps are consensus construction and error correction. The error 

correction routines apply thresholds based on sequencing technology and quality values 

to detect misassemblies and chimeric reads. The final error correction phase detects and 

corrects misassembles by computing the overall error of a read in a consensus and error 

at a contig position. The error in assembly of a read is computed based on the difference 

between the nucleotides in the read and the nucleotides in the contig consensus. The 

number of differences between the read and the contig consensus sequence should not 

exceed the expected overall sequencing error of the dataset. If the difference is beyond a 

certain threshold the read must be removed from the contig assembly and marked as 

misassembled. This phase is also responsible for generating the final sequence of each 

contiguous path found in the graph. All the overlapping reads at a particular position in 

the path contribute a single nucleotide weighted by the quality value if available. The 

sequence is generated by taking consensus among the nucleotides. These last two steps 

take up about 17% of the assembly time (Table 5, row 4, column 6, 7). MIRA routines 

encode domain knowledge specific rules which are vital for correct assembly and must be 

preserved in the parallel implementation. 
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3.1.4. Parallel MIRA Assembly Process 

In this section we discuss the MIRA assembly pipeline and describe the 

parallelization strategy applied to different phases of the assembly process. The basic 

pipeline of the MIRA assembly process is shown in Figure 4. In this paper we propose 

parallel algorithms for graph construction, finding non-overlapping paths in the assembly 

graph, consensus construction and error correction.  

3.1.4.1. Parallel Edge Detection Phase 

This phase is implemented in parallel in the standard implementation of the 

software and uses the boost threading library. 

3.1.4.2. Parallel Graph Construction Phase 

This process can be implemented in parallel by matrix partitioning. However, 

most assembly graphs are sparse in nature as each vertex has a degree of 10-30. 

Therefore, the fast edge detection algorithms generates a list of potential overlaps 

reducing the number of edges requiring overlap computation which is θ(n2). Therefore, 

we compute the edge weights of these potential overlaps iteratively in parallel. 

The edges appear in random order in the potential edge files generated by the 

edge detection phase and weight calculation of one edge is not dependent on the others. 

We use OpenMP parallel pragmas and TBB containers to refactor this phase and execute 

it in parallel. We implement a single producer generating multiple tasks, each task 

computing a certain number of edges. This phase can account for over 30-50% in the 

serial pipeline and parallelization shows significant improvement in overall time. 

Complete details of the implementation and results showing linear speedup of the kernel 

can be found in our previous work (Biswas, et al., 2011).     
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3.1.4.3. Parallel Contigs Building Phase 

The parallel contig building algorithm must independently construct contigs using 

a set of start vertices. The selected vertices must minimize sharing of vertices between 

two contigs so that the paths corresponding to any two contigs generated in parallel are 

non-overlapping. 

The selection of the starting points of the parallel path construction threads has a 

significant effect on the contigs generated and the overlap among contigs. Contigs 

generated in serial execution of contig construction process are non-overlapping as 

vertices are removed from the graph after they have been included in the assembly of a 

contig. However, parallel threads are not constrained and are assembled independently. 

Therefore, selection of the start vertex is important to reduce the number of overlapping 

vertices among the parallel contigs. The following strategies have been explored for 

selection of the parallel start vertex:  

 Random selection: The start vertices are selected at random by each parallel thread 

and contigs are built. 

 Dense Vertices First: The start vertices are selected in order of their degree by each 

parallel thread and contigs are built. 

 BLAST separated: The start vertices are selected in order of their degree and ensuring 

that the vertex sequences are divergent using BLAST search algorithm (Altschul, et 

al., 1990). The selection process progresses in order of the degree of the vertices. The 

first thread is spawned with the highest degree vertex and the sequence of the start 

vertex is added to a BLAST database. The next highest degree vertex is selected and 

BLAST searched against the database. If a hit is returned, the vertex is skipped and 
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the next vertex is searched. Otherwise, a new thread is spawned with the start vertex. 

This process is repeated to start all parallel contig construction threads.  

 N-Path separated: The start vertices are selected such that the selected vertices are N 

edges apart in the assembly graph. The selection process progresses in order of the 

degree of the vertices. The first thread is spawned with the highest degree vertex and 

the next highest degree vertex is selected and a BFS search checks if it is within N 

edges from the previous vertex. If it is found within the N edges, then it is skipped 

and the next vertex is checked. Otherwise, a new thread is spawned with the start 

vertex. This process is repeated to start all parallel contig construction threads. 

 BLAST & N-Path separated: The start vertices are selected such that the both the 

BLAST search and N-Path restrictions are enforced.  

Among the five options selecting the BLAST separated start vertices significantly 

reduces overlapping of contigs. The other option of selecting the n-path separated start 

vertex is time consuming due to need to perform n-level breath first search for each of the 

previously selected start vertices. However, in some cases it can be shown to generate 

contigs with fewer overlapping vertices.  

The independent threads generate a contig with the best possible depth and length. 

The start vertex selection process reduces the probability of overlap among parallel 

contigs. However, none of the selection processes can ensure that all contigs are non-

overlapping. So, the resulting contigs are analyzed to check for common vertices. In case, 

contigs contain common vertices, the longer contig is allowed to keep the vertex and the 

read is removed from the contig consensus of the other contigs. Therefore, a contig 

reduction phase is added to account for contigs using common vertices.  
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The process of spawning parallel threads for contig building is done in phases 

with k parallel contigs built in one phase and reduced. The vertices assembled in the first 

phase are removed from the graph and the parallel contig building phase is repeated until 

connected vertices in the graph are assembled or further assembly is not possible due to 

absence of acceptable edges. 

3.1.4.4. Parallel Consensus Construction and Error Correction Phase 

The parallel algorithm for this phase divides the contig length into equal size 

partitions and each parallel thread performs the consensus computation for a given range 

of positions in the alignment. The consensus construction process calculates a probability 

value for each base at a given position. The base with the largest probability is taken as 

the consensus.  

The error correction routing detects misassemblies and chimeric reads in parallel 

by dividing the reads aligned to a contig into groups and parallel threads are spawned for 

processing the reads in a group. The error in the assembly of a read is computed based on 

the difference between the nucleotides in the read and the nucleotides in the consensus. 

Reads with error beyond a certain threshold are removed from the consensus, as they 

have been misassembled. The error at each contig position is also checked and reads with 

strong variations at certain positions are misassembled due to similar surrounding 

sequence.  

3.2. Implementation  

The parallel implementation of MIRA is done through a refactoring process 

ensuring thread safety of existing routines.  It is essential that in the parallel version of 

MIRA the basic assembly pipeline is not significantly changed and the assembly output is 
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similar to that of the sequential implementation. Therefore, we are interested in 

identifying parallelization opportunities in MIRA and evolve the sequential code to 

exploit parallelism.  

We use a multicore environment for parallelization of MIRA to maintain the 

design philosophy of a low memory requirement desktop assembler. The parallel version 

of MIRA is capable of utilizing the increasing number of cores in modern processors 

found in most desktop and laptop computers. We found OpenMP (OpenMP, 2008) to be 

the best choice to refactor the MIRA C++ code as it provides a host of synchronization 

pragmas for parallel flow control. However, the extensive use of STL containers in the 

standard implementation causes performance bottlenecks in many cases. Therefore, we 

used concurrent collections provided by Intel’s Thread Building Blocks (TBB) library 

(Blocks, 2011) interoperating with OpenMP to replace the STL containers as needed. 

The parallel strategy for each phase of assembly was implemented by parallel 

refactoring of the MIRA 3.2.1 assembler.  The three main challenges faced in refactoring 

the source code were the following. Firstly, MIRA is implemented using C++ and is 

optimized to reduce the memory utilization. So, many of the results at end of each stage 

are written onto the disk and a large number of disk writes are performed. This model 

would seriously impede parallelism as threads would compete for access to the disk. 

Secondly, MIRA uses Standard Template Library (STL) collections to implement data 

structures such as the adjacency list, repeat markers and the sequence read pool. Parallel 

updates on these data structures would have to be synchronized to maintain correctness. 

Synchronization of the threads by some locking mechanism will also affect parallelism. 

Finally, the source code also has lot of rule checking and conditional execution of error 
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flagging routines which are often sequential in nature and perform updates on global data 

structures or write to files on the disk. To refactor such a sequential code OpenMP was 

found to be the best choice as it provides a host of synchronization pragmas for parallel 

flow control. However, the use of STL objects would cause performance bottlenecks in 

many cases. Therefore, we used concurrent collections provided by Intel’s Thread 

Building Blocks (TBB) library. 

3.3. Experiment Results 

In this section we describe the test data sets, discuss the assembly quality after 

parallel refactoring and present the results showing significant improvements in assembly 

time. Input data with required characteristics for experimentation is rarely available as the 

genome sequences are published in final form and the raw data underlying these genomes 

is not publicly released. The NCBI trace archive and CBCB published data are not 

sufficient for extensive systematic assembler testing. Therefore, for experimentation we 

developed a simulator for 454 pyrosequencing. Earlier sequencing simulation techniques, 

such as Genfrag by (Engle and Burks, 1994) and CelSim (Myers, 1999) concentrated on 

shotgun data, and only MetaSim (Richter, et al., 2008) and Flowsim (Balzer, et al., 2010) 

simulated data from 454 pyrosequencing process. Generating a simulator based on an 

empirical distribution is a better fit, we, for purpose of  simplicity and lack of 454 

pyrosequencing  data sets, apply a parametric log normal distribution to simulate the 

shotgun process based on user specified read length and standard deviation. Quality 

values however are estimated from a position specific error function based on the read 

length and base type similar to (Balzer, et al., 2010).  
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Table 6. Graph sizes 

Vertex Degree 

Number of Vertices in the Graph 

100,000 500,000 1,000,000 

Real Simulated Real Simulated Real Simulated 

0 – 10 80,977 94,201 310,372 137,317 296,096 62,215 

11 – 20 5,640 4,338 153,604 313,465 402,450 632,455 

21 – 30 779 602 4,636 16,417 158,698 224,215 

31 – 40 287 293 2,033 1,312 67,367 12,366 

41 – 50 145 194 1,399 964 37,012 4,909 

51 – 60 63 167 1,110 1,055 21,326 3,481 

61 – 70 32 85 904 1,206 9,505 2,829 

71 – 80 33 51 630 1,141 4,887 2,156 

81 – 90 26 29 433 974 3,003 1,958 

91 – 100 12 12 280 641 2,066 1,507 

100 – 31 6 547 1,358 35,093 3,852 

       

 

An experiment to verify the similarity between the graphs generated by simulated 

and real reads was performed. Three data sets with 100K, 500K and 1 million reads were 

created from a large set of Roche 454 pyrosequencing real reads of Mycobacterium 

pseudoshottsii. The simulator was used to generate input read data sets with same number 

of reads and mean read length and standard deviation. The experiment was also 

conducted to explore the degree distribution of the vertices in the graph generated by real 

and simulated reads (Table 6). The vertex degree distribution of the graphs is similar e.g. 

for both the real and simulated graphs of 1 million reads most of the vertices have a 

degree between 0-20 and decline steadily thereafter (Table 6, column 6, 7). So, the 

assembly graph generated by the real sequencing machines and simulator are similar in 

terms of degree distribution and sparse in nature as |E| = O(V).  

The parallel framework proposed in the paper is expected to generate an assembly 

similar to the assembly generated by MIRA 3.2.1 (Chevreux, et al., 1999). The 

experiment performed to compare the assembly of MIRA 3.2.1 with the assembly 

generated by the implementation of the parallel framework in MIRA 3.2.1 uses standard 
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assembly quality metrics such as N50 score, longest contig length, number of total 

contigs, coverage of the original sequence, base calling errors in the contigs and the 

number of reads assembled. The comparison was done for different input read numbers 

and parallel threads (Appendix A, Table 19). The experiment was performed using 

simulated reads of the genomes of Escherichia coli HS, Mycobacterium vanbaalenii 

PYR-1 and Mycobacterium marinum M with mean length of 500bp and standard 

deviation of 100bp. The parallel assembly quality is comparable to MIRA assembly 

quality in most cases e.g. the assembly of Escherichia coli HS with 1 million reads 

generates the same number of large contigs (>100Kbp), same overall coverage of the 

genome, very close longest contig length and N50 scores (Appendix A, Table 19, major 

row 3). Also, the quality of assembly is not significantly affected by the number of 

threads used in the parallel process.  

 

Table 7. Graph construction phase execution time (1
st
 pass) 

Smith Waterman Comp. 
Execution Time on  Threads (sec) 

MIRA 2 4 8 16 32 64 

100,000 8.48 4.65 2.34 1.53 0.96 0.96 0.96 

500,000 38.84 20.92 10.42 5.59 3.36 1.74 1.01 

1,000,000 80 43 21 10.6 5.24 3.42 1.69 

5,000,000 470 236 120 62 30.86 15.58 8.46 

10,000,000 956 468 249 132 64.49 32.87 17.28 

        

 

The parallel implementation of MIRA targets the three major phases of graph 

construction, contig building and contig consensus construction. We present the 

improvement in execution time of the three parallel phases and study the effect on the 

overall assembly time. The read data sets for all the experiments are generated by the 

simulator with mean read length of 500bp and standard deviation of 100bp from the 
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original sequence of Mycobacterium vanbaalenii.  

The first experiment shows the speedup of the graph construction algorithm on 

incrementally larger graphs. The time to calculate the Smith Waterman edge weights for 

the first pass is shown in Table 7. In this experiment the condition checking modules to 

bypass Smith Waterman overlap computation are disabled and the overlap is computed 

for all the edges in the graph. The primary producer thread spawns a task after reading 

10,000 potential edge records from the post-match files. Therefore, the granularity of 

each task is 10,000 Smith Waterman calculations with average overlap length of 237bp. 

The experiments with various overlap lengths and granularity can be found in (Biswas, et 

al., 2011). The computation of the graph construction shows close to linear speedup 

(Table 8, row 5). The average speedup achieved in the phase for various data sizes is 

42.10 on 64 threads (Table 8, column 7). The average speedup is significant parameter to 

consider as subsequent iterations of the assembler often execute on a much smaller subset 

of the initial reads.  

 

Table 8. Graph construction phase speedup (1st pass) 

Smith Waterman Computations 
Speedup on  Threads (sec) 

2 4 8 16 32 64 

100,000 1.82 3.62 5.54 8.83 8.83 8.83 

500,000 1.86 3.73 6.95 11.56 22.32 38.46 

1,000,000 1.86 3.81 7.55 15.27 23.39 47.34 

5,000,000 1.99 3.92 7.58 15.23 30.17 55.55 

10,000,000 2.04 3.84 7.24 14.82 29.08 55.32 

       

 

The contig building phase consumes significant amount of time and dominates the 

execution time after the linear speedup of the graph construction phase. The performance 

of the path finding module of MIRA 3.2.1 is compared with the parallel path finding 



55 
 

algorithm for various thread sizes (Table 9). 

 

Table 9. Contig building phase execution time 

Reads 
Execution Time on Threads (minutes) 

MIRA 8 16 32 64 

100,000 38 6.56 3.02 1.58 1.06 

500,000 110 18.30 10.01 4.16 2.34 

750,000 151 22.65 12.21 5.28 2.82 

1,000,000 263 41.86 21.63 9.38 4.78 

      

 

The maximum speedup of 55.02 is achieved on 64 cores for a data set of 1 million 

reads (Table 10, row 4). The parallel module shows sub-linear speedup due to the 

reduction phase after the parallel contig construction. The serial reduction phase checks 

for paths with common vertices and reduces each contig to contain only unique reads. 

This phase also preforms repeat read tagging to find very high coverage regions that are 

most likely part of repeat sequences.    

 

Table 10. Contig building phase speedup 

Reads 
Speedup on Threads (minutes) 

8 16 32 64 

100,000 5.79 12.58 24.05 35.85 

500,000 6.01 10.99 26.44 47.01 

750,000 6.67 12.37 28.60 53.55 

1,000,000 6.28 12.16 28.04 55.02 

     

 

The fourth phase parallel refactors the contig consensus construction and error 

correction phase of the assembler. In this experiment the consensus sequence and error 

rate of the assembled contigs is computed for various input reads sizes (Table 11).  
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Table 11. Consensus construction & error correction phase execution time 

Reads 
Execution Time on Threads (minutes) 

MIRA 8 16 32 64 

100,000 24.3 3.15 1.64 0.90 0.58 

500,000 86.7 11.37 5.96 2.93 1.48 

750,000 133.6 16.95 8.76 4.45 2.26 

1,000,000 193.8 24.41 12.96 6.41 3.30 

      

 

The speedup achieved in this phase is close to linear, achieving a maximum of 

58.73 on 64 processors for one million reads (Table 12, row 4, column 5).  

 

Table 12. Consensus construction & error correction speedup 

Reads 
Speedup on Threads (minutes) 

8 16 32 64 

100,000 7.71 14.82 27.00 41.90 

500,000 7.63 14.55 29.59 58.58 

750,000 7.88 15.25 30.02 59.12 

1,000,000 7.94 15.02 30.23 58.73 

     

 

The performance speedup of the parallel implementation is limited the serial 

components of the assembler (Table 13). The serial components include reading large 

input files (~1-2GB), writing output files in various formats, writing log files, tagging 

reads as repeats based on coverage, finding repeat regions, filter operations and reducing 

overlapping contigs. The serial components of the assembler account about 15% of the 

assembly time (Table 13, column 6). Therefore, the theoretical cap on the overall speedup 

achievable is approximately 6.67. 
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Table 13. Serial components table 

Reads 
MIRA Execution 

Time(min) 

Serial Components Time (min) 
Percentage 

I/O Processes Sorting & Filtering Overlap Reduction 

100,000 142 4.2 8.25 9.3 15.31 

500,000 514 18.5 43.1 16.8 15.25 

1,000,000 1,102 25.0 105.8 36.9 15.22 

      

 

The overall performance speedup of the parallel implementation is compared to 

the total assembly time of MIRA 3.2.1 (Table 14). The average improvement in total 

execution time over various input sizes is about 5.57 times on 64 threads (Table 14, row 6 

and column 8). This speedup is close to the theoretical limit as 15% of the assembler 

remains serial and the maximum possible speedup is 6.67.       

 

Table 14. Overall speedup experiment table 

Reads 
Execution Time on Threads (minutes) 

MIRA 2 4 8 16 32 64 

50,000 71 34 24 17 14 12 11  

100,000 142 69 42 32 25 23 21 

500,000 514 334 211 154 133 113 106  

750,000 748 492 321 234 190 171 158  

1,000,000 1,102 657 429 316 253 213 208  

Avg. Speedup 1 1.77 2.72 3.72 4.58 5.26 5.57 

        

 

For completeness, we also compared our parallel implementation running on a 

single thread to the running time of MIRA 3.2.1 for 1 million reads (Table 14, row 6). 

The running time for our parallel implementation was 1,105 minutes which is slightly 

more than 1,102 minutes required by MIRA. The breakup of the total assembly time was 

as follows: 631 minutes for graph construction, 285 minutes for contig building, 189 

minutes for consensus construction with error correction.  Note that the total assembly 

time on 64 threads for 1 million reads is 208 minutes (Table 14, row 6 and column 8) 
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with serial a component of 167.7 minutes (Table 12, row 3). Consequently, we can now 

observe that with 64 threads, the time spent on graph construction, contig building and 

consensus construction is only 40.3 minutes (208-167.7). Hence, using 64 processors, we 

have been able to reduce the time required for these three parallel phases from 937.3 

minutes (1105 – 167.7) to 40.3 minutes yielding a speed-up factor of 23.25.  

 

Table 15. Real graph speedup experiment table 

Reads 
Execution Time on Threads (minutes) 

MIRA 8 16 32 64 

0.09 x 10
6
 192 56.38   40.26 34.41 31.88 

0.23 x 10
6
 415 129.58 106.50 92.76 87.32 

0.36 x 10
6
 532 139.90 107.05 90.23 80.25 

0.5 x 10
6
 708 216.15 175.38 155.58 142.05 

1.4 x 10
6
 1,472 445.87 354.53 307.14 274.80 

Average Speedup  3.39     4.36 5.06 5.55 

      

 

The final performance experiment was performed on graphs generated by real 

sequencing data of three bacteria (Table 15). The rows in Table 7 correspond to graphs 

built for assembly of the following bacteria in top down order: Mycobacterium 

vanbaalenii PYR-1, Mycobacterium marinum M, Mycobacterium shottsii and two data 

sets of Mycobacterium pseudoshottsii. The total assembly time of the parallel 

implementation on different number of threads is compared to MIRA 3.2.1. An average 

speedup 5.55 was observed on 64 threads (Table 15, row 6 and column 6).  

The experiments in this section are performed on Linux machine with 8 Intel(R) 

Xeon(R) X7560 octal core processors. The implementation of the parallel contig 

assembly framework is shown to be significantly beneficial for  MIRA whole genome 

and EST assembler. 



59 
 

CHAPTER 4 

CORRELATIVE ALGORITHM FOR REPEAT PLACEMENT (CARP) 

 

1. Finding Repeating Sequences in Partially Assembled Genomes 

The ever-increasing number of sequenced bacterial and archaeal genomes 

provides an opportunity to understand their architecture and evolution. However, as new 

high-throughput sequencing methods are developed, annotation quickly becomes the 

bottleneck for genomic research. In addition to open reading frames (ORFs) and 

regulatory elements, correct annotation of other features such as mobile genetic elements 

(MGEs) is also essential. These MGEs include bacteriophages, conjugative transposons, 

integrons, unit transposons, composite transposons and insertion sequences (ISs). Such 

transposable elements are defined as specific DNA segments that can repeatedly insert 

into one or more sites in one or more genomes. ISs are transposable elements that are 

regarded as genomic parasites proliferating in their host and surviving only through 

horizontal gene transfer (Schaack, et al., 2010). ISs play a major role in genome 

evolution and plasticity, mediating gene transfers and promoting genome duplication, 

deletion and rearrangement (Frost, et al., 2005). Insertion sequences may be abundant in 

host genomes and are intimately involved in mediating horizontal gene transfer, 

generation of pseudogenes, genomic rearrangement and alteration of regulatory elements 

(Frost, et al., 2005; Schaack, et al., 2010). Experimental evolution in the laboratory has 

demonstrated that both transpositions (Chou, et al., 2009; Schneider, et al., 2000) and 

rearrangements (Chou and Marx, 2012; Cooper, et al., 2001; Dunham, et al., 2002; Lee 

and Marx, 2012; Zhong, et al., 2004) can generate beneficial mutations. Prokaryotic DDE 
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transposons (mainly ISs) can move in two different ways, depending on the donor site. 

Replicative transposons copy their DNA, leaving the parent site intact, while 

conservative transposons cut themselves out of the donor molecule in order to paste their 

DNA into the target.  

 Despite the development of various annotation programs for particular 

genomic features, some important features such as insertion sequences (ISs), the smallest 

and simplest autonomous mobile genetic elements, remain poorly annotated. In many 

cases, annotations of these elements include only ORFs and ignore terminal inverted 

repeats, which are an essential feature of their activity in mediating gene rearrangements. 

Moreover, partial ISs are rarely annotated, leading to the loss of potentially valuable 

evolutionary information. Another major limitation of current tools is the requirement of 

a complete annotated genome sequence for IS identification and analysis. 

The majority of ISs are between 700-3000 bp and possess one or two open 

reading frames (ORFs) that encode transposases or helper proteins. For an IS element 

with more than one ORF, the first (upstream) ORF encodes a DNA recognition domain, 

while the second overlapping ORF encodes the catalytic domain. There are two types of 

IS: ISs carrying TIR (Terminal Inverted Repeats) elements; and ISs not carrying TIR 

elements. A TIR IS element carries a pair of partially conserved 7 to 20 bp inverted 

repeats at its terminus for cleavage and binding of the transposase. Upon insertion, ISs 

often generate short directed repeats from 2 to 14 bp immediately outside the IRs 

(Mahillon and Chandler, 1998). ISs of the non-TIR type do not have discernible 

conserved inverted repeats. 

Metagenomic analysis has revealed that IS transposases are among the most 
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abundant and ubiquitous genes in nature (Aziz, et al., 2010).  Based on transposase 

sequence similarities, ISs have been classified in 25 different families that belong to three 

main classes of enzymes: DDE transposases; serine recombinases; and tyrosine 

recombinases (Mahillon and Chandler, 1998). Another recent classification of ISs 

categorizes them into 26 families based on transposase homology and overall 

organization, with some families divided further into groups (Zhou, et al., 2008). An IS 

family can be defined as a collection of elements sharing conserved spacers between key 

residues, identical genetic organization, similar terminal sequence arrangements, and 

uniform target insertion behavior. However, not all families are so coherent. 

Consequently, some (e.g. families IS4 and IS5) are divided into subgroups composed of a 

core of closely related elements that can be linked to other members of the family by 

weaker but still significant similarities. The naming convention of transposable elements 

(insertion sequences, transposons, etc.) generally follows the recommendations of 

Campbell et al. (Chumley, et al., 1979). However, in some cases a revised system of IS 

naming is used based on a registry where researchers can request for a new sequence 

number to define novel mobile elements (Roberts, et al., 2008). IS and transposable 

element abundance in prokaryotes is highly variable (Touchon and Rocha, 2007) but they 

occupy a substantial fraction of some genomes. For example, 11% and 25% of the 

genome in Clostridium difficile and Enterococcus faecalis is composed of mobile 

elements (Paulsen, et al., 2003; Sebaihia, et al., 2006). Therefore, it is estimated that an 

average of up to 10% of bacterial (Mahillon and Chandler, 1998) and archaeal (Filée, et 

al., 2007) genomes are comprised of MGEs.  

Current IS-related software tools such as IScan and OASIS operate only on 
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complete genomes with fully annotated ORFs. Complete genome assembly of a single 

strain of bacteria can be time-consuming and costly, due in large part to ambiguities 

introduced by repetitive elements themselves. Consequently, most publicly available 

prokaryotic genomes are deposited as incomplete, contig- or scaffold-level assemblies, 

and IS and other repetitive elements may or may not be present in the deposited 

sequence.  For example, Celera WGS (Myers, et al., 2000), a widely used assembly 

software, commonly moves full or partial IS elements to a “degenerates” folder that is not 

frequently deposited as part of the draft genome. Therefore, to perform a global 

investigation of ISs in unassembled prokaryote genomes, we developed ISQuest (Biswas, 

et al., 2015), or Insertion Sequence Quest, a computational tool for automated detection 

of ISs in unassembled or partially assembled genomes. ISQuest takes advantage of 

widely available transposase annotations to identify candidate IS seed regions and then 

uses a computationally efficient extension method based on BLAST (Altschul, et al., 

1990) to grow the seed regions and identify the edges of each IS element. ISQuest is 

capable of finding MGEs in hundreds of genomes within hours, making it a valuable 

high-throughput tool for a global search of IS elements. We applied ISQuest to 3810 

sequenced bacterial genome and plasmid sequences. Compared to the benchmark of 

GenBank annotations, ISQuest identified 82% successfully with 80% sequence identity. 

1.1. ISQuest Algorithm 

ISQuest is a computationally efficient algorithm designed to find and annotate 

Insertion Sequences (IS) and transposases in fully assembled, partially assembled or 

unassembled genomes. The algorithm uses BLAST (Altschul, et al., 1990) to determine 

potential IS locations by searching against an automatically curated database of IS and 
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transposase sequences derived from GenBank. The potential locations are further 

extended by Smith-Waterman alignment extension. The IS elements may occur once in a 

genome (single-copy) or may consist of a set of almost identical copies (multicopy). As 

there are distinct levels of information available in each of these cases, different 

algorithms perform better with each class. As such, we have designed ISQuest to find 

these two groups of ISs in two separate steps: first finding multicopy ISs and then single-

copy ISs. The overall schematic pipeline is shown in Figure 5. The pipeline has been 

specially modeled to identify ISs but the algorithm is capable of detecting other mobile 

genetic elements (MGEs) and the generic steps are described below with IS elements as 

special cases.  

1.1.1. Search Terms and TransposaseDB 

ISQuest identifies single-copy and multicopy ISs and transposases in each 

genome by finding conserved regions of already-annotated transposase elements, which 

are identified by the word ‘transposase’, or ‘insertion sequence’ in the ‘product’ field of 

GenBank files. The search keywords may be extended by user-provided regular 

expressions since there is a significant amount of inconsistently annotated data in 

GenBank. For example, transposases are frequently misannotated as integrases. 

Generating the database of known MGEs is done once as a preprocessing step during the 

first run of ISQuest which generates a BLAST database called TransposaseDB. This 

database is stored for subsequent use by future executions. The user can force updates of 

the database when new versions of the GenBank files are available.    
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1.1.2. BLAST Searching Parameters 

A candidate sequence for extension is determined by a BLAST search against 

TransposaseDB. ISQuest can operate directly on raw reads provided in FASTA/FASTQ 

Input sequence reads and (optionally) contig 

sequences in FASTA/FASTQ format

MegaBLAST against local Genbank 

database

Select BLAST hits with transposase or IS annotations 

(user specified keyword and/or regular expression 

search)

Select BLAST hits between 200bp - 4000bp 

Extend the selected sequence (hits) at the 

ends

Multiple 

consensus 

extensions

Multiple copy 

IS candidate 

found

Extended 

sequence <= 

4000bp

Single copy IS 

candidate found

Determine copy number

Find point of sequence divergence 

to determine IS boundary

Find inverted repeats by alignment 

of boundary region

Find inverted repeats to 

determine boundary of IS

Create IS library and remove duplicates

IS Copy count summary 

table
IS Sequence library file

 

Fig. 5. Flowchart of the full workflow of ISQuest 
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format. Efficiency can be significantly improved by assembling the reads and providing a 

set of assembled contigs in FASTA format. This assembly can be performed using an 

appropriate assembler for the input reads. The assembled contigs are BLAST-searched 

against the TransposaseDB database to find potential seed locations for ISs and 

transposases. These seed locations represent all possible MGE locations that must be 

searched and analyzed. Therefore, we use MegaBLAST for finding matches with higher 

sequence similarity and better performance. Since we further extend these seed sequences 

to find the boundaries of the MGEs, we can tolerate partial or inexact matches.  

1.1.3. Extending Potential IS Matches  

Once the possible MGE seed locations have been identified, raw reads are used to 

extend the seed sequences to determine boundaries. The extension is done by pairwise 

alignment of the raw reads to the ends of the seed sequence. This alignment algorithm is 

implemented using BLAST allowing 5 bit score errors. This parameter is configurable by 

the user depending on the sequencing technology used and the expected error profile of 

the reads. For Illumina reads we allowed a bit score error of 5, which corresponds to 98% 

sequence similarity using 250bp reads.  

The extension step aligns all reads to the end of a seed sequence then executes the 

boundary detection step. The extension step does not align reads that do not have at least 

a partial overlap with the core seed sequence as we do not want to miss the boundary of 

the MGE by large extensions. Therefore, each extension step builds no more than twice 

the input read length. The seed sequence is expanded to include the aligned reads and the 

larger consensus sequence is used as the new seed. Therefore, the extension step is 

iteratively executed for the remaining sequences for which the boundary cannot be found 
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until the seed sequence becomes too long. The termination length of the seed sequence is 

user configurable and defaults to 4Kbp.          

1.1.4. Determining IS Boundary  

We apply different approaches to find the boundary of single- and multi-copy 

MGE elements. In the case of a single copy we can only find the boundary in cases where 

there are flanking inverted repeats. To define the edges of single-copy ISs, we use an 

approach first developed by IScan to find IRs around the transposases, which are present 

for the majority of ISs (Wagner, et al., 2007). Briefly, a Smith–Waterman alignment, 

with a match score of 1, a mismatch penalty of −3 and a gap penalty of −4, is performed 

comparing the region upstream of the transposase (500 bp) with the reverse complement 

of the downstream region (500 bp) and the highest match with a score >10 is assumed to 

be the pair of terminal IRs. 

Since the various copies of a multi-copy ISs are from different genomic loci, they 

have different unique sequence beyond the boundaries of the IS. Therefore, if the 

consensus of the aligned reads disagrees with the end of the seed sequence, this indicates 

that the boundaries of the IS have been reached. Based on the number of possible 

disagreements we calculate the number of possible sequence groups. If each group has 

coverage within a specified range we can be certain that we have reached the final 

boundary for all the sequence groups and have run into the flanking unique sequence. 

However, if a sequence group has coverage several times that of the expected coverage, 

we know that there exist longer MGEs the form of tandem repeats which will require 

further extension.  These sequence groups are separated out for extension in the next 

iteration.  
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The sequence groups with appropriate coverage are processed to determine the 

IRs using a Smith–Waterman sequence alignment. The alignment parameters are the 

same as those described for the single copy IS case. In some cases the boundary defined 

by the IRs may disagree with the boundary defined by the synteny of the aligned reads 

due to nested repeats, flanking direct repeats at the ends, or inaccurate IR identification. 

ISQuest addresses this ambiguity by prioritizing the IR edges and changing the boundary 

to match the IRs. If IRs are found, a direct repeat finding subroutine attempts to align 

10bp fragments on either side of the IRs to identify direct repeats.  If no IRs are found, 

the edges of the MGE are solely determined by the alignment of the reads. This allows 

annotation of partial MGEs as many of these sequences do not have IRs. Thus, when 

present in multiple copies, ISquest finds partial ISs; it is not capable of finding these IS 

fragments when no intact copy with an annotated transposase is present in GenBank. 

The same MGE element may result in one or more BLAST seeds and may cause 

redundant copies of the same IS to be generated. Therefore the redundant results within 

the final set are filtered out using a pairwise global alignment to identify groups of IS 

lengths, which are clustered together. The clustering algorithm groups sequences such 

that the mean lengths are within 100bp of each other. The cluster is then assumed to be 

the true copy size of the IS and any fragments that are shorter than that threshold are 

classified as partials. 

1.1.5. Iterative Extension and Boundary Finding  

Sequences with known boundaries are removed from the extension set and all 

remaining sequences are expanded based on the consensus of the reads aligned to the 

boundaries. Extension and boundary finding are performed iteratively until all seed 
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sequences have been processed. The end of each boundary finding step generates a new 

set of seed sequences. The new seed sequences are generated from the alignments that 

have no disagreement in the aligned reads, signifying that the boundary has not been 

reached. The consensus sequences generated from all these alignments is used as the 

fresh set of seeds in the extension step. Some new seed sequences may be derived from 

alignments with disagreements as well. In such cases, the alignment disagreements can be 

grouped such that some groups have a very large coverage. The consensus sequences 

generated from these large coverage groups are separated and treated as new seed 

sequences.  

1.1.6. ISQuest Output  

The output of the pipeline is a library of full and partial MGEs. IS elements in 

particular are composed of a transposase with one or more ORFs and appropriate 

upstream and downstream sequences. The extreme edges are annotated in GenBank 

format for IS elements and may include a partially conserved inverted repeat on each end 

ranging from 8 to 40 bp in length with direct repeats ranging from 4-8bp in length. Partial 

IS elements and other MGEs such as transposases do not have special annotations 

defining the boundary.     

The final output of ISQuest includes two files for the given input of raw reads and 

contig(s): 1) a file in GenBank format listing each MGE and its characteristics, including 

the chromosome ID, start and end positions, direction, family and group, IRs (if found), 

DRs (if found) and whether the element is a partial element; and 2) a file containing the 

copy number of each identified IS in .csv format.  

1.1.7. Using the ISQuest Tool 
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ISQuest is a free open source program implemented in C++. It is available at 

http://sourceforge.net/projects/isquest. ISQuest requires the read library of input reads in 

FASTA/FASTQ format and can be optionally provided with an assembly of the reads. 

The program accepts 4 command line parameters 1) the configuration file, 2) the raw 

reads, 3) the prefix of the output files and 4) the optional set of assembled contigs. The 

configuration file contains the required file paths to the local BLAST database and other 

configurable parameters such as the maximum number of iterations ISQuest performs, 

the maximum length of the MGEs to be built and the search terms for MGE’s in 

GenBank. A complete wiki with required documentation is provided on the forge.  

1.1.8. Preparation for ISQuest Tool Evaluation 

To evaluate ISQuest we used 3810 microbial genomes and plasmid sequences > 

100Kbp available in GenBank as of 15
th

 October 2014. The ART tool was used to 

generate synthetic Illumina paired-end fragment libraries with read length of 250bp and 

50× coverage. The read length of 250bp was used for experimentation because 250bp 

read lengths are typical for Illumina sequencing machines. ART simulates sequencing 

reads by mimicking real sequencing process with empirical error models or quality 

profiles summarized from large recalibrated sequencing data. ART can also simulate 

reads using a user specified error profile that requires the user to specify probability of 

sequencing errors at each base position of the read. ART was used as a primary tool for 

the simulation study of the 1000 Genomes Project (Huang, et al., 2012). ISQuest 

performance was evaluated by first fragmenting each genome using the simulation 

process described above. We then used the Celera WGS assembler to assemble these 

simulated reads into contigs. The ISQuest algorithm was operated on these contig 

http://sourceforge.net/projects/isquestx
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sequences to generate a set of candidate MGEs. This run can be performed using the raw 

reads but will significantly slow down the execution.  In addition, we ensure that the 

ISQuest testing algorithm does not include the genomes being processed in the search 

database to ensure that the test and training sets are disjoint.  

  

OASIS GenBank

ISQuest

67 1307

1350

5409

148

25580

70% Length Match 

OASIS GenBank

ISQuest

67 1519

864

5372

185

23910

OASIS GenBank

ISQuest

67 2854

418

5208

376

9840

80% Length Match 90% Length Match 

(A) (B) (C)

Fig. 6. Venn diagram illustrating the number of IS annotations identified by ISQuest and 

OASIS compared to GenBank at three length match thresholds. (A) ISQuest and OASIS 

both found 5409 ISs (in single copies) in the 3810 GenBank benchmarked genomes and 

plasmids. Additionally, ISQuest identified 2558 ISs that OASIS did not annotate and 

OASIS found 148 ISs that ISQuest failed to detect. OASIS found 67 insertion sequences 

that were not correctly annotated in GenBank as IS. ISQuest generated 1350 partial IS 

sequences that have not been annotated in GenBank. The intersection of ISQuest and 

OASIS is 0 as ISQuest cannot identify any sequence that has not been annotated in more 

than one GenBank submission using the keywords ‘transposase’, or ‘insertion sequence’ 

in the ‘product’ field. ISQuest does not take the annotated genome as input and therefore 

requires similar annotation to be present in other submissions. (B) same as (A) but only 

allowing 80% length matches as true positives. (C) same as (A) but only allowing 90% 

length matches as true positives.  
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1.2. ISQuest Test Results 

We performed two experiments to show the MGE detection capability of ISQuest 

and present a summary of IS sequences found by ISQuest classified by IS family. The 

performance of the ISQuest tool was compared to that of OASIS using annotated 

transposases in GenBank as a benchmark. This first experiment compared the accuracy of 

ISQuest and OASIS by measuring the percentage of GenBank annotated ISs found by 

each tool. Unlike ISQuest, OASIS operates on completely assembled and annotated 

genomes and uses only the annotation information available in the genome. ISQuest 

operates on partially assembled contigs or directly on the raw reads and does not require 

annotation to identify the ORFs. This experiment shows the predictive capability of 

ISQuest to find ISs from a draft and un-annotated assembly and compares it to the 

predictive capability of OASIS using completely annotated sequences. The capability of 

ISQuest to find other repetitive elements (e.g. rRNA operons) is not measured in this 

experiment.  

As ISQuest uses an un-annotated draft genome, ORFs are not clearly defined and 

finding the exact lengths of the MGEs is difficult using the seed extension algorithm. 

Therefore, due to these inaccuracies, the testing result in Figure 6(A) considers 70% 

sequence length match as a true positive; if ISQuest returns a sequence that matches a 

70% of the length of an annotated sequence in GenBank with 95% sequence similarity 

we consider it a true positive. The count numbers in the figure represent IS counts in 

single copy; multiple copies of a particular IS are not included. Within the 3810 

benchmarked genomes and plasmids, ISQuest found 84.5% of the 9422 unique GenBank 

annotations, whereas OASIS found 58.9%. The 5346 GenBank ISs found both by 



72 
 

ISQuest and OASIS represent insertion sequences with well-defined inverted repeats. 

The 2558 sequences found by ISQuest and also present in GenBank are full and partial 

transposase elements that do not contain completely defined inverted repeats and 

therefore cannot be identified by OASIS. The 1350 annotations found only by ISQuest 

include partially assembled insertion sequences and partial MGEs found by ISQuest that 

have not been annotated in deposited genomes. These sequences may also include 

potential sets of new insertion sequence and transposase elements identified by ISQuest 

based on sequence similarity to other ISs in GenBank. The intersection of ISQuest and 

OASIS is zero as ISQuest cannot identify any sequence that has not been annotated in 

more than one GenBank submission using the keywords ‘transposase’, or ‘insertion 

sequence’ in the ‘product’ field. ISQuest does not take the annotated genome as input and 

therefore requires similar annotation to be present in other submissions.  

We further evaluated ISQuest under increasingly strict constraints by increasing 

the length match threshold which we accept as a true positive to 80% and 90% of the 

sequence length (see Figure 6). Figure 6(B) shows the results of considering only 

sequences with greater than or equal to 80% length matches with 95% sequence 

similarity with GenBank sequences as valid true positives of ISQuest. We notice a slight 

reduction in the number of insertion sequences detected by ISQuest to 82.2% of the 9422 

unique GenBank annotations. Increasing the length match threshold to 90% (see Figure 

6(C)) shows significant reduction in the number of insertion sequences detected by 

ISQuest to 65.7%. However, this shows that ISQuest is able to reproduce 90% of the 

actual IS sequence using the fast seed extension algorithm in the majority of cases. 
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Table 16. ISQuest annotations compared to GenBank annotations grouped by Phylum at 

80% length match threshold 

Phylum 
Number of  

Genomes
a
 

Number of GB 

IS
b
  

Number of GB 

TP
c 
 

Number of ISQ 

IS
d 
 

ISQ TP
e
  

Proteobacteria 1810 22375 31918 18412 14164 

Firmicutes 794 7906 11029 6297 4962 

Actinobacteria 520 4029 7970 3416 3513 

Cyanobacteria 128 1590 3674 1267 1534 

Bacteroidetes 92 1016 1342 858 582 

Tenericutes 53 434 468 321 226 

Spirochaetes 48 357 569 264 253 

Deinococcus-Thermus 47 283 323 188 160 

Others 318 3754 3097 2712 1373 

Total 3810 41564 60309 33735 26767 
a
The number of genomes under each phylum. 

b
The number of IS annotations(multiple copies) in GenBank. 

c
The number of Transposase annotations in (multiple copies) GenBank. 

d
The number of IS detected (multiple copies) detected by ISQuest. 

e
The number of Transposase detected (multiple copies) detected by ISQuest. 

 

 

1.2.1. MGE Detection using ISQuest  

In order to study the overall sensitivity and specificity of ISQuest we directly 

compared its output to GenBank. Comparison to OASIS is problematic as OASIS only 

identifies insertion sequences with clearly defined inverted repeats. ISQuest can identify 

full ISs, partial ISs and other MGEs such as transposases. Table 16 shows the IS 

sequences found by ISQuest grouped by phylum. The numbers in the table represent ISs 

in multiple copies, i.e., the multiple copies of the IS are included (collapsed). Likely 

because of  the number of sequenced genomes from Proteobacteria and Firmicutes, >50% 

of the ISs we found are from Proteobacteria and an additional 16% are from Firmicutes 

(Table 16, Column 3). ISQuest detected 82.2% of the Proteobacteria ISs and 81.1% on 

average from GenBank (Table 16, column 3, 5). The prediction capability of ISQuest is 

limited by the assumption that a similar annotation of the IS element is present in other 

genomes. So, in some cases we cannot identify certain ISs correctly due to sequence 
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divergence or absence of annotation. Also, the copy number computation based on the 

number of possible flanking unique sequence regions is conservative in estimating the 

number of copies and reduces the copy count to the least possible value.   

ISQuest was also used to identify transposase elements and the sequences 

generated by ISQuest without clearly defined inverted repeats were compared to 

transposase annotations in GenBank. Similar to IS elements, Proteobacteria and 

Firmicutes account for majority of the transposase annotation in GenBank (52.3% and 

18.3% respectively). ISQuest detected 57.7% of the Proteobacteria transposases and 

44.4% of transposases from GenBank (Table 16, column 4, 6). The significantly lower 

detection accuracy relative to ISs is due to the presence of single copy transposases.  

These elements do not possess inverted repeats, and in single copy cases, do not possess 

multiple unique flanking sequences; therefore, their length cannot be estimated by 

ISQuest. Such single copy elements with no discernable end regions are extended to the 

default maximum length and often include unique sequence that does not match an 

existing transposase element from GenBank.    

1.2.2. MGE Detection using ISQuest  

It was also interesting to study the performance of ISQuest in terms of the IS 

families discovered.  This provided insight into the annotations and predictive capability 

of ISQuest for mining ISs from families with high divergence. Table 17 shows the top 20 

IS families detected, some of which are predicted better than others due to the inherent 

divergence in the IS families and inaccurate annotations from GenBank. IS4 family is the 

most annotated IS family in GenBank with a total of 5521 annotations. ISQuest identified 

the IS elements in IS4 family with ~ 60% accuracy which is significantly less that overall 
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accuracy of ISQuest. This is due to the high internal divergence of IS4 elements that 

makes classification and identification challenging. 

 

Table 17. ISQuest annotations compared to GenBank annotations group by IS type 

IS Family
a
 

Number of 

GB
b
 

Number of 

ISQ
c
 

Percentage
d
 IS Family

e
 

Number of 

GB
b
 

Number of 

ISQ
c
 

Percentage
d
 

IS4 5521 3340 60.5 IS110 308 308 100 

IS911  2496 1872 75 ISL3 308 298 96.8 

IS902 1738 1603 92.2 IS21 233 232 99.6 

IS3 1061 1060 99.9 IS982 229 171 74.7 

IS5 772 679 88 IS256 223 222 99.6 

IS66 568 426 75 IS200 190 190 100 

IS1165 491 367 74.7 IS1341 146 146 100 

IS605 377 376 99.7 IS6 98 98 100 

IS30 362 361 99.7 IS1182 75 55 73.3 

IS630 337 252 74.8 IS1595 55 54 98.2 
a
The top 10 IS families annotated in GenBank. 

b
The number of IS annotations (single copy) in GenBank. 

c
The number of IS detected (single copy) by ISQuest. 

d
The percentage IS detected (single copy) by ISQuest. 

e
The top 11-20 IS families annotated in GenBank. 

 

 

Overall, 60,502 MGE elements representing 9317 unique IS sets and 26767 

transposase annotations were identified by ISQuest in 3810 genomes and plasmids. 

ISQuest took a total of 23 h and 44 min to annotate all 3810 genomes on a 4x Intel Xenon 

X7550, 2.0-Ghz processor using partially assembled contigs. The maximum per-genome 

running time was 8 min. 

2. Correlative Algorithm for Repeat Placement  

The Correlative Algorithm for Repeat Placement (CARP) finishing tool we 

propose is based on the novel idea of assembling repeat elements separately from the rest 

of the genome, then placing these elements correctly within the draft genome using 

several lines of evidence to ensure that the correct placement is made.  Evidence types 

include: 1) presence of incomplete repeat element fragments on the ends of unjoined 
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contigs, 2) mate-pair evidence, and 3) synteny (similarity in gene organization) with 

reference genomes.  Importantly, any joins made by this method are presented to the user 

along with the evidence used to make the joins (see Figure 7). De-novo genome assembly 

from DNA fragments is primarily based on sequence overlap information. 

  

In addition, mate-pair reads or paired-end reads provide linking information for 

joining gaps and bridging repeat regions. Genome assemblers in general assemble long 

contiguous sequences (contigs) using both overlapping reads and linked reads until the 

assembly runs into an ambiguous repeat region. These contigs are further bridged into 

scaffolds using linked read information. However, errors can be made in both phases of 

assembly due to high error threshold of overlap acceptance and linking based on too few 

mate reads. Identical as well as similar repeat regions can often cause errors in overlap 

and mate-pair evidence. In addition, the problem of setting the correct threshold to 

minimize errors and optimize assembly of reads is not trivial and often requires a time-

consuming trial and error process. Therefore, we propose a novel scaffolding tool, 

Correlative Algorithm for Repeat Placement (CARP), capable of joining low error 

Fig. 7. Illustration of CARP scaffolding 

 



77 
 

contigs using mate pair reads, resolved repeat structures and verification of joins based on 

synteny with one or more reference organisms. The CARP tool requires a set of long 

repeat sequences such as insertion sequences that can be manually determined or found 

computationally. The tool is designed to match very low error contigs with strong overlap 

using the ambiguous partial repeat sequence at the ends of the contig. These matches are 

verified by synteny with reference to one or more related organisms. We show that the 

CARP tool can be used to verify low mate pair evidence regions, independently find new 

joins and significantly reduce the number of scaffolds. 

2.1. Annotating the Partial Repeats at Each Contig Ends  

The CARP tool requires as input a set of high quality contigs that are generally 

flanked by a partial repeat region that were not assembled by the assembler due to 

ambiguous choices. Figure 8 shows the annotation of partial repeats at the contig ends 

using the computationally determined repeats from ISQuest.   

 

 

Fig. 8. Correlative Algorithm for Repeat Placement (CARP) step 1.  The partial repeat 

elements flanking the contigs are identified.   
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2.2. Identification of Intergenic or Interrupting Repeat Insertion  

The annotation of flanking repeats reduced the match possibilities from 𝑂(𝑛2). 

The possibilities can be further reduced based on the unique sequence flanking the partial 

repeat sequences. The flanking 200bp of the sequence are BLAST searched against a 

database of genes. The first case is intergenic insertion where the insertion sequence 

interrupts a gene. In that case, the BLAST search will return a match within a gene. 

However, if the sequence does not hit inside a sequence we have an intergenic insertion 

(see Figure 9). In case of intergenic insertion, we can match the contigs based on synteny 

with a reference genome.  

2.3. Matching the Contigs Based on Lines of Evidence 

Based on the first two steps we have two lines of evidence to make joins. We can 

first pair contigs based on matching complementary partial repeats at the contig ends. The 

number of possible pairs can be further reduced based on interrupted gene sequences and 

synteny with are reference (see Figure 10).    

Fig. 9. Correlative Algorithm for Repeat Placement (CARP) step 2. The unique 

regions around the partial repeat elements are identified by BLAST to determine 

intergenic or interrupting insertions.  
 



79 
 

 

2.4. CARP Results 

We experimented with CARP by selecting 12 genomes with high repeating 

regions (see Table 18). The ART tool was used to generate synthetic Illumina paired-end 

fragment libraries with read length of 250bp and 50× coverage. The read length of 250 bp 

is typical of Illumina sequencing machines and was selected for experimentation. ART 

simulates sequencing reads by mimicking real sequencing process with empirical error 

models or quality profiles summarized from large recalibrated sequencing data. ART can 

also simulate reads using a user specified error profile that requires the user to specify 

probability of sequencing errors at each base position of the read. ART was used as a 

primary tool for the simulation study of the 1000 Genomes Project (Huang, et al., 2012). 

CARP performance was evaluated by first fragmenting each genome using the simulation 

process described above. We then used the Celera WGS assembler to assemble these 

simulated reads into low error overlap only contigs. The ISQuest algorithm was operated 

on these contig sequences to generate a set of candidate MGEs. CARP was used to call 

joins using the MGEs and the contigs. The Celera scaffolder was also used to call the 

joins and the results are compared (see Table 18).  Both the scaffolders are checked for 

Fig. 10. Correlative Algorithm for Repeat Placement (CARP) step 3. The unique 

regions around the partial repeat elements are identified by BLAST to determine 

intergenic or interrupting insertions.  
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incorrect joins by comparing the scaffolds to the original sequence of the genome. We 

can see that CARP consistently generates fewer scaffolds and fewer incorrect joins as 

compared to Celera WGS. For example, CARP was able to derive a single circular 

sequence genome with no errors for M. marinum M, where Celera WGS derived only 48 

scaffolds.  

 

Table 18. CARP finishing results 

Organism
a
 Len

b
 

Low Error 

Contigs
c
 

Celera 

Scaffolds
d
 

 Incorrect Joins  

(Celera)
e
 

CARP 

Scaffolds
f
 

Incorrect Joins 

(CARP)
g
 

M. nodulans 7.7 482 56 3 24 0 

T. erythraeum 7.7 279 37 0 4 0 

M. vanbaalenii 6.4 12 1 0 1 0 

M. marinum M 6.3 773 48 5 1 0 

M. acetivorans 5.7 28 20 0 6 0 

B. halodurans 4.2 857 92 16 38 7 

A. aurescens 4.5 683 97 7 21 2 

M. silvestris 4.3 22 12 0 15 0 

S. maltophilia 4.8 1289 266 31 49 1 

R. rubrum 4.3 42 8 1 3 0 

M. hungatei 3.5 654 107 14 19 4 

H. marismortui 3.4 22 2 0 1 0 
a
The top 12 genomes with repetitive IS sequences. 

b
The length of the genome in million base pairs. 

c
The number of low error contigs assembled by Celera WGS assembler with only overlap 

information. 
d
The number of scaffolds generated by Celera using mate-pair reads. 

e
The number of scaffolds generated by Celera that do not match the original genome.  

e
The number of scaffolds generated by CARP using repeat placement and mate-pair reads. 

f
The number of scaffolds generated by CARP that do not match the original genome. 

 

  

3. Unverified Join Viewer 

The Unverified Join Viewer (UJV) was developed to help users track join information 

from CARP and update join data as per user requirement. This of this project was 

implemented by a team of undergraduate students as part of the CS410 & CS 411 

Profession Workforce Development course requirements under the guidance of Abhishek 

Biswas (Biswas, et al., 2015).    
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The UJV viewer displays the bacterial genome in a circle after loading the 

GenBank file generated from CARP with join points annotated using the “join_feature”. 

The joins annotated as “join_feature” in the GenBank file are shown on the outer 

periphery of the genome circle (see Figure 11). The joins shown in red have not been 

manually verified and confirmed and require further user review. The joins that have 

been have been manually verified and confirmed are displayed in blue. The user can use 

the mouse to linger over the join features to see the join information as a tooltip. The side 

panel can be used to view the join coordinates and control the central view. The other 

annotations of the genome are also shown in the inner periphery of the circle and are 

color coded. The lower side panel can be used to select the features to be displayed. The 

annotation features also have tooltips that the user may use to view the annotation details.  

Figure 11 shows a screenshot of the M. Marinum M genome artificially fragmented and 

Fig. 11. Unverified Join Viewer: genome display and joins 
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assembled back using CeleraWGS and CARP. The user is currently viewing particular 

join information using tooltip and the “misc_feature” annotation is selected for view.   

 

The user can click on a join GUI element to edit the join information and track the 

progress of the genome finishing process. The edited join annotations can be used to 

track manual verification and validation process and rules can be set to confirm joins. 

Clicking on a join feature opens an editable window where join related information could 

be modified (see Figure 12). The application allows the user to re-order the contigs and 

generate a NCBI compatible GenBank file of the bacterial genome for publication.  

  

Fig. 12. Unverified Join Viewer: genome display and editable join information 
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CHAPTER 5 

CONCLUSION 

 

This work focuses on providing a major sequence assembly resource to small- and mid-

scale laboratories that may not have access to bioinformatics expertise and infrastructure 

available at larger institutions.  Even small (e.g. prokaryote) genome projects can be 

challenging tasks for researchers without bioinformatics core facilities to call upon for 

expertise and advice.  In our experience, choice of an appropriate assembler for 

prokaryotic genomes is often hampered by lack of information regarding how individual 

assemblers deal with various genomic structures, and researchers are often forced to 

“take a guess” about which assembler to use, or allow considerations of computational 

resources or user-friendliness to make their decision for them.  When one considers the 

large amount of effort required to produce a finished sequence from a draft assembly, the 

inefficiency imposed by an inappropriate assembler creates clear problems.  Further, the 

current lack of ability to bring together a comprehensive suite of assembly statistics 

creates a large potential for misassembled “final” sequences to make their way into 

public databases.  Therefore, researchers without ready access to teams of trained 

bioinformaticists face a lack of centralized information and tools with which to generate 

sequence assemblies, and more importantly, to judge the quality of assemblies they 

generate.  We present tools that develop this resource, and therefore to improve the 

accessibility of small-scale accurate genome assembly to a larger user base.  This activity 

therefore has a wide variety of potential broader impacts.   Generation of sequence 

resources, including finished genomes, is applicable to a wide variety of scientific 
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endeavor, including human and veterinary health (i.e. bacterial pathogens), 

environmental remediation (e.g. hydrocarbon-degrading organisms), and microbial 

ecology.  While focus of large sequencing centers has shifted to resequencing large 

numbers of strains of already highly studied organisms (e.g. Escherichia coli), there is 

still considerable interest in the scientific community for development of genomic 

resources in less-well characterized prokaryotic taxa.  Our goal is to facilitate this 

research by making accurate and efficient prokaryotic genome assembly more accessible 

to a wider range of laboratories.  
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APPENDIX 

APPENDIX A 

 

Table 19. Parallel assembly quality experiment  

 

Organism: E. coli HS (Length: 4643538) 

Readsa Versionb 
N50 

Scorec 

Longest Contig 

Lengthd 

Number of Contigse 
Coveragef 

Base Calling 

Errorsg 

Reads 

Assembledh < 10Kbp 10Kbp-100Kbp >100Kbp 

100,000 16 threads 9,771 32,894 1,229 35 0 99.7 36,258 96,754 

32 threads 9,812 32,894 1,435 37 0 99.7 36,258 96,823 

64 threads 9,812 32,894 1,331 37 0 99.7 34,875 97,618 

MIRAi 9,754 29,875 1,169 35 0 99.45 32,784 95,782 

500,000 

16 threads 10,594 35,059 1,901 41 0 99.7 33,487 407,571 

32 threads 11,238 35,059 2,003 42 0 99.7 33,247 407,426 

64 threads 10,944 35,059 2,090 46 0 99.7 32,617 408,396 

MIRAi 11,687 36,758 1,630 44 0 99.6 30,784 410,258 

1,000,000 

16 threads 68,358 207,793 198 21 12 99.6 30,643 967,871 

32 threads 68,332 207,793 203 23 12 99.6 30,482 968,473 

64 threads 68,414 207,793 203 23 12 99.6 31,471 968,537 

MIRAi 67,738 210,875 182 20 12 99.6 31,756 924,567 

Organism:Mycobacterium vanbaalenii (Length: 6491865) 

100,000 16 threads 13,601 57,002 519 294 0 93.2 31,478 80,697 

32 threads 13,573 57,002 519 294 0 93.1 32,247 81,687 

64 threads 13,694 57,002 519 294 0 93.2 31,766 81,572 

MIRAi 13,892 57,470 541 192 0 92.7 28,745 83,687 

500,000 

16 threads 13,694 103,880 1,234 68 1 95.1 29,683 438,745 

32 threads 13,614 103,880 1,231 71 1 95.1 29,676 441,359 

64 threads 13,632 103,880 1,228 71 1 95.15 29,875 442,978 

MIRAi 17,486 125,784 1,120 26 2 96.34 30,875 468,751 

1,000,000 

16 threads 26,176 178,654 4,708 72 7 95.84 34,894 109,0687 

32 threads 26,227 178,654 4,796 70 9 95.84 35,472 109,9367 

64 threads 26,229 178,654 4,777 75 9 95.84 35,217 109,8263 

MIRAi 26,381 163,463 3,137 82 11 97.62 36,680 106,2354 

Organism:Mycobacterium Marinum (Original Length: 6636827) 

100,000 16 threads 1,483 7,932 2,808 0 0 90.4 12,802 88,572 

32 threads 1,533 7,932 2,812 0 0 90.4 13,581 88,656 

64 threads 1,509 7,932 2,806 0 0 90.4 13,294 88,517 

MIRAi 1,478 7,874 3,204 0 0 90.6 12,879 91,478 

500,000 

16 threads 14,642 45,350 690 35 0 89.65 1,102 464,924 

32 threads 14,755 45,350 698 38 0 89.4 1,567 451,483 

64 threads 14,153 45,350 716 38 0 87.6 2,638 426,874 

MIRAi 13,478 47,896 600 42 0 89.7 7,845 447,851 

1,000,000 

16 threads 22,587 87,255 568 238 0 92.81 12,301 923,248 

32 threads 22,607 87,255 565 232 0 92.8 11,854 923,248 

64 threads 22,623 87,255 569 237 0 92.8 11,933 923,248 

MIRAi 18,996 62,028 695 221 0 92.6 13,748 872,568 
aThe number of simulated reads with mean length of 500bp and standard deviation of 100bp.   
bThe version of the assembler i.e. either a parallel implementation with 16/32/64 parallel threads for path finding or the serial 

MIRA version 3.2.1. 
cThe N50-Score of all the contigs. 
dThe length (in bp) of the longest contig. 
eThe number of contigs distributed in three intervals of (0,10,000], (10,000, 100,000], (100,000, ∞). 
fThe percentage of the original genome covered by the contigs. 
gThe number (in bp) the mismatches in the assembly. 
hThe number of reads in the assembly.   
iThe original version of MIRA 3.2.1 (Chevreux, et al., 1999).   
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