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Abstract 

Diagnostic Studies of Non-thermal Atmospheric 

Pressure Nanosecond Plasma Jets 

Non-thermal atmospheric pressure plasma jets attract a lot of attentions due to its growing 

interest in plasma medicine. In this study, reactive species (e.g. excited He, O, OH) in a helium 

single-electrode non-thermal atmospheric pressure nanosecond plasma jet (APNPJ) driven by a 

nanosecond pulsed power supply  have been studied via electrical measurements (e.g. voltage, 

current) and optical emission spectroscopy. It is shown that the gas temperature of the APNPJs 

remained near 300±50 K by fitting N2(C-B) second positive system and OH(A-X) emission 

spectrum. Higher excited N2
+ (by a factor of 1.3) but less excited N2, He, O, and OH productions 

are observed when compared two APNPJs driven by a short pulse (5 ns pulse width) and a long 

pulse (164 ns), respectively. Importantly, comparable or more excited species were produced by 

the 5-ns pulsed plasma for the first 100 ns which implies shorter rise time of a pulsed voltage can 

influence the plasma chemistry by boosting the production of excited species. Further studies 

indicate that enhanced ionization near the single-electrode nozzle, earlier streamer formation and 

stronger emissions by excited N2, N2
+, OH, and O are observed when the 164-ns plasma jet 

impinges onto the water surface. Interestingly, maximal OH(A-X) emissions are obtained at pulse 

width of 600 – 800 ns when a plasma jet impinges onto the water surface with examining of pulse 

widths from 200 ns to 5000 ns at 7 kV, 200 ns at 1 kHz. More importantly, temporally-resolved 

emission spectroscopy shows that more than 40% OH(A-X) emissions is produced during the first 

200 ns of the voltage pulse regardless of the pulse width. 

Plume dynamics indicate that increasing both amplitude (ranging from 5 kV to 10 kV) and 

helium flow rate (from 8 SCCM to 164 SCCM) resulted in faster propagation of ionization fronts 
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hence longer plasma plumes, meanwhile, higher repetition rate (from 10 Hz to 4 kHz) and longer 

pulse width (from 200 ns to 990 µs) created earlier inception of ionization fronts but shorter plume 

lengths. Study of repeatability of both air corona discharge and plasma jets pertinent to breakdown 

probability are investigated in further details.  
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Chapter 1 

INTRODUCTION 

1-1. BRIEF INTRODUCTION OF GAS DISCHARGE 

It is probably more intuitive to start with a nature phenomenon ‘lightening’. Separation of 

positive and negative charges in the cloud results in a strong electric field which leads to 

breakdown in air. The lightening is often zigzag and branching out in a random manner with 

luminous heads (called ‘ionization fronts’) propagating at speeds in the level of 107~108 m/s. This 

is a discharge in the form of a ‘leader’. The main focus of this research, however, is breakdown 

and development of streamer discharge which  resembles  the leader discharge. The principle 

difference between a leader and a streamer lies in the properties of the two plasmas. That is, a 

streamer tends to lose its conductivity in the bulk plasma due to attachment while leader does not 

[1]. Illuminations around the sharp edges of high power transmission lines are thought to be a 

streamer (called ‘corona discharge’).  

Corona discharge can be observed in a highly non-uniform electric field (i.e. the electric field 

near electrodes has to be much higher than rest of the discharge gap). If it is a single positive 

electrode with sharp edges, positive corona (‘cathode-directed streamer’) is generated. Multiple 

thin ionized channels will be observed near the electrode and flashing out like filaments. It is also 

in a zigzag and branching manner similar to the leader discharge if observed carefully. Depending 

on the structures of discharges at atmospheric pressure, discharges could be dominant by avalanche 

multiplications or streamers. If the discharge gap (i.e. anode-to-cathode distance) is not too large 

(roughly 𝑑 < 5 cm and 𝑝𝑑 < 4000 𝑇𝑜𝑟𝑟 ∙ 𝑐𝑚), Townsend breakdown mechanism of avalanche 
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multiplication is predominant [1]. Generally, breakdown in air at atmospheric pressure goes via 

avalanche multiplication if d<5 cm and via the streamer mechanism if d>6 cm. 

The two main mechanisms of discharge, namely, Townsend avalanche multiplications and 

streamer theory, which are probably the two most important theories in gas discharge.  At low 

pressure and small overvoltage, Townsend avalanche multiplication is usually dominant, while at 

high pressure (large 𝑝𝑑) and overvoltage, strong distortion of external electric field caused by 

space charges in the plasma essentially results in streamer discharge. Discharge mechanisms 

regarding the two theories are illustrated in detail in section 1-3. 

Mechanisms of gas discharge concern with the formation and development of discharges while 

discharges itself extended much further in applications. For example, it is considered to be very 

important in modern life, such as plasma etching [2], food decontamination [3], biomedical 

applications (such as cancer cell treatment etc. [4, 5]), which are the core of modern technologies. 

Even though this research is mainly focused on fundamental research of gas discharge, the driven 

force from potential applications should not be underestimated. In fact, one would realize in 

chapter 2 that the study of hydroxyl radicals in a non-thermal atmospheric pressure plasma jet 

interacting with substrates is of great importance in plasma biomedical applications [6-9].  

 

1-2. INTRODUCTION TO NON-THERMAL ATMOSPHERIC 

PRESSURE PLASMA JETS 

Aforementioned non-thermal atmospheric pressure plasma jets may sound unfamiliar to you 

since it emerged in only about two decades ago [10]. Non-thermal atmospheric pressure plasma 

jets are plasmas produced by gas discharges, operating in non-confined electrodes, and projected 
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into the ambient air due to the gas flow (mostly noble gas). Three components, i.e. a jet device, a 

carrier gas and a power supply are necessary for generating a plasma jet. High voltage generated 

by power supply elevated the electric field near the electrode which breakdowns the flowing gas 

hence forming a visible plume in ambient air (Fig. 1-1). Design of jet devices is a rich field with 

practical applications (e.g. large plasma brush for surface decontamination, small needle-jet for 

root canal disinfection etc. [11, 12]). In principle, it can be categorized into dielectric barrier 

plasma jets (DBD-jets) and barrier-free plasma jets (corona-jets) [13]. Fig. 1-1 presents a corona 

type jet which consists of a single-needle hollow electrode with flowing helium driven by a pulsed 

power. 

 

Fig. 1-1. A plasma jet by a single-needle electrode powered by 8 kV, 200 ns pulses at 500 Hz with helium flow of 

200 SCCM, diameter of the needle tip is 0.508 mm. 
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Such plasma assisted by a gas flowing into ambient air that generates a visible plume in several 

centimeters. It is highly non-equilibrium (i.e. electron temperature is much higher than ions 𝑇𝑒 ≫

𝑇𝑖). At atmospheric pressure, it is common to assume that a rotational Boltzmann distribution of 

molecules is at equilibrium with its surrounding gas (i.e. Trot = Tgas) since the time constant of a 

rotational energy transfer (~10-11 s) is much faster than its lifetime (~10-9 s). In chapter 2, gas 

temperature will be estimated via optical emission spectroscopy under such assumption. Excited 

N2(C-B) and OH(A-X) will be employed with simulated gas temperature from their rotational 

spectrum. Generally, temperature of such plasmas is in the range of 300 - 1000 K which can be 

called ‘cold plasma jets’. In this research, all the plasma jets are cold plasmas at about 300 K which 

is around room temperature. 

A pulsed helium plasma jet is violetish in ambient air. The color of the plume is determined 

by emissions from excited species in the plasma (dominant by excited nitrogen from ~ 300 nm to 

400 nm for this plasma jet in Fig.1-1). Chapter 2 also investigates reactive species generated in 

plasma plume in detail. These continuous emissions, however, have a discrete nature if looked at 

with a high speed camera (in the time duration of nanosecond). As seen from Fig. 1-2, it acts like 

a discrete pack propagates away from the powered electrode. The small pack (also called ‘plasma 

bullet’) travels at a high speed ~ 107 m/s which is impossible to be detected by bare eyes. 
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Fig. 1-2. A nanosecond plasma jet in ambient air driven by 7 kV, 200 ns at 1 kHz with helium flow of 70 SCCM. 

Time indicated here correspond to time of a voltage pulse in Fig. 3-3 (a), each image is at exposure time of 5 ns with 

combination of 100 frames. 

This interesting phenomena of the plasma jet have been intensively studied for over ten years 

[13-15] due to several unique properties. At first glance, it is, in most cases, a uniform and straight 

plume without any branching; secondly, the ionization front travels at such high speed as a small 

pack and leaves a dark channel behind it as it propagates away from the electrode; thirdly, such 

propagation is somewhat highly repeatable in space and time from pulse to pulse (if powered by 

pulsed sources); fourthly, there are usually two discharge events that can be detected at the rising 

and falling phases of a voltage pulse (if pulse voltage is applied) which are called ‘primary 

discharge’ and ‘secondary discharge’, respectively. These properties (including bright bullet, dark 

channel, repeatability, uniform emissions (i.e. no filament branching), and multiple discharge 

events) are not only a rich research field for fundamental science (i.e. physics, mechanics and 

chemistry) but also provides great potential in many applications. 

1-3. TOPICS COVERED IN THIS RESEARCH 

A complete review of current progress of plasma bullet can be found in Ref. [15]. In short, 

results from various research groups support that the dark channel left behind of ionization front 

is somewhat conductive [16-18]. Study of seed electrons and photoionization on formation and 

propagation of ionization fronts showed that when it is lack of seed electrons, the role of 

photoionization is essential for propagation of ionization front [19-21]. However, most of these 

reports are from computational modeling due to the difficulties in experimental design. Both 

experimental and computational results were carried out to understand the effect of penning 

ionization on forming of donut shape of ionization fronts [22-24]. It is found that complete opposite 
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conclusions were draw from these results. Some confirmed that the donut shape is attributed to 

Penning ionization while others showed that Penning ionization has a rather weak effect on 

forming of donut shape. Further investigation is required to clear this out. Study of repeatability 

and amorphousness of ionization fronts indicate that ionization fronts are not always repeatable in 

space and time. The repeatability is thought to relate to seed electrons provided by memory effect 

[25] and can be affect by repetition rate and flow rate [26-28].  

Considering effects of operation parameters (i.e. pulse rise time, amplitude, repetition rate, 

pulse width, gas flow, gas mixture and electrode diameter), it is found that, on one hand, lower 

pulse repetition rate (PRR) increases plasma length from 1 to 75 Hz and then keeps almost constant 

[29]; on the other hand, results shown that higher repetition rates lead to higher propagation 

velocity hence leading to longer plasma plume [30]. Generally, it is assumed that shorter rise time 

of a pulsed voltage could result in overvoltage breakdown which further enhances excitation and 

ionization process in plasma. Research has shown that shorter pulse rise time and faster 

propagation of ionization front is associated with longer plasma plume [31]. However, when pulse 

rise time is reduced further from 150 ns to 10 ns in a dielectric barrier discharge (DBD), it showed 

no obvious change [32]. More research is needed to clear these contradicted results regarding 

pulsed plasma jets. Pulse width is an important parameter pertinent to dynamics of plasma plume. 

Studies have shown that when pulse width is short (few hundred ns) increase pulse width results 

in longer plume and more energy deposited into plasmas. Consequently, higher discharge current 

[33, 34] could be detected. With long pulse, further increasing pulse width presented no 

appreciable effect on plasma plume [16]. When pulse-off time between two consecutive pulses is 

short enough, exotic plume structures were observed [35]. Effect of tube diameter on plume 

dynamics revealed that smaller diameter, higher propagation speed of ionization fronts and higher 
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plasma densities hence, longer plume [21]. Study of gas flow rate on plume dynamics indicates 

that plume length increased linearly with helium flow rate when the flow is in laminar region [36-

39]. Varying pulse amplitude resulted in longer plume length at low voltage and saturated length 

at higher voltage [40-42].  

Numerous research has been carried out to understand characteristics of plasma jets. However, 

from the perspective of reactive species, how would short pulse rise time, long pulse width and 

substrates affect the chemical pathways in plasma jets (covered in chapter 2)? Extra experiments 

needed to clarify the effect of pulse repetition rate, pulse width, amplitude, and gas flow rate and 

electrode configuration on plume characteristics (presented in chapter 3). The effect of seed 

electrons and memory effect on initiation and development of a plasma jet also remains unclear. 

For example, how would seed electrons affect breakdown probability of discharges (detailed 

investigation is illustrated in chapter 4)?  

From those properties mentioned above on plasma jets, it is assumed that such plasma is a 

‘guided streamer’ which has the same mechanism of a streamer discharge and guided by 

metastable, electrons and ions preserved from previous discharges [25, 34]. Streamer theory was 

developed by Loeb, Meek and Raether in 1940) [43-45]. It built upon several important 

experimental facts that are inconsistent with the Townsend theory: 

1. The spark discharge at atmospheric pressure has been found to be independent of cathode 

material, i.e. Townsend secondary emission coefficient for cathode (γ) is invalid in this condition 

[46]. 

2.  The time lag of forming a spark discharge from applying a voltage to occurrence of the 

actual discharge is several order of magnitude smaller (10-7 s) than predicted by Townsend theory 

(10-4 s) [47]. In Townsend theory, it states that positive ions have to move to the cathode and 
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bombard the cathode surface in order to generate the discharge in the case of 1 cm gap at small 

overvoltages [48]. 

A streamer is formed when the field of space charges increases to the level of the external field. 

It starts with an electron avalanche which is an inescapable process of any breakdown. The primary 

individual avalanche generates electron-ion pairs as it develops. Once electrons at the avalanche 

head reach the anode and sink into the electrode, streamer is initiated and developed with following 

the positively charged trail developed by previous avalanche (as seen from Fig. 1-3). Numerous of 

electrons generated by secondary avalanches are pulled into the primary trail by the field. These 

secondary avalanches are initiated by new electrons generated by photons emitted by excited atoms 

from primary and secondary avalanches. 

 

Fig. 1-3. (a) Electric field distribution caused by space charge (E’) and external electric field (E0) and (b) the 

resultant total electric field (E = E0 + E’) [1]. 

In order to transform from an avalanche into a streamer, electron avalanches have to reach a 

sufficient high amplification (i.e. electric field produced by space charges has to reach the same 

level of external electric field). The streamer formation criterion [1]: 

𝛼𝑑 ≈ 18 − 20                                (1-1) 
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Where 𝛼 and 𝑑 are the first Townsend coefficient and distance of interelectrode, respectively. 

Once the primary avalanche reached such a high amplification, streamer is developed on the 

vicinity of the strongest electric field. In the case of small overvoltage and short interelectrode gap, 

the avalanche transforms into streamer when the avalanche reaches the anode. The streamer then 

initiated at the anode surface where the space charge is highest. Then it propagates towards the 

cathode. It is known as a cathode-directed streamer or a positive streamer (Fig. 1-4). 

 

Fig. 1-4. (a) Cathode-directed streamer with two consecutive times (t2>t1) and (b) the electric field distribution at the 

streamer head [1]. 

In general, streamer occurs at relative high pressure and long gap distance with sufficient 

overvoltage. Comparably, at low pressure and small gap distance (low 𝑝𝑑), Townsend avalanche 

multiplications are dominant. 

Townsend theory is developed by J. S. Townsend with assistance by his students. Consider 

discharge between two parallel electrodes, at 𝑥 distance from cathode, there are 𝑛 electrons, and 

one electron will generate 𝛼 electrons as it travels 1 cm (this is the interpretation of α), so when it 

passes 𝑑𝑥 distance, 𝑛 electrons could generate 𝑛𝛼𝑑𝑥 electrons which equals to the increment of 

electrons (𝑑𝑛) at 𝑑𝑥. Thus,  

𝑑𝑛 = 𝑛𝛼𝑑𝑥                               (1-2) 
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𝑛 = 𝑛0𝑒𝛼𝑥                                  (1-3) 

Where 𝑛0 is the number of electrons at 𝑥 = 0 (i.e. at the cathode). Equation (1-2) and (1-3) are 

derivative form and integrative form of the same equation. It indicates that the number of electrons 

increases exponentially with first Townsend ionization coefficient and its travelling distance. The 

carrier currents of an avalanche caused by moving electrons at location 𝑥 can be estimated as [45]: 

𝐼𝑒 ∝ 𝑒𝑛0𝑣𝑑𝑒𝛼𝑥                                          (1-4) 

where 𝑣𝑑 is the electron drift velocity. Equation (1-4) shows the electron current increases 

exponentially as electrons travel from cathode to anode due to the electron proliferation from 

electron ionized collisions. 

Similarly, the ion current caused by positive ions moving towards cathode [45]. Since an 

electron could ionize to form an electron-ion pair due to ionization collision, the number of 

electrons are equal to the number of ions. 

𝐼+ ∝ 𝑒𝑛0𝑣+𝑒𝛼𝑥                                  (1-5) 

where 𝑣+ is the drift velocity of ions. The current generated by positive ions is proportional to the 

drift velocity of ions and number of ions. Usually 𝑣+ ≪ 𝑣𝑑, at atmospheric air with electric field 

~ 30 kV/cm, 𝑣+ = 105 m/s while 𝑣𝑑 = 107 m/s [1].  

If we consider Townsend primary ionization coefficient (α), ionization coefficient by positive 

ions (β) and generalized secondary ionization coefficient (γ) [49].  

𝑖𝑒 =
𝑖0(𝛼−𝛽)+(𝛼𝛾+𝛽)𝑖

(1+𝛾)(𝛼−𝛽)
𝑒(𝛼−𝛽)𝑥 −

𝛽

𝛼−𝛽
𝑖        (1-6) 

where 𝑖𝑒 is electron current, 𝑖 is the total current (i.e. summation of electron and ions currents). 
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Fig. 1-5. An electron avalanche at two consecutive time, external electric field E0 and electron drift direction with 

drift velocity Vd [1]. 

Ionization coefficient by positive ions is negligible and at the anode where 𝑥 = 𝑑 the electron 

current equals total current so equation (1-6) can be simplified as [1]: 

𝑖 = 𝑖0𝑒𝛼𝑑 1

1−𝛾(𝑒𝛼𝑑−1)
                                (1-7) 

 𝑖0 and 𝑑 are electron current and interelectrode gap distance, respectively. The discharge 

current derived from equation (1-7) indicates it determined by the number of electrons as well as 

the γ coefficient. 

In electronegative gases (e.g. air), electrons can be attached by molecules form negative ions. 

The total current is then can be described as: 

 

𝑖 =
𝑒𝑣𝑑

𝑑
𝑒(𝛼−𝑎)𝑣𝑒𝑡                                                   (1-8) 

where 𝑑 is the interelectrode distance, 𝑎 is the attachment coefficient. 𝛼 is steeply depend on 

electric field as shown in Fig. 1-6. It is a function of pressure and electric field (equation (1-9) [1]. 

where A and B are constant depending on gas properties, 𝑝 and 𝐸 are pressure and electric field, 

respectively). 
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𝛼 = 𝐴𝑝𝑒−
𝐵𝑝

𝐸                   (1-9) 

 

Fig. 1-6. Ionization coefficient for a wide range of gases (a) molecules and (b) inertial gases [1]. 

Breakdown ignition potential (Vt) under uniform electric field can be calculated with 

combination of equation (1-7) and (1-9) [1]: 

𝑉𝑡 =
𝐵𝑝𝑑

𝐶+ln (𝑝𝑑)
                   (1-10) 

𝐶 = ln (
𝐴

ln (
1
𝛾) + 1

) 

The experimental curves Vt (namely Paschen curves) are shown in Fig. 1-7. As one can see 

from the figure, it exists the minimal breakdown voltage at certain 𝑝𝑑. 
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Fig. 1-7. Breakdown potentials on various gases over a wide range of pd values [1]. 

Breakdown in Townsend theory is well studied, however, for streamer discharges at 

atmospheric pressure, especially when a single-electrode and a highly non-uniform electric field 

are involved, the breakdown could be quite different compared with convention uniform field in 

Townsend or streamer theory. Chapter 4 concentrates on breakdown in a highly non-uniform 

electric field produced by a single-needle electrode.   

Breakdown is the process which can transform a non-conducting medium into a conductive 

one by applying a sufficient strong field [1]. From electrical perspective of breakdown, a sudden 

voltage drop between two electrodes may be observed with a dramatic increase of current.  Typical 

DC voltage-current characteristics under constant electric field between two parallel metal plates 

is shown in Fig.1-8 [50].  
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Fig. 1-8. Voltage-current characteristics of a typical discharge between two parallel plates [50]. 

As one can see in Fig.1-8 from range A to B, when applied voltage is not high, the positive 

and negative charges caused by cosmic ray will be pulled by the electric field towards their 

opposite-sign electrodes, producing a current as low as 10-15~10-9, which can only be detective by 

a sensitive instrument. With increasing the applied voltage (around several tens of volts), all 

charges generated by the cosmic ray are pulled away to electrodes hence the current ceased to 

grow (Fig.1-8 point B to C), limited by the rate of ionization. If the voltage is raised further, the 

current suddenly increases abruptly with appreciable light emissions. This is the manifest of 

breakdown (Fig.1-8 Point C to E) with the voltage exceeding a certain voltage. The Townsend 

regime is usually called ‘dark discharge’ because ionization is so small that the gas emits no 

appreciable light. At such condition, if the pressure is relatively low (e.g. at 1 Torr) and we increase 

the discharge current by decreasing the resistance of the circuit, the voltage between the two 

electrodes will further decrease into which called ‘glow discharge’. If the discharge circuit allows 

more current flow, the voltage will further decrease as the current increases, which leads to arc 

discharge.  
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However, at high pressure (e.g. at atmospheric pressure), if a sufficient high voltage is applied 

with current not suppressed by external resistor, a spark discharge is developed with a plasma 

channel rapidly bridge two electrodes. Finally, if a strongly non-uniform electric field is formed 

between two electrodes by high voltage, a corona could be formed with a radiant in the region of 

high electric field while totally dark in the low field region. 

Breakdown at low pressure is obvious which is usually characterized by a sharp decrease of 

voltage with exponential growth of current and accompanied with appreciable light emission. At 

high pressure, however, it is slightly complicated. An air corona discharge has no obvious voltage 

drop but it’s a breakdown with current rising substantially and associated with a visible light.  

A discharge transitioning from non-self-sustaining to self-sustaining can be thought of as a 

breakdown. Fig. 1-8 from point A to C is ‘non-self-sustaining’ discharge since the current mainly 

determined by charges generated due to an outside source (such as cosmic ray). The transition 

from ‘non-self-sustaining’ discharge to ‘self-sustaining’ discharge is determined by equation (1-

7): 

When 𝛾(𝑒𝛼𝑑 − 1)=1, the transition occurs in which the discharge ensures reproduction of 

electrons removed by the field without the help of an external source. From ‘non-self-sustaining’ 

discharge to ‘self-sustaining’ is the process of breakdown. The inception (onset) of breakdown is 

the early stage of such transition. 

In this research, a single-needle electrode is employed to study the inception and breakdown 

in air without gas flow (i.e. corona discharge) and with helium flow (plasma jets) driven by pulsed 

power supply via high speed imaging. Several interesting characteristics of the plasma jets (i.e. 

charge polarity and repeatability of ionization fronts and secondary discharge at falling edge of a 

voltage pulse) are investigated using high speed imaging as well as electrical measurements. 
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Operation parameters (i.e. voltage amplitude, repetition rate, pulse width and gas flow rate) of 

plasma jets are examined to understand their effect on development of ionization fronts. 

Importantly, chemical reactions inside plasma jets are studied via optical emission spectroscopy 

and laser-induced fluorescence. 

The following chapters are organized as the following:  

Chapter 2 illustrates the chemical reactions in plasma jets, mainly during the development 

phase. Spatiotemporal optical emission spectroscopy is employed to understand how reactive 

species in the plume evolves with time and space. Long (i.e. 164 ns pulse width) and short (i.e. 5 

ns pulse width) pulses are used to drive the single-needle electrode which produces two different 

emissions behaviors. The study centers on the effect of short pulse on generation of excited species. 

Further study of a single-electrode plasma jet  interacting with a water electrode are carried out. 

By introducing a water electrode, the evolution of excited species is examined compared without 

water electrode. Furthermore, excited OH(A-X) radicals are studied when a pulsed plasma jet 

interacting with the water electrode. It focuses on investigation of pulse width on effect of OH(A-

X) temporal distribution. 

Chapter 2 starts with a general observation of a single-needle electrode discharge with and 

without He flow. The interaction between corona discharges and plasma jets leads to study of 

corona discharge in air which further extended to plasma jet. Both discharges are focused on pulse 

parameters that affect their breakdown probabilities. Such study leads to investigation of inception 

of corona discharges and plasma jets which are the early phase of breakdown. Chapter 2 mainly 

concentrates on breakdown of corona discharges and plasma jets.    

In chapter 3, dynamics of a plasma jet (i.e. ionization fronts, repeatability and secondary 

discharge) driven by pulsed voltages are carefully examined. Subsequently, varying of operation 
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parameters (e.g. pulse parameters, gas flow etc.) on development of a plasma jet is studied. Chapter 

3 focuses on development of a plasma jet, i.e. the discharge process after breakdown. 

Chapter 4 starts with a general observation of a single-needle electrode discharge with and 

without He flow. The interaction between corona discharges and plasma jets leads to study of 

corona discharge in air which further extended to plasma jet. Both discharges are focused on pulse 

parameters that affect their breakdown probabilities. Such study leads to investigation of inception 

of corona discharges and plasma jets which are the early phase of breakdown. Chapter 4 mainly 

concentrates on breakdown of corona discharges and plasma jets. 

Conclusions are draw in chapter 5 with illustration of main findings in this research. In the 

meantime, topics on future research are discussed. 

 

1-4. EXPERIMENTAL METHODS  

Terms and notations used in this manuscript are illustrated here. APPJ and APNPJ are short 

for Atmospheric Pressure Plasma jet and Atmospheric Pressure Nanosecond Plasma Jet. 

Throughout this research, pulsed power supply (mostly nanosecond pulses) is employed  in the 

range of nanosecond to millisecond. Regardless of the pulse width, such pulsed plasma jet is called 

‘APNPJ’ for simplicity. Electrode is a stainless steel single hollow needle electrode with various 

inner and outer diameters with or without substrates. ‘Single-needle electrode’ will be used to 

specifically infer such electrode unless indicated otherwise. Ultra-high purity helium is the only 

gas used for flowing through the hollow of the single-needle electrode and will be abbreviated as 

He. Diagnostic methods such as electrical measurements, high speed imaging, optical emission 

spectroscopy and laser-induced fluorescence are employed. Voltage-current waveforms 

specifically present the voltage and current waveforms measured by voltage probes and current 
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monitors. OES and SPOES are short for optical emission spectroscopy and spatiotemporal optical 

emission spectroscopy, respectively. Laser-induced fluorescence is abbreviated as LIF. 

The reason for selecting such jet device and instruments (e.g. single-needle electrode, pulsed 

power supply etc.) is explained here. Even though these choices are limited by the sources of the 

lab I worked with, it is designed with cautions. Compared with plasmas generated  with kilohertz 

AC and RF sources, Pulsed plasmas attracted a lot of attention due to its relative higher efficiency 

[51, 52] in producing some reactive species as well as their flexible tuning parameters (i.e. pulse 

amplitude, repetition rate, rise time, and pulse width). As one would notice, observation of 

inception of the corona discharges and APNPJs (chapter 4-5) are attributed to the flexible tuning 

parameters of pulsed voltages. Jet device is an important aspect as mentioned before in chapter 1-

2. There are many advantages regarding the single-needle electrode, the most important one, 

however, is that discharges generated by such electrode are always initiated at its needle tip where 

the strongest electric field resides. Such advantage strongly correlates with our research (i.e. study 

of the breakdown and development of plasma jets). It is important to notice that the secondary 

discharge of a voltage pulse is relatively short in length compared with the primary one hence for 

most DBD-jets that have their electrodes covered by dielectric would hide such discharge from 

observations. This is the reason that secondary discharge for APNPJ is investigated much later 

compared with the study of primary discharge [33].  

Breakdown process can be observed via three main methods [45]: Cloud chamber which makes 

the condensation of nuclei of ions observable, could be represented by the profile of electron 

avalanche. The electrical method could monitor the electrical voltage and current generated by the 

drifting electrons and ions of avalanche. Optical method such as high speed imaging is also 
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applicable because the drifting electrons not only ionize the gas but also excite the gas which gave 

a resemble image produce by the cloud chamber method.  

Optical diagnostics usually involves imaging and spectroscopy. The ignition and development 

of the discharge processes are on the order of 104~106 m/s [13, 14, 53, 54]in atmospheric pressure 

plasmas, thus high speed imaging (nanosecond or sub-nanosecond) is required to have sufficient 

temporal resolution. High speed imaging can be achieved by ICCD (intensified charge-coupled 

device) camera and provides visualized images on evolution of the discharge processes. 

Experimental setups for electrical measurements and high speed imaging is shown in Fig. 2-1. 

Measurements details are varied depending on each experimental need. 

Two main types of spectroscopy (absorption and emission spectroscopy) are mostly used in 

many applications. We focus on only emission spectroscopy in our studies. Emission spectroscopy 

is a technique that uses some means to excite the targeted sample. Lights then emit from atoms or 

molecules when they relax from the electronically excited states in which the emission spectrum 

can be associated with a unique atom or molecule. 

The techniques pertinent to emission spectroscopic are mainly optical emission spectroscopy 

(OES) and laser-based techniques such as laser-induced fluorescence (LIF). Various perspectives 

include but not limited to spatiotemporal evolution of excited species, electron density by Stark 

broadening and line-ratio method, and electric field by Stark polarization spectroscopy were 

investigated via emission spectroscopy. Excited species including excited O, OH, N2, N2
+, and He 

were identified in a pulsed helium plasma jet via optical emission spectroscopy [55]. The 

propagation dynamics of these identified species indicate that the N2 emission in the plume travels 

fast along the entire plume; the N2
+ presents a bright streamer head with weak tail and travel shorter 
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than N2. The O and OH, however, mostly localized near the high positive voltage electrode without 

any propagation behavior. Although helium is the carrier gas, its propagation distance is short with 

a low speed [56, 57]. Dependence of pulsed voltages on the optical emission intensity of the plasma 

jet were studied. Spatiotemporally-resolved optical emission spectroscopy revealed that the 

species including excited O, N2, N2
+, and He propagated faster with increasing the voltage 

amplitude [58]. Not only the dynamic properties can be observed by OES, but also parameters like 

gas temperature, electron density, and electric field can be examined via OES related technique. 

Electric fields were estimated from direct electron impact excitation from N2(C) and N2(B) bands 

using optical emission spectroscopy and the maximum local electric field is estimated to be 95 

kV/cm at the 1.2 cm from jet nozzle [59]. The electric field distribution was measured in the 

cathode region of a helium dielectric barrier discharge using emission spectroscopy coupled with 

the polarization-dependent Stark splitting and shifting of He line at 492.19 nm [60]. Measurement 

of OH radicals (ground and excited states) in atmospheric pressure plasma jets (APPJs) are 

important due to the increasing interests on APPJs assisted plasma medicine [4, 61, 62]. OH radical 

is the most reactive oxidizing species and play an important role in biomedical applications. Many 

investigations on OH measurement by laser-induced fluorescence have been reported. It is found 

that the maximum OH concentration was measured to be ~ 5×1014 cm-3 at 2 mm away from the 

nozzle in an argon RF plasma jet [63]. The OH radicals are measured in a nanosecond pulsed 

filamentary discharge with pin-pin electrodes in flowing with He-H2O mixture [64]. It is found 

that the maximum OH density is at the center of the filament discharge when low voltage applied 

(1.5 kV), while in high voltage (5 kV) the highest OH density is observed on the edge of the 

discharge. Study of OH radicals in both gas and liquid phases using LIF and a chemical probe 

method in a pulsed surface streamer discharge was also reported. The gas phase OH radicals have 
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been examined in respect to the temporal distributions. After the OH radicals dissolved from the 

gas phase into the liquid, A chemical probe that introduced terephthalic acid to trap OH radicals 

and the absolute concentration of OH radicals was measured to be of the order of 10-9 M-1s-1 from 

the fluorescence of 2-hydroxyterephthalic acid in presented conditions [65]. 

Spectroscopy is a tool used for studying the structures of atoms and molecules by observing a 

set of wavelengths missing from the incident light source (absorption) or emitted from substances 

(emission). The missing or emitted spectrum from the atoms or molecules are their fingerprint 

since they depend on the energies of the excited and ground states of electrons in atoms or 

molecules. The development of spectroscopic techniques riches the detectable parameters 

including gas temperature, electron density, electric field and density of transient species when 

flames or plasmas are studied. Fig. 2-1 presents schematic of optical emission spectroscopy.  

The applied voltage and total current were measured at the load of the transmission line using 

a high voltage probe (Tektronix 6015A) and a current monitor (Pearson 6585), respectively. For 

spatiotemporally resolved imaging, an ICCD (Princeton Instrument PI-MAX 4) that was coupled 

with a UV–visible, fused silica bi-convex lens (focal length = 75 mm) was synchronized with the 

pulsed voltage to collect the plasma emission. At a given delay time, the plasma image was 

obtained from integration of many exposures (depending on the signal) with each exposure time 

of 5 ns and an ICCD gain of 100. 

For optical emission spectroscopy, a Czerny-Turner spectragraph (Acton SP-2758) coupled 

with an ICCD camera is employed to detect emission spectra. The grating is 1800 g/mm which is 

tunable and optimized on visible wavelength. To focus the plasma emissions, two UV enhanced 

metallic aluminum mirrors (a plano and a concave mirror) are used to direct light into the 

spectragraph. The concave mirror has a focal length of 75 mm. Magnification is set to 1:1 ratio 
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between the plasma jet and its image on ICCD camera. A spectral resolution of 0.02 nm is achieved 

when the slit width is set to 20 μm. For all the integrated emission spectra from plasma jets, 

emissions ranging from 250 nm to 850 nm are recorded. To avoid the second order dispersions of 

emissions below 450 nm, a longpass filter (Thorlabs FEL0450) is used to filter out higher order 

interferences. For spatiotemporally resolved emission spectroscopy, the ICCD camera is 

synchronized with the voltage pulses to control triggering time.  
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CHAPTER 2 

DIAGNOSTICS OF REACTIVE SPECIES IN 

ATMOSPHERIC PRESSURE NANOSECOND 

PLASMA JETS 

2-1. ABSTRACT 

In the last decade, non-thermal atmospheric pressure plasma jets draw a lot of attentions due 

to its wide applications (e.g. surface modification, plasma medicine). The plasma jets have shown 

promising potential in various applications of plasma medicine (e.g. wound healing, surface 

decontamination and cancer cell treatment [66-68]). Reactive oxygen and nitrogen species are of 

peculiar interest in fundamental research of plasma jets due to their induced biological effect in 

treatments [6, 69, 70]. This chapter studies the effect of extreme short pulse (5-ns pulse width), 

water electrode and pulse width on production of excited reactive species (e.g. N2, N2
+, He, O, and 

OH) in APNPJs driven by 6 – 8 kV, 5 – 5000 ns pulses at 0.5 – 1 kHz with helium flow. Optical 

emission spectroscopy and electrical measurements are employed to study the relationship 

between energy deposition and production of reactive species.  

Emission spectrum of N2(C-B) second positive system and OH(A-X) revealed the average gas 

temperature of APNPJs remained near room temperature (~ 300 K). Further study indicates that 

comparable or more reactive species (including N2, N2
+, He, O, and OH) are detected during the 

first 100 ns of the voltage pulse when compare the short pulse (5- ns) with the long pulse (164-ns). 

When the APNPJ impinged onto the water surface, excited species including N2, N2
+, OH, and O  
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present stronger emissions, meanwhile, enhanced ionization near the single-electrode nozzle and 

earlier streamer formation are observed compared with APNPJ impinged into a container without 

water. More importantly, study of excited OH(A-X) reveals that the maximal energy efficiency of 

OH(A-X) emission is obtained with pulse widths of 600 – 800 ns when pulse widths ranged from 

200 ns to 5000 ns. Temporally-resolved emission spectroscopy shows that more than 40% of 

OH(A-X) emission is produced during the first 200 ns of the voltage pulse regardless of the pulse 

width.   

2-2. STUDY OF SPATIOTEMPORALLY-RESOLVED OPTICAL 

EMISSIONS BETWEEN A LONG (164 NS) AND SHORT (5 NS) 

NANOSECOND PLASMA JETS 

Growing interests in plasma jets due to its potential biomedical applications attract a lot of 

attention regarding study of reactive species in plasma plume. However, effect of pulse rise time 

on reactive species remained unclear. Recent studies shown that short pulse rise time could 

produce more excited species due to reinforced ionization. [14]. It is found that a significant 

increase in argon emissions was detected with decreasing of pulse rise time from 4 µs to 140 ns 

[15]. Generally, results suggested that shorter pulse rise time could result in longer and faster 

plasma plumes when powered with pulse rise time of 50 ns or longer [16]. However, it is still 

unclear for short pulse rise time (≤50 ns) and pulse duration (≤164 ns) on effect of APNPJs. In this 

study, a single-needle electrode driven by nanosecond high voltage pulses: 5 ns or 164 ns pulses 

at 8 kV is examined with flowing of He gas. Driven by two different pulsed power supplies, allow 

the plasma to be investigated in terms of the high voltage pulse characteristics (i.e., voltage pulse 

duration and rise time). Subsequently, effects of such pulse parameters on composition and 

distribution of reactive species are evaluated.  
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Fig. 2-1 showed the schematic for optical emission spectroscopy. A spectragraph (Acton SP-

2758) with grating at 1800G/mm coupled with an ICCD camera was employed to detect emission 

spectra. Two UV enhanced mirrors (i.e. one plano and one concave mirrors) are used to focus the 

plume onto the slit of spectragraph with magnification ratio of 1:1. The slit width is 20 μm with a 

spectral resolution about 0.02 nm. Wavelength range from 200 to 850 nm were recorded. To avoid 

second order dispersions from emissions below 450 nm, a long pass filter is applied to the slit to 

eliminate this interference. Spectral emissions are obtained with ICCD exposure of 100 ns with 

combination of 4000 frames (Fig. 2-2).  

 

Fig. 2-1. (a) Schematic of optical emission spectroscopy for nanosecond pulsed plasma jets and (b) a plasma plume 

with short pulse (5 ns pulse width) [71]. 
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Voltage and current waveforms when powered by 5 ns and 164 ns pulses are shown in Fig. 2-

2. The primary maximum voltage pulse for 5 ns pulses is about 8 kV with a pulse rise time of 5.1 

ns. For the longer pulse (164 ns pulses), it has a pulse rise time of 50 ns with amplitude of 8 kV. 

Discharge currents showed two peaks for both pulses with each current consisting of replacement 

and conduction components.  

 

Fig. 2-2. Voltage and current waveforms of pulsed plasma jet at 8 kV with pulse width of (a) 5 ns and (b) 164 ns at 

500 Hz [71]. 

Fig. 2-3 presents the integrated emission intensity of reactive species. Emissions along the 

axial direction (shown in Fig. 2-1 (b)) are captured using optical emission spectroscopy and 

followed by integration along the axial direction to generate total emission intensities of all 
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identified species. As one can see, a number of excited species are identified including OH (A2Σ+), 

N2 (C3Πu), N2
+ (B2Σu

+), He (33D), and O (3p5P). Dominant emissions are N2 C
3Πu-B

3Πg (0-0), N2
+ 

B2Σu
+-X2Σg

+ (0-0) and He 33D-23P. Table I lists the integrated emission intensity of identified 

species. It is found that for the shorter pulse generated less excited N2, He, OH, and O. However, 

emission of N2+ increased by a factor of 1.3 with shorter pulse (i.e. 5 ns).  

 

Fig. 2-3. Total emission spectra of APNPJs integrated along the axial direction [71]. 

TABLE 2-1  

Maximum intensity of identified species from Fig. 2-3 for both 5 ns and 164 ns pulses [71] 

 

Spatial distribution of normalized emissions from reactive species are shown in Fig. 2-4 (a). It 

is found that the strongest emissions of all transitions re-observed within 4 mm from the nozzle 

surface for both plasma jets. Even more, it is within the first 2 mm for the 5 ns plasma jet. Slightly 

earlier rising of emissions from N2, N2
+, and OH are detected for the 5 ns pulsed plasma compared 

with the long pulse. OH emissions for both plasma jets is comparable. It is found that for the 164 
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ns pulsed plasma, the N2 emission extended further distance, up to 9 mm, corresponding to the 

plasma plume length. 

Time-dependent emission intensities for both plasma jets are examined. Fig. 2-4 (b) showed 

the temporally-resolved optical emission spectra along the axial direction. Emissions were taken 

at different delay times (td) with an integration time of 100 ns (shown in Fig. 2-2 dot green lines). 

It is found that emissions from O and N2
+ were stronger for the 5 ns pulsed plasma jet compared 

with the 164 ns one during the first 100 ns. For N2 emissions, the 5 ns pulsed plasma had slightly 

stronger or comparable emission for a distance of 4 mm from the nozzle and decreased rapidly for 

longer distance. Moreover, peak emissions of all excited species are higher for 5 ns plasma jet 

except He. At td = 160 ns, the 164 ns pulse started to fall with a secondary emission detected again 

near the needle nozzle. The emission of N2
+ has a restrike during the pulse falling phase while 

other emissions including N2, He, O, and OH increased by a factor of 3 or higher. After td = 160 

ns, emissions of all excited species gradually decayed until td = 400 ns. 

 

(a) (b) 



                                                                                                                                                                                    

29 
 

Fig. 2-4. (a) Normalized emissions of excited species N2, He, O, OH, and N2
+ for the 5 ns pulse (red dot) and 164 ns 

pulse (blue solid) along the axial direction. Jet nozzle is at z = 0. (b) Spatiotemporal distributions of identified 

species at two different delay time indicated in Fig. 2-2 for 5 ns and 164 ns pulsed plasma jets [71]. 

As introduced in chapter 1 section 2, the rotational and vibrational temperatures along the axis 

of the plasma jets are analyzed with N2 second positive system with a simulation in Specair using 

a least-square fitting procedure (Fig. 2-5).  The N2 (0-0) emission band revealed a rotational 

temperature around 300 K ± 50 K for both 5 ns and 164 ns plasma jets. Fitting several of the 

axially measured rovibronic transitions of N2 (C-B) indicated that the vibrational temperature was 

approximately 3200 K ± 300 K for the 5 ns pulse plasma and approximately 3100 K ± 250 K for 

the 164 ns pulse plasma. Temperature measurements indicate that these pulsed plasma jets are 

under highly non-equilibrium conditions, hence it may favor the plasma chemistry. 
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Fig. 2-5. Experimental and simulation emission spectra of N2 second positive system N2 (C3Πu − B3Πg) (a) at (0-0) 

band for rotational temperature and (b) at Δν  = 2 transitions for vibrational temperature [71]. 

In summary, effects of pulse rise time and pulse width are investigated regarding optical 

emissions on a 5 ns and a 164 ns pulsed plasma jets. A He plasma jet is produced when powered 

by 5 ns or 164 ns 8 kV pulses at 500 Hz on a single-needle electrode. It is found that for 5 ns 

plasma, more excited N2
+ (by a factor of 1.3) is generated compared with 164 ns plasma. However, 

less excited N2, He, O and OH productions in shorter pulse. Maximal emissions of all the excited 

species localized near the needle nozzle which imply that direct electron impact reactions played 

an import role in generating these reactive species. For the first 100 ns under spatially-resolve 

emissions, it is found that comparable or higher emissions are observed for the 5 ns plasma. 

However, longer pulse (164 ns) could generate more total excited species indicating that pulse 

width is critical for driven plasma and producing higher total amount of reactive species. 

Measurements of rotational and vibrational emissions of N2 (C-B) showed that both plasma jets 

had comparable rotational and vibrational temperatures of 300 K and 3000 K, respectively. 

 

2-3. COMPARISON STUDY OF SPATIOTEMPORALLY RESOLVED 

EMISSIONS IN ATMOSPHERIC PRESSURE NANOSECOND PLASMA 

JETS WITH AND WITHOUT WATER 

A plasma jet could impinge onto a substrate surface when applied to biomedical applications. 

The substrate, on one hand, served as a ground; on the other hand, it usually covered by a thin 

layer of water or in liquid solution. Subsequently, study of plasma jet interacting with water is of 

great importance on application-wise. Chemical pathways play a key role for plasma induced 
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biology effect [4, 6, 72]. In this study, a single-needle electrode driven by pulsed power is 

employed to interacting with water. The water is contained in a 75×25×25 mm3 container with 

bottom is made of copper plate and walls of fused silica glass. Distance from needle nozzle to 

water surface is kept fixed at 10 mm (as shown in Fig. 2-6). The stainless steel needle has an outer 

nozzle diameter of 0.254 mm with helium flow of 200 SCCM through the hollow needle. 

Schematic of electrical measurements as well as optical emission spectroscopy can be found on 

chapter 1 section 4. This study presents studies of electrical and optical properties of APPJs with 

and without water. The water container (grounded) is removed in the without water case. 

 

Fig. 2-6. (a) Experimental setup of optical emission spectroscopy for APNPJ and (b) a helium jet impinged onto the 

water surface, the gap from nozzle to water surface is 10 mm [73]. 

Fig. 2-7 presents voltage and current waveforms of plasma jets with and without water. The 

voltage pulse has a full-width half-maximum (FWHM) of 164 ns with a rise time of 49 ns at 

amplitude of 7 kV at 1 kHz. For both cases, the applied voltage stays the same while their jet 

currents which obtained from the current monitor are vastly different. Energy per pulse was 

calculated by integrating the product of the voltage and discharge current pulses over a sufficient 

period of time, e.g., 350 ns. They are 115 and 50 μJ for the plasma with and without the water 

(a) 

(b) 
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electrode, respectively. The peak jet currents are 45 mA and 15 mA for with and without water, 

respectively. The jet current in the with water case  had an earlier onset. Integration of the positive 

pulse of the jet current over time gives the total charges per pulse deposited from power to plasma. 

It is 5 times more in the presence of water electrode: 2.39 nC vs 0.46 nC for the plasmas with and 

without water.  Additionally, a negative jet current pulse with a lower magnitude, ~ 7 mA, was 

observed in absence of water during the falling phase of the voltage pulse. 

 

Fig. 2-7. Voltage (black solid line) and jet currents of APNPJs interacting with (red solid line) and without water 

(blue dot line). 

Integrated optical emissions from identified species are shown in Fig. 2-8. It is found that with 

presence of water, emissions from excited OH, N2, N2
+, He, and O have higher intensities 

compared with corresponding species without water. Table 2.2 shows their maximum intensities 

for both cases. Excited OH, N2, and O increase by factors of 2.7, 1.2, and 1.6, respectively in the 

case of with water. Comparable intensities of N2
+, Hα, and He for both cases are found. 
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Fig. 2-8. Integrated optical emission spectroscopy along the axial direction for APNPJs (a) with and (b) without 

water [73]. 

Table 2.2 maximum emission intensities of reactive species from Fig. 2-8 [73]. 

 

Spatiotemporally distribution of reactive species OH, N2, N2
+, He, and O are investigated (as 

shown in Fig. 2-9). If one examines the emissions without water, it is found that strong emissions 

are at time 0 and 100 ns which corresponds to the rising and falling phases of a voltage pulse. On 

the other hand, emissions of all species are localized within 2 mm from needle nozzle except for 

N2 (337 nm) at time 0. It is revealed that direct electron impact reactions may be attributed to 

generation of these species since strong electric field presents near the needle electric field. 

Considering emissions from presence of water electrode, it is found that temporal distribution of 

emissions not only during the rising and falling phases of a voltage pulse but also including the 

Transition OH(A2Σ-X2Π) N2(C
3Πu-B

3Πg) N2
+(B2Σu-X

2Σg) Hα(
3D-2P) He(3S1-

3P) O(5P3-
5S2)

Wavelength (nm) 309.0 337.1 391.4 656.3 706.5 777.3

Plasma without water 1.67 100.01 8.13 2.02 2.33 1.41

Plasma with water 6.12 121.12 8.54 2.03 2.16 2.28

Emission Intensity (a.u.)

(a) (b) 
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pulse plateau and after glow. Additionally, spatial distribution shows that emission intensities not 

only localized near the needle electrode but also near the water surface.  
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Fig. 2-9. Comparison of identified species spatiotemporally-wise for APNPJs with and without interacting with 

water. (a) N2, (c)N2
+, (e)He, (g)OH and (i) O are identified species without water. (b) N2, (d) N2

+, (f) He, (h)OH and 

(j) O are corresponding species with water [73]. 

In summary, study of reactive species using electrical and optical methods are carried out with 

and without water electrode. It is found that higher emissions of OH, N2,and O are greatly enhanced 

by introducing water electrode. The presence of water electrode strengthens the electric field of 

the discharge gap which favors chemical reactions in the plume. Higher electric field resulted in 

earlier onset of ‘guided streamer’ as well as higher jet current. Total integrated optical emissions 

revealed that comparable or higher intensities of identified species with water electrode.  

 

2-4. EVALUATION OF PULSE WIDTH ON EFFECT OF OH (A-X) IN 

ATMOSPHERIC PRESSURE NANOSECOND PLASMA JETS 

IMPINGED ONTO WATER 

Plasma medicine is a growing field which attracted a lot of attentions recently [4, 5, 74]. It 

encourages studies of ‘cold plasma jets’, especially, it is considered with interacting with water 

since the biological targets (cells or tissues) are either in aqueous solutions or covered by a thin 

layer of water [8, 69, 70]. Reactive oxygen and nitrogen species (RONS) produced in the plasma 

jets penetrate through the wet surface, which induce further reactions. Consequently, it affects cells 

and tissues in liquids [6, 70, 75]. Considering RONS generated in plasma jets, OH is of peculiar 

interest in many biomedical applications due to its high oxidative effect [7, 9, 76] and is considered 

to play an important role in cell treatment [6, 8]. Studies on effect of pulse width regarding OH 

generation in both gas- and liquid- phase show that the production of reactive plasma species on 

pulse width is not consistent. Recently, research show that liquid phase OHaq was found to decrease 
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with increasing of pulse width from 2 µs to 10 µs [77]. Systematic studies of pulse width effects 

on APNPJs, especially, with short pulse widths (e.g. <500 ns) are rare. This study focuses on 

OH(A-X) emissions with respect to pulse width in the range of 200 ns - 5000 ns via spatiotemporal 

optical emission spectroscopy. The dependence of different pulse phases regarding to OH(A-X) 

emission intensities are investigated in details. 

Experimental setup is the same as shown in Fig. 2-6 except the needle outer diameter is 0.508 

mm with He flow rate of 70 SCCM and powered by 6 kV, 200 ns pulses at 1 kHz. The water 

electrode is grounded with the transmission line ground from the power supply. 

Fig. 2-10 shows the voltage and jet currents from varying pulse widths. The voltage waveforms 

indicate that they all have the same shape of rising- and falling phases while the plateau is longer 

for longer pulse width. Jet currents for pulse widths from 200 ns to 1000 ns show that they almost 

stay the same except longer pulse width extended longer during the plateau of voltage pulse. 

Additionally, Jet currents during the falling phases are different depending on the pulse widths.              

The positive peaks of the jet currents for various pulse widths are the same at 52 mA which are 10 

times higher than their correspondent negative peaks.  
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Fig. 2-10. (a) Voltage waveforms with varying pulse width from 200 ns to 5000 ns and (b) jet currents from pulse 

width of 200 ns to 1000 ns with increment of 200 ns [78]. 

Fig. 2-11 showed the time-averaged emission spectra of OH (A-X) of APNPJs compared with 

the simulated (Specair®) emission lines at a rotational and vibrational temperature of 310±30 K 

and 3500±30 K, respectively. The well-overlapped emission lines indicate that the variation of gas 

temperature over the investigated range from 200 ns to 5000 ns is negligible.  

 

Fig. 2-11. Experimental (solid lines) and simulated (dot line) emission spectra of the OH(A-X) band for pulse widths 

ranging from 200 ns to 5000 ns [78]. 

Temporally-wised OH(A-X) emissions are studied regarding pulse width. As shown in Fig. 2-

12 (a), a voltage pulse can be divided into four phases: The primary phase can be defined as the 

first 200 ns from the onset of the voltage pulse, τprim. The plateau phase (τplat) covers the additional 

plateau voltage after the primary phase. In the case of tpw  = 200 ns, τplat = 0. For longer pulses, the 

plateau phase becomes τplat = tpw - 200 ns (e.g. τplat = 400 ns for tpw = 600 ns). The falling phase 

(τfall) is kept constant with duration of 200 ns which  follows right after the plateau phase. The 

post-decay (τpost) has a duration of 2 µs, which starts right after the falling phase. 
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Fig. 2-12 (b) shows OH emissions during different temporal phases for various pulse widths. 

Total OH(A-X) emission intensities show that it stays about the same during the primary phase for 

pulse width ranging from 200 ns to 5000 ns. Total emissions increased by a factor of 2.3 as pulse 

width increases from 400 ns to 5000 ns. During the falling phases of the voltage pulses, the 

emissions of OH first increase from 200 ns to 800 ns and then, followed by an exponential 

decrease. OH emissions strictly decay exponentially during the post-decay phase from 200 ns to 

5000 ns. If we combine the total intensities of each phase, it is shown that the total OH(A-X) 

increase from pulse width of 200 ns to 600 ns and then decay afterwards. It  resembles the shape 

shown in Fig. 3-6. Both are from the same experiment except that Fig. 3-6 presents the total 

emission of ionization fronts from high speed imaging, whereas this figure specifically studied the 

OH(A-X) emissions from optical emission spectroscopy. 

 

Fig. 2-12. (a) Segmentation of a 600 ns pulse into four different phases: Primary-phase, Plateau-phase, Fall-phase 

and Post-decay and (b) Total OH(A-X) emission intensities at each phases with respect to the pulse width ranging 

from 200 ns to 5000 ns [78].  

In summary, emissions of OH(A-X) are studied regarding various pulse widths from 200 ns to 

5000 ns when driven by 6 kV pulses at 1 kHz with He flow of 70 SCCM. It is shown that the 

(a) (b) 
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maximal emission of OH(A-X) occurred at pulse widths of 600 ns. Spatiotemporally resolved 

optical emission spectroscopy shows that majority of OH(A-X) emissions were produced during 

the primary phase (within the first 200 ns of a voltage pulse). Longer pulse width results in higher 

OH(A-X) emissions during the plateau phase and eventually, it slowly saturated. The falling phase 

allows the OH(A-X) emissions first increase and then decrease after pulse width of 600 ns. The 

falling phase which associated with secondary discharge is slightly complicated in regards to 

generation of OH(A-X) species. 
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CHAPTER 3 

CHARACTERISTICS OF ATMOSPHERIC 

PRESSURE NANOSECOND PLASMA JETS 

3-1. ABSTRACT 

Study of dynamic of plasma plume matters not only to the fundamental understanding of 

formation of the APNPJs, but to the biomedical applications. Tunable parameters (e.g. pulse 

amplitude, repetition rate, and gas flow rate) are vital for biomedical treatments due to their 

influence on energy deposition, chemical kinetics, and repeatability of APNPJs. 

This chapter studies the formation and propagation of ionization fronts in APNPJs under 

variable operation parameters. The ionization front of the plasma plume shortened with increasing 

positive voltage from 0 to 300 V whereas the plume length increased when negative voltage 

increased from 0 to 1000 V when these DC bias applied to a copper electrode is placed right 

beneath an APNPJ which operated at 7 kV, 200 ns at 1 kHz with He flow of 70 SCCM. It implies 

that the ionization front of the plume may contain mostly positive charges. Repeatability of the 

plume is examined regarding pulse amplitude (5 – 10 kV), pulse repetition rate (0.5 – 5 kHz) and 

He flow rate (100 – 900 SCCM). Higher repeatability of plumes is observed with higher amplitude, 

repetition rate, and higher flow rate. Among these tunable parameters, pulse width and He flow 
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rate are the most important parameters on effect of the secondary discharge, i.e. longer pulse width 

or higher He flow rate induces strong secondary discharges. Study of propagation of ionization 

fronts regarding aforementioned parameters shows that high amplitude or He flow rate result in 

faster propagation hence overall longer plume length, while longer pulse width or higher repetition 

rate trigger earlier initiation of ionization front with slower propagation speed which result in 

overall shorter plume length. 

 

3-2. PROPERTIES OF A PLASMA PLUME ATMOSPHERIC PRESSURE 

NANOSECOND PLASMA JETS 

From aforementioned results, it is found that higher amplitude, more avalanches to streamer 

transition would occur for both corona discharge and plasma jets. In the case of plasma jet, such 

transition produces a streamer development along He flow direction which is called ‘guided 

streamer’ [34].  

If we examine the propagation of ‘guided streamer’ carefully (Fig. 1-2), it is found that the 

‘guided streamer’ initiated from the needle nozzle and propagated away from the electrode with a 

speed in the order of 107 m/s, as the ionization front moving forward, a dark channel is left behind. 

The difference between the corona streamer and ‘guided streamer’ is of its repeatability. ‘Guided 

streamer’ is somehow repeatable in space and time while corona discharge is more in a randomized 

order [15]. There are usually two events observed which occurred at the rising and falling edge of 

a voltage pulse if a pulsed voltage is employed [71]. 

The charges at the ionization front being positive or negative is still not confirmed. What 

determined the repeatability of the ‘guided streamer’? What is the mechanism of the secondary 

discharge? How do the operation parameters (i.e. amplitude, pulse width, repetition rate, and flow 
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rate) would affect the development of ‘guided streamer’? In this study, the charge polarity of the 

ionization front is examined, the repeatability of the ‘guided streamer’ as well as the mechanism 

of secondary discharge are investigated. These properties are of great importance for facilitating 

the understanding of ‘guided streamer’. Finally, effect of operation parameters on development of 

‘guided streamer’ has been investigated regarding the speed of ionization and their voltage-current 

characteristics. 

To understand ionization fronts produced by pulsed plasma jet, a DC voltage is applied to a 

7×7 cm2 copper plate which is placed below the needle electrode with a gap distance of 2.5 cm. 

The copper place is perpendicular to the needle axial direction (shown in Fig. 3-1). When a plasma 

plume is generated with 7 kV, 200 ns at 1 kHz with He flow of 70 SCCM, it propagates towards 

the center of the copper plate. Both positive and negative DC voltages with various amplitudes 

were investigated. An ICCD camera is employed to capture the plume variation under the applied 

DC voltage with an exposure time of 100 ms without synchronization with pulsed power supply. 

 

Fig. 3-1. Applying DC polarity (positive or negative voltage) beneath plasma jets, the DC power supply connected 

to a 7×7 cm2 copper plate with interelectrode gap of 2.5 cm. 

Fig. 3-2 shown emission profiles of the plasma jets under various DC voltage, the upper row 

(a) is with positive DC bias from 0 to 330 Volts and the lower row (b) is applied with negative DC 
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bias in the range of 0 to -1000 Volts. It is found that the plume decreased with positive DC bias 

and extinct at voltage of 330 V. However, the plume is extended slowly with applying  negative 

voltage and a second plume is formed under the primary plume when the negative DC voltage 

reached -400 volts. Further increase the DC bias resulted in stronger and stronger secondary plume. 

Eventually, the plasma plume is inhibited at DC bias of -1250 volts. 

 

Fig. 3-2. (a) Apply positive DC voltage and (b) apply negative DC voltage. 

Repeatability is a distinctive properties compared with other streamers which usually behaves 

in a random manner [27, 28]. In atmospheric pressure plasma jets, the plume is repeatable, i.e. the 

propagation of the ionization fronts is repeatable in space and time. However, the repeatability of 

the plume varied depending on the operation parameters. The following experiments investigated 

the effect of operation parameters on plume repeatability at the beginning of a voltage pulse. 

Experimental setup is the same with Fig. 1-7.  

Fig. 3-3 presented the abnormal plume regarding various applied voltage at time 0. Figure (a) 

shows the applied voltage with time delay and (b) plots the counts of abnormal plumes in total 

captured 50 plumes. Abnormal plume is defined regarding the normal plume which are the most 

frequent identical plumes that occurred in 500 total counts. That’s to say, any observed plume at 

the fixed time delay (here we use time 0) is either normal plume or abnormal plume. All images 
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were capture by the ICCD camera with single shot. The baseline condition is 10 kV, 200 ns at 4 

kHz with He flow of 400 SCCM unless indicated otherwise. 

As one can see from Fig. 3-3, images captured at time 0 at various voltage showed that higher 

voltage indicates higher amplitude. Figure (b) showed the number of abnormal plume over total 

50. Results shown that number of abnormal plumes decreased with amplitude except at 9 kV which 

has a slight jump compared with others. It indicates that higher amplitude could result in more 

repeatable plumes. 

 

Fig. 3-3. Abnormal plume counts among total 50 under 200 ns at 4 kHz with He flow 400 SCCM with varying 

amplitude from 5 kV to 10 kV. 

Fig. 3-4 shows the repetition rate on number of abnormal plume. Plume is captured at time 0 

as show in Fig. 3-4 (a) which corresponds to amplitude of 5 kV. Figure (b) presented the number 

of abnormal plume versus repetition rate in the range from 500 Hz to 5000 Hz. It is found that the 

number of abnormal plume decreased linearly from 50 down to 25 with repetition rate. As 

aforementioned, higher repetition rate could have stronger memory effect which provides more 

seed electrons for the next discharge. As long as the voltage is sufficiently high (it is in this case), 

higher repetition rate favored the reproducibility of plumes in space and time. 
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Fig. 3-4. Abnormal plume counts among total 50 under 10 kV, 200 ns with He flow 400 SCCM with varying 

repetition rate from 500 Hz to 5 kHz.  

Effect of He flow rate on abnormal plume was investigated. As shown in Fig. 3-5, the flow 

rate is from 100 SCCM up to 900 SCCM. Results show that the number of abnormal plume 

decreased from 30 counts to 12 counts when flow rate increased from 100 to 400 SCCM. Once the 

flow rate reached 400 SCCM, number of abnormal plume remained almost constant even the flow 

rate kept increasing. 

 

Fig. 3-5. Abnormal plume counts among total 50 under 10 kV, 200 ns at 4 kHz at He flow from 100 to 900 SCCM. 

In short, different results were observed and it is found that they are quite different for three 

different cases of varying flow rate, amplitude, and repetition rate. They are highly variate, 
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however, the importance here is that they showed a trend that the discharge repeatability will 

increase with higher flow rate, repetition rate, and voltage amplitude.  

As shown in Fig. 1-2, a primary (0 - 50 ns) and a secondary (170 - 210 ns) discharge are usually 

detectable when  a pulsed voltage is applied. The primary discharge which is a ‘guided streamer’ 

that initiated near the tip of needle as an ionization front and propagates away from the needle 

electrode. Such propagation is thought to be caused by energetic photons that can effectively 

generate photoelectrons in front of the ionization front (even though such photons are randomized 

while only near the ionization trail could be effectively pulled into the main stream). Once the 

ionization front propagated further away from the needle, the effect of external field generated by 

the needle electrode has little impact on the front which resulted in vanishing of the ionization 

front. If the pulse width is long (e.g. 1000 ns), it is totally dark during the plateau of a voltage pulse 

after the primary discharge disappeared. A secondary discharge is observed once the voltage starts 

to decrease. Its emission is relatively weak which mostly localized near the needle nozzle.  

Study of the secondary discharge showed that longer pulse width, stronger secondary discharge 

from pulse width of 200 ns to 600 ns. Emission intensities slowly decreased from 600 ns to 5000 

ns. As shown in Fig. 3-6, emission intensity in air showed that the maximum peak intensity of the 

secondary discharge is at pulse width of 600 ns. It increased rapidly as the pulse width increases 

from 200 ns to 600 ns which indicates the separation with primary discharge could favor the 

secondary emission. However, the peak emissions started to decrease if two discharge events 

separate too long (here if pulse width > 600 ns). 
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Fig. 3-6. Peak emission intensity from secondary discharge at 7 kV, 200 ns at 1 kHz with He flow of 70 SCCM with 

varying pulse width from 200 ns to 5000 ns. 

Increasing He flow rate will also increase the intensity of the secondary discharge. As He/air 

ratio near the needle nozzle increased with increase He flow rate, more charges, excited and 

metastable He generated from primary discharge could be preserved near the needle nozzle and 

contribute to secondary discharge which greatly enhanced the emissions of secondary discharge 

(shown in Fig. 3-7). Adding a slide tubing around the needle serves the same purpose as increase 

flow rate (i.e. longer slide tubing will have stronger secondary discharge due to better preserved 

charges, metastables etc.). 
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Fig. 3-7. Emission intensities of secondary discharge during the falling edge of a voltage pulse with 7 kV, 200 ns at 

1 kHz with varying He flow rate from 24 SCCM to 164 SCCM (too weak at He 8 SCCM). 

The formation of secondary discharge can be explained as follow: ionization front in the 

primary discharge generates lots of electrons, ions, and metastables as it propagates. Positive ions 

and negative ions mixed together at the tail of the ionization front which forms quasi-neural 

plasma. Electric field generated by the needle slowly restored its strength as ionization front 

propagate away since both contain positive charges.  The restored field has highest impact near 

the needle nozzle and starts to pull negative ions and push positive ions which disturbed the quasi-

neutral near the needle nozzle. The space charges then formed a dipole as shown in Fig. 3-8. 
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Fig. 3-8. A dipole formed in the discharge gap with two parallel plate containing an electron avalanche, A and C are 

the anode and cathode, respectively [1]. 

 A sandwich structure of charge layers slowly formed (i.e. the positive electrode, negative ions 

and positive ions). If, however, it reached the falling phase of a voltage pulse, motion of the ions 

will slow down quickly due to rapidly dropped external voltage. If the layer of positive charges 

accumulate not enough charges, it cannot produce strong enough electric field to initiate a 

secondary discharge even though there is abundant electrons, ions, and metastables near the nozzle 

which could greatly reduce the initiation of a discharge. If the pulse width is long enough that 

allow the layer of positive charges formed strong enough, a reversed discharge towards the positive 

space charges near the needle electrode would occur as soon as the external voltage rapidly 

decrease. Furthermore, if the pulse width extended too long, excited species, metastables, positive 

and negative charges near the needle electrode loss due to recombination which resulted in weaker 

emissions. However, longer pulse width always resulted in stronger initiation of the secondary 

discharge as seen from Fig.3-9. 
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Fig. 3-9. Initial emission intensities of secondary discharge during the falling edge of a voltage pulse with 7 kV, 200 

ns at 1 kHz with varying pulse widths from 1000 ns to 5000 ns and He flow 70 SCCM. 

For pulse width, longer pulse width in air plasma jet, stronger secondary emission, while when 

pulse width is sufficiently long, the secondary emissions decrease. This is attributed to reduced 

effect of positive charges in streamer head when pulse width elongates, however, due to the 

separation of the first and secondary discharge with longer pulse, more positive charges 

accumulated near the needle nozzle which made the inception of secondary discharge earlier and 

stronger (equivalent to increase voltage amplitude: always exponential increase at the beginning 

exp(𝛼𝑥)) but the later on development is weaker and become linear increase due to first, a dynamic 

steady state has formed near the nozzle which resulted in a steady positive space charge (no more 

increase) and secondly, lack of metastables and excited species (they have no charges so tend not 

to be affected by E-field and die down with time and collision of moving heavy particles during 

their charge built up processes). 
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In conclusion, secondary discharge is initiated by the space charge near the needle nozzle. 

From the perspective of energy usage, secondary discharge is driven by energy stored from 

primary discharge. It is of great importance to understand such a mechanism and we should 

calculate energy deposited from power supply by integrating the voltage and the primary pulse of 

the jet current.  

 

3-3. EFFECTS OF OPERATION PARAMETERS ON ‘GUIDED 

STREAMER’ IN AMBIENT AIR 

As aforementioned, development of ionization front with space and time showed the detailed 

development of ionization front. However, how the operation parameters (i.e. pulse amplitude, 

pulse width, repetition rate, and He flow rate) could affect such development is still unclear. From 

the study of breakdown of plasma jet, it is known that higher amplitude results in stronger external 

electric field hence caused stronger emission and higher breakdown probability, meanwhile, higher 

amplitude allows the plume more repeatable. It is reasonable to deduce that higher amplitude may 

favor the propagation of ionization front hence it will travel longer distance. As shown in Fig. 3-

10 (a) and (b), figure (a) is the spatiotemporal development of ionization front at voltage amplitude 

from 5 kV to 10 kV. Line with different color represents different distribution of ionization front 

at different amplitude. It is found that at low amplitude (e.g. at 5 kV), the ionization front will first 

travel away from the nozzle and then slowly shrink later on instead of traveling outwards. If the 

amplitude is strong enough, the ionization fronts could gradually propagate away from the needle 

electrode until it dies out further away from the electrode. The higher the amplitude, the sharper 

the slope of the curve. An estimated formula has been obtained from fitting this propagation 

trajectory. 
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Fig. 3-10. (a) Propagation distance of ionization front from nozzle and (b) fitted projectiles of propagation at 

different time regarding a voltage pulse of 200 ns at 1 kHz at He 70 SCCM with varying amplitude from 5 kV to 10 

kV. 
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Where V is the applied amplitude (kV), t is the time delay (ns), 𝑓(𝑡) is the distance from nozzle 

(mm) and 𝑘 = 83. Figure 3-10 (b) presented the fitted curve (solid lines) with the original 

trajectory (symbolled lines) with amplitude from 6 kV to 10 kV. It fit pretty well for most cases 

except that discrepancies occurred for the lower bound (5 kV) and higher bound (10 kV). 
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Fig. 3-11. (a) Voltage and (b) current waveforms with a voltage pulse of 200 ns at 1 kHz at He 70 SCCM with 

varying amplitude from 5 kV to 10 kV. 

If we look at the voltage and jet current for different amplitudes (Fig. 3-11), it is found that 

higher amplitude results in higher jet current which implies stronger emission intensity of the 

ionization fronts. Jet current of 10 kV is not shown here because of the way jet current is calculated. 

The jet current is obtained by subtracting the assumed displacement current measured without He 

flow at the same pulsed voltage from that with He flow and hence the plasma was on. It represents 

the discharge of the ‘guided streamer’. If we associate the propagation of ionization front with its 

jet current, it is found that higher jet current presents faster propagation and stronger emission 

from ionization front. 

Study of He flow rate on its propagation of ionization front is shown in Fig. 3-12. As one can 

see from Fig. 3-12(a), it is found that slower increase of distance from nozzle when flow rate is 

low, however, the propagation trajectory gets steeper as flow rate increases. Similarly, a formula 

regarding the flow rate on propagation of ionization front has been derived (formula (2-2)): 
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Fig. 3-12. (a) Propagation distance of ionization front from nozzle and (b) fitted projectiles of propagation regarding 

different time of a voltage pulse at 7 kV, 200 ns and 1 kHz with varying He flow rate from 8 SCCM to 164 SCCM. 
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√𝑓𝑙𝑜𝑤
𝑡
)                                (2-2) 

Where the 𝑓𝑙𝑜𝑤 is He flow rate (SCCM), 𝑡 is the time (ns), 𝑓(𝑡) is the distance from nozzle 

in mm and 𝑘 = 83. Fig. 3-12 (b) presented the fitted values (solid lines) using formula (2-2) and 

the original data points (symbolled lines). It is found that the formula can generate good fitting for 

almost all the flow rate except for 24 SCCM which is slightly discrepant.  
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Fig. 3-13. Current waveforms regarding a voltage pulse of 7 kV, 200 ns at 1 kHz with varying He flow rate from 8 

SCCM to 164 SCCM. 

Considering the voltage and jet current (Fig. 3-13) under different flow rate, it is found that the 

higher flow rate results in more rapidly increasing of jet current and higher maximum current. In 

atmospheric air, the speed of electrons are in the order of 107 m/s while ions are about 105 m/s, so 

it is reasonable to assume that electrons are the main source to contribute the jet current, rapid 

changing of jet current revealed that more energetic electrons are generated in higher flow rate. 

Effect of repetition rate on propagation of ionization front is investigated as shown in Fig. 3-

14. Figure (a) and (b) are the jet current and spatiotemporal evolution of ionization front with 

respect to various repetition rate ranging from 10 Hz to 4 kHz. As seen from figure (b), higher 

repetition rate could favor the inception of discharge which result in earlier inception compared to 

lower repetition rate, however, ionization front under lower repetition rate can propagate much 

further. The lower repetition rate, the further it will propagate. Accordingly, lower the repetition 

rate, higher the jet current (fig. 3-14 (a)). The maximum current at repetition rate of 10 Hz is more 

than 2 times higher than that of 2 kHz. 

 

Fig. 3-14. (a) Current waveforms and (b) propagation distance of ionization fronts with a voltage pulse of 7 kV, 200 

ns at He 70 SCCM with varying repetition rate from 10 Hz to 4 kHz. 
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Fig. 3-15 presented the propagation of ionization front with various pulse width ranging from 

400 ns to 990 µs. Figure (a) and (b) presented the jet current and evolution of ionization fronts 

with different pulse width, respectively. As seen from figure (b), it is found that the trajectories of 

ionization fronts from pulse width of 400 ns to 5000 ns are almost the same, i.e. the ionization 

front propagates the same distance from nozzle at the same time delay. However, this does not 

imply that pulse width has not impact on the evolution of ionization front. As the pulse width 

further increases, i.e. the pulse off period is further shortened between two consecutive pulses (e.g. 

pulse width of 850 µs and 990 µs), the inception of the ionization front occurred much earlier 

followed by a slower travel trajectory compared with pulse width in the range of 400 – 5000 ns. 

In addition, if we compared pulse width of 850 µs with 990 µs, it revealed that longer the pulse 

width, stronger the inception and followed by slower trajectory. 

 

Fig. 3-15. (a) Current waveforms and (b) propagation distance of ionization fronts regarding voltage pulses of 7 kV, 

200 ns at He 70 SCCM with varying pulse width from 200 ns to 990 µs. 

Needle diameter is an important parameter for development of ‘guided streamer’. Fig. 3-16 (a) 

and (b) presented the jet current and its corresponding propagation of ionization fronts regarding 

various needle diameters (i.e. 25 gauge (diameter = 0.508 mm), 28 gauge (diameter = 0.356 mm) 

and 30 gauge (diameter = 0.254 mm)). Figure (b) indicated that smaller diameter has earlier 

0 500 1000 1500
-5

0

5

10

15

20

J
e

t 
c
u

rr
e
n
t 
(m

A
)

Time (ns)

 PW 200 ns

 PW 400 ns

 PW 600 ns

 PW 800 ns

 PW 1000 ns

 PW 1200 ns

 PW 1400 ns

0 10 20 30 40 50 60
0

2

4

6

8

10

D
is

ta
n
c
e
 f
ro

m
 n

o
z
z
le

 (
m

m
)

Time (ns)

 PW 400 ns

 PW 800 ns

 PW 1500 ns

 PW 2500 ns

 PW 4000 ns

 PW 5000 ns

 PW 850000 ns

 PW 990000 ns

(a) (b) 



                                                                                                                                                                                    

58 
 

inception of ‘guided streamer’, additionally, earlier inception associated with slower trajectory of 

the ionization front.  

From previous results, it showed that steeper trajectory means higher jet current which  also 

holds true in this case. As one can see from figure (a), their correspondent jet currents showed that 

higher jet current correspond to larger diameter while smaller diameter associated with earlier rise 

of the jet current. 

 

Fig. 3-16. (a) Current waveforms and (b) propagation of ionization fronts regarding voltage pulses of 7 kV, 200 ns at 

He 70 SCCM with varying needle diameters.  
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the stored energy from the primary discharge. The loss of seed electron sources with long pulse 

and the strengthened positive space charges near the electrode will work together in opposite ways 

to contribute to the secondary emission. Thatis to say, the longer the pulse width, the less seed 

electrons while more accumulated positive charges. We’ve already known that more positive 

charge equivalent to increase the voltage amplitude, thus produces stronger secondary discharge . 

On the contrary, less seed electrons will weaken the secondary discharge. In combination, 

secondary discharge will become stronger as the pulse width increases at the beginning (i.e. from 

200 ns to 600 ns) and then followed by a decrease afterwards (e.g. from 600 ns to 5000 ns). 

Considering the effect of pulse amplitude and He flow rate, it is arguably true that these two 

parameters generate similar behavior on propagation of ionization front as well as on its associated 

jet current. In addition, long pulse behaves similarly with high repetition rate. That is long pulse 

and high repetition rate could result in earlier inception of ‘guided streamer’ but slower trajectory 

of ionization fronts.  
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CHAPTER 4 

ELECTRICAL BREAKDOWN IN AIR CORONA 

AND ATMOSPHERIC PRESSURE NANOSECOND 

PLASMA JETS 

4-1. ABSTRACT 

Repeatability and stability of APNPJs are of great importance in biomedical applications. 

Reproducible treatment results rely on various parameters (e.g. variability of biological targets, 

stability of plasma jets). Minimize the variation of plasma jets is an effective way to improve the 

repeatability of treatments. 

In this chapter, the effects of memory effect, seed electrons as well as tuning parameters on 

breakdown probability in APNPJs are examined. Single shot images captured by high speed 

imaging are analyzed to obtain the breakdown probability. Two single shot images with and 

without He flow are recorded which revealed the corona discharge occurred without He flow, 

importantly, it can also be mixed in the plasma jet hence branching the plasma plume when both 
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driven by 10 kV, 200 ns pulses. The breakdown probability of a normal operation in air corona 

(i.e. without He flow) is ~7% while it is ~87% if injected with excessive electrons at the beginning 

of the discharge. These results imply that the memory effect from previous pulses could alternate 

the breakdown probability of the following pulses hence affect the repeatability and stability of 

discharge. Comparison of the single-electrode discharge with (air corona discharges) and without 

He flow (plasma jets), it is found that higher amplitude increases the breakdown probability in 

both discharges. However, the breakdown probability in plasma jet reaches 100% at amplitude of 

8 kV which is earlier than that of air corona discharge. Study of pulse widths from 0.2 µs to 5 µs 

in both discharges show that the longer pulse widths, the higher breakdown probability and the 

breakdown probability reaches 100% at 1 µs for APNPJs and 10% at 5 µs for air corona. The 

breakdown probability of air corona increases from 0 to 5% with pulse repetition rate increasing 

from 0 to 3 kHz and decreased to 3% from 3 kHz to 6 kHz. However, the breakdown probability 

increased up to 100% from 0 to 100 Hz and maintains such probability afterwards. Interestingly, 

study of He flow rate from 35 to 200 SCCM indicates that the breakdown probability decreases 

from 85% down to 30%. These results imply that discharge left over from previous pulses could 

contribute to the next pulse which eventually modify stability of discharges. Higher amplitude and 

repetition rate and longer pulse width result in more stable discharges.  

   

4-2. A GENERAL OBSERVATION OF BREAKDOWN IN 

NANOSECOND PULSED PLASMA JET 

High speed imaging and electrical measurements are employed as diagnostic methods for 

breakdown study. Schematic of the experimental setup for the two methods is shown in Fig. 4-1. 

A plasma jet device, consisting of a hollow-needle electrode could generate a plasma plume longer 
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than 1 cm when it was powered by 7 kV pulses at 1 kHz and with a helium flow of 70 SCCM. The 

hollow needle was made of stainless steel with the inner and outer diameters being 0.254 mm and 

0.508 mm, respectively. A nanosecond high voltage (HV) pulse generator (DEI PVX-4110) was 

used for this study. The ultra-high purity helium (99.999% minimum purity) was used as the feed 

gas and regulated by a mass flow controller (MKS Instruments 146C) when generate a plasma jet. 

An ICCD camera employed for high speed imaging which synchronized with the pulsed power is 

applied to study breakdown process. 

 

Fig. 4-1. Experimental setup of a nanosecond pulsed corona discharge in ambient air without He flow. 

Fig. 4-2 (a) and (b) shown a plasma jet with He flow of 70 SCCM and without He flow 

(i.e. an air corona discharge) from the single needle electrode driven by a 10 kV, 200 ns pulses 

at 1 Hz. Both images are single shot images. As one can see, both the corona and plasma jet 

are quite branching which raises an important question: at such small electrode, corona is an 

inevitable phenomena if driven by a high voltage. Corona discharge interference is inevitable 
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when generating an APNPJ under some conditions. To thoroughly understand this, we will 

exam both corona discharge and plasma jets. 

 

Fig. 4-2. Typical discharge from single-needle electrode (a) corona discharge in ambient air and (b) plasma jet 

imping into ambient air with He flow of 70 SCCM, both at 10 kV, 200 ns pulses at 1 Hz. 

 

4-3. BREAKDOWN IN CORONA DISCHARGES 

Starting with corona discharges in ambient air, the breakdown probability has been evaluated 

when the single-needle electrode was driven by 8 kV, 200 ns pulses at 1 Hz. Single shot image has 

been captured and repeated 100 times, the breakdown probability was calculated using the number 

of success discharges divided by the total 100 repeats. Each single shot image is accumulated over 

the whole voltage pulse. As seen from Fig. 4-3, at time 0 the single-needle electrode drove by a 10 

kV, 200 ns pulses at 1 Hz for 15 seconds, then the discharge condition has been switched to 8 kV, 

200 ns pulses at 1 Hz at time 0. The reason for operating at 10 kV for 15 s is to make sure the 

breakdown probability reach a value higher than zero (by providing extra seed electrons). At time 

0, the breakdown probability now reached 20% (i.e. breakdown 20 times over 100 times). Then 

the plasma was kept running for 5 minutes which made the breakdown probability increase to 
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50%. After that, the plasma was turned off for 10 mins and then turned on to record the breakdown 

probability. As one can see, the breakdown probability decreased if the plasma is off for several 

minutes. However, once the breakdown probability reached about 20%, further off the plasma 

would not decrease the breakdown probability (Fig. 4-3 from 20 to 40 mins). If one turned off the 

plasma for longer duration (e.g. OFF 40 mins), the breakdown probability would further reduce. 

On the other hand, however, if the single-needle is touched with the pencil for about 15 ns (the 

pencil core provides extra electrons), the breakdown probability will abruptly increase from 4% to 

70% and maintain at that high level of breakdown until  the plasma ceases for 20 mins, and 

eventually it decreased down to 20%. 

 

Fig. 4-3. Breakdown probability of air corona with time at 8 kV, 200 ns pulse with 1 Hz. 

From this observation, one could realize that the breakdown probability heavily rely on 

previous discharges (i.e. seed electrons) in the discharge gap. Breakdown probability increased 

with providing abundant seed electrons. In addition, voltage off duration between two discharge 

gaps are essentially important to breakdown probability which can be attributed to the memory 
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effect [25]. To further analyze the effect of seed electrons on breakdown probability, three cases 

were analyzed experimentally as follows. 

In the first case, the normal operation case in which the plasma is driven by 8 kV, 200 ns pulses 

at 1 Hz without any interference from previous charges. The pulsed power is always on (i.e. there 

is no OFF voltage time like in Fig. 4-3) and keeps driven the plasma. As shown in Fig. 4-4, each 

breakdown is a single shot image with exposure time (~ 400 ns) covering the whole pulse. It clearly 

shows that the breakdown probability which has a range from 22% to 2% during 100 mins. It 

implies that the breakdown at such condition is relatively stable (even though statistic) and 

breakdown probability is in average at 7% with a stand deviation of 7%.  

 

Fig. 4-4. Breakdown probability of air corona versus time under normal discharge at 8 kV, 200 ns pulses with 1 Hz. 
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which in the range from 100% to 75% during the whole 250 mins. The average breakdown 

probability is 87% with a standard deviation of 8.2%. 

 

Fig. 4-5. Breakdown probability of air corona with time under excessive electrons at 8 kV, 200 ns pulses at 1 Hz. 

With pencil ignition for 15 seconds. 

In the third case (shown in Fig. 4-6), depletion of seed electrons was carried out by placing a 

tubing with an inner diameter of 4 mm perpendicular to the needle direction, the distance from the 

outer edge of the needle to the nozzle of the tubing is about 2.8 cm. As a start, the discharge was 

provided with excessive seed electrons using the same procedure performed as the second case 

which allows the breakdown probability at an average of 99% with a standard deviation of 1% at 

time 0.  Then,  air flows towards to the plasma with a flow rate of 6000 SCCM while keeping the 

plasma running. As one can see, the breakdown dramatically decreased down to about 20% in 5 

mins. The average breakdown probability from 5 mins to 25 mins is about 12% with a standard 

deviation of 6.0%. 
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Fig. 4-6. Breakdown probability of air corona with time under with depletion electrons at 8 kV, 200 ns pulses at 1 

Hz. with strong air flow 6 L/min, d1= 1 mm,  d2=3 mm, distance between exit of the air flow tubing to outer edge of 

the needle d3=2.8 cm. 

In summary, seed electrons on effect of breakdown probability under three different conditions 

were examined. Results from general observation show that the memory effect generated by 

previous pulses could sustain up to about 40 mins at an average breakdown probability of 20% 

compared that the breakdown probability is in average of 7% with normal operation at 7 kV, 200 

ns pulses at 1 Hz. Importantly, the discharge has an ability to retain its state. For example, the 

discharge was able to maintain at an average of 87% breakdown probability under the condition 

with excessive electrons. Even though the operation conditions are all the same comparing the 

normal operation with condition of excessive electrons, the resulting breakdown probability is 

vastly different (i.e. the ratio of breakdown probability between excessive and normal operation is 

87%/7% = 12.4). This can be attributed to the memory effect from previous pulses which further 

dramatically modified the discharge itself. Using a high flow rate targeting the discharge could 
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increase the loss of seed electrons that being accumulated in the discharge column and eventually 

bring the breakdown probability back to normal.  

However, there are several questions raised from the above observations: 

(1) Why is the breakdown so heavily dependent on the initial condition? 

Short pulse do not favor electron accumulation, but if there are excessive electrons, series of 

avalanches could be launched at the same time under such short pulse which strengthen the 

discharge. 

(2) What are the sources of the seed electrons (excited and metastable atoms, positive and 

negative ions? or generated stable molecules?). 

There are two main reasons that the seed electrons could last such a long time: first, it hold 

inside the needle tubing which could be preserved longer (as seen from Fig. 4-7). Second, it’s 

highly possible the source of these electrons is from stable species or metastables (as seen from 

Fig. 4-8). The metastable O2(
1Δg) has a lifetime ~ 2700 s which equivalent to 45 mins. 

 

Fig. 4-7. Breakdown probability of He plasma jet at 9 kV, 200 ns pulses at 1 Hz with varying He flow at 300 SCCM 

during the first 90 mins, 600 SCCM from 90 mins to 125 mins, 800 SCCM from 125 mins to 190 mins and 300 

SCCM from 190 mins to 220 mins. 
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TABLE 4-1  

Excitation energy, lifetime and excitation cross sections of atoms and molecules [1] 

 

To further understand the breakdown process and effect of pulse parameters (i.e. voltage 

amplitude, pulse width, and pulse repetition rate) on breakdown probability were investigated with 

a baseline condition of 7 kV, 200 ns at 1Hz. All the breakdown images were single shot images 

with exposure time covering a whole voltage pulse (i.e. depending on the pulse width). The 

breakdown probability is based on their normal operation as in the first case (Fig. 4-4) unless 

mentioned otherwise. 

Fig. 4-8 showed the breakdown probability regarding the voltage amplitude ranging from 6 kV 

to 10 kV. The black and red solid lines are two repeats under normal operation while the blue dot 
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line represents the condition with excessive electrons. Under the normal operation, the breakdown 

probability increased exponentially with amplitude while  largely different when driven by 

excessive seed electrons. The correspondent breakdown images were shown in Fig. 4-9. It 

indicates that higher amplitude, stronger emissions. 

 

Fig. 4-8. Breakdown probability of air corona with varying amplitude (6 – 10 kV) for 200 ns pulses at 1 Hz, two 

repeated normal operations and one under excessive operation condition. 

 

Fig. 4-9. Breakdown images of air corona with varying amplitude for 200 ns pulses at 1 Hz, single shot images (a) 8 

kV, (b) 9 kV and (c) 10 kV. 

Effect of pulse width on breakdown probability is illustrated in the range of 200 ns to 5000 ns. 

The breakdown probabilities and their correspondent sample image were shown in Fig. 4-10 and 
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Fig. 4-11, respectively. As one can see, the breakdown probability increased with pulse width. In 

addition, longer pulse width resulted in stronger emissions. 

 

Fig. 4-10. Breakdown probability of air corona with pulse width (200 – 5000 ns) at 7 kV pulses at 1 Hz. 

 

Fig. 4-11. Breakdown images of air corona with varying pulse widths for 7 kV pulses at 1 Hz, single shot (a) 400 ns, 

(b) 1000 ns, (c) 3000 ns and (d) 4000 ns. 

When operating at 7 kV, 200 ns pulses from repetition rate of 1 Hz to 3 kHz, there is no 

breakdown observed. From 3 kHz to 6 kHz, however, the breakdown probability firstly increased 

and then slightly decreased after it reached the maximum probability at 5 kHz as seen from Fig. 

4-12. Single shot images showed no appreciable difference on repetition rate.  
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Fig. 4-12. Breakdown probability of air corona with various repetition rate (3 – 6 kHz) at 7 kV, 200 ns pulses. 

In summary, breakdown probability would increase when either amplitude or pulse width 

increases while it will not keep increasingi with repetition rate. As described in Townsend theory, 

the electron proliferation is proportional to exp (𝛼𝑥). Therefore, from a single electron avalanche 

to streamer, the development of one avalanche at increasing collisional amplifications through two 

possible ways: a greater field strength (larger α) with a constant collision time; prolonging the 

collision time (greater 𝑥) with a constant field strength [45]. The transition from avalanche to 

streamer requires the proliferation reach to a certain value (i.e. 𝛼𝑥 ~ 18 - 20). Higher amplitude 

creates a stronger electric field which resulted in higher α value (Fig. 4-8), hence higher breakdown 

probability. Longer pulse width, on the other hand, could increase 𝑥 which is the travelled distance 

from cathode (in this experiment, it’s the travelled distance from where the electron starts). In 

short, both amplitude and pulse width could exponentially increase the breakdown probability. 

Pulse repetition rate, however, is slightly more complicated since it not only increases the density 

of seed electrons but also decreases the total electric field [79]. 
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4-4. BREAKDOWN IN ATMOSPHERIC PRESSURE NANOSECOND 

PLASMA JETS 

Breakdown with varying operation parameters (i.e. pulse amplitude, pulse width, repetition 

rate, and gas flow rate) were studied with the same setup as in Fig. 4-1, except a gas tubing is 

connected to the Luer® cap of the needle with flowing of helium. Fig. 4-13 showed the breakdown 

probability under various amplitude. It indicated that higher amplitude has higher breakdown 

probability. Compared with the results in corona discharge in air (Fig. 4-8), it implies that it is 

easier to breakdown with He flow than in static air. That is, the breakdown occurs at slightly higher 

than 5 kV for plasma jet but for about 7 kV in corona discharge. Looking at the sample images 

(single shot with exposure 400 ns) in Fig. 4-14, it indicates that higher voltage, longer plume, and 

stronger emission with more branching. 

 

Fig. 4-13. Breakdown probability of plasma jet with varying amplitude (5 – 10 kV) for 200 ns pulses at 1 Hz with 

He flow 70 SCCM. 
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Fig. 4-14. Breakdown images of plasma jet with varying amplitude for 200 ns pulses at 1 Hz with He flow 70 

SCCM with (a) 7 kV, (b) 8 kV, (c) 9 kV and (d) 10 kV. 

With varying repetition rate, breakdown probability increased with repetition rate (Fig. 4-15). 

The breakdown probability reached 100% when the repetition rate is higher than 100 Hz (studied 

range from 1 Hz to 5000 Hz). As seen from Fig. 4-16, the correspondent sample images shows 

that higher repetition rate would result in shorter plasma plume.  

 

Fig. 4-15. Breakdown probability of air corona with repetition rate (1 – 1000 Hz) at 7 kV, 200 ns pulses. 
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Fig. 4-16. Breakdown images of plasma jet with repetition rate at 7 kV, 200 ns pulses (a) 1 Hz, (b) 10 Hz, (c) 100 

Hz, (d) 1000 Hz and (e) 5000 Hz. 

As shown in Fig. 4-17, breakdown probability increased with pulse width from 200 ns to 5000 

ns. The breakdown probability sharply increased with pulse width as 70% breakdown probability 

at 200 ns and 97% probability at 600 ns. By examining the sample images (Fig. 4-18), it seems 

there is no appreciable difference among different pulse widths under the investigated range. 

Compared with the corona discharge, the breakdown probability rose more rapidly with plasma jet 

in helium than with corona in air. 
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Fig. 4-17. Breakdown probability of plasma jet with pulse width (200 – 1000 ns) at 7 kV, 1 Hz with 200 ns to 1000 

ns. 

 

Fig. 4-18. Breakdown images of plasma jet with pulse width at 7 kV, 1 Hz with (a) 200 ns, (b)1000 ns and (c) 5000 

ns. 

He flow rate is an important operating parameter in plasma jet. As shown in Fig. 4-19, results 

clearly shown that the breakdown probability decreased with flow rate in the range from 35 SCCM 

to 200 SCCM (i.e. 35, 70, 100, 150 and 200 SCCM) which are laminar flows. At He flow of 35 

SCCM, the breakdown probability is about 85% which decreased down to 40% at flow rate of 200 

SCCM. The sample images shown in Fig. 4-20 indicates that higher flow rate result in longer and 

brighter plume.  

In summary, breakdown probabilities with various operating conditions has been investigated 

in He plasma jet. Results shown that higher amplitude, longer pulse width, and higher repetition 

rate could result in higher breakdown probability under the investigated conditions, while higher 

flow rate decreases breakdown probability from 35 SCCM to 200 SCCM. From the perspective of 

the single shot images, with higher amplitude, higher breakdown associated with longer plasma 
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plume. However, trends were negatively correlated for both pulse repetition rate and He flow, i.e. 

higher breakdown probability associated with shorter plume. 

 

Fig. 4-19. Breakdown probability of plasma jet at 7 kV, 200 ns at 1 Hz with He flow rate from 35 SCCM to 200 

SCCM. 

 

Fig. 4-20. Breakdown images of plasma jet at 7 kV, 200 ns pulses at 1 Hz with varying flow rate (a) 35 SCCM, (b) 

70 SCCM, (c) 100 SCCM, (d) 150 SCCM and (e) 200 SCCM. 
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CHAPTER 5 

CONCLUSIONS 

A single-needle electrode driven by pulsed power supply with flow helium is investigated via 

electrical measurement and optical emission spectroscopy. Reactive species are essentially the key 

to understand APNPJs. They are closely related to potential applications of such discharge, 

especially on biomedical applications. Rich reactive nitrogen and oxygen species can be generated 

in our APNPJ. Short pulse rise time allows more reactive species to be generated in plasma plume 

and favor the generation of energetic electrons hence dominating the reaction pathways through 

direct electron impact reactions. When the plasma jet impinged onto a water surface, reactive 

species as well as the electrical characteristics of a plasma jet is greatly enhanced compared with 

the free jet. Effect of pulse width on OH(A-X) emissions indicate that the majority of OH 

intensities are produced during the rising phase of a voltage pulse. 

Development of ‘guided streamer’ is important in application-wise. Operation parameters 

eventually result in different application effects, hence it is of great importance to study the effect 

of these parameters on ‘guided streamer’. It is found that increasing both voltage amplitude and 

He flow rate (in laminar flow region) will result in similar effect which produce longer and stronger 

plumes. Pulse width and repetition rate also show resemble effect on development of plasma 

plumes, that is, long pulse tends to have similar effect on plume as higher repetition rate which 

both could favor the earlier inception but lower the electric field. 

The configuration of single-electrode not only can produce APNPJs with flowing of He flow 

but also corona discharges without gas. Memory effect generated from previous pulses favored the 
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breakdown probability of the next pulse. This effect seems much stronger and lasts much longer 

than one would expect. Seed electrons provided by memory effect allow the next pulse to retain a 

breakdown probability which highly depend on the level of seed electrons. If the memory effect is 

strong (i.e. higher seed electrons), the breakdown probability can retain in a high level. The retain 

ability is of great importance in atmospheric pulsed plasmas. Increasing pulse amplitude and pulse 

width increased breakdown probability for both corona discharge and APNPJ. Pulse repetition rate 

for both discharges enhanced the breakdown probability when PRR is below 5 kHz. 
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APPENDIX A   

VOLTAGE AND CURRENT MEASUREMENTS 

1. HIGH VOLTAGE PROBE (P6015A) 
 

The high voltage probe P6015A is designed to take accurate voltage measurements between 

1.5 kV and 20 kV (DC + peak AC), up to 40 kV peak for pulses (see the manual for details). It has 

a 100 MΩ resistance, 3.0 pF capacitance with 1000× attenuation. It should connect to oscilloscope 

with input resistance of 1 MΩ with an input capacitance of 7 pF to 49 pF [80]. 

A few cautions when take measurements with P6015A [80]: 

1. Do not place the probe tip near the conductive surface which changes the input capacitance 

of the probe resulting the change of the probe compensation, hence causing the voltage pulse 

overshoot or undershoot regarding its true pulse amplitude. 

2. Do not allow the conductor, to which the probe is attached to pass along the side of the 

probe body which will induce capacitance of the probe, causing the inaccurate measurements. 

Keep the probe perpendicular to the attached conductor. 

3. Do not modify the probe tip or ground leads. At high frequency, a slightly longer wire or 

sharp edges will result in significant impedance change and introduce extra inductance which will 

result in ringing and signal distortion. 

 

 

2. CURRENT MEASUREMENTS (PEARSON 6585 AND 2877) 
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Model 6585 has maximum peak current 500 A with usable rise time 1.5 ns. Model 2877 (Ipeak 

= 100 A and τrise= 2 ns). The current measurements, especially when the measured current is small 

and comparable to noise, become critically important. 

To measure current accurately, we need to understand where the noise come from. Any signals 

that mixed with the desired signals are noises. Electromagnetic interference (EMI), Radio 

frequency interference (RFI) and cross talk are three common source for noise. Here I only 

consider the main noises come from our plasma system. 

1. Fast rising pulse currents: the fast pulses may produce current ringing due to high frequency 

current flowing on the outside of cable shield. These noise can be suppressed by increasing the 

inductance of the shield through threading the cable into several ferrites (as shown in Fig. A1). 

 
Fig. A1. Coaxial cable through two ferrites (left) and Coaxial cable through a ferrite clamp (right) [80]. 
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Fig. A2. (a) Experimental setup for current measurement at 8 kV, 200 ns pulse at 1 kHz with He flow rate at 164 

SCCM and (b) currents measured from plasma jets using Pearson 6585 with (black solid line) and without (red solid 

line) two ferrite clamps.  

 

The currents measured in our system with and without ferrite clamp are dramatically different 

(shown in Fig. A2 (b)). Here the inductance of the coaxial shield increased by wrapping two ferrite 

clamps along the cable which suppressed the noise a lot. 

2. Ground loop: ground loop occurs when more than one ground connection path between 

two pieces of equipment, especially when there are potential difference in these different ground 

wires causing currents flowing which further modify the interconnect currents. The loop in our 

system can be describe as in Fig. A3. 

 

Fig. A3. (a) Experimental setup for current measurement (black line is ground wire, red is the center core) and (b) 

the equivalent circuit of (a). 

 

The transmission line of the power supply is grounded to the optical table which forms one 

ground loop, while the coaxial cable from the current monitor formed another ground loop. The 

shield of the transmission line has strong current flow which is higher than shield of the coaxial 

cable for current monitor, eventually this current difference resulted in modified signal displayed 

on the oscilloscope. To eliminate this noise, one can ground the threaded mounting hole in the 

current monitor. A sample result is shown in Fig. A4 which compared the currents with and without 

grounded to the transmission line shield. 



                                                                                                                                                                                    

83 
 

 
Fig. A4. Current measured using Pearson 6585 as in Fig. 3(a) with (black solid line) and without (red solid line) 

connecting to the transmission line shield. 

 

3. Poor quality coaxial cable: the shield (usually braid) of the coaxial cable is quite important 

when dealing with high frequency signal since bad shield could allow high frequency signal to 

seep in or leak out. Imagine that a high frequency noise travel along the outer side of the shield 

which could easily affect the desired signal if the quality of the cable is poor (particularly the 

shield of the coaxial cable). Below (Fig. A5) showed the RG 58/U with shield coverage 70% 

and RG 58 C/U with 95% coverage. The measured currents with the two coaxial cable are 

compared and shown in Fig. A6. 

 
Fig. A5. Comparison of coaxial cable RG 58/U and 58 C/U with specifications [81]. 
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Fig. A6. Currents measured using Pearson 6585 with coaxial cable RG 58/U (black solid line) and 58 C/U (red solid 

line). 

 

4. Other sources of noise: there are a lot of other noises depending on setup of one’s experiments. 

The important thing is to identify sources of noise.  
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APPENDIX B   

PERMISSIONS FROM THE COPYRIGHT 

HOLDER  

 

1. Reuse of IEEE graphics published in IEEE publications 

IEEE permission: ‘Reusing IEEE graphics previously published in IEEE publications. You 

will need to request permission directly from IEEEXplore. In mose cases, the only requirements 

will be to give full credit to the original source and to obtain the author’s approval (as a courtesy 

to the author). At the end of the caption, add the reference number of the articles from which the 

graphics are being used’ [79]. 

 

2. Reuse publications from Japanese Journal of Applied Physics 
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