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ABSTRACT 

 
THE EFFICACY OF PROGRAMMING ENERGY CONTROLLED SWITCHING IN  

RESISTIVE RANDOM ACCESS MEMORY (RRAM) 
 

David Malien Nminibapiel 
Old Dominion University, 2017 
Director: Dr. Helmut Baumgart 

 
 
 
Current state-of-the-art memory technologies such as FLASH, Static Random Access 

Memory (SRAM) and Dynamic RAM (DRAM) are based on charge storage. The semiconductor 

industry has relied on cell miniaturization to increase the performance and density of memory 

technology, while simultaneously decreasing the cost per bit.  However, this approach is not 

sustainable because the charge-storage mechanism is reaching a fundamental scaling limit. 

Although stack engineering and 3D integration solutions can delay this limit, alternate strategies 

based on non-charge storage mechanisms for memory have been introduced and are being 

actively pursued.  

Resistive Random Access Memory (RRAM) has emerged as one of the leading 

candidates for future high density non-volatile memory. The superior scalability of RRAMs is 

based on the highly localized active switching region and filamentary conductive path. Coupled 

with its simple structure and compatibility with complementary metal oxide semiconductor 

(CMOS) processes; RRAM cells have demonstrated switching performance comparable to 

volatile memory technologies such as DRAMs and SRAMs. However, there are two serious 

barriers to RRAM commercialization. The first is the variability of the resistance state which is 

associated with the inherent randomness of the resistive switching mechanism.  The second is the 

filamentary nature of the conductive path which makes it susceptible to noise.   



 

 

In this experimental thesis, a novel program-verify (P-V) technique was developed with 

the objective to specifically address the programming errors and to provide solutions to the most 

challenging issues associated with these intrinsic failures in current RRAM technology. The 

technique, called Compliance-free Ultra-short Smart Pulse Programming (CUSPP), utilizes sub-

nanosecond pulses in a compliance-free setup to minimize the programming energy delivered per 

pulse. In order to demonstrate CUSPP, a custom-built picosecond pulse generator and feedback 

control circuit was designed. We achieved high (108 cycles) endurance with state verification for 

each cycle and established high-speed performance, such as 100 ps write/erase speed and 500 

kHz cycling rate of HfO2-based RRAM cells. We also investigate switching failure and the 

short-term instability of the RRAM using CUSPP.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Resistive switching (RS) refers to the phenomenon where insulators, under an applied 

electrical field, can undergo reversible resistance change from their normal insulating state to an 

abnormal conductive state.  This phenomenon was first discovered in the 1960s [[1-4] and was 

proposed for use in memory applications.  However, memory technology based on RS remained 

primarily a field of scientific study for the next 30 years, mainly because of the advancements of 

Si-based memory technology. It saw a re-emergence in the late 1990s in perovskite oxides [5-7]. 

Shortly thereafter, Baek et al. [8] demonstrated a robust memory device based on a binary 

transition metal oxide insulating layer. This breakthrough renewed interest in memory devices 

based on the RS mechanism [9-12]. These devices are called Resistive Random Access Memory 

(RRAM).  

In its basic configuration, an RRAM cell comprises an insulating layer sandwiched 

between two conducting layers in a capacitor-like structure. The conducting layers are typically 

either a metal or a conductive nitride; the insulating-layer material, however, varies across a wide 

range of organic, inorganic, and hybrid materials [13, 14].  The working principle of these 

devices is based on modulating the conductivity of the metal-insulator-metal (MIM) structure by 

applying the appropriate bias. When this bias is removed, the cell retains the resistance level, 

making RRAM a non-volatile memory. The active region of RS can be as large as the entire 

insulating layer or a 1-dimensional (1-D) conductive path that electrically connects the two 

conductors [15]. The former is usually observed in Phase Change RAM (PCRAM) [16]. RRAM 

devices based on a 1-D conductive path are desirable because of the promise of extremely high 
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scalability enabling continued growth in density for future technology nodes [17].  The 

conductive filament (CF) is widely accepted to be composed of metal atoms or reduced oxides 

[18, 19]. The localized nature and composition have been verified through various methods, 

which include conductive atomic force microscopy (C-AFM) [20], high resolution transmission 

electron microscopy (TEM) [21], electron energy loss spectroscopy (EELS) [22] and X-ray 

absorption spectromicroscopy [23].  

In a single bit cell, two distinct states are programmed: high resistance state (HRS) and 

low resistance state (LRS), representing the low (0) and high (1) states, respectively. The 

transition from HRS to LRS is referred to as SET while the opposite transition from LRS to HRS 

is referred to as RESET. Prior to performing SET or RESET or cycling, a FORMING step is 

required. VFORM, VSET and VRESET represent the voltages required for FORMING, SET and 

RESET. The read-out operation is performed with a low voltage (VREAD), which should not 

disturb the resistance state.  

Traditionally, switching modes are classified as either unipolar or bipolar. This 

classification is based on the sensitivity of the switching direction on the bias polarity. Unipolar 

devices can SET and RESET at the same fixed polarity, while bipolar devices can only SET and 

RESET at opposite polarity. The switching mode is not an intrinsic property of the cell but can 

be controlled by the stack properties and programming currents [24-26]. This explains the 

appearance of a so-called non-polar mode where switching direction is independent of polarity 

[13].  In regard to implementation, unipolar devices have the advantage of requiring a simpler 

programming algorithm since polarity is fixed.  All switching modes are schematically shown in 

Figure 1.  
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Filament formation in the FORMING and SET step is accompanied by an inrush of 

current which must be controlled to avoid permanent damage [27]. Usually, a current-limiting 

element such as a resistor or transistor is placed in series with the RRAM to set a current 

compliance (IC) limit. IC is not only necessary to prevent thermal damage; it also serves to 

control the post-FORMED/SET state resistance value [28]. The inrush of current is a result of the 

abrupt change of the RRAM cell from high resistance to low resistance under the programming 

voltage. Ideally, the compliance element should limit the maximum allowable current that flows 

through the cell. However, this function can be undermined by the response time of the system.  

If the transition time of the RRAM cell is faster than the RC time of the system, a current 

overshoot is inevitable. This overshoot current exceeds the current limit set by the compliance 

element and therefore defeats the purpose of the compliance element [29]. To minimize current 

overshoot, strict control of parasitics in the system is required. For this reason, advanced RRAM 

cells either included an additional layer to serve as a series resistor or are integrated directly on 

the transistor gate.  
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Figure 1. Schematic of a) unipolar, b) nonpolar and c) bipolar switching modes of RRAM cells under voltage sweep.  

 

Cell level  

Several aspects of the resistive switching mechanism in RRAMs have led to its 

emergence as a serious candidate for future nonvolatile memory. Conversely, these aspects also 

have given rise to most of the issues still hindering the full commercialization of RRAM-based 

memory chips. The wide variety of material systems which display RS enables an equally wide 

application space for RRAM [14]. RRAMs based on novel hybrid insulator materials like metal 

organic framework (MOF) films [30], and novel transparent electrode materials like Indium tin 

oxide (ITO) [31] have been demonstrated. In addition, switching performance is highly sensitive 
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to the cell stack and structure, which allows for stack engineering strategies to improve 

performance [32]. For instance, TaOx-based devices tend to exhibit superior retention [33], 

while conductive-bridge RRAM devices using electrochemically active electrodes  tend to 

display large, resistance-memory windows [34]. On the other hand, because there are several 

stack options, it is challenging to construct models that can fully explain the different aspects of 

resistive switching. Without these models, device optimization and performance predictions 

become difficult. Also, the issue is reflected in the literature, where there are conflicting reports 

of the switching behavior even within the same RRAM material system. The confusion can be 

related to the interplay of multiple physical processes present during cell operation and their 

dependence on the material stack and programming environment.  

Several features of the RRAM conductive path make it highly attractive for high density 

and low-power NVM. At the same time, these features are the root cause of its most severe 

challenges. Theoretically, the size of the conductive path can reach atomic scales without 

degrading performance while in some cases, scaling has been shown to improve performance 

[35, 36]. Generally, resistance levels increase with scaling, which is advantageous for power 

considerations. Also, ionic transport at the nanometer scale can cause sufficient resistance 

change; therefore, overall programming energy for RRAM is low.  

However, it is this highly localized active region and filamentary conductive path which 

generate severe reliability and variability issues because of the reduced number of participating 

defects [37]. At these scales, the charge state or motion of a single defect within or close to the 

CF can dramatically change the resistance of the CF and give rise to instability [38-40]. 

Uniformity is affected by this behavior because the exact arrangement of defects changes for 

each cycle causing the so-called cycle to cycle variability. Read operation is prone to Random 
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Telegraph Noise (RTN) signals which not only degrade the resistance window [41, 42] but also 

disrupt program-verify techniques [43]. In a Multilevel (MLC) the number of states is limited by 

instability in the resistance state  [44-46]. Therefore, thin conductive paths, which are desirable 

for high density and low-power applications, are susceptible to large fluctuations that affect 

stability and uniformity.  

Array level  

Ideally, a RRAM memory array can be a true cross bar architecture where the device area 

is defined by the cross point of the bitline (BL) and wordline(WL), which are arranged 

orthogonal to each other [47-50]. Due to the scalability of RRAMs, the linewidths and line 

spacing can be minimized to achieve a high density array. An RRAM cell footprint is 4F2, where 

F is the smallest feature size of a given process [51]. The memory cell area can be further 

reduced by utilizing the MLC capability of RRAMs or multi-stack cell structure [52]. With this 

approach, the cell area becomes 4F2/n, where n is the number of levels or stacks per device [53]. 

In addition to the cycle to cycle variability, device to device variability is also present at the array 

level.  This variability is in part unavoidable due to the intrinsic randomness of the RS 

mechanism. However, cell to cell variability is more prone to additional extrinsic sources of 

variability such as poor process uniformity across the chip.    

Sneak current is another serious issue at the array level. In the crossbar architecture, 

multiple cells share common BL and WL. Therefore, in addressing a device in HRS, current can 

sneak past the higher resistance device and flow through devices in LRS. Sneak currents are 

problematic because they increase the thermal budget, decrease array size, and reduce read-out 

margins [54].  Sneak current solutions involve integrating the RRAM cell with a selector device 

such as a diode or transistor in a 1 Diode - 1 RRAM (1D1R) configuration or a 1 Transistor - 1 
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RRAM configuration (1T1R), respectively [55, 56]. Although both configurations can eliminate 

sneak currents, the additional element increases the cell footprint.  

An alternate solution relies on the non-linearity of the RS mechanism to minimize sneak 

current. This strategy, referred to as 1 RRAM (1R) configuration, eliminates the need for an 

area-consuming selector device.  Dimin Niu et al. [57] investigated the performance of all three 

configurations – 1R, 1T1R, 1D1R – and determined that 1D1R is suitable for devices operated at 

high operating current and low nonlinearity, while 1R is suitable for low operation current and 

high nonlinearity. An anti-serial connected TaOx-based cell has also been demonstrated to 

minimize sneak current [54, 58].  

Programming solutions to RRAM issues 

Strategies to improve reliability and uniformity can be separated into two groups: 

programming and non-programming. In the latter approach, common strategies to improve 

performance involve material selection, stack engineering, doping and cell-structure optimization 

[33, 59-64]. H.Y. Lee et al. improved the resistance window (>1000) and achieved low operation 

voltage by incorporating a Ti layer to a HfOx cell [11]. Traore et al. observed better retention in 

HfOx-based devices doped with Al and Ti [65].  However, these strategies can be nullified by 

improper programming.  

Programming current control remains one of the key parameters responsible for 

improving several key performance markers of RRAMs. High endurance and retention are linked 

to optimizing the programming currents since excessive and insufficient currents can result in 

failure [66, 67]. The former case results in reversible failures [68], while the latter results in 

permanent failures [69]. The RS mechanism is highly sensitive to temperature which in turn is 

generated by the current flowing through the conductive filament. As will be discussed in 
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Section 1.2, thermochemical cells rely on temperature for filament formation and rupture [70]. 

Therefore, it is particularly important to limit the maximum current or energy dissipated in the 

CF.  

As previously stated, current control is traditionally executed with a series current 

limiting element such as a resistor or transistor [71, 72]. However, current control without the 

additional series element can be achieved by pulse width controlled current duration [73] and by 

current sweep programming [74, 75]. The former achieves current control by limiting 

programming energy and has been demonstrated in forming studies and endurance studies [43, 

76]. The latter approach takes advantage of the gradual filament formation of the current sweep 

to eliminate excessive programming current.  Improved retention has been demonstrated in the 

current sweep approach [77].  

Although constant stress (DC) and sweep programming modes are commonly used in 

RRAMs [69, 74, 78], pulse programming is preferred for practical studies of switching 

performance [79]. This is because pulse programming is fast, energy efficient and mimics the 

true programming operation at the chip level. Chen et al. demonstrated a high endurance 

obtained by balancing VSET and VRESET [68], indicating the need to optimize pulse parameters 

such as rise/fall time, width and amplitude to improve endurance [80-82].  

Variability remains one of the major challenges in RRAMs because it is intrinsic to the 

nature of the resistive switching process [83]. Along the filament, the exact location and extent 

of filament formation and rupture cannot be reproduced from cycle to cycle or from device to 

device. Therefore, post programmed states are represented as distributions instead of well-

defined values. To enable accurate state determination during read-out operation, the 

distributions must never overlap. Program-verify techniques have been developed primarily to 
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ensure distinguishable resistance distributions or sufficient resistance window (RW). Generally, 

program verify algorithms adjust the pulse number [43, 84], width [85] and amplitude [86-88] 

until the desired RW is achieved. Program-verify has also been used to tighten the resistance 

distribution which is highly desirable for MLC applications of RRAMs [86]. 

1.2 Origins of Filamentary Resistive Switching 

The memory function in RRAM is based on the reversible change of the cell resistance 

between at least two distinct resistance states. As described earlier, the memory cell structure is 

composed of two conductive layers separated by an insulating layer, in this case an oxide. 

Therefore, to change the resistance of this otherwise insulating cell would require the presence of 

some conductive path through the oxide connecting the two electrodes: top electrode (TE) and 

bottom electrode (BE). The conductive path may be related to an interface effect such as 

Schottky barrier modulation or a localized path adjoining TE and BE. The former is usually 

observed when a semiconductor is used as the insulating layer [14]. Therefore, based on the type 

of semiconductor and electron metal work function, an Ohmic contact or Schottky barrier that 

can be modulated is formed [51]. The switching mechanism may also be due to charge 

trap/detrap in the insulator. In which case, the presence or absence of charge can affect 

conduction at the interface [89, 90]. Cells that rely on interface modulation to switch are referred 

to as interface-type cells. In LRS (On-State), conduction ideally occurs homogeneously across 

the entire interface, making the LRS of interface-type cells strongly sensitive to area scaling [91].   
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Figure 2. LRS and HRS dependence on cell area for different RRAM stacks [13]. 

 

On the other hand, some RRAM cells show a very weak, sometimes negligible, 

dependence of LRS on the device area. Figure 2 shows the dependence of LRS and HRS on the 

cell area. It is evident that HRS decreases considerably with scaling, while LRS shows negligible 

change. This suggests that the conductive path is localized with lateral dimensions much smaller 

than the device area. These cells are referred to as filamentary-type cells. In HRS, the filament is 

ruptured, disconnecting TE and BE, while in LRS the filament is intact. Ideally, in filamentary-

type cells, a single, localized, conductive filament is responsible for RS. Due to the highly 

localized filament, device performance frequently remains, more or less, unchanged; however, in 

some cases, performance actually improved by area scaling [35, 36]. The filament dimensions 

will limit the extent to which area scaling does not impact LRS. In this thesis work, we examine 

filamentary-based RRAMs.  
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The conductive filament (CF), which is electrically more conductive than its surrounding 

insulating matrix, is a localized path in the insulating layer [92]. Therefore, conduction is 

unaffected by area scaling until the device area approaches the lateral dimensions of the filament. 

The resistance state of the memory cell is determined by the physical and geometric properties of 

the CF. As depicted in Figure 3, higher resistance states are accessed when the CF shrinks in 

width. Even higher resistance states are accessed when the CF is completely severed, i.e., 

electrically disconnecting the two electrodes.  

Prior to direct observations of the localized conductive path in the switching matrix, the 

localized nature was observed through C-AFM [93-95] techniques. In LRS, nanoscale 

conductive paths are present, while in HRS these paths disappear or are reduced in size or 

number. The appearance of multiple conductive paths suggests multi-filament formation. 

However, direct observations of the CF, particularly non-metallic filaments, are challenging 

because of the localized nature and the difficulty in differentiating the CF from its surrounding 

insulator matrix. Transmission electron microscopy (TEM) has been used to identify conductive 

paths in metal oxides [21]. Using X-ray absorption spectroscopy, Strachan et al. observed a 

localized reduced region in TiO2, which was responsible for the large increase in conductivity in 

LRS [96].  
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Figure 3. Illustration of the possible physical configuration of the CF in an RRAM cell. CF resistance increases as 

length and/or width of CF decreases. 

 

  The CF may display metallic-like or semiconductor-like conduction based on its 

composition, which is ultimately determined by the cell material stack and the programming 

currents. Metallic-like conduction is usually observed in RRAM cells whose electrochemically 

active metal electrode is dissolved and deposited in the insulating matrix. In these cells, the CF is 

composed of metal atoms. However, metallic-like conduction was observed in a Pt/NiO/Pt cell 

which has two inert electrodes [97, 98]. Therefore, metallic conduction is not limited to cells 

which include an electrochemically active electrode. Semiconductor-like conduction occurs 

where defects (oxygen vacancies, cation vacancies) are generated and accumulated in the 

insulator to form a conductive path.  In such cases, the CF is not composed of metal precipitates 

from an electrochemically active electrode.  Rather, they are usually composed of sub-oxides, 

which undergo a redox reaction due to the concentration of oxygen vacancies, in the switching 
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layer. F. Pan et al. describe two switching mechanisms based on ion migration: cation migration 

and anion migration mechanisms [14]. 

In the cation migration model, an electrochemically active electrode such as Ag is 

positively biased (anode) leading to the dissolution of the electrode (Ag→Ag+ + e-). The 

resultant cations (Ag+) migrate under the applied field towards the negative biased electrode 

(cathode). At the cathode, the cations are reduced back to metal (Ag+ + e- → Ag) and begin to 

form the metallic dendritic filament that eventually bridges the two electrodes. The nucleation 

and mobility of the cations in the insulating layer determine the growth direction of the metallic 

filament.  In Ag/SiO2/Pt [99],  Ag/a-Si/W [25] and Ag/PEDOT:PSS/Pt [100] the filament has 

been shown to grow from cathode to anode, anode to cathode, and in both directions, 

respectively. RRAM cells where cation migration is responsible for RS are referred to as 

electrochemical metallization cells (ECM), conductive bridge RAM (CBRAM) or programmable 

metallization cells (PCM). The conductive filament in CBRAM-type devices have been 

confirmed with TEM analysis [101]. Using electron energy loss spectroscopy (EELS) and energy 

dispersive X-ray (EDX), Xing Wu et al. determined that the CF in HfOx cell with a Ni TE was 

composed of Ni that migrated from the TE into the HfOx layer [22]. 

In the anion migration model, the electrodes do not contribute species to form the CF. 

Usually, the CF is composed of a localized sub oxide that is more conductive than the parent 

oxide material. Redox reactions driven by the migration of oxygen ions (anions) in the oxide are 

attributed to the RS. Under the applied electric field, anions migrate to the positively biased 

electrode leaving behind oxygen vacancies and a subsequent valance state change of the cation 

sublattice. This modifies the electronic conductivity and forms the conductive path during 

FORMING and SET [102]. By applying the positive electric field, anions migrate back into the 
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oxide and recombine with oxygen vacancies during RESET.  These oxygen-vacancy defects 

result in the generation of sub stoichiometric oxides which form the conductive path. It is 

common for RS to be described by oxygen vacancy migration analogous to hole movement. RS 

based on oxygen ion/vacancy migration is referred to as Valence Change Memory (VCM).  

Typical oxides which exhibit anion-migration induced redox reaction include, Ta2O5, HfO2 and 

ZrO2. It is common for the oxides to be represented as TaOx, HfOx, ZrOx as they are 

purposefully deposited with significant oxygen content deficiency. In TiO2, for example, the 

conductive path was observed to be a result of the formation of Ti4O7 in the TiO2 matrix [21, 96].  

The oxygen vacancy concentration distribution is critical to the switching kinetics in 

VCM cells. Cells that have uniform distribution of oxygen vacancies tend to exhibit both bipolar 

or unipolar switching modes. In the bipolar case, filament formation and rupture are caused by 

anion migration induced by the applied field [103]. In the unipolar case, temperature drives both 

filament formation and rupture [104]. Cells can be structured intentionally to have a non-uniform 

distribution of oxygen vacancies to make the switching direction more sensitive to polarity.  This 

can be achieved by using a top metal electrode (eg., Ta, Al or Ti) with a high oxygen affinity 

[105] or introducing a layer (eg., TaO2-x) with high concentration of oxygen vacancies. This 

creates a disproportionate number of oxygen vacancies close to TE which favors a positive bias 

on TE for SET since negative bias would initially drive oxygen ions back into the vacancies.  

RS based on field-induced ion processes (generation, migration, redox) were described 

above; however, these processes may be thermally induced.  A third class of cells dominated by 

thermal effects are referred to as Thermochemical memory (TCM) [106] or fuse-antifuse cells 

[22]. During FORMING/SET, filament formation is driven by thermal decomposition of the 

oxide layer. The deficiency of oxygen results in CF of either oxygen vacancies [107] or metal 
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precipitates [108] or a mixture of both [22][31].  The driving force for the formation of metallic 

CFs is the energetically favored, lower-valence states of these metal oxides at high temperatures 

[14].  TCM cells usually show metallic conduction in the ON state and semiconductor-like 

conduction in the OFF state [97]. During RESET, thermally activated O2- diffusion driven by the 

concentration gradient of the oxygen deficient CF and the oxygen rich surrounding matrix 

oxidizes the CF to create a dielectric barrier. Lee et al. [95] observed evidence of O2- migration 

in a Pt/NiO/Pt cell by secondary mass ion spectroscopy. Because joule heating is independent of 

the polarity of the applied voltage, the nonpolar switching mode is usually observed. TCM 

switching behavior has been shown in CoO, TiO2, NiO, ZnO based oxides sandwiched between 

two inert electrodes in a symmetric cell [109].  

  Regardless of the switching mechanism, ECM, TCM or VCM, the as-deposited RRAM 

oxide typically requires an initial step to construct the conductive path. This is the FORMING 

step. FORMING can be interpreted as a soft breakdown event [110], which generates the 

minimum number of species needed to electrically connect TE and BE. Time-dependent, 

dielectric-breakdown measurements show that the relationship between FORMING voltage and 

FORMING time is exponential [111]. Therefore, the percolation theory of dielectric breakdown 

can be used to explain the FORMING process [112].  RS generally involves an interplay of 

electrochemical and thermochemical processes, where one may dominate depending on the 

specifics of the stack and the programming procedure. VFORM decreases with oxide thickness 

suggesting  that FORMING is a field driven process [113]. At high (> 10 MV/cm) electric fields, 

metal oxide bonds can be broken creating both ions and defects.  However, the temperature due 

to leakage current is expected to contribute significantly to bond breaking and filament 

formation. For example, in a polycrystalline film, grain boundaries act as precursor sites for the 
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CF because of enhanced leakage current paths via defects [97]. Electron transport through such 

vacancies is accompanied by energy dissipation resulting in local temperature increases [27], 

which can enhance vacancy generation. This, in turn, lowers the activation energy barrier for 

subsequent vacancies.  Coupling this lower activation energy with the exponential dependence of 

vacancy generation on both the electric field and the temperature leads to positive feedback that 

can accelerate CF formation.  

High voltages are typically needed for FORMING since it generates the prerequisite 

number of defect species to construct the entire CF. Because of the required voltages, 

FORMING is usually undesirable because it increases power consumption and the high voltage 

can easily initiate thermal damage. Consequently, several strategies have been employed to 

obtain so-called ‘FORMING free’ [60] [114, 115] devices or, at a minimum, ‘decreased 

FORMING voltages’. Some strategies take advantage of the linear relationship between VFORM 

and oxide thickness, where simply decreasing the oxide thickness will decrease VFORM. Other 

strategies to decrease VFORM, involve purposefully depositing defect rich oxides by controlling 

oxygen content or anneal ambiance during oxide deposition [116]. The higher leakage current of 

these defective oxides dominates the FORMING process while keeping VFORM low. Hot forming 

has also been used to reduce the FORMING voltage and time [78]. At elevated programming 

temperatures, the electron transfer rate increases, and an associated increase in dissipated power 

during charge trap/detrap accelerates the generation of defects. This sensitivity of the forming 

step to temperature of the device corroborates the role of temperature in resistive switching.  

RESET and SET do not scale with oxide thickness. This suggests that only a small 

portion of the CF participates in RESET and SET. This is also evident by the lower VSET and 

VRESET voltages compared to VFORM. The SET operation is a scaled down version of FORMING 
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as it reforms the rupture portion of the CF. Therefore, current compliance is required during 

SET. RESET operation makes the CF less conductive. This can be explained either by a 

reduction of CF dimension or the creation of a dielectric barrier in the CF. In the former 

scenario, the filament is still intact while in the latter, the filament is ruptured. Two prominent 

models have been proposed to explain the RESET process in filamentary RRAM cells: the 

thermal-dissolution model [117] and  ionic-migration model [118]. In the thermal-dissolution 

model, the applied voltage causes current to flow through the CF. Joule heating leads to a 

temperature rise that leads to dissolution of the CF. This process is self-accelerated because the 

hottest spot on the filament shrinks the fastest, enhancing the electric field and current density. 

Since this process is independent of the polarity of the applied voltage, it describes unipolar or 

nonpolar RESET. However, in the case where voltage polarity is required such as in bipolar 

RESET, the electric field drives the dissolution of the CF. Oxygen ions (O2-) drift to recombine 

with oxygen vacancies [119].  

The physical and chemical properties of the CF are affected by the material stack, the 

interface, the film structure, and the thermodynamics associated with programming. Because of 

the direct impact of these parameters on the CF, switching performances such as endurance and 

retention can be tuned. For instance, the higher performance of some material systems is 

associated with the stable oxides that constitute the CF. Like in TaOx-based systems, two 

thermodynamically stable solid phases are achievable, resulting in more stable CF compared to 

TiOx [120, 121]. Programming also directly influences the physical and chemical nature of the 

CF.  
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1.3 HfO2-based RRAM 

As previously described, several materials can be used as the insulator or storage layer. 

Of these materials, transition metal oxides are favored based on several key factors. In transition 

metal oxides, the stoichiometry can be adjusted to control material properties and improve 

switching performance [95]. Most metal oxides (CuOx, WOx, HfOx, SiOx) already in use in 

complementary metal oxide semiconductors (CMOS) show the resistive switching phenomenon. 

This simplifies and dramatically reduces the cost of implementing memory technologies based 

on RRAM. For some stacks, such as WOx and CuOx, a simple, additional oxidation step is 

enough to integrate RRAMs with a transistor [122]. For RRAM arrays that require a selector 

diode or transistor, the thermal stability of metal oxides becomes an indispensable feature as 

well. The popularity of oxide-based RRAM cells is also based on the merit of their switching 

performance in comparison to other material systems [13].  

One of the more mature metal oxides explored for RRAM is HfO2. RRAMs based on 

HfO2 switching layers have shown excellent switching scalability and performance. In addition, 

HfO2 has proven compatibility with CMOS technology, where it is employed as a high-κ gate 

dielectric for high-performance MOSFETs. Figure 4 shows a SEM and TEM image of two 

different HfOx devices. Govoreanu et al. demonstrated a cross point (Figure 4 (a)) 10 x 10 nm2 

TiN/Hf/HfOx/TiN cell with good endurance (107 cycles) and stability (30 hrs @ 200OC) [35]. 

Zhang et al. fabricated devices, shown in Figure 4 (b) with an active area of a few nanometers (< 

10nm) with multilevel functionality and 108 endurance [36]. In addition to MLC capability, S. 

Yu et al. fabricated vertical cells for use in a three-dimensional (3D) cross point architecture 

which would further increase the storage capacity of the memory chip [52]. In regard to 
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switching performance, ultra-low (pJ) switching energy, sub ns switching speeds, 1010 endurance 

has been demonstrated in HfO2 based devices [11, 43, 123].   

 

 

Figure 4 (a) Top view SEM image of TIN/Hf/HfOx/TiN cell. Cell area is defined at the crossing of TE (10 nm line 

width) and BE (10 nm line width) [33]. (b) Cross-sectional TEM image of TiN/HfOx/Pt device. The active area is < 

10nm, defined by TE (TiN) [34]. 

 

The RS mechanism in HfO2 is widely accepted to be attributed to the formation and 

rupture of a conductive filament due to oxygen ion and vacancy processes. [66-68]. Unless an 

electrochemically active electrode is used [22], most HfO2-based devices are categorized as 

VCMs. However, unlike CBRAM where the CF is composed of metal atoms, the CF in VCM is 

mostly composed of a reduced valence state of the oxide. Therefore, observing CF using TEM is 

not easily accomplished [124]. However, the conductive path has been evidenced by U. Celano 

et al. using an AFM based tomography technique [20]. Kumar et al. [23] observed lateral oxygen 

migration using X-ray absorption spectromicroscopy. The conductance of the CF may display 
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semiconductor-like or metallic-like properties depending on the programming currents and 

material stack [125].  

Usually, amorphous or polycrystalline HfO2 layers are deposited for RRAM using 

various deposition techniques including atomic-layer deposition (ALD) [126],  rf-magnetron 

reactive sputtering [127] and atomic-vapor deposition [128]. Generally, single crystalline films 

show lower VFORM compared to polycrystalline and amorphous oxide films. This is attributed to 

grain boundaries in the crystalline films, which provide favorable sites for CF growth [93]. The 

grain boundaries also serve as low-energy diffusion paths for oxygen ions to easily diffuse 

through [129]. For polycrystalline films, the oxygen vacancies form an extended defect or 

percolation path as observed in NiO [130]. In amorphous oxide material, however, there are no 

preferable sites for CF formation; hence, the CF growth location is extremely random [131] and 

VFORM is high [132]. During deposition, the ambient [132] and annealing conditions [127] can 

impact switching parameters. This is due to the role of oxygen ions in RS as these processes 

control the oxygen content during deposition.  

HfOx-based RRAM cells can exhibit unipolar, nonpolar, and bipolar switching modes 

[109, 127, 133]. As discussed earlier, the switching mode is not intrinsic to the insulating layer 

but is dependent on the complete material stack of the cell. Unipolar and nonpolar are usually 

achieved in symmetric cells, for example a Pt/HfOx/Pt cell, since both TE and BE interfaces are 

the same.  However, unipolar switching has also been observed in asymmetric cells.  L. Goux 

[134] et al. observed both unipolar and bipolar switching in TiN/HfO2/Pt asymmetric cells. For 

TiN-HfO2-Pt stacks, poor RESET was observed for both unipolar and bipolar when positive bias 

was applied to TiN electrode. RESET and cycling were better with a positive bias applied to the 

Pt electrode. This behavior suggests that the switching mode classification should be based on 
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switching yield since some devices can display multiple modes depending on the chosen bias.  

Bertaud et al. [135] observed that the switching mode did show a dependence on electrode 

choice. Metals like Pt and Cu, with high enthalpy of formation of oxides lead to unipolar 

switching, while metals such as Al, Hf, Ti with low enthalpy of oxide formation lead to bipolar 

switching.  

Most advanced HfO2 devices have at least one additional layer in the MIM structure 

which is inserted between TE and HfO2. To explain RS, it is generally accepted that mobile O2- 

ions diffuse back and forth to modulate the defect rich CF [24]. This movement of mobile 

oxygen ions is central to the RS mechanism. The additional layer is purposefully incorporated in 

the MIM structure to store and release O2- ions during programming. These functional layers are 

commonly referred to as oxygen-exchange layers (OEL), scavenging layers, or insertion layers 

[136, 137]. Multilayer cells are also fabricated not for oxygen scavenging, but to create an 

internal series resistance for low-power operation [63][[64, 84, 138]. 

Typical materials used as OEL include Ti, Ta, Hf and Zr [120]. These metal layers easily 

form metal oxides in the memory stack by extracting oxygen from the HfO2 layer. For example, 

a Ti OEL layer leads to the formation of TiOx at the interface [139].  This process leaves behind 

a defect rich, non-stoichiometric oxide layer. The extent of this extraction process is determined 

by the choice of metal cap material and its thickness. HfOx cells with Ta OEL typically exhibit 

better retention compared to Ti and Hf [120]. This is attributed to the higher oxygen diffusion 

barrier of the Ta-O compared to Ti-O. Yuzheng Guo et al. [33] used defect energy calculations to 

determine that OEL can control both vacancy concentration and its charge state.  However, this 

means release of O2- for RESET is harder and affects repeated cycling. This endurance-retention 

trade-off was reported by Y.Y Chen et al. [140]. The OEL thickness also affects cell resistance 
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and switching voltages. In a study of the cell resistance on OEL to oxide ratio, D. Walczyk et al. 

[55] found that the pristine resistance of a Ti/HfO2/Ti/TiN cell decreased with decreasing HfO2 

to Ti ratio. This is explained by the degree of oxygen gettering from the HfO2 layer by Ti. 

Thicker or more reactive OEL layers extract more oxygen, which dramatically lowers the 

resistance and voltages required for switching. Additional benefits of OEL include, improved 

read disturb, increased HRS, and improved window [134] [141].  

Cells with OEL generally support the bipolar mode because of the imbalance distribution 

of defects along the thickness of the oxide. This is because oxygen gettering is more aggressive 

close to the OEL [142]. The VCM model postulates that oxygen ions drift to the positively 

biased electrode, leaving behind defects (oxygen vacancies) to create the conductive path. Due to 

the spatial distribution of defects, it is preferred to apply a positive voltage at the OEL – oxide 

layer to initiate FORMING. It is expected that the filament grows from TE to BE and should 

therefore assume a conical shape as confirmed by C-AFM [20] and scanning TEM [143]. During 

repeated cycling, it is conceivable that over time, the location of the constriction might change, 

giving rise to different shaped filaments [144].  Forming-free HfO2 based devices have been 

demonstrated [60, 114, 132]. These devices are usually functionalized by stack engineering and 

doping methods. However, Butcher et al. [78] demonstrated a programming solution to 

decreasing VFORM , where FORMING was performed under elevated temperatures. 

RESET is expected to occur at the thinnest portion (constriction) of the CF. This is 

because current density and temperature are highest at the constriction. For a conical shaped 

filament, the RESET location should be located at the BE (opposite from OEL interface). L. 

Goux et al. [134] observed a high sensitivity of RESET on the BE interface, corroborating the 

role of BE in the RESET operation. Because the CF resistance increases in RESET, the process 
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is assigned to a decrease in CF dimensions or dielectric barrier in the filament. Usually, a 

complete rupture results in deeper HRS. To RESET the device, a negative bias is applied to the 

TE with BE grounded. The O2- stored in the OEL drifts under the applied field into the bulk 

oxide and recombines with the vacancies to re-oxidize the filament, either partially or 

completely. Note, the RESET may also be initiated thermally due to joule heating of the CF. 

Both unipolar and bipolar RESET has been observed in HfOx-based devices.  In a model 

proposed by B. Gao et al. [119], the electric field creates Vo2+ by depleting oxygen vacancies of 

electrons and O2- diffuse to the positively charged vacancy and recombine. However, in the 

bipolar case, O2- migration is field controlled, while in the unipolar case, O2- migration is 

thermally controlled.  

L. Zhao et al. [145] proposed that the driving force for RESET changes during the 

process of filament rupture. In LRS, before RESET begins, a continuous filament exists. The 

applied voltage causes a temperature rise due to joule heating. O2- then diffuses according to the 

concentration gradient towards the oxygen vacancy rich CF. Once a dielectric barrier (gap) is 

created, the electrical field dominates since current and temperature significantly decreases.  

Therefore, thermal diffusion dominates the RESET operation when a continuous filament is 

present while drift dominates when a gap is created. The SET process is similar to FORMING; 

however, to re-construct the continuous filament only the portion ruptured (gap) in the RESET 

operation has to be re-formed. Consequently, VSET is lower than VFORM. In HfOx memory, 

conduction in HRS at low bias regime has been shown to be dominated by trap assisted 

tunneling[146], hopping [71] and Poole-Frenkel [147]. Su et al. investigated current conduction 

as a function of resistance and observed that current conduction transforms from hopping to 
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Ohmic as resistance decreases [71]. Conduction in LRS has been shown to be metallic-like for 

low resistance values (< 103 Ω). 

Like most other RRAM systems, the switching performance of HfOx based cells can be 

enhanced using different strategies, which include interface and stack engineering, doping and 

programming. In [59], the authors showed that implanting Gd in the HfOx layer improved 

switching speed, enlarged the On/Off ratio, and improved uniformity. This improvement is 

attributed to Gd ions decreasing the energy of vacancy formation in the oxide. This is desirable 

for systems in which the CF is composed of oxygen vacancies. Likewise, CFs that are composed 

of metal, like in ECM, can be improved by incorporating metals of the same electrochemically 

active electrode into the  HfOx layer [148]. Oxygen plasma treatment of the HfOx has been 

shown to improve switching performance by incorporating interstitial oxygen ions for repeated 

cycling  [149].  

1.4 Dissertation Objective  

 Reliable RRAM memory operation requires that the ON (LRS) and OFF (HRS) state 

distributions are distinct enough to enable accurate state identification. However, the stochastic 

nature of the resistive switching mechanism causes incomplete or failed write/erase operations, 

which result in an overlap of the resistance distributions. To ensure that each operation is 

complete, state-verification during programming is mandatory. The primary objective of this 

experimental thesis work is to develop a program-verify technique purposefully to address the 

variability induced overlap of the state distributions. This special technique is uniquely based on 

utilizing low-programming energy for write/erase to promote gradual tuning and suppress over-

programming – the major cause of irreversible switching failure. The combined benefit of the 

developed program-verify technique would therefore enable a high cycling lifetime with a 
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resistance memory window. This current work provides a feasible solution to one of the most 

challenging issues in filamentary-based RRAM devices. Prior to demonstrating this novel 

program-verify technique and as an integral part of this thesis work, a measurement setup was 

developed with two key components: (i) a novel home-made 100 picosecond pulse generator 

with adjustable pulse amplitude, repetition rate and pulse polarity and (ii) a custom-built control 

circuit board with maximum operation speed at 10 MHz.  
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CHAPTER 2 

EXPERIMENTAL SETUP 

This chapter describes the customized, pulse-programming setup called Compliance-free 

Ultra-Short Smart Pulse Programming (CUSPP), that was developed for studying the switching 

performance of RRAM devices. The setup integrates a custom-built, ultra-short, pulse generator 

with a custom-built control circuit. By implementing a new current-compliance approach and 

read operation, the programming setup enables unique, intrinsic studies of the RRAM high-speed 

switching characteristics. These studies include 1) the short-term (microsecond) instability of the 

post-programmed resistance state and 2) the intrinsic recovery behavior of RRAMs after failure. 

To date, some of the highest operational speeds of HfOx-based RRAM have been demonstrated 

with our new measurement setup: specifically, 100 ps write/erase speed and 500 kCycles/sec 

cycling rate have been achieved.  The description is divided into three parts: (1) the custom-built 

100 ps pulse generator, (2) custom- designed control circuit and (3) the fully integrated program-

verify system (CUSPP). 

2.1 HfO2 RRAM Device  

All RRAM devices used in the CUSPP setup were provided by SEMATECH.  The oxide 

layer is polycrystalline HfO2, deposited using Atomic Layer Deposition. Three different oxide 

thicknesses were available: 4.5 nm, 5.8 nm and 6.8 nm. The top electrode (TE) and bottom 

electrode (BE) is TiN. A 5 nm thick Ti oxygen exchange layer (OEL) is deposited between the 

top TiN and HfO2 layer. As previously discussed, OEL are purposefully deposited to create 

defects in the oxide layer and lower the switching voltages. Also, the asymmetry in the stack 

promotes the bipolar switching mode. In this work, voltages are applied to the TE, while the BE 

is grounded. A large range of device sizes were available, from 2000 x 2000 nm2 down to 20 x 
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20 nm2. The device size is defined by the cross point of the top and bottom electrode because of 

the cross-bar architecture of the devices. Unless otherwise stated, all the results reported in this 

work were obtained using the 200 x 200 nm2, 5.8 nm thick HfO2 devices because these devices 

generally showed higher switching yield. 

2.2 100 picosecond Pulse Generator  

 In a previous study, it was determined that the forming energy was just as critical to 

proper control of the post-programmed resistance as the forming current [73].  This 

determination was based on the observation that devices, which were formed with the same 

maximum current but different energy levels, lead to different resistance states.  High energy 

results in low resistance, low energy results in high resistance. Therefore, a new approach was 

devised to limit the current duration instead of the more conventional approach, which limits the 

current amplitude. In the latter approach, a current limiting element, such as a transistor or 

resistor, is placed in series with the RRAM to limit current amplitude [51].  

Since programming energy is  ����� ∗ ���� ��, the approach of this thesis uses the pulse 

width (PW) to restrict the range over which dt can vary.  This range, which is the current 

duration of the pulse, gives the upper and lower limits for that integral. However, the current 

duration is not necessarily equal to the PW of the applied voltage pulse. This is because the 

switching event in RRAM occurs randomly at some time during the pulse [85]. This pulse 

variability means that both the current duration and the programming energy are also variable.  It 

was concluded that the key to minimizing dt and, consequently, the energy range is to minimize 

the programming PW. By using the ultra-short pulse approach, the range of energy (partially 

pulse width dependent) delivered per pulse is limited, and the maximum energy delivered per 

pulse is minimized.  There are two major benefits of our approach.  First, resistance 
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programming or tuning is expected to be more gradual since the maximum energy delivered per 

pulse is small. Second, any potential adverse effects associated with excessive currents or energy 

are minimized.  

Normally, RRAM devices are programmed using PW in the nanosecond range [72, 150]. 

However, sub nanosecond programming has also been demonstrated [151] [152] [62]. These 100 

ps switching time scales suggest that the processes responsible for RS are extremely short and 

demonstrate the feasibility of RRAM as a replacement for DRAM and possibly SRAM. In this 

work, we propose to use 100 ps pulses for programming. To generate these ultra-short pulses, a 

100 ps (Full Width at Half Max) pulse generator was developed using various radio-frequency 

(rf) and microwave components.  These components include a source, diodes, switches, 

attenuators, an inverter, pick-off tees, power splitters and a dc block. This system was designed 

to generate both negative and positive pulses with tunable pulse amplitudes and rates for RRAM 

programming.   

The 100 ps pulse is generated by a commercial impulse generator that transforms a 

sinusoidal wave input into a negative output pulse with 100 ps rise and fall time.  The impulse 

generator was more suited for programming the RRAM cells because of the higher output 

voltages (- 18V) for sub nanosecond PW compared to commercial picosecond pattern generators.  

 Figure 5 (a) and (b) show the respective input and output signal of the pulse generator, 

commonly referred to as a comb generator. The working principle of the comb generator is based 

on a Step Recovery Diode (SRD). In forward bias, the P-N junction conducts (turn on) and is full 

of charge carriers. When the device is reverse biased, the conduction remains high due to the 

stored charges in the junction. However, this reverse conduction lasts only until all the stored 

charge is removed. After that, the conductance decreases (turn off). The doping profile in SRD is 



29 

 

 

optimized so that all the stored charge is swept out almost instantaneously. Thus, the turn-off 

time is extremely short. The associated sudden drop in current produces a voltage spike with a 

wide range of harmonics. Based on the intended use, filters are used at the output to select the 

desired harmonics. Both the amplitude and spacing of the voltage spikes can be adjusted by the 

input sine wave. Here, a dual-channel pulse generator is used as the initial source of a sinusoidal 

shaped signal. This signal is amplified before it is delivered as the input to the comb generator.  

 

 

Figure 5. (a) Input to and (b) output from a step recovery diode comb generator. The comb generator outputs voltage 

spikes with amplitude – 18 V and PW ~ 100ps. Note, the presence of a significant residual sinusoidal signal at the 

output. 

 

As shown in Figure 5 (b), the output of the comb generator contains a residual signal 

from the input sine wave. This signal is undesirable because it is large enough (> +0.5 V) to 

program or, alternatively, disturb the device resistance state. Therefore, it must be removed. The 

output signal goes through multiple stages of pulse shaping to achieve this. With emphasis on 
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preserving the voltage spike amplitudes and bandwidth (3.5 GHz), several strategies were 

considered and tried. 

A simple solution was to use a serial connection of attenuators and high-speed diodes. 

Although the attenuation decreased both spike (desired) and background signal, it greatly 

improved the ability of the diode to “clamp” the background signal. A fast Schottky diode was 

used for this purpose because of its low capacitance (pF) and low minority carrier lifetime (100 

ps at 80 mA forward bias). These features allowed for minimal degradation of the pulse rise and 

fall time. The diode, which is packaged as a chip (SOT-323/SC-70), had to be housed in a 

module compatible with Subminiature Type-A (SMA) connectors. This was necessary because 

SMA connections are made throughout the system as shown in Figure 6. The diode module is 

engineered by carefully drilling a hole through a SMA connector to separate the center conductor 

and placing the diode to reconnect the signal path. The hole size was made as small as possible 

to avoid reflections and distortion of the fast pulse as shown in Figure 6.  
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Figure 6. (a) Commercial comb generator and engineered connector to house the Schottky diode. SMA connectors 

are used throughout to connect individual microwave components (b) Splitter, attenuators, inverter and switch 

assembly used to generate independently adjustable positive and negative pulses. 

 

A limitation of the comb generator source is that it only outputs negative pulses as shown 

in Figure 5 (b). However, to operate bipolar devices, both negative and positive pulses are 

required. For the TiN/Ti/HfO2/TiN devices used in this work, SET and FORMING require 

positive polarity while RESET requires negative polarity. The voltage polarity is referenced to 

the BE which is grounded during programming. To produce positive pulses, an inverting stage 

was included. For cycling (SET and RESET) measurements such as endurance, alternating 

positive and negative pulses are needed. Therefore, both inverted and non-inverted signals must 

be produced. To achieve this, the pulse is first split into two halves. Then, a high-speed (15 ps) 

inverting transformer inverts one side to positive pulses. The power splitter and inverter are 

shown in Figure 6 (b).  To allow for separate amplitude adjustment of the positive and negative 
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pulse trains, a digital high-speed (DC – 8 Ghz) attenuator with 1 dB step adjustments from 0 dB 

to 9 dB is used.    

The inverter stage introduces a significant loss to the pulse amplitude because of the 

power splitter attenuation (6 dB) required to produce two separate pulse streams. For SET 

voltage (VSET) and RESET voltage (VRESET), the loss is minimal and does not affect 

programming; however, this loss is significant for FORMING voltage (VFORM). VFORM is 

typically up to 3 x larger than VSET and VRESET. We explored several strategies geared towards 

bypassing the splitter stage; this includes using a multiplexer to direct the initial negative pulse 

train towards an inverting or non-inverting path and amplifiers to compensate for the loss in 

amplitude. Although both remedies were feasible, both have their drawbacks. Because of this, 

we chose a different option. Since FORMING initiates cycling and is required once, we chose a 

simple solution: to exclude the splitter from the setup completely for just the FORMING step.  

At this point, two separate pulse trains with opposite polarity have been generated on two 

separate lines. The signals must be recombined to construct a pulse train of alternating positive 

and negative pulses. However, both VSET and VRESET have the same clock cycle and repetition 

rate because they share a common source. To solve this problem, we used a high-speed switch 

(switch A) as a multiplexer.  The switch selects between VSET and VRESET at a preset rate. This 

way, the separation (period) of the negative and positive pulse can be tuned by the switching rate 

of switch A. The resulting combined pulse train is sufficient for cycling the device. However, as 

will be discussed later, it is not adaptive and cannot avoid SET/RESET failures. In Section 2.2, 

we propose a complementary control circuit that uses feedback to control pulses such that 

failures can be dealt with. 
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  Figure 7 shows switch A, which is a high-speed (DC – 18 GHz) single-pole double-

throw (SPDT) FET switch in its customized housing. The switch is an extremely small die - 0.83 

mm (L) x 1.11 mm (W) x 0.1 mm (D) - requiring wire bonds to make contact to all the pads 

(input, output and control) except rf ground. We used a microstrip transmission line with 50 Ω 

characteristic impedance, designed on a Printed Circuit Board (PCB), for this purpose. To ensure 

optimum insertion and return loss, single thin (0.001 in) wire bonds were made while bond 

lengths were kept short ( ~2.5 mm) so as to appear as a lumped element to the 100 ps rise and 

fall time.  

A multi-functional heat sink was designed to make electrical contact to the rf ground 

located on the backside of the switch, and to provide mechanical support. The latter is important 

because the PCB is not rigid and therefore wire bonds can be easily detached during use. The 

switch is attached to the heat sink using a conductive silver epoxy, because it provides both 

thermal and electrical conductivity.  A brass metal piece was designed using Autodesk ArtCAM 

and machined using a Computer Numeric Control (CNC) milling machine.  The overall loss of 

the customized switch module is roughly -4 Db (up to 4 GHz). Although this is significant, the 

output voltages remain sufficient for the RRAM devices examined in this work. Because of our 

deliberate, transmission-line design, the output pulse after the switch maintains the 100 ps 

transition times.  
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Figure 7.  PCB layout for the high-speed switch with a brass base designed to provide mechanical support, electrical 

and thermal contact to the backside of the switch. Inset shows image of chip with wire bonds connecting signal and 

control pads to microstrip transmission lines. 

 

Figure 8 shows a representative VRESET programming pulse and high-speed, measurement 

probe. The noticeable offset (indicated by the red dashed line in Figure 8 (a)) is supplied by a 

programming DC source through a pick-off tee. The low DC voltage (VREAD) is used to 

read/sense the state of the device during programming. A RRAM is a two-terminal device 

meaning that both program and read operations are performed using the same two terminals. 

This can cause what is called “read disturb”. To minimize the risk of read disturb, the read 

operation is commonly performed using a low voltage pulse. Because of this, the read pulse 

amplitude and length must be optimized to ensure that they can determine the resistance state of 
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the RRAM accurately. Typical read-pulse durations are in the microsecond to nanosecond range 

and read-pulse amplitudes are 10 x lower than the programming pulse [87, 153, 154]. Positive or 

negative read polarity can be used, although some novel read operations utilize a combined 

positive and negative pulse read to avoid any dielectric polarization effects [155]. In this work, 

negative read polarity is used always.  

 

 

Figure 8. (a) Typical VRESET pulse offset by a low DC voltage(VREAD) used for read. (Inset) Pulse FWHM is 

approximately 100 ps captured on a high-speed oscilloscope (Rise time contributions of osc. has not been 

deconvolved). (b) High-speed measurement setup with proper 50Ω termination directly at the probe tip. Notice the 

absence of a series current limiting element. 

 

The DC read operation adopted in this work is based on traditional, electrical stress 

measurements that utilize constant voltage to study stability. Typical voltage amplitudes used in 

such measurements are > |0.1| V. Here, read voltages are usually < -0.1 V. For even longer 

VREAD duration (> 103 s), voltages as low as -0.008 V are used. Stable LRS and HRS have been 

demonstrated in HfOx RRAM cells using +0.3 V for 103 sec [156]. Therefore, we do not expect 
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to disturb the resistance states using the constant voltage VREAD. By utilizing a DC read during 

programming in CUSPP, we essentially combine a stress measurement with cycling for stability 

and endurance studies, respectively. As will be discussed in Chapter 4, fluctuation behavior is 

observed in the short-term post programming in a manner that cannot be achieved using pulse 

read.  

Delivering fast pulses to the RRAM cell without rise-time degradation and signal 

distortions requires transmission-line design at all stages of the setup. The entire system, 

therefore, is designed to have a 50 Ω characteristic impedance and to support frequencies higher 

than 3.5 GHz (100 ps rise). These requirements are maintained throughout the system but 

particularly at the launch site (probe needle to RRAM) where reflections and ringing can distort 

switching analysis. Traditionally, a Ground-Signal-Ground (GSG) probe is used for such high-

speed measurements [151]. However, this requires a matching, probe-pad layout of the device 

under test (DUT). Since the devices in this work were not designed to fit a GSG probe setup, this 

is not a feasible option.  Thus, we had to design a high-speed probe based on a fundamental 

transmission line to assure high signal fidelity. 

Since a RRAM is a two-terminal device, two high-speed probes are sufficient for 

operation. To design the high-speed probes, three main strategies were employed. First, the 

probe needle is made as short as possible to appear as a lumped element to the fast, pulse-

transition time. Second, a 50 Ω rf resistor is strategically placed in parallel to the RRAM as 

shown in Figure 8 (b) to guarantee an impedance matched load. This assures that for all targeted 

RRAM resistance values, which typically range from 103 Ω to 106 Ω, the signal “sees” a 50 Ω 

termination. The 50 Ω termination also provides a fast RC to discharge any parasitic capacitance 

quickly. This is important because parasitic capacitance, which is ubiquitous in any setup, would 



37 

 

 

delay the response of the system to any abrupt resistance change.  Any such delay is detrimental 

to our goal of minimizing programming energy.  Third, a short ground loop connecting both 

input and output probe tips is soldered to minimize inductance. Total inductance at the probe tip 

is minimized by the mutual inductance of the signal and ground path. Without this mutual 

conductance component, total inductance increases and causes severe signal distortion.  

Data from the probes are sent to an oscilloscope where two output currents are measured: 

one resultant from the ultra-short programming pulse (IPULSE) and the other from the read DC 

voltage (IREAD). IPULSE contains switching current information, which can be used to deduce 

switching energy and temperature.  Figure 9 (a) shows the measured current from the RRAM cell 

before (IPRE-F) and after (IPOST-F) FORMING. Note, both current waveforms resemble a typical 

displacement-current waveform. This is a result of the device capacitance inherent in its 

capacitor-like structure. The displacement current waveform is modified when the device 

undergoes a resistance change as shown by the decrease from IPRE-F (blue) to IPOST-F (red) in 

Figure 9 (a). Because identical pulses are used during FORMING, the change in the 

displacement current is due to current flowing through the cell. Therefore, IPULSE contains both 

the displacement current and device current (IDEVICE). Pragya et al. developed a technique to 

successfully extract IDEVICE [157]. Figure 9 (b) shows the extracted IDEVICE using similar 

methodology. 
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Figure 9. (a) Displacement current before (blue) and after (red) the RRAM forming event. The applied voltage is 

shown in black. (b) The extracted IDEVICE which flows through the device. 

 

The maximum deliverable pulse amplitudes for FORMING, SET and RESET are +5 V 

(VFORMING), +2 V (VSET) and – 2.77 V (VSET), respectively. The lower VSET amplitude compared 

to VRESET is due to additional attenuation by the inverter (-0.6 dB). For the devices studied in this 

work, these pulse amplitudes are sufficient. In fact, the voltages are usually attenuated to avoid 

over-programming, which degrades performance. The digital step attenuator described earlier is 

frequently used to decrease the pulse amplitude during programming. However, this attenuator 

can only provide 1 dB step change to the pulse amplitude.  For finer attenuation, an analog 

attenuator is also included in the setup.  

2.3 CUSPP Control Circuit 

Nonuniformity of the post-programmed resistance states remains a tremendous hurdle to 

overcome in RRAMs. As discussed in Chapter 1, the stochastic nature of the resistive-switching 

mechanism creates this non-uniformity. Resistance states in RRAMs are therefore represented as 

a distribution instead of a fixed value. For reliable operation, the resistance distributions of each 

state must be sufficiently separated to avoid ambiguity during operation. Because the resistance 
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change is not deterministic, programming without some sort of verification cannot guarantee 

separated distributions.  

To provide this verification, we designed a custom, stand-alone, active, feedback-control 

circuit to complement the 100 ps pulse generator setup (see Figure 10). The control circuit is 

designed with high speed components to achieve a read resolution of 100 ns and a comparator 

speed up to 100 MHz. The main stages of the circuit include: a three-stage amplification, a 

comparator, switch and a Series Voltage Reference. The populated CUSPP circuit board is 

shown in Figure 11. 

 

 

Figure 10. Schematic circuit diagram of CUSPP control circuit. Specific R values are dependent on the desired 

amplifier gain, VON and VOFF.  Feedback capacitor C1 (18 pF) is used to decrease bandwidth, C2 (0.1 µF) and C3 (1 

µf) are bypass capacitors. Feedback control to switch B is shown with blue colored line. 
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Figure 11. Picture of CUSPP control circuit. 

 

The first function of the circuit board is to measure and to amplify the read-out current 

from the DUT. This read-out current is due to the DC voltage read discussed in Section 2.1. 

Since the RRAM displays fast switching transients during programming and read, high-speed 

operational amplifiers (230 MHz Gain Bandwidth product) are needed. In addition to the 

bandwidth requirement of the op amps, we included noise considerations as well. Program-verify 

algorithms rely on an accurate reading of the device’s resistance state to determine the 

appropriate action. Hence, it is critical to minimize the noise at the amplifier stage. The amplifier 

choice is, therefore, based on its noise parameters such as input voltage noise (7 nV/(Hz)1/2) and 

input bias current (2 pA). Additionally, large-value resistors should not be used in the inverting 
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amplifier circuit to minimize the thermal (Johnson) noise component, 
� of the total noise at the 

amplification stage:   

 


� = √4����,																																																									�2.1� 

 

where k is Boltzmann’s constant, T is temperature of resistor, B is bandwidth of measurement 

and R is resistor value.  

To maintain sufficient gain and decreased noise, we implemented a three-stage 

amplification system. The first amplifier performs a trans-impedance amplification while the 

second and third amplifiers perform voltage amplification. The read-out current is converted to a 

voltage (VDEVICE), which is measured on the oscilloscope. Since VREAD, Gain and VDEVICE are 

known, the resistance of the DUT can be calculated. Note, we also accounted for noise gains due 

to amplification. For each amplifier, we used a bypass procedure for the power supply to support 

the high-speed operation. We implemented this procedure by carefully placing bypass capacitors 

close to both power supply pins of each amplifier in a manner to minimize impedance.  

 As previously stated, the output voltage measured at the oscilloscope contains two 

current signals; IPULSE and IREAD. The former is due to the programming pulse and the latter is 

due to the DC read voltage. Since this work focusses on IREAD, the control circuit is designed 

purposefully to filter out IPULSE. To achieve this, the amplifier bandwidth is decreased by using 

feedback capacitors of appropriate value. This strategy also impacts the fast transients in the 

IREAD signal. Still, we maintain an acceptable fast RC time of 30ns in this work.  

 State verification during program-verify is performed by a high-speed comparator with 

fast propagation delay (4.5 ns), fast rise and fall time (2 ns) and dual output.  The comparator 
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functions to output logic low (0 V) or high (+ 5V) when VDEVICE exceeds or falls below a preset 

target voltage level referred to here as VTARGET (see Figure 10). VTARGET represents the target 

resistance level of the RRAM. In this work, VDEVICE is applied to the inverting input (-IN) of the 

comparator while VTARGET is applied to the non-inverting input (+IN). The dual outputs, Q and 

Q* (complementary output), supply control signals to two separate switches, an off-board switch 

(switch A) and an on-board switch (switch B).   

As described earlier, switch A determines between SET and RESET operation because it 

controls whether VSET or VRESET is applied to the DUT. Since the comparator controls switch A, 

it serves as the arbiter to select between VSET and VRESET based on the comparison of VDEVICE to 

VTARGET. To enable dual state verification, VTARGET has two levels: VON representing the LRS 

target resistance level (LRSTARGET) and VOFF representing the HRS target resistance level 

(HRSTARGET). VON and VOFF are supplied by a series voltage reference which outputs a low noise 

+2V DC. A resistor network is used to adjust VTARGET and consequently, LRSTARGET and 

HRSTARGET.  

 Figure 12 summarizes the control waveforms and the resultant VSET or VRESET pulse 

trains using the combined pulse generator and circuit setup. In a closed-loop fashion, the custom 

circuit monitors the device state and provides the control logic that determines both the polarity 

and the number of pulses required to SET the device to LRSTARGET and RESET the device to 

HRSTARGET. To enable automatic cycling between HRS and LRS, we included a second switch 

(switch B) in the circuit (Figure 10). Switch B toggles the voltage at the comparator +IN input 

between VON and VOFF. For example, during RESET, when the target resistance level is set by 

VOFF, VRESET pulses are applied to the DUT until VDEVICE reaches VOFF, then the comparator 

changes logic level.  Since the comparator output controls both switches; both switches change 
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their outputs. Switch A changes VRESET pulses to VSET pulses, and switch B changes VOFF to 

VON. This initiates the SET operation. The CUSPP protocol adaptively changes the pulse number 

(identical pulses) until the target state is reached.  Once reached, the pulse polarity changes to 

reverse operation. This sequence can be performed within 10 ns - enabling high cycling rate 

measurements. 

The CUSPP program-verify algorithm utilizes identical pulses for programming since 

their amplitudes and widths are fixed. This type of algorithm is known to be effective in 

resistance tuning [145]. Most other algorithms automatically change the pulse amplitude and 

width in predefined increments during resistance tuning [85, 86, 154]. Although these algorithms 

offer an additional degree of control, they are more complex to implement.  

 

 

Figure 12. Timing diagram schematic of control signals and programming pulse during CUSPP operation. The high-

speed design of the control circuit enables transitions times less than 10 ns during SET and RESET cycling.  
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2.4 Compliance-free Ultra-short Smart Pulse Programming (CUSPP) 

Traditionally, FORMING is performed with constant voltage bias or sweep while cycling 

is performed with pulses [86, 158]. Current-based sweep forming has also been demonstrated 

[74]. Although sweep-mode forming is common, these programing modes are impractical. 

Figure 13 shows the post-formed resistance of several devices using the 100 ps pulse. Typical 

VFORM values are in the range of +2.5 V to +4V. Initially, all pristine RRAM devices have very 

high resistance (> 1010 Ω) values and require a forming operation to initiate cycling. The 

resistance change during forming can span 9 orders of magnitude. Under VFORM an abrupt 

resistance change randomly occurs (like dielectric breakdown) and the process proceeds until the 

driving forces, such as voltage, current, and temperature, are terminated. Figure 13 shows the 

distribution of post-FORMED resistance states. The ability to program to such low values using 

the 100 ps would suggest that even shorter pulse widths could be sufficient to provide tighter 

control of the resistance change.  

 

 

Figure 13. (a) Typical Pre-FORMED and Post-FORMED resistance levels. All devices are FORMED with a 100 ps 

pulse with VFORM ranging from +2.5V to +4 V. (b) Resistance distribution of Post-FORMED devices.   
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Figure 14 shows a representative normal RRAM resistance evolution using CUSPP. To 

program a 10x resistance window, the target LRS (RON) and HRS(ROFF) are 10 kΩ and 100 kΩ 

respectively. The target levels are set by the value of VON and VOFF as described in 2.2. Two 

distinct operational modes are shown in Figure 14: single pulse and multi-pulse. In its single-

pulse operation (Figure 14 (a)), the device reaches the LRSTARGET and HRSTARGET after a single 

VSET and VRESET pulse, respectively. Therefore, both SET and RESET require single pulses. This 

single-pulse behavior would suggest that there is no need for a read-verify since both targets are 

met after each pulse. However, the randomness of the resistive switching mechanism can result 

in programming failures. This is observed in Figure 14 (b) where the device resistance requires 

multiple pulses to reach HRSTARGET. Notice that the pulse (schematic) amplitude is unchanged in 

either the single pulse mode or multi-pulse mode.  

Assume in Figure 14 (b) that program-verify is not activated, the resistance (~ 10 kΩ) 

after the first RESET pulse would be recorded as HRS, which is essentially the same as the target 

LRS. This would produce an error since LRS and HRS cannot be distinguished. However, 

CUSPP adaptively increases the VRESET number until the resistance reaches 100 kΩ. During 

RESET, the device resistance might transition to other states before reaching HRS. One such 

state, referred to as Intermediate Resistance State (IRS) is shown in Figure 14 (b). This exhibits 

the multilevel cell (MLC) capability of RRAMs. If programming was stopped after the second 

VRESET, a third state would be addressed. Figure 14 also illustrates the usefulness of a DC read. 

The resistance stability between each programming pulse is continuously monitored.  
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Figure 14. Representative time traces of the resistance evolution (red) during (a) single pulse operation and (b) 

multi-pulse operation modes. In the same device, the randomness in the resistive switching mechanism results in 

resistance changes which are not repeatable from cycle to cycle. However, program-verify guarantees that each 

operation is complete. 

 

 Figure 15 shows the distribution of LRS and HRS obtained after 2000 cycles. Since a low 

DC voltage is used during the read operation in CUSPP, each state is read for a duration 

determined by the repetition rate of the programming pulse. For example, in Figure 14, the read 

duration is 1 ms as determined by the 1 KHz repetition rate of the programming pulse train. 

Therefore, the resistance distributions can be plotted as a function of time, t. In Figure 15, the 

resistance values are chosen at t = 0. At t = 0, the device resistance reaches the target level 

signifying the completion of the SET or RESET operation and start of read. Therefore, as 

expected, each state begins or ends at the predefine target level; for LRS, this level is 10 kΩ and 
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for HRS, this level is 100 kΩ. Therefore, a 10 x RW is obtainable using CUSPP. This translates 

to a proportionate read-out current demonstrating the usefulness of program-verify techniques to 

guarantee sufficient separation of the memory states. As oppose to a conventional read operation 

which uses voltage pulses, CUSPP also obtains a complete recording of the resistance during 

read. By simply choosing the appropriate time delay, we can mimic a delayed pulse read. In 

Chapter IV, we discuss the usefulness of a constant read in a post-programmed stability study of 

RRAM.  

As discussed in Chapter 2, high-resistance states (thinner filaments or tunneling gaps) are 

highly dispersed compared to low-resistance states. Program-verify does not function primarily 

to tighten the resistance distribution. However, Puglisi et al. demonstrated a dispersion-aware 

program-verify algorithm designed to tighten the distribution [86].  

 

 

Figure 15. Probability distribution of LRS and HRS obtained after 2000 cycles using CUSPP. The resistance values 

are taken at t =0 (start of LRS and HRS). The HRS distribution is bounded by HRSTARGET (100 kΩ) and LRS 

distribution is bounded by LRSTARGET (10 kΩ).  
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In Chapter 4, we examine the resistance stability of the post-programmed states at 

microsecond to millisecond time delays from the programming event. The novel read operation 

adopted in this work, provided critical information in determining the cause of instability during 

programming. Utilizing a low DC read, we obtained a continuous record of the resistance 

evolution during programming at enhanced time resolutions. This enabled us to understand the 

impacts of that evolution on the post-programmed distribution and on program-verify algorithms.   

Another unique feature of the CUSPP setup is the data-acquisition procedure used in this 

work.  In this work, in a typical high-endurance measurement, the data is acquired on the 

oscilloscope 10 million samples at a time. The acquisition time is determined by the sampling 

rate of the oscilloscope (acquisition time = (# of samples) / (sampling rate). When this time 

elapses, the oscilloscope stores the data and re-arms for acquisition. A LabVIEW program was 

written to control the number of acquisitions performed by the oscilloscope. A downside of the 

procedure is that, during the time the oscilloscope is storing data, data acquisition is disrupted. 

Data acquisition is, therefore, performed in time blocks that are separated by times when 

acquisition is unavailable. However, statistically speaking, the extremely large number of 

endurance measurements tends to minimize the effects of these dead times. 

Figure 16 shows 106 endurance measurements of an RRAM programmed with CUSPP. 

To construct the endurance plot shown in Figure 16 (a), only the HRS and LRS values are 

needed. However, this representation, which is popular in RRAM studies, does not show any 

information on the cycling dynamics. In this work, every cycle state is recorded (within the 

acquisition time) because of the acquisition technique used. We observe the device resistance 

evolution after each programming pulse regardless of the success of the operation.   
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This allows for detailed analysis of the switching dynamics during cycling as shown in 

Figure 16 (b), where a failure occurred because the device failed to reach the LRSTARGET (3 kΩ) 

within the normal time or number of pulses. During this failure time, CUSPP continues to apply 

VSET until the SET criteria is met. Eventually, this occurs and cycling commences. The recovery 

behavior is examined further in Chapter 3. As will be discussed, no noticeable degradation of the 

switching behavior was observed after recovery. These findings, not only highlight 

characteristics of RRAMs but also demonstrate the effectiveness of CUSPP to program and to 

recover switching. 

 

 

Figure 16. (a) 106 endurance between 3 kΩ and 30 kΩ target LRS and HRS, respectively using CUSPP. Each cycle 

is shown to demonstrate the functionality of the program-verify algorithm (b) Time trace of resistance evolution 

during programming. The device suddenly fails to SET but after sustained pulsing, it recovers and continues to 

cycle. 
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2.5 Summary 

In this chapter, we proposed a program-verify technique called Compliance-free Ultra-

short Smart Pulse Programming (CUSPP).  CUSPP relies on a novel, current-control scheme to 

achieve low-programming energy operation. CUSPP is a custom-built, pulse-train, measurement 

system with two integral parts: an ultra-short (100 ps) pulse generator and a custom-built control 

circuit.  The 100 ps pulse generator was realized by assembling several rf components together to 

achieve dual-polarity short pulses with an adjustable pulse rate and amplitude. The control circuit 

was designed to actively monitor the device resistance state and provide feedback control to the 

pulse generator. The CUSPP programming protocol adaptively changes the number and polarity 

of the pulses to switch the device resistance between two distinct preset targets. Because of the 

high-speed design of the control circuit, pulse rates with state verification up to 10 MHz have 

been achieved. Therefore, CUSPP effectively demonstrated the high-speed (switching speed and 

cycling rate) operation capability of HfO2-based RRAMs previously unreported. 

Two additionally unique features of the CUSPP measurement setup are the absence of a 

series current limiting element such as a resistor or transistor [29] and the use of a low DC 

voltage for read.  Current control was accomplished by utilizing the ultra-short pulse width of the 

voltage pulse to limit the current duration. By doing so, the energy delivered per pulse is greatly 

minimized, thus minimizing programming induced variability in RRAMs [73]. The low DC 

voltage read approach utilized in this work is a deviation from the more traditional pulse read 

operation [153]. However, its usefulness was demonstrated as it provided a continuous record of 

the state evolution during programming. This enabled unique analysis of the post-programmed 

resistance state instability. 
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CHAPTER 3 

CYCLING ENDURANCE 

In this chapter, we used the newly developed CUSPP technique to perform cycling 

endurance studies on HfO2-based RRAM devices. The endurance performance and analysis 

serves as an indicator of both the performance of the memory stack and the adopted 

programming technique. We achieve 108 endurance with state verification using CUSPP, thereby 

demonstrating its ability to sustain reversible resistive switching. Due to the randomness of the 

resistive switching process, unavoidable switching failures occur during extending cycling. 

However, we show that the failures are reversible. The recoverable failures are attributed to the 

delicate nature of the CUSPP technique, which avoids permanent failure.  

Typically, high endurance is achieved by optimizing the programming pulse parameters 

for an individual device and avoiding failure completely. However, to achieve high endurance in 

a memory chip, each memory cell requires its own unique optimum conditions, which is 

impractical. In this chapter, we propose a possible solution based on the analysis of the switching 

performance pre- and post-recovery. We observed that the recovery operation does not degrade 

the switching performance of the device.  We conclude, therefore, that recovery may be 

deployed indefinitely to achieve a high endurance yield. Our findings are in stark contrast to 

previous studies on recovery behavior where the device degrades after DC [68] and pulse 

recovery [159, 160]. 

3.1 Experimental Details 

We generated experimental endurance measurements on 200 nm x 200 nm crossbar 

RRAM devices with TiN\HfO2\Ti\TiN stacks. Ultra-short programming pulses (~100 ps) were 

applied directly to the device with a 50 Ω terminated probe but without a current limiting 
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element connected serially to the RRAM. Programming and read voltages were applied to the 

top electrode with the bottom electrode grounded. Devices were FORMED with voltages ranging 

from +2.8V to +3.2V.  

A programming pulse rate of 500 kHz was used in these experiments. Thus, the read 

duration was limited to 2 µs with a measurement speed of 10 MS/s set by the sampling rate of 

the oscilloscope. A DC read is utilized instead of the conventional pulse read. The target HRS 

and LRS were 100 kΩ and 10 kΩ respectively; we chose these values to achieve a 10 x 

resistance window (RW). The CUSPP programming protocol continuously pulses the RRAM 

with identical pulses (fixed voltage and width) until the device resistance reaches the HRS/LRS 

target during RESET/SET. The bipolar HfO2 RRAM devices require negative polarity to RESET 

and positive polarity to SET.  

 

3.2 Results and Discussion 

Figure 17 shows the endurance of a representative cell. 108 endurance was achieved with 

VSET and VRESET set to +1 V and -1 V, respectively. The device did not fail after 108 cycles; 

instead, the experiment was stopped. While not every cycle is shown in Figure 17, each cycle is 

verified. It is common practice not to plot every single cycle because of data-size limitations and 

the difficulties in displaying billions of data points/cycles on a figure. However, this 

representation may not be valid for programming protocols without state verification as it cannot 

be assured that endurance failure did not occur. A failure in cycling is defined by the minimum 

acceptable RW, which sets the read-out margin. Without state verification, it is incorrect to 

assume that each cycle met this criterion.  
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 On the other hand, in program-verify programming, each cycle starts at the intended 

target value; therefore, endurance represents a true count of the number of successful cycles. 

Program-verify (P-V) algorithms usually change pulse number [43, 84], amplitude [86, 87] or 

width [85] until the targets are met. A failure using P-V is defined by the number of iterations or 

time required to successfully program the device. Figure 17 also shows that the RW is lower (5x) 

than the target 10x window. As will be discussed in Chapter 4, this is attributed to the instability 

of the post-programmed state. HRS dominates the window closure since non-uniformity of the 

resistance states increases with increasing resistance [37].  

 

 

Figure 17. Endurance performance of the bipolar HfO2 RRAM device using CUSPP. VSET and VRESET were +1 V 

and -1 V respectively and read voltage was -0.05 V. 
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 As described in Chapter 2, data acquisition is performed using an oscilloscope in 1 

second long acquisition times.  The pulse rate was 500 kHz, which means that for single pulse 

operation, where each SET/RESET requires a single pulse, the maximum attainable cycling rate 

is 250 kcycles/sec. However, because of the innate randomness of the resistive switching process 

in RRAMs, each operation may require multiple pulses (multiple pulse operation), in which case, 

the cycling rate is less than 250 kcycles/sec.  

This is indeed the case in this endurance study. Figure 18 shows the cycling dynamics of 

the RRAM programmed with CUSPP. It is apparent that a complete cycle required multiple 

pulses, which significantly decreased the cycling rate. We believe that the specific rates can be 

influenced by VSET and VRESET amplitudes since switching time is exponentially dependent on 

voltage [113, 161]. The drawback of increasing the programming voltage is the increased 

probability of excessive currents and over-programming, which has been shown to degrade 

endurance [69]. However, low-pulse operation (multi-pulse operation) is desirable because 

resistance tuning is more precise [154]. Thus, it is conceivable that per pulse amplitude, there is a 

preferred cycling rate for a given device. Unfortunately, this preferred rate is clearly not constant 

as shown in Figure 18.  
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Figure 18. Cycling rate distribution acquired for 12,000 sec of cycling using CUSPP. 

 

Figure 19 shows the temporal evolution of the cycling rate, which does not appear to 

degrade or improve over time. As suggested earlier, there seems to be an optimum cycling rate 

for the device that is approximately 10 x lower than the single-pulse limit (red line). It is 

tempting to assume that the cycling rate is primarily controlled by VSET and VRESET; if true, this 

would mean that other devices would display the same dynamics for fixed programming 

conditions.  However, because of the device-to-device variability in RRAM arrays, this is 

incorrect. For this device, 28439 cycles/sec (mode) is considered the optimal cycling rate; from 

here on out, we will refer to this optimal rate as the normal rate. During the lifetime of the 

cycling measurement, large excursions from this normal rate can be observed. In some cases, the 

cycling rate decreases by two orders of magnitude (see Figure 19).   
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Figure 19. (a) Evolution of cycling rate during the endurance study. Red dashed line indicates the maximum 

attainable cycling rate of 250 kcycles/sec for a single pulse operation mode. Lower cycling rate indicates multi-pulse 

operation. 

 

Figure 20 shows the distribution of the number of pulses for VSET and VRESET during 

normal operation. The SET operation requires fewer pulses (mode = 2) compared to the RESET 

operation (mode = 16). This suggests that the RESET operation is the rate-limiting process of the 

overall programming time. In addition, the RESET operation also shows more variability since 

the VRESET pulse number is more dispersed. SET is abrupt under voltage operation because of the 

interplay of an increasing electric field, current, and temperature.  Together, they create a 

positive feedback, which subsequently leads to a dielectric breakdown event. On the other hand, 

RESET is more gradual under voltage operation [74].  
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Figure 20. Distribution of number of VSET/VRESET pulses during normal operation for 1000 cycles. SET is abrupt 

while RESET is gradual and therefore shows a more dispersed distribution. 

 

Figure 21 shows the experimental resistance distribution of LRS and HRS programmed 

during normal operation. The HRS distribution clearly shows the effect of the CUSPP program-

verify on the post-programmed resistance states. For HRS, all resistance states are forced to be 

above the 100 kΩ resistance target. For LRS, all resistance states are forced to be below the 10 

kΩ resistance target. Achieving these targets is the primary function of program-verify 

techniques. Moreover, these techniques ensure sufficient separation of the tail of both LRS and 

HRS distributions. However, because of short-term instability of the post-programmed resistance 

state, some states fall below and other states fall above their respective targets.  This results in 

decreasing the memory window in that process. We discuss fully this short-term instability in 

Chapter 4.  
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Figure 21. Cumulative distribution of 1000 cycles of LRS and HRS during normal switching operation. 

 

Figure 22 shows the time evolution of the device resistance during programming. The 

resistance (gray trace) toggles between the LRSTARGET (red dotted line) and the HRSTARGET (blue 

dotted line). The SET operation is abrupt and well behaved as the resistance decreases after VSET 

as expected. On the other hand, the RESET operation is more gradual (more pulses) and displays 

both a decrease (abnormal) and increase (normal) in resistance after VRESET. This behavior could 

be a result of either high currents[26]  or  RESET current overshoot [162].  

Figure 22 (b) captures the onset of cycling failure. The device goes into HRS and is 

unable to SET to LRS for nearly half of the entire data acquisition time. Cycling ceased after 400 

ms of cycling.  This is referred to as a Stuck HRS failure. Note, during STUCK HRS the device 

is continuously pulsed with VSET until SET occurs. A high VRESET or insufficient VSET is 

typically associated with Stuck HRS [62]. At first glance, this does not seem to be the case here 

since SET requires a low number of pulses while RESET requires a high number of pulses as 



59 

 

 

shown in Figure 20. This suggests that, VSET is sufficiently high while VRESET is low. However, 

the occurrence of Stuck HRS can be explained by the randomness of resistive switching.  

 

 

Figure 22. Conductance time trace showing the (a) normal cycling behavior of the RRAM and (b) occurrence of 

stuck HRS failure. 

 

During programming, VSET (+1 V) and VRESET (-1 V) are fixed; however, LRS and HRS 

are not fixed. As shown in Figure 21, the HRS distribution is wide and spans a decade reaching 

deep resistance levels. While +1 V (VSET) may be sufficient to SET the device for low to 

moderate HRS, it may become weak for deep HRS. Therefore, the randomness of the resistive 

switching process initiates the failure and dictates the strength/weakness of the VRESET /VSET. 

Thus, the failure is unavoidable. Additional failure modes reported in the literature include stuck 

LRS [81, 163] and stuck IRS (Intermediate Resistance State) [160]. Stuck LRS is marked by a 

failure to RESET due to a strong VSET or weak VRESET [81]. Stuck IRS is marked by the increase 

or decrease of the LRS or HRS to some intermediate resistance level. This is associated with the 
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formation of a parasitic oxide at the interface which acts as a series resistor with resistance 

equivalent to the intermediate state [80]. We only observed the stuck HRS failure during cycling.    

Switching failures can be permanent and irreversible or temporary and reversible. 

Permanent failures are associated with over-programming, which causes thermal damage due to 

the excessive currents [69]. Temporary failures are associated with weak programming pulses 

and are, therefore, recoverable by utilizing a stronger pulse. Y.Y. Chen et al. demonstrated that 

by using a DC sweep after either a SET or RESET failure, the device can become responsive 

again, and cycling can continue. This procedure to resuscitate cycling is referred to as a recovery 

operation (RO). Pulse RO has also been demonstrated [159, 160]. However, the switching 

performance after recovery was not examined.  

In this work, we demonstrate recovery using CUSPP and demonstrate switching 

performance post-recovery.  The stuck HRS failures observed in this work are not permanent 

failures but temporary and reversible. When a failure occurs, CUSPP protocol continues to apply 

VSET until SET occurs. We observed, on several occasions, that the switching begins randomly 

without changing pulse voltage. In some cases, the failure time becomes exceedingly high. In 

such a case, the algorithm is halted and VSET is increased to SET the device. However, once SET 

is successful, VSET is readjusted back to its lower initial value, and cycling continues. Currently, 

this process of disrupting programming and adjusting VSET is performed manually.  

Figure 23 shows the endurance of the device after three different recovery operations that 

required an increase in VSET. This new VSET is only used to force the device out of HRS. 

Endurance in Figure 23 (a) and (b) was achieved after a SET recovery using a VSET recovery 

pulse of amplitude +1.17V (17% increase). A successful SET was achieved after roughly 15 

pulses in both cases. This pulse number is expected to vary randomly. In previously reported 
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studies on recovery operation, the post-recovery endurance was either short-lived [68] or 

degraded [159]. However, we did not observe a degraded endurance post-recovery in our 

experiments.  We achieved 106 endurance after the first RO and 108 after second RO, 

demonstrating a successful recovery.   Figure 23 (c) shows 108 endurance after a third recovery. 

For the third RO, +1.17V could not SET the device after 103 pulses. The recovery VSET was 

therefore increased to 1.29V and SET was successful after 6 pulses.  

 

 

Figure 23. Endurance using +1V VSET of a single cell after the (a) first, (b) second and (c) third recovery operation 

(RO). For the first and second RO, <15 pulses at 1.17V was needed to recover SET. While for the third RO, 6 pulses 

at 1.29V were needed to recover SET after failures using 1V and 1.17V. 

 

We conclude that the endurance performance is not affected by the recovery operation. 

Wang et al. observed a degradation of some switching parameters with extended cycling [164]. 

We did not observe degradation to SET and RESET operations as shown by both the endurance 

and cycling-rate analysis. To further support this claim, we examined the impact of the recovery 

operation on the resistance distribution post-recovery as shown in Figure 24. The LRS and HRS 

distribution for 103 cycles, taken after all 3 recovery operations, shows no apparent sign of 
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degradation. Although 103 cycles represent a very small portion of the entire 108 cycles achieved 

in this study, the distributions neither improved nor worsened over time and after recovery 

operations.  

 

 

Figure 24.  LRS and HRS distributions for 1000 cycles obtained after three different recovery operations using RP2. 

There is no trend of a degrading distribution with increasing number of recovery operations. 

 

Based on the analysis of the endurance, distribution and cycling rate of the device, pre-

and post-recovery, we propose a strategy to achieve high endurance yield in a memory chip 

across billions of cells. Traditionally, high endurance is achieved when the programming pulse is 

optimized for a single cell [58, 68]. However, the optimized conditions are unique to that 

individual cell. In a memory array with billions of cells, it becomes impractical to find the 

optimal programming pulse conditions for each cell.  

The proposed scheme draws on two very important findings in this long endurance study. 

First, programming pulse parameters must be chosen such that permanent failures do not occur. 
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To achieve this, the programming voltages must be chosen such that the step changes in 

resistance during programming are small. Large abrupt resistance changes can easily lead to 

over-programming. The initial pulse conditions to achieve multiple operations can be determined 

during the developmental stage of an RRAM chip.  

Second, a recovery operation algorithm should be a ramp voltage pulse (RVP) to achieve 

fast but controlled recovery. This was demonstrated earlier where VSET was increased twice to 

expedite the recovery operation. RVP or incremental single pulse (ISP) are traditionally used for 

programming and not for recovery operation [87]. Here, we propose using RVP only for the 

recovery step.  

The execution of the RVP in this work was performed manually due to the limitation of 

the current experimental setup. Without doubt, this algorithm can be deployed automatically and 

intelligently. Based on the failure criteria, the control circuit can increase VSET accordingly. In a 

memory array, some devices would require RO more frequently than others. However, because 

there is no degradation of switching performance after RO, devices that require more recovery 

can still achieve high endurance. Figure 25 shows the flow chart of the proposed programming 

scheme.  
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Figure 25. Flow chart of the proposed programming algorithm to achieve high endurance yield on a RRAM wafer. 

X represents the number of failed VSET pulses before recovery protocol is deployed. 

 

3.3 Summary 

In this chapter, we assessed the cycling stability of RRAMs during a long-endurance 

experiment in which the RRAM was programmed using CUSPP for 12000 sec to achieve ~ 3 x 

108 cycles. The experiment was stopped after achieving 108; the device did not fail. The high 

endurance achieved here 1) compares favorably with reports of other program-verified 

endurance approaches [84, 158] and 2) demonstrates the effectiveness and functionality of the 

developed tool. VSET and VRESET were chosen such that programming required multiple pulses 

per operation. Although the multi-pulse operation is slower, its gentle programming reduces the 

risk of over-programming, which is known to cause endurance failure. We analyzed the cycling-

rate behavior of the device under such a multi-pulse operation.  During extended cycling, we 
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observed that this cycling rate randomly changes but does not degrade or improve over time. 

Analysis of the SET and RESET pulse numbers showed that RESET required ~ 8 x more pulses 

compared to SET and dictated the overall cycling rate. SET usually required a maximum of 3 

pulses.   

Program-verify algorithms continue to apply programming voltage until the resistance 

reaches its target. However, if this process requires an abnormally long time to complete, it is 

referred to as a failure. The failure may occur during the SET operation (Stuck HRS) or RESET 

operation (Stuck LRS) [80]. Failures can be permanent in which case the device will never reach 

the target; alternatively, failures can be temporary in which case the device will eventually reach 

its target. We observed only recoverable SET failures using the CUSPP protocol. Since 

permanent failures are associated with excessive currents due to over-programming [165], the 

absence of them demonstrates the efficacy of utilizing the engineering approach developed in 

this work.  

During the stuck HRS, the device is unable to SET to the target 10 kΩ in a timely 

manner. Therefore, to expedite SET, a higher VSET is required. This operation is referred to as a 

recovery operation (RO). A total of 3 RO were performed during this study. The first two 

required a 17% increase in VSET (+1V) to SET the device; the last recovery required a 29% 

increase in VSET to SET. Note, after a successful SET, VSET is decreased to its initial value to 

resume cycling. Analysis of the cycling-rate dynamics and resistance states – pre- and post-

recovery – do not show any degradation. These observations led to a proposed programming 

algorithm with RO capability to achieve high endurance in a memory array. The algorithm first 

requires that all failures are recoverable. To ensure this, the gradual approach of multi-pulse 

programming must be employed. When the device goes into a failure, a ramp voltage series 
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should be used to recovery cycling. Since recovery has been demonstrated to preserve 

performance, this algorithm can be executed indefinitely to achieve a high-endurance yield 

across a wafer.   
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CHAPTER 4 

SHORT-TERM INSTABILITY 

In this chapter, we utilize the newly developed programming setup, CUSPP, to 

investigate the short-term (sub second) stability of RRAMs during normal cycling operation. As 

discussed in Chapter 1, state verification during programming is necessary to overcome the 

intrinsic variability in RRAMs. However, program-verify techniques rely on short-term stability 

to successfully place the device’s resistance at the target resistance level. By adopting an 

unconventional read operation, we directly identified two sources of instability: fluctuations and 

relaxation. We observed that although both mechanisms can confound program-verify 

techniques and render them ineffective, fluctuations dominated the instability behavior.  This is 

in contrast to the first report on short-term instability by Fantini et al. [153], where fast relaxation 

was determined to be the main source of instability. Further examination of the characteristics of 

the fluctuations at shorter time delays and enhanced measurement time resolution (10 µs) 

revealed two key features. First, the probability of encountering a large fluctuation decayed with 

time to a non-zero value, ~ 100 µs after the verify time. Second, the amplitude of the fluctuations 

within the same time period did not decay, suggesting that the instability caused by fluctuations 

alone will not change the resistance distribution with time [43].  

4.1 Experimental Details 

The RRAM cells used in this study are crossbar TiN\HfO2(5.8 nm)\Ti\TiN, with TiN as 

conductive electrodes, Ti as the oxygen-exchange layer (OEL),  and HfO2 as the active switching 

layer. Programming was performed in ambient conditions using the CUSPP setup. The devices 

require an initial forming step. Typically, forming voltage amplitudes varied between +2.5V and 

+3.5V, while switching voltages were ≤ |1.5 |V. The resistance of the RRAM states was 
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monitored by applying a low (-8 mV and -80 mV) DC voltage, VREAD, and measuring the output 

current with fast amplifiers and a real-time, high-speed oscilloscope. The measurement speed 

was limited by the sense circuit RC time (30 ns) and the oscilloscope sampling rate. The read 

duration was controlled by adjusting the pulse repetition rates to either 1 Hz or 1 KHz. To ensure 

sufficient separation between the ON state and the OFF state, the HRS and LRS targets were 

programmed to be 100 kΩ and 10 kΩ, respectively.  These values were chosen to achieve a 10x 

resistance window (RW). The voltages (AC and DC) used for all operations were applied to the 

top electrode, while the bottom electrode was grounded.   

4.2 Results and Discussion 

Figure 26 shows a single representative HRS time trace monitored for 1 s. Notice from 

the inset that at t = 0 the resistance level exceeds the HRS target (100 kΩ), which means the 

device was successfully programmed to HRS. Because of the constant read operations and 1 Hz 

pulse rate, each state can be monitored for a maximum of 1 second. The measurement speed was 

set to 500 kS/sec (data point every 2 µs) by the sampling rate of the oscilloscope.  
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Figure 26. HRS read trace captured during normal cycling between LRS and HRS. 1 Hz programming pulse rate 

was chosen to enable 1 s long read duration. At t = 0 (immediately after RESET pulse) the resistance exceeds 100 

kΩ (inset) target signifying completion of RESET. 

 

Figure 27 shows the cumulative distributions of LRS and HRS at different time delays 

(10 µs, 100 µs, 1 ms, 1s) post programming. The resistance values are mean values of 26 µs 

integration times. Note, program-verify guarantees that at the start of each HRS/LRS, the device 

resistance is at the predefined target level as shown in Figure 26. Ideally, either distribution 

would be bounded by the target resistance level at 10 kΩ for LRS and 100 kΩ for HRS. 

However, in Figure 27, it is apparent that this is not the case since the distributions 10 µs after 

programming (t = 0 in Figure 26) extend past the target levels (indicated by dashed lines in 

Figure 27). The resistance window at the 0.01 percentile is 2x instead of the programmed 10x 

target. This would imply that either the program-verify failed or the resistance decreased in a 

very short time scale, thereby producing a distribution tail. In addition, similar to [153], the 
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distribution continues to widen in time, resulting in a decreasing RW that completely disappears 

after 1 second.  

This rapid loss of the RW was attributed to relaxation processes in the switching layer 

[153, 166]. This attribution was based on 1) the appearance of a tail only microseconds after 

programming and 2) a continued spread of the tail with time. In those studies, a conventional, 

read-pulse operation was used to track the distribution with time. However, pulse-read 

operations, unlike constant-read operations, have a serious shortcoming. Pulse-read operations 

take snapshots of the resistance evolution at discrete points in time only.  Therefore, such 

operations are blind to the resistance behavior between read pulses. The continuous read 

operation utilized in CUSPP is therefore advantageous for short-term stability since we can 

obtain a complete record of the filament behavior post-programming.  

 

 

Figure 27. Cumulative distribution (104 cycles) of LRS and HRS measured 10 µs, 100 µs, 1 ms and 1 s post-

programming. A tail is present (especially in HRS) only 10 µs after programming and continues to widen with time. 
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The resistance window is decreased to 2x in the first 10 µs post-verify and completely 

disappears 1 ms post-verify. This warrants a closer look at the resistance behavior within the first 

millisecond after programming. Therefore, read operation was decreased to 1 ms (from initial 1 

s), and the sampling rate of the oscilloscope was increased to 10 MS/sec to provide higher 

temporal resolution. From Figure 27, it is clear that although both LRS and HRS distributions 

have tails, the HRS tail dominates window closure. The wider distribution of HRS compared to 

LRS is a result of reduced filament size for higher resistance, which are more susceptible to 

variations due to the lower number of defects making up the conductive path [37]. We, therefore, 

focus on the instability of HRS. This is consistent with earlier studies, where it was observed that 

the fluctuation amplitude increases with resistance [38, 167]. To observe the impact of the 

resistance level, both LRS and HRS targets are increased to 20 kΩ and 200 kΩ, respectively. 

Figure 28 is a representative temporal trace of the resistance evolution for a complete 

cycle (SET and RESET). Note, it required 3 pulses to reach the HRS target (200 kΩ) and 1 pulse 

to reach the LRS target (20 kΩ). Immediately following each pulse (pulse location indicated by 

red markers), there is a large transient resistance fluctuation. In addition, during the read 

operation (time between pulses), we observe randomly occurring fluctuations. These random 

fluctuations are not measurement system artifacts and are absent in calibration measurements of 

reference surface-mount resistors of similar values. 

The appearance of resistance fluctuations in RRAM during retention studies and 

electrical stress measurements have been reported [39, 156, 168, 169]. These studies typically 

involve a constant low voltage read over thousands of seconds at normal and elevated 

temperatures. In effect, by utilizing a constant read during programming, CUSPP combines a 

short-term, stress measurement with resistance cycling. Still, the observed fluctuations here 
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happen at time scales that are orders of magnitude shorter. Thus, if the origin of the fluctuations 

observed here is the same as reported for longer retention studies, then the mechanism must span 

a rather wide time range.  

 

 

Figure 28. (a) Measured resistance (VREAD = -8mV) as a function of time for a complete cycle. The RESET 

operation required 3 pulses, while SET required a single pulse. Notice the presence of transient fluctuations 

immediately after the programming pulse (red markers) and at random times during the read operation. (b) Shows 

the HRS state monitored for 1 ms. Notice that the fluctuation reaches the target (200 kΩ) and triggers (purple 

marker) the fast comparator but the resistance decreases to a lower resistance level. This event causes the tail in the 

distribution. 

 

During programming, the fast comparator is triggered when the resistance exceeds the 

HRS target-threshold. Once the comparator is triggered, the device resistance is designated as 

HRS and the operation is complete. This is illustrated in Figure 28 (b), where HRS was achieved 

and monitored for 1 ms. The comparator triggered on the transient fluctuation; however, almost 

immediately after, the resistance fluctuates between 100 kΩ and 200 kΩ before stabilizing. From 

the continuous read, we can directly observe that the initial tail after 10 µs is not due to failure of 
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the program-verify protocol. Indeed, that protocol did successfully register a RESET operation 

because the device resistance reached the target level. However, the stability of the resistance 

state after verification cannot be guaranteed by program-verify. The appearance of a tail, 

therefore, is a result of fast fluctuations that prematurely verify program completion.   

A slower comparator might be the solution to this problem because it might be able to 

ignore such fast fluctuations, thereby allowing the program-verify to properly complete.  

Nevertheless, as will be discussed later, there are practical reasons why this solution will not 

work. To explore possible solutions to this serious fluctuation problem, further examination of 

the fluctuations themselves was needed. 

As was discussed in Chapter 1, due to the inborn variability in the RRAM switching 

mechanism, we would expect that the characteristics of the fluctuations would differ from one 

cycle to the next. We statistically evaluated the fluctuation behavior for 4000 cycles. Figure 29 

(a) – (c) illustrates three representative, HRS, temporal traces during SET and RESET cycling. 

The high resolution (100 ns) raw data (in gray) reveals the presence of fast fluctuations and slow 

fluctuations. In fact, these fast fluctuations produce the Random Telegraph Noise (RTN) signal 

often observed in RRAMs [168]. The slow fluctuations become clearer after a 10-point average 

(red trace) of the raw data; this decreases the read resolution from 100 ns to 1 µs. For 

comparison, Figure 29 (d) shows the raw and average resistance trace of a fixed value 260 kΩ 

surface mount resistor. Neither fast nor slow fluctuations observed in the RRAM cell are 

observed for the resistance measurement of a surface mount resistor. The fluctuations are 

therefore not a measurement system artifact but are directly linked to the physical nature of the 

conductive filament.  
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Figure 29. (a), (b) and (c) Representative HRS read traces captured during normal operation between HRS and LRS. 

Averaging (red) suppresses fast fluctuations present in the raw data trace (gray) but exposes slow fluctuations. For 

each HRS, the location of the largest fluctuation (blue) after averaging is recorded as ∆RLARGEST. (d) 260 kΩ surface 

mount resistor does not show similar fluctuations observed in RRAM devices indicating that the fluctuations are 

related to the device. 

 

 Although averaging successfully decreased the overall noise of the read operation as 

shown in Figure 29, averaging has its practical limits because it slows down the read operation, 

which in turn affects overall write/erase speed of RRAMs. To maintain reasonably fast 

operational speeds, we do not average further. The behavior of the fluctuations after 10 pt 

averaging is analyzed hence forth. We statistically investigated the occurrence rate of these 

fluctuations on 4000 HRS traces. Since larger fluctuations are more problematic, for each 
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trace/cycle, the largest fluctuation is recorded. To accomplish this, each cycle is divided into one 

hundred 10 µs long, time segments. For each HRS cycle, the time segment containing the 

maximum resistance change, ΔRLARGEST, is identified as shown in Figure 29 (blue data).  

The distribution of these segments is represented as a histogram in Figure 30 

accumulated for all cycles. This distribution can be interpreted as the probability that a large 

fluctuation will occur within a given time segment. The histogram reveals two key observations 

about that probability. First, the probability of encountering the largest resistance change or 

fluctuation in a 1 ms read is highest at the beginning of the read operation, immediately after the 

programming pulse. Second, the occurrence of these fluctuations does not vanish entirely within 

the duration of the read operation but saturates to some non-zero value.  

This observation suggests that large fluctuations can occur randomly at any time during 

read. Therefore, introducing a read-delay after programming does not avoid fluctuations and 

subsequent read errors. Due to insufficient sampling, the functional form of the decay cannot be 

accurately determined. However, it is clear that there is a significant reduction in the number of 

occurrences of the largest fluctuation within the first tens of microseconds after RESET. 
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Figure 30. (a) Distribution of time segments (10 µs) containing the largest fluctuation, ∆RLARGEST. There is 

statistically higher probability of the largest fluctuation occurring closer to the programming pulse (t = 0). (b) The 

corresponding distribution of the fluctuation amplitude show that the fluctuation amplitude remains large over the 

entire read time. ∆RLARGEST can occur randomly at any time during read. 

 

Figure 30 (b) shows the corresponding ΔRLARGEST amplitude of the same resistance 

fluctuations shown in Figure 30 (a). As expected, the data density decreases with time, 

highlighting the decaying nature of the fluctuation probability with time. Figure 30 also reveals 

that not only do large fluctuations persist, their amplitude remains unchanged for the entirety of 

the read operation. Consequently, regardless of the nature of the read operation, these large 

fluctuations will exist.  Furthermore, they pose a serious vulnerability because they impact both 

read-out margin and level-placing programming algorithms. 

Admittedly, the choice of the segment size may be responsible for the observed behavior 

of the fluctuations. Smaller time segments are not feasible because sufficient points are needed to 

capture an entire fluctuation. The 10 µs long segment, therefore, only captures fluctuations that 

occur within 10 µs. Slower rise or fall times of fluctuations cannot be captured by this method. 
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However, the bin size can be increased to account for slower changing fluctuations. Figure 31 

shows the distribution of ΔRLARGEST for 100 µs long segments. Similar to Figure 30, the 

fluctuation probability shows the same behavior. The largest fluctuations occur more frequently 

early in the read operation, and the probability does not decay to zero. 

 

 

Figure 31. Distribution of time segments (100 µs long) containing the largest fluctuation. The fluctuation 

distribution decay is unchanged for longer time segments. 

 

The analysis of the ΔRLARGEST indicates that some fluctuations can increase the resistance 

level, while others can decrease it. From a practical standpoint, the impact of the direction of 

resistance change is determined by the intended RRAM usage. For multilevel cells, both types of 

fluctuations are serious obstacles to reliability. On the other hand, for single level cells, only 

fluctuations that close RW are critical. As shown in Figure 27, when HRS decreases the RW 

closes. However, if HRS increases, an unintended benefit is attained since RW increases. Similar 

to the construction of the distribution shown in Figure 30 (b), Figure 32 shows the distribution of 
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the segments in which the minimum HRS resistance value, HRSMIN, occurs. This distribution can 

be interpreted as the probability that a given fluctuation will close the RW by decreasing HRS. 

We observe that this probability is highest immediately following the RESET pulse and slowly 

decays to a non-zero value with time. These fluctuations persist for the entire read operation. The 

HRSMIN distribution is nearly identical to ΔRLARGEST distribution, corroborated by a correlation 

factor of 0.98. This correlation is an indication that the majority of large fluctuations do act to 

close the RW.  

 

 

Figure 32. Distribution of time segments (10 µs long) in which the minimum resistance point (HRSMIN) in HRS 

occurred.  Similar to ∆RLARGEST, there is a higher probability of window closure occurring immediately after RESET 

pulse. 

 

Immediately following the programming pulse, both distributions show conspicuously 

large counts in the first 10 µs. Note, the large count is likely an artifact of the chosen bin size. As 

stated previously, the bin size must be long enough to capture an entire fluctuation and not just 
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an edge; making segments smaller is not possible. In both ΔRLARGEST and HRSMIN distributions, 

the probability decays in time further away from the applied RESET pulse.  It is tempting to 

assign this fluctuation decay behavior to a thermalizing process of the local area surrounding the 

filament, since the temperature of the CF is expected to increase due to Joule heating from the 

programming current. However, the use of ultra-short pulses for programming makes this 

unlikely.  

A first-order estimation of this thermalization process can be constructed by assuming 

that i) the heat diffusion equation is valid for very short time scales and ii) the CF acts as a point 

heat source in a homogenous dielectric medium. At the end of the applied 100 ps (τ0), heating 

terminates, and the heat diffuses over a spherical volume (4πr3/3), where r is the radius of the 

sphere. The hot-sphere-volume radius expands, due to diffusion, as the square root of the product 

of the thermal diffusivity and time. The temperature drop is assumed to be proportional to the 

volume increase.  

Figure 33 is constructed by i) normalizing the initial temperature after the programming 

pulse to 1 and ii) taking a ratio of temperature (volume) as a function of time delay after the 

initial pulse. While not exact, this heuristic estimation of thermal diffusion reveals a telling 

conclusion.  Recall that Figure 30 and Figure 32, show that the fluctuation decay occurs on time 

scales of tens of microseconds (104 and 105 times longer than τ0).  This decay corresponds to a 

temperature difference of about 107 from the time after the pulse is terminated to microseconds 

later. Since the temperature of the CF cannot cool below ambient (experiments are performed at 

room temperature), this puts the initial temperature, immediately following the programming 

pulse, at improbably high values.   
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Figure 33. Calculated temperature drop ratio referenced to an initial temperature as a function of multiples of 

characteristic time τ0 (pulse duration). 

 

CF temperature values reported in the literature using advanced methods and simulations 

are typically in the range of several hundred to thousands of degrees Kelvin regardless of a 

diffusive or non-diffusive thermal transport mechanism [27, 170-172]. It is conceivable that 

similar temperatures are reached in our case. However, considering that the ultra-short 

programming pulse heats up a small volume, the temperature drop due to heat diffusion will be 

extremely short. Based on Figure 33, the CF temperature reaches room temperature before our 

first read point, 100 ns later (oscilloscope sampling rate). Thus, we conclude that the tens-of-

microseconds decay of the fluctuations is not a thermally driven process. This first-order 

thermal-diffusion estimation does not account for the conduction of heat away from the CF by 

the electrodes. Still, this underestimation cannot account for the many orders of magnitude 

discrepancy.  
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As previously stated, a constant read operation is utilized in this study to generate a 

complete record of the CF resistance evolution. Consequently, “read disturb” could be 

responsible for the observed behavior of the fluctuations [173]. During programming, the device 

cycles between high and low resistance levels. Since the target HRS and LRS levels differ by at 

least a factor of 10x, the read current in the low-resistance state should be equivalently at least 

10x larger than the high-resistance state. The applied read voltage (-80mV), induces both an 

electrical field and a temperature that persist for 1 ms. The fluctuation decay behavior which 

occurs over tens of microseconds could be a result of the read operation.  

To test the validity of this hypothesis, we repeat the fluctuation analysis with a 10x lower 

read voltage (-8 mV).  This translates to a 100x decrease in power (approximately 100x decrease 

in temperature). We find no discernable difference in the fluctuation decay phenomena with this 

different read condition. A correlation coefficient = 0.93 was calculated; thus, the fluctuation 

behavior is likely not a result of read disturb. Our analysis of the thermal gradients during 

programing and read operations suggest a very limited role in the observed fluctuation dynamics. 

However, fluctuations in RRAM have also been demonstrated to be associated with the 

electrically driven charge trap/detrap mechanism. Although this may be the likely cause of 

fluctuations in our case, it does not fully explain the decay nature of the fluctuations.  

So far, we have conclusively shown that fluctuations are responsible for the tail of the 

distribution in Figure 27. However, this does not exclude the presence of relaxation. In fact, the 

increased dispersion of the distribution with time is indicative of some relaxation. We investigate 

the presence and impact of relaxation on the programming error by revisiting the longer read 

time (1 s) data set. Figure 34 shows a time-lag representation of the resistance states taken 10 µs 

and 1 s post programming, accumulated for 13000 cycles. The black dashed line is a correlation 
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line drawn to show an ideal case where the post-programmed resistance state is stable for 1s. 

Therefore, resistance states above or below the line are an indication that the initial (10 µs) 

resistance value increased or decreased respectively, after 1 s. It is evident that both LRS and 

HRS are unstable causing the initial resistance to randomly increase or decrease over time. 

However, we find that 72.3% of HRS decrease while 65.4% of LRS increase leading to severe 

window closure. Although there is some instability in LRS, HRS dominates the window closure 

(see Figure 27) due to the larger magnitude of the deviations. The trend towards lower values for 

high resistance values is consistent with our observations in Figure 32.  

 

 

Figure 34. Time lag representation of HRS and LRS taken at 10 µs and 1s post-programming. The black line is 

drawn to show perfect correlation in an ideal case without fluctuations or relaxation. While LRS trends above the 

line, HRS trends below the line. HRS trend is not apparent in this representation.  

 

 Still, it is incorrect to assign the instability in Figure 34 to fluctuations only. In RRAMs, 

the resistance state is determined by the configuration of the conductive filament (CF). LRS and 
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HRS are distributed because this configuration changes from cycle to cycle. This is unavoidable 

as this randomness is inherent in the resistive switching process. For each cycle/state, there exists 

an energetically favorable configuration that may cause the resistance to gradually (= relaxation) 

or abruptly (= fluctuation) change. Therefore, it is premature to assign the instability to 

fluctuations as relaxation can produce a similar time lag plot. To differentiate between 

fluctuation and relaxation, we examine the intermediate resistance state behavior between the 

initial and final states.  

The broad initial distribution of HRS is caused by the unstable resistance state 

verification. We artificially null out this effect by normalizing. This way, we track the evolution 

of each HRS, regardless of its initial value. Figure 35 (a) shows the resulting cumulative 

distribution in such an exercise, where we take a ratio of the resistance at some time, t, post 

programming, R(t), to the resistance measured at 10 µs post-programming, R(10 µs). The choice 

of R (10 µs) as the reference is arbitrary; selecting a different reference time does not change the 

result of the analysis. As such, at t = 10 µs, the ratio R(t)/R(10 µs) equals  1 and results in a 

vertical line located at 1.  The distributions corresponding to ratios taken at 100 µs, 1 ms and 1 s 

post-programming extend above and below the reference vertical line (see Figure 35 (a)), 

indicating a shift of the initial resistance value towards higher and lower resistance values, 

respectively.   
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Figure 35. (a) Cumulative distribution of resistance ratio, R(t)/R(10 µs) for t = 10 µs , 100 µs , 1 ms and 1s for all 

cycles. The initial normalized values (t = 10 µs) widen with time above and below indicating a random shift.  

Distribution of HRS cycles which (b) decreased or (c) increased after 1 s. In both cases, the distributions at 100 µs 

and 1 ms show values above and below the references. Indicating that the resistance fluctuates randomly over time. 

 

The ratios taken for t = 10 µs and 1 s represent the initial and final value of each cycle, 

while the ratios taken at t = 100 µs and 1 ms represent the intermediate states. In this work, we 

assume that in a relaxation process, if a state increases/decreases to its final value, the 

intermediate state should also increase/decrease to that final value. To examine this, we sort the 

distributions to select all R(1 s)/R(10 µs) (red curve Figure 10 (a)) that ended either below ((R(1 
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s)/R(10 µs)< 1) or above ((R(1 s)/R(10 µs) > 1) the initial value (black line). This tracks all 

cycles which either decreased or increased from initial to final value, respectively. These two 

subsets are illustrated in Figure 35 (b) and (c), respectively. Thus, Figure 35 (b) illustrates the 

distribution of all HRS cycles that decreased in resistance after 1s (notice distribution for R (1 s) 

falls below the reference line).  Figure 35 (c) illustrates the distribution of all HRS cycles that 

increased in resistance after 1s (notice distribution for R (1 s) falls above the reference line). 

However, for both Figure 35 (b) and (c), the intermediate states are distributed above and below 

the reference line. If the instability were indeed due to a relaxation effect, the intermediate reads 

distribution should have trended towards the final distribution, which clearly is not the case.  

This data is notably consistent with a system dominated by random fluctuations and inconsistent 

with a relaxation effect.  

From this analysis, we conclude that fluctuations are the major culprit of window closure 

in our case. The observed minor impact of relaxation compared to earlier works [153, 166] may 

be due to several factors. A difference in material stack has been shown to impact performance 

including retention [33].  The thermodynamics associated with the nature of the programming 

setup may also account for the observed behavior. As discussed, programming has a direct 

impact on retention and overall performance of RRAM. However, it is plausible that techniques 

that utilize pulse read are blind to these fluctuations and are, therefore, limited to observing only 

mean value shifts. For example, a pulse read at 10 µs and 1 s after programming cannot directly 

observe the filament behavior between the two reads. 

To improve reliability in RRAM operations, the impact of fluctuations must be 

diminished significantly. We explored a few techniques that can possibly minimize the 

fluctuation impact on the RW. One such technique is guard banding. This technique does not try 
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to minimize fluctuations; instead, it tries to minimize their impacts.  Figure 36 shows the HRS 

distributions for various target resistances. These distributions were generated by cycling the 

same device with different sets of LRS and HRS targets. Artificially shifting, or increasing the 

target HRS, shifts the whole HRS distribution (including the tail) and forces the “initial” 

resistance window to be larger. Others have noted [42, 168, 174], and as shown here in Figure 

36, a general increase in resistance increases the fluctuation amplitude (i.e. smaller filaments, 

larger fluctuations). Thus, a simple increase of target HRS also causes an increase of the 

distribution tail. Therefore, the “sweet spot” for target resistance needs to be identified through 

careful characterization of the RRAM devices.  

 

 

Figure 36. HRS distributions for different target resistances. Artificially shifting, or guard banding the HRS target to 

higher values shifts the entire HRS distribution but also increases dispersion suggesting limited benefits to guard 

banding.  
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Other techniques to minimize the impact of fluctuations require slowing down the 

operating time either by utilizing a read delay or a slower (longer integration) read operation. 

Our analysis of both the fluctuation amplitude and rate-of-occurrence showed that within a 1 ms 

long read, large fluctuations still exist, but their frequency of occurrence decreases with time. 

Figure 37 shows the distribution of HRS 300 µs and 1 s post-programming. A 200 µs integration 

time was used to obtain the mean values for the distribution and to calculate the maximum and 

minimum (gray crosses) within the integration time. We observe a statistical reduction in 

fluctuation amplitude for longer post-programming times; nevertheless, fluctuations still persist 

even after clearly reaching thermal equilibrium (1 s after programming). The reduction in the 

amplitude of fluctuations after 1 s does not conflict with our earlier analysis where we observe 

no decrease in fluctuation amplitude for 1 ms. Figure 37 does not capture the largest fluctuation 

during an entire 1 s read. The lower amplitudes of fluctuations are expected because the 

probability of encountering the largest fluctuation in the cycle decreases with time. Therefore, it 

is less likely to capture large fluctuation over such a short integration time, 1 s after 

programming.  
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Figure 37. Cumulative distribution of HRS for 300 µs and 1 s post programming.  Mean value (blue), maximum 

(gray) and minimum (gray) values are calculated in a 200 µs integration window.  A significant reduction of 

fluctuation amplitudes is observed 1 s post-programming. 

 

Slower read operations, which require longer integration times, have been shown to 

eliminate some fluctuations but expose slower fluctuations. In Figure 38, we examine the impact 

of integration on the fluctuation amplitude for 200 µs and 30 ns integration times. The apparently 

broad time distribution of the fluctuations limits the benefit of increased read times. Perhaps the 

best method to reduce dispersion is to increase the filament size, thereby minimizing 

fluctuations. An optimization across these approaches (guard-banding, increased read integration 

time, and larger filament sizes) may prove beneficial.  
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Figure 38. Increased read averaging of the resistance distributions for 200 µs (purple) vs. 30 ns (gray) reduces the 

amplitude of fluctuations, but the widely distributed temporal distribution of the fluctuations limits the usefulness of 

this tactic. 

4.3 Summary 

A recent study of the post-programmed, resistance-state stability revealed that relaxation 

processes cause resistance-window closure [153, 166]. This phenomenon defeats program-verify 

strategies since they are mainly employed to create a resistance window. With the enhanced read 

operation, we examined this short-term (microsecond) instability in HfO2-based RRAMs using 

CUSPP. We determined that the stochastic resistance fluctuations, which are known to be 

present in oxide-based RRAMs [39, 167, 168], dominate the short-term instability of the device 

while relaxation played a lesser role. The program-verify algorithm records a successful 

SET/RESET operation when the resistance reaches LRSTARGET/HRSTARGET. However, once this 

happens, the resistance state can fluctuate randomly below or above the threshold level. 

Therefore, any subsequent read, at some time delay from this verify time, would produce values 

lower than the threshold targets. This mechanism closes the window and creates an impression of 
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a failure of program-verify. The true failure of program-verify is that it can obtain a resistance 

window but cannot maintain the resistance window due to fluctuations and relaxation.    

The CUSPP control circuit utilizes a high-speed comparator with a propagation time of < 

5ns. Therefore, it is conceivable that a slower comparator may avoid “false” triggering from 

fluctuations. However, a statistical study of the fluctuation behavior in the first millisecond after 

the trigger point (t = 0) proved otherwise. We observed that the probability of encountering a 

fluctuation decayed as time increased from the read operation t =0. However, this probability, 

which asymptotically approaches 0, never completely disappears. The fluctuation probability 

reaches a non-zero steady state after t = ~ 150 µs [43]. Interestingly, the magnitude of the 

fluctuations did not decrease significantly within the entirety of the 1 millisecond read. We also 

observed that though averaging may provide some headroom, slowly changing fluctuations 

limits this approach. These observations suggest that using a slower comparator or waiting 

longer to read (since probability decreases) does not avoid fluctuations, and it can significantly 

decrease programming time.   
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

Charge-based memory technology is fast approaching a fundamental scaling limit. As 

such, new solutions require devices that can meet current, memory-performance requirements 

and support further miniaturization. New memory devices (RRAM) based on a resistive-

switching mechanism have emerged as a serious replacement. RRAM devices are highly 

scalable, they demonstrate switching performance that exceeds FLASH, and they are comparable 

to DRAM and SRAM. However, severe variability and instability issues remain at the forefront 

of RRAM reliability concerns [14, 37]. Variability of the resistance (memory) state is intrinsic 

and, therefore, unavoidable. Hence, programming solutions are required to minimize the impact 

of variability and to ensure a workable resistance window [86, 88, 154, 158].  

In Chapter 2, we proposed a program-verify technique called Compliance-free Ultra-

short Smart Pulse Programming (CUSPP).  CUSPP relies on a novel, current-control scheme to 

achieve a low-programming energy operation that is desirable for guarding against programming 

errors. First, a 100 ps pulse generator constructed from several rf components was developed. To 

deliver the fast pulses for programming with minimal degradation and high signal integrity, 

transmission line design and impedance matching are employed throughout the measurement 

system. Second, a custom-built feedback control circuit was designed to sense the device 

resistance state and output appropriate logic to control the 100 ps pulse generator. The circuit 

houses high-speed amplifiers and comparators to enable fast response to RRAM switching 

transients. Programming protocol utilizes identical pulse trains to tune the device resistance to 

two distinct preset target levels. The functionality of the integrated ultra-short pulse and control 

circuit is demonstrated in programming measurements including FORMING and cycling (SET 
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and RESET) with state verification. In addition, a new read operation concept is demonstrated 

and later shown to be useful in short-term stability studies of RRAMs. We successfully 

demonstrated for the first time 100 ps write/erase speeds and 500 kHz cycling rate of HfO2-based 

RRAM devices. 

In Chapter 3, we investigated the cycling performance of RRAM using CUSPP. Devices 

were programmed in a long cycling experiment to achieve 108 cycles. We observed that the 

RESET operation required on average 8x more pulses and RESET dictated the cycling rate of the 

device. However, the cycling rate is not constant; rather, it is subject to variation due to the 

intrinsic variation of the resistive switching process. Occasionally, large excursions of the 

cycling rate occur, signifying switching failure. In our measurements, all failures were 

recoverable. This is attributed to the delicate and controlled nature of the measurement setup. 

Low programming energy minimizes probability of over-programming, which results in 

permanent irrecoverable failures. We showed that by increasing the programming pulse voltage, 

cycling could be recovered without degrading cycling rate, endurance or LRS/HRS distribution. 

Based on these observations, a programming protocol with recovery was proposed.   

In Chapter 4, we investigated short-term stability, which is critical in programming 

RRAMs. We showed experimentally that stochastic resistance fluctuations are responsible for 

the rapid loss of the post-programmed resistance state. The fluctuations trigger the verification 

mechanism and result in resistance states below/above the HRS/LRS targets. Although relaxation 

effects are present and continue to widen the distribution, the initial distribution is caused 

primarily by the fluctuations. Analysis of the fluctuations with enhanced resolution and shorter 

times reveals new dynamics of the filament behavior immediately after RESET. We observe that 

the largest fluctuations during read occur more frequently at the start of the read operation, close 
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to the programming pulse, but decay to a non-zero value with time. However, the fluctuation 

amplitude does decrease within the same time duration. We rule out thermal effects as the source 

of this behavior both in the programming and read operations. Strategies to minimize the impact 

of fluctuations would require optimization of the target resistance states, read delay and slower 

read. 

Metal-Organic Framework (MOF) based experimental Switching Devices  

As part of future outlook, a novel non-traditional RRAM device based on a surface 

anchored metal organic framework (SURMOF) insulator layer has been fabricated and tested 

using the voltage sweep mode of a semiconductor parameter analyzer. HKUST-1 (Hong Kong 

Univeristy of Technology 1) is a typical, metal-organic framework composed of Cu2+ dimers 

connected by benzenetricarboxylate (BTC) units. This MOF forms a crystalline, 3D pore 

structure with cubic symmetry and a lattice constant of a = 26.343 Å. HKUST-1 MOF thin films 

(SURMOFs) can be grown on surface-functionalized Au-substrates by employing a layer-by-

layer, quasi-epitaxial method. The resulting SURMOFs are monolithic and possess a high 

crystallinity with low defect densities, as well as excellent mechanical properties. In recent years, 

a number of works published by different groups have demonstrated interesting electrical 

transport properties of MOFs and MOF thin films. There are several ways to modify the 

electrical conductivity of MOFs. The first one involves the modification and optimization of the 

organic linkers used to assemble the framework materials, e.g. using transition metals bonded to 

organocyanide ligands such as tetracyano-quinodimethane (TCNQ) as well as 

dicyanoquinonediimine (DCNQI). A second possibility is to use the periodic array of pores 

connected by channels inside MOF materials to allow for the trapping and transport of ions 

inside the supramolecular network. Loading the pores with appropriate organic semiconductors 



94 

 

 

can change electrical properties (Ferrocene, TCNQ) which also allow ion transport in addition to 

electron transport. For the RRAM devices reported here, SURMOFs were grown on Au-

substrates pre-functionalized by deposition of a MHDA (16-mercaptohexadecanoic acid, Sigma) 

SAM (self-assembled monolayer). On such modified substrates HKUST-1 SURMOFs were 

grown employing the LPE (Liquid Phase Epitaxy) spray method. In this case, a 1 mM ethanolic 

solution of copper acetate hydrate (metal source) 0.2mM solutions of the organic linker solution 

(1,3,5-benzenetricarboxylic acid (BTC)) were used in the spraying process. The SURMOF 

material used in this study is based on Hong Kong University of Science and Technology 1 

(HKUST-1) films, with Cu2+ dimers connected by benzenetricarboxylate (BTC) units [175]. 

Furthermore, some of the MOF devices were doped with ferrocene to investigate the effect of 

loading on the sweep-mode switching performance and to benchmark against pristine unloaded 

MOF devices. In principle, ferrocene can be loaded inside the HKUST-1 SURMOFs either from 

the gas-phase or from the liquid-phase. For this study we used liquid phase ferrocene loading.  

Device fabrication was carried out by depositing top electrodes from either Cu or Au targets 

using a commercial e-beam deposition system.  Figure 39 shows the completed MIM stack of 

two devices, device A (left) and B (right), used in this study. Device A consists of Au/ SURMOF 

(75 nm)/Cu/Au with top electrode Cu (200 nm)/Au (25 nm) patterned using a shadow mask of 

200 µm in diameter. Device B consists of Au/SURMOF (10 nm: 20 nm : 50 nm)/Al /Au with top 

electrode Al (700 nm) /Au (100 nm) patterned with a shadow mask of 150 µm in diameter.  

 



95 

 

 

 

Figure 39. Illustration of SURMOF device test structure and measurement setup. Different electrode materials were 

used to investigate the contribution of the electrode to switching behavior. 

 

Figure 40 shows the switching behavior of device A under voltage sweep mode. In all 

measurements, the voltage was applied to the top electrode (TE) with the bottom electrode (BE) 

grounded.  The SURMOF devices did not require FORMING. A clear hysteresis pinched at zero 

is observed for loaded SURMOF devices. This I-V curve is indicative of resistive switching. The 

respective SET and RESET transition occur at negative bias and positive bias. This is not 

expected for a cell with an electrochemically active electrode. Normally, a positive bias on TE 

would result in a SET operation since Cu ions drift towards BE to create the conductive 

filamentary path.  Observing the reverse behavior suggests that the SET is not a result of Cu ions 

from the TE.  Therefore, the formation of a metal conductive filament can be ruled out. 
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Figure 40. Measured I-V curve for SURMOF device A (a) loaded with ferrocene and (b) pristine nonloaded. 

 

Figure 41 shows the switching behavior of Device B for all three SURMOF thicknesses (10 nm, 

20 nm, 50 nm). All devices are loaded with ferrocene. Switching is observed for all investigated 

SURMOF film thicknesses. However, the ON state conductance appears to be increasing with 

thickness, which may be attributed to the increased number of ferrocene molecules in the 

switching layer. Two key observations are made here by comparing Device B to Device A. The 

resistance switching does not require an electrochemically active electrode since Device B has an 

Al/Au TE. Additionally, the switching direction is reversed in Device B; SET occurs on a 

positive sweep, and RESET occurs on a positive sweep. Switching direction has been shown to 

be dependent on the insulator type; n-type or p-type [14].  
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Figure 41. Measured I-V curve for device B with loaded SURMOF films of thickness (a)10 nm, (b) 20 nm and (c) 

50 nm. 

 

Figure 42 shows the On-state and OFF-state of loaded and unloaded 10nm SURMOF devices. 

Ferrocene loaded devices display an observable resistance window (separated ON and OFF), 

while pristine nonloaded SURMOF devices do not. It demonstrates the importance ferrocene 

loading plays in the resistive switching observed in these SURMOF devices. 
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Figure 42. ON-state and OFF-state of loaded and pristine nonloaded 10 nm SURMOF devices. Loaded devices 

display a resistance window demonstrating the important of ferrocene for resistive switching. 

 

 This exploratory study demonstrates for the first time the resistive switching phenomena 

in KHUST-1 SURMOF devices. We demonstrated that resistive switching did not require an 

electrochemically active electrode and that ferrocene loading improved switching behavior. 

However, these results are preliminary and many further studies are needed to understand the 

possible mechanism responsible for RS and the statistics of switching behavior. The ON and 

OFF state conductance are very high, which is not desirable for low-power operation. Analysis 

of the switching behavior for each device has to be performed to study endurance and possible 

failure mechanism. In addition, the devices explored here are not suitable for pulse programming 

because of the large capacitance of the MIM structure. Smaller devices would have to be 

fabricated to test the high-speed performance of this novel RRAM device. 

 

 



99 

 

 

Future Work 

In this work, several novel concepts were combined to study the high-speed performance 

of HfO2-based RRAM devices in order to address the technological challenges, issues and 

serious barriers to RRAM memory cell commercialization. We demonstrated 1) a viable, current-

control approach to achieving high endurance and 2) the usefulness of a DC read to study 

filament instability at microsecond delays from the programming instant. These demonstrations 

relied on an ultra-short, picosecond, programming pulse. The main novelty in this work is 

associated with programming RRAM devices without a series, current-limiting element. We 

postulated that this approach is advantageous since it limits the programming energy [73] – an 

approach that the majority of reported experimental setups do not use [58, 86, 159, 176]. 

However, we have yet to perform an extensive study on the impact of pulse amplitude and height 

in this compliance-free programming environment. Therefore, studies that involve a range of 

pulses – wide pulse (ns), short (ps), single-pulse (high VSET/VRESET), and multi-pulse operation 

(low VSET/VRESET) – are needed. 

To gain a deeper understanding of the fluctuation and instability behavior of RRAMs, 

system modifications and different device stacks are essential. We will first discuss some of the 

future work related to system modifications. The CUSPP measurement tool uses 100 ps for the 

three programming operations: FORMING, SET and RESET. Since current control is provided 

by the pulse width, it is likely that even shorter pulse widths may result in finer resistance 

programming. For example, in some cases, device resistance changed by up to 9 orders of 

magnitude during FORMING.  This large range suggests that even shorter pulses can minimize 

these large resistance transitions. Admittedly, fast pulse programming is limited by the size of 
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the memory array. However, these studies are critical to understanding the resistive switching 

mechanism.  

The program-verify protocol in CUSPP uses identical positive/negative pulses (fixed 

amplitude and width) for SET/RESET. In Chapter 3, we proposed a recovery operation 

algorithm that relies on increasing the pulse amplitude in incremental steps. To accomplish this, 

modifications to the setup are required. First, a counter to track the programming time is 

essential to determine when to deploy the recovery protocol.  Second, a voltage-controlled 

attenuator or amplifier would also be needed to incrementally adjust the programming pulse 

amplitude. With these inclusions, the proposed programming algorithm could be experimentally 

proven. 

All measurements using CUSPP were performed on HfO2-based devices called valance 

change memory (VCM) devices. The experimental setup, however, is not limited to HfO2-based 

RRAM or VCM type cells. Recent studies of conductive-bridge RAM (CBRAM) suggest that 

these devices may be more stable compared to VCM [88]. There have also been reports that 

show that a Ta oxygen exchange layer (OEL) will create a more stable CF compared to the Ti 

OEL used in this work [120]. The stability of the filament is related to the diffusion of oxygen 

species and charge trap/detrap mechanisms, which are influenced by the composition of the CF. 

Therefore, it would be useful to explore the response of other RRAM devices using CUSPP. The 

short-term analysis and observation of fluctuation behavior can be used as a reliability metric to 

determine the appropriate optimized material choice for RRAMs.   
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