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ABSTRACT 

DEMONSTRATION OF VISIBLE AND NEAR INFRARED RAMAN SPECTROMETERS AND 

IMPROVED MATCHED FILTER MODEL FOR ANALYSIS OF COMBINED RAMAN SIGNALS 

Alexander Matthew Atkinson 

Old Dominion University, 2019 

Director: Dr. Hani E. Elsayed-Ali 

 

 

 Raman spectroscopy is a powerful analysis technique that has found applications in fields such 

as analytical chemistry, planetary sciences, and medical diagnostics. Recent studies have shown that 

analysis of Raman spectral profiles can be greatly assisted by use of computational models with 

achievements including high accuracy pure sample classification with imbalanced data sets and 

detection of ideal sample deviations for pharmaceutical quality control. The adoption of automated 

methods is a necessary step in streamlining the analysis process as Raman hardware becomes more 

advanced. Due to limits in the architectures of current machine learning based Raman classification 

models, transfer from pure to mixed sample analysis is not possible.  

 This thesis presents the design, fabrication, and data collected from two different Raman 

spectrometers, a visible light system operating at 532 nm and a near infrared system operating at 785 

nm. For each system, the optical design and operational theory of the main components will be 

explained. Data collected on each system will then be presented. Additionally, a learned matched filter 

computer model was developed to analyze Raman line profiles and can detect the signatures of 

multiple materials in a single data point. The presented model incorporates machine learning theory 

into the traditional matched filter model for higher probability of detection and much reduced 

probability of false alarm. The structure and operation of the model will be explained, and analysis of 

both real and simulated mixed-sample Raman spectra will be presented. 
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CHAPTER 1 

INTRODUCTION 

 

 Raman spectroscopy is a powerful material analysis technique that can provide insight into the 

composition of solid, liquid, and gaseous samples by measuring the frequency shift of inelastically 

scattered light from a monochromatic source.1 Technologies developed since its discovery have made 

Raman spectroscopy an analysis standard with applications in fields ranging from interplanetary 

exploration to medical diagnostics and pharmaceutical quality control.2-4 As advancements have been 

made in the field, Raman systems have gained a need for rapid data analysis techniques capable of 

matching the fast acquisition times that have been achieved, lower potential for human error, and open 

Raman spectroscopy as an analysis technique to a wider variety of users. Planetary science fields are 

actively researching data analysis techniques that can handle the large amount of complex science that 

interplanetary missions will collect.2 

  Machine learning has proven itself to be a powerful tool for discriminating between Raman 

spectra. Recent studies have achieved high accuracies in high-class single sample classification 

problems and binary classification of complex samples such as human blood.5,6 Although past studies 

have established a generalized scheme for accurate classification of Raman spectra, the current state of 

machine learning and Raman has a need for a model which can analyze mixed samples. While sample 

refinement may be possible in a laboratory environment, in-situ Raman instruments may not be able to 

physically isolate samples from each other due to restrictions from the environment or improper 

equipment.  

 

The journal model used for this thesis is Optical Engineering. 
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 In machine learning, cases in which class labels are not mutually exclusive place restrictions on 

the type of model that can be used.7 Models that attempt to solve these problems need to be able to 

detect multiple classes in a single input.7 When brought into the scope of Raman spectroscopy an 

appropriate model would ideally be used to inform the user what components are likely to make up a 

mixed sample by comparing features present in an input data point with specific spectral patterns that 

the model learned to associate with materials during training. This chapter introduces the problem of 

detecting multiple classes simultaneously in the context of Raman spectroscopy. In it, the flaws 

inhibiting this capability in current models used for Raman analysis will be explained and one possible 

solution will be introduced. 

1.1 Raman spectroscopy 

 Raman spectroscopy is a vibrational spectroscopic technique that analyzes the frequency shift 

of inelastically scattered light that is emitted when a Raman-active sample is struck with a 

monochromatic light source. Upon exposure to an electric field, the molecules in a sample deform and 

begin to vibrate effectively transforming into oscillating dipoles.8 The characteristic Raman signature 

of a Raman-active sample is based upon vibrational modes induced by that dipole which cause a 

change in the molecule’s polarizability.9  

 The likelihood of a photon being inelastically scattered is much lower than that of elastic 

(Rayleigh) scattering. Because of this, Raman spectrometers typically incorporate high optical density 

filters at the laser line to make Raman scattered light detectable.8 Raman scattering can cause the  

wavelength of incident light to become longer or shorter, referred to as “Stokes” and “anti-Stokes” 

scattering respectively.9 The Maxwell-Boltzmann distribution law predicts that molecules are more 

likely to be in a ground state causing Stokes scattering to be more common and “brighter” relative to 
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anti-Stokes. When multiple Raman-active molecules are struck by the same incident a combination of 

spectral features can appear on the line profile.2 

 

 

 

 

Figure 1 shows Raman spectra from pure sulfur (Figure. 1A), pure naphthalene (Figure. 1B), 

and a mixed sample comprised of both materials (Figure. 1C).10 It can be seen in Figure. 1C that 

spectral peaks from both naphthalene and sulfur appear in the mixed sample’s line profile. Recently 

designed machine learning models that show high classification accuracy with pure samples will not be 

A 

B 

C 

Figure. 1. Raman line profiles of pure sulfur, pure naphthalene, and mixed naphthalene and 

sulfur (A – C respectively). Spectral features from both pure sample line profiles can be seen 

in the mixed sample’s line profile.10 Indicated shifts are consistent with NIST standards. 
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able to transfer to mixed sample analysis due to limitations of some architectural components.11 While 

training a model with data collected from all different combinations of pure samples is a possible 

solution, the amount of training data which would need to be collected to train a model in that way 

would increase exponentially as more materials were added to the dataset. This leaves a need for an 

alternative method that can detect multiple materials in a single line profile after being trained with 

pure sample data. 

1.2 Current Methods for Automated Analysis of Raman spectroscopy 

 Modern papers concerning automated analysis of Raman spectra are increasingly incorporating 

machine learning techniques as their algorithms of choice.4-6 Liu et al. offers the broadest investigation 

to date into the effectiveness of different machine learning models at classifying pure sample Raman 

data.5 In their research, a total of 7 classifiers and 6 baseline correction methods were tested for 

classification accuracies of an unbalanced dataset created from several mineral Raman spectra 

databases provided by the RRUFF† project.14 It was found that the convolutional neural network 

(CNN) consistently showed the highest accuracy across all baseline correction techniques, achieving a 

peak classification accuracy of just over 96%. 

 The CNN is a class of deep learning network which was designed for image processing and 

classification tasks.15 CNNs traditionally utilize a single image input layer with multiple convolutional 

layers following a shared-weight architecture.16 These types of networks were originally inspired by 

biology, specifically by the visual processing systems of animals. 

 CNNs gained their name from their usage of the convolution operation. The purpose of the 

convolutional step is to allow the network to learn to associate specific features with certain classes and 

to also scale down high-dimensional inputs to decrease computational load. Compared to a traditional 

† - RRUFF is not an acronym. It is the official name of the project which maintains the public 

access Raman databases that were used for part of the model verification in this thesis. 
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neural network, the CNN’s learnable features typically consist of a set of filters in each convolutional 

layer along with one fully connected layer for output. Each filter is spatially small with respect to the 

input image and is used to compute convolutions by performing dot products as they are swept across 

the layer’s input as illustrated in Figure 2.  

While CNNs have achieved high accuracy classification with pure sample Raman data, they 

will fail when tasked with detecting multiple Raman classes in a single input just as they do in image 

processing applications.11 Although Raman spectral data avoids the orientation encoding problem, 

simply because all line profiles will begin and end at the same points, it is still susceptible to 

misclassification due to the model not learning features’ relative positions to each other. This loss of 

spatial encoding in CNNs is traceable to the use of max pooling layers which scale down an input 

vector or matrix by selecting only the largest numeric value to be passed forward.  

Figure. 2. A convolutional layer in a convolutional neural network (CNN). The filter (filled cells on 

layer input) is used to perform a series of dot products, yielding the layer's output. Each convolution 

reduces multiple pixels in the input to a single pixel in the output. Filter size and stride set by the user. 
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The other main issue inherent in models currently being used for Raman classification arises 

when the training dataset consists of only pure sample Raman spectra. Figure 3 shows the input 

weights of a trained softmax layer (SML) for classification of naphthalene and sulfur Raman spectra.17 

Figures 3A and 3C show all baseline corrected training observations for naphthalene and sulfur 

respectively. Figures 3B and 3D show the input weights of the naphthalene and sulfur output nodes 

respectively. As would be expected, each output neuron learned to “pay attention” to locations of the 

line profile where Raman peaks of their respective pure sample are found, seen by the positive weights 

learned in those regions. Along with this, however, both output neurons also learned to apply negative 

weights to regions of the line profile where features are found in the other pure sample, effectively 

assuming mutual exclusivity between spectral features. Due to the lack of training observations 

containing spectral features from both samples, the SML assumes that it will never see an input 

containing spectral features from both samples. When presented a line profile with spectral features 

from all learned pure samples, the dot product of the input with both weight vectors would approach 

the negative bias of their respective output neuron making simultaneous detection impossible. 

1.3 Classification with Matched Filters 

 Structurally, the model presented in this thesis closely resembles a matched filter. In a matched 

filter, detection of each class’ spectral features is accomplished on a singular basis. For discrete signals, 

a matched filter is generated from the complex conjugate of a known sample signal.18 In this case, 

because Raman signals are entirely real, the filter for each class can be generated by calculating the 

mean signal across all reference datapoints.18 Once all class filters have been calculated, classification  
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can be performed by calculating the correlation coefficients between the input signal and all class 

filters. If the correlation coefficient between the input signal and a class filter is high enough, it is 

counted as a hit. Hypothetically, utilizing machine learning for the generation of class filters would 

allow for a higher degree of differentiation between spectral features in and out of its class.  

A 

B 

C 

D 

Figure. 3. Pure naphthalene and pure sulfur training data (A & C) and the learned input weights for 

a softmax layer (B & D).17 It can be seen that the learned weights for the naphthalene and sulfur 

output neurons adjusted to increase sensitivity to the presence of spectral features from their 

respective material. Figure. 3B, for example, has positive weights from input neurons that 

commonly line up with naphthalene peaks.   
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1.4 Research Objectives 

Advancements in Raman spectrometer hardware have allowed for compact instruments to have 

deployment capabilities directly on interplanetary missions, flexible usage conditions requiring no 

sample collection/preparation, and no need for daylight radiation shielding.2 As the science that can be 

collected from a Raman spectrometer in a given amount of time increases, a bottleneck will be created 

in data analysis which leaves a need for a faster method of spectral data classification. Although recent 

studies have achieved high classification accuracies with large databases of pure samples, these models 

are unable to be directly transferred classification of complex signals that will be found on 

interplanetary missions.  

The objective of this research was to design, build, and test two different Raman instruments 

and to develop a computerized model that can automatically analyze large amounts of data. Both 

instruments are remote in their operation and utilize state of the art optical hardware. One system 

operates in the visible light spectrum with a laser wavelength of 532 nm, and the other operates in the 

near infrared (NIR) spectrum with an incident of 785 nm. The visible system uses a powerful 45 mJ Q 

switched laser and performs well for mineral analysis. The NIR system utilizes a lower energy pulsed 

laser at a longer wavelength to reduce laser induced fluorescence. The model is based off a matched 

filter and is capable of detecting Raman signatures from multiple different materials in a single line 

profile while only using pure sample data for training. Instead of utilizing a mean class signal for a 

filter, however, the filters are learned through the process of training multiple, class specific 

feedforward neural networks (FNNs). Each FNN in the model will be referred to as a sub-FNN because 

they are part of the larger model as a whole. 
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An example structure of a model for analysis of a two-species mixed sample can be seen in Figure. 4. 

By utilizing a single FNN for the detection of each class, high accuracy detection of class-specific 

spectral features can be achieved.10 Each sub-FNN is tasked with analyzing sections of an input Raman 

line profile. The sections of the line profile associated with each sub-FNN are defined during training 

as the regions of the line profile where spectral features of the sub-FNN’s respective pure material 

(class) are found, labeled as Z1, Z2, and Z3 in Figure. 4. Sub-FNN input restriction is performed as a 

type of feature selection to lower the computational load of having many FNNs working in parallel and 

to lower the risk of random noise or non-learned spectral features causing a false positive detection. In 

this thesis, the number of hidden units in each sub-FNN was kept constant. The output of the model is a 

Figure. 4. Model structure for analysis of a two-species mixed sample.10 The model’s input layer is 

of equal length to the Raman line profile. Before each sub-FNN is trained, the model analyzes each 

class’ average signal and remembers where spectral features are commonly found (illustrated by 

each sub-FNN only being connected to some of the model input layer).  
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vector consisting of all sub-FNN activations. Ideally, if the model in Figure. 4 analyzed the line profile 

in the same figure only the lower (dashed) sub-FNN would activate because spectral features are only 

present in the areas of the input layer that are being passed to it. Each element of the model output 

ranges from 0 to 1 inclusively and should be thought of as the similarity the sub-FNN’s input had to the 

data it was trained with (i.e. whether or not spectral features from a learned component material are 

present).  

This model is capable of analyzing Raman spectra collected from multi-component samples 

without utilizing complicated while retaining high performance pure sample classification capabilities. 

To test the model, mass data was collected with the 532nm time resolved Raman spectrometer. The 

collected data was used to analyze both real mixed sample data as well as simulated mixed sample data 

created by generating random combinations of pure sample signals.12,13 Mineral Raman spectra datasets 

maintained by the RRUFF project were also used to generate more complex simulated mixed sample 

signals.  
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CHAPTER 2 

532nm RAMAN SPECTROMETER 

 

 

 

 This chapter describes the hardware used to collect data for model verification. The data 

collection system is outlined in Figure 5 and consists of a Big Sky Laser UltraCFR serving as 

excitation source, a Kaiser Optical Systems Inc. (KOSI) Holospec f/1.8 spectrometer, and a Princeton 

Instruments PIMAX I ICCD camera.19-21 The operating concepts of the laser, receiver, camera, and 

system performance will be explained in the following sections.   

 

 

  

Figure. 5. Block diagram of hardware setup for 532 nm system.  System consists of a Big Sky Laser 

UltraCFR, a Kaiser Optical Systems Inc. (KOSI) Holospec f/1.8 spectrometer, and a Princeton 

Instruments PIMAX I ICCD camera.19-21 A custom receiver was made for optimal usage in a laboratory 

environment. 
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2.1 Laser excitation source 

 An actively Q-switched Big Sky Laser (now Quantel) UltraCFR laser was used as the 

monochromatic excitation source for collection of the mixed sample Raman data and the 5-class pure 

sample dataset.20,22 A flash lamp induces lasing in the Nd:YAG media, emitting 1064 nm radiation. The 

IR light is then frequency doubled to 532 nm by a potassium titanyl phosphate (KTP) non-linear crystal 

housed in a separate oven module at the front of the laser for optimal temperature control.23 Light is 

emitted from the aperture in 8 ns long pulses.19 Pulse frequency was kept at 20 Hz for all data 

collection and the laser’s “Q-switch sync” output signal was used as the main trigger for intensifier-

gated mode operation. Timing for gated mode operation will be explained in Section 2.3.   

2.2 Receiver and spectrometer 

 Laser light is directed to the sample in co-axial geometry by a mirror and a 90° prism for 

optimal backscatter collection. Use of a prism was chosen over a dichroic due to the high energy per 

pulse (45 mJ at 532 nm). A 200mm biconvex lens focuses the incident laser onto the sample at normal 

incident and collects the backscattered signal. The collected signal is then resized and focused into the 

spectrometer by a 20x microscope objective for optimal overall throughput and high collimation in the 

spectrometer’s filter section.20 Inside the spectrometer, intense Rayleigh scattered light is filtered out 

using a Semrock E-Grade long pass filter (part number LP03-532RE-25).24 The filtered light is focused 

through a 50 m slit for high spectral resolution and diffracted through a dual-region volumetric phase 

holographic transmission grating manufactured by Kaiser Optical Systems Incorporated.25,26 The two 

diffraction regions on the grating allow for low and high frequency Raman shift detection in a single 

exposure and cover a wavelength range of approximately 530-700 nm, or -73-4500 cm-1 of Raman shift 

from an incident wavelength of 532 nm. The shortest detectable Raman shift with this setup is 

approximately 80 cm-1 due to the filter’s pass band rising edge width. 
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2.3 Camera and Gate Timing 

 A Princeton Instruments PIMAX-I ICCD camera was used to detect the Raman scattered light 

collected by the system. The camera is mounted directly to the spectrometer housing at its output 

focusing lens. A variable gain intensifier is integrated into the camera housing and allows for 

amplification of the inherently weak Raman signal.21 Signal to noise ratio was farther improved by 

running the camera in intensifier gated mode, which reduces background signal collected in an 

exposure by only powering the intensifier when Raman scattered light is detectable.27 Optimal gate 

width and delay were found experimentally for each sample. 

ICCD cameras are one solution available to overcome signal to noise limitations which are 

found in unamplified signal collection methods by offering both amplification of collected signal and 

gated operation, which reduces background signal in an exposure.28 Raman data from the mixed sample 

and the 5 pure sample dataset were collected with the camera operating in gated mode. Gated operation 

Figure. 6. Gated mode timing diagram.19,27,29 The main trigger signals the laser to pulse and starts 

camera timing for intensifier gate delay. After the programmed delay is reached, the intensifier is gated 

(ideally only when Raman scattered light is visible) and spectra is collected on the CCD. 
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of the camera is achieved by precisely controlling when power is supplied to the intensifier tube’s 

microchannel plate.  

 Figure. 6 shows the timing used for gated operation of the ICCD camera.29 The main trigger 

utilized for gated mode was the laser’s “Q-switch sync” signal which consistently pulses 70nS before 

light exits the aperture. The camera waits after the main trigger to allow the laser pulse to travel to the 

sample and scatter back to the photocathode of the intensifier tube (gate delay). The intensifier gate is 

then opened allowing intensified light into the camera (Raman detectable). Ideal gate width can vary 

for each sample and was found experimentally for all data collection.  

2.4 System Performance 

 As shown, the assembled system was able to collect Raman spectra and fluorescence signals 

from a wide variety of samples. Figures 7, 8, and 9 show calibrated ruby fluorescence, Raman spectra 

of room temperature water, and Raman spectra from various mineral samples respectively. All the data 

below was collected with no backstop at 20 cm from the receiver. All Raman data was collected with 

the system running in gated mode, the ruby fluorescence was collected with the camera running with a 

continuously opened shutter (CW mode). This system performed very well with mineral samples and 

was able to achieve good signal to noise ratio with clear liquid samples as well. Data collection of 

biogenic samples was attempted; however, the powerful visible spectrum laser caused high amounts of 

fluorescence and damaged some samples as well. 
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Figure. 7. Fluorescence spectra of Ruby crystal. Characteristic peaks at 693 and 694 nanometers can be 

seen along with a dim broadband signal ranging from 660 to 680 nanometers. 

Figure. 8. Raman spectra of room temperature distilled water. The broadband signal ranging from 2900 

to 3650 cm-1 matches closely with other published data. Data point was collected with no backstop.  
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Figure. 9. Raman spectra from calcite (A), quartz (B), and gypsum (C). Good signal to noise ratio was 

achieved using gated mode operation.    
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CHAPTER 3 

785nm RAMAN SPECTROMETER 

 

 

 

 Experiments with the 532nm gated system described in Chapter 2 showed exceptional 

performance with mineral samples. Attempts to collect data from biological samples such as glutamine, 

however, showed heavy presence of laser induced fluorescence similar to that shown in Figure. 10. Due 

to the high energy per pulse of the UltraCFR laser, Raman spectra of biological samples consistently 

had intense fluorescent baseline. This chapter describes the design of a 785nm Raman spectrometer 

that will be used to reduce laser induced fluorescence in biological samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure. 10. Laser induced fluorescence overpowering 936(cm-1) peak in naphthalene signal, 

NASA LaRC 2006 
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3.1 Laser excitation source 

  A Crystalaser QL785 Q-switched laser centered at 785nm was used as the laser excitation 

source for this Raman spectrometer. The compact size of the laser unit allows it to be mounted directly 

on top of the spectrometer enclosure The laser is internally clocked to pulse at a rate of 1kHz with a 

pulse width of 10 to 15ns depending on power output setting.30 The laser is able to be externally 

triggered and also has a output signal in sync with its laser pulses, allowing for flexible usage in gated 

mode. Transmitter/receiver optics are shown below in Figure. 11. 

 

 

 

 

3.2 Receiver and spectrometer 

 Laser light is directed to the sample in co-axial geometry by a mirror and a Semrock LPD02-

785RU-25 long pass dichroic beam splitter with a pass band beginning at 792.9nm.31 Upon leaving the 

aperture, the laser light is directed through a -18mm planoconcave lens and a 150mm biconvex lens, to  

Figure. 11. Exterior lens setup for compact 785nm Raman spectrometer (side view). L1 = -

18mm planoconcave. L2 = 150mm biconvex. L3 = 100mm planocylindrical. L4 = 50mm 

biconvex. M1 = mirror. F1 = dichroic beam splitter. S1 = 100um slit. The laser is mounted to 

the top of the spectrometer housing. Housing design based on that of SUCR instrument 

developed by Dr. Nurul Abedin.2 
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increase the beam diameter to approximately 3.3mm. The expanded laser light is then focused onto the 

sample 10cm away with a 100mm planocylindrical lens. Backscattered light is then collimated by the 

cylindrical lens and focused onto the 50m slit by the 150mm and 50mm biconvex lenses.  

Inside the spectrometer (Figure. 12), light is collimated onto a Wasatch Photonics variable 

phase holographic grating by a Pentax c-mount camera lens and focused into the ICCD camera by a 2” 

diameter 50mm biconvex lens.32 The current grating has efficient diffraction to a Raman shift of 

1600cm1 from the incident wavelength of 785nm. The system has a supplemental Semrock  

NF03-785E-25 notch filter inside the housing to increase optical density past OD6 at the laser line. 

3.3 Camera and Gating Scheme 

 A Princeton Instruments PIMAX-I ICCD camera was used to detect the Raman scattered light 

collected by the system.21 The camera is mounted directly to the spectrometer housing at its output 

focusing lens. A variable gain intensifier is integrated into the camera housing and allows for 

Figure. 12. Current internal optics design (top down view). L1 = 50mm c-mount lens. 

F1 = 785nm notch filter. G1 = VPH grating. L2 = 50mm biconvex. 
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amplification of the inherently weak Raman signal.21 Gated operation was attempted, however, both the 

camera and laser drivers are unable to trigger each other due to their trig-out signals having too short of 

a pulse width. In order for gated operation to be achieved, a separate external triggering circuit with a 

longer pulse width is needed. Intensifier delay and gate width can be set via software.   

3.4 System Performance 

 Figure. 13 shows baseline noise that was always detected while the laser was running. 

Calibration of the noise verified that it was centered around the laser wavelength and that the center 

“trough” of the waveform was the notch filter’s stopband. Further data collection showed that the noise 

quickly degrades to similar intensities as Raman scattering. This is highlighted in Figure. 14 that shows 

the 473 cm-1 peak of sulfur is detectable through the noise. The noise was present with two different 

785 nm lasers, the Q switched laser described in Section 3.1 as well as a CrystaLaser DL-785 laser. 

Research into this issue pointed to either interference coming from the filters or amplified stimulated 

emission (ASE) noise being introduced by the pump diodes.  

  

 

Figure. 13. Baseline detected whenever laser backscatter is collected. 
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A baseline correction program that was developed for data preparation for automated analysis proved 

to be useful in recovering signal that was on top of this noise. Figure. 15 shows calibrated naphthalene 

spectra before and after baseline correction. The 513cm-1 peak was able to be recovered from the 

baseline, functionality of this program will be covered in Chapter 5. 

 

 

 

 

  

  

Figure. 15. Naphthalene signal before and after baseline subtraction. The 513 cm-1 peak was 

recovered from the baseline. Artifacts from the subtraction process are seen below 350cm-1. 

513cm-1 peak is hidden 

Figure. 14. Sulfur signal visible through baseline. The baseline noise is on a similar intensity 

scale as Raman scattering.   
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CHAPTER 4 

MODEL ARCHITECTURE 

 

 

 

 The model presented in this thesis was able to detect multiple materials’ Raman signatures in a 

single line profile by splitting the task of detecting each individual signal to a single FNN. This model 

structure is similar to that of a matched filter, where each class has its own “known signal” that inputs 

are compared to. Replacing the class filters with an FNN grants the added benefit of lower probabilities 

of false alarm and higher probabilities of detection when there are multiple signals present in an input. 

In this chapter, the architecture of the model will be explained. Additionally, the operating principals of 

the sub-FNNs, training and testing algorithms, and the procedure used for interpretation of the model’s 

output will be presented.   

4.1 Feedforward neural networks 

  The model presented in this thesis makes use of multiple feedforward neural networks (FNNs) 

to detect multiple pure samples in a single input, one for each material it is trained to detect. FNNs 

were chosen for use because they lack the spatial encoding problems prevalent in convolutional neural 

networks (CNNs) while being easily scalable and fully adaptive.11,15 Improvements in performance 

over a traditional matched filter model were expected due to the learned aspect of each sub- FNN. By 

minimizing classification error with a pure sample training dataset, each sub-FNN will be attuned to the 

spectral features of its material and indifferent to all others in the training dataset. Each sub-FNN 

generated during training will follow the generalized structure shown in Figure. 16.17 The input layer of 

the network is of the same length as the total length of all regions of the Raman line profile where 

spectral features of an arbitrary material are found. In its current iteration, the model uses an equal  
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number of hidden units for every sub-FNN. All sub-FNNs have a single output neuron, which acts as a 

single element of the overall model’s output. 

 The output of a single sub-FNN is calculated by applying weights, biases, and activation 

functions as normal. For an arbitrary input vector x, values at the hidden layer (h) are calculated using 

ℎ = tanh ((𝑥 ∙ 𝜔ℎ) + 𝑏ℎ) 

where h represents the hidden unit’s learned weights and bh represents the biases at the hidden units. 

Hyperbolic tangent was used as the hidden layer activation function. The selection of activation 

functions will be explained in section 4.1.2.  

Output values are then calculated by 

𝑂 = 𝜎((ℎ ∙ 𝜔𝑜) + 𝑏𝑜) 

(4.1) 

(4.2) 

Figure. 16. Generalized structure of an arbitrary sub-FNN. All sub-FNNs have an input length 

corresponding to the amount of spectral features from their respective material (Z1 – ZN). All sub-

FNNs have an equal amount of hidden and output neurons.17 
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where o represents the output neuron’s learned weights and bo represents the output’s bias. Sigmoid 

(Equation 4.3) was used as the output neuron’s transfer function. 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑛) =  𝜎(𝑛) =  
1

1 + 𝑒−𝑛
 

 

4.1.1 Activation Functions 

 The choice of activation functions in an FNN is critical in their design as it directly impacts the 

difficulty of training, the ability to converge during training, and the network’s highest potential 

accuracy.33 In an FNN, the activation functions of the hidden and output layers perform mathematical 

operations on the data that is being fed to them. In some cases, such as a classical perceptron, this can 

be a simple step function that only activates if the input is greater than a set value.15 More commonly, 

however, non-linear functions such as sigmoid (Eq. 4.3) and hyperbolic tangent are used because they 

allow the FNN to approximate more complex functions.33  

 The model presented in this thesis makes use of hyperbolic tangent as the hidden layer transfer 

function and sigmoid as the output layer activation function for all sub-FNNs. These were chosen 

because of the format the input data as well as the desired meaning of the output. Utilizing hyperbolic 

tangent in the hidden layer centers all data passed forward to the output layer around zero (normalizes 

the data), this capability is what allows this architecture to function without a normalization step in 

preprocessing. The use of sigmoid on the output layer scales the data to the range of zero to one 

inclusively, allowing the activation of each sub-FNN to be thought of as a probability that its 

component material is present in the model’s input.  

4.1.2 Training Methods 

 The “training” of an FNN involves the minimization of the network’s error by iteratively 

changing the weights between neurons.  Very commonly, FNNs are trained utilizing “error 

(4.3) 
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backpropagation,” which adjusts each weight by calculating its contribution to the error of the FNN as 

a whole.15 Let the output of the FNN in Figure. 16 be defined as: 

𝑂 = 𝜎((tanh((𝑥 ∙ 𝜔𝑖) + 𝑏𝑖) ∙ 𝜔𝑜) + 𝑏𝑜) 

 Where x is the input to the FNN, i and o are the learned weights for the input and output 

layers respectfully, and bi and bo are the biases for the input and output layers respectfully. When using 

mean squared error as the training loss function, the FNN’s error can be calculated with: 

𝐸 =  
1

𝑁
∑(𝑡𝑖 − 𝑂𝑖)

2

𝑁

𝑖=1

 

where N is the number of neurons in the output layer and t is the known value (target) that the output 

should be for a given input. Error backpropagation calculates the partial derivatives of E with respect 

for every weight in the FNN.15 The weights are then updated by Eq. 4.6, for all i weights in the 

network: 

𝜔𝑖
+ = 𝜔𝑖

− − 𝜆
𝜕𝐸

𝜕𝜔𝑖
− 

where lambda is a decimal value called the learning rate. The learning rate is gradually reduced 

throughout training as a function of error to prevent the divergence from a local error minimum13.  

All sub-FNNs generated in this model were trained using Levenberg-Marquardt 

backpropagation (LMB). LMB is one of several algorithms which may be used to minimize cost 

function of, or train, a feedforward neural network.24 LMB was developed to solve inefficiencies found 

in error backpropagation. Despite traditional backpropagation’s still widespread use it is understood to 

be inefficient due to the need for small step sizes and the possibility of non-uniform curvature of the 

error function’s surface causing slow convergence.34  

 A sub-FNN’s cost as a function of an arbitrary weight is likely to have several local minima 

given this problems dimensionality. Having too large of a learning rate can cause the training to 

(4.5) 

(4.6) 

(4.4) 
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diverge from an ideal minimum and having too small of a learning rate can add unnecessary time to 

training. LMB solves these issues for small to medium sized problems by incorporating the Gauss-

Newton algorithm when error function curvature is low, approximating the cost function as a quadratic 

equation for much faster computation.34 Although LMB is slower than a pure implementation of 

Gauss-Newton, it is faster than vanilla backpropagation and can be implemented on larger networks 

than Gauss-Newton alone.  

 Additionally, in this implementation the exit status of the shallow neural network training tool 

was monitored during model generation. A sub-FNN was only accepted if the training tool exited upon 

reaching the default minimum gradient value. During the model’s development, decreases in testing 

accuracy were noticed if sub-FNNs that exited training on a validation stop were used. If a validation 

stop was detected by the main model generation program, a new sub-FNN was trained until a minimum 

gradient stop was achieved.  

4.2 Model generation procedure 

 The generation process for the model presented in this thesis can be seen in Procedure 1.10,17  

 

The user passes a labeled dataset of pure sample Raman spectra to the model along with the 

number of hidden units they would like in each sub-FNN. In this implementation, training observations 

and labels are passed as two separate matrices to the training script. 

Procedure 1 – Model Generation 
1. for each pure sample i in training data 

2.    detect regions of line profile containing spectral data 

3.    initialize fnn with input length equal to the sum of all region lengths 

4.    create a two class training dataset by extracting regional data 

5.    train fnn using two class dataset 

6. end 
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Model generation is completed by iteratively training each sub-FNN, the procedure for each 

sub-FNN is the same. To assist with network differentiation between pure samples and to ease 

computational burden, each sub-FNN limits where it searches an input line profile to only areas where 

spectral features of the material it is meant to detect are found on the Raman line profile, referred to as 

“regions of interest.” After these regions are defined for a single sample type, the model generates 

training data subsets for sub-FNN training. These subsets consist of the initially passed training data 

which has been trimmed to only contain features from the regions found in Procedure 1 Step 2 and the 

labels of this modified dataset are changed to only be two classes. The first class is for the material 

assigned to the detector network being trained and the second is for spectral data from all other classes. 

The modified datasets are then used to train the sub-FNN. 

4.3 Model analysis procedure 

 The analysis process for the model presented in this thesis can be seen in Procedure 2.17 

 

Classification of an input data point is accomplished by iteratively analyzing an input line 

profile with each trained sub-FNN. Line profile data from each sub-FNN’s regions of interest is 

extracted from the input. The extracted data is then forward propagated through the sub-FNN. The 

output values of each sub-FNN are then concatenated into a one-dimensional matrix and returned to the 

Procedure 2 – Analysis Algorithm 
1. for each sub-FNN i in a trained model 

2.    extract spectral data from the sub-FNN’s line profile regions 

3.    forward propagate extracted data through the sub-FNN 

4.    if threshold activation reached 

5.       report pure sample as detected 

6.    else 
7.       report pure sample as not detected 

8.    end  

9. end 
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user. If a user-set threshold activation is met on a class’ output, spectral features from that class are 

then considered present in the input.  

4.4 Interpreting the model’s output 

After a model is trained, it can be thought of as a collection of functions (F) that map certain 

sections of an input line profile (x) to a single member of an output row matrix of activation values (Y), 

as shown in Equation 4.7.  

𝒀 = 𝐹(𝒙) 

𝑦𝑖 = 𝑓𝑖([𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]) 

When transformed to an element-wise form (Eq. 4.8) yi represents a specific member of the output row 

matrix, fi represents the function acting upon an input when forward propagated through its respective 

sub-FNN, and xij represents the jth region of interest from the ith sub-FNN. All spectral data from the 

regions of interest is concatenated into a single vector before being passed to a sub-FNN. 

 It is up to the user of the model to decide at what activation a material can be labeled as 

detected/present, this point will be referred to as the activation of significance (AOS). The following 

method was used to find the AOS for analysis of the real mixed sample data collected in this thesis. 

After training, pure sample data (not from the training dataset) was classified using the model. For each 

class the max, mean, and standard deviation of activations from all non-member observations were 

calculated. The AOS was then set to the highest value of all max activations and all mean activations 

plus 3 standard deviations, following Eq. 4.9, for all i classes in the model. While it is possible to have 

a different AOS for each class, it is not recommended as it may increase the probability of a false 

alarm.  

𝐴𝑂𝑆 = 𝑎𝑟𝑔𝑚𝑎𝑥{max(𝑦𝑖) , 𝜇𝑖 + 3𝜎𝑖} 

 

(4.7) 

(4.8) 

(4.9) 
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CHAPTER 5 

MODEL VALIDATION 

 

 

 The capabilities of the presented model were validated by analyzing real mixed sample Raman 

data and simulated mixed sample signals. One real mixed sample experiment and two simulated 

experiments were conducted. The real mixed sample experiment analyzed a sample with two 

components. The two simulated mixed signal experiments made use of Raman spectra datasets of 5 and 

23 samples. Spectral data from the 5-class dataset was collected all on the same system by hand in 

NASA LaRC’s Raman spectroscopy lab, directed by Dr. Nurul Abedin. Spectral data from the 23-class 

dataset was acquired from the RRUFF project’s public “excellent oriented” and “excellent unoriented” 

datasets.14  

5.1 Data Preparation  

 Although collecting Raman spectra in gated mode greatly reduces the amount of fluorescent 

background that is present in a line profile, baseline signal correction was performed on all data to 

ensure consistency in the training data set allowing only the network’s ability to recognize Raman 

features to be tested. In this thesis, baseline correction was accomplished by asymmetric least squares 

smoothing following the method presented by Eilers and Boelens in their 2005 release.35 

 All steps beginning from line profile extraction to a baseline corrected line profile combining 

high and low frequency regions can be seen in Figure. 17. Raw line profiles are extracted from the high 

and low frequency regions on the CCD (A – D). Baselines are then estimated and subtracted from the 

line profiles (E - F). The corrected line profiles are then concatenated, completing a single data point 

(G). This process was repeated for every training and testing data point, except when no features were 
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present in either the high or low frequency region. If no spectral features were present, the base signal 

was extended to fill in the missing region for consistent input length.  

  

Figure. 17. Steps in data preprocessing process. Line profiles (C & D) are extracted from raw CCD images 

(A & B) by vertically summing columns of pixels. The baseline of the extracted signal is estimated and 

subtracted (E & F) and the two regions are concatenated. 
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5.1.1 Smoothing with Asymmetric Least Squares 

 Broadband fluorescence found in Raman data was corrected by subtracting an estimated 

baseline signal from the low and high frequency regions before concatenation. The baseline signal was 

estimated using the same method developed in Eilers and Boelens 2005 release.36 This method 

generates a slowly varying baseline estimate using a Whittaker smoother with the caveat that positive 

deviations from the baseline estimate are punished far more than negative ones, adding the 

asymmetrical aspect.35,35  

 The asymmetric Whittaker smoother operates by estimating a baseline series Z with equal 

length N to an input line profile X. The baseline series is meant to have the properties of being faithful 

to X while still being smooth.36 These two properties can be combined in a cost function C, shown 

below in Equation 5.1, where Δ2Zi = Zi– 2𝑍𝑖−1 + 𝑍𝑖−2. The first term of C corresponds to the 

“faithfulness” property, where the estimated baseline Z has as little difference from the input X as 

possible.29 

C = ∑ 𝜔𝑖(𝑋𝑖 − 𝑍𝑖)
2

𝑁

𝑖=1

+ 𝜆 ∑(Δ2𝑍𝑖)
2

𝑁

𝑖=1

 

The second term acts to penalize deviations in the estimated baseline by increasing cost when the 

baseline follows spectral features in the input.36 The term “"is a user-set parameter meant to balance 

the two terms and can be thought of as controlling the desired smoothness of the estimated baseline. 

“” is a generalization weight vector which allows for recalculation of Z by iterative updating.35 

Minimizing this cost function leads to the Equation 5.2: 

(𝑊 + 𝜆𝐷′𝐷)𝑍 = 𝑊𝑋 

Where W is a sparse diagonal matrix of  and D is a difference matrix “DZ = 2Z.” 35 Code 

implementation can be split into two calculations. With a known approximate solution, Z-, a new 

(5.1) 

(5.2) 
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weight vector, +, can be calculated by asymmetrically updating the weights with a new parameter p. 

An individual weight, i, will equal p if Xi > Zi and equal 1 – p otherwise.35 The new weight vector is 

used to calculate a new approximate solution, the process is then repeated for a user-set amount of 

iterations or until little change in the weight vector is found.35 MATLAB implementation of this 

scheme is simple and fast, typically needing less than 10 iterations to converge, and was of great use 

for data preprocessing. The two user-set parameters, p and , were found by trial and error for the 

mixed sample dataset and the 5-class pure sample dataset which were collected at NASA. No baseline 

correction was necessary on the datasets maintained by the RRUFF project. 

5.2 Mixed sample analysis 

 The mixed sample that was analyzed was a two-component mixture of naphthalene and sulfur. 

This mixture of materials was selected for the sample because both components have bright spectra 

with minimal baseline when data is collected with the system running in gated mode. The total material 

in the sample weighs 7 g with 2.5 g of coarsely ground naphthalene and 4.5 g of finely ground sulfur 

(7.194 mol sulfur : 1 mol naphthalene). The overall sample area was restricted by wrapping the sample 

bottle in white paper with a 1 cm by 1 cm square hole cut in it. After sufficiently mixing the sample, it 

was placed on a 2-axis kinematic micrometer stage oriented for control over the Y and Z axes. The 

bottle was not directly moved from its initial placement on the stage to ensure the sample inside the 

bottle did not shift during data collection. The diameter of the laser beam was approximately 1mm at 

the strike point. A picture of the uncovered sample bottle can be seen in Figure. 18. A high contrast 

image of the 1 cm2 sample window can be seen in Figure. 19. 

 

  



33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 0(cm) 1(cm) 

1(cm) 

Figure. 18. Image of mixed sample. 

Figure. 19. High contrast image of analyzed area. 
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The model used to analyze this sample was trained with the 5-class dataset collected in NASA 

LaRC’s Raman lab. The data points from this mixed sample were collected on the same 532 nm Raman 

system described in Chapter 2. Despite the mixed sample only containing 2 of the 5-classes which are 

in the dataset, the model was trained for all 5-classes to see if any false positives would be reported. As 

shown in Figure. 20, the training time was rather quick, requiring just under 6 seconds for all 5 sub-

FNNs to be prepared. All 5 of the sub-FNNs exited training upon reaching Matlab’s default minimum 

gradient and required no retries due to a validation stop. Default values were used for the minimum 

gradient, minimum error, and validation check training hyperparameters. 

 

 

Figure. 20. Console output for training of 5-class model. The commands display the system 

date & time (Y, M, D, H, M, S) at the beginning and end of model training as well as the sub-

FFN training exit states. 

Figure. 21. Average naphthalene signal from training dataset with marked region of interest 

boundaries. The vertical lines show which regions of the line profile were found by the model to 

contain spectral features. 
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Figures 21 and 22 show the average naphthalene and sulfur signals across the training dataset. 

The vertical line surrounding individual peaks or groups of peaks are the boundaries of the regions of 

interest found by the training program. The program found 8 regions of interest for classifying 

naphthalene and 2 for classifying sulfur. Table 1 shows the mean, standard deviations, mean plus 3 

standard deviations, and max activation values expressed by each sub-FNN when presented with a non-

member input. AOS for this experiment was set to be the largest of all these calculated values, 0.1203.  

 

 Class 

 Alabaster  Ice Water Naphthalene Sulfur 

μ 2.16E-06 5.29E-06 1.18E-06 9.27E-06 6.90E-04 

σ 1.67E-05 7.56E-05 1.32E-05 8.92E-06 9.10E-03 

μ+3σ 5.21E-05 2.32E-04 4.08E-05 3.60E-05 2.80E-02 

max 2.87E-04 1.40E-03 1.65E-04 1.65E-04 1.20E-01 

Table 1: Mean, standard deviation, 3 sigma, and max activation values for all non-member 

observations of all sub-FNNs. Max value, used as AOS, is highlighted. 

 

  

Figure. 22. Average sulfur signal from training dataset with marked region of interest 

boundaries. The vertical lines show which regions of the line profile were found by the model to 

contain spectral features. 
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 Figure. 23 shows the front image of the mixed sample with a superimposed grid of color-coded 

spots.10,15 Each spot on the image overlay represents the center of the laser strike-point for a single data 

point. Between each exposure, the sample was carefully moved in steps of 1mm to ensure the mixture 

was not disturbed, data points were collected from a total area of 1 cm2. The color of each spot 

corresponds to the label(s) that the model applied to that data point. A red spot means features from 

both naphthalene and sulfur had activations above the AOS, a yellow spot means only sulfur features 

had activation above the AOS, and a green spot means only naphthalene features had activations above 

the AOS. 

 

Figure. 23. High contrast image of mixed naphthalene and sulfur. Red = mixed classification, 

yellow = sulfur classification, green = naphthalene classification. A series of naphthalene and 

mixed classifications can be seen to follow the while vein of naphthalene present from (1,1) to 

(9,8).10,17 
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 A series of mixed and naphthalene classifications can be seen to follow the white vein of 

naphthalene as it extends diagonally upwards from data points (1,1) to (9,8). Due to how fine the sulfur 

was ground a small amount of sulfur powder was covering all of the larger chunks of naphthalene, 

which is not clearly visible in the high contrast sample image. The darker areas of the image 

correspond with voids in the sample itself, where less material was pressed directly against the sample 

bottle. No false alarms were reported for any of the non-present classes (alabaster, ice, and water).  

5.3 Simulated mixed sample signals 

 Two simulations were conducted to test the model’s accuracy when passed inputs containing 

spectral features of more than two samples and to verify pure sample classification accuracy matches 

accuracies achieved by current models. In both simulations, completely random combinations of a set 

amount of total classes were generated by adding average class signals together following Equation 5.3 

where xs is the combined signal, a is a random value between [0.1, 1.0] rounded to the nearest tenth, 

and xi is the average signal of a randomly selected sample class with intensity values scaled between 0 

and 1.12,13 The total amount of class averages added together, N, is set by the user. Special care was 

taken during coding to ensure no one class could be selected twice.  

𝑥𝑠 =  ∑ 𝑎𝑥𝑖

𝑁

𝑖=1
 

 Two datasets were used to generate two different models. The first dataset consists of Raman 

data from 5 different samples collected all on the same system in the Raman lab. The second dataset 

consists of Raman data from 23 different materials and was generated by picking samples out of two 

combined Raman databases which had at least 50 unique observations. Because the databases 

maintained by the RRUFF project contain many data points taken on different systems, all Raman line 

profiles were scaled to a single x-axis with a set dx of 0.5 (cm-1). The 23-class dataset was left balanced 

(equal amount of training observations per class) to counteract the expected negative effect that x-axis 

(5.3) 
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scaling would have on classification accuracy. The scaling process will be discussed in depth in Section 

5.3.3.  

 Performance of the model in these experiments is quantified by calculating the probability of 

detection (pd) and probability of false alarm (pfa) for any arbitrary component signal in xs. For both 

datasets: all sub-FNNs in the model had 200 hidden units, the AOS was set to a constant value of 0.5, 

1000 iterations were run for every N, and N was swept from 1 to the total amount of classes in the 

dataset. For all iterations where N equaled 1, random noise was added along with the intensity scaling 

to increase differences between the simulated signal and the training data. Information pertinent to both 

model’s training processes will be provided in their respective sections. The results of each combined 

pure signal experiment will show the pd and pfa values for all values of N and the prevalence of each 

pure sample in all observations where the model failed to detect at least one component signal. 

Comments will be made on any visible trends in the failed observations.  

5.3.1 Traditional Matched Filter 

The combined “excellent oriented” and “excellent unoriented” databases maintained by the 

RRUFF project contains Raman spectra from over 1600 minerals. For this experiment, mineral classes 

with at least 50 observations were selected and a balanced dataset was created from these data points. 

In total, this dataset contains 1150 unique data points from 23 total classes. The dataset was left 

balanced to help counteract the expected loss of accuracy from x-axis scaling. Data point scaling was 

accomplished by creating a new x axis ranging from 0 to 1577 cm-1 with a constant dx and extracting 

intensity values associated with the closest x value on the unscaled data point’s x axis. Any leading or 

trailing zeros were replaced with random noise to prevent zero variance errors from occurring during 

training, no other modifications were made to the data points from the RRUFF databases. The feature 
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selection functionality of the presented model was implemented in this matched filter implementation 

by the same methodology to allow for a more direct comparison between the two models performances. 

Figure. 24. shows the probability of detection (Pd) and probability of false alarm (Pfa) of an 

arbitrary signal being detected as a function of the amount of total materials in the randomly combined 

input (N). As expected, Pd decreases with the number of total signals in an input. It can be seen that the 

probability of detection rapidly decays as the N increases. Also, the probability of false alarm is 

unacceptably high in the cases of N equaling 1 through 8, reaching far above 90% in the N equals 1 

case. Although this model is capable of detecting multiple Raman signatures in a single input, the high 

probability of false alarm poses too much of a risk to use matched filters even as a pure signal 

classifier.  

 

  

Figure. 24. Pd and Pfa values plotted for all values of N in mixed pure sample signals experiment 

using 23 class data set from RRUFF databases and the matched filter model10. Pd decays faster 

than the presented model, and Pfa is far higher than that of the presented model for the N equals 

1 through 7 cases. 
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5.3.2 5-Class dataset 

 The 5-material dataset consists of Raman spectra from alabaster, water, ice, naphthalene, and 

sulfur. All data points in this dataset were collected on the same Raman system in the LaRC Raman 

spectroscopy lab, and the training dataset for the naphthalene and sulfur mixed sample experiment was 

derived from this dataset. The entire dataset was used for training and the AOS was set at a constant 

value of 0.5.  

 Compared to the naphthalene and sulfur real mixed sample experiment, which used exactly half 

of this dataset for training, total training time increased by 28% to 8.376 seconds. All sub-FNNs exited 

their individual training by reaching minimum gradient. Total simulation time for all 1000 signals for 

all 5 Ns took about 26 minutes, timing profiler output can be seen in Figure 25. 

 

The analysis of the 5000 simulated signals took a total of 1605s, excluding generation. This 

results in an average analysis time of 0.3s per signal. Generation of the simulated mixed signals 

accounted for less than 1% total execution time.  

 

 

  

Figure. 25. Timing profiler output from 5-class simulated mixed signals 

 

 

Fig. 27. Probability of detection (pd) plotted versus N with a line of best fit 

projecting pd for higher N values.Fig. 25. Timing profiler output from 5-class 

simulated mixed signals 
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N 
Probability of 
Detection (pd) 

Probability of 
False Alarm (pfa) 

1 1 0 

2 0.9930 0 

3 0.9590 0 

4 0.8548 0 

5 0.7130 0 

Table 2: Probability of detection and probability of false alarm (pd and pfa) for all Ns in 5-class 

simulation. 

 

Fig. 11. Calcite Raman spectra from two different systems. Although both data points are correctly 

calibrated, scaling is required before use with the model due to the differing x-axis, total length, and 

range of shift.Table 3: Probability of detection and probability of false alarm (pd and pfa) for all Ns in 

Figure. 27. Probability of detection (pd) plotted versus N with a line of best fit projecting pd for higher 

N values. 

Figure. 26. Composition of observations with at least one undetected component for all 

N in 5 class simulation. Legend labels are associated with bars left to right. 
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Figure. 26. shows what percentage of observations with at least one undetected component 

contained each pure sample signal for all values of N. For all 1000 iterations where N equaled 1, there 

were no misclassifications. In the cases where N equaled 2 and 3, it can be seen that observations 

containing both water and ice component signals were more likely to be misclassified. This is likely 

due to the similarities between water and ice Raman signatures. It can also be seen that as N increases 

the composition of misclassified signals begins to even out, this is indicative of the complexity of the 

signal becoming the limitation in pd instead of similarities between component signals. Because all 

generated signals contained all pure signals when N equaled 5, the complexity of the generated signal 

was the only possible cause of a failed classification. 

Figure. 27. shows pd plotted versus N along with a calculated line of best fit. The trend in this 5-

iteration case shows pd decaying rather rapidly as N increases, however, as will be seen in the RRUFF 

23 dataset results section, non-zero pd has been recorded with as high as 23 component signals. 

5.3.3 Preparation of spectra from RRUFF datasets 

 Due to the Raman data in the RRUFF project’s datasets being collected on different systems, x-

axis scaling needed to be performed for compatibility with the presented model. Figure. 28. highlights 

the issues which needed to be solved before use. Subplots A and B show two different calcite Raman 

spectra data points from the RRUFF project’s “excellent oriented” database before scaling. The 155, 

281, 711, 1085, and 1434 cm-1 Raman peaks can be seen in both. Neither system was able to detect the 

1748 cm-1 Raman peak. This could be due to the sensors not being large enough to detect diffracted 

light of that wavelength or the spectrometers diffractive optic not functioning at that wavelength at all. 

Although both data points were calibrated well on their own systems, x-axis scaling needs to be 

performed to correct the mismatching input lengths, standardize the total range of Raman shift covered 

in the line profile, and correct unequal spectral resolutions.  
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 Line profile scaling was performed by creating a new Raman shift (x) axis for all data points to 

follow and assigning intensity (y) values from the source line profile for each point on the new x-axis. 

The new Raman shift axis ranges from 0 to 1577 cm-1, based off of the longest shift detected in a data 

point, and has a constant dx of 0.5 cm-1 for a total input length of 3155 units. Any leading or trailing 

zeros left over in the scaled data point were replaced with random values between 0 and 1 to prevent 

zero variance cases from occurring during model generation. In cases where the source line profile had 

a higher spectral resolution than the new x-axis (a dx less than 0.5 cm-1) some data was lost in the 

scaling process. This loss of data could lead to an increased probability of false alarm and a decreased 

probability of detection. Figure. 29. A and B show the same calcite data points after they had been 

scaled to the same Raman shift axis. Peak positions are calibrated to the closest 0.5 cm-1 from their 

original positions and the overall length of the line profiles is now the same. 

Figure. 28. Calcite Raman spectra from two different systems. Although both data points are correctly 

calibrated, scaling is required before use with the model due to the differing x-axis, total length, and 

range of shift. 
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5.3.4 23-Class dataset 

This 23 class simulation uses the same dataset that was used to test the traditional matched 

filter. Training of the 23-class model for this experiment took just over 2 minutes. All sub-FNNs exited 

training by reaching minimum gradient. Total simulation time for 1000 data points over 23 values of N 

took 11 hours and 9 minutes, a screenshot of the timing profiler can be found in Figure 30. Figure 31 

shows pd and pfa plotted versus N along with a calculated line of best fit.10 The trend in this 23 iteration 

case shows pd decaying rather rapidly as N increases, however, the rate of decay in pd decreases as N 

increases, appearing to reach an asymptotic minimum at 14%. The pfa appears to have no rate of growth 

or decay with a max value of 0.037167 at N = 6. The false alarms could be caused by similarities 

between the Raman spectra of different classes and by the use of a scaled x-axis as the scaling process 

did lead to a loss of information in data points which had a smaller dx than 0.5 (cm-1). 
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Figure. 29. Calcite Raman spectra from two different systems applied to a new Raman shift axis. The 

peak positions are still properly calibrated and the overall length of both data points are the same. 
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Figure. 30. Matlab timing profiler output from 23 class simulated mixed signals. Entire run took 11 

hours  and 9 minutes averaging 1.7 s to analyze a single line profile. 

Figure. 31. pd and pfa values plotted for all values of N in mixed pure sample signals experiment 

using 23 class data set from RRUFF databases.10 
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Figure. 32. Composition of observations with at least one undetected component for all N in 23 

class simulation. Top to bottom of legend labels follow bars left to right. 
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 Figure. 32. shows what percentage of observations with at least one undetected component 

contained each pure sample signal for all values of N. For all 1000 iterations where N equaled 1, there 

were no misclassifications. In the N = 2, 3, and 4 cases, it can be seen that some component signals are 

in significantly more misclassified observations than other. This is possibly due to the use of a scaled x-

axis and the varying spectral resolutions which are seen in this dataset. It can also be seen that as N 

increases the composition of misclassified signals begins to become more consistent, however, some 

samples are still significantly more common in misclassifications than others. For example, when N = 

21 Albite was about 7% more common in misclassifications than Titanite.  
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CHAPTER 6 

DISCUSSION 

 

 

 

 This chapter summarizes the development of the Raman systems and the improved matched 

filter model. Results from model validation and future work which could increase spectrometer 

performance and model accuracy will be discussed. 

 In this thesis, an improved matched filter model for classification of Raman spectra and two 

Raman spectrometer systems were developed and tested. The 532nm gated system was designed to use 

a high-powered laser at a reasonable sample distance suitable for lab use. The system used an off-the-

shelf camera and spectrometer housing. The spectrometer was equipped with a custom, two region 

VPH grating make by Kaiser Optical Systems for high diffraction efficiencies up to 4500 cm-1 of 

Raman shift. The spectrometer was equipped with high optical density Semrock long pass filter 

allowing the system to detect shift as low as 80 cm-1. The transmitting optics utilized a prism allowing 

the laser to be used at full power and coaxial geometry for optimal backscatter collection. 

 The receiving optics utilized a 2” diameter collection lens to collect more backscattered light 

and a 20x microscope objective was used to focus light into the spectrometer for optimal collimation in 

its filtering section. The ICCD camera was equipped with a gated intensifier, experiments were run in 

gated mode to optimize signal to noise ratio and to allow for more comfortable operational conditions 

with the room lights on. In the past, this laser and spectrometer have not been able to receive Raman 

signal at samples distances this short. The 532 nm system performed well with mineral and liquid 

samples, however, there was high levels of laser induced fluorescence when biological samples were 

used. Performance of this system could be improved by reducing the size of the telescope section of the 
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receiver and installing a dichroic that is capable of withstanding the high energy laser pulses, increasing 

the efficiency and amount of backscatter collected by the receiver.  

 The 785 nm Raman system was designed to incorporate a pulsed near infrared laser in an ultra-

compact package. The spectrometer enclosure was made in-house following the designs for the SUCR 

instrument developed by Nurul Abedin. The enclosure serves as the main mounting point for all optical 

components including the laser, allowing for simple integration into remote controlled platforms. The 

transmission optics direct laser radiation for coaxial alignment and the cylindrical lens shapes the laser 

beam to a micrometer scale width. The lower laser energy allows for a dichroic to be used, increasing 

collected backscatter. The 785nm system utilized a laser that is able to be externally triggered, allowing 

for gated operation with the same camera form the 532nm system. Data collected with the 785 nm 

system showed baseline noise on a similar intensity level of Raman scattered light. Raman signals that 

were on top of the baseline were able to be recovered with a correction program developed in house. 

The baseline signal could be improved by incorporating a laser line cleanup filter, to remove any 

amplified spontaneous emission noise from the pump diode, or by experimenting with other filters in 

the case the signal was introduced by interference or etalon effects. Gated functionality could be added 

to the 785 nm system by incorporating a main trigger circuit with a longer pulse width that both the 

camera and laser drivers can detect. 

 The model’s framework consists of multiple feedforward neural networks which are used in 

parallel to detect the presence or lack of spectral features from every component it was trained with. 

Implementation in Matlab allows the model to be scalable to any number of pure samples as the user 

wishes. Lab data was collected from 5 different pure samples as well as a 2-component mixed sample 

for training and validation. Raman spectra from publicly accessible databases maintained by the 

RRUFF project was also used to validate the model by simulating mixed sample Raman spectra 
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containing spectral features from up to 23 different materials. The model, analysis, and simulation 

programs were written in Matlab R2018a.  

 A feature selection subroutine was built into the model’s training program which only passes 

pertinent data forward to each sub-FNN, decreasing computational load of running multiple FNNs in 

parallel and the chances of a false positive from noise or non-important spectral features which may be 

present in other areas of the line profile.  

 Analysis of an arbitrary input signal is accomplished by iteratively forward propagating sections 

of a line profile through each sub-FNN. The areas of the line profile that are analyzed correspond to the 

regions of interest of each sub-FNN that were found during training. The model’s output consists of a 

1-dimensional matrix of activation values from each sub-FNN in the order that they were trained. A 

positive detection for an arbitrary class is labeled as such by comparing the class’ respective sub-

FNN’s activation to a user-set minimum. In this thesis the minimum activation value was calculated 

using equation 4.9. Each simulated signal was only analyzed once for both the 5 and 23 class datasets. 

 Model validation was accomplished by analyzing real and simulated Raman signals which 

contained spectral features from multiple pure samples. The real mixed sample data was collected from 

a mixture of naphthalene and sulfur. The classifications assigned by the model agreed with analysis 

done by visual inspection of the Raman line profiles. No false alarms for known non-present materials 

were reported.  

 Simulated mixed sample line profiles were generated by randomly combining class Raman 

signals.12,13 Two different datasets were used, the first was collected on a time gated Raman 

spectrometer built at NASA LaRC, the second was a combination of two publicly accessible databases 

maintained by the RRUFF project. Analysis of the real mixed sample data as well as the simulated 

mixed sample data showed that this model can detect multiple materials in a single line profile.  
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The simulated mixed sample performance showed that the model is capable of pure sample 

classification and can have non-zero probability of detection for signals containing as many as 23 

different components. The simulation results also show that this model is not adversely affected by max 

intensities of an input signal deviating from those of the training dataset. When a traditional matched 

filter was tested with scaled inputs, classification failures were more common. By effectively using  

 

 

 

 

FNNs as class filters, this model was able to learn the important relative intensities of spectral 

features while placing no observed importance on overall signal intensity.  

 The model was developed into a custom scan analysis program that was designed for direct 

compatibility with the SUCR instrument developed by Dr. Nurul Abedin.2 Figure. 33. shows the 

finalized analysis program window. When the number of classes present in a simulated signal are low, 

large differences in the composition of the misclassified signals can be seen. For example, when N 

Figure. 33. Custom scan analysis program window. Whole scans collected by the SUCR system can 

be analyzed automatically. 
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equaled 2 in the 5-class simulation, 100% of all signals with at least one failed classification contained 

both water and ice signals. Similar discrepancies were seen in the 23-class simulation, however, none 

were as extreme as the N = 2 run of the 5 class simulation. In both simulations, the composition of 

misclassified signals becomes more consistent as N increases. Both the 5 class and 23 class simulations 

show the probability of detection dropping off quickly as the number of classes in a simulated signal 

increase. This is likely due to distinct spectral features being “hidden” by combinations of other 

spectral features. The 23-class simulation shows that the decay rate of pd slows as N continues to 

increase and never actually reaches zero.  

Due to Raman spectra of mixed samples being a combination of the pure sample line profiles, 

probability of detection could be increased by changing the analysis procedure. Incorporating code that 

will subtract away spectral features of classes that reached the AOS and re-analyze the signal for any 

classes not found in the first run and repeating until no more materials are found could allow for classes 

with lower relative intensity to be detected as long as matrix effects are not a factor in the detected 

signal.  

A change in model architecture entirely could also allow for higher probability of detection and 

eliminate the need for OVA decomposition and feature selection as seen in this thesis. The recently 

developed “capsule net” is able to outperform CNN in image classification tasks and is capable of 

multi-label classification.37 Capsule net also greatly outperforms CNN when classifying highly 

overlapping image features. Although capsule net’s focus is image processing, the capabilities of 

capsules make good performance likely on 1 dimensional data. Other multi-label capable models are 

also available for simple implementation using Matlab or Python and scikit-learn.7   
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CHAPTER 7 

CONCLUSIONS 

 

 

 

 This thesis presented an improved matched filter model for classification of Raman spectra and 

two Raman spectrometer systems. The two spectrometers were able to detect Raman scattered light and 

the model showed improved probabilities of detection for mixed sample signals and much reduced 

probabilities of false alarm.   

 The 532 nm system was able to controllably use a high energy pulsed laser at sample distances 

convenient for lab use. The gated functionality of the ICCD camera enabled the system to operate with 

in ambient room light and improved signal to noise ratio. High quality mineral and liquid sample 

Raman data was able to be collected. The 785 nm system is equipped with a lower energy laser, 

reducing the effect of laser induced fluorescence. The ultra-compact enclosure also enables the system 

to be easily incorporated into a mobile platform. Improvements to the 785nm system can be made by 

adding a longer pulsed timing circuit to serve as the main trigger and a laser cleanup filter.  

 The model was tested with data from publicly accessible databases as well as from the 532 nm 

system. Real and simulated mixed sample Raman data was analyzed using the presented model. Mixed 

sample classification was achievable on all datasets that were tested, and non-zero detection 

probabilities were seen on simulated signals with as many as 23 components.  

 Although the presented model is capable of detecting multiple samples a single line profile, the 

probability of an arbitrary component’s Raman signal being detected decreases as the amount of 

present signal components increases. This model is also prone to issues in classification of Raman 

signals which have large amounts of overlap between each other, such as water and ice. Future research 
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into model improvements and architecture changes can increase classification accuracy and decrease 

computational load of training and analysis. 
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APPENDIX A 

FEATURE SELECTION FOR MODEL TRAINING 

 

 

 

 

A.1. Necessity of feature selection 

 It was found early on in this model’s development that utilizing the entire Raman line profile 

for training and using only a single feedforward neural network for classification were not going to be 

possible when training with pure sample data only. Due to the need for one vs all decomposition, there 

will be high computational load during training and analysis if the full line profile is used as the input 

for every FNN that is in a trained model.  To make training and analysis faster, code that locates the 

spectral features of each class and limits the input of each sub-FNN to those areas of the line profile 

was incorporated into the training program.  

A.2. Feature selection methodology 

 Feature selection was accomplished by calculating mean and standard deviation of the average 

class line profile twice, once with all intensity values included in the calculation and a second time 

ignoring spectral data which rises above the first calculated mean plus a user set amount of first standard 

deviations. The data used in this thesis was able to work well with only 1 standard deviation, however, 

the optimal amount to add will change from one system to another. The second recalculation of the mean 

and standard deviation was found to be necessary to include dimmer spectral details and retain 

compatibility with broader Raman features such as those of ice and water. This process is visualized in 

Figure A1, the Sulfur Raman signal is shown with the first and second calculations of the signal mean 

plus one standard deviation (red and green lines respectively). The moment a signal rises above 2 + 2  

the model traces the signal to the left and right until it falls below 2 again, this range of values on the 

line profile is called a “region of interest” (ROI) and is one of the areas of the line profile a sub-FNN will 
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analyze. As can be seen, dimmer spectral features may be missed if the first mean and standard deviation 

are used to define the ROIs. Due to this nature of zone definition, it is possible for multiple spectral 

features to be in a single ROI. It is also possible for two ROIs to share a beginning and end point due to 

how the code was written, this was not found to cause any issues during model validation. 

Figure A1: Region definition by double calculation of signal mean and standard deviation. Regions 1-4 

are defined by where the line profile rises above the second mean and standard deviation. 

 

 ROIs for signals with no broad features were also able to be found by analyzing the “first 

derivative” of the line profile. Figure A2 shows an Auger plot of a sulfur Raman line profile calculated 

by finite difference. The spectral peaks have been replaced with sharp peaks immediately followed by 

sharp troughs, corresponding to the positive and negative slopes on each side of a Raman peak. ROIs 

could also be found by monitoring deviations from zero, as the first derivative is likely to have a mean 

very close to zero. Issues were found, however, when this method was applied to materials with wide 

Raman peaks, such as ice and water. The broad features have “flat” areas around their center, making 
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the first derivative close enough to zero for the program to think the feature had ended, as seen in 

Figure A3.  

 

Figure A2: First derivative of sulfur Raman line profile. 

 

Figure A3: Raman line profile of water and its first derivative. The values holding close to zero would 

cause the program to think the spectral feature had ended. 
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APPENDIX B 

CLASSIFYING RAMAN DATA WITH FEEDFORWARD NEURAL NETWORKS 

 

 

 

B.1. Formatting data for training and analysis 

 Matlab implementation of this model made use of the built-in libraries and shallow neural 

network training tool for the training of each sub-FNN. With this being the case, the format by which 

Raman data is passed to either the training or analysis programs was designed to be consistent with 

Matlab functions from the neural network and deep learning toolboxes.  

 A single training or analysis data point consists of a 1-dimensional matrix of the intensity 

values from a Raman line profile. This implementation assumes that the x-axis is the same across all 

the data points it sees, whether its units are pixels or nanometers or Raman shift is unimportant.  

 The model training program needs two matrices to begin training. The first, which will be 

referred to as “X”, is the training dataset and contains all full-length Raman line profiles that will be 

used in model generation. X will have the dimensions of [O-by-F] where O is the number of 

observations (or individual data points) in the training dataset and F is the number of features (or 

pixels) that are in a single data point. One row of X represents a single line profile. The second matrix 

needed by the training program, referred to as “Y”, contains the class labels of the training 

observations. Y will have the dimensions of [O-by-C] where O is the number of observations (Y must 

have the same number of rows as X) and C is the class that an observation belongs to. Due to each 

training observation only belonging to one class, Y will be a sparse matrix. Each row of Y will have 

zeros for all columns except for the class that the observation belongs to which will have a 1.  

 A softmax layer cannot be used as the output layer’s activation function because the sub-FNN 

output is a single neuron. Sigmoid was used in this model instead. Matlab should automatically set the 
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output layer activation function to sigmoid (Matlab calls it “logsig”) when it sees that the FNN was 

initialized with only one output neuron. 

 

B.2. How feedforward neural network outputs are calculated 

 

 

Figure B1 shows the structure of a 3-layer feedforward neural network. Each circle represents a 

neuron and each line between neurons represents a learned weight. Each neuron in the FNN has a 

transfer function and bias associated with it. All together the FNN structure represents a series of 

equations which will calculate a value at the network’s output.  

When the FNN is initialized, all weights and biases are typically random values. By training the 

neural network, ideal weights can be found which minimizes the output’s overall error. Training is 

Figure B1: Feedforward neural network structure with an input length of 5, 3 hidden units, and 

1 output neuron. 
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accomplished by minimizing an error function via gradient descent with respect to every weight in the 

FNN, mean squared error was used as the error function for all sub-FNN training in this thesis.  

Output values are calculated by forward propagating an input through the network. All values in 

the input layer are first passed to the hidden layer. Each hidden unit performs a dot product with the 

input values and its learned weights, adds its random bias, and applies its transfer function. If, for 

example, the hidden layer’s activation function was hyperbolic tangent. Each hidden unit “i" would 

calculate its value using 

ℎ𝑖  = tanh ((𝑥 ∙ 𝜔𝑖) + 𝑏𝑖) 

 The output layer would then calculate its value(s) following a similar process. For each neuron 

“j” in the output layer, the hidden unit values would be dotted with the output neuron’s learned 

weights, its bias would be added, and its transfer function would be applied. If, for example, the output 

layer’s transfer function was sigmoid, the output values would be calculated using 

𝑂𝑗 = 𝜎((ℎ ∙ 𝜔𝑗) + 𝑏𝑗) 

Where  

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑛) =  𝜎(𝑛) =  
1

1 + 𝑒−𝑛
 

   

(B1) 

(B2) 

(B3) 
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