
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Winter 2007

FreeLib: A Self-Sustainable Peer-to-Peer Digital
Library Framework for Evolving Communities
Ashraf A. Amrou
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds
Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Amrou, Ashraf A.. "FreeLib: A Self-Sustainable Peer-to-Peer Digital Library Framework for Evolving Communities" (2007). Doctor of
Philosophy (PhD), dissertation, Computer Science, Old Dominion University, DOI: 10.25777/twrn-ya69
https://digitalcommons.odu.edu/computerscience_etds/96

https://digitalcommons.odu.edu/?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/96?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

FREELIB: A SELF-SUSTAINABLE PEER-TO-PEER DIGITAL

LIBRARY FRAMEWORK FOR EVOLVING COMMUNITIES

by

Ashraf A. Amrou
M.S. February 2001, Alexandria University

B.S. June 1995, Alexandria University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment o f the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
December 2007

Approved by:

Kurt Maly (Co-Director)

Mohammad Zubair (Co-Director)

rfussein Abdel-Wahab (Member)

Ravi Mjjldcamala (Member)

alame (Member

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

FREELIB: A SELF-SUSTAINABLE PEER-TO-PEER DIGITAL LIBRARY
FRAMEWORK FOR EVOLVING COMMUNITIES

Ashraf Amrou
Old Dominion University, 2007

Co-Directors o f Advisory Committee: Dr. Kurt Maly
Dr. Mohammad Zubair

The need for efficient solutions to the problem of disseminating and sharing o f

data is growing. Digital libraries provide an efficient solution for disseminating and

sharing large volumes o f data to diverse sets o f users. They enable the use o f structured

and well defined metadata to provide quality search services. Most o f the digital libraries

built so far follow a centralized model. The centralized model is an efficient model;

however, it has some inherent problems. It is not suitable when content contribution is

highly distributed over a very large number o f participants. It also requires an

organizational support to provide resources (hardware, software, and network bandwidth)

and to manage processes for collecting, ingesting, curating, and maintaining the content.

In this research, we develop an alternative digital library framework based on

peer-to-peer. The framework utilizes resources contributed by participating nodes to

achieve self-sustainability. A second key contribution o f this research is a significant

enhancement o f search performance by utilizing the novel concept o f community

evolution. As demonstrated in this thesis, bringing users sharing similar interest together

in a community significantly enhances the search performance. Evolving users into

communities is based on a simple analysis o f user access patterns in a completely

distributed manner. This community evolution process is completely transparent to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

user. In our framework, community membership o f each node is continuously evolving.

This allows users to move between communities as their interest shifts between topics,

thus enhancing search performance for users all the time even when their interest

changes. It also gives our framework great flexibility as it allows communities to dissolve

and new communities to form and evolve over time to reflect the latest user interests. In

addition to self-sustainability and performance enhancements, our framework has the

potential o f building extremely large collections although every node is only maintaining

a small collection o f digital objects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

©Copyright, 2007, by Ashraf Amrou, All Rights Reserved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V

ACKNOW LEDGM ENT

My sincere thanks and appreciation go to the following people:

■ My family; my father, my mother, and my wife for their patience and endless support.

■ My advisers Dr. Kurt Maly and Dr. Mohammad Zubair for their guidance on my

research and editing o f this manuscript.

■ Members o f my graduate committee Dr Hussein Abdel-Wahab, Dr. Ravi Mukkamala,

and Dr. Mohamed Younis for their valuable feedback and comments that helped me

enhance this work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VI

TABLE OF CONTENT

Page

LIST OF TABLES.. ix

LIST OF FIGURES.. xi

Chapter

I. INTRODUCTION..1
MOTIVATION... 1
PROBLEM STATEMENT... 2
APPROACH... 3
CONTRIBUTIONS..6
ORGANIZATION OF THE DISSERTATION...7

II. BACKGROUND AND RELATED WORK...9
DIGITAL LIBRARY... 9

CENTRALIZED MODEL....................................... 10
DIGITAL LIBRARY FEDERATION..........................11

PEER-TO-PEER SYSTEMS.. 15
PEER-TO-PEER M ODELS... 16
APPLICATIONS OF PEER-TO-PEER MODEL............................18
PEER-TO-PEER SEARCH ISSUES...21

SOCIAL NETWORKS AND THE SMALL-WORLD PROPERTY 22
PERFORMANCE M ETRICS..23

III. FREELIB ARCHITECTURE.. 25
SMALL-WORLD SUPPORT NETW ORK... 27

SHORT CONTACTS..28
LONG CONTACTS.. 28
SUMMARY OF ALGORITHMS FOR BUILDING SUPPORT
NETW ORK.. 30

ACCESS NETWORK...32
CHARACTERIZING USER’S INTEREST..................................... 33
THE CONCEPT OF LOCALITY... 34
MEASURING MUTUAL ACCESSES BETWEEN N ODES 36
PEER RANKING BASED ON MUTUAL ACCESS.....................38
DISTRIBUTION OF THE ACCESS MATRIX OVER NODES . 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BUILDING THE OVERLAY TOPOLOGY ACCORDING TO
THE MUTUAL INTEREST... 47
COMMUNITY AND FRIENDS..49
HANDLING CHANGING USER INTEREST................................51
HANDLING TEMPORARY CHANGE IN USER INTEREST... 59
DUAL AND MULTIPLE INTEREST..60

SUMMARY.. 60

IV. NODE IDENTITY AND DISCOVERY PROTOCOLS...................................... 62
NODE IDENTITY..62
DISCOVERY... 63

DISCOVERY BY FLOODING..64
DHT DISCOVERY... 64
LINK DISCOVERY.. 72
COMPARISON OF DISCOVERY ALGORITHMS......................74

SUMMARY.. 76

V. IMPLEMENTATION...77
IMPLEMENTATION M ODULES... 77

USER MODULES... 78
MESSAGING MODULES... 83
NETWORK MODULES...85
LOG, HISTORY, AND THE REGISTRY....................................... 85
THE COLLECTION M ANAGER.. 86

FREELIB CLIENT PROCESS FLOW ...87
FREELIB SERVICES... 91

PUBLISH...91
SEARCH..91
ACCESS..92

SUMMARY.. 93

VI. FREELIB PERFORMANCE EVALUATION.. 94
EVALUATION METHODOLOGY... 95

MODELING USERS AND DOCUMENTS.................................95
PERFORMANCE COMPARISON..96
MEASUREMENTS..97
EXPERIMENTS..101

TESTBED..101
TESTBED RESULTS...102
NEED FOR BUILDING A SIMULATOR.................................. 103

SIMULATOR... 104
SIMULATOR DESIGN... 105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VERIFICATION AND VALIDATION OF OUR SIMULATION
M ODEL..107
EXPERIMENTS AND RESULTS... 109

SUMMARY.. 121

VII. CONCLUSIONS AND FUTURE WORK... 123

BIBLIOGRAPHY...126

VITA.. 134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table Page

3.1 List o f nodes with locations x between 0.5 and 0.7 inclusive...................................... 29

3.2 Various choices o f the list o f short contacts for node N 4 based on ring locations in

Table 3 .1 ...29

3.3 Different ways to characterize user’s interest... 34

3.4 Concept o f locality and its analogy in Freelib.. 36

3.5 Access Matrix showing accesses for nodes Nj to N 5 ...37

3.6 Ranks calculated based on the Access Matrix in Table 3.5 using a = 0 .8.................. 40

3.7 Ranked list at node N 4 calculated based on the Access Matrix in Table 3.5 using a =

0.8 ... 40

3.8 Example values o f a and Athreshoid and the corresponding frequency of the peer

ranking process..42

3.9 Snapshot o f an access matrix showing nodes N } to N 9 ... 44

3.10 Ranked list at node N2 showing ranks calculated based on the access matrix in Table

3.9 and using a = 0.8 ... 45

4.1 Nodes in a Symphony ring and the corresponding nodes responsible for storing their

discovery entries..66

4.2 Nodes in a Symphony ring and the corresponding nodes responsible for storing their

discovery entries, each entry is stored at two replicas...71

4.3 Comparison of the various discovery algorithms..75

5.1 The different types of search queries in Freelib.. 93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Example results for one query as they arrive from different peers; each row shows

results from one node...100

6.2 Response time calculated as distance on the overlay topology................................. 100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XI

LIST OF FIGURES

Figure Page

2.1 Digital library distribution spectrum..15

2.2 Precision (P) and recall (R): graphical representation and calculations........................24

3.1 Freelib network architecture showing support network and access networks..............27

3.2 Coordinate storage scheme for storing outgoing accesses at node N 7 using the access

counts from Table 3 .9 ... 46

3.3 Coordinate storage scheme for storing incoming accesses at node N 7 using the access

counts from Table 3 .9 ... 46

3.4 Structure o f Freelib access log entry..52

3.5 Weight function equivalent to the aging technique...55

3.6 Graphs for weight functions in Equation 3.10... 56

3.7 A typical access pattern consists o f sessions separated by inactive intervals.............. 57

3.8 a) An access pattern; b) The same pattern after eliminating inactive intervals............58

5.1 Block diagram of Freelib client... 78

5.2 Freelib main user interface..79

5.3 Publishing tool: It enables the user to provide metadata and choose a document for

publishing..81

5.4 Freelib Search Interface showing a proximity search query entered. Items returned as

results for this query must have the two words Freelib and performance within 10

words from each o ther.. 81

5.5 Configuration tool: It enables the user to provide configuration information and edit

user profile..82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 Class diagram showing the major classes in the Messenger module and the Search

module implementing the MessageHandler interface... 84

6.1 Testbed experiment: Recall as a function o f T T L ...103

6.2 Simulator class diagram showing the simulation engine classes and the Freelib

Messenger m odule...106

6.3 Recall vs. TTL for network sizes 500, 4000 nodes; community sizes 100, 500 nodes;

and hub nodes 0% and 5 % ...I l l

6.4 Normalized recall vs. TTL for network sizes 500, 4000 nodes; community sizes 100,

500 nodes; and hub nodes 0% and 5 % ... 113

6.5 Recall and normalized recall vs. network size... 114

6.6 Recall and Normalized recall vs. Community size..116

6.7 Bandwidth vs. recall for network sizes 500, 4000 nodes; community sizes 100, 500

nodes; and hub nodes 0% and 5 %...118

6.8 Response time vs. recall for network sizes 500, 4000 nodes; community sizes 100,

500 nodes; and hub nodes 0% and 5 % ... 120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

CHAPTER I

INTRODUCTION

1.1 Motivation

With the current growth o f Internet and advances in content creation tools, a large

amount o f digital content is created every day. This content belongs to organizations as

well as individuals from diverse communities. Examples o f such content include

technical reports, research papers, and datasets, generated by researchers and faculty

members in universities and research centers around the world. Additional examples

include lecture notes, presentations, and assessment material created by instructors in

schools and universities. Sharing and utilization o f such heterogeneous content represents

a great challenge as it is highly distributed over machines, users, topics, and geographic

locations. In addition its distributed nature, much o f this content lacks standard and

unified ways for organizing and accessing it. Furthermore, it lacks the appropriate

metadata management and utilization. Utilization o f metadata can facilitate search and

discovery o f content.

Many people utilize the World Wide Web to enable sharing. In this approach,

content is uploaded to websites and made available for indexing by web search engines.

Web search engines use crawlers to traverse the web following links from page to page.

They index the content and may cache some o f it as well. Once the content is indexed, it

starts to appear as search results when people search using relevant keywords that exist in

the content. This approach is straightforward. However, this approach suffers from poor

precision. Results for a query might reach millions of items while the user is looking for

The model journal for this dissertation is: IEEE Transactions on Software Engineering

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

few relevant items. In addition, with the current web search technology, it might take

days or weeks until newly added content gets indexed by search engines.

Another approach to sharing and dissemination is to build and maintain large

digital collections. In this approach, each digital collection or digital library is typically

dedicated to a certain topic or a certain user community. Example digital libraries o f this

type include ACM digital Library [1] and the IEEE computer society [25]. This approach

suffers from sustainability-related issues. Some the organizations charge subscription fees

to provide the necessary resources to maintain such collections. This imposes a barrier

that limits participation from many individuals. And consequently, content in these

libraries is very restricted. Some other organizations maintain digital libraries on pro

bona basis, and as the community interest withers, these libraries cease to exist.

We need a digital library framework that is decentralized, self sustainable, and

focus on individual publishers. Such framework must enable individual users to

seamlessly publish and search/discover content. It also must support distributed users as

well as distributed content. In addition, it must be self-sustainable in terms of securing the

necessary resources required to operate and maintain the collection. Furthermore, it must

promote effective use o f metadata in publishing as well as in search and provide the

necessary tools to enable that. The use o f metadata in search can help the user specify

more accurate queries that target the relevant documents. We shall discuss metadata-

based search in more details later in this chapter.

1.2 Problem Statement

Individual users face many challenges when publishing, disseminating, and searching

digital content. These challenges include:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

■ Limited resources: Individual users do not have the necessary resources to

build and maintain huge collections. These necessary resources include

storage space, network bandwidth, and the software programs to index,

maintain, and provide access to the content. We refer to this as the

Sustainability problem.

■ Limited ability to effectively search and locate relevant content: This problem

is in part due to the tremendous amounts o f content available and the lack o f

good metadata that can enable effective search and discovery o f content.

Often, users are presented with huge result sets that contain tens o f thousands

o f items while they are looking for few relevant documents.

■ Distributed users and content: A distributed system that reflects distributed

users and content usually faces performance issues when compared to a

centralized system. Distributed protocols are usually more complex and have

communication overhead.

■ Adapting to shifting interest: User interest usually shifts between topics over

time, which increases the challenges we face when building efficient solutions

for dissemination and discovery for digital content.

We need a framework that addresses the above challenges and provides enhanced

user experience. In the following section, we discuss our approach to address these

issues.

1.3 Approach

In this dissertation, we present a peer-to-peer-based digital library framework that

addresses the above issues.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

First, to address the distributed nature o f users and content, the proposed

framework is based on a pure peer-to-peer system. In this framework, each participant

uses a software client to maintain a small collection locally on the user’s machine. In the

general scenario, the local collection on a user’s machine contains the publications o f the

local user as well as replicas o f content from other users. When a user submits a search

query, it is forwarded by the client to other users in a peer-to-peer fashion and results are

collected and presented to the user. This framework suits the distributed nature o f the

targeted body o f individual users. As we can see from this description o f the framework,

the storage and bandwidth resources are contributed by the individual participants. This

helps alleviates the need for dedicated resources and ensures the self-sustainability o f the

proposed digital library framework.

Second, we utilize the key notion o f targeting relevant peers with search queries

to enhance system performance. In order to target the relevant peers, the proposed

framework connects the users in the peer-to-peer network such that users having similar

interest are close to each other on the network topology. This approach results in higher

recall, lower bandwidth usage, and better response time for search queries as relevant

results are typically within few hops away from the user submitting the query.

Connecting users sharing similar interest together is an ever-evolving process that we call

community evolution. In this process, the client on every node monitors and records

accesses to and from its node. The client periodically performs ranking o f nodes based on

the access information and identifies the peers with the highest ranks. The ranking

formula is based on the frequency of mutual access between the node and each peer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

After ranking is performed by a node, the node establishes friend1 links to a few nodes

from the top o f its ranked list. The union o f the friend links over all the nodes gives the

access network topology. The ranking process is performed in a distributed fashion. All

the information needed for ranking is stored locally by each node. This way, minimal

communication between nodes is needed after the ranking is finished to update the

topology. By constructing the peer-to-peer topology according the mutual interest

between nodes, search queries reach relevant nodes in few hops and results are returned

faster than other ad hoc topologies. Instead o f having to use a large time-to-live (TTL)

value for search messages to reach all nodes the whole network, which might not be

feasible for large network; with our community evolution technique, a small TTL is

sufficient as relevant peers are within few hops on the access network overlay topology.

And third, the proposed architecture utilizes Dublin Core metadata [16] in both

publishing and search. The choice o f DC metadata is for its simplicity and to enable

interoperability as DC is a metadata standard utilized by an increasing number of digital

libraries. Our peer-to-peer client, which we call the Freelib client, provides a GUI

interface for the users to publish their metadata. Metadata can be typed in when the user

publishes new content to her local collection. However, our proposed architecture is

extensible. It allows addition o f tools for automatic extraction and validation o f metadata

from full-text documents to alleviate the need for the user to manually enter the metadata.

We also utilize metadata in search queries. The Freelib client provides a GUI interface

for the users to specify search queries based on the metadata fields. The metadata-based

1 We refer to the topology links that we build based on access patterns as “Friend links” and to their target
nodes as “Friends”. We use the terms “access network” and “access topology” to refer to the overall
topology that consists o f the links we build based on access patterns as well the nodes connected by these
links.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

search gives the user more power in terms o f the ability to create more accurate queries

that target the relevant items and avoids irrelevant ones. To further illustrate this,

consider the following example. Consider a collection that contains 100 documents

whose author last name is ‘Cash’. Also assume that 1000 documents in this collection

contain the word ‘Cash’ somewhere in the document. If we use metadata-based search

based on the author field, the maximum number o f documents we can get is 100 all o f

which are relevant, which represent recall o f 100%. If the system returned 75 documents,

then recall is 75%. All the returned documents are relevant and hence the precision is

100%. On the other hand, for a system that uses general keyword search, the maximum

number o f documents that could be returned is 1000, which represent 100% recall and

only 10% precision. If the system returned 700 documents containing 60 documents that

are relevant (author last name is ‘Cash’), then recall is 60% and precision is 8.57% (60

divided by 700).

Use o f metadata contributes to a significant reduction in the time spent on

activities related to organizing and searching/locating digital objects. It reduces the time

spent on these activities by 18.1% to 43.5% [14]. In addition to significantly reducing the

cost for maintaining a digital collection, these savings results in efficient use o f resources

such as network bandwidth and processing power. Besides the above advantages, use of

standard metadata promotes interoperability with other systems and facilitates future

development and extensions.

1.4 Contributions

The main contributions o f this research are development o f a self-sustainable

digital library framework suitable for individual users and significant enhancement o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

search performance. We utilized a peer-to-peer network as the basis for building the

digital library. The use o f the peer-to-peer model provides the desirable features o f self

sustainability and supporting distributed users and content. However, it generates many

challenges especially in terms o f performance. In summary, we:

• Researched and developed an alternative framework that produces a self-

sustainable digital library.

• Devised mechanisms to support evolution o f communities with diverse and

dynamically changing interest areas, which enhanced search performance in

terms o f response time, recall, and precision.

• Implemented the proposed framework to show the feasibility o f our approach.

• Built a testbed and developed a simulator, which enabled us to evaluate the

proposed framework.

1.5 Organization of the Dissertation

The rest o f this dissertation is organized as follows:

Chapter II - Background and Related Work: In chapter II, we discuss the

background and overview related work in the areas o f digital library and peer-to-peer

systems.

Chapter III - Network Architecture: In chapter III, we present the network

architecture and the protocols for building and evolving the peer-to-peer topology. These

protocols include the algorithms for performing the ranking o f peers according to mutual

access.

Chapter IV - Node Identity and Discovery: In chapter IV, we discuss how we

generate system-wide unique node identities and present our discovery protocols.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter V - Client Design and Implementation: In chapter V, we present the

peer-to-peer client design and describe our implementation.

Chapter VI - Performance Evaluation: In chapter VI, we describe a testbed

that we have constructed and used for testing and preliminary evaluation. We discuss the

challenges that we have faced during building the testbed. Then, we present our event-

based simulator design and implementation. Finally, we present the performance

evaluation o f the proposed framework along with results from our simulation

experiments.

Chapter VII - Conclusion and Future Work: In chapter VII, we present our

conclusions and discuss possible ways for enhancing and extending the work presented in

this dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

CHAPTER II

BACKGROUND AND RELATED WORK

Our work builds on research work from various fields including digital library, peer-to-

peer, social science, and information retrieval. In this chapter, we discuss the relevant

background and related work in those areas.

2.1 Digital Library

Digital library is an active research field dealing with issues regarding building digital

collections o f items (also called digital objects) and providing services to the various

users o f these collections including publishers, readers/searchers, librarians/content

managers, and administrators. An item in a digital collection typically contains content

and metadata describing various attributes o f the content. Content could be documents,

images, or any type o f data. Every item in a collection is associated with one or more

identifiers. Unlike other information systems, a digital library maintains collections that

are rich in metadata, which is essential for enabling better search and retrieval services.

Metadata describe properties o f the actual data such as its structure, encoding, author,

date o f publishing, and title. The use o f metadata enables better services, promotes

interoperability, facilitates maintenance, and allows future developments and extensions.

Digital libraries are usually compared to other systems such as traditional

libraries, containing physical books and other publications, and the World Wide Web. In

contrast to the traditional libraries; in a digital library, content is in digital format. Users

o f digital libraries do not have to be in a specific place to access the various services. All

what a user needs to access the service are a computer and an Internet connection.

Another difference between digital libraries and traditional libraries is the additional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

services that are suitable for the digital format, e.g., automatic search inside the full-text

which is not feasible to implement in a traditional library.

Some of the differences between the Web and digital libraries are as follows.

First, digital libraries maintain well structured and well organized content. Second, digital

libraries provide quality content that is, the content is usually curated. Third, the metadata

a digital library maintains for each object enable easy discovery o f information and

resources. Fourth, they provide uniform interface to the services while web sites are not

uniform. For example, web sites follow different page layouts, styles, and fonts. Digital

libraries also provide better search service. In addition, as we mentioned earlier, current

web search technology covers a small part o f the Web’s content and it might take

considerable amount o f time until newly added content is indexed by web search engines.

We have witnessed a dramatic increase in the number o f digital libraries built

recently. The most common digital library model adopted by these digital libraries is the

centralized model. There are also efforts to research and adopt other models such as

digital library federation, distributed, and peer-to-peer models. In the following

subsections, we discuss these models in greater details.

2.1.1 Centralized Model

In this model the client is usually a web browser through which the user interacts with the

digital library. User requests are submitted to the server-side and responses are sent back

to the user. In this model, the collections are stored and indexed using server machines

running software components such as web servers, database servers, and search engines.

The server side usually consists of back-end processing engines and front-end

components providing the various services to its users.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

There are many professional as well as experimental digital libraries that use the

centralized model. Examples o f centralized digital libraries that maintain collections o f

publications include the ACM digital library [1] and the IEEE computer society digital

library [25], The Alexandria Digital Library (ADL) [2, 19] is a digital library containing

collections o f geographically referenced information. In a typical search request, the user

specifies a region on the map and submits his search. The results returned are those items

associated with locations within the region the user specified. FEDORA (stands for

Flexible Extensible Digital Object and Repository Architecture) [17, 64] is a general

purpose digital object repository system that can be used by variety o f communities and

for various purposes; e.g., institutional repositories, scholarly publishing, and digital

preservation all might use FEDORA. Although the basic software components o f these

digital libraries might be distributed over machines in an intranet or the Internet, e.g.,

ADL [2, 19], we still consider this a centralized model. Communication between these

digital libraries and their users still follow the client-server model, it uses client-server

protocols such as HTTP and there is a central administrative body that decides on

policies, processes, and enforcements.

2.1.2 Digital Library Federation

Digital library federation efforts aim at providing digital services spanning multiple

autonomous digital library collections. The Open Archives Initiative (OAI) [50], preceded

by the Santa Fe Convention [73], was the first organization that defined ‘federation’ in

the context o f digital libraries to promote interoperability. In OAI, two roles are defined,

the service provider (SP) and the data provider (DP). The service provider is a fully

functional digital library that offers services to the users. The data provider is an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

autonomous digital library maintaining its local collections and its own user interface to

serve its local users. In the general scenario, one or more SPs offer services that span

many DPs. OAI uses the ‘harvesting’ o f metadata method to establish a federation,

however another model to realize a federation exists: the ‘distributed’ model. We shall

next describe these two methods.

2.1.2.1 Digital Library Federation by Harvesting

In this approach, SPs harvest metadata from the individual DPs, using the harvesting

protocol OAI-PMH (Open Archives Initiative-Protocol for Metadata Harvesting) [35,

50], and store the metadata on the federation server. SPs might also cache full-text. The

service is provided based on the harvested metadata which usually contains links to both

the original items as well as cached versions if available. The harvesting protocol is a

request response client-server protocol with DPs implementing the server-side and

service providers implementing the client-side. Harvesting is typically done periodically

to achieve some degree o f consistency with the original collections.

Example federated digital libraries include Arc [3, 39], and Kepler [33, 42], In

these digital libraries, the number o f data providers is typically in the range o f tens to

hundreds or even few thousands. Both Arc and Kepler use the OAI-PMH protocol.

Another example is the Technical Report Interchange project (TRI) [67]. TRI enables

member institutions (NASA, LANL, Sandia, and AFRL) to exchange metadata of

technical reports so that authorized users at any of these organizations have access to all

the collections o f technical reports. Every TRI member institution uses OAI-PMH to

harvest metadata from other members.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

2.1.2.2 Federation through the Distributed Model

In this model, the SP is reduced to merely a unified user interface. Search requests,

entered using this unified user interface, are sent in real-time to the individual member

collections or digital libraries, which process them and return results to the service

provider. The SP collects results from individual digital library and presents them to the

user. In this approach, no metadata harvesting is used. All the communications are done

in real-time and the requests are entirely processed by the individual collections. The SP

uses a client-server protocol to send requests and receives results from the member digital

libraries.

[60, 61] introduced a framework to federate a group o f disparate digital libraries

by means of specifying the input/output behavior o f target collections. The authors

developed a language for specifying these behaviors and an engine that could then

process a user’s request and translate it into the corresponding input queries o f the

members o f the federation. Similarly the engine would use the specification to translate

the output o f all responding collections and transform them into one uniform format and

present the merged responses back to the user. The New Zealand digital library group’s

distributed digital library architecture [44, 49] is an example digital library that follows

this model. It enables searching multiple collections in real time through a unified user

interface. The New Zealand digital library group defined a protocol for communication

between the unified user interface and the individual collections. They implemented their

system with only two individual member collections and they claim their architecture is

extensible. This approach is not completely distributed, however. All the requests have to

be entered through the unified user interface, which introduces some sort of centralization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

into the system. This could cause a bottleneck as the number o f users and individual

collections increase.

There have been some attempts to build peer-to-peer based digital libraries. P2P-

4-DL [69] is an example o f such efforts. It uses a model similar to Napster [8, 46] which

is a peer-to-peer application with a centralized server maintaining an index o f the content.

The search is done in a completely centralized fashion at the server and downloads are

done in a peer-to-peer fashion. A digital library architecture based on the super-peers

variant o f the peer-to-peer model is presented in [12]. In this model, the OAI-PMH,

which is originally a client-server protocol, is extended for use in a peer-to-peer fashion.

Super-peers in the architecture harvest collections from normal peers, store and index

them locally, and provide search service based on the harvested metadata. As mentioned

earlier, introducing centralized components could cause bottlenecks as the number of

users grows. In addition, it causes the system to be failure-prone. If the centralized

component fails or gets attacked, the whole service fails.

Figure 2.1 shows the distribution spectrum in the context of digital library with

example digital libraries in the various categories. In the centralized digital library model,

the same exact centralized system plays both roles of DP and SP. On the other extreme, a

peer-to-peer-based system, like our proposed framework, has many DP’s all o f which

cooperate to provide the service. The term Query type in Figure 2.1 refers to whether the

query is processed locally or in a distributed fashion and for the local case whether the

metadata is harvested or originally local.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

Centralized Federated Distributed

< >
ACM, IEEE CS, ADL, Fedora Arc, Kepler TRI S h i,. NZDL Proposed Model

One SP, MD OneSP FewSPs OneSP n SPs
and data are harvesting MD harvesting accessing accessing n

ingested directly from many DPs & MD from few DPs in small scale
to SP providing service few DPs real time DPs in real

time

1 1 1 1 1
SPs 1 1 Few(< 10) 1 n*

DPs N/A 10’s to 100’s or 1000’s Few (< 10) Few n*

Query
type

Local
(Local MD)

Local
(Harvested MD)

Local
(Harvested MD)

Distributed
(Real time)

Distributed
(Real Time)

* Large number of small scale autonomous SP/DP s.

Figure 2.1: Digital library distribution spectrum.

2.2 Peer-to-peer Systems

Peer-to-peer (P2P) is an alternative for the traditional client-server model for providing

services over a network. Peer-to-peer systems are special cases o f distributed systems in

which the number o f nodes is extremely large. In pure peer-to-peer systems, there are no

servers. Rather, peers cooperate to provide the service to the users. Peer-to-peer systems

are self-sustainable in terms o f the resources the system needs such as storage, processing

power, and network bandwidth. In the peer-to-peer model, these resources are contributed

by the individual nodes. Although each node usually contributes few resources, with the

large number o f participant, these contributions form a huge distributed system with

considerable amounts o f resources. This gives peer-to-peer system potential for high

scalability and self-sustainability as the number o f participants grows. In addition to these

advantages, peer-to-peer systems:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

■ Enable the utilization o f the resources at the perimeter of the network. This is

especially important as the personal computers forming the perimeter are

becoming more and more powerful in terms of processing power and storage

capacity;

■ Have potential for high fault tolerance. Since resources and users are highly

distributed, failures are usually partial. A failure typically affects some part of

the system, while the rest o f the system continues to provide the service. Most

peer-to-peer systems utilize replication to enhance the availability o f the

content in presence o f these partial failures; and

■ Have potential for bringing together people from different geographic

locations into forming virtual communities and groups.

Unlike the client-server model, machines in a pure peer-to-peer system are equal.

There are no centralized powerful servers; rather, peers cooperate to provide the service.

Every machine in such system is running the same software client that realizes the P2P

application. Every machine is both a producer (small server) and a consumer (client) o f

the service, not necessarily at the same time. Due to this fact, some peer-to-peer systems

such as Gnutella [21], call their software implementation a servent (a combination o f the

words ‘server’ and ‘client’).

2.2.1 Peer-to-Peer Models

There are several peer-to-peer models in use in various applications. Some peer-to-peer

systems follow models that have some centralized components. Others follow a pure

peer-to-peer model. Some peer-to-peer systems use a hierarchical model called super

peer model. We shall describe the main variants in the following sub-sections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

2.2.1.1 Centralized Indexing

Some models utilize centralized components. For example, Napster [8, 46], the first peer-

to-peer file sharing system, uses a centralized server to index all the content available on

all the connected peers., In this model, while search takes place at the server, actual

downloads are performed in a peer-to-peer fashion in which nodes communicate directly

with each other. It is worth mentioning that Napster, in its original form, was closed in

June 2001 due to copyright issues and it is now a paid service.

2.2.1.2 Pure Peer-to-Peer Model

Freenet is an example o f a peer-to-peer model; in this model, all communications

including search requests are performed in a peer-to-peer fashion. Search requests are

forwarded from node to node up to a certain hop count (also called time-to-live or TTL)

on the overlay topology (in a P2P system all nodes have links to selected other nodes

forming the network). Some systems uses breadth-first search and results are sent back to

the original requester, e.g., Gnutella [21]. Other systems use depth-first search, e.g.,

Freenet [9, 18]. In Freent, for the purpose o f anonymity, results follow the same path

back to the original requester as queries were forwarded.

2.2.1.3 Hierarchical Model

In hierarchical architectures or what is also called super peer model, the system attempts

to utilize the heterogeneity o f the participating nodes. These systems introduce more

powerful nodes (especially in terms of network bandwidth) to become super nodes. These

super nodes are responsible for indexing content available on regular nodes and handling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

search requests. Kazaa [31] is an example of a super peer network. A study o f super-peer

networks and guidelines for building them is available in [71].

2.2.2 Applications of Peer-to-Peer Model

Peer-to-peer concepts are utilized in many applications. For example, Domain Name

Systems, invented by Paul Mockapetris in late 1983 [56, 57], and News Servers

communicate and provide their services in a peer-to-peer fashion. Other more recent

applications o f peer-to-peer include file sharing and distributed computing (cycle

sharing). In the following subsection we present some o f these applications.

2.2.2.1 File Sharing

File sharing enables users to share files as implied by its names. Participants place the

files they want to share in specific folders and the peer-to-peer client makes these folders

available to people searching the network. Napster [8, 46] is an example of a centralized

file sharing peer-to-peer system. Examples of pure peer-to-peer file sharing systems

include Gnutella [21], Freenet [9, 18], and Bittorrent [6], Kazaa [31] is an example o f a

super-peer file sharing system.

2.2.2.2 Distributed Computing

Distributed computing is a peer-to-peer application that enables sharing processor cycles.

Each participant uses a client that monitors the local computer processor usage and when

the computer is idle, it downloads and runs tasks. By contributing only relatively little

processing power that is otherwise wasted, individuals create a group computer whose

processing power could reach orders of magnitudes o f the most powerful machine

available. Computation-intensive scientific applications benefit the most from such peer-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

to-peer system. Example systems include SETI@ home [59], United Devices [68],

DataSynapse [15], and distributed.net [13].

2.2.2.3 Distributed Search

Distributed search is another peer-to-peer application in which search requests are

submitted to individual search sites and results are categorized, ranked, and presented to

the user. Example distributed search systems are Copemic [11], which searches many of

the popular Web search engines simultaneously. Other example include Retrieval Ware

[55], which enables searching the files and documents on an organization intranet

computers), and JXTA Search [30].

2.2.2.4 Distributed Hashtables

Another peer-to-peer application is Distributed hashtables (DHT). Distributed hashtables

are distributed versions of the regular hashtable programming structure, which is very

efficient in retrieving items given their identifiers. A hash table is a set of mapping from

key values to digital objects. The basics operations supported by a hash table abstract

data type are insertion in the form insert (key, value) which associates the given value

with the specified key, and retrieval in the form retrieve (key) which returns the value

associated with the specified key if there is one. A DHT is a hash table whose entries are

distributed over nodes o f a peer-to-peer or a distributed system. Every peer stores and

provides access to part o f the hash table. Entries o f the DHT are usually distributed

uniformly over the participating nodes for the purpose o f load balancing. Insertion and

retrieval requests are routed to nodes responsible for the key specified by the request.

Example DHT protocols are Chord [65], Symphony [43], CAN [54], TAPESTRY [72],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

and PASTRY [58]. DHT protocols utilize various overlay topologies. Some protocols use

ring structure, e.g., Chord [65] and Symphony [43]. Other protocols arrange nodes in m-

dimensional space, e.g., CAN [54],

2.2.2.5 Other Miscellaneous Peer-to-Peer Applications

Other applications o f peer-to-peer include instant messaging and group collaboration.

Instant messaging enables users to send and receive instant messages in real time.

Example instant messaging systems include MSN messenger, Yahoo messenger, ICQ,

and AOL instant messenger. Group collaboration enables multiple users to participate in

group projects online. It supports services like annotation, adding comments, and sharing

documents across multiple machines. These systems usually have some degree of

integration with email clients and browsers. Example collaboration systems include

Groove Networks [23], and IntraLinks [26].

As hardware, software and networking technologies advance, the future might

witness the introduction o f more sophisticated peer-to-peer applications. For example a

distributed storage application may enable sharing at the level o f storage blocks. Blocks

contributed by participants form a huge storage media. In such application, portions of

one file might be stored on different physical machines. Another possible application is

licensed media distribution application that may enable legal online distribution o f media

in a Napster- or Gnutella-like model. In such application, file transfers are tracked,

officially authorized, and would generate the appropriate revenue to the copyright

holders.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

2.2.3 Peer-to-Peer Search Issues

Peer-to-peer search is usually done by forwarding search requests from node to node over

the peer-to-peer overlay topology. In order to prevent endless loops and for bandwidth

considerations, peer-to-peer search uses a reasonable time-to-live value. This limits the

search coverage as a consequence search requests might not reach all relevant nodes in

the network. Another issue is search performance. Efficiency o f the search is affected by

the time taken to forward requests over the network, which might result in poor response

time especially when the too many requests are being processed simultaneously. Quality

o f results is also an issue in peer-to-peer search as most o f the known peer-to-peer

systems lack appropriate metadata and full-text search techniques. For example, almost

all o f the peer-to-peer file sharing systems do search based on file names, which are most

o f the time misleading. This wastes user time in browsing and sometimes downloading

irrelevant results.

There have been many attempts and efforts to enhance peer-to-peer search

performance and quality o f results. These include topic segmentation [5] and use of

super-peer models [31, 71]. Topic segmentation clusters member nodes based on the

similarity o f the content such that nodes containing similar material are connected

together. This approach is, however, very complex and does not evolve quickly as user

interest changes. To measure the similarity o f documents, these documents are

represented in some data structure such as a keyword vector. A clustering algorithm is

run on documents to cluster them. The distributed nature o f the system adds to the

complexity o f this protocol.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

Relevant to our proposed model are certain concepts and features o f peer-to-peer

search mechanisms. First, the concept o f the small world property enhances the

reachability and coverage of searches in P2P networks. We shall discuss the small world

property in more details shortly. Second, our proposed solution evolves participants into

communities o f common interest using simple access pattern analysis. Similar work that

infers communities in the context o f the World Wide Web based on link topologies

between pages was presented in [20]. That work is page-oriented. It clusters web pages

into communities based on the link topology connecting those pages. It does not have the

concept o f accesses or the user-centric approach that we emphasize in our approach.

2.3 Social Networks and the Small-World Property

Social networks are networks of people in which nodes represent persons and a link

represents a relationship (for example, the two persons know each other, or are friends, or

both like classical music) between the two persons at both ends. In a large social network,

any two arbitrary people were found to be connected to each other through a short chain

o f intermediate acquaintances [34, 70] and hence the name small-world. Small-world

networks are typically characterized by two properties. The first is a small average path

length between nodes. The other is a high clustering coefficient (the probability o f two

neighbors o f a node to be neighbors themselves). The average path length between two

members o f the network is called the diameter o f the network. The small world property

is desirable in the context o f peer-to-peer and large-scale distributed systems as messages

can be routed from source to destination in a number o f hops smaller than the diameter.

There have been some efforts to build peer-to-peer networks whose overlay topology has

this small world property. Symphony [43], for example builds a peer-to-peer network

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

with diameter (log 2 (n)) / k, where n is the number of nodes in the network and k is the

number o f contacts (links) per node. Chord [65] is another example with diameter log (n),

where n is the number o f nodes in the network. In order to maintain this small diameter,

every node in Chord establishes log (n) contacts. Both o f Symphony and Chord use a ring

overlay topology in addition to long distance contacts. CAN [54] could be viewed as a

small world network. As mentioned earlier, it arranges nodes in ^-dimensional space. It

has a diameter that is O (k n I/k) , where k is the number o f dimensions and n is the number

of nodes in the network.

Semantic small world [38] clusters nodes based on similarity o f content and uses

a linearization technique to arrange the set of clusters in a line. Peers establish short

contacts to neighbor clusters and long contacts to clusters far away. These protocols

require complicated clustering techniques and do not evolve quickly as users’ interests

change.

2.4 Performance Metrics

In this section we provide a brief overview of some of the performance metric used in

evaluating information retrieval (IR) techniques and algorithms. We use these metrics in

our performance evaluation to evaluate the quality o f Freelib search results. The two

main metrics are Precision and Recall. Precision (P) is defined as the fraction o f the

retrieved items that are relevant to the query and Recall (R) is the fraction o f relevant

items retrieved [4], An optimal information retrieval algorithm would retrieve all relevant

documents and only those, thus having 100% precision and 100% recall. Unfortunately,

such a technique does not exist. IR algorithms face a compromise in this regard. One

technique may retrieve more documents to increase recall. However, this typically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

decreases the precision. Figure 2.2 shows graphical representation using a Venn diagram

and calculations o f precision and recall.

P = --------
A + B

R = --------
A + C

Relevant Irrelevant

Retrieved A B

Not retrieved C D

Figure 2.2: Precision (P) and recall (R): graphical representation and calculations.

Entire collection

Retrieve

 ..

 SliSlllSISIlSi
---

elevant

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

CHAPTER III

FREELIB ARCHITECTURE

There exist many challenges when building a digital library suitable for the individual

users to enable them publish and disseminate their content. The key challenges include

the highly distributed nature o f users as well as content, the lack o f tools for maintaining

high quality metadata, and inability o f the individuals to secure the necessary software

and hardware resources needed to organize and maintain the content. A framework is

needed to address these challenges and build a digital library that enables the individual

user to publish and search for content.

In this chapter we introduce our Freelib framework to address the above

challenges. The Freelib framework builds a digital library on top o f a peer-to-peer

network. Our approach to sustainability is by utilizing resources contributed by the

participating users o f the underlying peer-to-peer network. Although each participant

typically contributes little o f disk storage and processing power; with the large number of

nodes that characterize peer-to-peer system, massive amounts o f resources can be

accumulated. The use o f a peer-to-peer system also addresses the issue o f users and

content being highly distributed. Each node in the system represents one user which

might be joining from any geographic location. The Freelib framework provides its users

with tools for publishing Dublin Core (DC) metadata [16]. The Framework also provides

metadata-based search to its user. Metadata-based search enables the user to enter more

accurate queries and hence enhance the results o f Freelib search.

As stated earlier, the Freelib framework organizes participating nodes into a peer-

to-peer overlay network. Links in our peer-to-peer overlay network can be categorized

into two main categories, support links and friend links. The former are built based on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Symphony protocol [43], which maintains the desirable small-world property. The latter

are built based on simple access pattern analysis between peers. According to this

categorization, our peer-to-peer network can be viewed as two separate overlay

topologies as illustrated in Figure 3.1. The first is the support network which contains all

the support links in the Freelib network. The other topology is the access network, which

is the union o f all the friend links in the Freelib network. It is worth mentioning that our

initial Freelib design contained a third logical overlay topology, which we called the

migration ring. The migration ring is a separate virtual ring. Our intention is to arrange

the nodes such that each community occupies a small proximity on the migration ring.

Our motivation for this is to facilitate discovery o f communities. Once a node discovers a

friend, it can discover other potential friends by probing the nodes closer to its friend on

the migration ring. Once a node connects to enough friends that occupy close locations

on the migration ring, it logically migrates to that area o f the ring such that new nodes

can discover their prospective communities. However, once we have started

implementation, this three-layer model proved to be very complex. In addition, with

continuous evolution o f the access network, nodes whose users share similar interest get

closer to each other on the access topology. Consequently, a newly joining node that

connects to another similar node will be able to reach other relevant nodes through that

node. Because o f complexity of the topology and ability to achieve community discovery

based on the access topology, we have decided to drop the migration ring and simplify

our architecture. In the following sections, we discuss our current two-layer Freelib

model in more details explaining the purpose o f each topology is and how we build them.

We follow that by describing the services Freelib offers to its users.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Long contacts

Figure 3.1: Freelib network architecture showing support network and access networks.

3.1 Small-world Support Network

The support network helps new nodes join the network and speeds up new nodes’

discovery o f its community. We discuss the use o f the support network in discovery in

chapter IV. We build the support network based on the Symphony protocol [43]. The

support network topology consists of two types o f links, short contacts and long contacts.

Long contacts connect every node to distant nodes on that ring. Long contacts enable

queries to reach to far locations on the ring. This is essential to achieve the small-world

criterion. Short contacts, on the other hand, enable those queries to reach nodes in the

immediate proximity. In the following subsections, we discuss theses types o f contacts

and the algorithms used to build them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

3.1.1 Short Contacts

The support network arranges the Freelib nodes on a virtual ring structure o f unit length.

When a node joins the Freelib network, its location on the support network is randomly

chosen with uniform distribution over the ring. This is imposed by having a node select

its ring location by sampling from a uniform distribution over the interval [0, 1) [43].

Hence, node locations are positive real numbers between 0.0 inclusive and 1.0 exclusive.

Every node maintains a number o f short contacts, which are links to the neighboring

nodes on the ring. The minimum number o f short contacts per node is one (link to the

clockwise neighbor node on the ring). The more short contacts nodes establish, the more

fault-tolerance is achieved. For example, to tolerate f consecutive node failures on the

ring, every node must maintain f + 1 short contacts (e.g., each node maintains short

contacts to next f + 1 nodes on the ring). If each node has more than one short contact,

they can all be clockwise neighbors, anti-clockwise neighbors, or combination of these.

Consider for example, the ring locations shown in Table 3.1. Assume that the table lists

all the nodes on the support network ring with locations that range over the interval [0.5,

0.7]. The order o f these nodes on the ring is: N5, N l, N4, N3, and N2. Table 3.2 shows

several different choices for the list o f short contacts for node N4 as an example. In order

to maintain the ring topology, the minimum number o f short contacts is one node.

3.1.2 Long Contacts

In addition to short contacts, Symphony [43] provides every node with a number o f long

contacts. Long contacts are links to distant nodes on the ring. The distance between two

nodes on the ring is calculated by subtracting the ring locations o f the two nodes and

taking the absolute value. It ranges between 0 and 0.5. Having these long contacts is the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

key to achieve the small-world property. The locations o f the long contacts are chosen by

sampling from the harmonic probability distribution (hence the name Symphony) shown

in Equation 3.1.

Table 3.1: List o f nodes with locations x between 0.5 and 0.7 inclusive

Node Location on the ring

N, 0.52

1 N2
0.7

1 Ns
0.6

1
0.55

| AT, 0.50

Table 3.2: Various choices o f the list of short contacts for node N 4 based on ring locations
in Table 3.1

Choice List of Short C ontacts 1

Clockwise neighbor only
Ns 1

Two node going clockwise n 2, n 3

One node on each side Nj, N3

Two nodes on each side Nj, N2, N3, Ns

p n (x) = { * los(">
r 0 otherwise {E q 3 7)

n — # nodes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Using this probability distribution, the expected path length from any node to any

node is shown in [43] to be Q (^°^ -- -), where n is the number o f nodes and k is the
k

number o f long contacts per node (usually 4 long contacts).

3.1.3 Summary of Algorithms for Building Support Network

For completeness o f the discussion we overview the protocols used by Symphony [43] to

build and maintain the support network. These protocols include join, leave,

maintenance, failure recovery, and long contact. Here is a brief outline listing the steps o f

the key protocols in the support network.

Symphony Routing protocol is used to efficiently route any message to the closest node

on the ring to a certain ring location:

1. The node sending the message selects from its contacts the node that takes the

message closest to the given ring location.

2. This process is repeated by each node that receives the message until the message

reaches its destination.

Join protocol is invoked when a node is joining the network. It consists o f the following

steps:

1. Choose a ring location by sampling from a uniform distribution over the interval

[0, 1).

2. Send a join request to some existing node.

3. Request is forwarded using the Symphony routing protocol to the node that is

closest to the chosen location. Closeness here is based on the real number distance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

between the ring locations. That node inserts the joining node, updates its

information, and sends response directly to the joining node.

4. Upon receiving the response the joining node updates its information and

establishes short contacts.

5. Initiate the long contact protocol. The long contact protocol is explained below.

Leave protocol is invoked when a node is leaving the network. It simply cleans up and

sends leave notifications to its contacts.

Maintenance protocol is invoked when nodes leave the network. The two nodes adjacent

to the leaving node on the ring need to maintain the ring structure by establishing a short

contact link between them. In addition, any node which has a long contact link to the

leaving node triggers the long contact protocol explained below to establish a new long

contact link to some other node.

Failure recovery protocol is to detect the failure o f nodes and initiating the maintenance

protocol. This protocol utilizes an application-level ping or keep-alive messages to detect

when a node fails.

Long contacts protocol is invoked by a node to establish long contacts. This is done when

a node joins the network, a node that is long contact to some other node leaves the

network, or whenever the estimated number o f nodes on the network changes. For every

long contact to be established, the following is done:

1. Pick a ring location by sampling from the harmonic distribution shown in

Equation 3.1. This is necessary to maintain the small-world property.

2. Send out a request to establish long contact to that location (using Symphony

routing)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

3. If the target node is already saturated (has already reached a predefined threshold

for the number o f incoming long contacts), start over.

Keep-alive protocol is the traditional application-level pinging protocol based on timers.

3.2 Access Network

The main purpose of building and evolving the access network is to enhance the search

performance o f Freelib. The main idea we employ in building the access network is

bringing nodes sharing common interest close to each other on the overlay topology.

Building the topology this way brings documents or items closer to nodes searching for

them. So, instead o f having to search the whole network, nodes need to search their

immediate network proximity. This effectively reduces user waiting time for search

results as relevant peers receive the search query immediately or after within few hops on

the overlay topology. In addition, it saves network bandwidth as we can use smaller time-

to-live for our peer-to-peer search messages. We do not have to search far on the network

topology. Furthermore, this approach is expected to enhance recall and precision o f the

results. We evaluate the performance gains o f Freelib in chapter VI.

In order to implement this approach, we need to address the following issues:

■ How to characterize user interest and identify users sharing common

interest, and

■ How to build the overlay topology according to mutual interest between

nodes.

In the following subsections, we introduce our approach to address these issues.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

3.2.1 Characterizing User’s Interest

Characterizing user interest and identifying users sharing common interest could be done

in many different ways, some o f which are explicit while others are implicit and

transparent to the user. The easiest method to implement is explicit feedback, which

requires users to give preference information about search results. Although the explicit

feedback is accurate, users are usually too indolent to provide it. Implicit methods try to

capture user preference based on analyzing user interaction with the system in a

transparent way. For example, eye tracking technology and click-through data are utilized

to infer user interest in many scenarios including web search [29, 32, 53]. An implicit

method that does not directly rely on user actions but rather on analysis o f content is topic

segmentation [5], This approach is based on measuring the similarity o f the actual content

contributed by different nodes and using it as an indication o f similarity o f their users’

interest. First, documents are represented using a suitable data structure such as a

keyword vector. Then, nodes are clustered based on the similarity o f documents. Nodes

that belong to the same cluster are then considered as having similar interest. This,

however, is a complex approach that requires complex clustering algorithms and does not

adapt when user interest changes between topics. We introduce a new method for

characterizing user interest based on analyzing user access patterns. In our method,

access o f (downloading) a document or an item by a user after viewing its metadata and

description is considered as an indication o f user’s interest in that document or item. This

is analogous to using click-through data as implicit feedback. The higher the mutual

access between a pair o f nodes, the more similar is their interest. This method is implicit,

requires no additional communications between nodes, and adapts with changes in user’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

interest. Table 3.3 gives a comparison o f our method for characterizing user interest to

those other methods.

Table 3.3: Different ways to characterize user’s interest

M ethod
Im plicit /

Explicit
Advantages Disadvantages

User Feedback Explicit - Accurate
- Relies on User input;
- Sometimes users are too indolent

C ontent Analysis
(Topic segmentation

based on content)
Implicit - Could be applied before

joining

- Needs complex clustering
algorithms;

- Does not adapt quickly with
changes in user’s interest

User Accesses
Analysis

(Implicit Feedback)
Implicit

- Requires no extra
communication between
nodes

- Adapts to changes in
user’s interest

- Needs algorithms for speeding up
the evolution o f the network

3.2.2 The concept of Locality

In general, the concept o f locality tries to predict future behavior o f a system based on

discovery o f trend from the recent system history. This concept is applied and utilized in

many fields and areas including computer architecture and business model design. It is

often called the 80/20 rule. For example, by analyzing machine instruction frequencies,

John Cocke in 1974 discovered that a small percentage of a computer's instructions

accounted for most of the execution time [10]. Out of the whole set of machine

instructions, compilers and programs utilized the simpler commands more often. This

locality in instruction usage led to the evolution of processor designs like the RISC

(Reduced Instruction Set Computing) architectures [10]. Another example use o f the

concept o f locality is in the design of the memory hierarchy in modem computer systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

[24]. Spatial and temporal locality o f memory addresses referenced by programs was

utilized in building faster memory systems. This is achieved by introducing a smaller but

very fast cache memory between the processor and the main memory. This cache is used

to hold copies o f the content o f memory locations that are expected to be referenced in

the near future based on locality. When the processor loads data from the memory

system, the data is returned much faster if found in the cache. With good utilization of

locality in prediction o f memory references, considerable speed gain is achieved.

The concept o f locality was also studied in the context o f computer networks at

various levels. For example, [40] studied locality with regard to end hosts (source and

destination o f network traffic). It was found that addresses of end hosts o f traffic show a

high degree of temporal locality. Temporal locality in that context was stated as: “If a

pair of machines communicate, it is likely they will communicate again in the near

future.”[40], Spatial locality, however, was inapplicable in that context. Another study

that concentrated on the locality at finer level o f granularity can be found in [45]. They

studied locality at the level o f communicating processes not just end hosts.

In our research, we apply the concept o f locality in the context o f peer accesses.

Temporal locality in our case is very similar to temporal locality o f end hosts described in

[40], In addition to utilizing the temporal locality, we try to enable spatial locality and

make it applicable in our context. We evolve the overlay topology to reflect the mutual

accesses between peers. This evolution process brings peers that have high mutual

accesses, which indicates similar interest, closer to each other on the access network

overlay topology. This closeness on the overlay topology represents spatial locality.

Consequently, a node A, accessing another node Nj becomes likely to access nodes close

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

to Nj on the overlay topology. Table 3.4 illustrates the concept o f locality in the context

o f processor architectures and memory hierarchy. It also shows an analogy in the context

o f our context.

Table 3.4: Concept o f locality and its analogy in Freelib

Locality Utilized in

“small percentage o f a computer's instructions
accounted fo r most o f the execution time”,

A result o f a study by John Cocke @ IBM, 1974 RISC architectures

“Memory locations ju st accessed are likely to be accessed again
in the near future1'

“Memory locations nearby those ju st accessed are likely to be
accessed next"

Cache memory hierarchy

Analogy in Freelib:

‘Nodes ju st accessed are likely to be accessed again soon ’

Nodes with similar interest to those ju st accessed are likely to
accessed next ’

Enhancing Freelib search by
reflecting node interest in building

the topology

3.2.3 Measuring Mutual Accesses between Nodes

In order to realize our approach, we need to measure mutual access between nodes,

quantify it, and use it to build the overlay topology. Access in this context refers to

downloading an item usually after viewing it in the result list o f a search query. The

simplest way to measure the mutual access between nodes is to count the number of

accesses. Let N = {Nj, N2 , ■■■, Nn} be the set of nodes in our Freelib network. Users’

access counts can be represented by a function A whose domain is the Cartesian product

N x N and whose range is the non-negative integers Z*, that is A: (N x N) Z+. This

function maps each ordered pair (Nit Ay to a non-negative integer ay that represent the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

number o f accesses made by node TV to node TV). This function could be represented as n

x n matrix o f non-negative integers, where n is the number o f nodes. We refer to this

matrix as the access matrix. The information about accesses that involve a certain node in

our Freelib network occupies exactly one row and one column of the access matrix. For

node TV,, this information occupies the ith row and the ith column of the access matrix.

Each cell on the ith row contains the number of accesses made by node TV, to the node

associated with the corresponding column. We refer to these accesses as the outgoing

accesses o f TV,. Similarly, each cell on the ith column contains the number o f accesses

made by the node associated with corresponding row to TV,. We refer to these as the

incoming accesses to TV,. Maintenance o f the access matrix is simple. Initially, all ay are

initialized to zero. And every time an access is made by node TV, to node Nj, both ay and

aji are incremented. Table 3.5 shows an example access matrix. In this access matrix, we

can see, for example, that node TV* has made 6 accesses to node Nj and received 13

accesses from it.

Table 3.5: Access Matrix showing accesses for nodes TV; to TVj

Nj TV Ns TV; Ns

TV 0 17 10 13 10

TV 7 0 9 11 15

TV 3 11 0 14 8

TV; 6 7 14 0 11

TV, 8 5 11 6 0

Although n (the number o f nodes) is very large in peer-to-peer networks, the

access matrix is usually a sparse matrix as each node usually accesses a relatively small

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

subset o f the whole set o f nodes. Hence, a suitable sparse-matrix implementation could

be employed to conserve space. In addition, as we shall explain shortly, we distribute the

access matrix over the nodes in a way that minimizes the communication needed to

perform our access pattern analysis. We next discuss use o f the access matrix in peer

ranking and building the topology.

3.2.4 Peer Ranking Based on Mutual Access

The purpose o f peer ranking is to provide a ranked list o f peers that serves as a list of

candidates for building friend links. As described in the previous section, for a node TV,,

mutual access with other nodes consists o f two components, incoming accesses and

outgoing accesses. We need to design a ranking function that has the following

characteristics and features:

■ It monotonically increases as number o f accesses increase

■ It takes into consideration both the incoming and outgoing components of

the access data, and

■ It allows us to assign different weights for each o f the outgoing and

incoming accesses.

The requirement that ranks monotonically increase with increasing accesses is

clear since more accesses imply more mutual interest. Including incoming accesses in the

calculation is needed to reflect mutual interest rather than one party’s interest. Incoming

accesses usually are assigned lower weight compared to the weight for outgoing accesses.

Equation 3.2 gives our peer ranking function. It shows the calculation of the rank

assigned to node Nj by node TV,-.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

Rt (N j) = a x + (l - a)x _ , 7' ■■ (ify. 3.2)
A L aP

The parameter a in Equation 3.2 determines the weight for the outgoing accesses

relative to incoming accesses. Possible values o f a range from 0.0 to 1.0 where a =1.0

discards incoming accesses in the ranking calculation; and a = 0.0 discards outgoing

accesses. We have performed some experiments and found that a should be typically set

to some value around 0.8. This value ensure that the outcome of the ranking at each node

is mainly derived by the local user accesses as it gives outgoing accesses higher weight

relative to incoming accesses. This is very important as outgoing accesses are usually

order o f magnitudes smaller than incoming accesses. For example, if a community

contains 100 peers accessing each other, the incoming accesses will be 100 times the

outgoing accesses on average. In addition, this value o f a does not completely ignore

incoming accesses. They still receive some weight and they are reflected in the results of

the ranking process as well.

The first partial term a »• represents the proportion o f N{ outgoing accesses to

node N j. The second partial term a a represents the proportion o f N incoming
Z a a

accesses from node N j. Notice that the value o f each of these terms increase as the

number o f accesses (ciy in the first and aji in the second) increase. Dividing by the total

number o f accesses in each o f the two terms is not necessary. It, however, normalizes the

ranks into values between 0.0 and 1.0 inclusive. In fact, R tis a probability function with

1 and = 1. The reader should also notice that all access data used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

in Equation 3.2 above comes from exactly one row and one column in the access matrix.

We utilize this fact in proposing a distributed implementation o f the access matrix that

eliminates communication between nodes regarding access pattern analysis and peer

ranking.

Table 3.6: Ranks calculated based on the Access Matrix in Table 3.5 using a = 0.8

N , n 2 N3 n 4 Ns

Nj 0 0.3303 0.185 0.258 0.2267

n 2 0.2183 0 0.2264 0.2445 0.3107

N3 0.1121 0.2854 0 0.3747 0.2278

n 4 0.1854 0.1974 0.3584 0 0.2588

Ns 0.2588 0.2015 0.3297 0.21 0

Table 3.7: Ranked list at node N 4 calculated based on the Access Matrix in Table 3.5
using a = 0.8

n 4

n 3 0. 3584

N s 0. 2588

n 2 0.1974

N j 0. 1854

This method of ranking was inspired by the concept o f locality discussed earlier

in this chapter. The more mutual accesses with a node, the higher the rank it receives.

After ranking peers, the ranking node sorts them in a non-descending order based on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

ranks such that nodes with highest ranks occupy the top o f the list. This ranked list is then

used to build the friend links for the node. As an example, Table 3.6 gives the ranks

calculated based on the access matrix in Table 3.5 using a = 0.8. Each row in this table

gives the ranks calculated by the corresponding node. For example R,(N?), which is the

rank of node N 2 as calculated by node Nj, appears in the cell at the intersection o f the first

row and the second column. The value o f R,(N2) as given in the table is 0.3303. Table 3.7

shows the ranked list at node N4. It lists the nodes that have mutual access with node N 4

in a non-decreasing order o f ranks.

3.2.4.1 Frequency of Performing Peer Ranking

In order for the overlay topology to adapt and evolve as users’ interest evolves, each node

needs to perform peer ranking periodically. The question now is how often the peer

ranking process should be performed by each node. This involves a tradeoff. On one

hand, we need to perform ranking as often as possible to account for the most recent

accesses. On the other hand, we do not want to overwhelm the nodes by executing the

ranking procedure too often. In order to resolve this issue, we base the decision to trigger

the peer ranking process on the actual number o f new accesses that occurred since the

most recent invocation o f the peer ranking process. Each node maintains two values. The

first value is AoUt, the total number of outgoing accesses since the most recent peer

ranking was performed. This value is incremented with every outgoing access. The other

value is Am, the total number o f incoming accesses since the most recent peer ranking

was performed. Similarly, this value is incremented with every incoming access. Every

time an incoming or outgoing access is made, the node calculates A , the normalized total

number o f accesses since the most recent peer ranking was performed. The calculation o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

A is shown in Equation 3.3. It combines AoUt and Ajn using the weighing factor a similar

to the calculation o f the peer ranks. If A is greater than a certain threshold A threshoid, the

peer ranking process is started. The value of this threshold controls how often the peer

ranking process is performed by each node.

A = a x A out + (l - a)A in (Eq. 3.3)

By tuning Athreshoid, we control the frequency of ranking process invocations based

on the number o f accesses. Table 3.8 gives example values o f a and Athreshoid and the

corresponding frequency o f the peer ranking process.

Table 3.8: Example values o f a and Athreshoid and the corresponding frequency o f the peer
ranking process

a Athreshoid Frequency of Peer Ranking

0.5 1 Every 2 accesses (any combination of incoming and outgoing)

0.5 4 Every 8 accesses (any combination of incoming and outgoing)

1.0 1 Every outgoing access

0.8 1 Every 2 outgoing accesses, 1 outgoing then 1 incoming, up to 4 incoming
followed by 1 outgoing, or 5 incoming accesses

Although the above constraint enables us to have some control on the frequency

of performing peer ranking, it still depends on the access rate. If the access rate is very

high at some periods, the peer ranking process might still be invoked with high frequency

and overload the machine. In order to have more control over the frequency o f the peer

ranking process invocations, we introduce another constraint. This constraint specifies a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

certain minimum amount o f time r that must pass between consecutive invocations o f the

peer ranking process. The code in Listing 3.1 outlines the procedure for triggering the

peer ranking process based on the number o f new accesses A as well as a minimum

interval between consecutive invocations o f the ranking process r.

In the next subsection, we study the effect o f random accesses on out peer ranking

calculations.

Listing 3.1: Triggering the peer ranking process based on the number o f new accesses as
well as a minimum interval

accessPerformed (Access a) {
if (a is an outgoing access)

A n a ++>'

else

A n + + .'

A = a* Aoul+ (1 - a) * Ain;

if ((A > Athreshokl) && (time since last ranking > z))
startRankingProcess ();

}

3.2.4.2 Effect of Non-friend Accesses on Peer Ranking

Non-friend accesses are those accesses that do not match the main user interest. These

accesses can be categorized into two types o f accesses. They can be legitimate accesses

that represent temporary shift or the start of a permanent shift in user’s interest into

another topic or interest area. They can also result from human mistakes such as

confusing the subject o f a document or accidentally accessing the wrong document. Our

peer ranking process could be enhanced by introducing certain techniques to speed up

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

discovery o f permanent change in user’s interest. We delay discussion of these

techniques and our method for handling temporary change in user interest to later in this

chapter. In this section, however, we discuss how our basic ranking process handles

random accesses in general.

Table 3.9: Snapshot o f an access matrix showing nodes N i to N g

Nj n 2 N , n 4 N5 N 6 N 7 N s N 9

N , 0 8 10 5 6 0 0 0 0

n 2 14 0 10 8 9 1 0 2 0

n 3 3 11 0 6 12 0 0 0 0

n 4 7 4 8 0 9 0 0 0 0

n 5 6 9 10 8 0 0 0 0 0

n 6 0 0 0 0 0 0 10 8 12

n 7 0 0 0 0 0 11 0 13 14

Ns 0 0 0 0 0 9 0 0 15

n 9 0 0 0 0 0 11 15 10 0

By definition, the number of random accesses is relatively small compared to the

total number o f accesses. When a node performs peer ranking, random accesses typically

result in smaller ranks assigned to the corresponding peers. As the user submits more

searches and performs more accesses, random accesses will become more and more

insignificant and the corresponding peers will typically occupy the tail o f the ranked list.

Consider, for example, the access matrix shown in Table 3.9. It shows the accesses for

nodes Ni to Ng. Most o f the accesses o f node N 2 involve nodes Nj to N 5 . However, it

made one single access to node and two accesses to node Ns. These accesses look like

random accesses as nodes N<s and Ns do not have high mutual access with N 2 or any o f N 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

top ranked peers. Table 3.10 gives the ranks calculated by node N 2 . It shows how nodes

N 8 and Ns receive very low ranks and, hence, occupy the tail o f the ranked list. Notice

also that node N 7 and node N g do not appear on the AV ranked list as they were not

involved in any accesses with N 2 .

Table 3.10: Ranked list at node N 2 showing ranks calculated based on the access matrix
in Table 3.9 and using a = 0.8. It shows nodes N 8 and N 6 receiving very low ranks and
occupying tail o f the ranked list

n 2

N, 0.304

A , 0.250

n 5 0.219

n 4 0.170

N s 0.036

n 6 0.018

3.2.5 Distribution of the Access Matrix over Nodes

As shown in the previous sections, ranking calculations performed at node Ni only uses

the access data stored in the i th row and the i th column o f the access matrix, each o f which

is a one dimensional array o f n elements. One way to distribute the access matrix is to

store at each node N { only its associated row, which is the i th row. This approach will,

however, require each node N l to request its incoming access information (the i th column)

from its peers when it is time to perform peer ranking. In our design, we introduce some

replication o f the access data to help avoid this extra communication. Each node

maintains both its associated row and column. In other words, every node N t maintains

the i th row and the i th column o f the access matrix. Although this duplicates the required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

storage space, it eliminates any additional communication that could otherwise be needed

to perform peer ranking.

In addition to limiting the access data maintained by each node to only one row

and one column, we utilize sparse matrix implementation. As discussed earlier, each node

usually accesses a small subset o f the whole set o f nodes and, hence, the arrays

representing the ith row and the ith column are mostly sparse. Any suitable sparse matrix

implementation could be used to conserve space. We use a variant o f the coordinate

storage scheme [62] in our implementation. We store the non-zero values and the

corresponding rows or columns. Figure 3.2 shows the value array and column index array

for storing outgoing accesses o f node N 7 using the access matrix in Table 3.9. Similarly,

Figure 3.3 shows the value array and the row index array for storing the incoming

accesses to node N7. In the actual implementation, however, we use unique node

identifiers instead o f the row/column indexes and store the access information as a hash

table. The reason for this is that each individual Freelib node is identified by a unique

identifier generated by the node according to [37] the very first time it joins the network.

Value:

Colum n Index:

Figure 3.2: Coordinate storage scheme for storing outgoing accesses at node N 7 using the
access counts from Table 3.9

Value:

Row Index:

Figure 3.3: Coordinate storage scheme for storing incoming accesses at node N 7 using the
access counts from Table 3.9

10 15

6 9

11 13 14

6 8 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

3.2.6 Building the Overlay Topology According to the Mutual Interest

The ranked list at each node contains the list o f peers that have mutual access with the

node. The peers with highest mutual access occupy the top o f the ranked list. Each node

chooses its friends from the top o f its ranked list. By doing this, we introduce spatial

locality into the topology based on mutual access. In other words, Freelib nodes with

similar interest get closer to each other on the topology. Consequently, the traditional

peer-to-peer forwarding of search messages takes these messages to the most relevant

nodes in few steps on the overlay topology. The ranked list can be utilized to build the

access topology in two different ways to realize this objective. The first, and the simplest,

is the Routing table approach. The other is the Active link approach. In the following

subsections, we explain these methods and discuss the advantages and disadvantages of

using each o f them.

3.2.6.1 Routing Table Approach

In this approach, the ranked list is used as a routing table for sending out and forwarding

search queries. When a node is about to send out or forward a search request, it sends the

search message to the first R available peers on its ranked list. Each node that receives a

search request needs to acknowledge it to confirm its availability. The advantages o f this

approach are that it is dynamic and simple. But it does need extra communication

messages for sending back the acknowledgements. Another issue with this approach is

that a node does not know and does not have control on the number o f nodes keeping it as

a friend (we refer to these as incoming friends o f the node as opposed to the outgoing

friends the node selects from the top o f its ranked list). This could cause as a popular

node (one that every one is accessing) to be overwhelmed with too many requests.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

3.2.6.2 Active link approach

In this approach, every node establishes active links to R peers from the top o f the ranked

list. These are full links that have a keep-alive mechanism such as pings. The number of

friends per node, R, is typically 4 to 6 . Every time the ranking process is performed, some

friend links might need to be disconnected and some others might need to be established

to reflect the most recent ranking results. This whole evolution process is transparent to

the users o f the system. When a node is saturated (i.e., the number o f its incoming friends

Rin exceeds a certain threshold), it simply rejects any new requests for establishing friend

links to it.

Listing 3.2: Algorithm for establishing friend links

EstablishFriendLinks (RankedList rankedList) {
create empty list newFriends
fo r each peer in rankedList{

if (peer is in currentFriends list)
add peer to newFriends;

else{
try to establish friend link to peer;
i f (result == OK)

add peer to newFriends;

}
i f (number ofpeers in newFriends >R)

break;

}
fo r each peer in currentFriends {

i f (number o f peers in newFriends < R){
if (peer is not in newFriends)

add peer to newFriends;
} else {

i f (peer is not in newFriends)
dropFriend(peer);

}
}
currentFriends = newFriends;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

Like the routing table approach discussed in the previous section, this approach

has some communication overhead due to establishing links and due to the pings. The

ping (keep-alive) messages are needed in order to detect failure o f friends. If every node

establishes R friends, then we have R x n total friend links in a network of n nodes. Also

the network will have total c x R x n pings per unit time, where c is a constant that

represents the number o f ping messages per link per unit time. This is Q (n) ping

messages for the whole network. Listing 3.2 outlines the algorithm for establishing the

friend links given the ranked list o f peers as input. Listing 3.3 outlines the algorithm for

processing a request for establishing a friend received by a node.

Listing 3.3: Processing requests to establish a friend

establishFriendRequest (Peerlnfo peer) {

if (number OflncomingFriends < Rln) {

add peer to incomingFriends;

status = OK;

}else{
Status = SATURATED;

}
sendResponse(status);

}

Although this approach is more complex than the routing table approach

presented in the previous section, we choose to use it in our design as it gives each node

control on the number of incoming friends.

3.2.7 Community and Friends

The friend relationship between Freelib nodes can be represented by a binary relation F

on the set of participating node. The binary relation F is given in Equation 3.4. An

ordered pair (Ni, N fe F if and only if there is an friend link from node TV, to node Nj in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

the access topology. The first coordinate N is the owner o f the friend link and the second

coordinate Nj is its friend contact.

F = {(Nu Nj) | there exist an friend link from node N to node Nj} Eq. 3.4

Since friend links reflect mutual interest between nodes, the friend relation F

evolves the participating nodes into communities o f common interest. A community in

our model is, however, a fuzzy concept. Membership in communities is not hardwired;

rather, it evolves over time. From a node’ point o f view; the community is its immediate

friends, their friends, and so on up to some time-to-live value h. To further explain this,

we define the h-step transitive closure F h to be a binary relation that includes all ordered

pairs (N{, Nj) where there is a path P on the access topology from node N to node Nj with

length(P) <h. Equation 3.5 gives F h according to this definition.

F h = F Am < h] (Eq. 3.5)

The community o f a node N at that point o f time is the set o f nodes that results

from the projection on second coordinate of F.h . Equation 3.6 gives the community Q of

node Ni.

c , = * » , (E O , ■ N J)e F * }) (Eg. 3.6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

The set o f node in N j’ community changes over time as nodes perform ranking

and reflect the results in the access topology. This feature enables communities to evolve

based on users’ interest.

3.2.8 Handling Changing User Interest

Sometimes users change their interest either temporarily or permanently. This is usually

indicated by user starting to access different peers other than the ones accessed in the

past. Using our basic ranking process discussed earlier in this chapter, it can take long

time for new accesses to balance and beat the old ones. Consequently, it may take long

time to get the user connected to the appropriate community that matches user’s new

interest. Consider, for example, the following scenario:

1. User has already j oined some community.

2. User accessed friends around 100 times each.

3. User’s interest is starting to shift to a different topic and she is starting to access

different peers.

According to our ranking calculations presented earlier, new peers will not

outrank the old ones until user accesses them more than 100 times each. This might take

very long time. We need to speed up this process. The goal is to get the user connected to

the appropriate community in fewer accesses. In the following subsections, we present

two techniques that can be utilized to enhance our peer ranking process to deal with

changing user interest. Their implementation and evaluation o f these techniques is,

however, left as a future work. These two techniques are aging o f accesses and access

weights. These techniques build on temporal locality of peer accesses, which we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

discussed earlier in this chapter. The main idea is to enable peer ranks to be decided

mainly based on more recent accesses.

In order to introduce ranking weights or implement aging, we need additional

information about accesses. Most importantly, we need to know the time at which each

access occurred. To realize this, each node maintains an access log instead o f maintaining

merely the access counts. Each entry in the access log represents one access. The

information in each log entry includes the unique identifier o f the peer involved in the

access, the identifier o f the accessed item/document, the time o f access, and the type o f

access (i.e., whether it is incoming access or outgoing access). As discussed earlier, a

node does not have to maintain this information for every peer in the network. Rather, it

needs to account for only the peers with which it was involved in accesses, which is

usually a very small subset o f the whole set o f nodes. The identifier o f the item accessed

is not used by the new ranking techniques presented in the following subsections.

However, we choose to include it to enable further enhancements in the future. Figure 3.4

shows the structure o f our access log entry.

Access type Peer UUID Document ID Time o f access

Figure 3.4: Structure o f Freelib access log entry

3.2.8.1 Aging of Accesses

Aging o f accesses is a technique that eliminates older accesses from the calculations of

peer ranks. This allows peer ranks, and hence the order o f peers on the ranked list, to be

decided based on the more recent accesses. Consequently, the most recent user interest as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

characterized by the ranks will be reflected in the access network topology. Aging of

accesses is typically realized by utilizing the timestamp field in the access log entries. A

time threshold is calculated based on a certain maximum age o f accesses that should be

included in peer ranking. For example, if we decide that we want to include accesses

whose age is at most 5 minutes, the time threshold is calculated by subtracting 300,000

milliseconds (that is 5 minutes) from current system time. We then process the access log

starting from the most recent log entry and scanning backward. We calculate the access

counts for the individual nodes as well as the total number o f accesses. We stop when we

reach a log entry whose timestamp is earlier than the calculated time threshold. In order

to make sure that we include adequate number o f accesses, we augment this process with

another constraint that specifies the minimum number o f accesses that must be processed.

The time threshold constraint is relaxed whenever its enforcement results in processing

fewer accesses than the minimum required number o f accesses. Listing 3.4 outlines the

algorithm for enforcing aging o f accesses in the peer ranking process.

3.2.8.2 Access Weights

Another way to handle changing user interest is by introducing access weights based on

time of access. The main idea is to assign higher weights to more recent accesses to speed

up the process o f connecting the user to relevant nodes when user’s interest changes. To

calculate peer ranks using this method, each access is assigned a weight that is based on

the time o f access. And instead of merely counting the accesses, the weights for accesses

that involve each peer are added up and normalized by dividing by the total weights

(similar to our basic ranking). Our ranking formula based on access weight is given in

Equation 3.8. It shows the calculation o f the rank assigned to node Nj by node N{. In this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

Equation wy is the total outgoing access weights from node TV,- to node Nj and vvy, is the

total incoming access weights from Nj to TV,. Listing 3.5 outlines the algorithm for

calculating access weights in the ranking process.

Listing 3.4: Calculating access counts using the aging technique

calculateAccessCounts (accessLog, maxAge, minNumber O f Accesses) {
oldestTimestamp = getCurrentSystemTimeQ - maxAge;
fo r (i= accessLog.sizeQ -1 ; i> = 0; i—) {

logEntry = accessLog. getLogEntryAt(i);
if((logEntry.getTimestampO < oldestTimeStamp) &&

(i < accessLog. sizeQ - minNumber O f Accesses))
break;

if (logEntry.getTypeQ == LogEntry.OUTGOING) {
incrementOutgoingAccesses(logEntry.getPeerQ);
incrementTotalOutgoingAccessesQ;

}e lse{
incrementIncomingAccesses(logEntry.getPeerQ);
incrementTotallncomingAccessesQ;

}
}

}

Listing 3.5: Calculating access weights based on the access log

calculateAccess Weights (accessLog) {
fo r (i= 0; i < accessLog.sizeQ; i+ +){

logEntry = accessLog.getLogEntryAt(i);
weight = calculate Weight(logEntry. getTimeStampO);
if(logEntry.getTypeQ == LogEntry.OUTGOING)}

incrementOutgoingAccesses(logEntry.getPeer(), weight);
incrementTotalOutgoingAccesses(weight);

}else{
incrementIncomingAccesses(logEntry.getPeer(),weight);
incrementTotalIncomingAccesses(weight);

}
}

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We need a suitable mathematical function to calculate the weight o f the individual

accesses. The required characteristic in any weight function to use is that the generated

weights should decrease as accesses age. Giving higher weights to more recent accesses

enables them to have more influence on the selection o f friends. Consequently, fewer

recent accesses will connect the user to relevant nodes when user interest changes. A

variety o f weight functions could be utilized to impose this behavior. In fact, the aging

technique discussed in the previous section is equivalent to the weight function in

Equation 3.9. It assigns a weight o f 1.0 to accesses whose timestamp is more recent than

a certain oldest timestamp and a weight o f 0.0 otherwise. Figure 3.5 shows the

corresponding graph for this weight function.

1.0 timestamp > oldestTimestamp

otherwise {Eq. 3.9)

1.2
weight(age)

0.8

0.6

0.4

0.2

0
threshold age

Figure 3.5: Weight function equivalent to the aging technique

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

Equations 3.10.a, 3.10.b, 3.10.C show some other possible weight functions. In

these Equations, c is a scaling constant and M (used in Equation 3.10.C only) is the

maximum relevant age. The corresponding graphs for these weight functions are shown

in Figure 3.6.

w =__ ____________________ {Eq. 3.10.a)
c x age

1
w = ■

log ft(6 + cxage)
(Eq. 3.10.b)

age<M

0 otherwise {Eq. 3 .1 0 .6)

1.2

1 /log2 (2 + age)1

0.8

0.6

0.4

0.2

0
age

1 / age

0.8

0.6

0.4

0.2

age

(a) (b)

1 - a g e / M

0.8

0.4
0.2

age

(C)

Figure 3.6: Graphs for weight functions in Equation 3.10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

In the next subsection, we present a preprocessing technique to avoid irregularity

o f access weights that can result from long intervals o f user inactivity.

3.2.8.3 Preprocessing Access Patterns

Intervals o f user inactivity are common in access patterns. User activity, typically,

consists o f a series o f sessions separated by intervals o f inactivity as shown in Figure 3.7.

Access patterns can be preprocessed to enhance the ranking weights and the aging

technique.

Long intervals o f inactivity could cause our access weights to be dominated by

too few recent accesses. In other words, these long intervals o f inactivity could result in

large difference in weights assigned to accesses in different sessions. In the extreme case,

some sessions might totally dominate the other sessions. Consider, for example, the

pattern in Figure 3.8.a. If we perform the weighted ranking as described earlier, session

si will dominate the other sessions because o f the long inactive interval that separate this

session from the others. This is not desirable, especially if si consists o f few accesses. To

avoid this anomaly, we need to normalize long inactive intervals, as shown in Figure

3.8.b, so that more recent sessions get relatively more weights over older ones but do not

totally dominate them.

Accesses

> Time

Intervals of Inactivity

Figure 3.7: A typical access pattern consists o f sessions separated by inactive intervals

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

Inactive interval

Figure 3.8: a) An access pattern; b) The same pattern after eliminating inactive intervals.

Listing 3.6: Calculating access weights along with normalization o f inactive intervals

calculateAccess Weights (accessLog) {
timestamp = getCurrentSystemTimeQ;
timeAdjustment = 0;
fo r (i= accessLog.sizeQ -1 ; i >0; i—) {

logEntry = accessLog.getLogEntryAt(i) ;
interval = timestamp - logEntry.getTimeStampQ;
i f (interval > I max) {

timeAdjustment + = interval - Imax;

}
weight = calculate Weight(logEntry.getTimeStampQ + timeAdjustment);
if (logEntry.getTypeQ == LogEntry. OUTGOING){

incrementOutgoingAccesses(logEntry.getPeer(), weight);
incrementTotalOutgoingAccesses(weight);

}else{
incrementlncomingAccesses(logEntry.getPeerQ,weight);
incremenf[otalIncomingAccesses(weight);

}
Timestamp = logEntry.getTimeStampQ;

}

Listing 3.6 outlines our algorithm for calculating the weights along with

normalization o f intervals o f inactivity. We monitor the intervals between consecutive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

accesses and normalize them if they are longer than a certain threshold Imax. As we scan

through the access log, we maintain an adjustment value that represents the total amount

by which we should adjust the timestamp o f each access. This value is calculated by

accumulating the total amount o f time eliminated as we normalize inactive intervals.

3.2.9 Handling Temporary Change in User Interest

Temporary change in user interest is indicated by occasionally searching off-topic

typically for short periods o f time. An example could be a user that is searching in a main

topic such as bio-informatics but occasionally searching for information about foreign

countries when she is traveling. We have two issues related to this search pattern. First,

we need a way to enable these temporary search requests to reach beyond the user’s

community in order to return the highest recall possible. Second, we need to make sure

that accesses related to these temporary search queries do not affect the access topology

and cause the user to get disconnected from her main community. The Freelib framework

provides a global search mode that can be utilized to address the first issue. Global search

uses the support network to forward the search queries and hence enables these search

queries to reach beyond the user’s community. When searching off topic, the user can

utilize this global search mode. We discuss the global search mode in details in chapter

V. To address the second issue, a configuration setting can be made available to the user

to exclude these temporary accesses from the ranking calculations. Before starting to

search off-topic, the user can turn off the ranking process as well as the access, which

effectively prevents accesses related to temporary shift in user interest from changing the

access topology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

3.2.10 Dual and Multiple Interest

Sometimes, a user might have interest in multiple topics. An example o f this would be a

researcher who is actively doing research in an interdisciplinary research area such as

Bioinformatics. Such user will typically search equally in the two individual topics. In the

case o f the Bioinformatics, the individual areas are Biology and Information Technology

or Computer Science. In general if a user interest spans n topics, her accesses will be

distributed over these topics. Consequently, the friend list will contain peers from and be

able to search those different communities. The aging and access weights techniques

described earlier can also help in this scenario. When a user is actively searching in one

of her topics o f interest, these techniques will adjust the access topology and the user will

get connected to more friends from the corresponding community. As the user starts to

search in a different topic, the topology will be adjusted as well the user will get

connected to more friends from the corresponding community. The implementation and

evaluation o f these techniques is, however, left as a future work.

3.3 Summary

In this chapter, we introduced our Freelib network architecture. We started by describing

the Support network which is built based on the Symphony protocol [43]. We described

the various protocols needed for building and maintaining the support network. We then

introduced the Access network, which is evolved continuously based on simple access

pattern analysis. We a method for capturing mutual interest between users and described

a technique to rank peers at each node according to mutual user interest. Our method for

capturing mutual user interest and peer ranking is an implicit and transparent one. No

explicit feedback from the user is needed. We described how to build the access topology

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

based on the outcome of the peer ranking process and showed how our method evolves

the participating users into communities o f common interest. Finally we described

methods and techniques for handling changing user interest. In the next chapter, we

discuss how to generate system-wide unique node identities and introduce our discovery

protocols.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

CHAPTER IV

NODE IDENTITY AND DISCOVERY PROTOCOLS

In this chapter we introduce the ‘Node Identity’ and ‘Discovery’ protocols. In our Freelib

framework, generating unique node identities is essential. Node identifiers are utilized by

our access logging, ranking algorithms, and discovery protocols. Non-unique node

identifiers would result in inaccurate ranking calculations and incorrect discovery results.

Taking into consideration the fact that nodes in a peer-to-peer system are

autonomous and users have the freedom to join and leave the network at any time and as

often as they wish, we need to provide a mechanism for discovery o f peers. The

discovery mechanism is needed for example when a node joins back after leaving as the

information it has about other peers might be outdated. During the time the node is

disconnected, nodes might leave the network and join back using different IP addresses

and/or port numbers. In addition, nodes get a new ring location on our support network

virtual ring every time they join. This emphasizes the need for a discovery protocol that

enables nodes to rediscover their access contacts and friends when they rejoin. The one

question that a discovery protocol answers is: given the unique identifier o f a node, what

is its current information (e.g., IP, port, ring location). Hence, in our context, ‘discovery’

refers to the finding o f a node’s current information given its unique identifier (UUID).

4.1 Node Identity

As discussed earlier, we need a system-wide unique node identification mechanism. This

mechanism should be a distributed one as we do not want to introduce centralized

components into our model. Nodes should not change their identifiers; rather, identifiers

must be persistent. This is critical for the accuracy of the ranking calculation and for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

discovery protocol. This persistence requirement disqualifies session identifiers such as

IP and port pairs and ring locations. These are not persistent; rather, they might change

every time the user joins the network.

To fulfill these requirements, we implemented version 4 o f the Universally

Unique Identifier (UUID) internet draft [37]. UUID is also documented as part o f ISO

standard for Remote Procedure calls [27]. It is documented more recently in an

International Telecommunication Union standard [28] and IETF published an equivalent

RFC [36]. UUIDs are 16 bytes (128 bits) identifiers. The canonical representation of

UUIDs is 32 hexadecimal digits separated by hyphens as shown in the following XML

element:

<uuid>8b27b39a-a907-4103-bcef-b3e375bc355d</uuid>

4.2 Discovery

In a system with no centralized components, discovery is not simple; rather, it is a

complicated task. The simplest approach to discovery is to flood the access network with

the discovery request. This is, however, bandwidth inefficient. We introduce two new

discovery protocols that are much more efficient in terms of bandwidth usage. These are

the DHT discovery and the Link discovery methods. The following subsections cover a

comparison of discovery protocols. We start by discussing the Flooding method and then

we follow it by presenting our new discovery methods. Finally, we compare the

bandwidth usage for these discovery protocols.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

4.2.1 Discovery by Flooding

This approach uses flooding. Discovery requests are forwarded by every node to all its

contacts and friends up to certain TTL. Although, this approach is straightforward to

implement, it is very bandwidth inefficient as number o f messages grows exponentially

with increasing TTL. If we have TTL of h hops and c contacts per node on average, the

fa
number o f messages per discovery request would be Q(c). For example, for TTL = 7 and

1 0 contacts per node, the number o f messages per discovery request is more than 1 0

millions. Although that many messages are used, the request might not reach every node

in the network because o f the TTL. This could cause the discovery protocol to fail to

locate information about existing nodes.

4.2.2 DHT Discovery

In the DHT approach, we build and maintain a distributed hash table (DHT) for storing

discovery information of Freelib nodes. According to our definition of discovery, we

want to enable nodes in our network to discover current information about other nodes

including their IP addresses, port numbers, and ring locations. This information

represents the values to be stored in our discovery hash table. We use the unique

identifiers (UUIDs) o f the nodes as keys. Hence, an entry in our discovery hash table

corresponds to one node and maps from that node’ UUID to its current information. The

basic operations supported by the hash table are insert(UUID, nodeinfo) and

retrieve(UUID). The former inserts a hash table entry with the specified UUID and

nodeinfo as its key and value respectively in the distributed hash table. The latter

retrieves the nodeinfo record associated with the specified UUID or NULL if no such key

can be found in the distributed hash table. In order to perform these two operations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

efficiently, we need to be able to efficiently route the corresponding messages to the node

responsible for storing the corresponding DHT entry. We use Symphony [43] for this

purpose.

The Symphony protocol, which we use in building the support network, routes

messages efficiently to nodes occupying or close to specific ring locations. If we can

compute the ring location o f the node responsible for storing a discovery entry, then we

can use the Symphony protocol to route the discovery message efficiently to that node.

Our computation o f the ring location that corresponds to a certain UUID can be

performed by any node and, hence, no centralized repository is needed. Our way to

achieve this is by equipping Freelib nodes with a universal one-way hash function h

under which every UUID is mapped to one and only one ring location loc = h (UUID).

Under this mapping, the ring location that corresponds to a certain UUID always remains

the same and does not change over time. At any moment, the node that manages ring

location loc on the support network is responsible for maintaining the corresponding hash

table entry (UUID, Nodeinfo). We remind the reader that the node that manages a ring

location is the closest node, on the support network virtual ring, to that location going

anticlockwise. Every discovery request, whether insertion or retrieval, involving a UUID

is routed using Symphony to the node at support network ring location loc = h (UUID).

Table 4.1 shows six nodes constituting an example Symphony ring. It shows for each

node its ring locations, UUID, h(UUID), and the node responsible for storing the

discovery entry. For example h(UUIDl) = 0.82, which makes node N5 responsible for

storing the discovery entry for N1. N5 is the closest node (anticlockwise) to location 08.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Table 4.1: Nodes in a Symphony ring and the corresponding nodes responsible for storing
their discovery entries

Node Ring Location UUID h(UUID) Node storing

discovery entry

N, 0.120 UUID, 0.82 n 5

n 2 0.251 u u i d 2 0.452 n 3

n 3 0.372 UUIDj 0.001 n 6

n 4 0.714 UUID4 0.741 n 4

n 5 0.800 UUIDj 0.130 N,

n 6 0.928 UUID6 0.401 n 3

Listing 4.1 and 4.2 outline the algorithms for sending out the requests for hash

table entry insertion and retrieval respectively. These algorithms use Symphony routing

protocol from [43] to route the discovery insertion and retrieval messages (the call to

SendSymphonyMessage in Listing 4.1 and 4.2). We discussed the Symphony routing

protocol in Chapter III. When a node receives a request for inserting a discovery hash

table entry, it inserts it into a local hash table. And when a node receives a request to

retrieve a discovery hash table entry, it returns the node information if the entry exists in

its local hash table or Unknown-Node if the entry does not exist. The absence o f a

discovery entry could happen because o f one or more o f the following reasons. First, the

node may have left the network and deleted its discovery entry upon leaving. Second, the

entry might have been lost due to the failure o f the node storing it. And third, the UUID

in the discovery request might be invalid (invalid is this context means that UUID has

never been used by any node). We shall introduce solutions to handle node failure (the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

second case above) through replication in the following section. For nodes that already

left the network and for discovery requests that involve invalid UUID, it is sufficient to

return Unknown-Node response. Listing 4.3 and 4.4 outline the processing of the

insertion and retrieval requests respectively by the receiving nodes.

Listing 4.1: Sending out request for insertion o f discovery information

insertDiscoverylnfo (String uuid_str, String nodeinfo) {
double loc = h (uuidstr);
SendSymphonyMessage (loc, new DiscoveryInsertMessage(uuid_str, nodeinfo));

}

Listing 4.2: Sending out request for retrieval o f discovery information

retrieveDiscoverylnfo (String uuidstr) {
double loc = h(uuid_str);
SendSymphonyMessage(loc, new DiscoveryRetrievalMessage(uuid str));

}

Listing 4.3: Processing of discovery insertion request

processDiscoverylnsert (String uuid str, String nodeinfo) {
localDiscoveryHashtable.put(uuid_str, nodeinfo);

}

Listing 4.4: Processing o f discovery retrieval request

processDiscoveryRetrieve (String uuidjstr) {
/ / i f entry exists, returns the associated node info, otherwise null is returned
return localDiscoveryHashtable.get(uuid_str);

}

These algorithms are straightforward. One critical feature, however, is the

consistency in generating the ring locations that correspond to node UUIDs. All nodes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

must use the same exact hash function whenever the ring location that corresponds to a

certain UUID needs to be generated. And therefore, the ring location that corresponds to

certain UUID stays the same regardless of the node that is generating it. Consequently, all

discovery requests that involve a certain UUID are routed to the same ring location.

Using this method, a discovery request is routed to its destination using

Q (— ——) messages, where n is the number o f nodes and k is the number o f long
k

contacts per node. This is an order o f magnitude less than the number o f messages used

in the flooding method. However, there is a small overhead at the time o f joining and

leaving the network. When a node joins the Freelib network, it needs to: 1) initiate the

insertion protocol for inserting an entry for itself using its own UUID as the key, which

costs at most —— messages; and 2) claim its share o f the distributed hash table from
k

the neighboring node on the support network, which costs 2 messages (a request and its

response). When a node leaves, it needs to: 1) delete its entry from the distributed hash

table, which costs ^ —— messages at most; and 2) transfer its portion o f the distributed
k

hash table to its neighboring node on the support network, which costs 1 or 2 messages

depending on whether an acknowledgement is sent back. The total overhead per node is

2 x j pg + 4 messages, which is still D. (— ——).
k k

Fault-tolerance of DHT discovery method can be enhanced in many ways. One

way to enhance it is to have every node periodically sends its discovery entry for

insertion. This recovers the discovery entry if it has been lost due to failure of the node

storing it. We call this DHT with Repetition. A second approach to enhancing fault-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

tolerance o f the DHT Discovery protocol is introducing replication. This is the subject of

the next subsection.

4.2.2.1 Replication of Discovery Information

Failure o f Freelib nodes can adversely affect our DHT discovery protocol. If a node fails

without having the chance to transfer the discovery entries it maintains to its neighboring

node on the ring, these discovery entries are lost from the discovery distributed hash

table. Consequently, any discovery requests asking for these entries will not be fulfilled.

This can cause inconvenience and disruption o f the discovery service to nodes especially

if the rate o f failure is high. We use replication to alleviate this issue and enhance fault-

tolerance o f the DHT discovery protocol. Replication is a popular technique to

significantly enhance availability. If the probability o f a node to fail is P, and nodes fail

independent from each other, then the probability o f r nodes to fail is P r . For example,

if P = 0.1 and r = 3 replicas, the chance of all three replicas to fail is 0.001, which is order

o f magnitudes smaller.

We introduce a new replication scheme that works at the granularity o f individual

discovery entries, instead of replicating at the level o f nodes. Instead o f having pairs of

nodes whose discovery information is exact replica o f each others, our replication scheme

selects r nodes for storing each discovery entry, where r is the number o f replicas. In

order for all nodes to be able to locate the replicas for a certain UUID, we use a universal

hash function h to determine the ring locations o f the r replicas as follows. The first ring

location is calculated based on the UUID of the discovery entry using h as before, loc = h

(UUID). The remaining r-1 ring locations are chosen such that the whole set o f r

replication ring locations are equidistant on the ring. For example, for r = 2, each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

discovery entry (UUID, Nodeinfo) is stored at two ring locations that are half way across

the ring from each other. These ring locations are loci - h (UUID) and loc2 - (locj +

0.5) mod 1.0. Table 4.2 shows the same nodes in our previous example, from Table 4.1,

with two replicas storing the discovery entry for each node.

To further illustrate what we mean by granularity level o f the individual discovery

entry, which we mentioned earlier; let’s consider nodes N2 and N 6 in Table 4.2. Each of

these nodes has N 3 as a first replica. However, the second replica for each o f them is

different. For node N2 , the second replica is N 6 whereas for node N 6 , the second replica is

N5 . When two nodes are selected as two replicas for a certain UUID, it does not mean

that they are exact replica o f each other; rather, it means that they are replicas for storing

this specific discovery entry.

Our discovery replicas are all the same level and there is no notion o f primary or

secondary replicas. In addition, there is no internal synchronization between replicas.

Rather, discovery insertion and deletion requests are sent to all the replicas. And when a

node leaves, it requests deletion o f its discovery entry from all its replicas. Discovery

retrieval requests can be handled in several different ways, however. One option is to

send discovery retrieval requests to all replicas simultaneously. Another option is to try

one replica at a time. In the later case, randomization could be utilized to achieve load

balancing. Alternatively, requests could be sent to the closest replica on the support ring

as this reduces the number o f forwarding steps required to reach the destination as

discussed in [43]. In this case, if a discovery fails, the next closest replica on the

discovery ring is tried. Listing 4.5 outlines the procedure for sending out discovery

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

insertion requests to all o f three replicas. Similarly, Listing 4.6 shows the procedure for

sending out discovery retrieval requests using all three replicas.

Table 4.2: Nodes in a Symphony ring and the corresponding nodes responsible for storing
their discovery entries, each entry is stored at two replicas.

Node Ring Location UUID h(UUID) Node storing

discovery entry

N, 0.120 UUID, 0.82 n 5, n 2

n 2 0.251 u u i d 2 0.452 n 3, n 6

n 3 0.372 UUIDj 0.001 n 6, n 3

1 N4 0.714 UUID4 0.741 n 4, n ,

1 Ns
0.800 u u i d 5 0.130 N,, N4

I N6 0.928 u u i d 6 0.401 n 3, n 5

Listing 4.5: Insertion o f discovery information at all three replicas

insertDiscoverylnfo (String uuidstr, String nodeinfo) {
double loc, = h (uuid_str), loc2 = (loc, + 0.33) mod 1, loc3 = (loc, + 0.67) mod 1;
SendSymphonyMessage (loc,, new DiscoveryInsertMessage(uuid_str, nodeinfo));
SendSymphonyMessage (loc2, new DiscoveryInsertMessage(uuid_str, nodeinfo));
SendSymphonyMessage (loc3, new DiscoveryInsertMessage(uuid_str, nodeinfo));

}

Listing 4.6: Retrieval o f discovery information from all o f three replicas simultaneously

retrieveDiscoverylnfo (String uuid str) {
double loc, = h (uuid_str), loc2 = (loc, + 0.33) mod 1, loc3 = (loc, + 0.67) mod 1;
SendSymphonyMessage(loc,, new DiscoveryRetrievalMessage(uuid_str));
SendSymphonyMessage(loc2, new DiscoveryRetrievalMessage(uuid_str));
SendSymphonyMessage(loc3,new DiscoveryRetrievalMessage(uuidstr));

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

4.2.3 Link Discovery

Link discovery is an alternate, new approach to node discovery in Freelib. In this

approach, each joining node establishes and maintains a discovery link to a target node

whose ring location is specified by hashing the joining node unique identifier. In other

words, instead of building a discovery DHT, every node establishes one discovery link to

the manager o f the ring location loc = h (UUID), where h is the universal hash function,

UUID is the unique identifier o f the node. We refer to the node that establishes the

discovery link as the owner o f the discovery link and to the target node o f the discovery

link o f as its discovery contact. The discovery contact o f a node can be located anywhere

on the support ring. This depends on the ring location generated by the hash function h

and the density o f nodes on the ring. When a node joins, it establishes a link to its

discovery contact. Symphony routing is used when a request to establish a discovery link

is sent. Whenever a node is leaving the network, it notifies it discovery contact and

disconnects its discovery link. The discovery link is a live link that requires keep-alive

mechanism such as periodical pings. These pings are light-weight messages that are sent

directly to the destination. No peer-to-peer routing is involved at all when ping messages

are sent. In order to discover information about a node jV„ a discovery request is routed

using Symphony to N (s discovery contact, which costs Q(*° ̂ n) messages.
k

Maintenance o f the discovery link is needed in two cases: 1) when the discovery

contact fails; and 2) when a new node joins using a ring location that is between the

location o f the discovery contact and the actual ring location associated with the

discovery link (which is loc = h (UUID), where UUID is the unique identifier o f the

owner o f the discovery link). In the first case, the predecessor o f the discovery contact

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

becomes the new discovery contact for the owner o f the discovery link. In the second

case, the newly joining node becomes the new discovery contact. To further illustrate

this, consider the following example scenario:

1. Initially we have node A at ring location 0.7 manages the interval [0.7, 0.8),

node A a t ring location 0.61 manages the interval [0.61, 0.7)

2. Node B is joining say at ring location 0.1, B ’s UUID hashes under h to the

value o f 0.75, B establishes discovery contact to A

3. Now, node A is going down, node X s interval becomes [0.61, 0.8), X is node

B ’s discovery contact, and B establishes discovery link to X

4. Now, node Y is joining at location 0.74, X s interval is now [0.61, 0.74), Y s

interval is [0.74, 0.8), Y is now the discovery contact for B, and the link needs

to be reestablished

5. Assume now that another node Z is joining at ring location 0.76, F s interval

becomes [0.74, 0.76) and it is still the discovery contact for B, nothing needs

to be changed.

In both cases above, failure o f discovery contact and new node joining between

discovery contact and the actual ring location associated with the discovery link, the

discovery link needs to be reestablished, which costs Q ——) messages. This cost can
k

be significantly reduced. Adding little additional information to the ping messages can

help in the case o f failure o f the discovery contact. The discovery contact needs to send

information on its ring predecessor in the ping messages. When a node detects failure of

its discovery contact, it knows the predecessor and it immediately establishes discovery

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

link to it. This effectively reduces the cost to Q (l) . In the case o f a new node joining and

becoming the new discovery contact (like node Y in step 4 o f the example scenario

above) the original discovery contact just notifies the discovery link owner, which

establishes a new discovery link to the joining node. This also reduces the cost in this

case to Q (l) . A separate issue is the failure o f the owner of a discovery link. In this case,

the discovery contact detects failure o f the discovery link owner and releases its resources

accordingly. No maintenance is required in this case.

4.2.4 Comparison of Discovery Algorithms

Table 4.3 shows a comparison the cost o f the various discovery protocols associated with

events such as joins, leaves, node failure, and sending out discovery requests. All the

costs are per node cost. The repeated insertion and pings are performed periodically at a

certain rate per unit time. Other costs are incurred when certain events, such as node

failures and sending out discovery requests, happen. The table shows the costs o f these

operations for the Flooding, Plain DHT, and DHT with Repetitions, Replicated DHT,

Replicated DHT with Repetitions, and Link Discovery algorithms. As mentioned earlier,

the with-repetitions versions refer to variants o f the discovery protocols in which the

discovery insertion requests are sent periodically to avoid losing the discovery

information when nodes fail.

From the time complexity shown Table 4.3, we can see that Flooding has a high

cost associated with discovery requests. The number o f messages grows exponentially

with h (the max TTL). Plain DHT discovery and Replicated DHT significantly reduce the

cost o f discovery but suffer loss o f discovery information as nodes fail. The versions with

repetition enhance this by making that loss temporary as lost discovery entries are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

recovered at the time of the next insertion requests by the nodes whose discovery entries

were lost. In the last row in Table 4.3, we show the effect of node failure. The reader

should not that for replicated variants, losing a discovery entry happens when all the

replicas storing that entry fail. The chance for this to happen gets significantly smaller as

the number o f replicas increases. Link discovery beats the other DHT discovery protocols

in two cases, which are leave and periodical pings. When the discovery contact o f a node

fails, the discovery link needs to be reestablished. This is equivalent to re-insertion o f the

discovery entry in D H T with repetition. Based on this cost comparison, we chose to

implement and use the Link discovery protocol in our implementation o f Freelib universal

client. It avoids permanent loss o f discovery information. In addition, it replaces

unnecessary re-insertion requests, which cost rylog2 n\ each with simple ping messages.
*

Table 4.3: Comparison o f the various discovery algorithms

Flooding DHT
Discovery

DHT with
repetitions

Replicated
DHT

Replicated DHT
with repetitions Link Discovery

Join / Establish 0
k

a l0^ > f i (l0g2")
^ k k

Discovery £ 2(c *)
k

^ o i n

k
^ o i n

k
fxlogZ”)

k

Leave 0 £2(1) £2(1) Q (1) £2(1) n(i)
Periodical
Insertion / Pings N/A N/A

k
N/A Q(l0g2*)

k
n (i)

Failure of r Node

(for non-replicated
protocols, r = 1)

0
1

discovery
entry lost

1
discovery entry
lost temporarily
until next insert

1
discovery
entry lost

1
discovery entry
lost temporarily
until next insert

l
discovery entry
lost temporarily
until reestablish

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

4.3 Summary

We started this chapter by discussing the need for a method for generating system-wide

unique node identities and a specific solution: UUIDs. We then discussed the need for a

discovery protocol that enables nodes to find their previously discovered friends. The

straight-forward flooding technique is very inefficient and consumes considerable

network bandwidth. We then introduced two new discovery protocols that are built on top

o f the Symphony support network. The first is DHT discovery, which builds a distributed

hash table that maps node identities to node information. We discussed variants o f the

DHT discovery protocol that utilize repetition o f the insertion operation and other

variants that use replication o f the discovery information. The second major discovery

protocol we presented is Link discovery in which each joining node establishes and

maintains a discovery link to a target node whose ring location is specified by hashing the

joining node unique identifier. In this protocol, all nodes use the same hash function,

which guarantee that all discovery requests for a certain node identifier are routed to the

same ring location and reach the correct target node. We compare the complexity

associated with all the various discovery protocols discussed in this chapter and explain

our decision o f implementing Link discovery in our implementation o f the Freelib client

based on complexity of operations and target environment of Freelib.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

CHAPTER V

IMPLEMENTATION

In this chapter we present our design and implementation o f the Freelib peer-to-peer

client, which is implemented using the Java programming language. We start with

presenting the client design. We, then, briefly describe the various modules that

constitute the whole implementation.

Our implementation o f the Freelib client is highly modular. It consists o f modules

each o f which implements a specific functionality. Each module exposes one or more

public interfaces to the rest o f the modules and effectively hides the details o f the

implementation. This approach produced an easily maintainable source code as changes

to the implementation o f one module do not affect the other modules. We start by

describing the various modules in our client design. We then describe the process flow of

the various user and non-user triggered processes. This will help us demonstrate the

possible interactions between the various modules. We conclude this chapter with a

discussion of the various services that the current implementation provides to the Freelib

user.

5.1 Implementation Modules

The block diagram in Figure 5.1 shows our Freelib client design. In the following

subsections we present the various implementation modules. We group these modules

according to the common functionality or service they provide and present each module

group in a separate subsection. For example, the modules that provide services directly to

the user are in the User Modules group. Other groups include the Networks Manager

modules that are responsible for implementing the various network and topology

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

protocols; the Messaging modules that are responsible for communication between peers;

the Log and History modules responsible for maintaining the access log, search history

and the Registry, which is a central repository for peer info; and the Collection Manager

module that is responsible for indexing and storing metadata and full-text.

to network

ITTP

Publish
Messenger

Search | Access

Network Mana>

Collection Manager

Log | History
Registry

Collection Peers & local infoHistory/Log
MD + Full-text + Indexes

Figure 5.1: Block diagram of Freelib client

5.1.1 User Modules

The user service modules are four modules that interact with the user and implement

services consumed directly by the user. The first and immediately apparent to the user is

the UI module. This module provides the main graphical user interface through which the

user interacts with the system and invokes various services including publishing,

searching, and retrieval/access. We borrowed some of Freelib graphical user interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

from Kepler [33, 42]. The new features added in Freelib include multiple tabs for search

results and some o f the buttons on the main interface to support Freelib-specific

functionality. . Figure 5.2 shows the main user interface o f the Freelib client. At the top,

there is a set o f buttons that enables the user to invoke two o f the main services, namely

publishing and search. The other buttons in this set are the Settings button, which enables

the user to configure the Freelib client; the Connect/Disconnect button, which enables the

user to connect to and disconnect from the peer-to-peer network; and the Help button

which displays help information to the user. To the right o f the main buttons, an icon is

displayed. This icon is bright when the client is connected to the network and is grayed

when it is disconnected.

FreeLib 1.0 - n 4 's c lien t

[Local Collection Search: computers Search: t e s t
Title Creator Subject Publ. Date Peer

n3title n3author nSsubject 03-23-2004 n3::http:/)'1...
n1 title n1 author (nl subject 08-23-2004 nl ::http://1..
n2title n 2au thor n2sut>ject 08-23-2004 n2::http://1...

View DetailsClose TabExit FreeLib

Figure 5.2: Freelib main user interface

The middle area o f the main user interface consists o f overlay tabs for displaying

the local collection and the results for the ongoing user search queries. The first tab is

dedicated for displaying the items available in the local collection. For each ongoing

search query an additional tab is created to display the results for the query. The

information inside each tab is presented in tabular form with each row presenting various

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://1
http://1

80

metadata for one item/document from the result set (or from the local collection in case

o f the first tab).

In addition to the main buttons at the top, another set o f buttons is available at the

bottom of the main user interface. These buttons include the Exit Freelib button for

exiting the Freelib client; the Close Tab button for closing the current tab, the View

Details button for viewing the detailed metadata for the selected item/document, and the

Download button initiating download o f the selected item. The local collection tab is not

closable. Closing a search tab effectively releases any resources allocated for the result

set associated with it. The user is always prompted when the Exit Freelib or Close Tab is

clicked before the corresponding action is taken.

Figure 5.3 shows the publishing interface that is displayed when the user clicks

the main publish button. It allows the user to provide the various metadata fields and

choose a document to publish. Figure 5.4 shows the simple search interface, which is

displayed when the user clicks the main search button. It enables the user to enter her

search query. Freelib supports various types o f queries including exact search, proximity

search, fuzzy search, etc. We shall discuss the various query types later in this chapter.

Figure 5.5 shows the configuration interface. It allows the user to edit configuration

information such as port number to use and proxy information if user is behind proxy. It

also allows the user to edit her user profile including name, email address, and

description o f local collection.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

Publish DC Metadata X

Metadata Information - -..............-

Title* jFreelib: A Self-sustainable Digital Library Fram ework |

Creator*

Format

Subject*

[Sample Author]

doc date* (mm-dd-yyy)

[Digital Library]

1 ...Edlt 1
jo9-21-2004 |

I Edit I
Language* (English H
Description

Digital libraries are the cornerstones o f modern
information systems. They provide an
infrastructure fo r publishing and managing quality
content so it is discovered easily and effectively.
Digital libraries provide cost-effective access to a
■wealth o f information fo r remote and
o o n o rn n k ir / i lh ! / i i s n e r s e / t u s e r s th u s m a k in g th e m .

More

Upl o a d : C :\ashraf\researchypubl i cati onsVreel i bVreel i b sub m

* M andatory fields

S ave Cancel

Figure 5.3: Publishing tool: It enables the user to provide metadata and choose a
document for publishing

-Keywords -

Keywords "Freelib performance"~1 d|

Search Cancel

Figure 5.4: Freelib Search Interface showing a proximity search query entered. Items
returned as results for this query must have the two words Freelib and performance

within 10 words from each other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

Settings [X

Here you can view/update settings.
Click the "Help" button for more information.

initial Contact Addresses~

Host I Port Add Contact

Initial Contacts

FreeLib Local Server Settings---------------------------------------

Local Port [.

□ Behind NATIProxy

External Host External Port

r-User Profile---------------------------------------

Name jYour Name Here

Email [your@email. address.here

Content |my publications_________

OK | [Cancel | | Help

Figure 5.5: Configuration tool: It enables the user to provide configuration information
and edit user profile

In addition to the UI module, there are three other modules related to user

services. These are the Publish, Search, and Access modules. The publish module is

invoked when the user submits metadata for publishing. Currently, this module only

publishes to the local collection. In the future, replication to other nodes might be utilized

for better availability o f content. The Search module implements the search protocol. It is

invoked by the UI module when the user enters a search query. This module sends out the

search queries, collects results, and forwards them back to the UI module. By default, this

module searches the local collection as well. In the future, this feature, however, should

be made configurable by the user. The Access module is a simple module that is invoked

by the UI module when the user clicks the download button. It sends out access requests

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

and handles the responses by saving the downloaded content into a specific subdirectory

inside the directory structure o f the installed Freelib client.

5.1.2 Messaging Modules

There are two modules that implement the messaging framework. These are the

Messenger module and the HTTP module. The messaging framework is utilized by the

other modules that communicate with other Freelib nodes, e.g., the Search and Access

modules. The Messenger module is invoked by the other module to deliver Freelib

messages to other nodes. The Messenger module supports both synchronous and

asynchronous communication modes. In the synchronous mode, the sender thread blocks

waiting for a response message. In the asynchronous mode, the sender thread returns

immediately and the Messenger forwards response back to the module as it arrive. The

HTTP module encapsulates Freelib messages in HTTP requests and sends them out to

their destination. The HTTP module on the other end extracts the Freelib message from

the incoming HTTP request and forwards it to the Messenger module for delivery to the

appropriate module. The Messenger module exposes two public interfaces. These

interfaces are the MessageHandler interface and the Messengerlnterface. The messenger

interface is implemented by the main Messenger class. It specifies the methods that other

modules can call to send out the various message types supported. The message handler

interface must be implemented by any module that wishes to receive Freelib messages.

The single method declared by this interface is called by the Messenger module to deliver

incoming messages to the implementing modules. The class diagram in Figure 5.6 shows

the major classes and interfaces in the Messenger module. In addition, it shows the search

module, as an example, implementing the message handler interface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■'too Freelib

« in te rface >>
Messengerlnterface

{From messenger}

Gpmat/ang'
public mid sendAs/rKhruncusMe.ssage(Message msg, Peer peer),
public Afbsstg* sendM ssssgml M essage msg, P e tr peer }
public mid rt^ stttM basag tH tn O tifM tsseg tH tn dh r mt sta g e Htndkr

M essenger
{ Fram m essenger }

Search

S e a r c h
{ From Search}

A tirtixaos
private Messengerlnterface m essenger

Qp«wtfan*
public Message processMessage(Message msg)

A O tbuU u
private HashMap m essage Handlers;

public void sendPsynchrcnousMessageC Message m sg, Peer p ee r)
public Message sendM essage(M essage m sg. Peer p ee r)
public void registerMessageHandlerf MessageHandler messageHandler

<<irrterface>>
Message Handier

I'From messenger}

A M tx to s

CfcmwtVyis
public Message pmoessM essage (Message ms>

Figure 5.6: Class diagram showing the major classes in the Messenger module and the Search module implementing the
MessageHandler interface

Re
pr

od
uc

ed

wi
th

pe
rm

iss
io

n
of

the

co
py

rig
ht

 o
wn

er
.

Fu
rth

er
 r

ep
ro

du
ct

io
n

pr
oh

ib
ite

d
wi

th
ou

t
pe

rm
is

si
on

.

85

5.1.3 Network Modules

The network modules are the modules responsible for implementing and maintain the

network protocols. They are four sub-modules that are included in the main Network

Manager module. The first o f these four modules is the Ring Manager module. The ring

manager implements the join and leave protocols. In addition, it is responsible for

maintaining the support network short contacts. The second module is the Long Contact

module, which is responsible for establishing and maintaining the support network long

contacts. The third module is the Friend Manager module. The Friend manager is

responsible for establishing and maintaining friends based on the ranked list o f peers. The

fourth and final module is the Maintenance Manager module which is a helper module

that implements some functionality used by the other network modules for maintaining

their corresponding portion o f the network architecture. Each of these four modules

implements the message handler interface and registers with the messenger module as

message handler similar to the search module as shown in Figure 5.6. This enables these

modules to use the messaging framework to send and receive messages.

5.1.4 Log, History, and the Registry

These modules implement internal functionality that does not directly involve any

network communication or use o f the messaging framework. The Log Manager module is

responsible for logging the incoming and outgoing access in which the local user is

involved. This is the access log that is utilized by the peer ranking process to produce the

ranked list o f peer, which is in turn used for establishing the access contacts. The log

manager is invoked by the access module whenever an incoming or outgoing access

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

occurs. Every time the peer ranking process starts, it scans through the access log,

calculates peer ranks, and produces the ranked list.

The History module is not implemented in the current version o f the Freelib

client. It is intended for maintaining a search history o f the local user. The search history

can be utilized in many ways. It can be used to infer useful information about the user

interest. In addition, it can be made available to the user as necessary for selectively

repeating previous searches.

The Registry module is a local repository o f local and peer information. It

contains the Freelib client configuration information and user profile information. In

addition, it contains the most recent information about peer nodes.

5.1.5 The Collection Manager

The Collection manger is responsible for maintaining the local collection. In the current

implementation, the local collection contains the metadata, documents, and indexes for

the content published by the local user. In future, content replicated from other nodes

could be maintained by the collection manager in a separate collection. The collection

manager implements a DAO (Data Access Object) design patterns to allow different

implementations to be plugged into the client. The DAO pattern exposes a public

interface which declares the public methods used for data access. All the details o f the

implementation are hidden from the user of the module. The supported collection types in

the current Freelib implementation are an XML File System-based collection and a

Lucene-indexed collection. The former uses XML files to save the metadata. The later

uses the Apache Lucene [41] open source software for indexing the metadata. Other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

collection types can be plugged as necessary, e.g., a Database collection using

JDBC/ODBC.

5.2 Freelib Client Process Flow

Figure 5.1 shows the block diagram of our Freelib client. The various modules are

represented by rectangles that show the module names. The lines connecting the modules

represent possible interactions between pairs o f modules. The possible flow o f

information between the various modules includes:

■ Search, which consists o f the following interactions:

1. User clicks a Search button on the GUI and provides the search

keywords,

2. UI module creates and displays a tab for displaying the results and

invokes the Search module passing the search query,

3. Search module invokes the Log/History module to insert an entry in

the search history.

4. Search module invokes the Collection Manager to search the local

collection, The collection manager responds by returning the matching

results

5. Search module queries the Registry module to get the list of peers to

forward the search query. The Registry module responds by providing

the list o f peers. The list o f peers depends on the search mode. We

discuss search modes later in this chapter.

6. The Search module invokes the Messenger module to forward the

search query to the peers on the list provided by the registry module in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

an asynchronous. When results from other peers arrive, the Messenger

module invokes certain call-back methods in the Search module

passing the results.

7. The Messenger module invokes the HTTP module to encode the

messages in http requests and send them to the peers on the list.

Responses from other peers are decoded by the HTTP module and the

messages are presented to the Messenger module.

8. The Search module passes the results to the UI module as they arrive

from the local collection as well as from other peers.

■ Access, which consists o f the following interactions:

1. User selects an item from the results tab o f an ongoing search query

and clicks the Download button on the main UI,

2. The UI module invokes the Access module passing the available

information about the item o f interest including its identifier and

information about the peer that has that item.

3. The Access module invokes the Log module to log the access.

4. The Access module invokes the Messenger module to send out the

download request message. The reply message is then passed back to

the access module, which saves the downloaded file and invokes the

UI module to notify the user.

5. The Messenger module invokes the HTTP module to encode the

message in an http request and send it to the peer. Response from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

peer is decoded by the HTTP module and the message is forwarded to

the Messenger module.

■ Publish, which consists o f the following interactions:

1. User clicks the Publish button on the main UI, fills in the metadata and

attaches the full-text document.

2. UI module invokes the Publish module to publish the item.

3. The Publish module passes the metadata and the full-text to the

Collection Manager module, which indexes the metadata and stores

the full-text in the local collection

■ Incoming Search, which consists o f the following interactions:

1. HTTP module receives a search request from another peer, decodes it

and passes the search message to the Messenger module.

2. The Messenger module passes the message payload to the Search

module, which extracts the search query

3. The Search module invokes the Collection Manager module to search

the local collection, and constructs and passes a reply message to the

messenger module to send to the original peer that owns the search

query through the HTTP module as usual.

4. The Search module invokes the Registry module to get the list o f peer

to which the search message should be forwarded, The Registry

module responds with the list.

5. The Search module invokes the Messenger module to forward the

search message to the list o f peers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

6. The Messenger module invokes the HTTP module to encode the

message into HTTP requests and send them out.

■ Incoming Access, which consists o f the following interactions:

1. HTTP module receives an access request from another peer, decodes it

and passes the access message to the Messenger module.

2. The Messenger module passes the payload o f the message to the

Access module, which extract the access request.

3. The Access module invokes the Log module to log the access.

4. The Access module invokes the Collection Manager to get the file

name. The Access module, then, constructs a response message,

attaches the full-text to the message, and invokes the Messenger

module to send the message

5. The Messenger module invokes the HTTP module to send the

message.

■ Ranking, which consists of the following interactions:

1. Log Manager module detects that A, the number o f accesses since the

last ranking process was performed, exceeds Athreshoid and verifies that

enough time has passed since the last ranking process was performed.

Then it triggers the ranking process.

2. After the ranking process finishes, the Log Manager passes the new

ranked list to the Network Manager to update the access topology

accordingly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

3. The Friend Manager updates the topology and invokes the Registry

module to store the new Friend list.

5.3 Freelib Services

Every node in the Freelib framework maintains a small collection. The size o f the

individual collection is usually up to few hundreds to few thousands o f items; although

there is no limit imposed by the framework and in fact, it can grow as needed. Freelib

creates a huge virtual collection out o f these smaller individual collections. The direct

services Freelib offers its users are publish, search and retrieval/access. The framework

is, however, extensible and additional services such as collaboration services can be

added in the future. We discuss these services in the following subsections.

5.3.1 Publish

Publishing is the process o f making items available in the collection and ready to be

discovered and used by the various services. The publishing process consists of: ingesting

metadata and documents, indexing them, and generating identifiers for items. In the

simplest case, items are published to the local collection. However, content availability

can very much be enhanced in face o f node failures and disconnections by introducing

content replication. Replication o f content is, however beyond the scope of this work. We

discuss it with other possible ways to extending this work in chapter VI.

5.3.2 Search

Search is the process o f locating relevant items. Search in Freelib is mainly keyword

search based on the metadata. Full-text search, which extends the search to look inside

document text, is not currently supported by Freelib. It is, however, a candidate as a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

short-term future extension. The search protocol in our system is based on peer-to-peer.

Requests are forwarded from node to node up to some TTL.

Based on our categorization of links in our overlay topology, Freelib nodes can

utilize two search modes, which are community search and global search. Community

search is suitable for nodes that are already connected to enough friends. In this search

mode, requests are forwarded using the friend links only. In this search mode, a smaller

TTL is usually enough to get most o f the relevant results as friends are close to each other

on the topology. Global search, on the other hand, is suitable for newcomers, which are

nodes joining for the first time and which does not having enough friends. On every hop,

a request is forwarded to all friends, short, and long contacts. This mode usually uses a

large TTL to enable the new nodes to discover their friends more quickly.

Various types o f search queries are supported by the current Freelib client

implementation. Table 5.1 gives the different search types, an example, and the meaning

o f each. We support these search types based on the Apache Lucene indexing engine [41]

that we are utilizing in our Collection Manager module.

5.3.3 Access

Access is a simple service in Freelib. Once the user submits a search request and results

start to arrive, they are displayed to the user. At this time, the user can view the metadata

of any item on the result list. The user may select any o f these items to download, which

we refer to as access. Access is done by direct communication with the peer having the

item. It does not involve any forwarding on the peer-to-peer topology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

Table 5.1: The different types o f search queries in Freelib

Search Type An Example Query Meaning / Matching Results

Simple keyword search Freelib matches items that have the word Freelib

Proximity Search “Freelib performance"-10 matches items that have the two words within 10 words
from each other

Similarity Search

(Using Levenshtein/Edit
distance)

roam- returns items that have words similar to roam e.g.,
roam, room, foam

Wildcards te?t matches words like test, text

archiv* matches words like archive, archives, archival, etc.

Exact phrase “digital library" matches items that have exact phrase

Field-Specific title: performance matches items that have the word in the title field

Composite Queries digital AND library matches items that have both words

5.4 Summary

In this chapter, we presented our implementation o f the Freelib framework. We presented

our client architecture, which consists o f many modules each implementing certain

functionality. We then described the process flow for the key user- as well as non-user-

triggered processes in the system. These include the processes associated with events like

the search, publish, access, incoming search, incoming access, and the peer ranking

process. Finally, we present the services that the Freelib framework provides to its users

including the search, publish and access services. We discuss the various supported

search types including simple keyword search, exact phrase search, proximity search,

similarity search, wildcard search, field specific search, and composite search queries.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

CHAPTER VI

FREELIB PERFORMANCE EVALUATION

In this chapter, we present the evaluation o f Freelib. The main objectives o f the test and

evaluation of Freelib are:

1. To perform rigorous testing o f our implementation and ensure the correctness

o f all the various functions especially the network protocol, and

2. To measure the performance gain Freelib achieves over other comparable

systems.

We realized the first main objective by creating a testbed using the Freelib client

that we implemented. The testbed consisted o f 20 machines each running Linux and

having 2 GB of memory. We ran multiple nodes on every machine. These nodes used the

implementation o f the Freelib client. This involved using the operating system network

protocols as well as the physical network. We shall discuss this in more details later in

this chapter. In order to achieve our second objective, we built an event-based simulator.

This simulator enabled us to simulate large networks o f thousands o f nodes and various

community sizes. We studied different performance aspects including the quality o f the

results (mainly recall of the search results), the bandwidth usage, and the response time.

We shall discuss this in greater details later in this chapter.

This chapter is organized as follows. We start by discussing our methodology for

evaluating Freelib. Then, we present the testbed we built and present the outcome o f one

set of experiments that we performed using that testbed. We then show how the

experiments justified the need for building a simulator. We, then, present our event-based

simulator discussing the simulator design and the results of the experiments we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

conducted using the simulator. We conclude the chapter with a summary o f our

evaluation results.

6.1 Evaluation Methodology

This section describes our approach to evaluating Freelib. We start by outlining our user

model. Then we describe the reference system that we use for comparison. We conclude

the section by discussing our evaluation metrics.

6.1.1 Modeling Users and Documents

In order to perform effective evaluation o f Freelib, we need to resolve two main issues.

First, we need to model different interest areas (communities) and how local collections

are to be constructed to reflect the interest area(s) o f the individual user. We use a set of

keywords W to model documents, interest areas, and queries. Each interest area is

represented by a set o f keywords T, c W. In general, some keywords might appear in

more than one interest area. These are ambiguous keywords that have different meanings

in different contexts. For example, the word network could be used to refer to computer

networks as well as network o f people (social network). When each node is created, the

main interest area, say i, for the user is randomly chosen. Then, the local collection is

built by adding documents. Each document is represented by a set o f keywords dj cr Tt (a

subset o f the set o f keywords that represent the corresponding interest area). The number

o f documents in each collection is determined randomly. In our model, we have two

types o f nodes. These are regular nodes and hub nodes. Hub nodes are typically a small

percentage o f nodes that have larger collections and more resources especially in terms of

network bandwidth. Regular nodes, on the other hand, are less powerful in terms of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

resources and have smaller collections. They represent the majority o f the nodes in the

network.

The second issue is to accurately model and automate the user behavior. The user

activity typically consists o f sessions in which the user repeatedly submits a search,

examines the results, and accesses some items. Hence, the main user actions that we need

to model are submitting search queries and accessing/downloading selected items from

search results. We model arrival o f search queries as a Poisson process with X search

queries per minute. For example, assigning X a value o f 0.5 means the user submits a

search every two minutes on average. For each search query, some items are randomly

selected for access/download. Studies [22, 29, 63] have shown that users give attention to

the first few (typically 10) top ranked results. Our software simulates this behavior by

giving higher chance for downloading items that are closer to the top o f the ranked list of

results.

6.1.2 Performance Comparison

In our evaluation, we mainly want to measure the performance gain we can achieve using

Freelib’s concept o f evolving communities that share a common interest. We can

characterize this performance gain by comparing Freelib to a peer-to-peer system in

which links between nodes are ad-hoc (do not reflect that mutual interest). We chose to

compare our system with Symphony [43] for the following reason. Although overlay

topology links in Symphony do not reflect any kind o f mutual interest between nodes, the

Symphony protocol is still better than an ad-hoc P2P network as it maintains a small-

world network. We discussed the small-world property in chapter II. This property makes

a peer-to-peer network to have a very small diameter relative the number o f participating

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

nodes. This enables search queries to reach more nodes faster, and hence, Symphony has

an advantage over ad-hoc systems.

We use the Symphony protocol in our support network overlay topology to

maintain the small-world property but also we use it to the first few searches when a node

has just joined and does not yet have friend links. Thus, the support network helps new

joining nodes to discover their communities. In addition, it supports our node discovery

protocols. After a few search and accesses, a new node starts to build friend links and will

switch to using community search mode (that is, use the friend links to forward the search

queries). In this mode, the nodes utilize the access overlay topology for submitting and

forwarding search queries. So, although we use the Symphony protocol, its use in search

is temporary and represents a short transient period for each new node immediately after

joining the network. In fact, we could build the Freelib system using the access network

only. In this case, the difference will be a slightly longer transient period for new nodes

until they discover their communities. In our experiments, whenever we need to measure

the performance for Symphony alone, we do so by turning off the access network

protocol and having the search queries forwarded using the support network only.

6.1.3 Measurements

The measurements o f interest to us involve three separate aspects o f the Freelib search

protocol, which directly affects the user experience o f such a system. These include: 1)

quality o f results, which characterizes user satisfaction in the relevance o f results to the

corresponding query; 2) query response time, which characterizes the amount o f time the

user waits for results after submitting a query; and 3) bandwidth usage, which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

characterizes how heavy the search protocol is in terms o f bandwidth consumption. We

discuss these measurements in greater detail in the following subsections.

6.1.3.1 Quality of Results

We measure quality o f results using the two measurements which were defined in

Chapter II. These are recall and precision o f the results. For a certain search query, recall

represents the percentage o f relevant results the system returns. For example, if 100

documents are relevant to a user query and the results returned by the system include 60

of these, the recall is 60/100 or 60%. Precision, on the other hand, represents the

percentage o f relevant results relative to the size o f the result set. To continue with our

example above, if the size o f the result set is 300 items, the precision is 60/300 or 20%.

These quality measures are directly related to the user experience. The optimal case is

when the user gets all and only the relevant items to her query. However, this is usually

not achievable in part because of keyword ambiguity. In addition, peer-to-peer search

queries might not reach all relevant nodes due to bandwidth limitations.

6.1.3.2 Query Response Time

Response time represents the time from submitting the query until the results arrive. This

affects the user experience as it determines the amount of time the user waits for results.

In traditional information retrieval systems where results for each query arrive as one

response, response time can be measured accurately. In our context, however, partial

results are accumulated and presented to the user as they arrive from different nodes. This

makes it harder to calculate the response time. In order to resolve this issue, we introduce

a recall parameter into the definition o f response time. Given a certain required minimum

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

recall level r, we define response time for a search query to be the time from submitting

the query until the moment at which the recall o f the result set reaches the threshold r.

For example, if r is 60%, the response time is the time from submitting the query until the

recall o f the result set reaches 60%. In order to further simplify our measurements o f

response time, we measure the number o f hops on the overlay topology (overlay distance)

instead of real clock time as they usually are directly proportional. As results arrive, we

monitor the recall as well as the overlay distance o f the node sending the results. The

overlay distance is the number o f hops on the overlay topology that separates the node

that sends the results from the node that receives the results (the owner o f the query).

Consider the example results shown in Table 6.1. This table shows the results for one

query. Each row represents partial results arriving from one of the peers. The information

in each row includes the peer sending the results, the size of the results from the peer, the

size o f the results accumulated, the overlay distance o f the peer relative to the owner o f

the query, the accumulated recall as the results arrive, and the accumulated precision

(rounded to one decimal digit). The accumulated recall is calculated assuming the

number o f items relevant to the query is 10. Table 6.2 shows the response time in terms

of overlay distance for different recall thresholds. For example, for recall threshold o f r =

60%, response time is 2 (hops) and for r = 80%, response time is 3.

6.1.3.3 Bandwidth Usage

Bandwidth usage is an important performance measurement especially for large-scale

systems such as peer-to-peer networks. These systems normally use message forwarding

from node to node to propagate search queries to participating nodes. Nodes in peer-to-

peer systems are autonomous and usually there is no control on the rate o f submitting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

search queries by each user, hence, conserving network bandwidth is very important to

performance o f the network.

Table 6.1: Example results for one query as they arrive from different peers; each row
shows results from one node

Peer
Results

Relevant/Total

A ccum ulated

results

Relevant/Total

Overlay

distance

(Hops away)

A ccum ulated

recall (%)

A ccum ulated

Precision (%)

Pi 2/4 2/4 1 20 50.0

P i 3/3 5/7 1 50 71.4

p 3 2/7 7/14 2 70 50.0

1 P4 2/5 9/19 3 90 47.4

Ps 1/2 10/21 4 100 47.6

Table 6.2: Response time calculated as distance on the overlay topology

Recall threshold r

(%)

Response time

(hops)

40 1

50 1

70 2

80 3

For the purpose o f simplicity, we measure the network bandwidth in terms of

application-level messages. This is a realistic approximation since Freelib search

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

messages are light weight and have identical size. Therefore, the bandwidth consumption

due to these messages is directly proportional to the number o f messages. This approach

simplifies our evaluation experiments as it relieves us from measuring or simulating the

finer details o f the underlying physical network.

6.1.4 Experiments

Evaluation of systems such as Freelib is a rather complicated task. The evaluation

parameters include the number o f participating nodes (network size), the number o f

different interest areas, the number o f nodes in each interest area, the parameters o f the

ranking protocols, the average size o f the local collection at each node, the

homogeneity/heterogeneity o f nodes in terms of resources, and the average rate o f search

and access. We have conducted numerous experiments and gave special attention to the

system aspects that directly affect the user experience. For the sake of statistical

accuracy, all the measurements that we report are averaged over 3 repetitions using

different seeds for the random number generators that we use.

6.2 Testbed

After completing the system design, we developed a reference implementation o f the

Freelib universal client with most o f the key features being realized. We ran copies o f the

Freelib client on a cluster o f 20 machines running Linux. We ran 10 o f the Freelib client

on each machine each o f which represents one user. All nodes in the testbed used the

Linux operating system network protocol stack for communicating messages and

downloading content. This is true even for messages communicated between nodes

running on the same machine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

The main objective for creating the testbed was to perform extensive testing of

our implementation in a real life environment. The validation o f the code was successful;

however, we discovered the limitations o f this approach. Using the 20 Linux machines

available, we were able to start a maximum of 200 Freelib nodes with 10 nodes on each

machine. If we try to start more nodes, the system resources get overloaded and our

measurements become inaccurate. This is in part due to the multi-threaded nature o f our

implementation of the Freelib client. On Linux, each thread is implemented as a process.

This is becomes costly especially for a heavily threaded program like the Freelib client.

In fact, in order to be able to run 10 nodes on a single machine, we had to modify the

code to reduce the number o f threads used by each instance. Hence, we began the design

o f a simulator described later in this chapter.

6.2.1 Testbed Results

Figure 6.1 shows the recall as a function o f TTL for two Freelib networks one with 4

friends and the other with 5 friends and for a Symphony network with 2 short contacts

and 4 long contacts. As mentioned earlier, we ran the Symphony network by turning off

the access network and using only the support network for search. The results shown are

in Figure 6.1 represent the average o f 3 separate experiments that we performed. The

number o f nodes in this set o f experiment was 200 nodes. It shows that Freelib recall

grows faster especially early in the life time of the query. For example, consider the recall

at TTL = 3. At this TTL, Symphony recall is 26% while Freelib gave 90% recall. The

same results can be viewed from another perspective as follows. Using 2 hops, Freelib

achieves the same recall level (R = 50%) as Symphony achieves in 4 hops.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

These results were encouraging. However, as discussed earlier, we could not run

networks larger than 200 nodes on the testbed.

1.2

1

0.8

0.6

0.4

0.2

0
1 2 3 4 5

TTL

Figure 6.1: Testbed experiment: Recall as a function o f TTL

6.2.2 Need for Building a Simulator

Since peer-to-peer networks are usually large-scale systems, we need to evaluate large

networks of thousand o f nodes. Nonetheless, by using the testbed, we were limited to

running small Freelib networks o f up to 200 nodes. We could not evaluate larger

networks. We immediately started to study the alternatives. It was clear that we should

perform our evaluation using a simulator. Simulation can enable us to omit unnecessary

details o f the underlying network and concentrate on simulating the higher levels o f the

Recall
Network of 200 Nodes

/ . / /
✓y
/

/ /
/ '

/ /
■ / '

/ / — ♦— S/rrphorry
- - * - - Friend4

- - A- - Friend5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

protocol stack. We gave consideration to existing network simulators such as NS2 [48].

However, we found these systems to be directed more towards simulating the fine details

of the network. We found some existing simulators [47, 51, 52, 66] that are targeting

large-scale systems such as peer-to-peer networks. However, we decided to build a

simulator for Freelib. This decision was in part due to the time needed to study the inner

workings o f these systems and modify and use them to simulate Freelib. In addition, it

was due to great deal o f prior experience that we have in designing and implementing

similar simulation systems.

6.3 Simulator

The main objective o f designing and building a simulator is to enable the evaluations of

large Freelib networks that have thousands o f nodes. By building a simulator, we avoided

the resource issues that we faced with the testbed. This was achieved in part by omitting

the low-level network details and replacing real network communications with local

method calls. Two factors guided us in making the decision o f eliminating low-level

networking details from the simulation. First, computer networks and protocols are

becoming more and more reliable and fast. So, we can concentrate on simulating the

application level protocol and leave out the low-level details. Second, other simulators

that are targeting large-scale peer-to-peer systems have made the same choice. Examples

of those simulators include 3LS [66], Neuro-Grid [47] PeerSim [51], and P2PSim [52],

An internet draft [7] was submitted Jan 2006 describing these simulators, their design,

and their implementation languages. In addition, the results we obtained from our

simulator were very similar to those we obtained from the experiment we performed on

the testbed, which gave us more confidence in our decision. We start this section by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

presenting the simulator design. Then we present the evaluation results we obtained by

running or experiments using the simulator.

6.3.1 Simulator Design

We used an event-based approach in the simulator. The simulation engine provides an

abstract class SimulationEvent that represents general events and an event queue that

holds the events sorted in a non-descending order based on the event timestamp. Any

module involved in the simulation must provide concrete event implementation by

extending the abstract class SimulationEvent. In addition, the module needs to implement

and register an event handler that will be invoked by the Simulator main class to process

the corresponding event. The EventHandler interface, which is used by the simulator to

refer to any event handler, must be implemented by any module that creates its own

concrete events. In software engineering terms, this approach is referred to as the

template patterns approach. It provides great flexibility and extensibility as new modules

can be introduced without any need to changing the simulation engine.

This design has also the advantage that only one single thread is needed to

perform all the work. This thread is utilized by the Simulator class to initialize the

simulation run and process the simulation events. The class diagram in Figure 6.2 shows

the interfaces and classes o f the simulation engine. In addition, it shows how the Freelib

messenger module provides a concrete event class MessageEvent and an EventHandler

for processing message events, which is the main Messenger class itself. The class

MessageEvent extends the abstract SimulationEvent class and the class Messenger

implements the EventHandler interface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Messenger «interface»>
{From messenger) EventHandler

Attributes {From event}

Qpurrtfari* _______ ^ Attribute*
public Messenger!)
public void sendMessage(Message msg)

Cptntion*
public void tiandleEventtSimulaUonEvente)

Qmrtofft mdrfltte* Horn CwoiMwMWwf
pubflcvoidhandlBEvenKSlmulabonEvent s }

event

Simulator
(From sim}

private longtime
private EventManager eventManager

Cpsfutiuas
public Simulate^)
public long getTime(}
private void go()
public void main! String arosH \
public void schedul3Evant(SimulationEvent event)

EvtntManagtr
(From event}

Attributes
private TreeMap queue

Optra Son*
public EventManager(}
public SimulationEvent nextEvent()
public void insertEventf SimulationEvent e}

Message
(From messenger)

MessageEvent
{From messenger}

SimulationEvent
{From event}

Attribute*
private Peersrc
private Peer destination

Attributes
private Message message

Attributes
private longtime
private EventHandlereventHandler

QptmHon*
public MessageEvent! long t, eventHangtet en, Message m)
public. Message getMessagef)

Qwwfon#
public Message!)

Op+nttons
public SimulationEvent!longtime,EventHanldeFeh)
public EventHandler gelEventHancller!)

Figure 6.2: Simulator class diagram showing the simulation engine classes and the Freelib Messenger module

"O
CDO3"Ooi_
Q_
CD

wi
th

pe
rm

iss
io

n
of

the

co
py

rig
ht

 o
wn

er
.

Fu
rth

er
 r

ep
ro

du
ct

io
n

pr
oh

ib
ite

d
wi

th
ou

t
pe

rm
is

si
on

.

107

Listing 6.1 shows the main simulator loop. First, the simulation event at the head

of event queue is fetched. Then, the simulator’ internal clock is advanced to the

timestamp o f the event. And then, the event is processed by invoking the corresponding

event handler. In this design, the event object has a reference to the appropriate event

handler.

Listing 6.1: Main simulation engine loop for processing simulation events

processEvents () {
SimulationEvent e;
while (true){

e = eventManager.getNextEventQ;
i f (null = = e)

break;
time = e.getEventTimeQ;
e.processEvent();

}
}

The other key modules that use the event framework in the same manner as the

messenger module include the search module used for submitting search requests and

collecting results, the access module used for sending and responding to access requests,

and the network protocols. The network protocols include the Friend Manager module

used for maintaining the friends, the Long Contacts module used for maintaining

Symphony long contacts, and the Ring module used for maintaining short contacts.

6.3.2 Verification and Validation of our Simulation Model

The results that we obtained from the testbed served one more objective beyond

validating the code and obtaining small scale performance results. We used it to partially

validate the correctness o f our simulation design and implementation. We repeated the

/ / get next event
/ / exit i f no events to process

//advance the clock
/ / process the event

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

testbed experiments using the simulator and the results were almost identical. This gives

us a high degree o f confidence in our simulation results. In addition, the results reported

in this chapter were calculated by averaging 3 repetitions o f each experiment using

different seeds for the random number generators that we use in various parts o f the

simulations. This insures the statistical accuracy of the results.In addition to comparing

simulation results to testbed results for validation o f our simulation model, we took other

steps to verify that the model was built correctly. For example, the code was checked by

developers other than the author. In addition, flow diagrams for processing the various

events were built and the code was analyzed closely to make sure that its logic follows

these diagrams for each event type. Furthermore, for smaller networks, results for

randomly selected queries we verified by hand to make sure the processing is correct.

Furthermore, we have performed sensitivity tests on many o f the parameters

including the search query arrival rate, the percentage o f hub nodes, and the network

delays. The objective o f these sensitivity tests is to give us more confidence o f our

choices o f the various parameter values. To perform a sensitivity test on a parameter, we

repeat the experiment using different values o f the parameter while fixing the values o f

all the other parameters. We then analyze the results to discover any discrepancies or

changes that are not expected. For example, a sensitivity test on the search query arrival

rate showed us that reasonable changes in search rate only resulted in changes in the

duration o f the simulation (wall clock time). A search rate that is too high, however,

resulted in memory issues as the event queue becomes too large.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

6.3.3 Experiments and Results

In this section, we present the evaluation results. We conducted sets o f experiments with

individual experiments in each set. Each experiment consists o f 3 simulation runs using

the same configuration parameters but different random number seeds. The result for an

experiment is calculated by averaging the results o f its constituting simulation runs.

Sometimes, for the purpose o f brevity and when results are similar, we present the

outcome o f several experiments and report on the others in the text.

Each simulation run consists o f the following stages:

• Reading the configuration information: The main Simulator class starts by

loading the configuration file. This is an XML file that contains the

configuration information for the simulation run. The configuration

information in that file includes the number of participating nodes, the number

o f different interest areas (prospective communities), the number o f nodes in

each interest area, the percentage o f hub nodes (these are nodes that have

bandwidth and hence can allow more network connection), the average rate of

search and access, and the total simulation time for the run.

• Creating and initializing the participating nodes: After loading the

configuration file, the Simulator class creates the nodes and initializes them

using the configuration information.

• Activating the user module: The simulator then starts the user module on the

participating nodes. This module is responsible for generating and processing

the main user events such as submitting search requests and performing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

accesses. In addition, this module collects the results, calculates the required

measurements, and writes them to an output file.

• Processing events: The simulator then starts the main event processing loop,

which is shown in Listing 6.1 above. The simulation loop ends when all user-

related events are processed.

• Cleanup: Finally, the simulator notifies the various modules to cleanup for

simulation shutdown. The most important o f these is the user module, which

needs to write any results that are still in memory to persistent storage.

We used a Windows XP Desktop machine with 3 GHz Intel Pentium 4 processor

and 2GB of memory to run the simulation experiments. We ran experiments for network

sizes that range from 200 to 4000 nodes. The number o f interest areas was in the range of

1 to 40. The number o f nodes in each interest area was 100 to 700 nodes. We

experimented with network with 5% as well as with 0% hub nodes. The total number of

experiments was 70 experiments with different settings for the number o f nodes, nodes

per interest area and percentage o f hub nodes. Each experiment was repeated 3 times with

different seeds and results are averaged. In the following sections, we present the

evaluation results.

6.3.3.1 Quality of Results

The main performance metric we use to evaluate the quality o f results is the recall o f the

search results. It measures the percentage o f the relevant results that our search protocol

retrieves for a certain query. We measure the absolute recall as well as the normalized

recall, which is the recall per one search message.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

<4000 nodes, ccrm rrtystae 100,5%bubs) (4000 nodes , corm ritysize 100 ,0 hubs)
1 2 T

0 .8 - 0.8 - •

0.6 0.6, / d

0.4 0.4

02 - 02

TTL TTL

Recall
(500 nodes, com m ritysize 100,0 h ita)

Recall
(500 nodes, community size 100,5%hUje)

12 T 12 T

0.8 0.8

/ / /
0.6 0.6»/>'
0.4-• 0.4

02

TTL TTL

fecall
(4000 nodes, corrmnrty size 500, 5%hubs)

Recall
(4000 nodes ̂com m ritysize 500, 0%Kr436)

■9 — 'W// p-
0.80.8

/ /
0.6 0.6

0.4 0.4

a /

TTLTTL

Recall
(500 nodes, community size 500, 5%hubs)

Recall
(500 node^ community size 500,0%hib6)12 1 2 t

0 .8 - 0 .8 -

0.6 0.6 -

0.4 0.4-•

0 2 0 2

TTL TTL

- Syrphony(4,2)
o--- Friends 5
» - - Friends 6
•a- - Friends 7

- - Syrphony(4,2)
•••o - FriendsS
- • * - - Friends 6
- a- - Friends 7

- - Syrphony(4,2)
-••o--- Friends 5

Friends 6
- a- • Friends 7

- - Syrphony(4,2)
--•o--- Friends 5
- - • • - Friends 6
—a- - Friends 7

- - Syrphony(4,2)
■••o-" Friends5
- - Friends6
—A- - Friends 7

— •— ^tmphory(4.2)
—o- ■ • Friends 5
- - Friends 6
—a* - Friends 7

— - SyTphony(4,2)
••■o--- Friends5
- - a ■ - Friends 6
—a* - Friends 7

- - Symphony(4,2)
Friends 5
Friends 6

—A* - Friends 7

Figure 6.3: Recall vs. TTL for network sizes 500, 4000 nodes; community sizes 100, 500
nodes; and hub nodes 0% and 5 %

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

Figure 6.3 gives the recall for selected experiments. The other experiments gave

very similar results. In Figure 6.3, we show the results for Freelib with 5, 6, and 7 friends

per node and for Symphony with 2 short contacts and 4 long contacts. These results show

that Freelib achieves recall that is order o f magnitudes higher than Symphony early in the

life-time of the query. Consider for example the network o f 4000 nodes with average

community size o f 100 and 5% hub nodes. Freelib achieves recall level o f 95% at 3 hops

which is 19 times the recall Symphony achieves (5%) at the same TTL. Symphony

eventually reaches the same final recall level but it takes almost double the time in most

cases. The recall gap between Freelib and symphony gets larger for larger networks that

consist o f many communities. The recall gain from introducing hub nodes is marginal

after TTL of 3. For lower TTL, the recall gain from hub nodes is up to 100%. As an

example consider the Freelib networks with 4000 nodes and community size o f 100 at

TTL=2. In case o f no hub nodes, recall is around 30%. This is half the recall o f the same

network with 5% hub nodes, which has recall just below 60%.

Figure 6.4 shows the normalized recall as a function o f TTL. We remind the

reader that normalized recall is the average recall per 1 search message. A high

normalized recall means that the search protocol succeeds in targeting relevant nodes and

avoids sending the search query to node that are not relevant to the search query.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

0.0045-

0.004

0.0036-

0.003-

0.0025

0.002 -

0.0015 -

0.001

0.0005-

0-

NarmatoedFfecal
(4000 nodfcs, ccnm r ttysfaB 100,5%fute)

•v

- S*nnphony(4,2)
•o--- Friends5
• * • - Friends 6

-A- - Friends 7

0.0045 i

0.004-

0.0035-

0.003-

0.0025-

0 .0 02 -

0.0015 -

0.001

0.0005-

0-

NarmaHzed Recall
(500node^ ccmnuntty size 100; 7/«hi4x}

 *---
' V

- 9|frphorv(4,2)
■ •<>•-* FHends5
-••-Friends6
- a- > Friends 7

Normalized Ffecall
(4000 node^ coniiUTity size 500; SfthUx)

0.002 T -

0.0018 - -

0.0016 -

0.0014 j -

0.0012 - -

0.001 -

0.0008-

0.0006 -

0.0004 -

0 .0002 -

0-

\ ''
V \

- - Synphony(4,2)
•o--- Riends5

- — Friends 6
—A- - Friends 7

* 'b/

 v

Noimalized Recall
(500 node$ conrrunrty size 500,5%hi43s}

0 .0 0 2 -r-

0.0018 - --

0.0016 -

0.0014- -

0 . 0 0 1 2

0 .0 0 1 -

0.0006 - -

0.0006 - -

0.0004 -

0 . 0 0 0 2 -

0 —

\ \ \

- - Symphony(4,2)
•-•o--- Fnends5

Friends 6
- a- - Friends 7

\ \ \ \ __V

0.007 -r-

0.006 -

0.005- -

0.004 -

0 .003---

0.002 -

0.001 -

0 - -

tormataed Ffecal
(4000 nodes, ccrrmrRysiZB 100,0 hUbs)

- - S^rphony(4,2)
••• Friends5
• - Riends 6

■ - Riends 7

A .
■ A----------- - ■-A— - - — - A

0.007-|

0.006-

0.005-

0.004-

0.003-

0.002-
0.001 -

0-

Normalized Ffecall
(5D0node$ oonvnnHysize 100,0 hubs)

--A--9^rphony(4,2)
- -o- • * Riends 5
••»*-Riends6
-A- - Friends 7

. -S*...............I j D - _ j 11'-vjQ .* ■ ■
V - - - - - A- - ■ — - -A— - - — - A

4 5
TTL

0.002 -.

0.0018-

0.0016 -

0.0014 -

0.0012 -

0.001 -

0.0008-

0.0006-

0 .0004-

0 .0 0 0 2 -

0-

Normalized R xall
(4000 node^ corrm nity size 500,0 hubs}

- ̂ nnphony(4,2)
-o--Friends5
-••-R iends6
- a- - Friends 7

* a - rO — o-----

Normalized Recall
(500 nodes; comrruiity size 500; 0%hii3s)

0 .002-1

0.0018 -

0.0016 -

0.0014 -

0.0012 -

0.001 -

0.0008 -

0 .0006-

0 .0004-

0 .00 0 2 -

0 -

- - Synphony(4,2)
Friends 5

— ■ e • - Friends 6
—A- - Friends 7

4 5
m .

Figure 6.4: Normalized recall vs. TTL for network sizes 500, 4000 nodes; community
sizes 100, 500 nodes; and hub nodes 0% and 5 %

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

The results in Figure 6.4 show that Freelib has a significant normalized recall gain

over Symphony for large networks that consist o f many communities. For example, the

normalized recall for the Freelib network of 4000 nodes with community size o f 100 and

5% hub nodes at TTL of 5 is 15 times the recall o f the Symphony network o f the same

number o f nodes and community size. The recall gap is larger for smaller TTL. This

matches our expectation when we discussed Freelib communities earlier in chapter III.

For the smaller TTL values, messages reach nodes that are close on the access topology,

which are the most relevant nodes. For higher TTL, the query might reach nodes that are

not relevant and hence the normalized recall decreases slightly.

Ftecall
(Oommuifty 100; 5%hute)

- - Syrrphony(4,

- ■»- - fiends 6

— a * - Friends 7

300 500 1000 2000 4000
Network sz e

Normalized Recall
(COrrmunity 100; 5%hitas)

0.0018

0.0016

0.0014

0.0012

0.001

- • e - F r i e n d s 60.0008

* - Friends 70.0006

0.00Q2

300 300 1000
f e tw o r k s iz e

2000 4000

1
0.9 —
0.8 — -

0 .7 -------------
0.6 —

0 .5 -
0 .4 -
0 .3 -
0.2 -

0.1 -

Recall
(Corrm nity 100; 0%hubs}

- - Symphcry(4, 2)

-*» --F riends6

- a- - Friends 7

300 500 1000
Network size

2000 4000

Normalized Recall
0002 ___________ (Ctom n»^10q, 0%hubs)

0.0018 — : : ~ ~ - ~ :1 - - f : ; ~ - - - -
00016 - • — —

A— - - — - 4 — — -At — - - — i0.0014................--...........— -..
0.0012 - — .. — --*--SyrrplTcry(41

qooi-- _ . , . _ fiendk 0
0.0006 ----- -

—a . Friends 7 00006 -
00004------ —— - s ------------------------------------
00002------------ -------- ----- -------- —v-iv--- -0 -I--------------- ,--------------- ,--------------- ,--------------- ,--------

1000
hfetwcrk size

Figure 6.5: Recall and normalized recall vs. network size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

In addition to measuring recall as a function o f TTL, we studied how it changes

with network size. Figure 6.5 shows the recall and normalized recall for networks whose

sizes from 300 nodes to 4000 nodes. Community size is 100 nodes. Other community

sizes gave similar results. The results in Figure 6.5 show both homogenous networks (0%

hub nodes) as well as networks with 5% hub nodes. As we can see from these results,

Freelib maintains high recall levels as the network size grows, while on the other hand,

the recall o f Symphony deteriorates. This shows the benefit o f the concept o f targeting

relevant nodes that Freelib utilizes. For example, Symphony recall deteriorates from 95%

to 60% when network size increases from 500 nodes to 4000 nodes for a community size

o f 100 nodes. Freelib recall stays at the same high level.

We also studied how recall changes with community size (the number o f nodes

per interest area). In this set o f experiments, we simulated networks o f size 4000 nodes,

which is the largest network size that we can simulate using our current simulator. The

community sizes that we studied ranges from 100 to 500 nodes. Figure 6.6 shows the

recall and normalized recall for homogenous network o f 4000 nodes as well as one with

5% hub nodes. The community sizes in this figure are represented as a percentage o f the

network size. These results show that Freelib achieves considerable recall and normalized

recall gain over Symphony. The recall gain over Symphony is order o f magnitudes in

most cases and increases as the community size gets smaller relative to the network size,

which we believe is the case in real-life peer-to-peer systems. For example, for

community size o f 2.5% (100 nodes), Freelib recall is above 95%. This is more than 18

times the recall we get from Symphony, which is around 5%. The results from this set of

experiments also show that the recall gain from introducing hub nodes increases as the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

community size increases. For community size o f 2.5% (100 nodes), recall gain due to

hub nodes is marginal. It increases as community size increase. For community size of

12.5% (500 nodes), the recall gain due to hub nodes is around 11%.

1 j
0.9

0.8-
0.7

0.6 ••

05
0 4

03
02

01

0

Ftecall
(4000 node^ *P/©hubs)

- - Syrrphcny(4, 2
-* --F n en c te6

Riends 7

16,67% 1250% 10% 7.60%
ODrrrnunitysze

00006 T ----------

Normalized Recall
(4000 nodes* fp/.hubŝ

-«—SyrrphcrvH

*-Ffiends6

—*■ ■ Fnerds7

 ■**'

1250% 10% 7.69% 5%
Community dze

Recall
(4000 nodes* OP/ohLfcs}

..
■ s '

________________ _____ M
- - Syrrphcry(4, 2)

__ - - * - - Friends 6 --
Friends7

----- «---------------—
20% 1667% 1250% 10% 7.60% 5% 250%

C om rifity size

Normalized Ffecall
(4000 nodes, 0%hubs)

0005-r—

0.0045-----

QOM--
0.0005-----

0.0C3-----

0.0025-----

Q0Q2--
00015--—

0 .0 01 - - -

0.0005

0--
20% 1667% 125CP/o 10% 7.60% 9ft 250%

Commr i tyaze

- SyrTphory(4,2)

-» --F r ie n d s6

- a - - Frierds 7

t - . .

Figure 6.6: Recall and Normalized recall vs. Community size

6.3.3.2 Bandwidth Usage

We measure bandwidth in terms o f the number o f application level messages as discussed

earlier. Conserving network bandwidth is essential especially in large scale distributed

and peer-to-peer systems. We measured bandwidth usage for network sizes that ranged

from 200 nodes to 4000 nodes and for community sizes from 100 to 700 nodes. We also

measured bandwidth for homogenous networks as well as for networks that have hub

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

nodes with more resources. The results we obtained from these experiments show that

Freelib achieves considerable bandwidth savings over Symphony for larger networks that

consist o f many communities. For small networks that consist o f one community, the

bandwidth savings were marginal. This is expected as, in this case, all nodes belong to

the same community and therefore Freelib does not benefit from the concept o f targeting

relevant peers. The results also show that hub nodes have marginal effect on the

bandwidth usage o f Freelib. Figure 6.7 shows the bandwidth usage as a function o f the

recall level for some o f these network configurations. The results for other networks are

similar. For large networks, messages sent by Symphony were order or magnitudes larger

than those send by Freelib for the same recall level. Consider for example the network of

4000 nodes with community size o f 100 and 5% hub nodes. The number o f messages sent

by Symphony to achieve recall level o f 99% was almost 20,000 messages. The

corresponding number o f messages for Freelib was less than 1000 messages. For the

same network size with community size o f 500 and 5% hub nodes, the number of

messages sent by Freelib was less than 3000. For network size o f 500 nodes all in one

community, Freelib needed roughly the same number of messages as Symphony since it

needed to reach all the existing nodes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

BWlfcage
(4000 nodes* corrnTUrtty size 100,9%huta)

25000

3X00

* 15000

10000

5000

Q6 Q802 0 4

36000-r

30000

25000

20000

I
* 15000

10000-

5000

o l

BWlteage
(4000 nocfes* oorrrarity dze 100, Ohubs)

♦ S^rphcry(4.2) ...1.
■ Friends 6 /
A Riend67/ '

... /___.

-♦----

3500 t

3000-

2500 -

 ̂2000

: 1500-

1000

500-

0-

BW Usage
(500 node$ oorm uiity size 100, dfthUx)

♦ S^rrphcry (4,2)

■ Friencte6

A Friends 7

/ #
/

 7 *— -

BN Usage
(900 n od ^ ca im vijly size 100, 0 M s)

3000

2500

2000

* 1500

1000 ♦ ✓
500

Q2 0.4 Q6

36000

30000

25000

 ̂20000

* 15000

10000

5000

BWlteage
(4000 nodes* com ru ity size 900̂ y /.h tte)

♦ %rrphcny (4,2)

■ Frierds 6 /

A Friends 7 /
_______________________________ 7 .____

• ♦
/

/ ♦
................... ... / _ _____

/

♦ _ . ____
0 Q2 0 4 Q6

FfeCcti
0 8 1

BWlteage
(4000 nodes, oorim rily size 90010%huta)35000

30000

25000
A Friends 7

20000

* 15000

10000

5000

Q8

BW Usage
(900 nodes* community size 500, 9%hU3s)

Syrritwy(4.2

Fnerds 6

Friends 7

BWlteage
(900 nodes* cornmLrity size 500,0%htfcs)

- ♦ - S^Trphcry (4,2}

■ Friends 63000

A Friends 72500

2000

1500

500

Q2 0.4 0.8

Figure 6.7: Bandwidth vs. recall for network sizes 500, 4000 nodes; community sizes
100, 500 nodes; and hub nodes 0% and 5 %

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

6.3.3.3 Response Time

We now look into another important performance measure. That is the response time of

search queries. As discussed earlier, measuring response time in a peer-to-peer system

such as Freelib is a challenge. This is due to the fact that results o f a certain search query

are accumulated over time as individual peers respond to the search request. Although,

the users usually examine the first one or two pages o f results, it is hard to draw a line

that specifies the time at which the user is satisfied with the results. Consequently, we

present response time as a function o f the recall level achieved. For a certain minimum

recall level, the response time is the minimum time at which this recall level is reached.

Also as discussed earlier, we measure response time in terms o f the distance (the number

o f hops) on the access overlay topology.

Figure 6.8 shows the response time for selected network configurations. Results

for other network configurations are very similar. The top left graph in Figure 6.8 shows

the response time for a network o f 4000 nodes with community size o f 100 and 5% hub

nodes. For a recall level o f 60%, the Symphony needed 5 hops while Freelib achieved the

same recall level in 2 hops. We believe that in bigger networks, Freelib will be able to

achieve more time savings. The response time savings for smaller networks with fewer

communities was smaller. To summarize, the results in Figure 6.8 show that for larger

networks that consist o f many communities, Freelib achieves considerable reduction in

response time over Symphony. And in general, the response time enhancement gets better

as network sizes increases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

BWUfeage
(4000 nodes* oonm fiity dze 100,0 hubs)

35000

♦ S^fTfticny (4,2)

■ Riencfe6
30000

A Fnend67

20000

* 15000

10000

5000

Q2 Q4 Q6 Q8

Response Time
(4000 nodes, corrm nity size 100, y /.h ita)

♦ Synphcny (4,2)

■ Fnencfe 6

1

04 Q802

Response Time
(500 nodes corrm jiitysize 100, 9%hUx}

♦ Syrrphcny (4,2)

■ Riends 6

02 0 4 06 0 8

FfesponseTlme
(500 n od ^ r a r m ity s i» W , 0 h iix)

♦ ^rrphcny (4,2)

02 04 06 0 8

Ffesponse Time
(4000 node$ corrmLrtly size 500,5*/ohtix}

♦ Syrrphany (4,2)

■ Riends 6

A Riends 7

02 Q4 0 8

Ffe^xxiseTlme
(4000 node$ cormiiJTty size 500; 0%hUjs)

♦ Synphny (4,2)

2 V

Q2 04 06 08

FfesponseTlme
(500 node^ oorrvruiilysize 500,5%NJdŝ

♦ Syrrphcny (4,2)

Riencfe 6

A Riencfe 7

1 •«

02 04

Response Time
(500 node^ oonrnxwty sizeSOO,0%hUx}

♦ Syrrpfrny (4,2)

■ Riencfe 6

A Riencfe 7

1 - •

Q2 Q4 Q6 08

Figure 6.8: Response time vs. recall for network sizes 500, 4000 nodes; community sizes
100, 500 nodes; and hub nodes 0% and 5 %

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

6.4 Summary

In this chapter we presented the evaluation o f the Freelib framework. We started by

discussing the evaluation methodology and the measurements that we are using in the

evaluation. We then presented a testbed we built for the purpose o f testing our

implementation and performing preliminary evaluation o f the proposed work. We

explained how scalability issues prevented us from running large networks using the

testbed. We then presented our Freelib simulator that we built for that purpose. We

presented the simulator design and the results from numerous experiments that we ran

using the simulator.

From the evaluation of the Freelib system, we can conclude that Freelib

succeeded in targeting relevant nodes. In general, Freelib is advantageous and achieves

considerable gains over Symphony that reaches orders o f magnitudes when the network

is large and consists o f many communities. For a smaller network that consists o f few

communities, the recall gain over Symphony is marginal. In addition to the recall gain,

Freelib also achieved considerable savings in bandwidth and response time. The

bandwidth savings is orders o f magnitude in most cases. The response time savings were

considerable as well and it reached 50% in many cases. In summary, Freelib achieves

considerable performance gain over Symphony especially for larger networks with many

communities, which we believe is the case in real-life peer-to-peer systems.

We could not however simulate networks larger than 4000 nodes using our

simulator. Once the network size goes beyond this limit the event queue gets extremely

large in size and the time to run the simulation becomes prohibitively too long. However,

from the results we obtained, we believe that Freelib will have even better results for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

larger networks. We are currently looking into several ways to improve our simulator to

enable simulation o f larger networks. Once we implement these ideas, we believe that we

shall be able to evaluate the performance o f Freelib in much larger networks than the

ones whose results were presented in this chapter.

We conclude this chapter by discussing the impact Freelib can have on users and

communities in a real-life deployment o f such a system. As we have seen from the

evaluation in this chapter, Freelib achieved significant performance gains through the

new concept o f evolving communities. This would greatly enhance the user experience as

users obtain results faster, wait less, and get enhanced recall and precision. In addition to

the performance enhancement, community evolution enables people sharing same interest

to connect to each other and get together (electronically), which open the door for

potential collaboration and social activities.

By evolving users into communities, Freelib is expected to enhance the scalability

o f the peer-to-peer network. Instead o f having to search the whole network as in the case

o f ad hoc peer-to-peer systems, Freelib nodes need to search a much smaller subset of

nodes, their respective communities. This results in order o f magnitudes savings in

bandwidth as shown earlier in our simulation results. The end result is the ability o f the

Freelib framework to scale up to unprecedented peer-to-peer network sizes while

maintaining the same enhanced user experience.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this thesis, we introduced the Freelib framework for building digital collections on top

o f a peer-to-peer network. Freelib targets the individual users that want to share and

disseminate their digital objects as well as search for and discover content shared by

others. Freelib, like other peer-to-peer networks, uses resources o f the participating nodes

and does not rely on dedicated, centralized resources. All the processing power, the

storage, and the network bandwidth are contributed by the participating nodes. This

makes Freelib self-sustainable.

We introduced the concept o f evolving an overlay topology based on the

similarity o f user interest. This enabled us to evolve users into logical communities of

common interest where members o f the same community are close to each other in the

overlay topology. This novel idea contributed to a significant performance gain over

traditional or ad-hoc peer-to-peer systems as shown in our simulation results presented in

chapter VI. Freelib uses Dublin Core metadata [16] to enable metadata based search and

discovery which provides the user with the ability to specify more accurate queries.

We developed a prototype implementation o f the Freelib peer-to-peer client that

realizes the ideas and protocols introduced by the Freelib framework. We used the client

to build a test-bed for evaluating our framework. Within the time frame o f our thesis we

were able to deploy on the order o f hundreds o f clients and validate the protocol and our

implementation. However, due to the limited number of user that we were able to

emulate using the test-bed, we were not able to obtain valid performance results with the

testbed that could predict the performance o f large scale deployment o f clients. Hence,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

we developed an event-based simulator that enabled us to simulate and study networks o f

thousands o f users.

In summary, the contributions o f this work and its impact include:

■ Self-sustainability empowers individuals to share and discover content:

We introduced the concept o f self-sustainability and designed a framework to

build self-sustainable digital libraries on top o f peer-to-peer networks and

provided a reference implementation. This work can be utilized to empower

individuals to organize and share their digital content and discover content

published by their peers.

■ Ranking mutual user interest: We introduced and implemented a ranking

technique that captures mutual user interest transparently. This technique

alleviates the need for users to provide explicit feedback.

■ Evolve the network topology to create communities: We introduced a peer-

to-peer network design that evolves the network topology based on the

outcome of the ranking process. This evolves users into communities based on

user interest as captured by the access pattern analysis. The immediate impact

o f this is better search performance in terms o f higher recall and faster

responses, lower bandwidth usage, and enhanced overall user experience.

■ Fast node discovery in peer-to-peer networks: We introduced various

algorithms for node discovery in peer-to-peer networks. This is a necessary

feature as it enables nodes to re-discover their community after rejoining the

network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

The work presented in this dissertation can be enhanced and extended in many

ways. For example, replication and caching can be utilized to enhance content

availability. Currently, the ‘publishing service’ o f the Freelib client publishes content to

the local user’s collection. Consequently, the items stored on a node become unavailable

when that node leaves the network and only become available again when it rejoins.

Availability o f content can be enhanced significantly by having the items published to

multiple nodes and/or cached by nodes as they process search results.

We also plan to evaluate the use o f an aging technique and the use o f weights in

the ranking process. These techniques would be particularly useful during the transition

period when a user’s interest shifts to a new topic. We could measure recall and response

time as well as how long the transition period lasts to determine optimal parameters o f

the techniques. In addition to aging and utilization o f weights, the ranking process can be

further enhanced by enabling the user to provide explicit feedback and by fine tuning the

ranking process based on the individual items accessed. For example, a user can

designate a certain item or a set o f items in his local collection as the most important

items. Consequently, accesses that involve these key items receive higher weights in the

ranking process. This can be viewed as a tool the user can utilize to guide the ranking

process to best select the more relevant peers. Another area o f potential enhancement is

to support automatic extraction o f metadata from the common document formats such as

PDF and MS Word documents. This alleviates the need for the user to manually type in

the metadata. Finally, we would like to study the performance of our framework for

larger networks and communities. In order to be able to do this, we may need to

implement a distributed simulator that runs on multiple computers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

BIBLIOGRAPHY

[1] ACM digital library: http://portal.acm.org/dl.cfm/, viewed Jan. 10, 2006.

[2] Alexandria digital library project, University of California, Santa Barbara:

http://alexandria.sdc.ucsb.edu/, viewed Jan. 10, 2006.

[3] Arc project home page, Old Dominion University: http://arc.cs.odu.edu/,

viewed Jan. 10, 2006.

[4] R. Baeza-Yates and B. Ribeiro-Neto, “Modem Information Retrieval”,

Addison Wesley 1999.

[5] M. Bawa, G. S. Manku, and P. Raghavan, “SETS: Search Enhanced by Topic

Segmentation”, Proc. 26th Annual In t’l ACM SIGIR 2003, Toronto, Canada,

July 28 to Aug 1 2003.

[6] Bittorrent home pgae: http://www.bittorrent.com, viewed Jan. 10, 2006.

[7] A. Brown and M. Kolberg, “Tools for Peer-to-Peer Network Simulation”,

Internet draft, draft-irtf-p2prg-core-simulators-00.txt, Jan. 2006.

[8] B. Carlsson and R. Gustavsson, “The Rise and Fall o f Napster - An

Evolutionary Approach”, Proc. 6th In t’l Computer Science Conference on

Active Media Technology, Hong Kong, China, Dec. 2001.

[9] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A Distributed

Anonymous Information Storage and Retrieval System”, Proc. Int 7 Workshop
4

on Design Issues in Anonymity and Unobservability, (LNCS 2009), Berkeley,

CA, USA, July 2000, pp 46-66.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://portal.acm.org/dl.cfm/
http://alexandria.sdc.ucsb.edu/
http://arc.cs.odu.edu/
http://www.bittorrent.com

127

[10] J. Cocke and V. Markstein, “The Evolution of RISC Technology at IBM”.

IBM Journal o f Research and Development, volume 34, (no. 1), pages 4-11.

1990.

[11] Copemic home page: http://www.copemic.com, viewed Jan. 10,2006.

[12] H. Ding and I. Solvberg, “Metadata Harvesting Framework in P2P-Based

Digital Libraries”, Proc. In t’l Conference on Dublin Core and Metadata

Application, Shanghai, China, October 11-14, 2004.

[13] Distributed.net home page: http://www.distributed.net, viewed Jan. 10, 2006.

[14] M. Doane, “Metadata, Search and Meaningful ROI, Proc. DCMI Workshop,

Seattle, Washington, USA, 2003.

[15] DataSynapse home page: http://www.dataSynapse.com, viewed Jan. 10, 2006.

[16] Dublin Core Metadata Initiative, home page: http://dublincore.org, viewed Jan

10, 2006.

[17] Fedora project home page: http://www.fedora.info, viewed Jan. 10, 2006.

[18] Freenet project: http://www.ffeenetproject.org, viewed Jan. 10, 2006.

[19] J. Frew, M. Freeston, N. Freitas, L. Hill, G. Janee, K. Lovette, R. Nideffer, T.

Smith, and Q. Zheng, “The Alexandria Digital Library architecture”, Proc. 2nd

European Conference on Research and Advanced Technology fo r Digital

Libraries (ECDL'98), pp. 61-73, Heraklion, Crete, Greece, Sept. 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.copemic.com
http://www.distributed.net
http://www.dataSynapse.com
http://dublincore.org
http://www.fedora.info
http://www.ffeenetproject.org

128

[20] D. Gibson, J. Kleinberg, and P. Raghavan, “Inferring Web communities from

link topology”, Proc 9th ACM Conference on Hypertext and Hypermedia,

1998.

[21] Gnutella home page: http://www.gnutella.com, viewed Jan. 10,2006.

[22] L A. Granka, T. Joachims, and G. Gay, “Eye-Tracking Analysis o f User

Behavior in WWW Search”, Proc 27th annual In t’l ACM SIGIR conference

on Research and development in information retrieval, University o f

Sheffield, UK, July 25 - 29, 2004.

[23] Groove Networks home page: http://www.groove.net, viewed Jan. 10, 2006.

[24] J. L. HENNESSY and D. A. PATTERSON, “Computer Architecture: A

Quantitative Approach”, Morgan Kaufinann, San Mateo, Calif., 1990.

[25] IEEE digital library: http://www.computer.org/publications/dlib/, viewed Jan.

10, 2006.

[26] IntraLinks home page: http://www.intralinks.com, viewed Jan. 10, 2006.

[27] ISO standard: "Information technology — Open Systems Interconnection —

Remote Procedure Call (RPC)", ISO/IEC 11578:1996.

[28] International Telecommunication Union standard, “Information technology -

Open Systems Interconnection - Procedures for the operation o f OSI

Registration Authorities: Generation and registration o f Universally Unique

Identifiers (UUIDs) and their use as ASN.l Object Identifier components”,

ITU-T Rec. X.667 | ISO/IEC 9834-8:2005, available at

http://www.itu.int/ITU-T/studygroups/coml7/oid.html, viewed Feb 2007.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.gnutella.com
http://www.groove.net
http://www.computer.org/publications/dlib/
http://www.intralinks.com
http://www.itu.int/ITU-T/studygroups/coml7/oid.html

129

[29] T. Joachims, L. Granka, B. Pang, H. Hembrooke, and G. Gay, “Accurately

Interpreting Clickthrough Data as Implicit Feedback”, Proc. 28th Annual ACM

Conference on Research and Development in Information Retrieval (SIGIR),

August 15-19, 2005, Salvador, Brazil.

[30] JXTA Search home page: http://search.jxta.org, viewed Jan. 10, 2006.

[31] KaZaA home page: http://www.kazaa.com, viewed Jan. 10, 2006.

[32] D. Kelly and J. Teevan, “Implicit feedback for inferring user preference: A

bibliography”, ACM SIGIR Forum, Volume 37 , Issue 2, 2003.

[33] The Kepler project home page, Old Dominion University:

http://kepler.cs.odu.edu, viewed Jan. 10, 2006.

[34] J. Kleinberg, “The Small-World Phenomenon: An Algorithmic Perspective”,

Proc. 32nd ACM symposium on theory o f Computing, Portland, OR, USA,

May 21-23, 2000.

[35] C. Lagoze, and H. van de Sompel, “The Open Archives Initiative: building a

low-barrier interoperability framework”, Proc. the ACM/IEEE Joint

Conference on Digital Libraries, 2001.

[36] P. J. Leach, M. Mealling, and R. Salz, “UUIDs and GUIDs”, Internet draft,

rfc4122.txt, July 2005.

[37] P. J. Leach, and R. Salz, “UUIDs and GUIDs”, Internet draft, draft-leach-

uuids-guids-01.txt, August 1998.

[38] M. Li, W. Lee, A. Sivasubramaniam, and D. Lee, “A Small World Overlay

Network for Semantic Based Search in P2P Systems”, The Second WWW

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://search.jxta.org
http://www.kazaa.com
http://kepler.cs.odu.edu

130

Workshop on Semantics in Peer-to-Peer and Grid Computing

(SemPGRID'04), New York City, NY, May 2004, pp. 71-90.

[39] X. Liu, K. Maly, M. Zubair, M. Nelson, “Arc - An OAI Service Provider for

Digital Library Federation”, D-Lib Magazine, 7(4), April 2001.

[40] M. J. Lorence, M. Satyanarayanan, “IPwatch: A Tool for Monitoring Network

Locality”, ACM SIGOPS Operating Systems Review, 24(1): 58-80 (1990)

[41] Apache Lucene home page: http://lucene.apache.org/, viewed Jan 10,2006.

[42] K. Maly, M. Zubair, and X. Liu, “Kepler - An OAI Data/Service Provider for

the Individual”, D-Lib Magazine, 7(4), April 2001.

[43] G. S. Manku, M. Bawa, and P. Raghavan, “Symphony: Distributed Hashing in

a Small World”, Proc. 4th USENIX Symposium on Internet Technologies and

Systems, 2003.

[44] R. J. McNab, I. H. Witten, and S. J. Boddie, “A Distributed Digital Library

Architecture Incorporating Different Index Styles”, Proc IEEE forum on

Research and Technology Advances in Digital Library, Santa Barbra, CA,

April 1998, pp 36-45.

[45] J. C. Mogul, “Network locality at the scale o f processes”, ACM SIGOPS

Operating Systems Review, 10(2): 81-109 (1992)

[46] Napster home page: http://www.napster.com, viewed February 10, 2001; and

Napster page at Wikipedia, http://en.wikipedia.org/wiki/Napster, viewed Jan

10, 2006

[47] NeuroGrid home page: http://www.neurogrid.net, viewed Jan. 10, 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://lucene.apache.org/
http://www.napster.com
http://en.wikipedia.org/wiki/Napster
http://www.neurogrid.net

131

[48] NS2 wiki, http://nsnam.isi.edu/nsnam/index.php/Main_Page, viewed May 11,

2005.

[49] The New Zealand Digital Library home page, University o f Waikato, New

Zealand: http://www.nzdl.org/fast-cgi-bin/library?a=p&p=home, viewed Jan.

10, 2006.

[50] Open Archives Initiative home page: http://www.openarchives.org, viewed

Jan. 10, 2006.

[51] PeerSim home page, http://peersim.sourceforge.net, viewed Jan. 10, 2006.

[52] P2PSim home page, http://pdos.csail.mit.edu/p2psim/, viewed Jan 10, 2006.

[53] F. Radlinski and T. Joachims, “Query Chains: Learning to Rank from Implicit

Feedback”, Proc. 11th ACMSIGKDD International Conference on Knowledge

Discovery and Data Mining, Chicago, Illinois, USA, August 21-24, 2005.

[54] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable

content-addressable network”, Proc. ACM SIGCOMM 2001, August 2001.

[55] Retrievalware home page: http://www.retrievalware.com, viewed Jan. 10,

2006.

[56] P. Mockapetris, “Domain names: Concepts and facilities”, RFC 882,

USC/Information Sciences Institute, Nov 1983.

[57] P. Mockapetris, “Domain Names - Implementation and Specification”, RFC

883, USC/Information Sciences Institute, Nov 1983.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://nsnam.isi.edu/nsnam/index.php/Main_Page
http://www.nzdl.org/fast-cgi-bin/library?a=p&p=home
http://www.openarchives.org
http://peersim.sourceforge.net
http://pdos.csail.mit.edu/p2psim/
http://www.retrievalware.com

132

[58] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location

and routing for large-scale peer-to-peer systems”, Proc. IFIP/ACM

Middleware 2001, Heidelberg, Germany, Nov. 2001.

[59] SETI@home home page: http://setiathome.ssl.berkeley.edu, viewed Jan. 10,

2006.

[60] R. Shi, K. Maly, and M. Zubair, “Automatic Metadata Discovery from Non-

cooperative Digital libraries”, Proc IADIS In t’l Conference e-Society 2003

ES2003, pp. 735-739, Lisbon, Portugal, May 2003

[61] R. Shi, K. Maly, and M. Zubair, “Improving Federated Service for Non

cooperating Digital Libraries”, Proc In t’l conference on Digital Libraries

ICDL2004, New Dehli, India, Feb. 2004

[62] M. Silva and R. Wait, “Sparse Matrix Storage Revisited”, Proc. 2nd

conference on computing frontiers, Ischia, Italy, May 4-6 2005, pp. 230 - 235.

[63] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz, “Analysis o f a very

large AltaVista query log”, ACM SIGIR Forum, Volume 33, Issue 1, 1999.

[64] T. Staples, R. Wayland, and S. Payette, “The Fedora Project: An Open-source

Digital Object Repository System”, Digital Library Magazine, April 2003.

[65] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications”,

Proc. ACM SIGCOMM 2001, pp. 149-160, San Deigo, CA, August 2001.

[66] N. S. Ting and R. Deters, “3LS - A Peer-to-Peer Network Simulator”, Proc.

3rdIn t’l Conference on Peer-to-Peer Computing (P2P’03), 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://setiathome.ssl.berkeley.edu

133

[67] The Technical Report Interchange (TRI) project home page, Old Dominion

University: http://128.82.7.99/tri/index.html, viewed Jan. 10, 2006.

[68] United Devices home page: http://www.ud.com, viewed Jan. 10, 2006.

[69] J. Walkerdine and P. Rayson, “P2P-4-DL: Digital Library over Peer-to-Peer”,

Proc. 4th In t’l conference on Peer-to-Peer Computing (P2P'04). Zurich,

Switzerland, August 25 - 27, 2004.

[70] D. J. Watts and S. H. Strogatz, “Collective Dynamics o f 'Small-World'

Networks”, Nature, 393:440-442, 1998.

[71] B. Yang, and H. Gracia-Molina, “Designing a Super-Peer Network”, Proc. 9th

In t’l conference on Data Engineering, Bangalore, India, March 5-8, 2003.

[72] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J.

Kubiatowicz, “Tapestry: A Resilient Global-scale Overlay for Service

Deployment”, IEEE Journal on Selected Areas in Communications, January

2004, Vol. 22, No. 1.

[73] The Santa Fe Convention home page,

http://www.openarchives.org/sfc/sfc_entry.htm, viewed Jan 15, 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://128.82.7.99/tri/index.html
http://www.ud.com
http://www.openarchives.org/sfc/sfc_entry.htm

134

VITA

for
Ashraf A. Amrou

EDUCATION:

■ Master o f Science, Computer Science, Alexandria University, Egypt, Thesis:
“Fast mining o f interesting association rules fo r large-scale problems’’, Feb
2001,

■ Bachelor o f Science, Computer Science, Alexandria University, Egypt, May
1995.

PROFESSIONAL CHRONOLOGY:

■ E-Learning Technical Lead, Old Dominion University, Norfolk, VA, Aug 2007 -
Present.

■ J2EE Developer, Union Pacific Rail Road, Omaha, NE, June 2007- Aug-2007.

■ Research Assistant, Old Dominion University, Department o f Computer Science,
Aug 2001- Dec 2006.

■ Assistant Researcher, Informatics Research Institute, MCSRTA, Alexandria
Egypt, Dec 1997- June 2001

RESEARCH INTERESTS:

Distributed and Peer-to-peer Systems, Digital Library, Computer Networks

SELECTED PUBLICATIONS:

A. Amrou, K. Maly, M. Zubair; “Performance Evaluation o f Freelib, a P2P-based
Digital Library Architecture”, Proceedings o f the International Conference on
Digital Libraries (ICDL 2006), Dec. 5-8, 2006, New Delhi, India.

A. Amrou, K. Maly, M. Zubair; “Freelib: Peer-to-peer-based Digital Libraries”,
Proceedings o f the IEEE 20th Int’l Conference on Advanced Information
Networking and Applications (AINA 2006), April 18-20, 2006, Vienna, Austria.

A. Amrou, K. Maly, M. Zubair; “Freelib: A Self-sustainable Digital Library for
Education Community”, Proceedings of the World Conference on Educational
Multimedia, Hypermedia and Telecommunications (Ed-Media 04), pp. 15-20,
Lugano, Switzerland, June 2004.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

