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ABSTRACT 

 

EFFECT OF GRAIN SIZE AND INTERFACE ENGINEERING ON THE PHOTOVOLTAIC 

PERFORMANCE AND STABILITY OF PEROVSKITE SOLAR CELLS 

 

Abdullah Al Mamun 

Old Dominion University, 2019 

Director: Dr. Gon Namkoong 

Organic-inorganic halide perovskite solar cells (PSCs) have grown rapidly in recent years 

due to their outstanding optoelectronic properties, high efficiency, and low-cost. However, this 

emerging solar cell technology is experiencing some challenges such as defects, hysteresis, and 

long-term stability, which need to be addressed in order to make it commercially available. This 

dissertation aims to assist in overcoming some of the barriers and is therefore important to the field 

of perovskite solar cells. 

Initially, this dissertation focuses on investigating the role of grain interiors (GIs) and grain 

boundaries (GBs) of perovskite film using chemically, spatially, and temporally resolved 

measurements at the nanoscale level. It is shown that, the GBs are defective with deeper defect 

levels and are unfavorable to the high performance of perovskite solar cells.  Therefore, larger 

grain perovskite film can be considered as a plausible solution for better quality perovskite films. 

This work leads to a novel deconvoluted PL approach to determine the charge carrier dynamics of 

the GI and the GB of the perovskite film. We have quantitatively demonstrated that the charge 

carrier dynamics of the GI and GB can be analyzed from the ordered and disordered phase of the 

asymmetric PL spectrum observed in the perovskite film. This deconvoluted PL approach is 

simple, rapid, non-destructive, and requires no sample preparation compared with the currently 

available nanoscale characterization measurements. 



   

 

Subsequently, this dissertation describes the interface defect passivation between 

perovskite and the electron transport layer (ETL). To address this, a novel thin film of 

PCBM/carbon was introduced as ETL in the device architecture, which reduces the interface 

defects and increases the conductivity compared with that of the competitive ETL of PCBM/C60. 

Moreover, carbon is abundant in nature and the use of carbon in perovskite solar cells will reduce 

the manufacturing cost.  

Finally, the limitation of the air instability of perovskite film is investigated. For that, an 

in-depth study of degradation pathways of the perovskite film in air was performed using optical, 

crystallographic, morphological, and mechanical measurements. Based on this study, we suggest 

the modification of perovskite device architecture to improve the stability of perovskite solar cells 

in air. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

The climate of the world is changing and posing a serious threat to places, species and 

people’s livelihoods on earth day by day. The increase in global temperature is causing climate 

alteration and unexpected weather changes. For example, heat waves, frequent flooding, and 

intense drought are experienced in many places. Greenhouse gases, such as carbon dioxide 

pollution, are considered to be one of the major causes of global warming. Carbon dioxide acts 

like a blanket, trapping heat in the atmosphere and raising the temperature of our climate. These 

gases are naturally found in the atmosphere; however, extensive burning of fossil fuels (e.g., coal, 

oil, diesel) and deforestation increases the emission of greenhouse gases more [1,2]. 

According to the United States Environmental Protection Agency (EPA) [1], average 

global temperatures have risen since 1901. The world’s top 10 warmest years on record have been 

since 1998. A clear indication of global warming is related to the increase of water temperature 

worldwide. Scientists around the world have come to the overwhelming consensus that climate 

change is primarily caused by human activity. Producing energy by burning fossil fuels such as 

coal, oil, and natural gas has a greater impact on the atmosphere than any other single human 

activity. Global power generation causes about 23 billion tons of CO2 emissions per year [2]. Coal 

emits 70% more carbon dioxide than natural gas for every unit of energy produced [2]. The 

electricity sector in the United States is responsible for about 29% of global warming emission 

which mainly originates from fossil fuels such as coal, natural gas, etc. [2].  



   

 

2 

Atmospheric carbon dioxide (CO2) levels are higher than ever in the last 400,000 years, as 

shown by National Oceanic and Atmospheric Administration (NOAA) in Fig. 1 [3]. At the time 

of the Ice Age, CO2 levels were about 200 ppm, but in 2013, for the first time ever, CO2 levels 

exceeded 400 ppm [3]. The continuous rise in atmospheric CO2 levels since 1950 shows a constant 

relationship with fossil fuel burning [3]. If the burning of fossil-fuels continues at the normal level, 

CO2 will continue to rise to levels of 1500 ppm in the next few centuries [3]. The atmosphere on 

earth will never be the same as it was before industrialization. Along with portraying scientific 

measurements, this graph indicates that controlling human activity can have a positive impact on 

changing the climate and saving our planet for future generations. 

 

 

 

 

Fig. 1.  The continuous rise of CO2 level in earth’s atmosphere from the year 1950 [3]. 
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Renewable energy is one of the most effective solutions to fight against deadly and 

alarming environmental changes. Renewable energy will not only replace existing fossil-fuel 

based energy consumption but also will be a source of economic benefit. Most importantly, we 

will be able to fight against global warming since most renewable energy sources release little to 

no greenhouse gases. Global warming emissions will be minimized, as evidenced by the data in 

Fig. 2, even though the overall life cycle of renewable energy sources, including manufacturing, 

installation, maintenance and disassembly, is considered [4]. Fig. 2 states the comparison between 

renewable and non-renewable energy sources with respect to CO2 emission into the environment. 

For example, non-renewable energy sources like natural gas and coal release 0.62 to 2 pounds of 

carbon dioxide equivalent per kilowatt-hour (CO2E/kWh) [6]. On the other hand, renewable 

energy sources, such as wind, solar, and geothermal cause a maximum emission of 0.2 CO2E/kWh 

[6]. An exception is the use of biomass as a renewable source of energy, which can lead to 

greenhouse gas emissions depending on the resource and whether sustainably sourced or 

harvested. This means replacing renewable energy sources with non-renewable energy sources 

will not only prevent global warming but can also significantly reduce CO2 emissions. 

According to a study by the National Renewable Energy Laboratory (NREL), it is possible 

to produce nearly 80% of the national electricity generation in the United States using renewable 

energy sources by 2025. In addition, it states that replacing non-renewable energy sources with 

renewable energy sources can reduce greenhouse gas emissions by about 81% [5]. In 2017, nearly 

11% of the total energy consumption in the United States was provided by renewable energy 

sources which is equivalent to about 11 quadrillion British thermal units (Btu) (1 quadrillion = 

1015), as shown in Fig. 3. Of the 11% renewable energy sources, almost 45% of the energy 

produced is from biomass, which can release greenhouse gases and cause global warming if not 
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properly sourced [11]. However, solar energy is considered to be a clean energy source with only 

0.07 to 0.2 pounds of CO2E/kWh [6]. Therefore, solar energy can be a solution to achieve clean 

energy by reducing greenhouse gas emissions into the environment. 

 

 

 

 

Fig. 2.  Amounts of greenhouse gases emission by different energy producing renewable and non-

renewable sources. Renewable energies tend to have much lower emissions than other sources, 

such as natural gas or coal [6]. 

 

 

 

Solar power is a technology where solar radiation is converted into electricity. The solar 

power that we currently have is known to have been introduced 60 years ago, but the original 
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history spans more than 200 years. Today, we have everything from solar-powered homes to solar-

powered vehicles and equipment on both earth and in space. The concept of the solar cell was first 

introduced by French scientist Edmond Becquerel when he discovered the photovoltaic effect in 

1839 [7]. The first solar cell with 1-2% efficiency was created by New York inventor Charles Fritts 

in 1883 by coating selenium with a thin layer of gold [8]. Later, Albert Einstein received the Nobel 

Prize in 1921 by explaining the photoelectric effect [9], which was first observed by Heinrich 

Hertz. Today’s solar cells depend on this photoelectric effect. In 1954, silicon was used to make 

solar cells with 6% efficiency by physicists at Bell Laboratories [8]. Afterwards, Western Electric 

began selling commercial licenses for its silicon photovoltaic (PV) technology in 1956 [10]. 

 

 

 

 

Fig. 3.  U.S energy consumption of 2017 from different energy sources [11]. 
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Si based solar cells have dominated the solar industry for the last 60 years by achieving a 

high efficiency above 26% (Fig. 4) [12]. In addition, many other thin film technologies such as 

CIGS, CdTe, and GaAs have exhibited higher efficiency and are used commercially. However, 

these existing commercial PV technologies show several drawbacks such as high installation and 

production cost [13], requirement of high-temperature and high vacuum technology. Hence, 

numerous next generation solar technologies have been developed, which include dye-sensitized 

solar cells (DSSCs), organic photovoltaics (OPVs), quantum-dot solar cells, etc. [14]. All of these 

emerging technologies require a low-cost fabrication process and exhibit promising photo-

conversion efficiency (PCE). Recently, a new type of solution processed solar cells, known as 

perovskite solar cells (PSCs) have achieved a PCE of above 22% and have attracted the attention 

of researchers due to their impressive balance between low cost and high efficiency [13]. 

 

 

 

 

Fig. 4.  Best solar cell efficiency chart by National Renewable Energy Laboratory (NREL) [12]. 
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1.2 Outline of the thesis 

Chapter 1 demonstrates the deadly impact of global warming in the present and future and 

the need for renewable energy and solar energy to replace existing fossil-fuel based energy sources. 

Later, the next generation solar cell named perovskite solar cells (PSCs) is introduced in this 

chapter. 

Chapter 2 covers the overview and background of perovskite material, perovskite device 

structure, working principle, and the performance evaluation method. Finally, a brief description 

of the advantages and limitations of perovskite solar cells is illustrated. 

Chapter 3 provides detailed fabrication and characterization techniques that have been used 

throughout the thesis. This chapter also contains conditions and parameters for different fabrication 

processes and characterization techniques. 

Chapter 4 provides investigation of grain interior (GI) and grain boundary (GB) of 

perovskite film using chemically, spatially, and temporally resolved measurement [15]. In 

particular, SEM/EDS and 2D steady-state photoluminescence (PL) and time resolved 

photoluminescence (TRPL) are used to characterize GI and GB. 

Chapter 5 elucidates a new characterization approach using deconvoluted PL to determine 

perovskite film quality [16]. Moreover, the recombination mechanism of chare carrier in GIs and 

GBs of different sized grain is described. Lastly, the photovoltaic performance of different grain 

sized PSCs is compared. 

Chapter 6 illustrates the effect of a novel electron transport layer of PCBM/carbon which 

can be used in PSCs to improve the interface defects and remove hysteresis from the solar cell 

[17]. In addition, the photovoltaic performance of three different ETLs, i.e. PCBM, PCBM/C60 

and PCBM/carbon is compared. 
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Chapter 7 describes the detailed degradation mechanism of perovskite film using optical, 

crystallographic, morphological, and mechanical characterization techniques [18]. In particular, 

UV-vis spectroscopy, steady state photoluminescence, XRD, SEM and nanoindentation have been 

used. 

Chapter 8 finally summarizes the conclusions of this dissertation and the future prospects 

of this work. It is shown that modification of perovskite solar cell architecture is needed to achieve 

better air stability. 
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CHAPTER 2 

BACKGROUND AND LIMITATION OF PEROVSKITE SOLAR CELLS 

 

2.1 Perovskite crystal structure 

The initial meaning of “perovskite” was related to the crystal structure of calcium titanate, 

which was discovered in 1839 by the German mineralogist Gustav Rose and was named by the 

Russian mineralogist Lev Perovski [19]. 

Perovskite compounds have a general chemical formula of ABX3, where A and B are 

cations and X is an anion. Their crystal structure is similar to that of calcium titanium oxide. A 

typical unit cell structure of a basic perovskite compound is shown in Fig. 5. Usually, the A cations 

are larger than the B cations. Oxide perovskites have been studied extensively because of their 

multifunctional nature [19]. However, owing to their wide bandgap, oxide perovskites harvest only 

8–20% of the solar spectrum, limiting their use in photovoltaic applications [19]. Instead, halide 

organic-inorganic perovskites were developed by replacing the oxygen anion of oxide perovskites 

with an inorganic halide (I−, Cl−, Br−) [19]. An organic or inorganic monovalent A+ cation (e.g., 

Rb+, Cs+, methyl-ammonium CH3NH3
+, formamidinium HC(NH2)2

+) and a divalent B2+ metal 

cation (e.g., Pb2+, Sn2+, Ge2+) were also implemented in the frame of the perovskite structures [19]. 

Among them, methylammonium lead iodide (CH3NH3PbI3) is the most widely used perovskite 

light absorber. 

The halide perovskites obtain a desired crystal symmetry by maintaining an allowable 

tolerance factor. A tolerance factor developed by Goldschmidt [20] determines the radii sizes 

associated with cubic symmetry, described by 
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t =
RA + RX

√2(RA + RX)
  (1) 

where RA, RB, RX are the ionic radii of A, B, X, respectively. The tolerance factor provides a rough 

estimate of the stability and distortion of crystal structures of a compound. In addition, it gives an 

idea of whether the phase is cubic (t = 1) or deviates into the tetragonal or orthorhombic phase 

[21]. In general, an established tolerance factor value for halide perovskites lies in the range of 

0.85 < t < 1.11 (Fig. 6) [22]. Non-perovskite structures are formed when the tolerance factor is 

higher or lower. In an inorganic-organic hybrid perovskite, it is difficult to calculate the absolute 

tolerance factor as the organic cation has a non-spherical geometry [23]. However, it is possible to 

qualitatively analyze the transition of structure in these materials. For example, formamidinium 

lead iodide, HC(NH2)2PbI3 (FAPbI3), has a larger A cation than methylammonium lead iodide, 

CH3NH3PbI3 (MAPbI3) and a larger cation would generally represent a higher tolerance factor 

[24].  

 

 

 

 

Fig. 5.  The unit cell of cubic perovskite (ABX3), where the red spheres at lattice corners are A 

cations, the green sphere at the center is a B cation, and the blue spheres at the lattice faces are X 

anions [25]. 
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Fig. 6.  Tolerance factor of APbI3 perovskites, where A= Li, Na, K, Rb, Cs, MA, and FA [26]. 

 

 

 

2.1.1 Impact of organic or inorganic A cation 

As mentioned before, the typical crystal structure of perovskite is denoted as ABX3, where 

A is a cation and can be organic or inorganic, such as methylammonium (MA) CH3NH3
+, 

formamidinium (FA) CH2(NH2)2
+, Cs+, or Rb+. MAPbX3, FAPbX3 and CsPbX3 (X = Br or I) are 

considered as pure perovskite compounds, which are suitable for photovoltaic applications. 

MAPbI3 has been extensively used as the light absorber and has showed efficiencies close to 20%. 

FAbI3 attracted many due to its smaller bandgap and high heat resistance [27]. However, pure 

FAPbI3 lacks structural stability at room temperature as it can crystallize either into a 

photoinactive, non-perovskite hexagonal δ-phase (‘‘yellow phase’’) or a photoactive perovskite α-

phase (‘‘black phase’’) [26,28] sensitive to solvents or humidity. The need for absolute 

replacement of organic cations leads to the idea of using inorganic cesium lead halide, which 
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showed excellent thermal stability [29]; however, CsPbBr3 does not have a favorable bandgap for 

PV applications and CsPbI3 crystallizes in a photoinactive phase at room temperature and exhibits 

a photoactive stable perovskite phase only at temperatures above 300 °C [30].  Recently, multiple 

cation perovskite such as cesium (Cs) and formamidinium (FA) or methylammonium (MA) have 

demonstrated high power conversion efficiency and promising stability [31]. 

 

2.1.2 Impact of B metal cation 

B is an inorganic cation in ABX3 perovskite structure. Generally, a divalent metal such as 

Pb2+, Sn2+, or Ge2+ can be used as the metal cation. Among the various alternatives, lead is by far 

the most suitable in terms of overall performance of perovskite solar cells. However, the toxicity 

of heavy metals like lead has raised the necessity of a replacement since lead exposure is very 

harmful for the environment. Germanium and Silicon are the best alternatives to lead. These 

alternative elements (Si2+, Sn2+ and Ge2+) are unstable up on exposure to air [32]. Tin is considered 

to be the best alternative to replace lead among the other metals. Sn-based hybrid perovskites have 

been shown to exhibit outstanding electrical and optical properties, including high charge carrier 

mobilities, high absorption coefficients, and low exciton binding energies [33,34]. Even et al. [35] 

and Chiarella et al. [36] have theoretically shown promising properties of Sn perovskites, such as 

suitable band gaps and favorable effective mass. However, the primary challenge of Sn-based 

perovskite solar cells is their sensitivity towards oxidation from Sn2+ state to Sn4+ state when 

exposed to air. Consequently, lead based PSCs are dominating since their analogous tin-based 

PSCs showed efficiency below 10% [32]. 
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2.1.3 Impact of X halide anion 

Three different halides are mainly used in perovskite solar cells such as Cl-, Br-, and I-. The 

most common single halide perovskites are MAPbI3, FAPbI3, and CsPbBr3 [37]. In particular, 

methylammonium lead iodide has an optical bandgap of 1.55 eV, large diffusion length, and longer 

carrier lifetime. Later, mixed halide-based perovskite (MAPbI3-xClx, MAPbI3-xBrx) was introduced 

into the PV technology [15]. In particular, a small amount of chlorine improves the solar cell 

performance by removing the defects from the perovskite film [38]. Moreover, the diffusion length 

of MAPbI3-xClx is more than 1 µm, whereas single halide perovskite film has a diffusion length of 

about 100 nm [38,39,40]. In this thesis, MAPbI3-xClx have been studied mainly as the light 

absorbing layer of PSCs. 

Another important property of perovskite is tunable bandgap, which is achieved by 

changing the amount of iodine and bromine in a mixed halide perovskite. For instance, the 

absorption onset of FAPbI3-xBrx can be tuned from 556 nm (2.23 eV) to 838 nm (1.48 eV) [25]. 

Note that, there is no significant change of absorption band edge observed in the chlorine based 

mixed halide perovskite. 

 

2.2 Device Architecture 

 Perovskite solar cells were first introduced by Miyasaka et al. in 2009 with a PCE of 3.9% 

[41]. The device structure used by them was a TiO2 based meso superstructure with MAPbI3 and 

MAPbBr3 perovskites. Later, the efficiency of the meso superstructure perovskite solar cells was 

improved by using a modified fabrication process, innovative device engineering, and better 

understanding of device physics. However, this device requires high-temperature (>450 °C) during 

the fabrication process and increases the fabrication cost [42]. World-wide research efforts have 
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revealed that it is possible to devise a planar structure with perovskite due to its ambipolar transport 

properties [39] and long electron-hole diffusion lengths [39]. First planar architecture-based PSC 

was introduced by Guao et al., which showed an efficiency of ~4% [43]. Device engineering has 

led to approximately 20% efficient PSCs with planar device structure. The comparable efficiency 

of planar to mesoporous device structure make them feasible to use in PSCs since the processing 

temperature is low for a planar structure. Different perovskite solar device architectures are shown 

in Fig. 7. 

 

 

 

 

Fig. 7.  Three typical device architecture of perovskite solar cells. (a) Mesoporous, (b) n-i-p 

(regular), and (c) p-i-n (inverted) structure. (HTL: hole transport layer; ETL: electron transport 

layer; TCO: transparent conductive oxide) [39]. 

 

 

 

Planar architecture can be classified as a regular n-i-p and an inverted p-i-n structure 

according to the position of electron and hole transport layers, as shown in Fig. 7. The regular n-
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i-p structure is influence by dye-sensitized solar cells (DSSCs) and the inverted p-i-n structure is 

inspired by organic solar cells. In the early stage of development, perovskite solar cells used an n–

i–p structure [44,45] employing an n-type TiO2 layer as a bottom electron transport layer (ETL) 

and p-type spiro-OMeTAD as a top-hole transport material (HTM) [46,47]. However, high 

temperature sintering of TiO2 inevitably increases manufacturing costs and trapped charges at the 

interface between the perovskite and the TiO2 ETL led to decomposition of the perovskite structure 

through a sequence of chemical reactions [42]. Furthermore, spiro-OMeTAD suffers from high 

cost and low stability [47]. Thus, HTM-free perovskite solar cells using carbon or graphene paste 

have been developed [48,49,50,51]. Alternatively, inverted p–i–n device structures of 

FTO/PEDOT: PSS/perovskite/PCBM/Ag or Al were sought [52,53] due to low temperature 

processes and better device flexibility. However, an inverted perovskite solar cell typically 

exhibited notorious photocurrent hysteresis [52,53]. In this thesis, we have fabricated a PSC with 

a p-i-n architecture to improve efficiency and stability and reduce hysteresis. 

 

2.3 Working principle of PSCs 

A typical Perovskite solar cell is made of an active layer, charge transport layers, and 

electrodes. As mentioned earlier, this thesis work is based on inverted p-i-n device architecture. In 

this structure, perovskite serves as the active layer or light harvesting layer which is sandwiched 

between a p-type hole transport layer (e.g., PEDOT: PSS) and n-type electron transport layer (e.g. 

PCBM), as shown in Fig. 8. A transparent conductive layer of FTO and a metal layer of Ag act as 

the back and front contact, respectively for inverted p-i-n device structure. The most commonly 

used perovskite material is MAPbI3. Our work mainly focuses on perovskite solar cells based on 

MAPbI3-xClx perovskites. 
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Fig. 8.  Energy band diagram of a typical p-i-n (inverted) perovskite solar cells. Basic working 

principle can be explained as: 1. Light absorption and exciton formation, 2. Charge carrier 

separation, 3. Charge carrier extraction [54].  

 

 

 

 When light is absorbed by perovskite, an electron is transferred from HOMO (highest 

occupied molecular orbital) to LUMO (lowest unoccupied molecular orbital). HOMO and LUMO 

resemble the valence band and conduction band as in inorganic semiconductors. With the transfer 

of an electron from HOMO, a hole is created, resulting in an electron-hole pair. Unlike an inorganic 

semiconductor, this electron and hole pair is regarded as excitons [54]. The excitons are bound 

electron-hole pairs with a relatively large binding energy ranging from 0.3 to 1 eV [54]. A photo-

current is generated when the excitons overcome this binding energy by absorbing light and 

dissociating the bound electron-hole pair into free charges. The exciton dissociation in perovskite 

solar cells occurs at the p-type (donor) and n-type (acceptor) interface. After dissociation, free 

charges are diffused to the respective charge transport layer (electrons to ETL and holes to HTL) 
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and are collected by the metal electrodes. The free charges move through the metal electrodes and 

when connected with a wire, a photo-current is generated. 

 

2.4 Single diode equivalent circuit and performance calculation 

The equivalent circuit of an ideal solar cell can be represented as a current source connected 

in parallel with a diode. An ideal current source delivers current in proportion to the amount of 

exposed solar illumination present. The ideal current-voltage equation is expressed as, 

I =  I0  (e
qV

nkBT − 1) −  IpH                                                                                                                         (1) 

where I0 is the saturation current, Iph is the photocurrent, n is the ideality factor, q is the electron 

charge, kB is the Boltzmann constant, and T is the cell temperature. 

However, in a practical solar cell, the I-V characteristics performance is influenced by a 

series resistance, Rs, and a shunt resistance, Rsh. The influence of these parameters on the I-V 

characteristics of the solar cell can be studied using an equivalent circuit as shown in Fig. 9. The 

I-V characteristics of the one-diode equivalent circuit with series resistance and shunt resistance 

can be represented as [55], 

I =  I0  (e
q(V−RsI)

nkBT − 1) +
V−RsI

Rsh
− IpH                                                                                                      (2)                                                                                              

where, Rs is the series resistance and Rsh is the shunt resistance. 



   

 

18 

 

Fig. 9.  Equivalent circuit of a solar cell (single diode model) [55]. 

 

 

 

The typical J-V characteristics of a solar cell and corresponding power curve are shown in 

Fig. 10. The most common parameters of J-V curves are short circuit current (JSC), Open circuit 

Voltage (VOC), and Fill Factor (FF). Short circuit current (JSC) is the current density of the solar 

cell when no voltage is applied. Open circuit voltage (VOC) is the voltage when no current is 

flowing through the solar cell. Fill Factor (FF) relates to the maximum power which can be 

represented as, 

FF =  
VmaxJmax

VOCJSC
.                                                                                                                                        (3)                                                                                             

The main parameter that evaluates the performance of one solar cell to another solar cell is 

efficiency (𝜂), which can be represented as  

η =  
Pout

Pin
                                                                                                                                                         (4) 

where, 𝜂 is the efficiency, Power output, Pout =  Voc × Isc × FF, and power input, Pin =

100 mW/Cm2.  



   

 

19 

 

Fig. 10.  Typical current – voltage (J-V) characteristics of a solar cell. 

 

 

 

2.5 Advantages of PSCs 

Hybrid organic-inorganic perovskites have attracted much attention in recent years due to 

their outstanding optoelectronic properties [56,57,58,59,60,61,62,63]  and opened new avenues 

for optoelectronic applications such as photovoltaics [64,65,66,67,68,69], photodetectors [70], 

light emitting diodes (LEDs) [71], and lasers [72,73]. In the photovoltaic research, perovskite 

materials have achieved photo conversion efficiencies exceeding 22% [12]. In particular, 

perovskites have gotten the most attention in the field of photovoltaics as a new candidate for next-

generation photovoltaics in an unprecedentedly short period of time. During the past few years, 

refined fabrication processes of perovskite solar cells, improved understanding of solar cell 

physics, and innovative device engineering have led to significant progress and much improved 

cells that operate at greater than 20% efficiency. In particular, worldwide research efforts have 

revealed exceptional optical and electrical properties such as high electron and hole mobility strong 

defect tolerance, large absorption characteristics, and long electron-hole diffusion lengths. 
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In particular, perovskite material has a large absorption co-efficient of 105 cm-1 [74], which 

paves a way to fully utilize the photon energy absorbed by a thin perovskite film (approximately 

300 nm) and delivers high current from the device. In addition, the electron beam induced current 

measurement on the perovskite device shows that the charge carriers can be collected on both 

electrodes when an electron beam is focused on one side of the perovskite layer. This clearly 

supports the ambipolar carrier transport behavior of MAPbX3 perovskites [60]. Moreover, the 

diffusion length of solution-processed single crystal MAPbI3 perovskite can exceed more than 175 

µm [61], which indicates the non-radiative recombination process and suppressed defect 

associated recombination of free charge carriers. Furthermore, the bandgap of mixed halide 

perovskite is tunable and provides a wide range of bandgap ranging from 1.48-2.53 eV [75]. 

 

2.6 Limitation of PSCs 

Despite having outstanding optoelectronic properties for efficient perovskite solar devices, 

there are some issues related to perovskite materials which need to be addressed in order to make 

them commercially available. The theoretical power conversion efficiency of a perovskite solar 

cell is more than 30% [76]. However, in reality, it is still not possible to get such high efficiency 

with current perovskite solar cells. The key issues regarding industry application of PSCs include 

power conversion efficiency, hysteresis, charge carrier recombination at the interface, defects, and, 

most importantly, device stability. 
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2.6.1 Recombination of charge carriers 

The efficiency of PSCs is still far from the theoretical efficiency. One of the reasons behind 

this is the recombination of charge carriers in the device, which reduces the open circuit voltage 

(VOC) and fill factor (FF) in PSCs. The recombination mechanism can be classified as radiative 

and non-radiative recombination. In radiative recombination, an electron from conduction band 

combines with a hole in the valence band directly, while in non-radiative recombination, an 

electron or hole is trapped in the forbidden region which forms defect states in the crystal lattice. 

A dominant non-radiative recombination mechanism in PSCs limits the efficiency of the device.  

In polycrystalline perovskite thin films, defects or impurities are found at the grain 

boundaries (GBs) and at the surfaces. The perovskite film is connected to ETL and HTL in the 

device structure. Therefore, an interface is formed which is prone to impurities and trap or defect 

states. Non-radiative recombination at the interface severely damages device performance. Larger 

grain (mm-scale) perovskite films can efficiently reduce the influence of defective GBs in 

perovskite thin films by reducing defects associated with GBs. In this work, large grain perovskite 

film was fabricated using a hot-casting technique in order to reduce the effect of GBs. In addition, 

the role of GIs and GBs have been systematically studied since there has been a controversy 

regarding the effect of GBs in the performance of perovskite solar cells. 

 

2.6.2 Hysteresis 

Another key issue which influences perovskite solar device performance is the 

photocurrent hysteresis. The hysteretic current-voltage, J−V behavior between forward (lower 

voltage → higher voltage) and reverse scan (higher voltage → lower voltage) during current-

voltage characterization presents a challenge for determining the accurate power conversion 
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efficiency of the PSCs. Generally, the reverse scan displays higher PCE than the forward scan, 

which means the reverse scan and the forward scan displays a mismatch in the efficiency of the 

PSCs (Fig. 11) [77,78,79]. The J-V hysteretic behavior of PSCs depends on many parameters such 

as scan rate, voltage range, scan direction, and configurations of PSCs [80,81,82,83,84,85,86]. 

Presently, there is a strong debate about the origin of the photocurrent hysteresis of 

perovskite solar cells. The proposed mechanism behind the hysteresis effect involves a slow 

ferroelectric polarization and the migration of excess ions as interstitial defects under the 

application of an applied bias [52,53,83,87]. In addition, electron charge traps at surfaces or/and 

GBs are pointed out as a plausible explanation for notorious hysteresis [52]. The slow decay 

process of the capacitive charging or discharging during J-V characterization is assumed to cause 

non steady-state photocurrent and hysteresis [81,82,83,84]. The non-steady state photocurrent, due 

to capacitive charging or discharging results from electrode polarizations at perovskite and 

electrode interfaces, which influences the hysteresis. However, the PV performance after light 

soaking with different bias voltages cannot be explained only with the capacitive effect. The 

modified steady-state current due to band bending, instead of the capacitive effect, could be the 

reason behind the change in the PV performance. The origin of band bending is due to trapped 

charges, ion migrations, or ferroelectric polarization. The extraction efficiency of the electron and 

hole contributes to the observed hysteresis behavior. The extraction efficiency is influenced by the 

charge trapping and detrapping process at the interface and grain boundaries, and enhancing charge 

extraction is vital for controlling hysteresis. The partially trapped states at the interfaces create a 

depletion region at HTL/Perovskite and ETL/Perovskite interfaces. This leads to a change in the 

band structure and reduces charge extraction under forward bias condition. Under large forward 

bias, trap states can be filled, which reduces the depletion region and the band bending. The 
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trapping and detrapping process of charges thus affect the hysteresis behavior in PSCs. 

Accumulation of ions occurs at interfaces near the electrodes due to ion migration, and an electric 

field is generated. This ion migration is considered to be another cause of band bending, which 

influences the separation and extraction of photogenerated charges. Ferroelectric polarization is 

another possible cause to modulate the electric field distribution, resulting in different PV 

performance under reverse and forward scan. 
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Fig. 11.  Hysteresis effect of a solar cell. Current-voltage characteristics are not same in forward 

and reverse voltage sweep [88]. 

 

 

 

2.6.3 Device Stability 

Presently, a Perovskite solar cell possesses high efficiency at more than 20%. Despite 

achieving a comparable lab-scale device efficiency to make solar cells commercially available, 

PSCs have critical issues regarding stability. The common standard PV modules available on the 

market typically have a warranty to retain their initial efficiency for 20–25 years. However, 
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perovskite solar cells are prone to degradation when exposed to air, UV light, thermal stress (heat), 

light soaking, electric fields, and many other factors [18,89,90]. 

The stability of perovskite devices is affected by different extrinsic and intrinsic factors. 

The main extrinsic factors are environmental influences such as air and moisture, which 

decompose the perovskite film as well as the whole device. The exposure of perovskite solar 

devices to oxygen and moisture in the atmosphere can affect the stability of the components 

directly. CH3NH3PbI3 tends to hydrolyze in the presence of moisture (Fig. 12), which leads to 

decomposition of perovskite occurring as follows [91]: 

CH3NH3PbI3 (s) ↔ PbI2 (s) + CH3NH3I (aq)                                                                                     (5)                                                                                                                                                      

CH3NH3I (aq) ↔ CH3NH2 (aq) + HI (aq)                                                                                            (6) 

4HI (aq) + O2(g) ↔ 2I2 (s) + 2H2O (l)                                                                                                (7) 

2HI (aq) ↔ H2 (g) + I2 (s).                                                                                                                      (8) 

It should be noted that moisture, oxygen, and UV radiation are indispensable for the 

degradation process. The most critical stability issue is the intrinsic instability of PSCs. 

Hygroscopicity, thermal instability, and ion migration are three major intrinsic factors 

corresponding to perovskite solar device instability. The hygroscopicity is related to the 

environmental factors and the thermal instability also leads to the decomposition of perovskite into 

lead iodide evaporating methylammonium iodide under thermal stress. Lastly, the ion migration 

is almost inevitable in all halide perovskites due to the high external field applied across the thin 

films during the J-V scan and the high ionic mobility [92]. Moreover, the situation is more severe 

at the defective sites, grain boundaries, and the interfaces. 



   

 

25 

 

Fig. 12.  Degradation effect. Black perovskite films turns into yellow when it is exposed to air for 

7 days [93]. 

 

 

 

2.6.4 Toxicity 

The efficiency of perovskite solar cells at laboratory scale has come close to the current 

silicon photovoltaics available on the market. However, a major concern of these materials is 

related to the use of heavy metals as cations. The best performed PSCs until now have had a high 

PCE comprised of lead, which is very harmful in the environment. Although lead is present in 

batteries and equally toxic chemicals such as cadmium are found in commercial photovoltaics, the 

possibility of lead exposure in the environment poses a serious threat to the ecosystem. Long-term 

exposure of toxic chemicals due to occupational or environmental causes will damage human 

health severely. Therefore, the toxicity issue concerning PSCs are should be considered seriously 

while progress is being made on its performance and stability. 

An alternative to lead could be tin; however, PSCs with tin exhibits much lower efficiency. 

In addition, Sn2+ in perovskite degrades into Sn4+ [94]. Hence, the perovskite technology requires 

installation in an absolutely safe way with proper encapsulation resistant to extreme conditions. 
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Moreover, an in-depth investigation of the toxicity of Pb and Sn is crucial. Furthermore, 

standardized protocols for recycling PSC modules should be established as well.  

 

2.7 Summary 

 Perovskite has a generic chemical structure ABX3 comprised of two cations and one anion 

and there are different combinations available by maintaining tolerance factor and electronic 

properties. In particular, this thesis work will focus on perovskite solar cells with CH3NH3PbI3-

xClx perovskite. Though the Perovskite solar cell has outstanding optoelectronic properties, it has 

various limitations such as defective grain boundary, hysteresis, stability, toxicity, etc. These 

limitations need to be resolved before making it commercial. In this work, several ways to resolve 

some of these limitations will be discussed. 
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CHAPTER 3 

EXPERIMENTAL METHODS 

 

3.1 Perovskite precursor preparation 

A Perovskite (CH3NH3PbI3-xClx) solution was prepared by dissolving equimolar ratios of 

lead iodide (PbI2, Sigma-Aldrich, 99%) and methylamine hydrochloride (MACl, Sigma-Aldrich) 

in N, N-dimethylformamide (DMF, Sigma-Aldrich, anhydrous, 99.8%) in 11 wt% concentration. 

In this case, 0.09 g PbI2 and 0.013 g MACl were mixed in 1 ml DMF. The solution was ready for 

use after heating on a hot plate at 70 °C for 24 hrs with magnetic stirring in a N2 filled glove box. 

 

3.2 Perovskite solar cell fabrication 

Solar cells were fabricated using an inverted p-i-n device structure. The generic perovskite 

solar cell has five different layers with the structure of FTO/PEDOT: PSS/perovskite/PCBM/Ag 

as shown in Fig. 13. Later, a layer of C60 or carbon was inserted between PCBM and Ag to 

passivate the interface defect and improve efficiency. Moreover, the hole transport layer of 

PEDOT: PSS was replaced by NiO to improve the air stability.  

 

3.2.1 Transparent electrode FTO preparation 

Fluorine doped tin oxide coated (FTO) glasses (SnO2/F, 8 Ωsq-1, Aldrich) were used as the 

transparent electrode and substrate of the devices and were etched using zinc powder (Zn, Sigma- 

Aldrich, 98%) and a hydrochloric acid (HCl, Alfa-Aesar) solution to form the desired pattern. The 

patterned FTO substrates were subsequently cleaned in ultrasonic baths (Branson 1500) containing 
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mucasol (Sigma-Aldrich), de-ionized water, methanol (Alfa-Aesar), acetone (Alfa-Aesar) and 2-

propanol (J.T.Baker), respectively (each for 10 mins). Afterwards, the substrates were dried with 

nitrogen, followed by heat treatment at 120 °C for 20 mins to remove the last traces of any solvent. 

 

3.2.2 Hole transport layer (HTL) deposition 

A hole transporting layer was deposited on the cleaned FTO substrate at 3000 rpm for 1 

min using a PEDOT: PSS (AI 4083, HERAEUS) solution and annealed at 150 °C for 20 mins. The 

PEDOT: PSS solution was diluted in 2-propanol (J. T. Baker) in the ratio of 1:3. The thickness of 

the PEDOT: PSS layer was measured to be about tens of nanometers. In the case of NiO based 

HTL, the NiO precursor was prepared by mixing 0.72 g of NiO (Sigma-Aldrich) with 2 mL of HCl 

(Alfa Aesar, 36%) and then stirred at 75 °C for 15 mins. After mixing, the solution was filtered by 

a 0.45 µm filter. The NiO precursor solution was spun coated at 2000 rpm for 60 s followed by 

annealing at 350 °C for 15 mins. 

 

3.2.3 Active layer of perovskite deposition 

Perovskite (CH3NH3PbI3-xClx) films were prepared using a hot casting technique. In this 

process, the substrates were kept at 180 °C and the precursor solution at 70 °C. The solution was 

then immediately deposited on the hot substrate by spin coating at 4000 rpm for 10 s so that the 

substrate temperature was retained. During this process, the temperature was closely monitored 

using an IR (infrared) thermal gun. The thickness of the perovskite was calculated from a cross-

sectional SEM image as shown in Fig. 13 (b), which is about 252±7 nm [95]. After depositing the 

perovskite absorber layer, the devices were transferred to a nitrogen-filled glove box. 
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3.2.4 Electron transport layer (ETL) deposition 

PCBM (Nano-C, 99.5%), used as an ETL, was spun on top of the perovskite layer at 1250 

rpm for 60 s in a nitrogen-filled glove box. PCBM was diluted using a solution of 1,2-

dichlorobenzene (Alfa-Aesar, 99%) in 2 wt% concentration. The thickness of the PCBM layer was 

measured to be about tens of nanometers. In chapter 6, a layer of C60 or carbon was inserted 

between PCBM and Ag contact. C60 or carbon was deposited on top of the PCBM layer at a base 

pressure of 1×10-7 torr. In particular, C60 (Alfa Aesar, 99%) or graphite (Aldrich, 99.99%) was 

placed in a graphite crucible and irradiated by e-beam. The resultant thickness was ~10 nm, as 

measured by SEM. 

 

 

 

(a) (b)

ETL

HTL
MAPbI3-xClx

Ag

FTO

 

Fig. 13.  (a) A schematic of perovskite solar device with the structure of FTO/PEDOT: 

PSS/perovskite/PCBM/Ag. (b) The cross-sectional SEM image of the corresponding device 

architecture. 

 

 

 

3.2.5 Cathode electrode deposition 

Finally, 170 nm thick silver (Alfa-Aesar, 99.9%) as a cathode electrode was deposited at 4 

Å per second under a pressure of 1×10-7 torr using an electron beam (E-beam) evaporator. The 
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active area of the device is 10 mm2. A schematic device structure without the C60/carbon layer is 

shown in Fig. 13 (a) and the corresponding cross-sectional SEM image is shown in Fig. 13 (b). 

 

3.3 Electrical characterization 

3.3.1 Current-voltage characteristics (J-V) 

The photocurrent density (J) vs. voltage (V) curves were determined using a Keithley 2400 

source meter under AM 1.5G illumination at 100 mW/cm2 provided by a solar simulator (Newport 

69907). One sun illumination was adjusted using the NREL-calibrated, KG-2 filtered Si diode. A 

450 W Xenon lamp was used as a light source and the lamp remained on for 30 mins before starting 

the photocurrent measurement to stabilize the light intensity. J–V curves were obtained by 

scanning from -0.05 V to 1.2 V.  

 

3.3.2 Hall and Four-point probe measurement 

The sheet resistance of the perovskite film was measured using a Jandel RM3 four-point 

probe. In addition, an Ecopia HMS-5300 Hall effect measurement system was used to determine 

electrical properties such as sheet resistance, mobility, resistivity, Hall coefficient, and so on. 

 

3.4 Optical characterization 

3.4.1 Steady state and time resolved photoluminescence (PL) measurement 

Steady-state and time-resolved photoluminescence (PL) measurements were performed 

using Horiba FluoroLog-3 spectrofluorometer and time-correlated single photon counting 
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(TCSPC) with a solid-state laser with 450 nm, which was used for the various excitation intensities. 

Both a continuous 450 W xenon lamp and pulsed laser-diode were used to measure steady-state 

PL and lifetime decays. The TCSPC is fiber-coupled into Olympus BX53F microscope equipped 

with a CCD camera capable of measuring PL and lifetime mappings while showing microscopic 

morphologies. 

 

3.4.2 UV-vis measurements 

The UV-vis spectrum was measured by using a Perkin Elmer Lambda 45 

spectrophotometer in absorption and transmission mode. To measure UV-vis, a specific layer such 

as perovskite was prepared on top of a glass substrate following the same fabrication procedure as 

mentioned in the film preparation section. 

 

3.5 Structural and morphological characterization 

3.5.1 X-ray diffraction measurement 

X-ray diffraction was conducted using a Rigaku MiniFlex II X-ray diffractometer. An 

acquisition rate of 5° min-1 with a step size of 0.02° was used. X-ray diffraction was used to find 

out the crystal structure, crystal size, and defects of different films. Crystal size can be calculated 

from XRD spectrum using Scherrer equation [96,97],  

 L =  
Kλ

β Cos θ
                                                                                                                                                    (9)                                                                                                                        

where 𝐿 is the average crystal size, λ is the wavelength of the X-ray irradiation (0.154 nm), 𝐾 is 

the dimensionless shape factor, β is the full width at half maximum (FWHM), and 𝜃 is the Bragg 

angle. The intermolecular spacing (𝑑ℎ𝑘𝑙) can be calculated from Braggs law, 
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dhkl =  
λ

2 sinθ
                                                                                                                                               (10)                                                                      

where, λ is the wavelength of the X-ray irradiation (0.154 nm) and 𝜃 is the Bragg angle. 

 

3.5.2 Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) 

measurement 

Surface and cross-sectional scanning electron microscope (SEM) images of the perovskite 

film were collected by a field emission scanning electron microscope (FESEM, JSM7500F, 

JEOL). Images were taken at different magnifications and accelerating voltages. A thin conductive 

layer of gold (Au) was coated on the film for preventing electron charging using a Hummer V 

Sputter Coater before scanning the surface and cross-section of the film. To analyze the 

compositions of each component in different films, EDS was calibrated with a series of standard 

samples including SiO2, KCl, PbF2, Cu (Kα – 8.04 keV, Kβ – 8.9 keV) and others. The 

measurement uncertainty was estimated to be ±1% by statistical analysis of a series of 

observations. 

 

3.6 Mechanical characterization 

3.6.1 Nanoindentation 

 To measure the elastic properties of perovskite films, a nanoindenter XP (Agilent 

Technologies, Inc., Santa Clara, CA) was used in conjunction with the continuous stiffness method 

(CSM) in depth control mode. The nanoindenter XP is equipped with a three-sided diamond 

Berkovich probe. The CSM method provides continuous evaluation of the mechanical properties 

of materials as a function of contact depth. The Berkovich indenter tip was calibrated on fused 
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silica standards using a preliminary calibration procedure recommended by Agilent Technologies 

for an initial 100 nm, 500 nm and 2 μm of geometry. Arrays of 12-16 indentation tests were 

performed with proper spacing between adjacent indents. The allowable drift rate and the strain 

rate for loading were specified as 0.05 nm/s and 0.05 s-1, respectively. 

 

3.7 Summary 

 This chapter covers the fabrication and characterization techniques used throughout this 

thesis.  In particular, perovskite thin film was fabricated using a hot-casting technique, where the 

substrate and precursor solution was kept at a specific temperature. For fabricating other layers, 

we mainly used spin-coating and e-beam evaporation technique. The detailed parameters of 

different characterization technique used in this work are described as well. 
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CHAPTER 4 

ROLE OF GI AND GB IN ORGANIC-INORGANIC LEAD HALIDE PEROVSKITE 

 

4.1 Introduction 

 Halide perovskites have gained tremendous research interest as a new category of 

semiconductor materials that will revolutionize photovoltaic technologies. During the last few 

years, significant improvements in the performance of halide perovskite solar cells have been 

made, thanks to a new understanding of the materials and new device architecture designs 

[44,59,64,68,98,99,100]. In particular, world-wide research efforts have revealed the exceptional 

optical and electrical properties such as high electron and hole mobility, strong defect tolerance, 

large absorption characteristics resulting from s-p antibonding coupling and the long electron-hole 

diffusion lengths exceeding 1 µm [44,59,64,68,98,99,100]. All of these unique characteristics of 

perovskites led to unprecedented energy conversion efficiency of perovskite solar cells. However, 

many problems remain to be solved to unravel the underlying mechanisms that will allow for 

improved photovoltaic performances. In particular, there’s been intensive interest in understanding 

the nature of grain boundaries (GBs) of perovskites in the solar cell community 

[40,101,102,103,104,105,106,107]. Since the perovskites are prone to defect formation, due to the 

low thermal stability of the materials, it is expected that chemical disorder occurs, particularly at 

the GBs. According to theoretical studies, the GBs are characterized by defects that have very 

shallow intrinsic levels, i.e. the GBs are completely benign [101]. On the contrary, Agiorgousis et 

al., also conducted a theoretical calculation and found that the deep charge-state transition levels 
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within the bandgap were indeed possible by forming Pb dimers and I trimmers through very strong 

covalent bonds [102]. 

 In addition, experimental studies also revealed controversial results. Until now, the GBs of 

organic–inorganic halide perovskite films were characterized by confocal fluorescence 

microscopy, conductive-atomic force microscope (c-AFM), Kelvin probe force microscopy 

(KPFM), and electron beam-induced current (EBIC) [40,104,105,106,107]. Nanoscale 

photoluminescence (PL) and lifetime mappings [40,104] unambiguously revealed that the GBs 

exhibited strong non-radiative relaxation of charge carriers. This result implies that the GBs are 

defective and not as benign as previously suggested in ref. [101]. In contrast, C-AFM 

measurements indicate a higher short-circuit current was observed at the GBs than at the grain 

interiors (GIs), indicating the photo-generated charge carriers more effectively separated at the 

GBs [103]. Yun et al., also conducted KPFM measurements that revealed greatly enhanced charge 

separation and collection at the GBs, indicating the benign characteristics of the GBs [103]. In 

short, the confocal microscope optical measurements [40,104] concluded that the GBs can be 

detrimental whereas the benign characteristics were unveiled by other measurements [103,104]. 

This begs the question of why defective GBs in perovskite materials do not act as high 

recombination sites for photogenerated charge carriers but enables perovskites solar cells to 

achieve their high efficiencies. To address this question, we need to clearly understand the nature 

of the GBs for perovskite solar cells by contrasting them with the GIs. Hence, in this chapter, we 

focused on probing defects at the GIs and GBs, on characterizing the discrete roles of the GIs and 

GBs mostly influenced by morphological, and chemical variations of perovskites through 

concerted combinations of chemically, spatially, and temporally resolved microscope studies at 

the nanoscale. 
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4.2 Hot casting technique for larger grain perovskite 

One of the main challenges is to produce pin-hole free morphologies with larger grains 

during the deposition and crystallization of the perovskite layer. This is because a uniform surface 

coverage of the perovskite film is crucial for solar cells to avoid shunting [100] and the notorious 

hysteresis effects [108]. Conventionally, perovskite film is spin coated or sequentially deposited 

at room temperature followed by annealing at 100 °C to crystallize the film. The sequential 

deposition or conventional spin-coating methods have been widely used and typically resulted in 

smaller grain size of 1~2 µm with many pin-holes. However, we have incorporated a hot casting 

process by following previous reports [109] which gives pinhole free larger grain perovskite films. 

In this process, perovskite films were prepared when the substrate and solution were kept at 180 

°C and 70 °C respectively.  Substrate was transferred to spin coater chunks from a hot plate very 

quickly and the solution was dropped instantly so that temperature remains the same on the top of 

the sample. During this process, sample temperature is higher than the boiling point of solvents 

(DMF or DMSO) at the time of spinning in the spin coater. The thermal energy facilitates the 

formation of a larger grain of the perovskite during the spin-casting process [109]. The difference 

in grain sizes between the two different hot casting temperatures is shown in Fig. 14. 
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Fig. 14.  Comparison of grain sizes of lower (100 °C) and higher (180 °C) hot-casting perovskites 

[15]. 

 

 

 

4.3 Chemical analysis of GI and GB of various grain sizes using SEM and EDS 

To investigate the local chemical compositions of the GIs and GBs for perovskites, an EDS 

measurement coupled with an SEM was performed. Fig. 15 shows the two-dimensional (2D) EDS 

mapping of a higher (180 °C) hot-casting perovskite that highlighted the chemical distributions 

across the GBs. Remarkably, a higher hot-casting perovskite produced pin-hole free GBs, as 

shown in the SEM image of Fig. 15 (a). In particular, the chemical components composed of 

perovskites were carefully examined between the GIs and GBs in order to fully understand the role 

of GIs and GBs of perovskites. The chlorine signal (2.621 KeV) [110] can be clearly distinguished 

from the Pb signal (2.342 KeV). The resultant EDS mapping of CH3NH3PbI3-xClx clearly revealed 

that the contents of lead (Pb) and chloride (Cl) in Fig. 15 (b) and (c) were significantly lower at 

the GBs. Note that the EDS mapping of iodide (I) was not shown but found to be similar to that of 

Pb. One of the critical observations is an increase in O contents when approaching the GB, as 

shown in Fig. 15 (d). 
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Fig. 15.  (a) SEM images of large grain perovskite and corresponding chemical distributions of (b) 

lead (Pb), (c) chlorine (Cl) and (d) oxygen (O) that were measured by EDS mapping [15]. 

 

 

 

Fig. 16 shows the quantitative analysis of the variations of the chemical components of 

perovskites as functions of grain sizes and the positions of perovskites. In this study, the controlled 

grain sizes of perovskites ranged from a few micrometers to ~60 µm in Fig. 16 (a)-(c). The 

quantitative atomic percentage of MAPbI3-xClx for representative areas in Fig. 16 (a) and (b) was 

analyzed and listed in Table 1. Interestingly, the density of chemical compositions (C, Pb, Cl and 

I) of perovskites at the GIs is gradually reduced when the grain sizes of perovskites were reduced, 

as shown in Fig. 16 (d). Notably, a higher atomic percentage (5%) of Cl was found with enlarged 

grain size (60 µm) perovskites, which is contrasted with a negligible amount (<1%) of Cl for 

smaller grain perovskites. Note that Cl-doping is a common technique for achieving higher open 

circuit voltage and long diffusion lengths of perovskite solar cells [111,112,113]. Despite intensive 

studies to increase the Cl content, the control of the Cl content in perovskite is extremely difficult, 
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resulting in the negligible content of Cl in perovskites [111,112,113]. As demonstrated, our study 

suggests a novel way to tune the Cl content by controlling the grain sizes of perovskite using a 

hot-casting technique. We also found that the grain size of perovskite influenced the (Cl+I)/Pb 

ratio, as shown in Fig. 16 (e). For instance, for smaller grain (~4 µm) perovskites, the GIs yielded 

a ratio of Pb to (Cl+I) close to 1:2.3 while the larger grain perovskites led to stoichiometric values 

of ~ 1:3. It suggests that the enlarged grains of perovskites have excellent chemical structures. In 

addition, it is found that the distributions of chemical compositions were quite distinct, especially 

at the GIs and GBs of perovskites. Fig. 16 (f) illustrates the variations of chemical compositions 

across the perovskites, showing a gradual decrease in the chemical components (C, Pb, I, Cl) of 

MAPbI3-xClx from the GIs to the GBs while clearly illustrating a drastic increase in oxygen at the 

GBs. 

 

 

 

 

Fig. 16.  SEM images of (a) small (~4 µm), (b) medium (~15 µm) and (c) large (~60 µm) grain 

perovskites. (d) Atomic percentage of chemical components (C, Pb, Cl, I, O) and (e) (Cl+I) to Pb 
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ratio at the GIs as functions of grain sizes and the positions of perovskites. (f) Atomic percentage 

of selected areas of I, II, III, and IV across large (~60 µm) grains [15]. 

 

 

 

Table 1.  Atomic chemical percentage of selected chemical components of small (~4 µm) and 

medium (~15 µm) perovskites of Fig. 16 (a) and (b). Other chemical elements such as Na, Mg, Al, 

Si, S, Ka, and Ca were detected but not shown here. 

 

 

 

 To quantitatively examine chemical distributions between the GIs and GBs, the 

representative areas in Fig. 16 (a) and (b) were further analyzed. In particular, the GIs and GBs 

showed three distinct discrepancies. First, it is found that the chlorine was absent at the GBs for 

both smaller and larger grain perovskites, which provides critical insight into the nature of grain 

boundaries. This is because the presence of Cl in MAPbI3 plays a critical role in mitigating the 

formation of defects, but yielding a long diffusion length of charge carriers in perovskites 

[111,112,113]. The absence of Cl at the GBs suggests that the GBs are more defective and yield 

shorter diffusion lengths of charge carriers when compared with the GIs. As reported, the reduction 

mechanism of Cl in perovskite films was attributed to the release of gaseous CH3NH3Cl through 

an intermediate phase reaction during thermal annealing [111]. In our case, since the GBs are 

 100 °C hot-casting perovskite 180 °C hot-casting perovskite 

 Grain Interior 

(GI) 

Grain Boundary 

(GB) 

Grain Interior 

(GI) 

Grain Boundary 

(GB) 

C 9.79  19.64 12.85 

O 58.28 66.44 41.95 53.64 

Pb 0.97 0.47 1.14 0.37 

Cl 1.21  0.71  

I 1.01 0.34 1.91 0.43 
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characterized by disordered structures, it is reasonable to assume that the disruptive chemical 

structures at the GBs will have weakly bonding chemical configurations and thereby promote the 

release of gaseous CH3NH3Cl during the hot-casting processes. Additionally, the smaller radii of 

Cl compared to those of Pb and I might also enhance the depletion of Cl at the GBs, resulting in 

the absence of Cl at the GBs. Second, the GBs are characterized by non-stoichiometric PbIx and 

MAPbIx for smaller and larger grain perovskites, respectively. Note that the incomplete coverage 

of perovskites was also observed for smaller grain perovskites. Our EDS measurements indicated 

Pb/I ratios of ~1:0.7 and 1:1.2 for PbIx and MAPbIx at the GBs, largely deviating from a 

stoichiometric ratio of 1:3, indicating a higher density of iodide vacancy. Therefore, the dominant 

defects at the GBs were the iodide vacancy (VI) for both perovskites. Third, a higher atomic 

concentration of oxygen at the GBs, compared to the GIs, is found, as shown in Fig. 17. Note the 

level of oxygen at the GBs was similar regardless of the grain sizes of perovskites, while the 

oxygen contents at the GIs were decreased with increased grain sizes, indicated in Fig. 17. An 

increase in oxygen concentration at the GBs might be related to the iodide vacancy in which the 

Pb cations attract oxygen anions to compensate the iodide anion deficiency. Based on our 

measurements, it is likely that the GBs are characterized by an absence of chloride, a number of 

iodide vacancies (VI), and a higher concentration of oxygen. In contrast, the GIs showed better 

structural compositions of perovskite, showing the stoichiometric MAPbI3-xClx. 
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Fig. 17.  Atomic percentage of oxygen as functions of grain sizes at the center grain and grain 

boundaries [15]. 

 

 

 

4.4 Two dimensional (2D) photoluminescence mapping of smaller and larger grain 

perovskite film 

To investigate the local variation of chemical compositions of perovskites on the optical 

properties of perovskite, steady-state PL and time-resolved lifetime mapping were performed. Fig. 

18 shows high-resolution PL spatial mapping that correlates topologies to emission spectra of 

MAPbI3-xClx. For the PL and lifetime mapping, poly(methyl methacrylate) (PMMA) was coated 

on top of the perovskite as the protective layer from moisture and/or atmospheric oxygen. In 

particular, it has been proved that PMMA polymer as an optically transparent material exhibited a 

higher stability under irradiation [59]. Without PMMA coating on perovskite films, it is found the 

PL intensities and lifetimes gradually varied during 2D mapping due to photo-degradation. A laser 



   

 

43 

diode (λexc = 405 nm) was used for optical excitation of the PL mapping, which was scanned over 

an area of 20 µm × 20 µm of perovskites. The excitation power of 0.2 µW/cm2 was used to avoid 

the degradation by a laser diode, and spatially integrated emission spectra ranging from 680 to 815 

nm were collected. We note that the PL images are consistent with microscopic morphologies 

which depict a higher contrast at the GBs and suggest significant differences in optoelectronic 

properties between the GIs and GBs. Overall, the PL intensity of a larger grain perovskite, Fig. 18 

(a), is approximately 10 times stronger than that of a smaller grain perovskite, Fig. 18 (c). This 

suggests that a larger grain perovskite possesses better optical quality. Based on 2D PL mapping, 

it was found that the GBs for both perovskites were characterized by the strong PL quenching at 

the GBs, which could be in part attributed to non-radiative trap centers. In addition, it is found that 

emission spectra were gradually blue-shifted towards the GBs and had an abrupt blue-shift at the 

GBs, as shown in Fig. 18 (e) and (f). An increase in chemical inhomogeneity towards the GB might 

be responsible for the non-radiative PL and the blue-shift in PL peaks. Note, a blue-shift towards 

the GBs suggests a gradual broadening of the energy bandgap from GIs towards GBs and an abrupt 

broadening of the energy bandgap at the GBs. 
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Fig. 18.  High-resolution photoluminescence (PL) confocal microscopic images and PL intensity 

spatial mapping that correlate topologies to emission spectra of CH3NH3PbI3-xClx. (a) and (c) 

Microscopic image, (b) and (c) corresponding PL intensities of large and small grain perovskites, 

respectively. (c) and (f) PL mapping showing the blue-shift of emission peaks at the GB for a large 

grain perovskite shown in (b) [15]. 

 

 

 

4.5 Two-dimensional (2D) time resolved photoluminescence (TRPL) mapping of smaller and 

larger grain perovskite film 

To get deeper insight into the recombination kinetics of perovskites, time-resolved PL 

mapping was investigated with a confocal microscope at a nanoscale resolution of ~380 nm, which 

allows for spatially resolving recombination kinetics at the GIs and GBs. In this case, the 

perovskites were excited with a 405 nm pulsed laser (pulse width down to 60 ps, repetition rate 50 

MHz). Fig. 19 shows the lifetime mapping of perovskites that are clearly distinguishable between 

the GIs and the GBs. By quantitatively analyzing the lifetimes across the grains, the average 
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lifetimes for smaller and larger grain perovskites at the GIs, were estimated about ~ 1.8 and 2.5 

ns, respectively. Interestingly, a smaller grain perovskite produced a slightly longer lifetime at the 

GIs by ~1.4 times than that of a larger grain perovskite. Note that Nie et al. [109], reported a 

similar observation in which a smaller grain perovskite yielded the longer effective carrier lifetime 

but smaller diffusion constants of minority carriers than that of a larger grain perovskite, 

emphasizing the disordered and defective natures of a smaller grain perovskite. The carrier lifetime 

distribution in Fig. 19 was further analyzed by contrasting four different transient regions 

highlighting the hot-spot (donated by red region A), the GI (yellow region B), the area adjacent to 

the GBs (light blue region C) and the GB (dark blue region D), respectively. Interestingly, hot 

spots within the grain interiors showed longer lifetimes compared to the surrounding regions for 

both perovskites as highlighted in Fig. 19 (c) and (f). Approaching the GBs, i.e. approaching from 

hot-spot A to B to C and to D regions, the lifetimes of both perovskites gradually decreased, 

indicating the non-radiative characteristics towards the GBs. Such variations of lifetimes are 

closely correlated to the localized chemical variations and the evolution of non-stoichiometric 

perovskites towards the GBs. 
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Fig. 19.  Lifetime mapping of hot-casting perovskites that are clearly distinguishable between the 

GIs and the GBs. (a) and (d) Time resolved 2D lifetime mapping, (b) and (e) magnified selected 

lifetime mapping and (c) and (f) corresponding lifetime values as a function of positions for large 

and small grain perovskites, respectively [15]. 

 

 

 

4.6 Plausible recombination mechanism at GB 

 Since the defect with deep levels can only be responsible for non-radiative recombination, 

the VI  one of dominant defects found from our EDS measurements, must have deep defect levels 

instead of shallow transition energy level. Recently, Agorgousis et al. [102], suggested that the 

deep-level of defect state VI can be formed when the Fermi energy is close to the band edge. 

Otherwise, the formation energy of deep-level VI defects is very high, so that it is unlikely to form 

deep defects, but leads to the shallow-level of VI defects. However, there will be much possibility 

that an incorporation of a higher concentration of oxygen at the GBs might shift the position of 

Fermi energy level close to conduction band. As a consequence, the modification of Fermi level 
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is likely to lower the formation energy of VI defects that have the deep-level of defect states and 

serve as trap-assisted recombination centers at the GBs. Indeed, a recent experiment demonstrated 

that the incorporation of H2O as an n-type dopant shifted the Fermi energy level of the perovskites 

close to the band edge [114]. Thus, the GBs will contain the deep trap states which might serve as 

recombination centers. Nevertheless, the GBs might not act as high recombination sites for charge 

carriers due to the favorably energy bandgap configuration of nonstoichiometric MAPbIx or PbIx 

at the GBs, as shown in Fig. 20.  As observed from PL mapping, MAPbIx or PbIx at the GBs will 

have a larger energy bandgap than that of GIs. Given the larger energy bandgap of these materials, 

they would result in a type I band offset, previously measured by ultraviolet photoemission 

spectroscopy (UPS) [106]. If such energy bandgap alignment is formed, its beneficial effect would 

form energy barriers that will prevent charge carriers from the traps states at the GBs, thereby 

greatly reducing the recombination rates at the GBs. It should be noted that the grain boundary of 

Cu(InGa)Se2 and Cu2ZnSnS4 solar cell materials has broadening or band bending of the band gap, 

consequently leading to the suppression of the photogenerated charge carriers at the GBs 

[115,116,117]. Therefore, the benign characteristics of the GBs of perovskites observed from 

many experimental measurements could be originated from a favorable larger energy bandgap 

alignment at the GBs, even though the MAPbIx or PbIx formed at the GBs is defective and contains 

deep trap centers. 
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Fig. 20.  Energy bandgap profile in perovskites outlined, based on the chemical and optical 

characteristics of EDS, PL and time resolved lifetime measurements. The larger bandgap of PbIx 

or MAPbIx at the GBs was formed and had a favorable bandgap alignment, thereby greatly 

reducing the recombination rate of photogenerated charge carriers at the GBs [15]. 

 

 

 

4.7 Summary 

 We have systematically investigated GIs and GBs of perovskite film using chemically, 

spatially, and temporally resolved measurements. Irrespective of grain size, GBs has non-

stoichiometric ratio of PbIx and CH3NH3PbIx with enriched oxygen concentration, an absence of 

chlorine and an increased amount of iodine. Indeed, it has been found from 2D PL lifetime 

mapping that GB has deep defect centers due to non-radiative characteristics. Also, there has been 

bandgap broadening observed at GB which is a benign characteristic of GB. Due to bandgap 

broadening, charge carrier is repelled from GB and lower recombination might occur at GBs. In 

the next chapter, we will fabricate perovskite solar cells using different grain sizes to show the 

effect of GBs in the photovoltaic performance. 
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CHAPTER 5 

NEW DECONVOLUTED PL APPROACH TO PROBE THE CHARGE CARRIER 

DYNAMICS OF THE GI AND GB 

 

5.1 Introduction 

 Perovskite solar cells (PSCs) have emerged as a promising candidate in the field of 

photovoltaic technology and have shown remarkable energy conversion efficiency improvement 

within a short period [26,41]. However, there are still some issues such as long-term stability, 

hysteresis, and defects in perovskite films [91,118,119]. In particular, there has been controversy 

about the nature of the grain boundary (GB), [40,105,120,121] which plays a decisive role in the 

solar cell performance. The GBs of perovskite solar cells have been examined by using nanoscale 

characteristic tools including Kelvin probe force microscopy (KPFM), conductive atomic force 

microscopy (c-AFM), electron beam-induced current (EBIC), and confocal microscopy 

[40,105,120,121,122]. To date, based on KPFM, c-AFM and EBIC measurements, the benign 

characteristic of GBs has been reported [105,120], providing effective charge separation and 

collection at grain boundaries, which results in a higher photocurrent. However, according to 

confocal microscopy measurements [40], the grain boundaries are characterized by a source of 

nonradiative recombination centers with lower PL intensity and faster nonradiative decay. In 

addition, there is controversy about the nature of GBs in theoretical studies [102]. First principles 

calculation studies performed by Yin, et al. [101] showed that GBs are benign because they do not 

produce deep defect states. On the other hand, Agiorgousis, et al. [102] also conducted the same 

first principles calculations but reported that Pb cations and I anions were strongly covalently 
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bonded by the formation of Pb dimers and I trimers, which led to the formation of deep defect 

states within the band gap. However, in spite of the experimental and theoretical controversies 

about GBs, there is agreement on the positive effect of increased grain size on the reduction of 

notorious hysteresis and improved performance of perovskite solar cells [84,109]. This suggests 

that controlling the grain size and GBs is important for achieving a reliable and high energy 

conversion efficiency of perovskite solar cells. In this regard, it is important to develop a rapid 

method for measuring the nature of GBs that can provide timely feedback to modify the processing 

methods and conditions of the perovskite film. However, the prevalent method of studying the 

effect of GBs relies on nanoscale equipment, including KPFM, c-AFM, EBIC, confocal 

microscopy, etc. that limits the flexibility of experiments due to sample preparation and time 

consuming processes. In this paper, a comprehensive new method of simultaneously probing both 

grain interiors (GIs) and GBs of CH3NH3PbI3-xClx perovskite films is introduced using well-

established, regular photoluminescence (PL) measurements. In particular, we were able to resolve 

the PL spectra which were typically asymmetric and deconvoluted with a bi-Gaussian function 

representing the ordered and disordered phases of the perovskite film. Quantitative analysis of 

two-dimensional (2D) PL mapping using confocal microscopy revealed that the ordered PL spectra 

originated from GIs whereas the disordered PL spectra mainly came from GBs. The systematic 

analysis of the ordered and disordered PL spectra provided deep insight into the recombination 

processes of the GIs and GBs of perovskite films. Remarkably, we found that the GIs showed 

exciton-like recombination processes regardless of grain size. However, the recombination process 

of the GBs was largely dependent upon the size of the grains which induced nonradiative 

recombination or exciton-like transition. We also correlated the performance of perovskite solar 
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cells with perovskite morphology. In particular, higher efficiency perovskite solar cells were 

achieved with a larger grain size while much lower efficiency was achieved with smaller grains. 

 

5.2 Deconvoluted PL approach to separate GI and GB 

 Fig. 21 shows the photoluminescence (PL) spectra of CH3NH3PbI3-xClx (MAPbI3-xClx) 

perovskite thin films that were measured using a Horiba FluoroLog-3 spectrofluorometer. The 

perovskite film was excited by a 450 nm solid-state laser that had a beam spot size of about 25 

mm. The perovskite film was prepared on a glass slide using a hot-casting technique. A scanning 

electron microscope (SEM) image of the perovskite film is also shown in Fig. 21. The perovskite 

film exhibits PL peak positions at 760 nm within the sharp absorption range associated with the 

band edge observed in the range from 730 nm to 790 nm. 

 

 

 

 

Fig. 21.  (a) Absorption and PL of MAPbI3-xClx that was fitted by a single Gaussian function and 

(b) PL spectrum fitted by a bi-Gaussian function. Residual values are also displayed at the bottom 

of each figure. The inset shows a SEM image of the perovskite film used for PL measurement. 

Reproduced by permission of the PCCP Owner Societies [16]. 
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 A close examination of the PL spectra in Fig. 21 (a) indicates that the PL spectral line is 

asymmetric and cannot be fitted into a single Gaussian function. Analysis of the residual plot 

showed that a larger residual value was observed on the short wavelength side indicated by an 

arrow. However, when the PL spectra are fitted by a bi-Gaussian function, the residual value was 

significantly reduced, as shown in Fig. 21 (b). In particular, the deconvoluted PL spectra in Fig. 

21 (b) contain two distinct emission peaks. One has a broad full-width at half maximum (FWHM) 

of 86.8 nm but a shorter wavelength of 749.5 nm whereas another PL spectrum showed a narrow 

FWHM of 43.5 nm but a longer wavelength of 762.1 nm. Recently, the deconvoluted PL spectra 

were described as the ordered and disordered phases of perovskite films [123], represented by 

longer and shorter wavelengths, respectively. However, the origin of the disordered phase of 

perovskite films has not been identified. 

 

5.3 Origin of ordered and disordered phase by 2D PL mapping 

 To further investigate the origin of the ordered and disordered phases of PL, two 

dimensional (2D) PL mapping was performed using confocal spectroscopy (NTEGRA spectra, 

NTMDT) to probe spatially resolved PL spectra at the nanoscale level. Our confocal spectroscopy 

has an in-plane spatial resolution of ~380 nm which was achieved by an objective lens with a 

numerical aperture of 0.7 and a 405 nm solid-state laser. Fig. 22 (a) shows the 2D PL intensity of 

the perovskite film, where the grain boundary exhibited strong PL quenching. In addition, the 

analysis of 2D spectral PL mapping in Fig. 22 (b) shows a dominant PL peak of ~750 nm at the 

GIs but an abrupt blueshift of PL at the GBs (denoted by blue color in the 2D PL map). It should 

be noted that some dark spot regions in the intensity map in Fig. 22 (a) are larger than the sizes of 

the blue-shifted PL spectra in Fig. 22 (b). However, it is clearly shown that the blue shifted PL 
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spectra are located in the dark spot region when the intensity and spectral PL maps overlap, as 

shown in Fig. 22 (c). In addition, the high magnification SEM image in Fig. 22 (d) indicates that 

the pinholes are partially covered by perovskite islands. This suggests that blue-shifted PL spectra 

originated from a number of small perovskite islands located in the dark region. Interestingly, 

confocal PL spectra from the GI and GB can be fitted by a single Gaussian function but not by a 

bi-Gaussian function, as shown in Fig. 22 (e) and (f). We found that the PL at the GBs showed a 

relatively lower intensity and a shorter wavelength while the GIs showed a higher intensity and a 

longer wavelength. This is reminiscent of the deconvoluted ordered and disordered PL spectra 

obtained from typical (or non-confocal) PL measurements in Fig. 21. Therefore, it is inferred that 

the disordered phase of the PL spectrum in Fig. 21 mainly originated from the GBs whereas the 

ordered phase PL spectra came from the GIs. However, we cannot exclude the possibility of the 

contribution of the disordered phase from the GIs which contain chemical disorder within the GIs. 

Previously, we reported 2D PL and chemical mapping studies [15] on perovskite films with various 

morphologies and grain sizes. The grain size of perovskite films varied from a few micrometers to 

over 50 micrometers. In particular, the smaller the grain size, the more the non-stoichiometric 

chemical composition of the perovskite film was observed. Critically, chemical analysis of 

controlled morphologies [15] revealed that non-stoichiometric chemical disorder increased 

towards the GBs. In addition, the blue-shift of the PL spectra was increased towards the GBs while 

the GIs showed very uniform but longer wavelengths. Remarkably, the GB was found to consist 

of Pb-rich CH3NH3PbIx or PbIx with high oxygen concentration. Our observation is in good 

agreement with recent electron energy loss spectroscopy (EELS) studies that revealed iodine 

deficiency, that is, Pb-richness at the GBs [122]. Note that pure PbI2 will have an energy bandgap 

of 2.3 eV [106] while the stoichiometric CH3NH3PbI3-xClx has an energy bandgap of 1.66 eV. 
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Therefore, the GBs consisting of Pb-rich CH3NH3PbIx or PbIx will have a relatively larger energy 

bandgap than the GIs. In particular, it is found that the larger energy bandgap material at the GBs 

has a type I alignment with the lower bandgap material of the GIs [106]. Such band alignment is 

also shown in the inset of Fig. 22 (f). Rationally, the shoulder peaks of shorter wavelengths from 

the deconvoluted PL spectra in Fig. 21 cannot be explained by defect-mediated PL transitions from 

the GIs but should originate from the bandgap broadened GBs. 

 

 

 

 

Fig. 22.  (a) Two-dimensional (2D) PL intensity, (b) spectral mapping, and (c) overlapped 

intensity/spectral PL mapping showing that the blue-shifted PL spectra are located in the dark spot 

region. (d) High magnification SEM image shows that the pinholes are partially covered by a 

number of perovskite islands. In addition, PL spectra from (e) the grain interior and (f) the grain 

boundary were fitted by a single Gaussian function. This inset of (f) shows a type I alignment of 

energy band gaps between the GI and GB. Reproduced by permission of PCCP Owner Societies 

[16]. 
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5.4 Grain size dependent recombination mechanism at GIs and GBs 

 As shown, the confocal PL mapping approach provides valuable insights into local PL 

variations at the nanoscale level but is a time-consuming process. However, the typical (or non-

confocal) PL approach using a laser with a larger beam diameter can provide prompt measurements 

capable of probing the optical properties of the GIs and GBs at the same time. For instance, 

deconvoluted PL measurements can be used as a metric to promptly and simultaneously assess the 

nature of the GIs and GBs including charge carrier dynamics from an analysis of the power-

dependent PL measurements, described below. This PL approach can promptly provide feedback 

on the optical quality of both GIs and GBs. For this study, we intentionally fabricated defective 

perovskite films with smaller grains and high-quality perovskite films with larger grains, as shown 

in Fig. 23. Specifically, we have fabricated CH3NH3PbI3-xClx films with three different grain sizes 

ranging from 1–2 μm to 10–20 μm, and >50 μm, as shown in Fig. 23 (a)–(c). We conducted power 

dependent PL measurements using a 450 nm laser with a beam size of 25 mm. As shown in Fig. 

23 (a)–(c), the perovskite film with larger grains (>50 μm) showed an emission peak at 755 nm 

(1.66 eV) while a significant blue shift of 26–31 meV was observed for the perovskite films with 

smaller grains. In addition, we found that the intensity of the perovskite films with a larger grain 

size was three or six times stronger than those with smaller grain sizes in the range of 10–20 μm 

or 1–2 μm, suggesting better optical quality for larger grain perovskite films. The PL spectra 

obtained from excitation-dependent PL for all samples were analyzed by a bi-Gaussian function 

to investigate the underlying recombination processes of the ordered and disordered phases of 

perovskite films. Power dependent PL intensity was plotted on a double-logarithmic scale to 

explain the linearity effect shown in Fig. 23 (d)–(f). The recombination process [124,125] can be 

elucidated by investigating the change in PL intensity (𝐼𝑃𝐿) and a power index value (𝛽), expressed 
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as 𝐼𝑃𝐿 ∞ 𝐼𝐸𝑋
𝛽

. For the free-to-bound recombination and donor–acceptor pair, the power index value 

will be less than unity, i.e. 𝛽 < 1 while for exciton-like recombination the power index value will 

be in the range of 1 <  𝛽 < 2. Interestingly, regardless of grain size, ordered phases have power 

index 𝛽 values in the range of 1 and 2 which corresponds to exciton like recombination. However, 

we found that the recombination dynamics of GBs are diverse and strongly dependent upon the 

grain size. The disordered phase of smaller grain perovskite films with a lower excitation intensity 

of 120 mW/cm2 or less exhibited power index values of 𝛽 = 0.66 and 𝛽 = 0.92 suggests non-

radiative recombination. In contrast, the perovskite film with a larger grain size (>50 μm) showed 

𝛽 = 1.60, which indicates exciton-like recombination. This suggests that the charge carrier 

recombination at the GBs showed a very strong dependence on the grain size in which the smaller 

grains showed defect-mediated recombination while for larger grains the exciton-like transition at 

GBs was observed. In other words, the characteristics of GBs are not stationary but might strongly 

depend upon the processing conditions that might lead to different degrees of structural disorder, 

morphologies, and chemical inhomogeneities. 

 Fig. 23 (g)–(i) shows the evolution of the peak energy, which is indicative of distinct states 

of ordered and disordered phases of perovskite films. The ordered phases for all samples remained 

in the same peak position between 1.65 and 1.69 eV regardless of grain size. This confirms that 

the PL transition of the ordered phase of PL originated from band-edge radiative recombination. 

This is consistent with the observation of power index values indicating exciton-like 

recombination. However, for the disordered phase, we observed a gradual blueshift for all samples 

upon increasing excitation intensity, which is a typical characteristic of defective films [126,127]. 

However, we observed different transient trends of disordered phases of smaller and larger grain 

perovskites. For instance, the smaller grain perovskite showed a continuous increase in energy 



   

 

57 

peak positions upon increased power density, as shown in Fig. 23 (g) and (h). Typically, the shift 

of the peak position towards higher energy is attributed to the trap filling from a moderately deep 

level to a shallow energy level. The continued increase in energy peak positions indicates that 

perovskite films with smaller grains contain a high density of deeper defect states. In contrast, the 

disordered phase of the larger grain perovskite film in Fig. 23 (i) showed a rapid blueshift and then 

the energy peak position remained the same. It suggests that larger grain perovskites contain a 

lower density of defects that quickly saturate with increased power excitation. 

 

 

 

 

Fig. 23.  Power dependent PL spectra excitation intensity of (a) 1–2 µm grains, (b) 10–20 µm 

grains and (c) >50 µm grain. The insets in (a–c) show the corresponding microscopic images. A 
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double-logarithmic PL plot for (d) 1–2 µm grains, (e) 10–20 µm  grains, and (f) >50 µm grains 

was used to calculate the power index values. In addition, the evolutions of energy peak position 

values for (g) 1–2 µm grains, (h) 10–20 µm grains, and (i) >50 µm grains are shown. Reproduced 

by permission of PCCP Owner Societies [16]. 

 

 

 

5.5 Grain size dependent current-voltage characteristics 

 We also investigated the photovoltaic performance by fabricating hybrid perovskite solar 

cells with different grain sizes composed of FTO/PEDOT:PSS/MAPbI3-xClx /PCBM/Ag, as shown 

in Fig. 24 (a). Fig. 24 (b) shows the current–voltage (J–V) characteristics under 100 mW/cm2 

illumination using AM 1.5G and the resultant photovoltaic parameters are listed in Table 2. The 

perovskite solar cells with smaller grains showed energy conversion efficiencies of 2.59% and 

9.19%, respectively; however, a dramatic increase in efficiency to 13.72% was observed for the 

perovskite solar cell with larger grains. An enhanced performance was attributed to improved 

photovoltaic parameters of short circuit current (JSC), open circuit voltage (VOC) and fill factor 

(FF). We found that the enhancement of JSC with increased grain size is closely related to an 

increased light absorption in the range from 400 nm to 600 nm, as shown in Fig. 24 (c). 

Interestingly, the larger grain perovskite film showed a sharp absorption edge between 700 and 

800 nm while the absorption edge of smaller perovskite solar cells was not well defined but 

gradually decreased. This indicates that perovskite films with smaller grains contain larger 

chemical disorders which will lead to broader absorption profiles but not sharp absorption edges. 

Another critical observation is the quenching efficiency of photogenerated charge carries at the 

PEDOT:PSS/ perovskite interface. Typically, PEDOT:PSS is commonly used as a hole transport 
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layer (HTL) for perovskite solar cells and relatively higher PL intensity of MAPbI3-xClx with a 

PEDOT:PSS quenching layer indicates poor quenching efficiency. Fig. 24 (d) shows the 

comparison of the PL spectra with the PEDOT:PSS quenching layer, showing that the larger grain 

perovskite showed the lowest PL intensity, indicating the excellent charge extraction efficiency. 

In contrast, a poor charge extraction efficiency was observed for a perovskite film with smaller 

grains. This might be attributed to defective perovskite layers that slow down the extraction 

process of photogenerated charge carriers. 

 

 

 

 

Fig. 24.  (a) Device structure of the perovskite solar cell, (b) current density (J)–voltage (V) 

characteristics, (c) UV/vis spectra and (d) PL spectra for three perovskite/PEDOT:PSS/FTO films 

with different grain sizes. Reproduced by permission of PCCP Owner Societies [16]. 
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Table 2.  Photovoltaic parameters for perovskite solar cells 

 

 

 

5.6 Summary 

We developed a new characterization technique using deconvoluted PL approach to 

determine the film quality of perovskite film. PL spectrum can be deconvoluted using a bi-

Gaussian fitting. It has been proved that longer wavelength peak originates from ordered phase of 

GI and shorter wavelength peak originates from the disordered phase of GB. Moreover, the power 

dependent PL spectra reveal that GB of smaller grain film has a non-radiative recombination while 

the GI and GB of larger grain film both have an exciton-like recombination. Finally, larger grain 

PSCs show better performance than smaller grain PSCs; however, these solar cells have hysteresis 

and interface defects. In the following chapter, we will focus on removing interface defects from 

PSCs. 

 

 

 

 

 

 

 

 

Grain size JSC(mA/cm2) VOC (V) FF  (%) 

1-2 µm 8.77 0.63 46.88 2.59 

10-20µm 16.39 0.93 60.29 9.19 

>50µm 22.59 0.97 62.61 13.72 
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CHAPTER 6 

INTERFACE ENGINEERING USING NEW PCBM/CARBON BASED ETL 

 

6.1 Introduction 

 In recent years, hybrid halide perovskite material family has revolutionized the prospects 

of next-generation photovoltaic technologies [44,68,98], demonstrating a quantum jump to more 

than 20 % over the past few years. The rapid development of perovskite solar cell was attributed 

to its excellent electrical and optical properties including long charge carrier diffusion length 

[59,61], high charge carrier mobility [128,129], high absorption coefficients, [64,130] and unusual 

defect properties [119]. In the early stage of development, perovskite solar cells used an n-i-p 

device structure employing an n-type TiO2 layer as the bottom electron transport layer [44,45,131]. 

In this structure, a high temperature (>400 °C) sintering process is typically required to ensure 

high quality TiO2, which inevitably increases manufacturing costs and lacks compatibility with 

flexible substrates. In addition, p-type spiro-OMeTAD is generally used as a hole transport layer 

and suffers from poor crystallinity, low mobility and decomposition [46]. Critically, the n-i-p 

planar structure is subject to a considerable current-voltage (J-V) hysteresis [82]. Alternatively, 

inverted p-i-n device structures have been passionately pursued because of negligible hysteresis, 

low temperature processing and device structure flexibility [53,82]. In this case, poly(3,4 

ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) was used as a hole transport layer 

while fullerene derivatives such as C60, PCBM, and ICBA were investigated as an electron 

transport layer (ETL) [52,53,132]. Among them, PCBM is widely used as an ETL due to its high 

electron accepting property and its role as a trap passivation in the perovskite film [52,53]. In 
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particular, the double ETL composed of PCBM/C60 has been highly pursued because of increased 

conductivity, trap passivation capability, and quenching efficiency [132,133].  Recent studies 

revealed that shallow defects were passivated by PCBM while deep traps with a trap depth greater 

than 0.5 eV were passivated by C60 [133]. However, high-purity C60 is relatively expensive 

because it must be synthesized using raw chemical materials and high temperature process 

[134,135]. Alternatively, carbon is abundantly available in nature and relatively inexpensive, 

which can have a great potential for replacing expensive C60 for perovskite solar cells. Recently, 

carbon has been used as a hole transport layer or a counter electrode for perovskite solar cell [136]. 

This is because the work function of carbon (~5 eV) [49] is well aligned with the highest occupied 

molecular orbit (HOMO) of perovskite (~5.4 eV). In particular, the deep work function of carbon 

as an ETL in Fig. 25 will result in a small built-in voltage of the perovskite solar cell. However, 

when carbon is combined with PCBM ETL, photogenerated electrons will be directed by the work 

function difference between PEDOT:PSS and PCBM. To demonstrate the effectiveness of carbon 

as a new electron transport material for the perovskite solar cell, we were able to deposit ultra-flat 

carbon on the top of PCBM using electron beam irradiation method. We also compared the 

effectiveness of PCBM/carbon with PCBM/C60 ETL for photovoltaic performance of 

CH3NH3PbI3-xClx (MAPbI3-xClx) perovskite solar cells. Remarkably, the power conversion 

efficiency of the PCBM/carbon based perovskite solar cell was raised to 16% from 14%, compared 

to perovskite the solar cell fabricated with PCBM/C60 ETL. The splendid performance was 

attributed to the reduction of interfacial defects and improved series and shunt resistance of 

perovskite solar cells while the quenching efficiency of PCBM/carbon was comparable to that of 

PCBM/C60. 
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Fig. 25.  (a) Schematic of perovskite solar cell with electron transfer layer if C60 or carbon and (b) 

corresponding energy levels of each layer. Reproduced by permission of PCCP Owner Societies 

[17]. 

 

 

 

6.2 Fabrication and electrical characterization of Carbon film 

 One of the critical challenges is to achieve controlled deposition of carbon layer on top of 

soft perovskite film. PCBM can be typically coated on the perovskite film by spin-casting PCBM 

dissolved in dichlorobenzene [132,133] while C60 thin film can be typically deposited through 

thermal evaporation on the top of perovskite/PCBM layer [137,138]. Currently there is no report 

regarding the uniform deposition of carbon films on perovskite layer while not disturbing 

perovskite layer, thereby requiring relatively low temperature deposition. In particular, the precise 

control of the thickness of carbon is required for effective electron transport. Currently, several 

methods have been reported for the fabrication of thin-film carbon including ink printing [139], 

high-temperature chemical vapor deposition (CVD) [136], sputtering [140], and electron-beam 

irradiation methods [141,142]. We report here a method for depositing high-purity carbon films 
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using e-beam irradiation in which electron beam generated from a filament and steered to strike 

graphite rods or flakes. Due to the nature of the deposition and the use of a high-purity carbon 

source, the e-beam deposited carbon will be highly pure and easily mass-produced. This approach 

allows one to precisely control thickness of the graphite layer by simply controlling the e-beam 

exposure time. Graphite (Aldrich) placed in a graphite e-beam crucible was irradiated by e-beam 

in a high vacuum of 10-7 torr at room temperature. Fig. 26 (a) and (b) show the high-resolution 

scanning electron microscopy (HR-SEM) images of 50 nm thick carbon film on glass slide, 

showing an exceedingly flat surface. At the higher magnification in Fig. 26 (b), carbon film had a 

densely-packed morphology of an exceedingly flat surface of carbon film composed of small 

grains with grain size of 30 nm. Also, a 50 nm thick carbon film on top of MAPbI3-xClx/PCBM 

layer was deposited and showed the sharp interface, as shown in Fig. 26 (c).  A four-point probe 

and Hall effect measurements were used to measure the sheet resistance and mobility of the carbon 

films. Hall Effect measurement of carbon film showed the mobility of 0.2 cm2/V.s which is a 

little lower to the reported mobility of C60 (1.6 cm2/V.s) but is better than that of PCBM (6.1×10-

2 cm2/V.s) [132]. We also deposited an ultrathin 10 nm thick carbon film whose thickness is 

typically used for the electron transport layer. Our measurement indicates that the conductivity of 

10 nm thick carbon film was measured to be  = 4.24±0.68 Scm-1 which is much better than 

reported conductivities of C60 (2.4×10-3 Scm-1) and PCBM (3.2 ×10-4 Scm-1) [132].  
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Fig. 26.  SEM images of 50 nm thick carbon on glass slide with (a) lower, and (b) higher 

magnification and (c) cross-section view of FTO/MAPbI3-xClx/PCBM/carbon. Reproduced by 

permission of PCCP Owner Societies [17]. 

 

 

 

6.3 Morphology of carbon and C60 on top of perovskite film 

 Fig. 27 shows morphologies of perovskite films coated with various electron transport 

layers of PCBM, PCBM/C60, and PCBM/carbon. In this regard, perovskite films were fabricated 

by using a hot-casting technique [15,109]. In this case, the FTO/glass slide was pre-heated at 180 

°C while preheated perovskite solution at 70 °C was spin-casted. Typically, a hot-casting technique 

resulted in pinhole-free and larger grains, as shown in Fig. 27 (a).  However, higher magnification 

of perovskite films showed that the larger grains were packed with nanoscale grains in Fig. 27 (b). 

The deposition of ETL slightly modified the surface morphologies. In particular, the spin-casting 

of PCBM on perovskite film resulted in smoother surface with larger grains, as shown in Fig. 27 

(c) and (d). PCBM/C60 layer in Fig. 27 (e) and (f) was covered by densely packed small grains 

which might be attributed to the fact that the C60 lacks bulky side-chains, leading to densely 

packed grains. In contrast, the morphology of perovskite film with PCBM/carbon in Fig. 27 (g) 

and (h) is similar to that of the perovskite/PCBM layer. 
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Fig. 27.  SEM images of (a-b) perovskite thin film, (c-d) perovskite/PCBM, (e-f) 

perovskite/PCBM/C60 and (g-h) perovskite/PCBM/carbon film with low and high magnification, 

respectively. Reproduced by permission of PCCP Owner Societies [17]. 

 

 

 

6.4 Current-voltage characteristics of PSCs using Carbon and C60 

 Fig. 28 shows the current-voltage characteristics of p-i-n perovskite solar cells composed 

of FTO/PEDOT:PSS/MAPbI3-xClx /ETL (PCBM, PCBM/C60 or PCBM/carbon)/Ag with forward 

(lower → higher voltage) and reverse (higher → lower voltage) scans at a sweep rate of 0.2 V/s. 

Their photovoltaic parameters are summarized in Table 3. When PCBM was used as an ETL, 
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larger hysteresis effects were observed, as shown in Fig. 28 (b). One of the proposed reasons for 

the reduced hysteresis effects was attributed to thermally annealed PCBM that passivated defects 

at grain boundaries and subsequently eliminated the photocurrent hysteresis [52]. For this study, 

MAPbI3-xClx solar cells were not thermally annealed due to the thermal degradation of perovskite 

solar cells [143]. Perovskite solar cell with PCBM ETL showed energy conversion efficiencies of 

10.6 and 8.6% with forward and reverse scans, respectively. Remarkably, when PCBM/C60 and 

PCBM/carbon were used as ETLs, hysteresis effects diminished even though thermal treatment 

was not performed, as shown in Fig. 28 (c) and (d). In addition, the efficiency of perovskite solar 

cell with PCBM/C60 improved to 14% which was due to the improved JSC (22.47 mA/cm2), FF 

(0.64) and higher VOC (0.97 V). When PCBM/carbon is used, much higher efficiency of 16% 

was obtained. This is attributed to further improved JSC (23.69 mA/cm2) and FF (0.71) while VOC 

(0.96 V) values are slightly lower than that (0.97 V) of perovskite solar cells with PCBM/C60 

ETL. It is worthwhile noting that use of PCBM/carbon led to significant improvement of fill factor 

which is very sensitive to the interfacial charge transfer. Therefore, the improved FF of the 

perovskite solar cell with PCBM/carbon infers that PCBM/carbon ETL might lead to the better 

interface between perovskite and the PCBM/carbon layer. To further investigate perovskite solar 

cells, the single-diode mode was used to extract the characteristics of perovskite solar cells that 

have the relation of the current I and the voltage V, given by the implicit formula [55],  

𝐼 = 𝐼0 (exp (
𝑞(𝑉 − 𝑅𝑠𝐼)

𝑛𝑉𝑇
) − 1) +

𝑉 − 𝑅𝑠𝐼

𝑅𝑠ℎ
− 𝐼𝑝ℎ                                                                             (11) 

where I0 is the saturation current, Iph the photocurrent, Rs, the series resistance, Rsh, the 

shunt resistance, n the ideality factor, and q the electron charge. The quantity VT=kBT/q is the 

thermal voltage of the solar cell where kB is the Boltzmann constant, and T is the cell 

temperature. The extracted diode parameters were listed in Table 3. As shown, we note the 



   

 

68 

variations of series resistance (Rs) and shunt resistance (Rsh) of perovskite solar cells by applying 

different ETLs. When the PCBM/C60 layer was applied to the perovskite film, the Rs slightly 

dropped when compared with the perovskite solar cell fabricated with PCBM ETL. However, the 

drastic reduction of the Rs was observed when PCBM/carbon was used as an electron extraction 

layer which was attributed to highly conductive carbon ETL. We also observed a much lower 

reverse saturation current of the perovskite solar cells with PCBM/carbon than those of the 

perovskite solar cells fabricated with PCBM only and PCBM/C60.  Remarkably, the I0 dropped 

from mid 10-8 mA to 1.5×10-8 mA when PCBM ETL was replaced by PCBM/C60. When 

PCBM/carbon ETL was used, the I0 further dropped by a factor of 10 to a low of 10-9 mA. It is 

well known that reverse bias saturation current I0 is related to loss of photogenerated charge 

carriers at the defects which reflects the quality and defect states of interfaces [144].  
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Fig. 28.  (a) SEM image of FTO/PEDOT:PSS/MAPbI3-x Clx/ETL/Ag solar cell and current-voltage 

characteristics of perovskite solar cells with (b) PCBM, (c) PCBM/C60 and (d) PCBM/carbon 

ETLs. Reproduced by permission of PCCP Owner Societies [17]. 

 

 

 

Table 3.  Photovoltaic parameters of MAPbI3-xClx perovskite solar cells with different electron 

transport layers. 

  

JSC 

(mA/cm
2) 

VOC  

(V) 
FF  (%) 

Rsh 

(kΩ) 
Rs (Ω) 

Io  

(mA) 

PCBM 
FS 19.35 0.90 0.61 10.6 2.6 43.6 4.9×10-8 

RS 18.32 0.91 0.52 8.6 1.3 62.1 3.1×10-8 

PCBM/C

60 

FS 22.47 0.97 0.64 14.0 3.4 53.7 1.5×10-8 

RS 22.47 0.97 0.64 14.0 3.2 52.1 1.5×10-8 

PCBM/C 
FS 23.69 0.96 0.71 16.2 3.5 9.97 2.2×10-9 

RS 23.40 0.95 0.71 15.8 3.4 10.02 3.2×10-9 
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6.5 Interface trap density and charge extraction 

 To evaluate the trap density of perovskite films, excitation- dependent PL measurement is 

utilized in which the initial photogenerated charge carrier density n(0) is given by an equation 

[60,145], 

n(0) = ∑ 𝑁𝑡
𝑖

𝑖 (0) (1 − exp (−
𝑎𝑖𝜏0𝐼𝑃𝐿

𝑘
)) +

𝐼𝑃𝐿

𝑘
                                                                                    (12)                                                         

where e 𝐼𝑃𝐿 = 𝑘 ∫ 𝑛(𝑡)/𝜏0
∞

0
𝑑𝑡 is the integrated PL intensity, k is a constant for a given sample, 

𝜏0 is the PL lifetime, 𝑁𝑡
𝑖 is the initial unfilled trap state density and 𝑎𝑖 is the product of the trap 

cross section and the carrier velocity. A quantitative analysis of experimental data using equation 

12 will yield bulk (𝑁𝑡
𝐵) trap densities of perovskite film and interface or surface trap density (𝑁𝑡

𝑆) 

of perovskite film with or without ETL. PL measurements were carried out with a 450 nm laser 

source to excite samples that were coated with a polymethyl methacrylate (PMMA) layer to avoid 

degradation induced by air exposure [59]. In particular, PL excitation densities were varied to yield 

photogenerated carriers from low 1014 cm-3 to 1017 cm-3. Fig. 29 (a) shows photogenerated charge 

carriers as a function of normalized PL intensity which was fitted to  equation 12 and shown with 

solid lines. The extracted interface and bulk trap densities are listed in Table 4. Note that interface 

trap density was somewhat reduced, depending upon electron transfer layers of PCBM, 

PCBM/C60 and PCBM/carbon. As expected, the perovskite film contained a significant amount 

of surface trap of 5.17×1017 cm-3, which is in good agreement with previously reported values 

[144,145,146]. When PCBM is applied on perovskite film, interfacial trap density was decreased 

to 2.40×1017 cm-3. The further reduction of interface trap density to 1.55×1016 cm-3 and 1.07×1017 

cm-3 was observed for perovskite/PCBM/C60 and perovskite/PCBM/carbon, respectively. Fig. 29 

(b) shows the close relationship between interface defects and reverse saturation current of 

perovskite solar cells. This suggests that the perovskite/PCBM/carbon layer effectively passivated 
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the interface defects of the perovskite film, which might lead to a reduced saturation current of 

perovskite solar cells. However, such trend is rather unexpected because the PCBMs in the 

PCBM/C60 and PCBM/carbon layers were in direct contact with the perovskite layer, which 

should result in similar interfacial trap densities for samples. In particular, we found that bulk trap 

densities for all samples were almost identical. It is well known that thermal treatment facilitates 

the diffusion of PCBM and C60 into perovskite, which subsequently passivate bulk defects. As 

mentioned earlier, no thermal treatment was carried out for all samples due to thermal degradation 

at elevated temperature. This suggests that extensive diffusion of PCBM, C60 and carbon did not 

occur which does not affect the bulk trap densities.  

To further understand interfacial charge carriers, the lifetime decays of perovskite films 

with an ETL quenching layer were evaluated using a time-correlated single photon counting 

(TCSPC) system, as shown in Fig. 29 (c). In this regard, samples were excited with a 450 nm 

pulsed diode laser (FWHM ≈ 120 ps) at a repetition rate of 4 MHz and an excitation intensity of 

107 mW/cm2. The exponential decays were fitted with bi-exponential decay functions, containing 

a fast decay (𝜏1) and slow decay (𝜏2) [132]. It should be noted that a slow decay is due to radiative 

recombination, whereas a fast decay occurs due to defects or quenchers. Therefore, the quenching 

efficiency of ETL can be evaluated by comparing the fast decay. As expected, the perovskite film 

without electron transport quenching layers had fast and slow decay lifetimes of 3.63 ns and 28.5 

ns, respectively. This suggests that radiative recombination dominated for the perovskite film 

when there is no electron transport quenching layer. As expected, the presence of the quenching 

ETL layer on the perovskite film significantly reduced a fast decay component of perovskite films. 

In particular, fast decay lifetimes were 0.94 ns, 0.82 ns and 1.19 ns with corresponding slow decay 

lifetimes of 5.63 ns, 5.32 ns and 5.93 ns for perovskite/PCBM, perovskite/PCBM/C60 and 
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perovskite/PCBM/carbon, respectively. Based on the results of lifetime decays, all electron 

transport quenching layers of PCBM, PCBM/C60 and PCBM/carbon were comparable while the 

PCBM/C60 showed slightly better quenching efficiency. Notably, the different lifetime decays for 

ETLs infer the modification of perovskite/PCBM interfacial layer. We think that the interfacial 

modification occurred during or/and after the deposition of C60 and carbon on the PCMB layer. 

Some insights can come from PCBM surface morphologies containing nanoscale grains with 

pinholes, as shown in the SEM image of Fig. 27 (d). We believe that C60 and carbon diffuse 

through the PCBM grain boundaries or/and pinholes and subsequently modify the 

perovskite/PCBM interface, as illustrated in Fig. 29 (d). Since the atomic size of carbon is much 

smaller than C60, the diffusion process can be facilitated much more easily than with C60. As 

described earlier, the direct contact of carbon on perovskite will inevitably reduce the built-in 

voltage of perovskite solar cells due to the deep work function of carbon. Indeed, we observed the 

slightly reduced VOC of perovskite solar cells fabricated with PCBM/carbon ETL when compared 

with perovskite solar cells with PCBM/C60, as shown in Table 5. However, the positive aspect of 

interfacial modification with carbon would be the enhanced conductivity and reduction of the 

interfacial defects that were evidenced by power-dependent defect calculation and J-V curve 

analysis. Such results were the improved JSC and FF of perovskite solar cells with PCBM/carbon 

ETL. 
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Fig. 29.  (a) Photogenerated carriers with normalized PL intensity, (b) reverse saturation current 

vs. interfacial defect densities of perovskite solar cells with different ETLs, (c) lifetime decays of 

perovskite films with different ETLs, and (d) schematic of plausible diffusion process of C60 and 

carbon on PCBM layer. Reproduced by permission of PCCP Owner Societies [17]. 

 

 

 

Table 4.  Interface and bulk trap densities of perovskite with different ETLs. 

 

 

 

 Interface trap density (cm-3) Bulk trap density (cm-3) 

Perovskite 5.17×1017 1.66×1016 

Perovskite/PCBM 2.40×1017 3.00×1016 

Perovskite/PCBM/C60 1.55×1017 1.04×1016 

Perovskite/PCBM/C 1.07×1017 1.63×1016 
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Table 5.  Summary of the measured fast decay time (τ1), slow decay time (τ2), and average lifetime 

(τavg) for perovskites with different ETLs. 

 

 

 

6.6 Summary 

We have developed a new electron transport layer of PCBM/Carbon which has better 

conduction and interface passivation than competitive PCBM/C60. In addition, PSC with 

PCBM/Carbon ETL has photo conversion efficiency of 16.2 % while PSC with PCBM/C60 ETL 

has 14% PCE. As carbon in abundant in nature, this carbon based ETL will reduce the production 

cost. So far, the efficiency of perovskite solar cells has improved; however, these solar cells 

degrade in air. In the following chapter, we will discuss the degradation mechanism of perovskite 

film when exposed to air.  

 

 

 

 

 

  

 1 (ns) A1 (%) 2 (ns) A2 (%) Average 

lifetime 

(ns) 

Perovskite 3.63 48 28.5 52 16.56  

Perov/PCBM 0.94 70 5.63 30 2.35 

Perov/PCBM/C60 0.82 87 5.32 13 1.41 

Perov/PCBM/C 1.19 61 5.93 39 3.04 
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CHAPTER 7 

DEGRADATION MECHANISM OF PEROVSKITE FILM IN AIR 

 

7.1 Introduction 

 Halide perovskite solar cells have become a promising candidate in the field of solar cells 

due to the outstanding rise in the power conversion efficiency (PCE) and their low production cost 

[147,148]. Such tremendous improvement was related to physical properties such as a high 

absorption coefficient, high mobility of charge carriers, long carrier lifetime and diffusion length, 

and simple solution-processing methods [59,128,149]. Despite improved PCE, long term stability 

is one of the major issues impeding outdoor application and commercialization of perovskite solar 

cells. Degradation of perovskite materials under different environmental conditions leads to 

chemical instability in the perovskite solar cell, which reduces photovoltaic performance. In 

general, the main causes of this type of degradation are related to various external conditions such 

as moisture, oxygen, light, and temperature [91]. In particular, in order to protect the perovskite 

films from the air the device encapsulation was made. With lower humidity (<30%), the stability 

of encapsulated solar cell was 1300 hrs while higher humidity expedited the degradation and 

resulted in shorter lifetime of encapsulated perovskite solar cells [150,151]. Also, various 

architectural modification including inorganic hydrophobic polymer and carbon electrode have 

been employed in perovskite device to prevent moisture infiltration in perovskite thin film 

[152,153]. 

To further enhance the air stability of perovskite materials, a detailed study of 

crystallographic, morphological, optical, and mechanical degradation processes in the presence of 
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moisture in the air is needed. Early research shows that perovskite materials react with moisture 

and decompose into PbI2, which quickly degrades the photo conversion efficiency or device 

performance [154,155]. Walsh, et al. [156] indicated that CH3NH3PbI3 (MAPbI3) reacts with one 

single water molecule and converts it into (CH3NH3
+)n-1(CH3NH2)PbI3][H3O

+] by replacing one 

proton from ammonium. The intermediate phase decomposes into HI, CH3NH2, and eventually 

PbI2. Christians, et al. [157] and Yang, et al. [158] found that MAPbI3 hydrated into 

(CH3NH3)4PbI6·2H2O in the presence of water, resulting in poor absorption in the visible region. 

Later, Zhu, et al. [159] proposed that perovskite goes under a chemical transition to monohydrate 

MAPbI3·H2O in the presence of moisture by sharing one H2O per MA from the perovskite lattice. 

In addition, a first-principle study was employed to find the degradation pathway, which revealed 

that the large interspace in the MAPbI3 perovskite structure caused water to easily enter the inner 

region and induce structural deformation. From a morphological study, Dao, et al. [155] showed 

the formation of voids in the perovskite film when exposed to air for 18 hrs. However, Christians, 

et al. found highly smooth morphology from a rough surface after 14 days of exposure to air with 

90% relative humidity [157]. In addition, photoluminescence (PL) and time-resolved 

photoluminescence (TRPL) were used to investigate the degradation of perovskite as a non-contact 

approach. Grancini, et al. [160] conducted a PL study, showing blue-shifted PL of perovskite films 

due to water molecules, which signifies the local distortion of the perovskite crystal lattice. In 

addition, the study of the degradation of mechanical properties of perovskite material is of great 

importance because it does not only reveal the basic physical properties of materials for future use, 

but also has a significant impact on manufacturing and design specifications. Currently, Spina, et 

al. [161] conducted degradation studies of mechanical properties in terms of elastic modulus and 

hardness of MAPbI3 based perovskite by exposing it to water vapor for a time period starting from 
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10 days to 170 days. However, for the degradation study, a single crystal MAPbI3 was used instead 

of multi-crystalline perovskite thin film. Since perovskite solar cells are fabricated by thin films 

and a number of grains of thin films might play an important role in the degradation mechanism 

[162,163], it is necessary to study the degradation process of mechanical properties of perovskite 

thin films. In particular, it is crucial to study the mechanical properties of perovskite thin films 

with air exposure time as perovskite films degrade very quickly. 

Currently, there is no systematic study describing how the air degradation of perovskite 

films influence the crystallinity and associated mechanical properties such as elastic modulus and 

hardness of perovskite films. We quantitatively and systematically investigate the crystallographic, 

morphological and mechanical degradation pathways of MAPbI3-xClx perovskite film that has been 

widely used for perovskite solar cells. To conduct this study, perovskite thin films were fabricated 

using a hot casting technique and exposed to air at a humidity of 40% or less. To examine 

degradation processes, UV-vis, steady-state photoluminescence (PL), X-ray diffraction, high-

resolution scanning electron microscope (HRSEM), and nanoindentation technique were 

employed.  

 

7.2 Optical degradation 

While perovskite solar cells have promising prospects, stability has been a major concern 

for commercialization. It was found that power conversion efficiency (PCE) degrades very rapidly 

due to a series of factors such as moisture, oxygen, temperature, and ultraviolet (UV) radiation 

[143,154,155,157,158,164]. In this work, we focused on the study of the degradation of MAPbI3-

xClx perovskite materials due to the presence of moisture in the air. Fig. 30 (a) shows MAPbI3-xClx 

perovskite films as a function of air exposure time. Strikingly, the hydrated perovskite film turned 
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into an irreversible yellow, non-perovskite phase from a black perovskite phase after more than 20 

hrs air exposure of 40% humidity. After 66 hrs air exposure, the perovskite film completely turned 

into yellow color. This yellow phase indicates the irreversible degradation of MAPbI3-xClx into 

PbI2 phase in the film [165]. To investigate the evolution of optical degradation of perovskite films 

with air exposure times, optical absorption and PL measurements were also performed.  Fig. 30 

(b) shows the absorption spectra of perovskite thin films as a function of air exposure time. The 

fresh perovskite thin film revealed a wide absorption band from 400 to 850 nm. One of the 

interesting features of the absorption spectrum is the sharp band edge of the perovskite thin film, 

which lies between 740 to 780 nm, yielded a bandgap of around 1.64eV, as shown in an inset of 

Fig. 30 (b). It is noteworthy that the sharp perovskite band edge begins to drastically degrade after 

20 hrs air exposure. As shown in an inset of Fig. 30 (b), the band edge of the perovskite films after 

27 hrs air exposure resulted in the significant degradation and complete diminishment after 66 hrs 

air exposure. Also, it is worthwhile noting the absorption peak at 520 nm assigned to the PbI2 [157] 

became noticeable after 27 hrs exposure to air. Fig. 30 (c) shows the evolution of PL with air 

exposure time. In this case, a Horiba FluoroLog-3 spectrofluorometer was used to measure PL in 

which the perovskite film was excited by a 450 nm solid-state laser. The fresh perovskite film 

exhibited the dominant PL peak at 760 nm, as shown in Fig. 30 (c). When a perovskite film is 

exposed to air, the PL gradually shifted to short wavelength, gradually shifting from 760 nm at 0 

hrs to 728 nm after 15 hrs of air exposure. Further air exposure drastically reduced PL intensities 

which are not shown. Another interesting observation is the asymmetric PL spectra that were 

skewed to shorter wavelength. Our previous study showed that the asymmetric PL spectra were 

related to the formation of non-stoichiometric Pb-rich perovskite chemistries [15,16]. Therefore, 
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the blueshift of PL and development of asymmetric PL spectra could be related to the degradation 

of perovskite films to Pb-rich perovskite chemistries. 

 

 

 

 

Fig. 30.  (a) Photographs showing the color deformation of MAPbI3-xClx thin films exposed to air 

at a humidity of 40% for up to 66 hrs, (b) absorption spectrum of perovskite film with exposure 

time, an inset is the magnified view of absorption band edges from 740 to 780 nm, and (c) evolution 

of PL spectra exhibiting the blueshift of PL [18]. 

 

 

 

7.3 Crystal degradation 

 Fig. 31 (a) shows a scanning electron microscope (SEM) image of a perovskite film 

fabricated by a hot-casting technique that features large-area crystal growth. As shown in Fig. 31 
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(b), the bare perovskite film exhibited XRD peaks of MAPbI3-xClx film at 14.1o, 28.5o, and 31.9o 

corresponding to (110), (220), and (310) MAPb3-xClx planes, respectively. The XRD peak at 15.6 

 was assigned to CH3NH3Cl3. These perovskite films were exposed to air for 66 hrs at ~40% 

humidity and the degradation of perovskite crystallinity was monitored by XRD measurement. It 

is found that the intensity of perovskite XRD peaks gradually decreased over time and almost 

completely disappeared after 66 hrs of air exposure, as shown in Fig. 31 (b). Interestingly, new 

peaks of PbI2 gradually appeared during degradation while an additional XRD peak at 38.7º was 

observed, which was assigned as (201) I2. When comparing the integral intensities of the MAPbI3-

xClx, PbI2 and I2 peaks, the XRD intensity of PbI2 was dominant when exposed to air for 20 hrs. 

To investigate the effect of the degradation of perovskite films on the crystal size, XRD patterns 

of perovskite films were further analyzed using Scherrer equation 𝐿 =  
𝐾𝜆

𝛽 𝐶𝑜𝑠 𝜃
 where 𝐿 is the 

average crystal size, λ is the wavelength of the X-ray irradiation (0.154 nm), and β is the full width 

at half maximum (FWHM) [96,97]. As shown in Fig. 31 (d), the crystal size of bare MAPbI3-xClx 

was calculated to be around 40 nm, which is in good agreement with other reports [166]. In 

particular, upon exposure to air the crystal size of MAPbI3-xClx initially increased and then started 

to decrease. Interestingly, an initial increase in crystal size of MAPbI3-xClx is unexpected upon 

exposure to air. However, many reports demonstrate the enlarged crystal size of perovskite films 

when perovskite films were fabricated to high humidity level that facilitated recrystallization of 

grain edges and led to the merging of adjacent grains within the film[166]. In contrast, the crystal 

size of PbI2 continuously increased with prolonged exposure to air. The noticeable orthorhombic 

I2 (201) at 38.7º was observed around 10 hrs exposure to air. The crystal size of I2 gradually 

increased up to 36 hrs and then started to decrease.  
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Fig. 31.  (a) SEM image of MAPbI3-xClx film, (b) XRD patterns of MAPbI3-xClx film exposed to 

air for up to 66 hrs, (b) integrated intensity of MAPbI3-xClx, PbI2, and I2 extracted from XRD 

patterns, (c) the average crystal size of MAPbI3-xClx, PbI2, and I2 determined from Scherrer’s 

equation [18]. 

 

 

 

7.4 Morphological degradation 

 To understand the dynamic variation of the crystal size of perovskites, surface 

morphologies of perovskite films were carried out using SEM measurements. Fig. 32 shows high-

resolution SEM images of perovskite films as a function of air exposure time. The bare perovskite 

films in Fig. 32 (a) exhibited continuous films composed of a number of small grains. After 27 
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hrs-air exposure, small grains became a little enlarged but started to develop pin-holes on the 

surface of perovskite films. This observation is identical to the XRD measurement in Fig. 31 (d). 

Prolonged air exposure to 49 and 66 hrs led to the development of pin-holes on the surface of 

perovskite films, as shown in Fig. 32 (c)-(d). In particular, after 66 hrs-air exposure, pin-holes 

covered the entire surface of perovskite films. We think that pin-holes of perovskite films might 

lead to the decrease in the crystal size of perovskite films, as observed in Fig. 32 (d).   

 

 

 

 

Fig. 32.  Top view SEM images of perovskite thin film with various exposure time in air. (a) 0, (b) 

27, (c) 49, and (d) 66 hrs. Scale bar is 1µm for images [18]. 

 

 

 

7.5 Mechanical degradation 

 The air degradation of perovskite films accompanied the formation of a number of pin-

holes of perovskite films that might alter the mechanical hardness of perovskite films. To 
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investigate the mechanical properties of depredated perovskite films, a nano-indenter XP was used 

and its configuration was described in an experimental section. Fig. 33 shows the elastic modulus 

and hardness of the MAPbI3-xClx thin film, measured at 6%, 9%, 32% and 51% of the normalized 

indentation depth to the film thickness of ~ 440 nm thick MAPbI3-xClx. It is found that elastic 

modulus and hardness values were strongly dependent upon the indentation depth. Fig. 33 

summarizes five different indentation depths normalized to the film thickness (hc/tf= 6%, 9%, 15%, 

32%, 51%) to illustrate the change of elastic modus and hardness with time in which hc and tf are 

indentation depth and film thickness, respectively. Clearly, the elastic modulus at indentation 

depths normalized to film thicknesses of 6%, 9% and 15% exhibited a similar trend with air 

exposure time, as shown in Fig. 33 (a). However, close examination showed that the elastic 

modulus measured at hc/tf = 15% exhibited a relatively higher value as compared to the 6% and 

9% respectively due to the substrate effect. The study of the other two normalized indentation 

depths of 29% and 51% mainly showed the substrate dominance on the perovskite material [163]. 

In contrast, the hardness decreased with an increase in indentation depth that might be due to the 

dislocations and grain boundary activity in the plastic zone [167]. Typically, an indentation depth 

of less than 10% of the film thickness, i.e. 70 nm displacement, was used to measure the 

mechanical properties of the films to circumvent the substrate effect [163,167,168,169]. It is found 

that at 0 hrs air exposure the elastic modulus and hardness of the MAPbI3-xClx films with hc/tf=9% 

(or 49 nm) indentation depth were 19.65±2.45 GPa and 0.78±0.05 GPa, respectively. Note that the 

measured elastic modulus and hardness were in the range of 10-20 GPa and 0.25-1.01 GPa for 

single crystal perovskite films (CH3NH3PbX3, where X = I, Br and Cl), respectively [161,170,171]. 

Interestingly, the values of the elastic modulus and hardness peaked at around 20~25 hrs which 

can be correlated to the increased crystallinity and crystal size observed by XRD and SEM 
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measurements. With further air exposure, the modulus and hardness of the perovskite films 

gradually decreased.  The decrease in elastic modulus and hardness can be attributed to the 

chemical decomposition of the perovskite films, as demonstrated from the XRD and SEM images 

in Fig. 31 and Fig. 32. 

 

 

 

 

Fig. 33.  (a) Elastic modulus and (b) hardness of five different indentation depths (hc/tf = 6%, 9%, 

15%, 32%, 51%) where hc and tf are indentation depth and film thickness, respectively. The 

thickness of perovskite film is 440 nm [18]. 

 

 

 

7.6 Summary 

 We systematically investigated the degradation mechanism of perovskite film when 

exposed to air with a relative humidity of 40% using optical, crystal, morphological, and 

mechanical characterization techniques. Perovskite (CH3NH3PbI3-xClx) films completely degrade 

into PbI2 and I2 after exposure to air for 66 hrs. The crystal size of perovskite increased initially 
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due to the merging of adjacent grain and began to decrease with increased exposure time due to 

chemical decomposition and formation of pinholes. This dynamic crystal size variation also 

matched with the elastic modulus and hardness of the film.  
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CHAPTER 8 

CONCLUSIONS 

 

8.1 Achieved Results 

 The main goal of this dissertation was to fabricate highly efficient and low-cost perovskite 

solar cells. For that, we have incorporated a hot-casting technique to fabricate uniform, pinhole-

free, and larger grain perovskite film. The GIs and GBs of perovskites have been investigated 

using chemically, spatially, and temporally resolved measurements at the nanoscale. The local 

variations in steady-state PL and a time-resolved lifetime are correlated to chemistries, to 

nanoscale morphologies, and to recombination kinetics. The localized chemical compositions of 

MAPbI3-xClx perovskites revealed that the GBs were characterized by an absence of chloride, an 

enriched oxygen concentration, and iodide vacancies, regardless of the gain sizes. In contrast, we 

found that the content of Cl at the GIs is strongly dependent upon the grain sizes. Critically, the 

spatially and temporally resolved PL and lifetime measurements revealed non-radiative 

characteristics at the GBs, such as very strong PL quenching and relatively shorter lifetimes. The 

results suggest that the GBs indeed contain deep defect centers that might serve as recombinant 

centers and be detrimental to the perovskite solar cells. However, the benign characteristics of GBs 

of perovskites can be originated from the bandgap broadening of non-stoichiometric MAPbIx or 

PbIx perovskites at the GB that will form the potential barriers for photo-generated charge carriers 

toward the GBs. As a consequence, the photo-generated charge carriers adjacent to the GBs will 

be easily repelled by the GBs, resulting in a greater reduction of the recombination of charge 

carriers. This is one possible reason for the high performance of MAPbI3-xClx based solar cells. 



   

 

87 

 Later, we developed a new characterization method capable of probing perovskite films 

which can provide prompt feedback on the quality of films. In particular, the deconvoluted PL 

approach can provide information on the ordered and disordered phases of perovskite films that 

mainly originate from the GIs and GBs, respectively. Systematic analysis of power dependent PL 

spectra on smaller and larger grain perovskites revealed that the nature of the GBs strongly 

depended on grain size. The larger grains followed an excellent power law that exhibited exciton-

like recombination for both the ordered and disordered phases of the PL spectra. In contrast, 

perovskite films with smaller grain size showed exciton-like recombination for the ordered phase 

while non-radiative recombination dominated for the disordered phase. Such an observation was 

closely correlated with the photovoltaic performance of perovskite solar cells. A perovskite solar 

cell with a large grain size increased the efficiency with higher absorption and effective charge 

separation at the PEDOT/perovskite interface. In contrast, much lower efficiency was observed 

for solar cells with smaller grains which showed poor quenching efficiency and light harvesting 

capability. 

 We have fabricated a PSCs that has interface defects that lead to the hysteresis effect. So, 

we demonstrated a new PCBM/carbon electron transport layer for perovskite solar cells. The ultra-

flat carbon layer was successfully deposited using e-beam irradiation technique on the soft 

perovskite/PCBM layer. The deposited carbon film showed higher conductivity than PCBM and 

C60 by a few orders of magnitude. In addition, it is found that combined PCBM/carbon ETL 

reduced the interfacial defects and improved shunt and series resistances of perovskite solar cells. 

In particular, the improved photovoltaic performance and reduced hysteresis of perovskite could 

be attributed to carbon-induced passivation of interfacial traps. Our results demonstrate the 
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potential of the use of cost-effective carbon for perovskite solar cells which could reduce 

production costs. 

 Then, we investigated the degradation of CH3NH3PbI3-xClx perovskite films, particularly 

in terms of their crystallographic, morphological and mechanical properties when exposed to air 

at 40% humidity. Steady-state PL spectra revealed a blueshift from 760 nm with development of 

asymmetric PL spectra when exposed to air which are related to the development of non-

stoichiometric Pb-rich perovskite chemistries. Remarkably, UV-VIS measurements revealed 

noticeable PbI2 peaks while the perovskite phase diminished with increased air exposure time. 

Furthermore, morphology and crystal size distribution studies have shown that initial air exposure 

has slightly increased the crystal size. However, the development of pinholes reduced the crystal 

sizes beyond 20 hrs air exposure. The mechanical properties including elastic modulus and 

hardness also evolved with exposure time in the same manner that the crystal size distribution and 

morphology evolved. This work demonstrates a comprehensive picture of degradation 

mechanisms of perovskite films with air exposure and facilitates the design and fabrication of 

perovskite solar cells sustainable in air. Identification of the degradation mechanism of perovskite 

film provides guidance for future development of air stable perovskite solar cells. 

 

8.2 Future works 

 We have optimized a perovskite solar cell with a structure of FTO/ PEDOT:PSS/ 

Perovskite/PCBM/ Carbon/Ag, as shown in Fig. 34 (a). This solar cell has the photoconversion 

efficiency of ~16% as shown in Fig. 34 (b). However, this solar cell degrades with the exposure 

of humidified air. In particular, perovskite film quickly degrades into PbI2 and I2 when exposed to 

air, as discussed in chapter 7. Moreover, the hole transport layer and electron transport layer 
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degrade with air exposure which will intensify the degradation mechanism. Our future plan is to 

replace organice HTL (PEDOT:PSS) and ETL (PCBM) with metal oxide based hole and electron 

transport layers. We have observed initial improvement by replacing organic PEDOT:PSS using 

NiO. 

 Currently, various inorganic HTLs such as NiOx, CuSCN, MoO3, V2O5, CuI have been 

introduced into perovskite solar cells [172]. Among the inorganic HTLs, NiOx is attracting more 

attention due to the interfacial band energy alignment with perovskite, strong hole charge 

extraction characteristics, and optical transparency. However, there are few drawbacks associated 

with NiOx as the HTL layer of solar cells which needs to be resolved. In particular, NiOx layer 

contains a lot of surface defects, which act as potential trap states in the solar cell structure.  These 

trap states are related to internal defects which cause unwanted severe hysteresis and light soaking 

phenomenon [173]. Moreover, current synthesis processes of NiO are time consuming and require 

the use of toxic chemicals such as ethylenediamine and hydrazine monohydrate. We developed a 

simple, non-toxic, and time efficient process for preparing NiO precursor. In particular, we mixed 

NiO powder with HCl only for 15 min at 75 °C with magnetic stirring. Then we spun coat this 

precursor using hot-casting technique. This NiO was applied to our reference solar cell instead of 

PEDOT:PSS as shown in Fig. 34 (a). We have fabricated ~17% efficient solar cell using NiO 

which has improved open circuit voltage more than that of PEDOT:PSS based solar cells. 

 Fig. 34 (c) shows a comparison of the stability of two solar cells: one with PEDOT:PSS 

HTL and the other with NiO HTL, where the photo conversion efficiency is normalized to 1. PSCs 

were stored in ambient environtment with a relative humidity less than 40%. The performance of 

the PEDOT:PSS based solar cell is reduced to ~20% from its intial performance within only 24 

hrs of exposure to air. This degradation is due to the decomposition of perovskite into PbI2 and I2, 
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as discussed in the previous chapter. On the contrary, the degradation rate is slower for NiO based 

solar cells. The PCE of a solar cell with NiO HTL decreased to ~40% when exposed to air for 168 

hrs. The application of NiO prevents the degradation of perovskite from NiO side. However, the 

performance degradation of perovskite occurs from the ETL side. Note that, PEDOT:PSS is a 

hygroscopic material. Kenji Kawano et al. [174] revealed that PSS is present in excess amount in 

PEDOT:PSS. This exceess amount of PSS reacts with other elements and undergoes oxido-de-

sulfonato-substitution where two PSS link together with sulfonic ester group. Finally PEDOT:PSS 

loses its property and increses the series resitance, which results in quick degradation of PCE of 

solar cells [174, 175]. 

 

 

 

 

Fig. 34.  (a) p-i-n inverted structure composed of  FTO/ (PEDOT:PSS or NiO)/ perovskite/ PCBM 

/C60/ Ag, (b) current-voltage characteristics of two PSCs: one with HTL of PEDOT:PSS and the 

other with HTL of NiO, (c) Normalized PCE of perovskite solar cells with two different HTLs 

(NiO and PEDOT:PSS) as a function of aging time in air. 

 

 

 

 A further improvement can be achieved by incorporating another layer on the perovskite 

or by adding additive in the perovskite to remove ion migration from perovskite to electrodes and 
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to passivate the defective grain boundaries. Thus, our future goal is to control the ion migration of 

the perovskite film. After that, we will apply an encapsulation layer on top of the solar cell to 

protect it from air. Moreover, the irreversible thermal degradation of the perovskite films was 

observed at 70 °C [89,143], so our future goal is to fabricate highly efficient thermal and air stable 

perovskite solar devices. Finally, the above-mentioned modifications will help to commercialize 

low cost perovskite solar cells. 
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APPENDIX A 

 

This appendix is the supplementary information of chapter 4. 

 

Fig. A1.  EDS signals for different chemical components of the represented area showing that the 

chlorine signal (2.621 KeV) was clearly distinguished from the Pb signal (2.342 KeV).  
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Fig. A2.  Comparison of a 2D EDS mapping of lower (100 C) and higher (180 C) hot-casting 

perovskites elucidating the distributions of chemical compositions of Pb, I, Cl, and O, respectively. 
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Fig. A3.  SEM images of (a) a lower hot-casting perovskite and (b) a hot-casted processed 

perovskite showing different representative areas for EDS measurements including different GIs 

and GBs. 

 

 

 

Table A1.  Atomic chemical percentage of selected chemical components of lower and higher hot-

casting perovskites. Other chemical elements such as Na, Mg, Al, Si, S, Ka, and Ca were detected 

but not shown here. 

 100 hot-casting perovskite 180 C hot-casting perovskite 

 GI-I GI-II GB-I GB-II GI-III GI-IV GB-III GB-IV 

C 9.79 10.50   19.64 17.32 11.69 12.85 

O 58.28 54.97 66.44 65.89 41.95 40.58 55.80 53.64 

Pb 0.97 1.25 0.47  1.14 1.54 0.33 0.37 

Cl 1.21 1.19   0.71 0.86   

I 1.01 1.54 0.34  1.91 2.79 0.35 0.43 

 

 

 

 

 

 

 

 

 

 



   

 

120 

 

 

 
 

Fig. A4.  Microscopic images and corresponding lifetime mapping of hot-casting perovskites that 

are clearly distinguishable between the GIs and the GBs. (a) and (d) microscopic images, (b) and 

(e) corresponding time resolved 2D lifetime mapping, (c) and (f) lifetime values as a function of 

positions for a higher and lower hot-casting perovskite, respectively. The average lifetimes for 

lower and higher hot-casting perovskites within the grains were estimated about ~ 1.8 and 2.5 ns, 

respectively. 
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