
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Fall 2015

Efficient Algorithms for Prokaryotic Whole
Genome Assembly and Finishing
Abhishek Biswas
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Bioinformatics Commons, and the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Biswas, Abhishek. "Efficient Algorithms for Prokaryotic Whole Genome Assembly and Finishing" (2015). Doctor of Philosophy
(PhD), dissertation, Computer Science, Old Dominion University, DOI: 10.25777/znmw-nt79
https://digitalcommons.odu.edu/computerscience_etds/3

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/3?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

EFFICIENT ALGORITHMS FOR PROKARYOTIC WHOLE GENOME

ASSEMBLY AND FINISHING

by

Abhishek Biswas

B. E. August 2007, Visvesvaraya Technological University, India

A Thesis Submitted to the Faculty of

Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY

December 2015

 Approved by:

Desh Ranjan (Director)

David Gauthier (Member)

 Mohammad Zubair (Co-Director)

Jing He (Member)

ABSTRACT

EFFICIENT ALGORITHMS FOR PROKARYOTIC WHOLE GENOME ASSEMBLY

AND FINISHING

Abhishek Biswas

Old Dominion University, 2015

Director: Dr. Desh Ranjan

Co-Director: Dr. Mohammad Zubair

De-novo genome assembly from DNA fragments is primarily based on sequence

overlap information. In addition, mate-pair reads or paired-end reads provide linking

information for joining gaps and bridging repeat regions. Genome assemblers in general

assemble long contiguous sequences (contigs) using both overlapping reads and linked

reads until the assembly runs into an ambiguous repeat region. These contigs are further

bridged into scaffolds using linked read information. However, errors can be made in

both phases of assembly due to high error threshold of overlap acceptance and linking

based on too few mate reads. Identical as well as similar repeat regions can often cause

errors in overlap and mate-pair evidence. In addition, the problem of setting the correct

threshold to minimize errors and optimize assembly of reads is not trivial and often

requires a time-consuming trial and error process to obtain optimal results. The typical

trial-and-error with multiple assembler, which can be computationally intensive, and is

very inefficient, especially when users must learn how to use a wide variety of

assemblers, many of which may be serial requiring long execution time and will not

return usable or accurate results. Further, we show that the comparison of assembly

results may not provide the users with a clear winner under all circumstances. Therefore,

we propose a novel scaffolding tool, Correlative Algorithm for Repeat Placement

(CARP), capable of joining short low error contigs using mate pair reads,

computationally resolved repeat structures and synteny with one or more reference

organisms. The CARP tool requires a set of repeat sequences such as insertion sequences

(IS) that can be found computationally found without assembling the genome.

Development of methods to identify such repeating regions directly from raw sequence

reads or draft genomes led to the development of the ISQuest software package. ISQuest

identifies bacterial ISs and their sequence elements—inverted and direct repeats—in raw

read data or contigs using flexible search parameters. ISQuest is capable of finding ISs in

hundreds of partially assembled genomes within hours; making it a valuable high-

throughput tool for a global search of IS and repeat elements.

The CARP tool matches very low error contigs with strong overlap using the

ambiguous partial repeat sequence at the ends of the contig annotated using the repeat

sequences discovered using ISQuest. These matches are verified by synteny with

genomes of one or more reference organisms. We show that the CARP tool can be used

to verify low mate pair evidence regions, independently find new joins and significantly

reduce the number of scaffolds. Finally, we are demonstrate a novel viewer that presents

to the user the computationally derived joins along with the evidence used to make the

joins. The viewer allows the user to independently assess their confidence in the joins

made by the finishing tools and make an informed decision of whether to invest the

resources necessary to confirm a particular portion of the assembly. Further, we allow

users to manually record join evidence, re-order contigs, and track the assembly finishing

process.

iv

Copyright, 2015, by Abhishek Biswas, All Rights Reserved.

v

This thesis is dedicated to Old Dominion University, which has funded my education and

it is where I have lived for 6 years and made lot of friends.

vi

ACKNOWLEDGMENTS

The writing of this dissertation was a very challenging academic experience for me and I

would have walked away if not for the support, patience, guidance and expectations of

the following people.

 I would like to thank Dr. Desh Ranjan who decided to supervise my doctorate

degree despite his many other academic and administrative commitments. His

capability of proposing interesting solutions to problems and proving

correctness of the proposed solution always inspired and motivated me. I would

like to thank him for taking care of me financially and finding sources for

funding my education.

 I would like to thank Dr. Mohammad Zubair who decided to co-supervise my

doctorate degree and share his experience and knowledge of high performance

computing. His ability to ask fundamental questions to understand the given

problem has helped me to develop a rational thought process. In addition, I

would also like to thank him for taking care of me financially and finding

sources for funding my education.

 I would like to thank Dr. David Gauthier for being a constant source of real

world biological problems and solutions that have given my dissertation its

purpose with immense practical value. His patience and intuitively explanations

of complex biological processes have sparked in me a newfound interest in life

sciences. His work with students has inspired me to be a better teacher and

better academic. His excellent writing skills have helped me to improve the

vii

quality of my publications.

 I would like to thank Dr. Jing He for encouraging me to work in another

domain of bioinformatics and for including me in her team. She has helped me

to improve my publishing record with major journal publication that would not

have been otherwise possible. Her excellent writing skills have made this

document possible and inspired me during moments of writer’s block.

 I would like to extend special thanks to Dr. Ravi Mukkamala and Ms.

Yasoda Mukkamala for inviting me to their home every Thursday and being a

constant source of love, support and valuable advice.

viii

TABLE OF CONTENTS

Page

LIST OF TABLES ... ix

LIST OF FIGURES ...x

LIST OF GRAPHS .. xi

INTRODUCTION ...1

 OVERVIEW ..1

 THESIS STATEMENT ..6

 THESIS ORGANIZATION...7

BACKGROUND AND RELATED WORK ...9

 GENOME ASSEMBLERS ..9

 GENOME ASSEMBLY QUALITY ...12

 GENOME ASSEMBLY FINISHING ...14

 GENOMIC REPEAT FINDING ..14

GENOME ASSEMBLY AND ASSEMBLY QUALITY ...20

 OVERVIEW ..20

 COMPARING GENOME ASSEMBLY QUALITY ...22

 PARALLEL GENOME ASSEMBLY ...36

CORRELATIVE ALGORITHM FOR REPEAT PLACEMENT (CARP).59

 FINDING REPEAT ELEMENTS ..59

 CORRELATIVE ALGORITHM FOR REPEAT PLACEMENT75

 UNVERIFIED JOIN VIEWER ..80

CONCLUSIONS..83

REFERENCES ..85

APPENDIX ..90

 APPENDIX A ..90

VITA ..91

ix

LIST OF TABLES

Table Page

1. MIRA assembly time breakup ...25

2. Correlating read length and correct contigs ...30

3. Correlating coverage and correct contigs ..31

4. Correlating mate pair distance and correct contigs ..33

5. MIRA assembly time breakup (2)..42

6. Graph sizes ...52

7. Graph construction phase execution time (1st pass) ..53

8. Graph construction phase speedup (1st pass) ..54

9. Contig building phase execution time..55

10. Contig building phase speedup ..55

11. Consensus construction & error correction phase execution time56

12. Consensus construction & error correction speedup ...56

13. Serial components table ...57

14. Overall speedup experiment table ..57

15. Real graph speedup experiment table ..58

16. ISQuest annotations compared to GenBank

annotations grouped by Phylum at 80% length match threshold73

17. ISQuest annotations compared to GenBank

annotations group by IS type ...75

18. CARP finishing results ..80

19. Parallel assembly quality experiment .. 90

x

LIST OF FIGURES

Figure Page

1. Illustration of DNA sequencing. ..2

2. Illustration of genome assembly process. ..3

3. The repeat problem and examples of “good” and “bad” joins.4

4. MIRA assembly pipeline ...43

5. Flowchart of the full workflow of ISQuest. ...64

6. Venn diagram illustrating the number of

IS annotations identified by ISQuest and

OASIS compared to GenBank at three length match thresholds.70

7. Illustration of CARP scaffolding. ..76

8. Correlative Algorithm for Repeat Placement (CARP) step 1.77

9. Correlative Algorithm for Repeat Placement (CARP) step 2.78

10. Correlative Algorithm for Repeat Placement (CARP) step 3.79

11. Unverified Join Viewer: genome display and joins. ..81

12. Unverified Join Viewer: genome display and editable join information.82

xi

LIST OF GRAPHS

Graph Page

1. Mean of the fraction of correctly assembled

contigs in intervals of 25 vs read length (bp) ...29

2. Correctly assembled contigs vs coverage ..30

3. Correctly assembled contigs vs mate pair distance ..32

4. Mean of the fraction of repeats correctly assembled

in intervals of 25 vs read length ...34

5. Fraction of repeats correctly assembled vs coverage ...35

6. Mean of the length of the longest repeat sequence

correctly assembled intervals of 25 vs read length ..35

7. Length of the longest repeat sequence correctly assembled vs coverage.36

1

CHAPTER 1

INTRODUCTION

1. Overview

Genome sequencing is the method of breaking multiple copies of the genome of

an organism into many small fragments (reads) whose sequence can then be determined

using a genome sequencer machine. The problem of combining these reads to reconstruct

the source genome is known as whole genome assembly. The human genome project

completed in 2003, primarily used a technique called Sanger dideoxynucleotide

termination sequencing to accomplish the goal of determining all ~3 billion DNA bases

of the human genome. This technology used thousands of dedicated sequencing

instruments running around the clock and serviced by full-time technical staff. In 2005,

newer technology, so called “Next-Generation Sequencing” (NGS) was introduced, with

the result that the sequencing capacity of an entire building of Sanger sequencers could

be replaced with a single machine roughly the size of a large laser printer. NGS

technology has since advanced to the point where gigabases (Gb) of data can be produced

in a matter of hours, and generating sequence data for small genomes (such as bacteria)

can be performed in hours for less than $1000.

Despite this massive advance in technology, sequencing still has the fundamental

limitation that relatively short (<1000 bp) sequences are produced, and these sequences

need to be put back together to recreate the genome of interest.

2

Next-generation sequencing technologies (e.g. Roche 454, Illumina®, Ion

Torrent™, SOLiD™, etc.) provide unprecedented capacity for extremely high-throughput

DNA sequencing relative to older Sanger-type methods. These methods are limited by

size of individual reads (800bp, 454; 300bp, Illumina®; 400bp Ion Torrent™). However,

these methods generate overlapping reads that cover the same portion of the genome

many times over (see Figure 1). Therefore, De novo genome assembly from DNA reads

is primarily based on overlapping sequence fragments (see Figure 2). The number of

sequences covering a portion of the genome is called the coverage of the reads. In

addition, mate-pair or paired-end reads can provide linking information for joining gaps

and bridging problematic repetitive regions. This is done by generating sequence for two

short reads that are a known distance apart in the genome.

Fig. 1. Illustration of DNA sequencing

3

A simplistic formulation of this problem, the Shortest Common Superstring

(SCS), assumes that the original genome should be the shortest sequence that contains

every fragment as a substring. Additional complexity arises when there are repeats i.e.

there are multiple identical or nearly identical stretches of DNA in the original sequence

and sequencing errors (see Figure 3). Generating a final genome entails correctly

ordering the short sequence fragments and closure (joining) of all regions into a complete

genome in presence of repeats and errors. Ambiguous and repeat elements are ubiquitous

in all genomes, bacterial and eukaryotic, with the result that generating sequence data for

a genome is quite simple, but reassembling the genome from these data can be quite

challenging.

Several assemblers such as Celera WGS (Miller, et al., 2008), MIRA (Chevreux,

et al., 1999), Newbler (Margulies, et al., 2005) and ABySS (Simpson, et al., 2009)have

been developed to perform genome assembly from fragments; however, the effectiveness

of these assemblers is impacted by the characteristics of the genome under assembly. For

example, repetitive elements in genomes are well known to negatively affect assemblies.

Fig. 2. Illustration of genome assembly process

4

Moreover, assemblers may disagree on the assembly of a particular genome, even

when working from the same fragment data, and certain assemblers have been shown to

assemble some organisms better. Uncertainty in assembly accuracy is further complicated

by lack of comprehensive measures for determining the quality of assembly. Even

assembly of “simple” bacterial genomes, with very few repeat regions, usually results in

multiple, unjoined large fragments that cannot be assembled automatically. These breaks

in the assembly must be closed with relatively laborious PCR and Sanger sequencing

methods, with the result that completing the last 5% of the final genome can often require

significant time and expense.

When considering bacterial genomes published in public repositories such as

GenBank, it is important to note that while a limited number are “final,” and represented

by one completed contiguous sequence (contig) of the bacterial chromosome, most are

“draft” and composed of tens to thousands of unjoined contigs. Production of a final

genome generally requires expensive PacBio® sequencing that generates long reads (up

to 25,000bp). These long reads have high sequence error and cannot be used to directly

assemble the genome accurately but are used to order the contigs assembled using

Illimina reads that have high sequence fidelity. Further gap filling has to be done using

older targeted PCR and Sanger sequencing techniques. Fragmented draft genomes are

Fig. 3. The repeat problem and examples of “good” and “bad” joins

5

still useful for many types of analyses, and can be used, for example, to generate genome-

wide phylogenetic trees based on the presence of single nucleotide polymorphisms

(SNPs) between strains. Many useful data are lost with this approach, however,

including overall chromosomal arrangement and presence or absence of repetitive regions

such as insertion sequences (IS) and phages (these are often excluded altogether from

draft assemblies). Further, disruption of coding genes (such as via interruption by an IS)

cannot be completely examined without a final genome, therefore relative analysis of

bacterial metabolic capabilities is limited when using draft genomes.

We therefore developed an economical, user friendly, end-to-end computational

pipeline for identifying insertion sequences and other repetitive elements, performing

guided assembly of contigs around these elements, and producing more highly finished

genomes from Illumina Paired-End data than have previously been possible. The goals

of this approach are twofold: 1) to use computational methods to dramatically reduce the

number of unresolved contigs resulting from standard sequence assembly, and 2) to

provide a user-friendly framework for assessing the quality of a near-final genome and

guiding gap-closure sequencing in the most efficient way possible. We propose a novel

scaffolding tool, Correlative Algorithm for Repeat Placement (CARP), for

computationally assembling and correctly placing repeat sequences in a genome from

raw reads. Computational identification and assembly of the repeat elements is performed

using a tool named ISQuest (Biswas, et al., 2015) developed to provide CARP the

required input data.

ISQuest uses BLAST search to identify reads belonging to known mobile

elements. These reads are further assembled until unique sequence is encountered, and a

6

library of full and partial repeats is generated. We initially concentrate on finding

insertion sequences and attempt to find all IS elements in a strain and map them based on

a reference genome. The list of potentially interrupted genes is compiled from the above

mapping to study large re-arrangements in the genome.

The scaffolding module using the assembled repeat regions is designed to join

very low error contigs based on the assembled repeat elements placed correctly within the

draft genome. The placement of the repeat elements is ensured using several lines of

evidence such as: 1) presence of incomplete repeat element fragments on the ends of

unjoined contigs, 2) mate-pair evidence, and 3) synteny (similarity in gene organization)

with reference genomes. Importantly, any joins made by this method will be presented to

the user along with the evidence used to make the joins. This will provide the end user

with a much clearer picture of the likelihood of correctness of every join in a draft

assembly, in order that the labor- and resource-intensive process of finishing via PCR

amplification and Sanger sequencing can be made as efficient as possible by reducing

attempts to join misassembled regions. Therefore, users can independently assess their

confidence in the joins made by the tool.

The pipeline makes generation of near-final bacterial genomes accessible to

smaller laboratories for which sequencing resources are more limited than major

sequencing centers, and will thus make prokaryotic genomics accessible to a wider user

base.

2. Thesis Statement

Our analysis of the assembly problem has revealed that different assemblers can generate

different assemblies given the same data. These assemblers can make mistakes, which

7

can lead to very time-consuming and expensive trial-and-error when it comes to

finalizing the genome as assemblers may take hours to complete an assembly. Further,

there are few tools available that allow quick and intuitive comparison among assemblies,

therefore one is often left to guess as to which assembly was “best,” and more

importantly, which joins in the assembly are “good”, “bad” or “acceptable” for further

analysis. Further, there are currently no adequate tools for intuitive and convenient

visualization of draft genomes, which would assist users in the final assembly process

and track joins that have to be manually verified before publication.

We therefore explored three major areas of research:

a. We explore a suite of quality measures for comparison of assemblies and

assessment of accuracy and reliability of sequence assemblies.

b. We design and develop a parallel framework to for speeding up bacterial whole

genome assembly and implementing it for a serial assembler so that at the quality

of the assembler can be analyzed under various input parameters.

c. We develop a suit of intuitive tools for generation of draft genomes and guidance

in joining of final sequences.

3. Thesis Organization

The thesis document is organized as follows:

a. Chapter 2 provides a detailed literature survey of the related works in the area of

genome assembly and finishing. Relevant work on finding insertion sequences

and other mobile genetic elements is also included.

b. Chapter 3 states the genome assembly problem in detail and provides a survey of

assembly quality of popular assemblers using various assembly quality metrics.

8

The design and implementation details of an efficient parallel framework for

assembly are provided along with results showing significant assembly speedup.

c. Chapter 4 describes the Correlative Algorithm for Repeat Placement (CARP)

genome-finishing algorithm proposed in this thesis. The ISQuest tool designed to

assemble the biologically significant genomic repeats from raw fragment

sequence data is presented. The CARP algorithm steps are discussed in detail and

results showing improved assemblies are presented.

d. Chapter 5 provides a concluding discussion on the utility and benefits of tools

developed and presented in this dissertation.

9

CHAPTER 2

BACKGROUND AND RELATED WORK

1. Genome Assembly

 The development of new genome assembly software is being driven by the emergence

and evolution of sequencing technologies generating reads with significantly different

lengths, overlap lengths and error characteristics. The first popular sequencing

technology was based on the chain-terminating inhibitor method by Sanger et al. (Sanger,

et al., 1977). The technique was automated with a computer and fluorescence detection

and generates low error reads over 1000bp in length (Smith, et al., 1986). The assembly

programs to assemble first generation sequences were based on greedy algorithms

(Tarhio and Ukkonen, 1988) or the overlap-layout-consensus (OLC) graph model

(Kececioglu and Myers, 1995). The prominent assemblers used to assemble drosophila

and human genomes include Phrap (Green, 1996), Celera (Myers, et al., 2000) and

ARACHNE (Batzoglou, et al., 2002).

 The next generation sequencing technologies with massively-parallel flow-cell

sequencing and sequencing-by-synthesis generate a large number of reads with shorter

lengths and higher error than Sanger, but which are significantly more economical. Roche

454 (Margulies, et al., 2005) can currently generate read lengths less than 800 bp, and Ion

Torrent
TM

 (Rothberg, et al., 2011) generates read lengths less than 400 bp, with longer

reads projected in the future. Illumina (Quail, et al., 2008) and ABI SOLiD (Pandey, et

al., 2008) are short read sequencers with typical read lengths less than 300bp. The

second-generation sequencing technologies have also developed the capability to read

from both ends of a fragment and produce reads with a pair at approximate distance. This

10

approach ranges from short-range (<1kb) paired ends (Illumina) to very long-range (>10

kb) mate-paired reads typically implemented in 454 sequencing. Paired reads have been

shown to be sufficient for de novo assembly (Chaisson, et al., 2009), although assembly

problems persist when repeat elements are present. The read lengths of short-read

sequencers are not expected to increase drastically and algorithms have been developed

to handle large quantities of short sequence data. Additionally, error correction

algorithms have been designed to improve assembly quality (Yang, et al., 2012). Parallel

implementations of various phases of the assembly algorithms have been developed to

handle these large datasets efficiently. A popular model based on de-Bruijn graphs has

been accepted by assembler developers for its ability to model repeat structure of

genomes. The de-Bruijn graph model groups the reads into shorter stretches of length k

(called k-mers) and representing each read as a path in the graph (Idury and Waterman,

1995). This model was improved by graph reduction to untangle the loops in the graph

and model the graph traversal as an Eulerian walk (Pevzner, et al., 2001). Major short

read assemblers include Trinity (Grabherr, et al., 2011), Velvet (Zerbino and Birney,

2008), ABySS (Simpson, et al., 2009), ALLPATHS (Butler, et al., 2008), SHORTY

(Hossain, et al., 2009) and Ray (Boisvert, et al., 2010). ABySS and Ray are parallel

implementations of this model.

 Efficient implementations of the OLC graph model are also very popular for next

generation genome assembly particularly to handle whole prokaryotic genomes. Major

open source assemblers include Celera assembler (Pauchet, et al., 2009), Arachne

(Batzoglou, et al., 2002) and MIRA (Chevreux, 2005). The OLC graph model was

implemented for assembly of Roche/454 reads and the sequencer is distributed with

11

Newbler (Pauchet, et al., 2009). A recently developed assembler based on this model is

EDENA (Hernandez, et al., 2008) and is capable of assembling short reads (35 bases).

Parallel implementation of OLC model has been mostly limited to the overlap and layout

phases of the process. However, a full parallel version of MIRA has been implemented

(Biswas, et al., 2013). A memory efficient representation of the OLC graph model uses

string graphs (Myers, 2005). The String Graph Assembler(SGA) (Simpson and Durbin,

2012) implements distributed construction of FM-indices (Simpson and Durbin, 2010)

used to represent the reads in the string graph and perform graph operations like overlap

construction on the FM-index values instead of the reads, thus reducing memory footprint

of the assembler. A parallel framework for string graph assembler has been proposed

(Jackson, et al., 2010).

“Third generation” sequencing machines capable of long- to very-long reads are in

development but not yet commercially available, with the exception of the Pacific

Biosciences. This instrument produces long sequences (e.g., median > 2kbp, maximum =

25kbp) and supports short turn-around time (Eid, et al., 2009), however current data

indicates this instrument suffers from low (81-83%) accuracy (Chin, et al., 2011). The

low accuracy of the data requires error correction before assembly and OLC model of

assembly seems to be most appropriate (Koren, et al., 2012). Assemblers supporting

assembly of PacBio reads include Celera (Koren, et al., 2012), ALLPATHS-LG (Gnerre,

et al., 2011) and MIRA (Chevreux, et al., 1999). A detailed description of the assembly

techniques and the history of their various implementations can be found in (Imelfort and

Edwards, 2009; Miller, et al., 2010).

12

2. Genome Assembly Quality

The selection of the assembler is largely guided by the sequencing technology used to

obtain the reads. However, considering the various assemblers available for each

sequencing generation the selection process is not trivial and is generally based on

guesswork and multiple assembly trials. The fundamental theoretical relationship

between the input factors like read length, coverage, repeat lengths, mate distance etc.

and the assembly problem has been developed (Nagarajan and Pop, 2009). Experimental

results often show that certain assemblers perform better on some datasets and it is not

easy to declare a clear winner (Lin, et al., 2011; Narzisi and Mishra, 2011; Zhang, et al.,

2011). Certain inferences may be drawn from empirical data but the set of significant

input parameters that determine the assembly quality generated by an assembler is not

known. On the other hand metrics for assessing quality of an assembly and comparison of

different assemblies have been extensively studied. The GAGE (Salzberg, et al., 2011)

assembler comparison attempts to provide some empirical assessment of assembly

quality for some input datasets. The amosvalidate tool uses five basic characteristics to

validate an assembly by measuring the goodness of fit of the input data and assembly

output (Phillippy, et al., 2008). The Assemblathon 1 (Earl, et al., 2011) is a proposed

annual assembly competition and lists an extensive list of assembly quality parameters

for judging the best assembly. In presence of a reference genome or genome of a related

organism a reference mapping can be performed using software like MUMMER 3

(Kurtz, et al., 2004), progressiveMauve (Darling, et al., 2010) and BLAST (Altschul, et

al., 1990). Comparing assembler quality requires studying the tradeoffs between various

13

quality measures and Feature-Response curves (FRC) have been proposed to account for

such relationships (Narzisi and Mishra, 2011; Narzisi and Mishra, 2011). The impact of

the various input parameters on the assembly quality metrics seems to be an open

problem whose solution is vital in appropriate selection of the assembler for a project.

Various parameters of the given data can be used to compare assemblers. Read

lengths have been shown to significantly affect the assembly quality. A study of the best

possible assembly quality using short reads of size varying from 25bp to 1000bp is

presented in (Kingsford, et al., 2010). This work measured the complexity of the final

assembly graph for 375 organisms and empirically derived an upper bound on the

achievable assembly quality. The relationship between read lengths and the resolution of

repeats and the expected number of gaps is explored in (Cahill, et al., 2010). This work

provided a measure of expected number of contigs, gaps and their sizes. The inherent

repeat structure of a genome is an important input parameter as it is the property of the

organism and not of the technology used to sequence the genome. Various techniques

have been proposed to detect repeats and repeat families in complete and partial

genomes. Though various models and parameters have been proposed to express the

repeat structure of the genome, profiles have not been developed to classify the

assemblers based on their capability to handle these repeat models. Two algorithms for

derivation of repeat structure from a partially assembled genome are proposed in

(Quitzau and Stoye, 2008). A repeat classification algorithm and a model for representing

longer repeats as an overlay of sub-repeats is proposed in (Pevzner, et al., 2004). The

RepeatGluer algorithm identifies the repeats and generates their consensus sequence and

copy number. A theoretical measure to estimate the repeat structure, DNA length, is

14

proposed by (Li and Waterman, 2003) using parameters derived from the input reads like

coverage, nucleotide distribution and l-tuples. Finally, repeat sequence family detection

in complete genomes (Bao and Eddy, 2002; Price, et al., 2005) classify repeats based on

length and frequency into various repeat elements.

3. Genome Assembly Finishing

Most assemblers generate a set of contiguous non-overlapping sequences

covering some part of the genome. These contigs are ordered and oriented through the

process of scaffolding to generate a gapped representation of the genome. Scaffolding

algorithms can use mate pair information of the reads at the ends of a contig to join it to

other contigs. Joining can also be done by mapping the contigs to a reference genome or

by inspecting other assemblies and checking for possible joins missed by the assembler.

Some of the assemblers like Celera WGS are capable of utilizing mate pair data for

scaffolding. Other tools for scaffolding include Bambus (Pop, et al., 2004),

SUPERCONTIGS (Puiu, 2004) and Autofinish (Gordon, et al., 2001).

4. Genomic Repeat Finding

High-throughput sequencing methods allow generation of large amounts of

sequence data making the annotation process the bottleneck for genomic research. In

addition to open reading frames (ORFs) and regulatory elements, correct annotation and

regulatory elements, correct annotation of other features such as mobile genetic elements

(MGEs) is also essential. These MGEs include bacteriophages, conjugative transposons,

integrons, unit transposons, composite transposons and insertion sequences (ISs). Such

transposable elements are defined as specific DNA segments that can repeatedly insert

15

into one or more sites in one or more genomes. ISs are transposable elements that are

regarded as genomic parasites proliferating in their host and surviving only through

horizontal gene transfer (Schaack, et al., 2010). ISs play a major role in genome

evolution and plasticity, mediating gene transfers and promoting genome duplication,

deletion and rearrangement (Frost, et al., 2005). Insertion sequences may be abundant in

host genomes and are intimately involved in mediating horizontal gene transfer,

generation of pseudogenes, genomic rearrangement and alteration of regulatory elements

(Frost, et al., 2005; Schaack, et al., 2010).

The abundance and diversity of MGE elements in prokaryotic genomes poses

significant challenges in automated identification and annotation using computational

methods. The ISFinder database is currently the most comprehensive dedicated resource

for high-quality, manually curated ISs annotations (ISFinder at https://www-

is.biotoul.fr/). Therefore, we assume this database to be an accurate set of ISs, but

incomplete because genomes are being sequenced faster than they are annotated to this

extent. However, several studies have used the referenced sequences in the ISFinder

database to mine various collections of genomic data using BLAST-based software

(Cerveau, et al., 2011; Filée, et al., 2007; Leclercq and Cordaux, 2011; Mahillon and

Chandler, 1998; Wagner, 2006).

The development of high-throughput sequencing techniques has led to the

availability of thousands of sequenced genomes and metagenomes that require automated

identification of ISs. Genome annotation pipelines such as Prokka (Seemann, 2014) and

Manatee (Ablordey, et al., 2005) stop at the point of labeling ORFs as ‘transposase’ or

‘integrase’ where sufficient homology is observed. Without classification of ISs into

https://www-is.biotoul.fr/
https://www-is.biotoul.fr/

16

families and enumeration within genomes, broad-scale comparison studies across closely

related strains are not possible. The first automated approach to annotate ISs was used for

an analysis of 19 cyanobacterial and 31 archaeal genomes, but this has yet to be made

publicly available as an automated pipeline (Zhou, et al., 2008). ISSaga is a web

application pipeline that allows semi-automated IS annotation in complete genomes

(Varani, et al., 2011). ISSaga employs a library-based method using BLAST seeded with

the ISFinder sequences to classify ORFs into IS families. Although ISSaga represents

significant progress in automated IS annotation, the efficiency of this approach in

identifying transposable elements is questionable due to its dependency on the ISFinder

database; ISSaga cannot automatically identify novel ISs not already present in ISFinder.

IScan is a publicly available application that makes use of BLAST with a single reference

transposase sequence per IS family to scan whole genomes for ISs, and includes in its

prediction pipeline searches for transposases and inverted and direct repeats (Wagner, et

al., 2007). IScan was used to investigate ISs in 438 prokaryotic genomes and found a

limited number of ISs in most taxa (Wagner and de la Chaux, 2008). OASIS, or

Optimized Annotation System for Insertion Sequences, is another publicly available

computational tool for automated annotation of ISs (Robinson, et al., 2012) in whole

genomes. OASIS takes advantage of widely available transposase annotations to identify

candidate ISs and then uses a computationally efficient maximum likelihood method of

multiple sequence alignment to identify the edges of each element. Although OASIS is

capable of predicting IS families, this functionality seems to be deprecated in the current

version of the software. Through comparisons across 1319 genomes to a benchmark of

ISFinder annotations, OASIS detected 37,427 ISs while IScan (Wagner, et al., 2007)

17

detected only 2902 ISs.

Software tools have also been developed to predict IS sequences and families

based on profile-sequence comparisons. These tools employ Hidden Markov Models

(HMMs) based on transposases of characterized IS families. HMMs have been generated

for transposases belonging to 19 characterized families of ISs in the PFAM database

(Finn, et al., 2014). The Superfamily database of structural and functional annotation of

genomes currently hosts 6 HMM profiles from domains belonging to two prokaryotic

families of transposases: mu bacteriophage transposase and IS200 (Gough and Chothia,

2002). The TnpPred web service provides profile HMMs for the remaining IS families

and improves on the accuracy of the HMMs in the PFAM database (Riadi, et al., 2012).

Effective prediction of ISs and Miniature Inverted repeat Transposable elements (MITEs)

using HMMs has been shown for 30 archaeal genomes (Kamoun, et al., 2013),

demonstrating that HMM-based predictions can augment BLAST-based sequence-

sequence IS search methods to improve accuracy and find novel ISs.

The current software tools described above operate only on complete genomes

with fully annotated ORFs. Complete genome assembly of a single strain of bacteria can

be time-consuming and costly, and draft genomes or raw read sets are increasingly used

for comparative genomics studies of prokaryotes. Here, we present the ISQuest tool for

global investigation of ISs in unassembled or partially assembled prokaryote genomes.

The impact of the various input parameters on the assembly quality metrics seems

to be an open problem whose solution is vital in appropriate selection of the assembler

for a project. Comprehensive end-to-end genome assembly packages capable of

assembling various sequencing reads are freely available for users to download and

18

install. Perhaps the most popular assembler is Celera WGS (Miller, et al., 2010), which is

capable of handling large number of reads from various sequencing machines. The Celera

assembler in conjunction with the AMOS (Koren, et al., 2012; Treangen, et al., 2002)

analysis package form a complete genome assembly package. A similar package

designed specifically for prokaryotic genomes provides assembly capability with

automated result analysis and gene annotation (Kislyuk, et al., 2010). This package

assembles the data using a small set of assemblers and selects the best assembly based on

certain quality metrics. These assembly packages are, however, not capable of selecting

an appropriate assembler based on the input characteristics of the dataset. In many cases,

there is no clear winner in terms of standard assembly quality metrics. For example, an

assembler may generate an assembly with very short contigs, which are all correct, but

the assembly is too fragmented to be useful to the user while another assembler generated

long useful contigs with some misassembles. The tool proposed here requires the user to

assemble the read libraries using an assembler with strict thresholds to ensure no

assembly errors. The proposed novel scaffolding tool, Correlative Algorithm for Repeat

Placement (CARP) (Biswas, et al., 2013), is capable of joining short low error contigs

using mate pair reads, computationally resolved repeat structures and synteny with one or

more reference organisms (Galardini, et al., 2011). The CARP tool requires a set of

repeat sequences such as insertion sequences (IS) that can be found computationally

found without assembling the genome. Development of methods to identify such

repeating regions directly from raw sequence reads or draft genomes led to the

development of the ISQuest software package (Biswas, et al., 2015). ISQuest identifies

bacterial ISs and their sequence elements—inverted and direct repeats—in raw read data

19

or contigs using flexible search parameters. ISQuest is capable of finding ISs in hundreds

of partially assembled genomes within hours, making it a valuable high-throughput tool

for a global search of IS and repeat elements.

The CARP tool matches very low error contigs with strong overlap using the

ambiguous partial repeat sequence at the ends of the contig annotated using the repeat

sequences discovered using ISQuest. These matches are verified by synteny with

genomes of one or more reference organisms. We show that the CARP tool can be used

to verify low mate pair evidence regions, independently find new joins and significantly

reduce the number of scaffolds. Finally, we are demonstrate, Unverified Join Viewer

(UJV) (Biswas, et al., 2015), a novel viewer that presents to the user the computationally

derived joins along with the evidence used to make the joins. The viewer allows the user

to independently assess their confidence in the joins made by the finishing tools and

make an informed decision of whether to invest the resources necessary to confirm a

particular portion of the assembly. Further, we allow users to manually record join

evidence, re-order contigs, and track the assembly finishing process. The UJV finishing

tool allows the user to track analyses PCR finishing (Kislyuk, et al., 2010; Steve Rozen,

1998; Ye, et al., 2012) of the current assembly. This tool is expected to reduce the time

spent by biologists on end-to-end assembly, assembly analysis and computational

finishing from months to a few days.

20

CHAPTER 3

GENOME ASSEMBLY AND ASSEMBLY QUALITY

1. Overview

The whole-genome assembly problem has been a center of significant research in the

last 20 years. Assembly of a genome using the data available from genome sequencing

processes is an NP-hard problem (shortest superstring problem (Kececioglu and Myers,

1995)) even in the absence of errors. Four major assembly modeling techniques have

been proposed to solve the problem of combining short sequence reads to reconstruct the

source DNA. Graph-based representation of the genome assembly problem has resulted

in three models. The OLC model (Kececioglu and Myers, 1995) represents each read as a

vertex in a graph connected by edges, weighted by their pairwise alignment scores. The

assembly algorithm seeks to find a path in this graph such that all the nodes are included

only once in the assembled sequence. A disadvantage of this method is that repeat

sequences (identical or nearly identical stretches of DNA) can be collapsed and cause

misassembled joins resulting in rearrangement of large genome fragments. The de-Bruijn

graph model (Pevzner and Tang, 2001) groups the reads into shorter stretches of length k

(called k-mers) and representing each read as a path in the graph. The assembly can then

be represented as a superpath, a path that includes all of the input paths. Since an edge

can be traversed multiple times, repeat sequences are not compressed during assembly.

An alternative model for of sequence assembly uses string graphs (Myers, 2005). An

overlap graph is built where nodes correspond to reads and edges correspond to overlaps.

The shortest walk that includes all of the required edges represents the assembly. The

assembly of very short read sequencers has been modeled as greedy algorithm using

21

index tables for faster assembly (Whiteford, et al., 2005). Based on these techniques, over

30 assemblers have been developed. A major problem is that these assemblers do not

agree on the assembly and certain assemblers have been shown to assemble some

organisms better, but fail for others. Therefore, selection of an assembler for a particular

project is an important task in itself. This task is non-trivial for a typical life science

researcher who may not have a great deal of expertise in computing or access to

resources or to determine in a reasonable time the accuracy of assembly produced by an

assembler. Frequently, assemblers are customized to assemble reads generated from a

certain sequencing technologies and the sequencing technology is the first parameter

considered for assembler selection. Other parameters include coverage, uniformity of

coverage, read lengths, GC-ratio, and repeat structure and frequency. These parameters of

the input reads are properties of the sequencing technology or the original sequence and

must be correlated to the assembly results of the assembler. Real-life genomes contain

repeats of various lengths, making it unlikely that any assembler will reproduce the

original complete genome. The heuristic algorithms for contig assembly (contiguous

assembly of reads) are greedy by design as searching for the overall best read to assemble

into a contig is computationally intractable even in absence of errors. Therefore, all the

algorithms optimize a cost function such as overlap score to select the next read for

assembly. For example, MIRA assembler builds a pairwise overlap graph with edge

weights scoring the overlap. The pathfinder algorithm finds paths in this graph starting

from high density low error start nodes and constructs the contigs. Celera assembler first

eliminates reads that are substrings of other reads and then builds a best overlap graph.

This graph is then traversed to find contigs and other reads aligned to the contig to get the

22

consensus. While both these assemblers are based on the OLC model various error

thresholds and internal statistics calculation for error correction and consensus generation

are different between assemblers and contribute to different assemblies.

2. Comparing Genome Assembly Quality

Next-generation sequencing technologies (e.g. 454, Illumina, Ion TorrentTM,

SoLiD, etc.) provide unprecedented capacity for extremely high-throughput DNA

sequencing relative to older Sanger-type methods. Like Sanger sequencing, however,

these methods are limited by size of individual reads (800bp, 454; 300bp, Illumina;

400bp Ion TorrentTM), thus organismal genomes must be sequenced in fragments, rather

than as a continuous molecule. The problem of combining sequence fragments to

reconstruct the source genome is known as sequence (or genome) assembly. Several

assemblers have been created to perform genome assembly from fragments; however, the

effectiveness of these assemblers is impacted by the characteristics of the genome under

assembly. Complete computational assembly of genomes is rare and assemblers generally

generate a set of long contiguous sequences (contigs), which are disjoint portions of the

genome, cannot be further joined. For example, repetitive elements in genomes are well-

known to negatively impact assemblies as they represent ambiguous joins that are

difficult to computationally join. Also, assemblers may disagree on the assembly of a

particular genome, even when working from the same fragment data, and certain

assemblers have been shown to assemble some organisms better than others. Uncertainty

in assembly accuracy is further complicated by lack of comprehensive measures for

determining the quality of assembly. Two commonly used assembly quality metrics are

N50 score and CE statistic. N50 score is the length of the longest contig such that half of

23

the sequence fragments belong to longer contigs and CE statistic is the number of

standard deviations the average local mate pair lengths differ from the global mean. Such

quality characteristics like N50 score and CE statistic are not always conclusive in

determining the best assembly. N50 scores, in particular, may be misleading, as they

reflect only the length of assemblies, ignoring the fact that increased length may result

from misassembly of fragments. CE statistics also may be satisfied by a poor quality

assembly of short contiguous sequences that do not correctly assemble long repeat

regions. Therefore, to study the correlation between input and output characteristics of

assemblers we focus on output parameters derived from comparing the assembled contigs

to the original sequences. In this study, we propose to answer the following questions. (a)

What characteristics of a genome sequence and the sequenced read fragments make one

assembler more suitable than others? (b) How do we know that a sequence assembler is

generating a “good assembly” (i.e. faithful to the original sequence)? (c) Can we provide

a simple yet effective model to estimate the expected error of an assembly for selection of

the most appropriate assembler for a given genomic sequence?

 Studying the assembly quality of genome assemblers to determine the

correctness of assembly and achieve optimal assembly, reducing the need for expensive

genome finishing, is of great interest to biologists. Broadly speaking, we focus on the

following aspects, namely, (1) on investigating the assembly characteristics of an

assembler as a whole or (2) on investigating the relationship between the input

parameters and the assembly quality generated by the assembler. The first study is useful

for comparison of assemblers and selection of the appropriate assembler. Likewise, the

second study is useful for various purposes such as deciding on the sequencing

24

technology, determining the parameters such as read lengths, coverage and mate pair

distances of the input fragments. The input parameters are classified into two categories -

(1) Genome fragmentation parameters: read length, coverage and mate pair distances (2)

Genome sequence parameters: repeat length, repeat frequency and insertion sequences.

The assembly quality metrics used to assess correctness of assembly are also classified

into two categories - (1) Metrics measured by direct comparison to the original sequence

such as misassembled contigs and correctly assembled repeat areas (2) Metrics measured

by testing the fit of input data to assembled contigs such as mate pair consistency and

error rates of assembled reads.

 The first big data challenge is the generation of the simulated read libraries with

various input parameters varied to cover the spectrum of values obtained from major

sequencers available to biologists today. To generate reads for experimentation we

developed a simulator for generating read libraries. Earlier sequencing simulation

techniques, such as Genfrag by (Engle and Burks, 1994) and CelSim (Myers, 1999)

concentrated on shotgun data, and MetaSim (Richter, et al., 2008) and Flowsim (Balzer,

et al., 2010) simulated data from 454 pyrosequencing process. Generating a simulator

based on an empirical distribution is a better fit, we developed a fast simulator, that

applies a parametric log normal distribution to simulate the shotgun process based on

user specified read length and standard deviation. Quality values however are estimated

from a position specific error function based on the read length and base type similar to

(Balzer, et al., 2010). The simulator allows us to quickly generate read libraries for

assembly and allows us to vary certain basic fragmentation parameters such as read

lengths, coverage and mate pair distances.

25

Table 1. MIRA assembly time breakup

Organism Reads
a
 Total Time Graph Const

b
 Path Finder

c
 Cons.

d
 Error Corr.

e

M. Marinum
500,000 624 413 103 86 22

1,000,000 1,327 867 261 146 53

E. Coli
500,000 589 342 132 79 36

1,000,000 959 612 192 113 42

M. Tuberculosis
500,000 581 374 96 84 27

1,000,000 1,123 712 219 130 62

Average % 63.51 19.05 12.65 4.68
 a

The number of simulated reads with mean length of 600bp and standard deviation of 100bp.
 b

The time (in minutes) to construct the assembly graph.
 c

The time (in minutes) to find all the paths in the graph and assemble the contigs.
 d

The time (in minutes) to construct the consensus sequence of the contigs.
 e

The time (in minutes) to error correct the contigs in the assembly.

The biggest computational challenge is the assembly of the simulated read

libraries generated. Most assemblers take a long time to work with large number of

sequences, for example, it takes around 18.3 hours to assemble a dataset with 1 million

reads with MIRA (see Table 1). The comparative analysis of five assemblers show the

time and memory requirement of some major assemblers on a 3GHz quad core machine

(Kumar and Blaxter, 2010). This limits the number of genomes we can use to perform the

study as we need to run the assembly process several times with different parameters.

Currently there are over 2,773 strains of bacteria alone and creating simulated read

libraries with various input parameters and assembling them is the major computational

challenge. Additionally, assembling read libraries with multiple input parameters varying

is too time consuming and the relationship among the input parameters becomes hard to

explore. Therefore, in this study we vary the input parameters of the read libraries only

along one dimension at a time.

 Due to the above big data challenges we perform the study on a smaller scale

by selecting a representative set of bacterial genomes. To perform this study we selected

20 sample prokaryotic genomes based on the genome structure. The first set of 10 sample

26

organisms was selected based on the number of repeat elements. The number of repeats

sequences were counted in all known bacteria genomes from NCBI database using

RepeatScout (Price, et al., 2005). The top 10 genomes with the greatest number of repeat

sequences were selected for the study. The second set of 10 sample organisms was

selected based on the number of insertion sequences in the genome. Insertion sequences

are mobile genetic sequences which copy themselves at different locations on the

genome. The insertion sequences belonging to the same family are very close copies of

each other and are often not correctly assembled by assemblers. Therefore we selected 10

genomes with large number of insertion sequences with largest insertion sequence copies

from the ISFinder database (Kichenaradja, et al., 2010). The sample genomes selected are

highly repetitive real genomes and a simulator is used to generate fragment libraries with

different read lengths, coverage and mate pair distances. The selection of only 20

prokaryotic genomes can be seen as a very small sample size but, the long execution time

of most open source assemblers is the major limiting factor in the scale of this study. We

selected assemblers with parallel implementations and covered a wide range of the input

parameters to study the correlations between the input and output parameters in detail.

 The fragment libraries are assembled using the four assemblers Celera WGS

(Miller, et al., 2008), ABySS (Simpson, et al., 2009), Velvet (Zerbino and Birney, 2008)

and parallel version of MIRA (Biswas, et al., 2013). The assembly characteristics are

correlated with the fragment library and genome structure parameters to derive a

polynomial relationship that can be used to estimate the expected quality of assembly.

The correctness of the polynomial regression is measured by 10 fold cross validation. The

set of genomes is divided in to 10 subsamples out of which 9 subsamples are used for the

27

polynomial regression and the remaining subsample is used for calculating the mean

square error (MSE). This process is repeated 10 times so that each subsample is used as

test set in one of the iterations. The average MSE provides a measure of correctness of

the model. The study in itself is interesting and useful for finding parameters that make

significant differences to assembler output and must be considered during selection

among assembler. For example high coverage seems to deteriorate assembler quality for

Celera WGS and Velvet but, the does not make a significant difference to ABySS and

MIRA assemblies.

 In this section we present the results of the study correlating assembler output to

the input parameters. The sample genomes selected are highly repetitive real genomes

and a simulator is used to generate fragment libraries with different read lengths,

coverage and mate pair distances. The fragment libraries are assembled using the four

assemblers Celera WGS, ABySS, Velvet and MIRA. The assembly characteristics are

correlated with the fragment library and genome structure parameters to derive a

polynomial relationship. The degree of the polynomial used to approximate the

correlation curve is progressively increased until no major improvement in the coefficient

of determination (R2) is achieved. The range of values for R2 is between 1 and 0 where 1

indicates strong directly proportional relation and 0 indicated no correlation. Therefore, a

value of R2 close to +1 indicates the strong relationship between the X and Y variables.

The polyfit function from MATLAB was used to fit the data and obtain coefficients of

the polynomial.

 The correctness of the polynomial regression is measured by 10 fold cross

validation. The set of genomes is divided in to 10 subsamples out of which 9 subsamples

28

are used for the polynomial regression and the remaining subsample is used for

calculating the mean square error (MSE). This process is repeated 10 times so that each

subsample is used as test set in one of the iterations. The average MSE from the 10

iterations provides the measure of correctness expected from the estimating polynomial.

2.1. Read Length Experiment

 The read length experiment varies the average fragment length of the dataset

and correlates it to the number of correctly assembled contigs. A contig is considered

correctly assembled if there are no incorrect joins and the whole contig can be aligned to

original genome sequence using MegaBLAST (Altschul, et al., 1997) with standard

parameters. We first generate 50 read length values in the range of 100bp to 500bp

sampled uniformly at random. The simulator simulates the fragmentation process with

each read length for each of the 20 genomes. This process generates 50 datasets with

mean read length in the range of 100bp to 500bp for each of the 20 genomes. The mean

coverage of the datasets is constant at 40 and the datasets contain no mate pair

information. The read lengths in each dataset are normally distributed with a standard

deviation of 50bp.

 The fraction of correctly assembled contigs, i.e. number of correct contigs

divided by the total number of contigs, is obtained from assembly of the 50 datasets for

each of the 20 genomes. The fraction of correctly assembled contigs is averaged over the

20 genomes for each assembler to obtain the mean fraction of correctly assembled

contigs at each of the 50 data points. This curve of 50 points represents the assembler

misassembly characteristic over the range of read lengths from 100bp to 500bp.

 The fraction of correctly assembled contigs for each assembler is averaged

29

within equal intervals of 25bp from 100bp to 500bp for easier visualization (see Graph

1.).

ABySS assembler performs best with only about 5% incorrect contigs and

remains consistent for the whole range of read lengths. Celera WGS and Velvet have

similar misassembly characteristics and MIRA performs worst with over 10% of contigs

misassembled.

Graph 1. Mean of the fraction of correctly assembled contigs in intervals of 25 vs read

length (bp)

The 50 data points generated for each assembler can be approximated by a

polynomial and 10 fold cross validation is used to obtain the average error of the

estimator polynomial (see Table 2). The curves can be approximated with low error using

a quadratic or cubic polynomial with very strong coefficient of determination (Table 2

Column 3). This indicates that read length is a highly significant parameter for correct

assembly for all the assemblers. The average mean square error is very low

demonstrating that these polynomials are good predictors of misassembly (Table 2

Column 6).

30

 Table 2. Correlating read length and correct contigs

Assembler Degree
a
 R

2b
 D.F.

 c
 P-value

d
 Avg. MSE

e

ABySS 2 0.974 398 0.000 4.667e-4

Celera WGS 3 0.980 397 0.000 8.975e-4

MIRA 3 0.987 397 0.000 1.039e-2

Velvet 3 0.978 397 0.000 1.454e-3

a
Degree of the polynomial fitting the assembler output characteristics.

b
Coefficient of determination: Expresses the strength of the relationship between the X and Y variables.

c
Degrees of freedom.

d
Probability of getting an R

2
 with a polynomial of this degree.

e
Average of the mean square error generated by each iteration of 10-fold cross validation.

2.2. Coverage Experiment

 The coverage experiment varies the coverage of the dataset keeping read length

constant and correlates it to the number of correctly assembled contigs. We simulate

fragmentation process for 20 different coverage values starting from 10 to 200 with equal

gaps of 10 for each of the 20 genomes. The read length of the dataset is constant at 400bp

and the datasets contain no mate pair information.

Graph 2. Correctly assembled contigs vs coverage

The fraction of correctly assembled contigs, i.e. number of correct contigs divided

31

by the total number of contigs, is obtained from assembly of the 20 datasets for each of

the 20 genomes. The fraction of correctly assembled contigs is averaged for each

assembler at each of the 20 coverage values to obtain the mean fraction of correctly

assembled contigs at each of the 20 coverage points. This curve of 20 points represents

the assembler misassembly characteristic over the coverage of 10 to 200 (see Graph 2.).

The increase in coverage initially improves the percentage of correct contigs (see Graph

2.). However, at very large coverage the both Velvet and Celera WGS perform

increasingly worse. MIRA and ABySS seem to perform consistently at higher coverage.

 The 20 data points generated for each assembler can be approximated by a

polynomial and 10 fold cross validation is used to obtain the average error of the

estimator polynomial (see Table 3). The curves in this case are better approximated by a

quartic polynomial with low coefficient of determination in case of ABySS and MIRA

(Table 3 Column 3). This indicates that coverage plays a role in assembly generated by

Celera and Velvet but, not quite as significant in the other two assemblers.

Table 3. Correlating coverage and correct contigs

Assembler Degree
a
 R

2b
 D.F.

 c
 P-value

d
 Avg. MSE

e

ABySS 4 0.753 15 1.83e-3 4.551e-3

Celera WGS 4 0.919 15 5.07e-8 2.750e-3

MIRA 4 0.814 15 2.3e-5 5.97e-3

Velvet 4 0.899 15 6.2e-8 1.250e-3
a
Degree of the polynomial fitting the assembler output characteristics.

b
Coefficient of determination: Expresses the strength of the relationship between the X and Y variables.

c
Degrees of freedom.

d
Probability of getting an R

2
 with a polynomial of this degree.

e
Average of the mean square error generated by each iteration of 10-fold cross validation.

 Therefore, coverage seems to be a parameter that must be considered during

assembly selection. The average mean square error is very low demonstrating that these

32

polynomials are good predictors of misassembly (Table 3 Column 6).

2.3. Mate Pair Experiment

 The mate pair experiment varies the mate pair of the reads in the dataset keeping

read length and coverage constant. The fragmentation simulation is done for each of the

20 genomes generating 5 datasets with mate pair distance from 2kbp to 6kbp with equal

gaps of 1kbp. The mean coverage is constant at 40 and the mean read length is 400 bp.

The percentage of mated reads in the dataset is also a constant at 70%.

Graph 3. Correctly assembled contigs vs mate pair distance

 The fraction of correctly assembled contigs, i.e. number of correct contigs

divided by the total number of contigs, is obtained from assembly of the 5 datasets for

each of the 20 genomes. The fraction of correctly assembled contigs is averaged for each

assembler at each mate pair distance point to obtain the mean fraction of correctly

assembled contigs at each of the 5 mate pair distances. This curve of 5 points represents

the assembler misassembly characteristic over the mate pair distance of 2kbp to 6kbp (see

Graph 3). In presence of mate-pair, data Celera assembler performs best and makes

33

almost no errors in presence of long distance mates. The performance of the other

assemblers is comparably good with MIRA making the largest number of incorrect joins.

The 5 data points generated for each assembler can be approximated by a

polynomial and 10 fold cross validation is used to obtain the average error of the

estimator polynomial (see Table 4). Quadratic polynomials give good approximations of

these curves showing high coefficient of determination (Table 4 Column 3). This

indicates that mate pair distance is a highly significant parameter for correct assembly.

The average mean square error is very low for all the polynomials (Table 4 Column 6).

Table 4. Correlating mate pair distance and correct contigs

Assembler Degree
a
 R

2b
 D.F.

 c
 P-value

d
 Avg. MSE

e

ABySS 2 0.974 2 0.127 2.47e-5

Celera WGS 2 0.982 2 0.087 5.31e-4

MIRA 3 0.993 1 0.106 1.83e-4

Velvet 2 0.927 2 0.288 2.76e-5
a
Degree of the polynomial fitting the assembler output characteristics.

b
Coefficient of determination: Expresses the strength of the relationship between the X and Y variables.

c
Degrees of freedom.

d
Probability of getting an R

2
 with a polynomial of this degree.

e
Average of the mean square error generated by each iteration of 10-fold cross validation.

2.4. Repeat Experiments

The repeat experiments study the assembly of repeat structure of the genomes.

We perform four repeat experiments by measuring the fraction of repeats assembled and

the longest repeat assembled by an assembler for given data of certain read length and

coverage.

34

Graph 4. Mean of the fraction of repeats correctly assembled in intervals of 25 vs read

length

2.4.1. Repeats Assembled for given Read Length

 This experiment studies the correlation between assemblies of repeat structure

over a certain read length for an assembler (see Graph 4). All of the assemblers are

capable of assembling at least 50% of the repeat sequences. However, none of the

assemblers can assembly more that 85% of the repeats and all the assemblers perform

well for longer reads. However, ABySS and Celera WGS perform much better for shorter

read lengths.

2.4.2. Repeats Assembled for given Coverage

 This experiment studies the correlation between assemblies of repeat structure

over a certain range of coverage (see Graph 5). All of the assemblers show moderate

improvement in the number of repeat assembled as coverage increases. However, at very

high coverage ABySS, Celera and Velvet show some deterioration in the percentage of

repeats assembled.

35

Graph 5. Fraction of repeats correctly assembled vs coverage

2.4.3. Longest Repeats Length Assembled for given Reads Length

This experiment studies the correlation between the longest repeat correctly

assembled over a certain read length for an assembler (see Graph 6). This is interesting as

we can estimate the longest repeat family that will be assembled by an assembler for

input dataset.

Graph 6. Mean of the length of the longest repeat sequence correctly assembled intervals

of 25 vs read length

The longest repeat assembled seems to be close to twice to the read length and all the

36

assemblers seems to reach that limit for longer read length. However, at smaller read

lengths ABySS and Celera WGS seem to perform best.

2.4.4. Longest Repeat Sequence Assembled given Coverage

 This experiment studies the correlation between the longest repeat correctly

assembled over a certain range of coverage for an assembler (see Graph 7). This is

interesting as we can estimate the longest repeat family that will be assembled by an

assembler for input dataset. The longest repeat assembled does not seem to be

significantly correlated to the coverage. However, at higher coverage the some of the

repeats are disassembled due to threshold miscalculations.

Graph 7. Length of the longest repeat sequence correctly assembled vs coverage

3. Parallel Genome Assembly

The strategy used for assembling a genome should be guided by a priori

knowledge and the data available. As discussed in the earlier sections, nature of the

genome, sequencing technology, read lengths, coverage etc. affect the choice of assembly

technique. The choice of assemblers for a given set of input parameters is increasing and

37

requires intelligent selection. A detailed description of the assembly techniques and the

history of their various implementations can be found in (Imelfort and Edwards, 2009;

Miller, et al., 2010).

The assemblers are the most computationally intensive processes and efficient

execution of the assembly process is essential in scalability of this tool. The general

process of genome assembly using graph algorithms is the most successful and has three

basic stages. The first stage is the graph construction by overlap calculation with

candidate selection or k-mer extension. The second phase is graph reduction for

simplifying computation and error correction. Finally, the contig generation phase is

implemented, where the graph is traversed to find long paths. Assemblers may take

anywhere from several hours to few days to complete an assembly e.g. MIRA 3.2.0

(Chevreux, et al., 1999) takes 18.3 hours to complete an assembly for 1 million 454

reads. A comparative study of assembly execution times and memory requirements in

covered in (Kumar and Blaxter, 2010).

 The first phase, i.e. overlap computation, is the most computationally

expensive and memory- intensive phase and can account for 30-50% of the total

assembly time. This phase can be easily parallelized to significantly reduce the assembly

time (Miller, et al., 2008). Our effort in parallel refactoring of this phase using OpenMP

in MIRA 3.2.0 has significantly improved assembly time (Biswas, et al., 2011).

Specialized hardware (Sarje and Aluru, 2008) for this phase has also been proposed,

however this is very expensive and not acceptable for small genomic labs. A distributed

campus grid based approach to parallelize this phase has been proposed (Moretti, et al.,

2009), but this requires managing movement of sequence data across the network to

38

worker processes’ local address space. Hadoop map-reduce algorithms for short read

mapping (Schatz, 2009) have been proposed and we propose to extend this approach to

improve the performance of this phase. A fast alignment toolbox will be developed

leveraging Hadoop’s map-reduce framework and will be used instead of the assemblers’

native overlapper module.

 The next two phases of assembly vary significantly from assembler to

assembler. Each assembler implements different schemes for error correction and

reductions for repeat handling. Efforts to parallelize these phases have not been very

successful due the dependencies and inter-computation communication requirements. A

Hadoop based assembler for de-novo assembly of genomes using de-Bruijn graph model

is proposed in (Michael Schatz and 2010). Our implementation of a parallel framework

for contig construction for OLC assemblers in MIRA 3.2.0 has improved performance

without sacrificing assembly quality (Biswas, et al., 2012). We here propose to develop a

middleware for provisioning assemblers with required resources. The cloud application

service will profile each assembler and provide required resources for execution.

Scalability issues and implementation challenges must be overcome to deploy the tool as

a cloud application service that will initiate multiple assemblers.

Most assemblers generate a set of contiguous non-overlapping sequences

covering some part of the genome. These contigs are ordered and oriented through the

process of scaffolding to generate a gapped representation of the genome. Scaffolding

algorithms can use mate pair information of the reads at the ends of a contig to join it to

other contigs. Joining can also be done by mapping the contigs to a reference genome or

by inspecting other assemblies and checking for possible joins missed by the assembler.

39

Some of the assemblers like Celera WGS (Miller, et al., 2008) are capable of utilizing

mate pair data for scaffolding. Other tools for scaffolding include Bambus (Pop, et al.,

2004), SUPERCONTIGS (Puiu, 2004) and Autofinish (Gordon, et al., 2001).

Current DNA sequencing methodologies (with the exception of emerging

experimental technologies) cannot sequence DNA fragments of greater than ~1 kilobase

(kB) in length. We rely on computational methods to assemble a complete DNA

sequence from a large number of DNA fragments of smaller size. One popular and cost

effective method of generating these short fragments of a genome is based on shotgun

sequencing such as 454 pyrosequencing. Shotgun sequencing generates DNA fragments

by breaking up multiple copies of the original sequence at random points. Next a

software program is used to construct the original DNA from a large set of DNA

fragments generated by shogun sequencing. The problem of combining DNA fragments

(reads) to reconstruct the source DNA is known as sequence (or genome) assembly

problem. The assembly problem is usually modeled as computing the shortest common

superstring (SCS), which is a reasonable approximation of the original sequence. These

assembled sequences are pieces of the original sequence and are called contagious

sequences (contigs). The SCS problem can be modeled as a graph problem and is shown

to be NP hard (Kececioglu and Myers, 1995; Wang and Jiang, 1994). Additional

complexity arises when there are repeats in the original sequence. Repeats are multiple

identical or nearly identical stretches of DNA which the SCS solution represents only

once in the assembled genome. This problem is known as repeat collapse and can lead to

serious assembly errors.

MIRA (Chevreux, et al., 1999) is an open source assembler, which is widely used

40

by biologist and works effectively in presence of repeats. However, it is computation

intensive, for example an assembly of one million reads requires about 18.3 hours. There

is a need to parallelize the assembly process for speeding up this computation so as to

take advantage of cheap parallel computing power available in multicore systems. This is

a challenging task because (a) MIRA is complex software consisting of 90447 lines and

uses a number of heuristics to generate a good quality assembly; and (b) the critical

computation phase is inherently sequential. The MIRA assembler consists of four

phases: (i) edge detection (ii) graph construction, (iii) contigs building, (iv) consensus

computing and error correction. The contigs building phase of building non-overlapping

paths in the underlying graph is inherently sequential. We propose a modification to this

phase that enables building of non-overlapping paths concurrently while preserving the

quality of assembly.

We implemented the modified MIRA assembler to speedup of contigs building

phase. In addition we parallelize the other three phases which are straightforward. We

implemented the modified MIRA assembler on a 64-core system with eight Intel(R)

Xeon(R) X7560 processors. We were able to speedup the building contigs phase by a

factor of 55 on the 64-core system. Additionally, we parallelized the other phases of the

MIRA assembler. The speedup achieved for graph construction phase was 55.32 and the

consensus computing with error correction was improved by a factor of 58.73. Finally,

we were able to reduce the total sequential execution time of assembly from 18.3 hours to

3.4 hours (speedup of 5.57) without sacrificing assembly quality. It is worth noting that

the overall speedup is limited by Amdahl’s Law as parts of original MIRA assembler are

inherently sequential. For example for one million reads the sequential portion of the

41

MIRA assembler takes about 2.78 hours doing I/O or other operations which limits the

overall speedup to 6.58. Therefore, the overall speedup achieved was close to the limit

with a parallel efficiency of 84.65%.

The sub-sections focus on the core assembly pipeline of MIRA assembler and

describes the parallel algorithms for the assembly phases and parallel implementation

details and the APIs used to implement the parallel algorithms. The experimentation

results, experiment environment and resulting assembly quality are presented.

3.1. MIRA Assembler Overview

 MIRA is an open source assembler based on the OLC graph model that

addresses the assembly problem and is widely used by the life sciences community.

MIRA is capable of handling next generation shotgun reads from 454, Ion Torrent,

Solexa and PacBio machines along with Sanger sequences. MIRA has been used at IMB

Jena Genome Sequencing Centre and has been shown to be capable of assembling

cosmid sequences in Human genome (Chevreux, 2005). MIRA has also been used for de

novo assembly of 454 pyrosequencing transcriptome projects (Barker, et al., 2009;

Papanicolaou, et al., 2009; Pauchet, et al., 2009; Pauchet, et al., 2010; Roeding, et al.,

2009; Zagrobelny, et al., 2009). The MIRA assembler is designed to work with a small

memory footprint so that it can be executed on regular desktop computers and is

generally used for small to medium scale assembly projects.

 MIRA provides specific routines for handling various read types, for example,

mate pair information can be leveraged to improve assembly. The assembly process is

based on the Overlap Layout Consensus (OLC) graph model (Kececioglu and Myers,

1995) with critical code for handling repeats of various lengths. MIRA has four major

42

stages as shown by the assembly pipeline diagram (see Figure 4). The input reads are

preprocessed based on quality values and ancillary data if provided and presented to the

iterative portion of the assembly process.

Table 5. MIRA assembly time breakup (2)

Organism Reads
a

Total

Time

Graph

Const.
b

Contigs

Building
c

Consensus
d
 & Error

Correction
e

M. Marinum
500,000 624 413 103 108

1,000,000 1,327 867 261 199

E. Coli
500,000 589 342 132 115

1,000,000 959 612 192 155

M. Tuberculosis
500,000 581 374 96 111

1,000,000 1,123 712 219 192

Average % 63.51 19.05 17.33
a
The number of simulated reads with mean length of 600bp and standard deviation of 100bp.

b
The time (in minutes) to detect potential edges and construct the assembly graph using smith-waterman

overlap.
c
The time (in minutes) to find all the paths in the graph and assemble the contigs.

d
The time (in minutes) to construct the consensus sequence of the contigs.

e
The time (in minutes) to error correct the contigs in the assembly.

3.1.1. Edge Detection Phase

The assembly process proceeds with each read as a vertex in a graph and the first

phase determines the high confidence region (HCR) of each read and scans all the n2

edge possibilities using heuristic match algorithms (Grillo, et al., 1996; Wu and Manber,

1992). The match determines if a sequence of length k is present in the matching read

with at most l errors. For each sequence the complement is also matched to find all

potential edges from it. This SKIM algorithm creates two potential edge files named,

post-match files, for the forward and complement matches. Each record in these files

corresponds to a potential edge, containing the identifiers of the two reads and some

offset information for matching. This phase is implemented in parallel in the standard

implementation of the software and uses the boost threading library.

43

3.1.2. Graph Construction Phase

The second stage of graph construction is the most time consuming phase of the

assembler accounting for over 60% of the assembly time (Table 5, row 4, column 4). This

phase processes the reads, finds the edges in the graph, and computes the edge weights of

the graph. The edge weights are computed by banded Smith Waterman overlap

calculation (Chevreux, 2005; Smith and Waterman, 1981) for each of the pair of reads

generated by the SKIM algorithm. Some edges are rejected based on various conditions

and overlap computation is avoided if the overlap length satisfies certain conditions.

Fig. 4. MIRA assembly pipeline

Input Reads

Finish Assembly

Filter based fast potential

edge detector (SKIM)

Edge Detection Phase

Smith-Waterman Overlap

based Edge Calculation

Graph Construction Phase

Finding best paths using Path

Finder

Contigs Building Phase

Generate Consensus of

Assembled Paths into & Error

Correction of Contigs

Consensus Construction &

Error Correction Phase

44

The third phase of the assembly is the central path finding algorithm to determine

the paths in the graph and consumed over 19% of the assembly time (Table 5, row 4,

column 5). This phase is a greedy heuristic to find the partial paths in the graph and build

the best contiguous sequences (contigs). In this phase the path finder algorithm identifies

vertices with high degree and low error and begins the assembly process by adding

neighboring reads to it and forming contigs. A contig can grow in length, depth or both

when a read is added to it and every addition increases the expected error based on the

edge weight.

The length of a contig refers to the number of base pairs the overlapping reads

cover. The depth of a contig at each base pair position is the number of reads that overlap

at that position. Each contig is a consensus sequence of all the overlapping reads that

capture a certain region of the genome. Ideally, a contig should have a depth close to the

coverage of the input data as each base in the contig should correspond to a base in reads

stacked up correctly. Also, the length of the contig must be close to the length of the

genome. However, due to presence of repeats and errors the contigs cannot be extended

beyond a certain length as the total acceptable mismatch error crosses the allowed

threshold. The backbone build strategy increases the length of the contig and the in-depth

strategy adds reads to increase the coverage. Each has advantages and disadvantages, but,

both must be used to successfully build non redundant and correct contigs (Chevreux,

2005).

A (n, m) look-ahead version of a simple greedy strategy is applied to select the

most probable overlap candidate for a given contig. The algorithm extends n paths from

45

the last n vertices of a contig upto m levels and the vertex generating the best path upto m

levels is selected for assimilation into the contig. The new read selected is checked

against the existing contig consensus for errors and if the mismatches are within a certain

threshold, the read is accepted into the contig consensus. This read is then not used by the

other contigs in the same pass of the assembly. Therefore, a contig building iteration is

dependent on all the previous contigs making the process intuitively serial in nature.

3.1.3. Consensus Construction and Error Correction Phase

The next two steps are consensus construction and error correction. The error

correction routines apply thresholds based on sequencing technology and quality values

to detect misassemblies and chimeric reads. The final error correction phase detects and

corrects misassembles by computing the overall error of a read in a consensus and error

at a contig position. The error in assembly of a read is computed based on the difference

between the nucleotides in the read and the nucleotides in the contig consensus. The

number of differences between the read and the contig consensus sequence should not

exceed the expected overall sequencing error of the dataset. If the difference is beyond a

certain threshold the read must be removed from the contig assembly and marked as

misassembled. This phase is also responsible for generating the final sequence of each

contiguous path found in the graph. All the overlapping reads at a particular position in

the path contribute a single nucleotide weighted by the quality value if available. The

sequence is generated by taking consensus among the nucleotides. These last two steps

take up about 17% of the assembly time (Table 5, row 4, column 6, 7). MIRA routines

encode domain knowledge specific rules which are vital for correct assembly and must be

preserved in the parallel implementation.

46

3.1.4. Parallel MIRA Assembly Process

In this section we discuss the MIRA assembly pipeline and describe the

parallelization strategy applied to different phases of the assembly process. The basic

pipeline of the MIRA assembly process is shown in Figure 4. In this paper we propose

parallel algorithms for graph construction, finding non-overlapping paths in the assembly

graph, consensus construction and error correction.

3.1.4.1. Parallel Edge Detection Phase

This phase is implemented in parallel in the standard implementation of the

software and uses the boost threading library.

3.1.4.2. Parallel Graph Construction Phase

This process can be implemented in parallel by matrix partitioning. However,

most assembly graphs are sparse in nature as each vertex has a degree of 10-30.

Therefore, the fast edge detection algorithms generates a list of potential overlaps

reducing the number of edges requiring overlap computation which is θ(n2). Therefore,

we compute the edge weights of these potential overlaps iteratively in parallel.

The edges appear in random order in the potential edge files generated by the

edge detection phase and weight calculation of one edge is not dependent on the others.

We use OpenMP parallel pragmas and TBB containers to refactor this phase and execute

it in parallel. We implement a single producer generating multiple tasks, each task

computing a certain number of edges. This phase can account for over 30-50% in the

serial pipeline and parallelization shows significant improvement in overall time.

Complete details of the implementation and results showing linear speedup of the kernel

can be found in our previous work (Biswas, et al., 2011).

47

3.1.4.3. Parallel Contigs Building Phase

The parallel contig building algorithm must independently construct contigs using

a set of start vertices. The selected vertices must minimize sharing of vertices between

two contigs so that the paths corresponding to any two contigs generated in parallel are

non-overlapping.

The selection of the starting points of the parallel path construction threads has a

significant effect on the contigs generated and the overlap among contigs. Contigs

generated in serial execution of contig construction process are non-overlapping as

vertices are removed from the graph after they have been included in the assembly of a

contig. However, parallel threads are not constrained and are assembled independently.

Therefore, selection of the start vertex is important to reduce the number of overlapping

vertices among the parallel contigs. The following strategies have been explored for

selection of the parallel start vertex:

 Random selection: The start vertices are selected at random by each parallel thread

and contigs are built.

 Dense Vertices First: The start vertices are selected in order of their degree by each

parallel thread and contigs are built.

 BLAST separated: The start vertices are selected in order of their degree and ensuring

that the vertex sequences are divergent using BLAST search algorithm (Altschul, et

al., 1990). The selection process progresses in order of the degree of the vertices. The

first thread is spawned with the highest degree vertex and the sequence of the start

vertex is added to a BLAST database. The next highest degree vertex is selected and

BLAST searched against the database. If a hit is returned, the vertex is skipped and

48

the next vertex is searched. Otherwise, a new thread is spawned with the start vertex.

This process is repeated to start all parallel contig construction threads.

 N-Path separated: The start vertices are selected such that the selected vertices are N

edges apart in the assembly graph. The selection process progresses in order of the

degree of the vertices. The first thread is spawned with the highest degree vertex and

the next highest degree vertex is selected and a BFS search checks if it is within N

edges from the previous vertex. If it is found within the N edges, then it is skipped

and the next vertex is checked. Otherwise, a new thread is spawned with the start

vertex. This process is repeated to start all parallel contig construction threads.

 BLAST & N-Path separated: The start vertices are selected such that the both the

BLAST search and N-Path restrictions are enforced.

Among the five options selecting the BLAST separated start vertices significantly

reduces overlapping of contigs. The other option of selecting the n-path separated start

vertex is time consuming due to need to perform n-level breath first search for each of the

previously selected start vertices. However, in some cases it can be shown to generate

contigs with fewer overlapping vertices.

The independent threads generate a contig with the best possible depth and length.

The start vertex selection process reduces the probability of overlap among parallel

contigs. However, none of the selection processes can ensure that all contigs are non-

overlapping. So, the resulting contigs are analyzed to check for common vertices. In case,

contigs contain common vertices, the longer contig is allowed to keep the vertex and the

read is removed from the contig consensus of the other contigs. Therefore, a contig

reduction phase is added to account for contigs using common vertices.

49

The process of spawning parallel threads for contig building is done in phases

with k parallel contigs built in one phase and reduced. The vertices assembled in the first

phase are removed from the graph and the parallel contig building phase is repeated until

connected vertices in the graph are assembled or further assembly is not possible due to

absence of acceptable edges.

3.1.4.4. Parallel Consensus Construction and Error Correction Phase

The parallel algorithm for this phase divides the contig length into equal size

partitions and each parallel thread performs the consensus computation for a given range

of positions in the alignment. The consensus construction process calculates a probability

value for each base at a given position. The base with the largest probability is taken as

the consensus.

The error correction routing detects misassemblies and chimeric reads in parallel

by dividing the reads aligned to a contig into groups and parallel threads are spawned for

processing the reads in a group. The error in the assembly of a read is computed based on

the difference between the nucleotides in the read and the nucleotides in the consensus.

Reads with error beyond a certain threshold are removed from the consensus, as they

have been misassembled. The error at each contig position is also checked and reads with

strong variations at certain positions are misassembled due to similar surrounding

sequence.

3.2. Implementation

The parallel implementation of MIRA is done through a refactoring process

ensuring thread safety of existing routines. It is essential that in the parallel version of

MIRA the basic assembly pipeline is not significantly changed and the assembly output is

50

similar to that of the sequential implementation. Therefore, we are interested in

identifying parallelization opportunities in MIRA and evolve the sequential code to

exploit parallelism.

We use a multicore environment for parallelization of MIRA to maintain the

design philosophy of a low memory requirement desktop assembler. The parallel version

of MIRA is capable of utilizing the increasing number of cores in modern processors

found in most desktop and laptop computers. We found OpenMP (OpenMP, 2008) to be

the best choice to refactor the MIRA C++ code as it provides a host of synchronization

pragmas for parallel flow control. However, the extensive use of STL containers in the

standard implementation causes performance bottlenecks in many cases. Therefore, we

used concurrent collections provided by Intel’s Thread Building Blocks (TBB) library

(Blocks, 2011) interoperating with OpenMP to replace the STL containers as needed.

The parallel strategy for each phase of assembly was implemented by parallel

refactoring of the MIRA 3.2.1 assembler. The three main challenges faced in refactoring

the source code were the following. Firstly, MIRA is implemented using C++ and is

optimized to reduce the memory utilization. So, many of the results at end of each stage

are written onto the disk and a large number of disk writes are performed. This model

would seriously impede parallelism as threads would compete for access to the disk.

Secondly, MIRA uses Standard Template Library (STL) collections to implement data

structures such as the adjacency list, repeat markers and the sequence read pool. Parallel

updates on these data structures would have to be synchronized to maintain correctness.

Synchronization of the threads by some locking mechanism will also affect parallelism.

Finally, the source code also has lot of rule checking and conditional execution of error

51

flagging routines which are often sequential in nature and perform updates on global data

structures or write to files on the disk. To refactor such a sequential code OpenMP was

found to be the best choice as it provides a host of synchronization pragmas for parallel

flow control. However, the use of STL objects would cause performance bottlenecks in

many cases. Therefore, we used concurrent collections provided by Intel’s Thread

Building Blocks (TBB) library.

3.3. Experiment Results

In this section we describe the test data sets, discuss the assembly quality after

parallel refactoring and present the results showing significant improvements in assembly

time. Input data with required characteristics for experimentation is rarely available as the

genome sequences are published in final form and the raw data underlying these genomes

is not publicly released. The NCBI trace archive and CBCB published data are not

sufficient for extensive systematic assembler testing. Therefore, for experimentation we

developed a simulator for 454 pyrosequencing. Earlier sequencing simulation techniques,

such as Genfrag by (Engle and Burks, 1994) and CelSim (Myers, 1999) concentrated on

shotgun data, and only MetaSim (Richter, et al., 2008) and Flowsim (Balzer, et al., 2010)

simulated data from 454 pyrosequencing process. Generating a simulator based on an

empirical distribution is a better fit, we, for purpose of simplicity and lack of 454

pyrosequencing data sets, apply a parametric log normal distribution to simulate the

shotgun process based on user specified read length and standard deviation. Quality

values however are estimated from a position specific error function based on the read

length and base type similar to (Balzer, et al., 2010).

52

Table 6. Graph sizes

Vertex Degree

Number of Vertices in the Graph

100,000 500,000 1,000,000

Real Simulated Real Simulated Real Simulated

0 – 10 80,977 94,201 310,372 137,317 296,096 62,215

11 – 20 5,640 4,338 153,604 313,465 402,450 632,455

21 – 30 779 602 4,636 16,417 158,698 224,215

31 – 40 287 293 2,033 1,312 67,367 12,366

41 – 50 145 194 1,399 964 37,012 4,909

51 – 60 63 167 1,110 1,055 21,326 3,481

61 – 70 32 85 904 1,206 9,505 2,829

71 – 80 33 51 630 1,141 4,887 2,156

81 – 90 26 29 433 974 3,003 1,958

91 – 100 12 12 280 641 2,066 1,507

100 – 31 6 547 1,358 35,093 3,852

An experiment to verify the similarity between the graphs generated by simulated

and real reads was performed. Three data sets with 100K, 500K and 1 million reads were

created from a large set of Roche 454 pyrosequencing real reads of Mycobacterium

pseudoshottsii. The simulator was used to generate input read data sets with same number

of reads and mean read length and standard deviation. The experiment was also

conducted to explore the degree distribution of the vertices in the graph generated by real

and simulated reads (Table 6). The vertex degree distribution of the graphs is similar e.g.

for both the real and simulated graphs of 1 million reads most of the vertices have a

degree between 0-20 and decline steadily thereafter (Table 6, column 6, 7). So, the

assembly graph generated by the real sequencing machines and simulator are similar in

terms of degree distribution and sparse in nature as |E| = O(V).

The parallel framework proposed in the paper is expected to generate an assembly

similar to the assembly generated by MIRA 3.2.1 (Chevreux, et al., 1999). The

experiment performed to compare the assembly of MIRA 3.2.1 with the assembly

generated by the implementation of the parallel framework in MIRA 3.2.1 uses standard

53

assembly quality metrics such as N50 score, longest contig length, number of total

contigs, coverage of the original sequence, base calling errors in the contigs and the

number of reads assembled. The comparison was done for different input read numbers

and parallel threads (Appendix A, Table 19). The experiment was performed using

simulated reads of the genomes of Escherichia coli HS, Mycobacterium vanbaalenii

PYR-1 and Mycobacterium marinum M with mean length of 500bp and standard

deviation of 100bp. The parallel assembly quality is comparable to MIRA assembly

quality in most cases e.g. the assembly of Escherichia coli HS with 1 million reads

generates the same number of large contigs (>100Kbp), same overall coverage of the

genome, very close longest contig length and N50 scores (Appendix A, Table 19, major

row 3). Also, the quality of assembly is not significantly affected by the number of

threads used in the parallel process.

Table 7. Graph construction phase execution time (1
st
 pass)

Smith Waterman Comp.
Execution Time on Threads (sec)

MIRA 2 4 8 16 32 64

100,000 8.48 4.65 2.34 1.53 0.96 0.96 0.96

500,000 38.84 20.92 10.42 5.59 3.36 1.74 1.01

1,000,000 80 43 21 10.6 5.24 3.42 1.69

5,000,000 470 236 120 62 30.86 15.58 8.46

10,000,000 956 468 249 132 64.49 32.87 17.28

The parallel implementation of MIRA targets the three major phases of graph

construction, contig building and contig consensus construction. We present the

improvement in execution time of the three parallel phases and study the effect on the

overall assembly time. The read data sets for all the experiments are generated by the

simulator with mean read length of 500bp and standard deviation of 100bp from the

54

original sequence of Mycobacterium vanbaalenii.

The first experiment shows the speedup of the graph construction algorithm on

incrementally larger graphs. The time to calculate the Smith Waterman edge weights for

the first pass is shown in Table 7. In this experiment the condition checking modules to

bypass Smith Waterman overlap computation are disabled and the overlap is computed

for all the edges in the graph. The primary producer thread spawns a task after reading

10,000 potential edge records from the post-match files. Therefore, the granularity of

each task is 10,000 Smith Waterman calculations with average overlap length of 237bp.

The experiments with various overlap lengths and granularity can be found in (Biswas, et

al., 2011). The computation of the graph construction shows close to linear speedup

(Table 8, row 5). The average speedup achieved in the phase for various data sizes is

42.10 on 64 threads (Table 8, column 7). The average speedup is significant parameter to

consider as subsequent iterations of the assembler often execute on a much smaller subset

of the initial reads.

Table 8. Graph construction phase speedup (1st pass)

Smith Waterman Computations
Speedup on Threads (sec)

2 4 8 16 32 64

100,000 1.82 3.62 5.54 8.83 8.83 8.83

500,000 1.86 3.73 6.95 11.56 22.32 38.46

1,000,000 1.86 3.81 7.55 15.27 23.39 47.34

5,000,000 1.99 3.92 7.58 15.23 30.17 55.55

10,000,000 2.04 3.84 7.24 14.82 29.08 55.32

The contig building phase consumes significant amount of time and dominates the

execution time after the linear speedup of the graph construction phase. The performance

of the path finding module of MIRA 3.2.1 is compared with the parallel path finding

55

algorithm for various thread sizes (Table 9).

Table 9. Contig building phase execution time

Reads
Execution Time on Threads (minutes)

MIRA 8 16 32 64

100,000 38 6.56 3.02 1.58 1.06

500,000 110 18.30 10.01 4.16 2.34

750,000 151 22.65 12.21 5.28 2.82

1,000,000 263 41.86 21.63 9.38 4.78

The maximum speedup of 55.02 is achieved on 64 cores for a data set of 1 million

reads (Table 10, row 4). The parallel module shows sub-linear speedup due to the

reduction phase after the parallel contig construction. The serial reduction phase checks

for paths with common vertices and reduces each contig to contain only unique reads.

This phase also preforms repeat read tagging to find very high coverage regions that are

most likely part of repeat sequences.

Table 10. Contig building phase speedup

Reads
Speedup on Threads (minutes)

8 16 32 64

100,000 5.79 12.58 24.05 35.85

500,000 6.01 10.99 26.44 47.01

750,000 6.67 12.37 28.60 53.55

1,000,000 6.28 12.16 28.04 55.02

The fourth phase parallel refactors the contig consensus construction and error

correction phase of the assembler. In this experiment the consensus sequence and error

rate of the assembled contigs is computed for various input reads sizes (Table 11).

56

Table 11. Consensus construction & error correction phase execution time

Reads
Execution Time on Threads (minutes)

MIRA 8 16 32 64

100,000 24.3 3.15 1.64 0.90 0.58

500,000 86.7 11.37 5.96 2.93 1.48

750,000 133.6 16.95 8.76 4.45 2.26

1,000,000 193.8 24.41 12.96 6.41 3.30

The speedup achieved in this phase is close to linear, achieving a maximum of

58.73 on 64 processors for one million reads (Table 12, row 4, column 5).

Table 12. Consensus construction & error correction speedup

Reads
Speedup on Threads (minutes)

8 16 32 64

100,000 7.71 14.82 27.00 41.90

500,000 7.63 14.55 29.59 58.58

750,000 7.88 15.25 30.02 59.12

1,000,000 7.94 15.02 30.23 58.73

The performance speedup of the parallel implementation is limited the serial

components of the assembler (Table 13). The serial components include reading large

input files (~1-2GB), writing output files in various formats, writing log files, tagging

reads as repeats based on coverage, finding repeat regions, filter operations and reducing

overlapping contigs. The serial components of the assembler account about 15% of the

assembly time (Table 13, column 6). Therefore, the theoretical cap on the overall speedup

achievable is approximately 6.67.

57

Table 13. Serial components table

Reads
MIRA Execution

Time(min)

Serial Components Time (min)
Percentage

I/O Processes Sorting & Filtering Overlap Reduction

100,000 142 4.2 8.25 9.3 15.31

500,000 514 18.5 43.1 16.8 15.25

1,000,000 1,102 25.0 105.8 36.9 15.22

The overall performance speedup of the parallel implementation is compared to

the total assembly time of MIRA 3.2.1 (Table 14). The average improvement in total

execution time over various input sizes is about 5.57 times on 64 threads (Table 14, row 6

and column 8). This speedup is close to the theoretical limit as 15% of the assembler

remains serial and the maximum possible speedup is 6.67.

Table 14. Overall speedup experiment table

Reads
Execution Time on Threads (minutes)

MIRA 2 4 8 16 32 64

50,000 71 34 24 17 14 12 11

100,000 142 69 42 32 25 23 21

500,000 514 334 211 154 133 113 106

750,000 748 492 321 234 190 171 158

1,000,000 1,102 657 429 316 253 213 208

Avg. Speedup 1 1.77 2.72 3.72 4.58 5.26 5.57

For completeness, we also compared our parallel implementation running on a

single thread to the running time of MIRA 3.2.1 for 1 million reads (Table 14, row 6).

The running time for our parallel implementation was 1,105 minutes which is slightly

more than 1,102 minutes required by MIRA. The breakup of the total assembly time was

as follows: 631 minutes for graph construction, 285 minutes for contig building, 189

minutes for consensus construction with error correction. Note that the total assembly

time on 64 threads for 1 million reads is 208 minutes (Table 14, row 6 and column 8)

58

with serial a component of 167.7 minutes (Table 12, row 3). Consequently, we can now

observe that with 64 threads, the time spent on graph construction, contig building and

consensus construction is only 40.3 minutes (208-167.7). Hence, using 64 processors, we

have been able to reduce the time required for these three parallel phases from 937.3

minutes (1105 – 167.7) to 40.3 minutes yielding a speed-up factor of 23.25.

Table 15. Real graph speedup experiment table

Reads
Execution Time on Threads (minutes)

MIRA 8 16 32 64

0.09 x 10
6
 192 56.38 40.26 34.41 31.88

0.23 x 10
6
 415 129.58 106.50 92.76 87.32

0.36 x 10
6
 532 139.90 107.05 90.23 80.25

0.5 x 10
6
 708 216.15 175.38 155.58 142.05

1.4 x 10
6
 1,472 445.87 354.53 307.14 274.80

Average Speedup 3.39 4.36 5.06 5.55

The final performance experiment was performed on graphs generated by real

sequencing data of three bacteria (Table 15). The rows in Table 7 correspond to graphs

built for assembly of the following bacteria in top down order: Mycobacterium

vanbaalenii PYR-1, Mycobacterium marinum M, Mycobacterium shottsii and two data

sets of Mycobacterium pseudoshottsii. The total assembly time of the parallel

implementation on different number of threads is compared to MIRA 3.2.1. An average

speedup 5.55 was observed on 64 threads (Table 15, row 6 and column 6).

The experiments in this section are performed on Linux machine with 8 Intel(R)

Xeon(R) X7560 octal core processors. The implementation of the parallel contig

assembly framework is shown to be significantly beneficial for MIRA whole genome

and EST assembler.

59

CHAPTER 4

CORRELATIVE ALGORITHM FOR REPEAT PLACEMENT (CARP)

1. Finding Repeating Sequences in Partially Assembled Genomes

The ever-increasing number of sequenced bacterial and archaeal genomes

provides an opportunity to understand their architecture and evolution. However, as new

high-throughput sequencing methods are developed, annotation quickly becomes the

bottleneck for genomic research. In addition to open reading frames (ORFs) and

regulatory elements, correct annotation of other features such as mobile genetic elements

(MGEs) is also essential. These MGEs include bacteriophages, conjugative transposons,

integrons, unit transposons, composite transposons and insertion sequences (ISs). Such

transposable elements are defined as specific DNA segments that can repeatedly insert

into one or more sites in one or more genomes. ISs are transposable elements that are

regarded as genomic parasites proliferating in their host and surviving only through

horizontal gene transfer (Schaack, et al., 2010). ISs play a major role in genome

evolution and plasticity, mediating gene transfers and promoting genome duplication,

deletion and rearrangement (Frost, et al., 2005). Insertion sequences may be abundant in

host genomes and are intimately involved in mediating horizontal gene transfer,

generation of pseudogenes, genomic rearrangement and alteration of regulatory elements

(Frost, et al., 2005; Schaack, et al., 2010). Experimental evolution in the laboratory has

demonstrated that both transpositions (Chou, et al., 2009; Schneider, et al., 2000) and

rearrangements (Chou and Marx, 2012; Cooper, et al., 2001; Dunham, et al., 2002; Lee

and Marx, 2012; Zhong, et al., 2004) can generate beneficial mutations. Prokaryotic DDE

60

transposons (mainly ISs) can move in two different ways, depending on the donor site.

Replicative transposons copy their DNA, leaving the parent site intact, while

conservative transposons cut themselves out of the donor molecule in order to paste their

DNA into the target.

 Despite the development of various annotation programs for particular

genomic features, some important features such as insertion sequences (ISs), the smallest

and simplest autonomous mobile genetic elements, remain poorly annotated. In many

cases, annotations of these elements include only ORFs and ignore terminal inverted

repeats, which are an essential feature of their activity in mediating gene rearrangements.

Moreover, partial ISs are rarely annotated, leading to the loss of potentially valuable

evolutionary information. Another major limitation of current tools is the requirement of

a complete annotated genome sequence for IS identification and analysis.

The majority of ISs are between 700-3000 bp and possess one or two open

reading frames (ORFs) that encode transposases or helper proteins. For an IS element

with more than one ORF, the first (upstream) ORF encodes a DNA recognition domain,

while the second overlapping ORF encodes the catalytic domain. There are two types of

IS: ISs carrying TIR (Terminal Inverted Repeats) elements; and ISs not carrying TIR

elements. A TIR IS element carries a pair of partially conserved 7 to 20 bp inverted

repeats at its terminus for cleavage and binding of the transposase. Upon insertion, ISs

often generate short directed repeats from 2 to 14 bp immediately outside the IRs

(Mahillon and Chandler, 1998). ISs of the non-TIR type do not have discernible

conserved inverted repeats.

Metagenomic analysis has revealed that IS transposases are among the most

61

abundant and ubiquitous genes in nature (Aziz, et al., 2010). Based on transposase

sequence similarities, ISs have been classified in 25 different families that belong to three

main classes of enzymes: DDE transposases; serine recombinases; and tyrosine

recombinases (Mahillon and Chandler, 1998). Another recent classification of ISs

categorizes them into 26 families based on transposase homology and overall

organization, with some families divided further into groups (Zhou, et al., 2008). An IS

family can be defined as a collection of elements sharing conserved spacers between key

residues, identical genetic organization, similar terminal sequence arrangements, and

uniform target insertion behavior. However, not all families are so coherent.

Consequently, some (e.g. families IS4 and IS5) are divided into subgroups composed of a

core of closely related elements that can be linked to other members of the family by

weaker but still significant similarities. The naming convention of transposable elements

(insertion sequences, transposons, etc.) generally follows the recommendations of

Campbell et al. (Chumley, et al., 1979). However, in some cases a revised system of IS

naming is used based on a registry where researchers can request for a new sequence

number to define novel mobile elements (Roberts, et al., 2008). IS and transposable

element abundance in prokaryotes is highly variable (Touchon and Rocha, 2007) but they

occupy a substantial fraction of some genomes. For example, 11% and 25% of the

genome in Clostridium difficile and Enterococcus faecalis is composed of mobile

elements (Paulsen, et al., 2003; Sebaihia, et al., 2006). Therefore, it is estimated that an

average of up to 10% of bacterial (Mahillon and Chandler, 1998) and archaeal (Filée, et

al., 2007) genomes are comprised of MGEs.

Current IS-related software tools such as IScan and OASIS operate only on

62

complete genomes with fully annotated ORFs. Complete genome assembly of a single

strain of bacteria can be time-consuming and costly, due in large part to ambiguities

introduced by repetitive elements themselves. Consequently, most publicly available

prokaryotic genomes are deposited as incomplete, contig- or scaffold-level assemblies,

and IS and other repetitive elements may or may not be present in the deposited

sequence. For example, Celera WGS (Myers, et al., 2000), a widely used assembly

software, commonly moves full or partial IS elements to a “degenerates” folder that is not

frequently deposited as part of the draft genome. Therefore, to perform a global

investigation of ISs in unassembled prokaryote genomes, we developed ISQuest (Biswas,

et al., 2015), or Insertion Sequence Quest, a computational tool for automated detection

of ISs in unassembled or partially assembled genomes. ISQuest takes advantage of

widely available transposase annotations to identify candidate IS seed regions and then

uses a computationally efficient extension method based on BLAST (Altschul, et al.,

1990) to grow the seed regions and identify the edges of each IS element. ISQuest is

capable of finding MGEs in hundreds of genomes within hours, making it a valuable

high-throughput tool for a global search of IS elements. We applied ISQuest to 3810

sequenced bacterial genome and plasmid sequences. Compared to the benchmark of

GenBank annotations, ISQuest identified 82% successfully with 80% sequence identity.

1.1. ISQuest Algorithm

ISQuest is a computationally efficient algorithm designed to find and annotate

Insertion Sequences (IS) and transposases in fully assembled, partially assembled or

unassembled genomes. The algorithm uses BLAST (Altschul, et al., 1990) to determine

potential IS locations by searching against an automatically curated database of IS and

63

transposase sequences derived from GenBank. The potential locations are further

extended by Smith-Waterman alignment extension. The IS elements may occur once in a

genome (single-copy) or may consist of a set of almost identical copies (multicopy). As

there are distinct levels of information available in each of these cases, different

algorithms perform better with each class. As such, we have designed ISQuest to find

these two groups of ISs in two separate steps: first finding multicopy ISs and then single-

copy ISs. The overall schematic pipeline is shown in Figure 5. The pipeline has been

specially modeled to identify ISs but the algorithm is capable of detecting other mobile

genetic elements (MGEs) and the generic steps are described below with IS elements as

special cases.

1.1.1. Search Terms and TransposaseDB

ISQuest identifies single-copy and multicopy ISs and transposases in each

genome by finding conserved regions of already-annotated transposase elements, which

are identified by the word ‘transposase’, or ‘insertion sequence’ in the ‘product’ field of

GenBank files. The search keywords may be extended by user-provided regular

expressions since there is a significant amount of inconsistently annotated data in

GenBank. For example, transposases are frequently misannotated as integrases.

Generating the database of known MGEs is done once as a preprocessing step during the

first run of ISQuest which generates a BLAST database called TransposaseDB. This

database is stored for subsequent use by future executions. The user can force updates of

the database when new versions of the GenBank files are available.

64

1.1.2. BLAST Searching Parameters

A candidate sequence for extension is determined by a BLAST search against

TransposaseDB. ISQuest can operate directly on raw reads provided in FASTA/FASTQ

Input sequence reads and (optionally) contig

sequences in FASTA/FASTQ format

MegaBLAST against local Genbank

database

Select BLAST hits with transposase or IS annotations

(user specified keyword and/or regular expression

search)

Select BLAST hits between 200bp - 4000bp

Extend the selected sequence (hits) at the

ends

Multiple

consensus

extensions

Multiple copy

IS candidate

found

Extended

sequence <=

4000bp

Single copy IS

candidate found

Determine copy number

Find point of sequence divergence

to determine IS boundary

Find inverted repeats by alignment

of boundary region

Find inverted repeats to

determine boundary of IS

Create IS library and remove duplicates

IS Copy count summary

table
IS Sequence library file

Fig. 5. Flowchart of the full workflow of ISQuest

65

format. Efficiency can be significantly improved by assembling the reads and providing a

set of assembled contigs in FASTA format. This assembly can be performed using an

appropriate assembler for the input reads. The assembled contigs are BLAST-searched

against the TransposaseDB database to find potential seed locations for ISs and

transposases. These seed locations represent all possible MGE locations that must be

searched and analyzed. Therefore, we use MegaBLAST for finding matches with higher

sequence similarity and better performance. Since we further extend these seed sequences

to find the boundaries of the MGEs, we can tolerate partial or inexact matches.

1.1.3. Extending Potential IS Matches

Once the possible MGE seed locations have been identified, raw reads are used to

extend the seed sequences to determine boundaries. The extension is done by pairwise

alignment of the raw reads to the ends of the seed sequence. This alignment algorithm is

implemented using BLAST allowing 5 bit score errors. This parameter is configurable by

the user depending on the sequencing technology used and the expected error profile of

the reads. For Illumina reads we allowed a bit score error of 5, which corresponds to 98%

sequence similarity using 250bp reads.

The extension step aligns all reads to the end of a seed sequence then executes the

boundary detection step. The extension step does not align reads that do not have at least

a partial overlap with the core seed sequence as we do not want to miss the boundary of

the MGE by large extensions. Therefore, each extension step builds no more than twice

the input read length. The seed sequence is expanded to include the aligned reads and the

larger consensus sequence is used as the new seed. Therefore, the extension step is

iteratively executed for the remaining sequences for which the boundary cannot be found

66

until the seed sequence becomes too long. The termination length of the seed sequence is

user configurable and defaults to 4Kbp.

1.1.4. Determining IS Boundary

We apply different approaches to find the boundary of single- and multi-copy

MGE elements. In the case of a single copy we can only find the boundary in cases where

there are flanking inverted repeats. To define the edges of single-copy ISs, we use an

approach first developed by IScan to find IRs around the transposases, which are present

for the majority of ISs (Wagner, et al., 2007). Briefly, a Smith–Waterman alignment,

with a match score of 1, a mismatch penalty of −3 and a gap penalty of −4, is performed

comparing the region upstream of the transposase (500 bp) with the reverse complement

of the downstream region (500 bp) and the highest match with a score >10 is assumed to

be the pair of terminal IRs.

Since the various copies of a multi-copy ISs are from different genomic loci, they

have different unique sequence beyond the boundaries of the IS. Therefore, if the

consensus of the aligned reads disagrees with the end of the seed sequence, this indicates

that the boundaries of the IS have been reached. Based on the number of possible

disagreements we calculate the number of possible sequence groups. If each group has

coverage within a specified range we can be certain that we have reached the final

boundary for all the sequence groups and have run into the flanking unique sequence.

However, if a sequence group has coverage several times that of the expected coverage,

we know that there exist longer MGEs the form of tandem repeats which will require

further extension. These sequence groups are separated out for extension in the next

iteration.

67

The sequence groups with appropriate coverage are processed to determine the

IRs using a Smith–Waterman sequence alignment. The alignment parameters are the

same as those described for the single copy IS case. In some cases the boundary defined

by the IRs may disagree with the boundary defined by the synteny of the aligned reads

due to nested repeats, flanking direct repeats at the ends, or inaccurate IR identification.

ISQuest addresses this ambiguity by prioritizing the IR edges and changing the boundary

to match the IRs. If IRs are found, a direct repeat finding subroutine attempts to align

10bp fragments on either side of the IRs to identify direct repeats. If no IRs are found,

the edges of the MGE are solely determined by the alignment of the reads. This allows

annotation of partial MGEs as many of these sequences do not have IRs. Thus, when

present in multiple copies, ISquest finds partial ISs; it is not capable of finding these IS

fragments when no intact copy with an annotated transposase is present in GenBank.

The same MGE element may result in one or more BLAST seeds and may cause

redundant copies of the same IS to be generated. Therefore the redundant results within

the final set are filtered out using a pairwise global alignment to identify groups of IS

lengths, which are clustered together. The clustering algorithm groups sequences such

that the mean lengths are within 100bp of each other. The cluster is then assumed to be

the true copy size of the IS and any fragments that are shorter than that threshold are

classified as partials.

1.1.5. Iterative Extension and Boundary Finding

Sequences with known boundaries are removed from the extension set and all

remaining sequences are expanded based on the consensus of the reads aligned to the

boundaries. Extension and boundary finding are performed iteratively until all seed

68

sequences have been processed. The end of each boundary finding step generates a new

set of seed sequences. The new seed sequences are generated from the alignments that

have no disagreement in the aligned reads, signifying that the boundary has not been

reached. The consensus sequences generated from all these alignments is used as the

fresh set of seeds in the extension step. Some new seed sequences may be derived from

alignments with disagreements as well. In such cases, the alignment disagreements can be

grouped such that some groups have a very large coverage. The consensus sequences

generated from these large coverage groups are separated and treated as new seed

sequences.

1.1.6. ISQuest Output

The output of the pipeline is a library of full and partial MGEs. IS elements in

particular are composed of a transposase with one or more ORFs and appropriate

upstream and downstream sequences. The extreme edges are annotated in GenBank

format for IS elements and may include a partially conserved inverted repeat on each end

ranging from 8 to 40 bp in length with direct repeats ranging from 4-8bp in length. Partial

IS elements and other MGEs such as transposases do not have special annotations

defining the boundary.

The final output of ISQuest includes two files for the given input of raw reads and

contig(s): 1) a file in GenBank format listing each MGE and its characteristics, including

the chromosome ID, start and end positions, direction, family and group, IRs (if found),

DRs (if found) and whether the element is a partial element; and 2) a file containing the

copy number of each identified IS in .csv format.

1.1.7. Using the ISQuest Tool

69

ISQuest is a free open source program implemented in C++. It is available at

http://sourceforge.net/projects/isquest. ISQuest requires the read library of input reads in

FASTA/FASTQ format and can be optionally provided with an assembly of the reads.

The program accepts 4 command line parameters 1) the configuration file, 2) the raw

reads, 3) the prefix of the output files and 4) the optional set of assembled contigs. The

configuration file contains the required file paths to the local BLAST database and other

configurable parameters such as the maximum number of iterations ISQuest performs,

the maximum length of the MGEs to be built and the search terms for MGE’s in

GenBank. A complete wiki with required documentation is provided on the forge.

1.1.8. Preparation for ISQuest Tool Evaluation

To evaluate ISQuest we used 3810 microbial genomes and plasmid sequences >

100Kbp available in GenBank as of 15
th

 October 2014. The ART tool was used to

generate synthetic Illumina paired-end fragment libraries with read length of 250bp and

50× coverage. The read length of 250bp was used for experimentation because 250bp

read lengths are typical for Illumina sequencing machines. ART simulates sequencing

reads by mimicking real sequencing process with empirical error models or quality

profiles summarized from large recalibrated sequencing data. ART can also simulate

reads using a user specified error profile that requires the user to specify probability of

sequencing errors at each base position of the read. ART was used as a primary tool for

the simulation study of the 1000 Genomes Project (Huang, et al., 2012). ISQuest

performance was evaluated by first fragmenting each genome using the simulation

process described above. We then used the Celera WGS assembler to assemble these

simulated reads into contigs. The ISQuest algorithm was operated on these contig

http://sourceforge.net/projects/isquestx

70

sequences to generate a set of candidate MGEs. This run can be performed using the raw

reads but will significantly slow down the execution. In addition, we ensure that the

ISQuest testing algorithm does not include the genomes being processed in the search

database to ensure that the test and training sets are disjoint.

OASIS GenBank

ISQuest

67 1307

1350

5409

148

25580

70% Length Match

OASIS GenBank

ISQuest

67 1519

864

5372

185

23910

OASIS GenBank

ISQuest

67 2854

418

5208

376

9840

80% Length Match 90% Length Match

(A) (B) (C)

Fig. 6. Venn diagram illustrating the number of IS annotations identified by ISQuest and

OASIS compared to GenBank at three length match thresholds. (A) ISQuest and OASIS

both found 5409 ISs (in single copies) in the 3810 GenBank benchmarked genomes and

plasmids. Additionally, ISQuest identified 2558 ISs that OASIS did not annotate and

OASIS found 148 ISs that ISQuest failed to detect. OASIS found 67 insertion sequences

that were not correctly annotated in GenBank as IS. ISQuest generated 1350 partial IS

sequences that have not been annotated in GenBank. The intersection of ISQuest and

OASIS is 0 as ISQuest cannot identify any sequence that has not been annotated in more

than one GenBank submission using the keywords ‘transposase’, or ‘insertion sequence’

in the ‘product’ field. ISQuest does not take the annotated genome as input and therefore

requires similar annotation to be present in other submissions. (B) same as (A) but only

allowing 80% length matches as true positives. (C) same as (A) but only allowing 90%

length matches as true positives.

71

1.2. ISQuest Test Results

We performed two experiments to show the MGE detection capability of ISQuest

and present a summary of IS sequences found by ISQuest classified by IS family. The

performance of the ISQuest tool was compared to that of OASIS using annotated

transposases in GenBank as a benchmark. This first experiment compared the accuracy of

ISQuest and OASIS by measuring the percentage of GenBank annotated ISs found by

each tool. Unlike ISQuest, OASIS operates on completely assembled and annotated

genomes and uses only the annotation information available in the genome. ISQuest

operates on partially assembled contigs or directly on the raw reads and does not require

annotation to identify the ORFs. This experiment shows the predictive capability of

ISQuest to find ISs from a draft and un-annotated assembly and compares it to the

predictive capability of OASIS using completely annotated sequences. The capability of

ISQuest to find other repetitive elements (e.g. rRNA operons) is not measured in this

experiment.

As ISQuest uses an un-annotated draft genome, ORFs are not clearly defined and

finding the exact lengths of the MGEs is difficult using the seed extension algorithm.

Therefore, due to these inaccuracies, the testing result in Figure 6(A) considers 70%

sequence length match as a true positive; if ISQuest returns a sequence that matches a

70% of the length of an annotated sequence in GenBank with 95% sequence similarity

we consider it a true positive. The count numbers in the figure represent IS counts in

single copy; multiple copies of a particular IS are not included. Within the 3810

benchmarked genomes and plasmids, ISQuest found 84.5% of the 9422 unique GenBank

annotations, whereas OASIS found 58.9%. The 5346 GenBank ISs found both by

72

ISQuest and OASIS represent insertion sequences with well-defined inverted repeats.

The 2558 sequences found by ISQuest and also present in GenBank are full and partial

transposase elements that do not contain completely defined inverted repeats and

therefore cannot be identified by OASIS. The 1350 annotations found only by ISQuest

include partially assembled insertion sequences and partial MGEs found by ISQuest that

have not been annotated in deposited genomes. These sequences may also include

potential sets of new insertion sequence and transposase elements identified by ISQuest

based on sequence similarity to other ISs in GenBank. The intersection of ISQuest and

OASIS is zero as ISQuest cannot identify any sequence that has not been annotated in

more than one GenBank submission using the keywords ‘transposase’, or ‘insertion

sequence’ in the ‘product’ field. ISQuest does not take the annotated genome as input and

therefore requires similar annotation to be present in other submissions.

We further evaluated ISQuest under increasingly strict constraints by increasing

the length match threshold which we accept as a true positive to 80% and 90% of the

sequence length (see Figure 6). Figure 6(B) shows the results of considering only

sequences with greater than or equal to 80% length matches with 95% sequence

similarity with GenBank sequences as valid true positives of ISQuest. We notice a slight

reduction in the number of insertion sequences detected by ISQuest to 82.2% of the 9422

unique GenBank annotations. Increasing the length match threshold to 90% (see Figure

6(C)) shows significant reduction in the number of insertion sequences detected by

ISQuest to 65.7%. However, this shows that ISQuest is able to reproduce 90% of the

actual IS sequence using the fast seed extension algorithm in the majority of cases.

73

Table 16. ISQuest annotations compared to GenBank annotations grouped by Phylum at

80% length match threshold

Phylum
Number of

Genomes
a

Number of GB

IS
b

Number of GB

TP
c

Number of ISQ

IS
d

ISQ TP
e

Proteobacteria 1810 22375 31918 18412 14164

Firmicutes 794 7906 11029 6297 4962

Actinobacteria 520 4029 7970 3416 3513

Cyanobacteria 128 1590 3674 1267 1534

Bacteroidetes 92 1016 1342 858 582

Tenericutes 53 434 468 321 226

Spirochaetes 48 357 569 264 253

Deinococcus-Thermus 47 283 323 188 160

Others 318 3754 3097 2712 1373

Total 3810 41564 60309 33735 26767
a
The number of genomes under each phylum.

b
The number of IS annotations(multiple copies) in GenBank.

c
The number of Transposase annotations in (multiple copies) GenBank.

d
The number of IS detected (multiple copies) detected by ISQuest.

e
The number of Transposase detected (multiple copies) detected by ISQuest.

1.2.1. MGE Detection using ISQuest

In order to study the overall sensitivity and specificity of ISQuest we directly

compared its output to GenBank. Comparison to OASIS is problematic as OASIS only

identifies insertion sequences with clearly defined inverted repeats. ISQuest can identify

full ISs, partial ISs and other MGEs such as transposases. Table 16 shows the IS

sequences found by ISQuest grouped by phylum. The numbers in the table represent ISs

in multiple copies, i.e., the multiple copies of the IS are included (collapsed). Likely

because of the number of sequenced genomes from Proteobacteria and Firmicutes, >50%

of the ISs we found are from Proteobacteria and an additional 16% are from Firmicutes

(Table 16, Column 3). ISQuest detected 82.2% of the Proteobacteria ISs and 81.1% on

average from GenBank (Table 16, column 3, 5). The prediction capability of ISQuest is

limited by the assumption that a similar annotation of the IS element is present in other

genomes. So, in some cases we cannot identify certain ISs correctly due to sequence

74

divergence or absence of annotation. Also, the copy number computation based on the

number of possible flanking unique sequence regions is conservative in estimating the

number of copies and reduces the copy count to the least possible value.

ISQuest was also used to identify transposase elements and the sequences

generated by ISQuest without clearly defined inverted repeats were compared to

transposase annotations in GenBank. Similar to IS elements, Proteobacteria and

Firmicutes account for majority of the transposase annotation in GenBank (52.3% and

18.3% respectively). ISQuest detected 57.7% of the Proteobacteria transposases and

44.4% of transposases from GenBank (Table 16, column 4, 6). The significantly lower

detection accuracy relative to ISs is due to the presence of single copy transposases.

These elements do not possess inverted repeats, and in single copy cases, do not possess

multiple unique flanking sequences; therefore, their length cannot be estimated by

ISQuest. Such single copy elements with no discernable end regions are extended to the

default maximum length and often include unique sequence that does not match an

existing transposase element from GenBank.

1.2.2. MGE Detection using ISQuest

It was also interesting to study the performance of ISQuest in terms of the IS

families discovered. This provided insight into the annotations and predictive capability

of ISQuest for mining ISs from families with high divergence. Table 17 shows the top 20

IS families detected, some of which are predicted better than others due to the inherent

divergence in the IS families and inaccurate annotations from GenBank. IS4 family is the

most annotated IS family in GenBank with a total of 5521 annotations. ISQuest identified

the IS elements in IS4 family with ~ 60% accuracy which is significantly less that overall

75

accuracy of ISQuest. This is due to the high internal divergence of IS4 elements that

makes classification and identification challenging.

Table 17. ISQuest annotations compared to GenBank annotations group by IS type

IS Family
a

Number of

GB
b

Number of

ISQ
c

Percentage
d
 IS Family

e

Number of

GB
b

Number of

ISQ
c

Percentage
d

IS4 5521 3340 60.5 IS110 308 308 100

IS911 2496 1872 75 ISL3 308 298 96.8

IS902 1738 1603 92.2 IS21 233 232 99.6

IS3 1061 1060 99.9 IS982 229 171 74.7

IS5 772 679 88 IS256 223 222 99.6

IS66 568 426 75 IS200 190 190 100

IS1165 491 367 74.7 IS1341 146 146 100

IS605 377 376 99.7 IS6 98 98 100

IS30 362 361 99.7 IS1182 75 55 73.3

IS630 337 252 74.8 IS1595 55 54 98.2
a
The top 10 IS families annotated in GenBank.

b
The number of IS annotations (single copy) in GenBank.

c
The number of IS detected (single copy) by ISQuest.

d
The percentage IS detected (single copy) by ISQuest.

e
The top 11-20 IS families annotated in GenBank.

Overall, 60,502 MGE elements representing 9317 unique IS sets and 26767

transposase annotations were identified by ISQuest in 3810 genomes and plasmids.

ISQuest took a total of 23 h and 44 min to annotate all 3810 genomes on a 4x Intel Xenon

X7550, 2.0-Ghz processor using partially assembled contigs. The maximum per-genome

running time was 8 min.

2. Correlative Algorithm for Repeat Placement

The Correlative Algorithm for Repeat Placement (CARP) finishing tool we

propose is based on the novel idea of assembling repeat elements separately from the rest

of the genome, then placing these elements correctly within the draft genome using

several lines of evidence to ensure that the correct placement is made. Evidence types

include: 1) presence of incomplete repeat element fragments on the ends of unjoined

76

contigs, 2) mate-pair evidence, and 3) synteny (similarity in gene organization) with

reference genomes. Importantly, any joins made by this method are presented to the user

along with the evidence used to make the joins (see Figure 7). De-novo genome assembly

from DNA fragments is primarily based on sequence overlap information.

In addition, mate-pair reads or paired-end reads provide linking information for

joining gaps and bridging repeat regions. Genome assemblers in general assemble long

contiguous sequences (contigs) using both overlapping reads and linked reads until the

assembly runs into an ambiguous repeat region. These contigs are further bridged into

scaffolds using linked read information. However, errors can be made in both phases of

assembly due to high error threshold of overlap acceptance and linking based on too few

mate reads. Identical as well as similar repeat regions can often cause errors in overlap

and mate-pair evidence. In addition, the problem of setting the correct threshold to

minimize errors and optimize assembly of reads is not trivial and often requires a time-

consuming trial and error process. Therefore, we propose a novel scaffolding tool,

Correlative Algorithm for Repeat Placement (CARP), capable of joining low error

Fig. 7. Illustration of CARP scaffolding

77

contigs using mate pair reads, resolved repeat structures and verification of joins based on

synteny with one or more reference organisms. The CARP tool requires a set of long

repeat sequences such as insertion sequences that can be manually determined or found

computationally. The tool is designed to match very low error contigs with strong overlap

using the ambiguous partial repeat sequence at the ends of the contig. These matches are

verified by synteny with reference to one or more related organisms. We show that the

CARP tool can be used to verify low mate pair evidence regions, independently find new

joins and significantly reduce the number of scaffolds.

2.1. Annotating the Partial Repeats at Each Contig Ends

The CARP tool requires as input a set of high quality contigs that are generally

flanked by a partial repeat region that were not assembled by the assembler due to

ambiguous choices. Figure 8 shows the annotation of partial repeats at the contig ends

using the computationally determined repeats from ISQuest.

Fig. 8. Correlative Algorithm for Repeat Placement (CARP) step 1. The partial repeat

elements flanking the contigs are identified.

78

2.2. Identification of Intergenic or Interrupting Repeat Insertion

The annotation of flanking repeats reduced the match possibilities from 𝑂(𝑛2).

The possibilities can be further reduced based on the unique sequence flanking the partial

repeat sequences. The flanking 200bp of the sequence are BLAST searched against a

database of genes. The first case is intergenic insertion where the insertion sequence

interrupts a gene. In that case, the BLAST search will return a match within a gene.

However, if the sequence does not hit inside a sequence we have an intergenic insertion

(see Figure 9). In case of intergenic insertion, we can match the contigs based on synteny

with a reference genome.

2.3. Matching the Contigs Based on Lines of Evidence

Based on the first two steps we have two lines of evidence to make joins. We can

first pair contigs based on matching complementary partial repeats at the contig ends. The

number of possible pairs can be further reduced based on interrupted gene sequences and

synteny with are reference (see Figure 10).

Fig. 9. Correlative Algorithm for Repeat Placement (CARP) step 2. The unique

regions around the partial repeat elements are identified by BLAST to determine

intergenic or interrupting insertions.

79

2.4. CARP Results

We experimented with CARP by selecting 12 genomes with high repeating

regions (see Table 18). The ART tool was used to generate synthetic Illumina paired-end

fragment libraries with read length of 250bp and 50× coverage. The read length of 250 bp

is typical of Illumina sequencing machines and was selected for experimentation. ART

simulates sequencing reads by mimicking real sequencing process with empirical error

models or quality profiles summarized from large recalibrated sequencing data. ART can

also simulate reads using a user specified error profile that requires the user to specify

probability of sequencing errors at each base position of the read. ART was used as a

primary tool for the simulation study of the 1000 Genomes Project (Huang, et al., 2012).

CARP performance was evaluated by first fragmenting each genome using the simulation

process described above. We then used the Celera WGS assembler to assemble these

simulated reads into low error overlap only contigs. The ISQuest algorithm was operated

on these contig sequences to generate a set of candidate MGEs. CARP was used to call

joins using the MGEs and the contigs. The Celera scaffolder was also used to call the

joins and the results are compared (see Table 18). Both the scaffolders are checked for

Fig. 10. Correlative Algorithm for Repeat Placement (CARP) step 3. The unique

regions around the partial repeat elements are identified by BLAST to determine

intergenic or interrupting insertions.

80

incorrect joins by comparing the scaffolds to the original sequence of the genome. We

can see that CARP consistently generates fewer scaffolds and fewer incorrect joins as

compared to Celera WGS. For example, CARP was able to derive a single circular

sequence genome with no errors for M. marinum M, where Celera WGS derived only 48

scaffolds.

Table 18. CARP finishing results

Organism
a
 Len

b

Low Error

Contigs
c

Celera

Scaffolds
d

 Incorrect Joins

(Celera)
e

CARP

Scaffolds
f

Incorrect Joins

(CARP)
g

M. nodulans 7.7 482 56 3 24 0

T. erythraeum 7.7 279 37 0 4 0

M. vanbaalenii 6.4 12 1 0 1 0

M. marinum M 6.3 773 48 5 1 0

M. acetivorans 5.7 28 20 0 6 0

B. halodurans 4.2 857 92 16 38 7

A. aurescens 4.5 683 97 7 21 2

M. silvestris 4.3 22 12 0 15 0

S. maltophilia 4.8 1289 266 31 49 1

R. rubrum 4.3 42 8 1 3 0

M. hungatei 3.5 654 107 14 19 4

H. marismortui 3.4 22 2 0 1 0
a
The top 12 genomes with repetitive IS sequences.

b
The length of the genome in million base pairs.

c
The number of low error contigs assembled by Celera WGS assembler with only overlap

information.
d
The number of scaffolds generated by Celera using mate-pair reads.

e
The number of scaffolds generated by Celera that do not match the original genome.

e
The number of scaffolds generated by CARP using repeat placement and mate-pair reads.

f
The number of scaffolds generated by CARP that do not match the original genome.

3. Unverified Join Viewer

The Unverified Join Viewer (UJV) was developed to help users track join information

from CARP and update join data as per user requirement. This of this project was

implemented by a team of undergraduate students as part of the CS410 & CS 411

Profession Workforce Development course requirements under the guidance of Abhishek

Biswas (Biswas, et al., 2015).

81

The UJV viewer displays the bacterial genome in a circle after loading the

GenBank file generated from CARP with join points annotated using the “join_feature”.

The joins annotated as “join_feature” in the GenBank file are shown on the outer

periphery of the genome circle (see Figure 11). The joins shown in red have not been

manually verified and confirmed and require further user review. The joins that have

been have been manually verified and confirmed are displayed in blue. The user can use

the mouse to linger over the join features to see the join information as a tooltip. The side

panel can be used to view the join coordinates and control the central view. The other

annotations of the genome are also shown in the inner periphery of the circle and are

color coded. The lower side panel can be used to select the features to be displayed. The

annotation features also have tooltips that the user may use to view the annotation details.

Figure 11 shows a screenshot of the M. Marinum M genome artificially fragmented and

Fig. 11. Unverified Join Viewer: genome display and joins

82

assembled back using CeleraWGS and CARP. The user is currently viewing particular

join information using tooltip and the “misc_feature” annotation is selected for view.

The user can click on a join GUI element to edit the join information and track the

progress of the genome finishing process. The edited join annotations can be used to

track manual verification and validation process and rules can be set to confirm joins.

Clicking on a join feature opens an editable window where join related information could

be modified (see Figure 12). The application allows the user to re-order the contigs and

generate a NCBI compatible GenBank file of the bacterial genome for publication.

Fig. 12. Unverified Join Viewer: genome display and editable join information

83

CHAPTER 5

CONCLUSION

This work focuses on providing a major sequence assembly resource to small- and mid-

scale laboratories that may not have access to bioinformatics expertise and infrastructure

available at larger institutions. Even small (e.g. prokaryote) genome projects can be

challenging tasks for researchers without bioinformatics core facilities to call upon for

expertise and advice. In our experience, choice of an appropriate assembler for

prokaryotic genomes is often hampered by lack of information regarding how individual

assemblers deal with various genomic structures, and researchers are often forced to

“take a guess” about which assembler to use, or allow considerations of computational

resources or user-friendliness to make their decision for them. When one considers the

large amount of effort required to produce a finished sequence from a draft assembly, the

inefficiency imposed by an inappropriate assembler creates clear problems. Further, the

current lack of ability to bring together a comprehensive suite of assembly statistics

creates a large potential for misassembled “final” sequences to make their way into

public databases. Therefore, researchers without ready access to teams of trained

bioinformaticists face a lack of centralized information and tools with which to generate

sequence assemblies, and more importantly, to judge the quality of assemblies they

generate. We present tools that develop this resource, and therefore to improve the

accessibility of small-scale accurate genome assembly to a larger user base. This activity

therefore has a wide variety of potential broader impacts. Generation of sequence

resources, including finished genomes, is applicable to a wide variety of scientific

84

endeavor, including human and veterinary health (i.e. bacterial pathogens),

environmental remediation (e.g. hydrocarbon-degrading organisms), and microbial

ecology. While focus of large sequencing centers has shifted to resequencing large

numbers of strains of already highly studied organisms (e.g. Escherichia coli), there is

still considerable interest in the scientific community for development of genomic

resources in less-well characterized prokaryotic taxa. Our goal is to facilitate this

research by making accurate and efficient prokaryotic genome assembly more accessible

to a wider range of laboratories.

85

REFERENCES

Ablordey, A., et al. (2005) Comparative nucleotide sequence analysis of polymorphic variable-number

tandem-repeat loci in Mycobacterium ulcerans, Journal of Clinical Microbiology, 43, 5281-5284.

Altschul, S., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs, Nucleic Acids Research, 25, 3389 - 3402.

Altschul, S.F., et al. (1990) Basic local alignment search tool, Journal of Molecular Biology, 215, 403-410.

Aziz, R., Breitbart, M. and Edwards, R. (2010) Transposases are the most abundant, most ubiquitous genes

in nature, Nucleic Acids Research, 38, 4207-4217.

Balzer, S., et al. (2010) Characteristics of 454 pyrosequencing data—enabling realistic simulation with

flowsim, Bioinformatics, 26, i420-i425.

Bao, Z. and Eddy, S.R. (2002) Automated De Novo Identification of Repeat Sequence Families in

Sequenced Genomes, Genome Research, 12, 1269-1276.

Barker, M.S., et al. (2009) SCARF: maximizing next-generation EST assemblies for evolutionary and

population genomic analyses, Bioinformatics, 25, 535-536.

Batzoglou, S., et al. (2002) ARACHNE: A Whole-Genome Shotgun Assembler, Genome Research, 12,

177-189.

Biswas, A., et al. (2015) Unverified Join Viewer. Virginia Branch American Society for Microbiology

Annual Meeting. Virginia Branch American Society for Microbiology, Richmond, VA.

Biswas, A., et al. (2013) Correlative Algorithm for Repeat Placement. Virginia Branch American Society

for Microbiology Annual Meeting. Virginia Branch American Society for Microbiology,

Charlottesville, VA, pp. 13.

Biswas, A., et al. (2015) ISQuest: Finding Insertion Sequences in Prokaryotic Sequence Fragment Data,

Bioinformatics.

Biswas, A., Ranjan, D. and Zubair, M. (2011) Parallelization of MIRA Whole Genome and EST Sequence

Assembler, Workshop on Parallel Algorithms and Software for Analysis of Massive Graphs

(ParGraph).

Biswas, A., Ranjan, D. and Zubair, M. (2012) A Parallel Genome Assembler Based on an Overlap Layout

Consensus Graph Model. Asia Pacific Bioinformatics Conference (Under Review).

Biswas, A., Ranjan, D. and Zubair, M. (2013) Genome Assembly on a Multicore System. The 11th IEEE

International Symposium on Parallel and Distributed Processing with Applications (ISPA-13).

Melbourne.

Blocks, I.T.B. (2011) Threading Building Blocks.

Boisvert, S., Laviolette, F. and Corbeil, J. (2010) Ray: simultaneous assembly of reads from a mix of high-

throughput sequencing technologies, Journal of computational biology : a journal of computational

molecular cell biology, 17, 1519-1533.

Butler, J., et al. (2008) ALLPATHS: De novo assembly of whole-genome shotgun microreads, Genome

Research, 18, 810-820.

Cahill, M.J., et al. (2010) Read Length and Repeat Resolution: Exploring Prokaryote Genomes Using Next-

Generation Sequencing Technologies, PLoS One, 5, e11518.

Cerveau, N., et al. (2011) Short- and Long-term Evolutionary Dynamics of Bacterial Insertion Sequences:

Insights from Wolbachia Endosymbionts, Genome Biology and Evolution, 3, 1175-1186.

Chaisson, M.J., Brinza, D. and Pevzner, P.A. (2009) De novo fragment assembly with short mate-paired

reads: Does the read length matter?, Genome Research, 19, 336-346.

Chevreux, B. (2005) MIRA: An Automated Genome and EST Assembler. In German, Department and

Head (eds). German Cancer Research Center Heidelberg.

Chevreux, B., Wetter, T. and Suhai, S. (1999) Genome Sequence Assembly Using Trace Signals and

Additional Sequence Information. German Conference on Bioinformatics. Hannover, Germany, pp.

45-56.

Chin, C.-S., et al. (2011) The Origin of the Haitian Cholera Outbreak Strain, New England Journal of

Medicine, 364, 33-42.

Chou, H.-H., Berthet, J. and Marx, C.J. (2009) Fast Growth Increases the Selective Advantage of a

Mutation Arising Recurrently during Evolution under Metal Limitation, PLoS Genet, 5, e1000652.

86

Chou, H.-H. and Marx, Christopher J. (2012) Optimization of Gene Expression through Divergent

Mutational Paths, Cell Reports, 1, 133-140.

Chumley, F.G., Menzel, R. and Roth, J.R. (1979) Hfr FORMATION DIRECTED BY Tn10, Genetics, 91,

639-655.

Cooper, V.S., et al. (2001) Mechanisms Causing Rapid and Parallel Losses of Ribose Catabolism in

Evolving Populations of Escherichia coli B, Journal of Bacteriology, 183, 2834-2841.

Darling, A.E., Mau, B. and Perna, N.T. (2010) progressiveMauve: Multiple Genome Alignment with Gene

Gain, Loss and Rearrangement, PLoS One, 5, e11147.

Dunham, M.J., et al. (2002) Characteristic genome rearrangements in experimental evolution of

Saccharomyces cerevisiae, Proceedings of the National Academy of Sciences, 99, 16144-16149.

Earl, D., et al. (2011) Assemblathon 1: A competitive assessment of de novo short read assembly methods,

Genome Research, 21, 2224-2241.

Eid, J., et al. (2009) Real-Time DNA Sequencing from Single Polymerase Molecules, Science, 323, 133-

138.

Engle, M.L. and Burks, C. (1994) GenFrag 2.1: new features for more robust fragment assembly

benchmarks, Computer applications in the biosciences : CABIOS, 10, 567-568.

Filée, J., Siguier, P. and Chandler, M. (2007) Insertion sequence diversity in archaea, Microbiology and

molecular biology reviews : MMBR, 71, 121-157.

Finn, R.D., et al. (2014) Pfam: the protein families database, Nucleic Acids Research, 42, D222-D230.

Frost, L.S., et al. (2005) Mobile genetic elements: the agents of open source evolution, Nat Rev Micro, 3,

722-732.

Galardini, M., et al. (2011) CONTIGuator: a bacterial genomes finishing tool for structural insights on draft

genomes, Source code for biology and medicine, 6, 11.

Gnerre, S., et al. (2011) High-quality draft assemblies of mammalian genomes from massively parallel

sequence data, Proceedings of the National Academy of Sciences, 108, 1513-1518.

Gordon, D., Desmarais, C. and Green, P. (2001) Automated Finishing with Autofinish, Genome Research,

11, 614-625.

Gough, J. and Chothia, C. (2002) SUPERFAMILY: HMMs representing all proteins of known structure.

SCOP sequence searches, alignments and genome assignments, Nucleic Acids Research, 30, 268-272.

Grabherr, M.G., et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference

genome, Nat Biotech, 29, 644-652.

Green, P. (1996) PHRAP Documentation. University of Washington, Seattle, WA.

Grillo, G., et al. (1996) CLEANUP: a fast computer program for removing redundancies from nucleotide

sequence databases, Computer applications in the biosciences : CABIOS, 12, 1-8.

Hernandez, D., et al. (2008) De novo bacterial genome sequencing: Millions of very short reads assembled

on a desktop computer, Genome Research, 18, 802-809.

Hossain, M., Azimi, N. and Skiena, S. (2009) Crystallizing short-read assemblies around seeds, BMC

bioinformatics, 10, S16.

Huang, W., et al. (2012) ART: a next-generation sequencing read simulator, Bioinformatics, 28, 593-594.

Idury, R.M. and Waterman, M.S. (1995) A new algorithm for DNA sequence assembly, Journal of

computational biology, 2, 291-306.

Imelfort, M. and Edwards, D. (2009) De novo sequencing of plant genomes using second-generation

technologies, Briefings in Bioinformatics, 10, 609-618.

Jackson, B.G., et al. (2010) Parallel de novo assembly of large genomes from high-throughput short reads.

Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on. pp. 1-10.

Kamoun, C., et al. (2013) Improving prokaryotic transposable elements identification using a combination

of de novo and profile HMM methods, BMC genomics, 14, 700.

Kececioglu, J. and Myers, E. (1995) Combinatorial algorithms for DNA sequence assembly, Algorithmica,

13, 7-51.

Kichenaradja, P., et al. (2010) ISbrowser: an extension of ISfinder for visualizing insertion sequences in

prokaryotic genomes, Nucleic Acids Research, 38, D62-D68.

Kingsford, C., Schatz, M. and Pop, M. (2010) Assembly complexity of prokaryotic genomes using short

reads, BMC bioinformatics, 11, 21.

87

Kislyuk, A.O., et al. (2010) A computational genomics pipeline for prokaryotic sequencing projects,

Bioinformatics, 26, 1819-1826.

Koren, S., et al. (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads,

Nat Biotech, 30, 693-700.

Kumar, S. and Blaxter, M. (2010) Comparing de novo assemblers for 454 transcriptome data, BMC

Genomics, 11, 571.

Kurtz, S., et al. (2004) Versatile and open software for comparing large genomes, Genome biology, 5, 1-9.

Leclercq, S. and Cordaux, R. (2011) DO PHAGES EFFICIENTLY SHUTTLE TRANSPOSABLE

ELEMENTS AMONG PROKARYOTES?, Evolution, 65, 3327-3331.

Lee, M.-C. and Marx, C.J. (2012) Repeated, Selection-Driven Genome Reduction of Accessory Genes in

Experimental Populations, PLoS Genet, 8, e1002651.

Li, X. and Waterman, M.S. (2003) Estimating the Repeat Structure and Length of DNA Sequences Using

ℓ-Tuples, Genome Research, 13, 1916-1922.

Lin, Y., et al. (2011) Comparative studies of de novo assembly tools for next-generation sequencing

technologies, Bioinformatics, 27, 2031-2037.

Mahillon, J. and Chandler, M. (1998) Insertion sequences, Microbiology and molecular biology reviews :

MMBR, 62, 725-774.

Margulies, M., et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors, Nature,

437, 376-380.

Michael Schatz, D.S., David Kelley and Mihai Pop and (2010) Contrail: Assembly of Large Genomes

using Cloud Computing.

Miller, J.R., et al. (2008) Aggressive assembly of pyrosequencing reads with mates, Bioinformatics, 24,

2818-2824.

Miller, J.R., Koren, S. and Sutton, G. (2010) Assembly algorithms for next-generation sequencing data,

Genomics, 95, 315-327.

Moretti, C., et al. (2009) Highly scalable genome assembly on campus grids. Proceedings of the 2nd

Workshop on Many-Task Computing on Grids and Supercomputers. ACM, Portland, Oregon, pp. 1-10.

Myers, E.W. (2005) The fragment assembly string graph, Bioinformatics, 21, ii79-ii85.

Myers, E.W., et al. (2000) A Whole-Genome Assembly of Drosophila, Science, 287, 2196-2204.

Myers, G. (1999) A Dataset Generator for Whole Genome Shotgun Sequencing. Proceedings of the

Seventh International Conference on Intelligent Systems for Molecular Biology. AAAI Press, pp. 202-

210.

Nagarajan, N. and Pop, M. (2009) Parametric complexity of sequence assembly: theory and applications to

next generation sequencing, Journal of computational biology : a journal of computational molecular

cell biology, 16, 897-908.

Narzisi, G. and Mishra, B. (2011) Comparing De Novo Genome Assembly: The Long and Short of It, PLoS

One, 6, e19175.

Narzisi, G. and Mishra, B. (2011) Scoring-and-unfolding trimmed tree assembler: concepts, constructs and

comparisons, Bioinformatics, 27, 153-160.

OpenMP (2008) OpenMP Application Program Interface.

Pandey, V., Nutter, R.C. and Prediger, E. (2008) Applied Biosystems SOLiD™ System: Ligation-Based

Sequencing. In, Next Generation Genome Sequencing. Wiley-VCH Verlag GmbH & Co. KGaA, pp.

29-42.

Papanicolaou, A., et al. (2009) Next generation transcriptomes for next generation genomes using

est2assembly, BMC bioinformatics, 10, 447.

Pauchet, Y., et al. (2009) Pyrosequencing of the midgut transcriptome of the poplar leaf beetle Chrysomela

tremulae reveals new gene families in Coleoptera, Insect Biochemistry and Molecular Biology, 39,

403-413.

Pauchet, Y., et al. (2010) Pyrosequencing the Manduca sexta larval midgut transcriptome: messages for

digestion, detoxification and defence, Insect Molecular Biology, 19, 61-75.

Paulsen, I.T., et al. (2003) Role of Mobile DNA in the Evolution of Vancomycin-Resistant Enterococcus

faecalis, Science, 299, 2071-2074.

Pevzner, P.A. and Tang, H. (2001) Fragment assembly with double-barreled data, Bioinformatics, 17,

S225-S233.

88

Pevzner, P.A., Tang, H. and Tesler, G. (2004) De Novo Repeat Classification and Fragment Assembly,

Genome Research, 14, 1786-1796.

Pevzner, P.A., Tang, H. and Waterman, M.S. (2001) An Eulerian path approach to DNA fragment

assembly, Proceedings of the National Academy of Sciences, 98, 9748-9753.

Phillippy, A., Schatz, M. and Pop, M. (2008) Genome assembly forensics: finding the elusive mis-

assembly, Genome Biology, 9, 1-13.

Pop, M., Kosack, D.S. and Salzberg, S.L. (2004) Hierarchical Scaffolding With Bambus, Genome

Research, 14, 149-159.

Price, A., Jones, N. and Pevzner, P. (2005) De novo identification of repeat families in large genomes,

Bioinformatics (Oxford, England), 21 Suppl 1, i351-i358.

Price, A.L., Jones, N.C. and Pevzner, P.A. (2005) De novo identification of repeat families in large

genomes, Bioinformatics, 21, i351-i358.

Puiu, D. (2004) SUPERCONTIGS: a contig scaffolding tool. Computational Systems Bioinformatics

Conference, 2004. CSB 2004. Proceedings. 2004 IEEE. pp. 736-737.

Quail, M.A., et al. (2008) A large genome center's improvements to the Illumina sequencing system, Nat

Meth, 5, 1005-1010.

Quitzau, J.A.A. and Stoye, J. (2008) Detecting Repeat Families in Incompletely Sequenced Genomes.

Proceedings of the 8th international workshop on Algorithms in Bioinformatics. Springer-Verlag,

Karlsruhe, Germany, pp. 342-353.

Riadi, G., Medina-Moenne, C. and Holmes, D.S. (2012) TnpPred: A Web Service for the Robust Prediction

of Prokaryotic Transposases, Comparative and Functional Genomics, 2012, 5.

Richter, D.C., et al. (2008) MetaSim—A Sequencing Simulator for Genomics and Metagenomics, PLoS

One, 3, e3373.

Roberts, A., et al. (2008) Revised nomenclature for transposable genetic elements, Plasmid, 60, 167-173.

Robinson, D.G., Lee, M.-C. and Marx, C.J. (2012) OASIS: an automated program for global investigation

of bacterial and archaeal insertion sequences, Nucleic Acids Research.

Roeding, F., et al. (2009) A 454 sequencing approach for large scale phylogenomic analysis of the common

emperor scorpion (Pandinus imperator), Molecular Phylogenetics and Evolution, 53, 826-834.

Rothberg, J.M., et al. (2011) An integrated semiconductor device enabling non-optical genome sequencing,

Nature, 475, 348-352.

Salzberg, S.L., et al. (2011) GAGE: A critical evaluation of genome assemblies and assembly algorithms,

Genome Research.

Sanger, F., Nicklen, S. and Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors,

Proceedings of the National Academy of Sciences, 74, 5463-5467.

Sarje, A. and Aluru, S. (2008) Parallel biological sequence alignments on the Cell Broadband Engine.

Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on. pp. 1-11.

Schaack, S., Gilbert, C. and Feschotte, C. (2010) Promiscuous DNA: horizontal transfer of transposable

elements and why it matters for eukaryotic evolution, Trends in Ecology & Evolution, 25, 537-546.

Schatz, M.C. (2009) CloudBurst: highly sensitive read mapping with MapReduce, Bioinformatics, 25,

1363-1369.

Schneider, D., et al. (2000) Long-Term Experimental Evolution in Escherichia coli. IX. Characterization of

Insertion Sequence-Mediated Mutations and Rearrangements, Genetics, 156, 477-488.

Sebaihia, M., et al. (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly

mobile, mosaic genome, Nat Genet, 38, 779-786.

Seemann, T. (2014) Prokka: rapid prokaryotic genome annotation, Bioinformatics.

Simpson, J. and Durbin, R. (2012) Efficient de novo assembly of large genomes using compressed data

structures, Genome Research, 22, 549-556.

Simpson, J.T. and Durbin, R. (2010) Efficient construction of an assembly string graph using the FM-

index, Bioinformatics, 26, i367-i373.

Simpson, J.T., et al. (2009) ABySS: A parallel assembler for short read sequence data, Genome Research,

19, 1117-1123.

Smith, L.M., et al. (1986) Fluorescence detection in automated DNA sequence analysis, Nature, 321, 674-

679.

89

Smith, T.F. and Waterman, M.S. (1981) Identification of common molecular subsequences, Journal of

molecular biology, 147, 195-197.

Steve Rozen, H.J.S. (1998) Primer3. Code available at http://www-

genome.wi.mit.edu/genome_software/other/primer3.html. .

Tarhio, J. and Ukkonen, E. (1988) A greedy approximation algorithm for constructing shortest common

superstrings, Theor. Comput. Sci., 57, 131-145.

Touchon, M. and Rocha, E.P.C. (2007) Causes of Insertion Sequences Abundance in Prokaryotic Genomes,

Molecular Biology and Evolution, 24, 969-981.

Treangen, T.J., et al. (2002) Next Generation Sequence Assembly with AMOS. In, Current Protocols in

Bioinformatics. John Wiley & Sons, Inc.

Varani, A., et al. (2011) ISsaga is an ensemble of web-based methods for high throughput identification

and semi-automatic annotation of insertion sequences in prokaryotic genomes, Genome biology, 12,

R30.

Wagner, A. (2006) Periodic extinctions of transposable elements in bacterial lineages: evidence from

intragenomic variation in multiple genomes, Molecular Biology and Evolution, 23, 723-733.

Wagner, A. and de la Chaux, N. (2008) Distant horizontal gene transfer is rare for multiple families of

prokaryotic insertion sequences, Mol Genet Genomics, 280, 397-408.

Wagner, A., Lewis, C. and Bichsel, M. (2007) A survey of bacterial insertion sequences using IScan,

Nucleic Acids Research, 35, 5284-5293.

Wang, L. and Jiang, T. (1994) On the complexity of multiple sequence alignment, Journal of

computational biology : a journal of computational molecular cell biology, 1, 337-348.

Whiteford, N., et al. (2005) An analysis of the feasibility of short read sequencing, Nucleic Acids Research,

33, e171.

Wu, S. and Manber, U. (1992) Fast text searching: allowing errors, Commun. ACM, 35, 83-91.

Yang, X., Chockalingam, S.P. and Aluru, S. (2012) A survey of error-correction methods for next-

generation sequencing, Briefings in Bioinformatics.

Ye, J., et al. (2012) Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction,

BMC bioinformatics, 13, 134.

Zagrobelny, M., et al. (2009) 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae

with focus on genes involved in biosynthesis of cyanogenic glucosides, BMC Genomics, 10, 574.

Zerbino, D.R. and Birney, E. (2008) Velvet: Algorithms for de novo short read assembly using de Bruijn

graphs, Genome Research, 18, 821-829.

Zhang, W., et al. (2011) A Practical Comparison of <italic>De Novo</italic> Genome Assembly Software

Tools for Next-Generation Sequencing Technologies, PLoS One, 6, e17915.

Zhong, S., et al. (2004) Evolutionary genomics of ecological specialization, Proceedings of the National

Academy of Sciences of the United States of America, 101, 11719-11724.

Zhou, F., Olman, V. and Xu, Y. (2008) Insertion Sequences show diverse recent activities in Cyanobacteria

and Archaea, BMC genomics, 9.

http://www-genome.wi.mit.edu/genome_software/other/primer3.html
http://www-genome.wi.mit.edu/genome_software/other/primer3.html

90

APPENDIX

APPENDIX A

Table 19. Parallel assembly quality experiment

Organism: E. coli HS (Length: 4643538)

Readsa Versionb
N50

Scorec

Longest Contig

Lengthd

Number of Contigse
Coveragef

Base Calling

Errorsg

Reads

Assembledh < 10Kbp 10Kbp-100Kbp >100Kbp

100,000 16 threads 9,771 32,894 1,229 35 0 99.7 36,258 96,754

32 threads 9,812 32,894 1,435 37 0 99.7 36,258 96,823

64 threads 9,812 32,894 1,331 37 0 99.7 34,875 97,618

MIRAi 9,754 29,875 1,169 35 0 99.45 32,784 95,782

500,000

16 threads 10,594 35,059 1,901 41 0 99.7 33,487 407,571

32 threads 11,238 35,059 2,003 42 0 99.7 33,247 407,426

64 threads 10,944 35,059 2,090 46 0 99.7 32,617 408,396

MIRAi 11,687 36,758 1,630 44 0 99.6 30,784 410,258

1,000,000

16 threads 68,358 207,793 198 21 12 99.6 30,643 967,871

32 threads 68,332 207,793 203 23 12 99.6 30,482 968,473

64 threads 68,414 207,793 203 23 12 99.6 31,471 968,537

MIRAi 67,738 210,875 182 20 12 99.6 31,756 924,567

Organism:Mycobacterium vanbaalenii (Length: 6491865)

100,000 16 threads 13,601 57,002 519 294 0 93.2 31,478 80,697

32 threads 13,573 57,002 519 294 0 93.1 32,247 81,687

64 threads 13,694 57,002 519 294 0 93.2 31,766 81,572

MIRAi 13,892 57,470 541 192 0 92.7 28,745 83,687

500,000

16 threads 13,694 103,880 1,234 68 1 95.1 29,683 438,745

32 threads 13,614 103,880 1,231 71 1 95.1 29,676 441,359

64 threads 13,632 103,880 1,228 71 1 95.15 29,875 442,978

MIRAi 17,486 125,784 1,120 26 2 96.34 30,875 468,751

1,000,000

16 threads 26,176 178,654 4,708 72 7 95.84 34,894 109,0687

32 threads 26,227 178,654 4,796 70 9 95.84 35,472 109,9367

64 threads 26,229 178,654 4,777 75 9 95.84 35,217 109,8263

MIRAi 26,381 163,463 3,137 82 11 97.62 36,680 106,2354

Organism:Mycobacterium Marinum (Original Length: 6636827)

100,000 16 threads 1,483 7,932 2,808 0 0 90.4 12,802 88,572

32 threads 1,533 7,932 2,812 0 0 90.4 13,581 88,656

64 threads 1,509 7,932 2,806 0 0 90.4 13,294 88,517

MIRAi 1,478 7,874 3,204 0 0 90.6 12,879 91,478

500,000

16 threads 14,642 45,350 690 35 0 89.65 1,102 464,924

32 threads 14,755 45,350 698 38 0 89.4 1,567 451,483

64 threads 14,153 45,350 716 38 0 87.6 2,638 426,874

MIRAi 13,478 47,896 600 42 0 89.7 7,845 447,851

1,000,000

16 threads 22,587 87,255 568 238 0 92.81 12,301 923,248

32 threads 22,607 87,255 565 232 0 92.8 11,854 923,248

64 threads 22,623 87,255 569 237 0 92.8 11,933 923,248

MIRAi 18,996 62,028 695 221 0 92.6 13,748 872,568
aThe number of simulated reads with mean length of 500bp and standard deviation of 100bp.
bThe version of the assembler i.e. either a parallel implementation with 16/32/64 parallel threads for path finding or the serial

MIRA version 3.2.1.
cThe N50-Score of all the contigs.
dThe length (in bp) of the longest contig.
eThe number of contigs distributed in three intervals of (0,10,000], (10,000, 100,000], (100,000, ∞).
fThe percentage of the original genome covered by the contigs.
gThe number (in bp) the mismatches in the assembly.
hThe number of reads in the assembly.
iThe original version of MIRA 3.2.1 (Chevreux, et al., 1999).

91

VITA

ABHISHEK BISWAS
Department of Computer Science

Old Dominion University

Engineering & Computational Sciences Bldg,

4700 Elkhorn Ave, Suite 3300,

Norfolk, VA 23529-0162

Biographical Sketch
Abhishek Biswas received his B.E in Computer Science from Visvesvaraya Technological University,

Belgaum, India in 2007. After graduation, he worked for Tata Consultancy Services Ltd. as a .NET and

SQL Server developer. In January 2009 he joined as a research associate for a SAP Research Lab. funded

project on Healthcare Data Mining at People’s Education Society Institute of Technology (PESIT),

Bangalore, India, where he worked for 6 months. In Fall 2009, Abhishek joined the Computer Science

department at Old Dominion University as a MS student and later changed his level to pursue a Ph.D.

degree in Fall 2010. He is currently working with Dr. Desh Ranjan and Dr. Mohammad Zubair as a

research assistant, developing models and parallel solutions for genomic data analysis. He also works and

regularly publishes with Dr. Jing He on modelling protein structures using medium resolution Cryo-EM

images. He is currently a Ph.D. student at Old Dominion University and is expected to graduate on 12th

December, 2015. His current GPA is 3.96.

Selected Publications

 A. Biswas, D. Gauthier, D. Ranjan, and M. Zubair, “ISQuest: Finding Insertion Sequences in

Prokaryote Sequence Fragment Data”, Bioinformatics, June 2015

 A. Biswas, D. Ranjan, M. Zubair and J. He,” A Novel Computational Method for Deriving Protein

Secondary Structure Topologies using Cryo-EM Density Maps and Multiple Secondary Structure

Predictions”, accepted at 11th International Symposium on Bioinformatics Research and Applications

(ISBRA), Norfolk, Virginia, June 7-10, 2015

 A. Biswas, D. Ranjan, M. Zubair, J. He, "A dynamic programming algorithm for finding the optimal

placement of a secondary structure topology in cryo-EM data", Journal of Computational Biology,, (9):

837-43, 2015.

 A. Biswas, D. Gauthier, D. Ranjan, and M. Zubair, "Big Data Challenges for Estimating Genome

Assembler Quality", presented at the ACM International Workshop on Big Data in Life Sciences,

Newport Beach, CA, USA, 2014.

 A. Biswas, J. Dailey, J. Ord, J. Berlin, J. Cooper, T. Holmes D. Gauthier, “Unverified Join Viewer”,

American Society for Microbiology, Virginia Branch Annual Meeting, Nov. 2015

 A. Biswas, D. Gauthier, D. Ranjan and M. Zubair, “Correlative Algorithm for Repeat Placement”

American Society for Microbiology, Virginia Branch Annual Meeting, Nov. 2013

 A. Biswas, D. Ranjan and M. Zubair, “Genome Assembly on a Multicore System”, 11th IEEE

International Symposium on Parallel and Distributed Processing with Applications, ISPA 2013: 1233-

1240

 A. Biswas, D. Gauthier, D. Ranjan, and M. Zubair, “Shotgun Assembler Profiling and Benchmark”

The World Congress on Engineering and Technology 2011, Beijing, China

 Biswas, A., Si, D., Al Nasr, K., Ranjan, D., Zubair, M., He, J. "Improved efficiency in cryo-EM

secondary structure topology determination from inaccurate data" J. Bioinform Comput Biol, 10(3):

1242006, 2012.

 Biswas, A., Si, D., Al Nasr, K., Ranjan, D., Zubair, M., He, J. "A constraint dynamic graph approach

to identify the secondary structure topology from cryoEM density data in presence of errors" The

Proceeding of the IEEE International Conference of Bioinformatics and Biomedicine, p160-3, 2011,

Nov 12-15, 2011.

 A. Biswas, B. V. Sagar, J. Srinivasan,”Managing and Correlating Historical Events Using an Event

Timeline Datatype” DASFAA 2008: 604-612

http://dblp.uni-trier.de/pers/hd/s/Sagar:B=_V=
http://dblp.uni-trier.de/pers/hd/s/Srinivasan:Jagannathan
http://dblp.uni-trier.de/db/conf/dasfaa/dasfaa2008.html#BiswasSS08

