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ABSTRACT

SPEECH BASED MACHINE LEARNING MODELS FOR EMOTIONAL
STATE RECOGNITION AND PTSD DETECTION

Debrup Banerjee
Old Dominion University, 2017

Director: Dr. Jiang Li

Recognition of emotional state and diagnosis of trauma related illnesses such as post-
traumatic stress disorder (PTSD) using speech signals have been active research topics over
the past decade. A typical emotion recognition system consists of three components: speech
segmentation, feature extraction and emotion identification. Various speech features have been
developed for emotional state recognition which can be divided into three categories, namely,
excitation, vocal tract and prosodic. However, the capabilities of different feature categories and
advanced machine learning techniques have not been fully explored for emotion recognition
and PTSD diagnosis. For PTSD assessment, clinical diagnosis through structured interviews
is a widely accepted means of diagnosis, but patients are often embarrassed to get diagnosed
at clinics. The speech signal based system is a recently developed alternative. Unfortunately,
PTSD speech corpora are limited in size which presents difficulties in training complex diagnostic
models. This dissertation proposed sparse coding methods and deep belief network models
for emotional state identification and PTSD diagnosis. It also includes an additional transfer
learning strategy for PTSD diagnosis. Deep belief networks are complex models that cannot work
with small data like the PTSD speech database. Thus, a transfer learning strategy was adopted
to mitigate the small data problem. Transfer learning aims to extract knowledge from one or
more source tasks and apply the knowledge to a target task with the intention of improving the
learning. It has proved to be useful when the target task has limited high quality training data.
We evaluated the proposed methods on the speech under simulated and actual stress database
(SUSAS) for emotional state recognition and on two PTSD speech databases for PTSD diagnosis.
Experimental results and statistical tests showed that the proposed models outperformed most
state-of-the-art methods in the literature and are potentially efficient models for emotional state
recognition and PTSD diagnosis.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Speaker emotional state identification from speech signal is aimed at identifying the
underlying emotional state. Emotion recognition from speech is important for human-machine
or human-computer interaction. Emotional state is expressed by a variety of physiological
variations, such as heart beat rate, changes in blood pressure, degree of sweating and can also
manifest in shaking, changes in skin coloration, facial expression and the acoustics of speech
[1]. It has been shown that emotions such as anger, sadness and fear can be recognized through
voice [2].

Emotional state recognition could be utilized in various applications. For example, it
could be used to judge the authenticity and urgency of an emergency call. It can also be used to
route emergency call services for high priority emergency calls. In aircraft cockpits, recognition of
stressed speech between air-traffic control and pilots can improve aviation safety [3]. In forensic
speech analysis, emotional state identification can also help law enforcement assess the state of
telephone callers or aid them in suspect interviews [3].

A typical emotion recognition system takes a speech signal as input and performs feature
extraction to extract features. Sometimes, it also conducts feature selection to identify most
effective features. Finally, it classifies the speech signal into different emotion categories. In
the literature, different types of speech corpora, features and classifiers have been utilized for
emotion recognition.

Speech features popularly used in the literature can be categorized into three groups:
Vocal tract, prosodic and excitation [4]. Vocal tract characteristics are better described in
frequency domain [5], and are strongly correlated with the shape of the vocal tract and the
articulator movement [6]. Examples of tract features are Mel-frequency cepstrum coefficients
(MFCC), foramants, etc. Examples of excitation features are linear prediction coefficients
(LPC) and glottal features [1]. In human speech production, duration, intonation and different
intensity patterns are produced which constitute the prosodic features [7]. Examples of prosodic
features include minimum, maximum, mean, variance, range and standard-deviation of energy
and pitch of the signal [8]. Casale et al. in [3], proposed using the genetic algorithm to fuse
vocal-tract, prosodic and excitation features to recognize emotional state. The three categories
of features were combined as a vector and the genetic algorithm worked as a feature selection
module to identify a feature subset for the recognition. Features not selected were discarded. For
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classification, many linear and non-linear classifiers have been explored such as linear discriminant
analysis (LDA), Näıve-Bayes classifiers, SVM, Gaussian mixture model (GMM), neural network
and Hidden Markov model (HMM), etc. [9].

PTSD is a traumatic-stressor related disorder. It is developed by exposure to a traumatic
or an adverse environmental event that caused serious harm or injury. Examples of such
events may include torture, severe war zone stress and others. PTSD is a serious problem for
military, affecting 30% of military service members who have spent time in war zones. This
makes it an important problem to resolve. Currently, many clinical approaches have been
explored to diagnose PTSD, while only a few studies have focused on PTSD diagnosis using
EEG data or speech. For assessment of PTSD, clinical diagnosis through structured interviews
is the only widely accepted means of diagnosis. These diagnoses suffer from certain limitations.
The diagnostic criteria for PTSD assessment is questionable and the objective and qualitative
measures are limited. Distortions in memory and self-perception of patients also make diagnosis
difficult. Patients are often embarrassed and not willing to spend time to come to clinics for
diagnosis.

Human speech is affected by the presence of PTSD which makes it a very useful indicator
of PTSD status. This can be exploited to build a speech based system for PTSD detection.
Speech is non-invasive and can be obtained remotely via telephone or recording media. It can
also be used to monitor patient treatment progress. Although speech based diagnosis presents
few advantages, a major drawback related to PTSD speech corpora are their limited size. This
presents difficulties in training complex diagnostic models. In addition, the capabilities of
different feature categories and advancements in the field of machine learning have not been
fully exploited for emotion recognition and PTSD diagnosis. This dissertation has attempted
to address these limitations by using sparse coding, deep belief network models and a transfer
learning strategy to achieve emotion recognition and PTSD diagnosis. Transfer learning is
proposed specifically to address and mitigate the small data size problem.

Sparse Coding algorithms have recently shown state-of-the-art performances in many
applications [54, 55, 56, 57, 58, 59]. In sparse coding, a set of basis functions, named dictionary,
was first learned from the data. The dictionary was then used, which served as a building block,
in order to reconstruct all the original data samples. Finally, the reconstruction weights were
new representations of original data for subsequent classification. Basis functions in sparse
coding are learned or selected from data, making the feature extraction process adaptive. We
evaluated the proposed sparse coding based method on the SUSAS speech database and the
PTSD speech corpus.

Deep learning is a revived technique, which emerged as a result of decades of research in
artificial neural networks and have been shown to perform extremely well [79, 80, 81, 82, 83].
These methods can automatically learn features from raw data, without prior knowledge. The
downside of using deep learning networks is that they require massive amounts of training data.
In such cases, another recent technique known as transfer learning can help improve the learning
performance when the amount of training data available is small. It works by transferring
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knowledge in other deep models learned from massive data sets and multiple label categories,
using the learned model as a generic feature extractor.

Transfer learning was originally defined in 2005, by the Broad Agency Announcement
(BAA) 05-29 of the Defense Research Projects Agency (DARPA)’s Information Processing,
Technology Office (IPTO) who gave a new mission for transfer learning as the “the ability of a
system to recognize and apply knowledge and skills learned in previous tasks to novel tasks” [85].
In this definition, transfer learning aims to extract the knowledge from one or more source tasks
and applies the knowledge to a target task with the intention of improving the learning. It aims
to extract the knowledge from one or more source tasks and applies that knowledge to a target
task, when the target task has fewer high-quality training data. Many machine learning methods
work well under the assumption that the training and test data are drawn from the same feature
space and same distribution. Most statistical models need to be rebuilt from scratch using
newly collected training data if the distribution changes. It becomes an expensive and huge
task to acquire and recollect the new training data and rebuild the models [84]. In such a case
transfer learning finds applicability and becomes very feasible to improve the learning between
task domains. Transfer Learning is categorized into three major categories, based on different
situations between the source and target domains and tasks. They are inductive transfer learning,
transductive transfer learning and unsupervised transfer learning.

The remainder of the dissertation is organized as follows. Section 2 presents related work
on speech emotion recognition and PTSD diagnosis. Section 3 describes the proposed method
used for emotion recognition and PTSD diagnosis. Section 4 describes, in detail, the experimental
procedures, results and discussion related to research on emotion recognition. Section 5 describes
the experimental procedures, results and discussion for PTSD diagnosis followed by conclusions
in section 6.

1.2 CONTRIBUTIONS

The contributions are the following. 1) An efficient speech-driven sparse coding framework
was developed for emotion recognition which did not exist before. The proposed system, evaluated
on the SUSAS data set, outperformed other state-of-the-art algorithms. 2) A speech-driven
sparse coding and deep belief net framework was developed for PTSD detection for the first time.
It addressed the limitation of current clinical diagnostic methods heavily reliant on assessment
of PTSD based on structured interviews conducted in clinics. 3) The small data size challenge
was resolved using the method of transfer learning. 4) Novel feature extraction techniques were
performed for PTSD detection.
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CHAPTER 2

RELATED WORK

This chapter introduces the related work done in the field of speech based emotion
recognition over the past decade. It describes the features and classification schemes used for
emotion recognition from speech. It then provides a detailed description of the related work
done on PTSD diagnosis, its history and overview. Features and classification schemes used for
PTSD diagnosis are also discussed in this section.

2.1 RELATED WORK IN EMOTION RECOGNITION

A lot of research in the emerging area of emotion identification from speech has been
carried out in the past decade. This section summarizes most of the work done in this field. The
first subsection describes the features and classification schemes used for identifying emotion.
The second, deals with the vocal acoustic characteristics used. The third section describes the
neural network models and it’s extension known as deep learning for emotion recognition.

2.1.1 FEATURES AND CLASSIFICATION SCHEMES FOR EMOTION RECOG-

NITION FROM SPEECH

This section describes the types of speech features and classification schemes used in
emotion recognition and the related work done so far. First, an overview of the speech feature
extraction process and it’s details are presented followed by related work done. Speech signals
include emotion information as well as data. Speech signals are not stationary, meaning that
their amplitudes have a lot of variance over time. It is common in speech processing to divide a
speech signal into short time-duration units called ‘frames’ over which they are approximated
to be stationary [11]. Features such as pitch and energy are extracted from each speech frame
and are called local features. On the other hand, global features are computed as statistics
of all speech features extracted from an utterance [12]. There is disagreement about whether
local or global features are more suitable for emotion recognition, but most researchers agree
that global features seem to be superior when applying cross validation and feature selection
algorithms. They also take less time to execute than local features. Although they are more
efficient, researchers have claimed that global features are effective only in discriminating between
high-arousal emotions like anger, fear and joy versus low-arousal emotions such as sadness
[13]. Another approach for feature extraction, is based on segmenting speech signals to the
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underlying phonemes and then calculating one feature vector for each segmented phoneme [14].
This approach relies on a study that observes variation in the spectral shapes of the same
phone under different emotions [15]. Overall, speech features can be grouped into three major
categories: prosodic, vocal-tract and excitation features.

Speech 
Features

Prosodic 
Features

Vocal-tract 
Features

Excitation 
Features

Short-term energy
Average Power,

Average Magnitude
Zero-Crossings,

Statistical features

MFCC
 Teager Energy 
Operator (TEO)

Jitter
Shimmer

Figure 1: Three different categories of speech features.

In [16], I. Luengo et al. proposed using continuous prosodic features on the Basque speech
database with three different feature-classifier combinations. The first, using spectral features
and the Gaussian Mixture Model (GMM) classifier, a second combination, using other prosodic
features and the support vector machine (SVM) and a third, using prosodic features and GMM.
Feature selection was carried out on 86 extracted features. The first classifier gave the best
result with 98.4% accuracy when using 512 mixtures, but the best 6 prosodic features achieve
92.3% showing that they are effective in identifying emotions. In [17], Wu et al., proposed using
features computed from the long term, spectro-temporal speech representation and comparing
them to short-term spectral features as well as popular prosodic features on the Berlin speech
database. It showed that these computed spectro-temporal features outperformed the others
and achieved an overall accuracy of 88.6% by using a combination of the proposed and prosodic
feature set for classifying the seven discrete emotions in the Berlin database.

Out of the several studies on the Berlin speech database, Iliou et al. in [28] focused
on comparing classifiers for emotion recognition. Speaker-dependent and speaker-independent
scenarios were considered. 133 speech features were obtained out of which a subset of 35
features were selected using the statistical method and classified using the ANN and the random
forest classifiers. Seven emotion categories were used. In speaker dependent framework, ANN
classification reached an accuracy of 83%, and random forest reached 77%. In the speaker
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independent framework, for ANN classification, a mean accuracy of 55% was reached, while
random forest reached a mean accuracy of 48% [28].

Nwe et al. in [18] proposed comparing three different feature-classifier combinations in
terms of classification performance in detecting emotional stress. The first system made use of
linear short-time log frequency power coefficients (LFPC). The second employed Teager Energy
Operator (TEO) based non-linear frequency domain LFPC features (NFD-LFPC) and a third
system used TEO based non-linear time domain LFPC features (NTD-LFPC). The classifier used
was a continuous density five state hidden markov model (HMM) with two Gaussian mixtures
per states for each stress cycle. For the system using LFPC features, an average accuracy of
84% and a best accuracy of 95% were obtained.

Extraction of features from word-level utterances by animated conversational agents was
proposed by Hoque et al. in [25]. The features included a total of 22 prosodic and acoustic
features. Utterance level statistics related to the fundamental frequency were also computed.
The speech processing software called Praat was used for this purpose. Then the extracted
features are projected on to a lower dimensional space using principal component analysis and
linear discriminant analysis (LDA) is applied for a clustered representation of the computed
features. Finally, the models are learned using machine learning techniques from the training
samples by using WEKA, a machine learning toolbox to classify between two states of emotion,
the positive and negative states. An evaluation of the models is also carried out. The first model
fed the raw 22 features directly into the classifier. The second and the third model applied PCA
on the raw features and took the first 15 and 20 eigenvectors respectively to de-correlate the base
features. In the fourth model, LDA is directly used on the raw features to project them directly
onto the lower dimension. The fifth model consisted of the combination of principal component
analysis (PCA) and Linear Discriminant Analysis (LDA). A 10-fold cross validation technique
was used. Results showed that the combination of data projection techniques such as PCA and
LDA yielded better performance as opposed to using raw features or using LDA or PCA alone.
An average accuracy of 83.33% was achieved using the combination of PCA and LDA. The
performance of combining PCA and LDA is higher than PCA or LDA itself mainly because PCA
de-correlates the data, whereas LDA projects the data onto a lower dimension. Therefore, the
combination of PCA and LDA is expected to work better. Robust autonomous recognition of
emotion is gaining attention due to the widespread applications into various domains, including
those with animated conversational agents.

In [19], Neiberg et al. proposed modeling pitch by utilizing mel-frequency cepstrum
coefficients (MFCC). A 25.6 ms hamming window for every 10ms shift was used and a variant of
that called MFCC-low (filter banks placed in the 20-300 Hz region) was also utilized. Plain pitch
features were also extracted using the average magnitude difference function algorithm (AMDF).
These features were modeled using a GMM classifier over two sets of speech databases and
languages, Swedish Voice Controlled Telephone Services and English Meetings. Results indicated
that using GMM’s at frame level was a feasible technique for emotion classification. It has been
observed that current text-to-speech systems have very good intelligibility, but most are still
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easily identified as artificial voices and no commercial system incorporates prosodic variation
resulting from emotion and related factors [20].

A large breadth of objectively measurable features in discriminating depressed speech was
explored by Moore II et al. in [10]. Features included those related to prosody, the vocal tract
features and parameters extracted directly from the glottal waveform. Feature combinations
were formed which included prosodic features, prosodic and vocal tract features, prosodic and
glottal features and prosodic, vocal tract and glottal features. Results of classification using
the fisher discriminant analysis indicated that the combination of glottal and prosodic features
produced better performance overall showing that glottal descriptors are vital components of
vocal affect analysis.

Prosody related features were explored by Bozkurt et al. in [21]. They included mean and
normalized values of pitch, first derivative of pitch and intensity, spectral features like MFCC
and line spectral frequency features and their derivatives. Additionally, HMM based features
were also explored for the evaluation of emotion recognition with a GMM based classifier. A
fusion of different feature sets and classifiers was applied to evaluate classification performance
based on the InterSpeech 2009 Emotion Challenge Corpus containing highly emotional and
spontaneous recordings.

In [22], Zhou et al. proposed three new derivative features of the non-linear Teager Energy
Operator (TEO) feature as good stress indicators. It is believed that the TEO based features are
able to better model the non-linear airflow structure of speech production under adverse stressful
situations. The proposed features included TEO-decomposed-FM-Variation (TEO-FM-Var),
normalized TEO autocorrelation envelope area (TEO-Auto-Env) and critical band based TEO
autocorrelation envelope area. These features are evaluated for simulated and actual stressed
speech and it was demonstrated that the TEO-CB-Auto-Env feature outperformed pitch and
MFCC features by a very large margin. The overall neutral-stress classification rates were also
shown to be more consistent across different stress styles.

In [23], Koolagudi, et al. proposed using linear prediction (LP) residual samples as features
on a semi-natural speech database called GEU Semi Natural Speech Corpus (GEU-SNESC) for
obtaining emotion specific information. The emotions considered for this work included sadness,
anger, happiness and neutral emotions. The linear prediction (LP) residual of the speech signal
(obtained by inverse filtering of the speech signal) was used for characterizing the basic emotions
present in speech. GMM’s were used to capture the higher order relations present in the LP
residual. The emotion recognition performance achieved was about 50-60%.

The use of the k-nearest neighbor method to classify utterances was proposed by Lee et
al. in [24] to classify emotions as either being negative or non-negative. Also, linear discriminant
classification with Gaussian class-conditional probability distribution was used. The features
used by the classifiers were utterance level statistics of the fundamental frequency and energy of
the speech signal. Two feature selection methods, promising first selection and forward feature
selection, were used. Principal component analysis, PCA, was used to reduce the dimensionality
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of the features. Gender specific experiments were carried out since pitch related features are very
different between male and female genders, especially the mean, max and min of the fundamental
frequency.

Dellaert et al. in [9] proposed a new method of extracting prosodic features based on a
smoothing spline approximation of the pitch contour. They built a speech corpus containing
emotional speech containing 1000 utterances from different speakers. Majority voting of subspace
specialists, a novel pattern recognition technique was used to obtain a good classification
performance.

Features based on the glottal airflow signal were utilized to evaluate the classification
performance in seven different classification schemes by Iliev et al. in [26]. It’s effectiveness was
tested on the new optimum path classifier (OPF) as well as on six other previously established
classification methods such as the Gaussian mixture model (GMM), support vector machine
(SVM), artificial neural networks–multi layer perceptron (ANN-MLP), k-nearest neighbor rule
(k-NN), Bayesian classifier (BC) and the C4.5 decision tree. The speech database used in this
work was collected in an anechoic environment with ten speakers, of which five were male and
five female speakers, each speaking ten sentences in four different emotions: happy, angry, sad,
and neutral. The glottal waveform was extracted from fluent speech via inverse filtering. The
investigated features included the glottal symmetry and MFCC vectors of various lengths both
for the glottal and the corresponding speech signal. Experimental results indicated that the best
performance was obtained for the glottal-only features with SVM and OPF generally providing
the highest recognition rates. For GMM, or the combination of glottal and speech features,
performance was relatively inferior [26]. For this text dependent, multi speaker task the top
performing classifiers achieved perfect recognition rates for the case of 6th order glottal MFCCs.
Results confirmed that glottal information is rich in emotional clues and presents a very effective
source for achieving recognition for spoken emotion. Best classification performance was provided
by SVM and OPF. The lowest performance was that of GMM. In terms of computation time,
k-NN was the fastest. It was also observed that OPF was much faster than SVM.

In [27], Lugger et al. proposed utilizing the bayesian classifier to classify six emotion
categories, based on the extraction of over 200 prosodic features like pitch, energy and duration
from a speech corpus. Voice quality parameters (VQP) describing the properties of the glottal
source were also used. The feature set used was a parameterization of the voice quality in the
frequency domain by spectral gradients. The VQP are reported to have good discrimination
capacity with regard to emotion. Around eight VQP features were extracted. Feature selection
was applied to reduce the number of features by using the sequential floating forward selection
algorithm. It’s an iterative method to find the best subset of features. A total of six emotion
categories were classified [27]. A leave-one-speaker-out cross validation (LOSO-CV) was used
for speaker independent classification. The Bayesian classifier was used for all scenarios. The
class conditional densities were modeled as unimodal gaussians. A change in classification
performance was observed by altering the number of gaussians in the GMM. Classification was
also carried out using combined feature sets. It was seen that the parameters of voice quality
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show a contribution in addition to the well-known prosodic features.

2.1.2 VOCAL ACOUSTIC CHARACTERISTICS APPLIED TO EMOTION RECOG-

NITION FROM SPEECH

In this section, work done on the correlation between vocal acoustic features and depression
or negative mental states is described. Speech recordings were made of sixteen depressed patients
during depression after clinical improvement. The recordings were then analyzed using a
computer program that extracts acoustic parameters from the fundamental frequency contour of
the voice. The percent pause time, the standard deviation of the voice fundamental frequency
distribution, the standard deviation of the rate of change of the voice fundamental frequency and
the average speed of voice change were found to correlate to the clinical state of the patient. The
mean fundamental frequency, the total reading time and the average rate of change of the voice
fundamental frequency did not differ between the depressed and the improved group [29]. The
acoustic measures were less strongly correlated to the depressive symptoms such as retardation
or agitation and more pronounced in correlation to the clinical state of the patient as measured
by global depression scores.

Several studies have documented speech motor impairment in the case of patients suffering
from Parkinson’s disease (PD). In this study, a retrospective analysis of speech was conducted on
two well-known individuals with PD and two matched controls to determine if certain acoustic
measures were sensitive markers of early pathophysiologic changes or treatment response in
PD. Acoustic analyses were conducted on samples of speech produced over a 10-year period
surrounding the time of disease diagnosis. Analyses revealed that, for both PD cases, a decrease
in fundamental frequency variability during free speech was detected prior to clinical diagnosis.
Changes in fundamental frequency variability and voice onset time (VOT) were also detected
upon the initiation of symptomatic treatment. In a second experiment, an acoustical analysis of
speech production was conducted on four newly diagnosed persons with PD and four matched
controls, using a standard speech examination protocol [30].

Among the many empirical studies conducted to investigate the relationship between
acoustical measures of voice and speech to that of severity of clinical depression, one study
focused on exploring this relationship using the 17 item Hamilton Depression Rating Scale
(HDRS). Pilot data were obtained from seven subjects that included five males and two females,
from videotapes used to train expert raters on the administration and scoring of the HDRS.
Several speech samples were isolated for each subject and processed to obtain the acoustic
measurements. Acoustic measures were selected on the basis that they were correlated with
HDRS ratings of symptom severity as seen under ideal voice recording conditions in previous
studies. The findings corroborate earlier reports that speaking rate is well correlated (negatively)
with HDRS scores, with a strong correlation and nearly significant trend seen for the measure of
pitch variability. A moderate pairwise correlation between percent pause time and HDRS score
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was also revealed, although this relationship was not statistically significant [31].

In recent years, the problem of automatic detection of mental illness from the speech
signal has gained some initial interest; however, questions remain that include how speech
segments should be selected, what features provide good discrimination, and what benefits
feature normalization might bring given the speaker-specific nature of mental disorders. Feature
normalization is applied to reduce the mismatch between different speakers. In this work,
classifier configurations are employed in emotion recognition from speech, evaluated on a 47-
speaker depressed/neutral read sentence speech database. Results demonstrate that detailed
spectral features are well suited to the task and that speaker normalization provides benefits
mainly for less detailed features. It also shows that dynamic information appears to provide
little benefit. Classification accuracy using a combination of MFCC and formant based features
approached 80% for this database.

2.1.3 NEURAL NETWORKS AND DEEP LEARNING MODELS FOR IDENTI-

FYING EMOTION FROM SPEECH

Although automatic emotion recognition systems have seen improvements by way of
crafting features that give reasonable good accuracy by using feature selection methods, still
they are only able to capture only linear relationships between the features a majority of the
time. Neural networks and deep learning techniques can capture complex non-linear feature
interactions in the data. Deep belief network models thus show an improvement in classification
accuracy over baselines that do not use these models. In one such study, two methodologies
are compared, unsupervised feature learning using DBN and secondary supervised feature
selection. First an unsupervised two-layer DBN is built, enforcing multi-modal learning. The
DBN is augmented with two types of feature selection: 1) before DBN training to assess the
benefit of feature learning exclusively from an emotionally-salient subset of the original features
and 2) after DBN training to assess the advantage of reducing the learned feature space in a
supervised context. This is compared to the performance of a three-layer DBN model [32]. The
baseline is an SVM that uses subsets of the original feature space selected using supervised
and unsupervised feature selection. The results provide important insight into feature learning
methods for multimodal emotion data [32]. The results show that the DBN models outperform
the baseline models. This suggests that unsupervised feature learning can be used in lieu of
supervised feature selection for this data type.

In addition, the relative performance improvement of the three-layer model for subtle
emotions suggests that these complex feature relationships are particularly important for
identifying subtle emotional cues. Deep neural networks (DNN) denote multilayer artificial
neural networks with more than one hidden layer and millions of free parameters. Another study
proposed a Generalized Discriminant Analysis (GerDA) based on DNN to learn discriminative
features of low dimension optimized with respect to a fast classification from a large set of
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acoustic features for emotion recognition. On nine frequently used emotional speech corpora,
the study compares the performance of GerDA features and their subsequent linear classification
with previously reported benchmarks obtained using the same set of acoustic features classified
by the SVM. Results show that low-dimensional GerDA features capture hidden information from
the acoustic features leading to a significantly raised unweighted average recall and considerably
raised weighted average recall [33].

In another study, a novel staged hybrid model for emotion detection in speech is proposed.
A hybrid model is used since hybrid models exploit the strength of discriminative classifiers along
with the representational power of generative models. Temporal deep networks are capable of
capturing the representation of a more temporally rich set of problems. Temporal deep networks
include conditional RBM’s (CRBMs), and temporal RBMs (TRBMs). CRBMs and TRBMs
have been successfully used in the audio domain, for example, phone recognition, and polyphonic
music generation. Recently, deep stacking networks, a special type of deep model equipped with
parallel and scalable learning, have been successfully used for frame-level phone classification,
phone recognition, and information retrieval. A brief summary of the related work in emotion
recognition is presented in Table 1.

2.2 RELATED WORK ON PTSD DIAGNOSIS

2.2.1 BACKGROUND AND OVERVIEW

PTSD is a traumatic-stressor related disorder. It is developed by some people when
they are exposed to a traumatic or an adverse environmental event that caused serious harm or
injury. Examples of such events may include genocide, torture, severe war zone stress and others.
Symptoms are marked by negative cognitions and mood states as well as disruptive behavioral
symptoms [35]. PTSD is a serious problem for the military, affecting 30% of military service
members who have spent time in war zones. Today, PTSD is recognized as a psychobiologial
mental disorder that can affect survivors of combat experience, terrorist attacks, natural disasters
and serious accidents, assaults, abuses and sudden major emotional losses. In 1980, the American
Psychiatric Association (APA) added PTSD to the third edition of Diagnostic and Statistical
Manual of Mental Disorders DSM-3 nosologic classfication scheme. Currently, DSM-5, is the
latest revised criteria for assessment of PTSD. It contains several criteria defined in the form of
alphabets, A-H, each alphabet corresponding to a certain criterion. The significant change from
a historical perspective was that the causing agent, for example a traumatic event, was outside
the individual rather than an inherent individual weakness.

The study of how strong emotions such as fear are linked to memory formation and
retrieval are key to PTSD clinical research [36]. Diagnosis of PTSD is mostly based on patient-
self reporting during clinical interviews. Few objective or qualitative measures are available
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Table 1: A brief summary of related work on emotion recognition based on speech.

Method Used Features Used Results

TEO based framework TEO based features
extracted from SUSAS

92.9% for pairwise
text-dependent

scenario, 89% for
pairwise

text-independent
scenario, 88.85%

for
text-independent

multistyle
scenarios

Adaptive sinusoidal model based Sinusoidal based
extracted from SUSAS

Average 64.25% for
multiclass

Multi-level classification framework on
resting-state fMRI (Multi-kernel

SVM)

Univariate, bivariate and
multivariate features
derived from fMRI

92.5% classification
accuracy

Pitch, log energies,
MFCC’s, velocity and
acceleration features

extracted from SUSAS

91.3% for pairwise
text-independent

scenario, 70.1% for
text-independent

multistyle scenario
Integration framework MFCC, delta and

acceleration coefficients
extracted from SUSAS

Best accuracy of
83.8%

Long Short Term Memory Neural
network framework

MFCC and Lyon
Cochleagram Model

extracted from SUSAS

Best accuracy of
75.41%

Three different feature classifier
combinations (spectral features +
GMM, prosodic features + SVM,

prosodic features + GMM)

Features extracted from
BERLIN speech

database

(Best of 98.4% by
spectral features +

GMM)

Spectro-temporal framework Long term
spectro-temporal features
proposed and comparing

to short-term spectral
features and prosodic
features on BERLIN

speech database

Overall accuracy of
88.6% using

combination of
proposed and

prosodic feature
set

to help clinicians diagnose this condition. Certain factors make diagnosis a more challenging
proposition. Some of these factors are distortions in memory and self-perception. Currently,
standardized diagnostic interviews such as the Structured Clinical Interview for DSM-4 Axis
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I Disorders (SCID) is used for PTSD diagnosis. Another example of such an interview is the
Clinician-Administered PTSD Scale (CAPS) interview which is also a gold standard in PTSD
diagnosis. To address the growing needs, it is necessary to find a more objective and time-efficient
way to diagnose PTSD. In some cases, patients are embarrassed and not willing to visit the clinic
for clinical interviews and spend time being interviewed. One such modality is speech. Speech
is a non-invasive, inexpensive and useful indicator of PTSD status of a person. It provides an
indicator of the patient’s condition and can also be used to monitor patient treatment progress.
Another advantage is that it can also be obtained remotely via phone for analysis.

2.2.2 FEATURES AND CLASSIFICATION SCHEMES FOR PTSD DIAGNOSIS

This section describes the types of speech features and classification schemes used for
PTSD diagnosis and the related work done so far. In [37], Vergyri et al. explored three feature
categories which included lexical, spectral and longer-range prosodic features. PTSD recordings
from the standardized CAPS interview taken by military personnel were used to extract the
features. Classification schemes included the gaussian backend, decision tree and neural network
classifiers. An overall accuracy of 77% was achieved. It also concluded that spectral and
prosodic features outperformed lexical features. Multi-view learning, a genre of learning that
uses heterogeneous subsets of a data collection was utilized by Zhuang et al. in [38]. Both speech
and EEG data are used during training while only speech data is used for detection. Results show
that multi-view learning outperforms both speech-only and EEG-only methods. Two classifiers,
the gaussian naive-bayes and the linear SVM are used in this study. It was demonstrated that
there was a net relative increase between 20% and 37% in speech-based PTSD detection.

Liu et al. in [39] proposed applying a multi-level classification framework on resting-state,
functional magnetic resonance imaging (fMRI) for emotion detection. A multi-kernel SVM was
used for this purpose. A classification accuracy of 92.5% was achieved.

Zhang et al. in [40], performed multi-modal MRI based classification of PTSD. Structural
and resting state fMRI were collected from three categories of individuals. These included PTSD
patients, trauma-exposed controls without PTSD (TEC) and non-traumatized healthy controls
(HC). Three different types of features were extracted to integrate the information of structural
and functional MRI data. The extracted features were combined by a multi-kernel combination
strategy. An SVM classifier was trained to distinguish the subjects at the individual level. The
performance of the classifier was evaluated using the leave-one-out cross-validation (LOOCV)
method. In the pairwise comparison of PTSD, TEC, and HC groups, classification accuracies
obtained by the proposed approach were 2.70%, 2.50%, and 2.71% higher than the best single
feature way, with accuracies of 89.19%, 90.00%, and 67.57% for PTSD against HC, TEC versus
HC, and PTSD versus TEC respectively. The proposed approach was found to improve PTSD
identification at the individual level.

A sparse, combined regression-classification scheme for learning a physiological alternative
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to clinical PTSD scores was proposed by Brown et al. in [41]. This work utilized a novel
experimental set-up, exploiting virtual reality videos and peripheral physiology for PTSD
diagnosis. In pursuit of an automated physiology-based objective diagnostic method, a learning
formulation that integrates the description of the experimental data and expert knowledge
on desirable properties of a physiological diagnostic score was proposed by Brown et al. in
[41]. The physiological score produced by the sparse, combined regression-classification is
assessed with respect to three sets of criteria chosen to reflect design goals for an objective,
physiological PTSD score, parsimony and context of selected features, diagnostic score validity,
and learning generalizability. For these criteria, the work demonstrated that sparse, combined
regression-classification performs better than more generic learning approaches.

Karstoft et al. in [42] used the target information equivalence approach to identify a set
of features based on markov boundary and used SVM for classification. The target information
equivalence algorithm identified all minimal sets of features, markov boundaries, that maximized
the prediction of a non-remitting PTSD symptom trajectory when integrated in a support vector
machine (SVM). The predictive accuracy of each set of predictors was evaluated in a repeated 10-
fold cross-validation and expressed as average area under the Receiver Operating Characteristics
curve for all validation trials [42]. The study concluded the hypothesized existence of multiple
and interchangeable sets of risk indicators that equally and exhaustively predict non-remitting
PTSD.

A markov boundary based feature selection scheme was proposed by Levy et al. in [43],
known as the markov boundary induction algorithm for generalized local learning. Six different
classification schemes were used which included variations of the linear SVM, polynomial SVM,
random forests, adaboost, kernel-ridge regression with the radial basis function and the bayesian
binary regression. The study concluded that machine-learning algorithms were feasible for PTSD
diagnosis and that the approach was a promising one. A brief summary of the related work on
PTSD diagnosis is presented in Table 2.

Table 2: Summary of related work on PTSD detection based mainly on speech and
electroencephalogram (EEG).

Method Used Features Used Results
Gaussian backend, decision tree and

neural network
Lexical, spectral and
longer-range prosodic

features

Overall 77% accuracy.
Spectral and prosodic
outperformed lexical

Multi-view learning (speech+ EEG)
Gaussian näıve bayes and linear SVM

Common speech and
EEG features

Net relative increase of
20% to 37% in

speech-based PTSD
detection
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This dissertation makes several contributions. 1) An efficient speech-driven, sparse coding
framework was developed for emotion recognition which did not exist before. The proposed
system which was evaluated on the SUSAS data set achieved better performance, compared to
other state-of-the-art algorithms. 2) A speech-driven sparse coding and deep belief net framework
was developed for PTSD detection for the first time. It addressed the limitation of current
clinical diagnostic methods discussed previously. 3) The small data size challenge was resolved
by adopting a transfer learning strategy. 4) Novel feature extraction methods were also employed
for PTSD diagnosis.
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CHAPTER 3

PROPOSED METHOD

This chapter starts with an introduction to the speech feature extraction process. It
specifies the different categories of speech features utilized for emotional state recognition and
PTSD diagnosis. It also provides detailed feature descriptions. The next section briefly describes
the TIMIT and PTSD feature extraction processes. The proposed method which includes a total
of three different models is then discussed in detail. A brief discussion of principal components
analysis is then presented. Relevant details of classification using the support vector machine
are then presented in the final section of this chapter.

3.1 PROPOSED SPEECH BASED EMOTION RECOGNITION AND PTSD

DIAGNOSTIC MODELS

Figure 2 shows the diagram of the proposed system. First, pre-emphasis filtering is applied
to the input speech signal as a pre-processing step. The system then extracts features from the
pre-processed speech segments and separates out the voiced frames. Using these voiced frames,
it then performs emotion recognition and PTSD diagnosis by applying either sparse coding, deep
belief network or transfer learning models. In the following subsections, the components of the
system are described in detail.

3.1.1 SPARSE CODING MODEL FOR EMOTION RECOGNITION AND PTSD

DIAGNOSIS FROM SPEECH

Sparse-coding has achieved state-of-the-art performance in many applications including
computer vision [54, 55, 56, 57, 58]. The goal of sparse coding is to represent input vectors
approximately as a weighted linear combination of a small number of ‘basis’ functions. This
basis set is usually overcomplete (number of basis functions is larger than its dimension) and
therefore can capture a large number of patterns in the input data. Given a training dataset
A = (ai)Nv

i=1, a dictionary D = (di)Kd

i=1, consisting of a set of basis functions, di , can be learnt
based on an L1-penalized sparse coding formulation by optimizing the following cost function,
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Figure 2: The proposed models.

minD,β‖Dβ(i) − a(i)‖
2 + λ‖β(i)‖1, (1)

subjectto‖d(i)‖
2
2 = 1 ∀i (2)

where a(i) represents the i− th data sample in A, β(i) denotes the reconstruction weight for a(i)

using the basis function in D and λ is a trade-off parameter. Because of the L1 norm penalty,
the resulting weights, β(i) will be sparse, meaning that most of them will be zeros. The solution
of the above equation can be obtained using alternating minimization over the sparse codes
and dictionary while holding the other fixed. Dictionary learning plays an important role in
sparse coding framework because it will identify those building blocks from data [59]. However,
the learning process is time-consuming and difficult. Recent research has shown that randomly
selected dictionaries can also perform well [59]. In this work, we will apply the random dictionary
learning method. Once the dictionary was learnt, an encoding step was performed to transform
the input data samples into desirable representations based on the learnt dictionary. For a
particular data sample, a(i), its representation β(i) can be obtained either by solving equation 1
with D fixed or by the soft-thresholding method which achieves the sparse representation for
a(i) by the following operation,
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β(i) = sgn(z(i))max(0, |z(i) − t|) (3)

where t is an adjustable threshold and,

z(i) = DTa(i) (4)

Finally, a feature pooling step was applied to reduce the high dimensionality of the new feature
space. In the feature pooling step, we divided the feature vector into separate quadrants and
then computed the average of the four quadrants as new features such that the dimensionality
was reduced by a factor of four.

3.1.2 DEEP BELIEF NETWORK MODEL FOR EMOTION RECOGNITION AND

PTSD DIAGNOSIS FROM SPEECH

3.1.2.1 MOTIVATION

Hinton proposed the first successful deep learning system in 2006 by applying RBM to
pre-train the deep structure layer by layer. In the past few years, deep learning became more
and more popular in both academia and industry because of its superior performance in many
different applications. For instance, using deep learning models, Deng et al. achieved state-of-
the-art performance in speech recognition on several benchmark datasets [81] and Dieleman
et al. obtained excellent results on music signal processing [82]. This method can be used for
reducing dimensionality [84] and also for classification [83]. Figure 3 shows the general layout of
the deep belief network with multiple RBM’s stacked together.

3.1.2.2 METHODOLOGY

The method of constructing the network is described as follows.,

1) Initialize the weights using random numbers. 2) Pretain multiple layers of feature
detectors by learning a stack of restricted Boltzmann machines (RBMs) in an unsupervised way.
3) Use the labels as ground truth and perform supervised fine-tuning using the backpropagation
algorithm.

3.1.2.3 PRE-TRAINING

Once the first layer of RBM is built, its outputs (feature detectors) are used as inputs
of the next layer to learn the next RBM. The procedure can be repeated so that feature
representations are learned layer by layer. With this greedy, layer-by-layer learning mechanism,
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a deep structure with any number of layers of RBMs can be built. Such a stacking of RBM’s
forms a deep belief net. It is a type of undirected, generative, energy-based deep neural network
composed of multiple layers of latent variables with connections between the layers but no
intra-layer connections, or connections between the units themselves in a given layer.

1000

1000

1000

1000

500

RBM

RBM

RBM

1000

1000

500

39 
classes

Softmax output

Pre-training Fine-tuning

Speech Features Speech Features

Figure 3: General layout of a deep belief network used for classification. Multiple RBM’s
are stacked together. The network is initially generatively pre-trained, where the stacked
RBM’s are trained greedily, layer by layer and then discriminatively fine-tuned using labels.

The procedure of pre-training consists of learning stacks of restricted Boltzmann machines,
each of which is two-layered. One layer consists of the visible units whose states are observable
and the other layer consists of hidden units whose states are unobservable and are the feature
detectors. RBM’s use symmetrically weighted connections to transform visible units to stochastic
binary feature detectors. An energy function for the visible and hidden units is defined as,

E(v, h) = −
∑

i∈input
bivi −

∑
j∈fea

bjhj −
∑
i,j

vihjwij (5)

where vi and hj are the binary states of input unit i and feature j, bi and bj are the biases for
input i and feature j and wij is the weight between them.

The probability of the visible vector can be determined from the following equation,
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p(v) =
∑
h∈H

p(v, h) =
∑

h exp(−E(v, h))∑
u,g exp(−E(u, g)) (6)

where H is the set of all possible binary hidden vectors.

The parameters of the RBM are determined as,

1) Given a visible vector (speech input), the binary state of hj of the feature is set to 1
with a probability of σ(bj +

∑
i

viwij), where σ(x) is the sigmoid function 1
1 + exp(−x) .

2) Given hj from previous step, a reconstruction of the visible vector is achieved by
setting each vi to 1 with a probability of σ(bi +

∑
j

hjwij).

3) Update weights using the following update rule,

∆wij = ε(< vihj >data − < v̂ihj >recon) (7)

where ε is the learning rate, < vihj >data is the fraction of times the input unit i in the
visible vector and feature detector are on together, and < v̂ihj >recon is the fraction for the
reconstruction of the input. After the first RBM layer has been built, its feature detectors now
become the visible units to learn the next RBM. The procedure can repeat, so that higher levels
of RBM’s are learnt one by one. Using this mechanism, a network with any number of RBM
layers can be built. Features in deeper layers tend to capture strong and high order correlations
between units in the lower layers.

3.1.2.4 FINE-TUNING

After pre-training, the weights of the pre-trained model are fine-tuned using a final label
layer. The label layer is considered as the ground truth. The label layer is added on top of
the pre-trained structure. Performing supervised fine-tuning of the network using the label
information forms a deep classifier. The layer prior to the label layer in the deep classifier is the
new representation of the original features. The standard backpropagation algorithm optimizes
the weights and the mini-batch gradient descent algorithm is used to optimize the network with
respect to a supervised training criterion.

3.1.3 TRANSFER LEARNING FOR PTSD DIAGNOSIS

Transfer learning was originally defined in 2005, by the BAA 05-29 of the Defense Research
Projects Agency (DARPA)’s Information Processing, Technology Office, who gave a new mission
for transfer learning as the the ability of a system to recognize and apply knowledge and skills
learned in previous tasks to novel tasks [85]. In this definition, transfer learning aims to extract
the knowledge from one or more source tasks and applies the knowledge to a target task with the
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intention of improving the learning. It aims to extract the knowledge from one or more source
tasks and applies that knowledge to a target task, when the target task has fewer high-quality
training data. Many machine learning methods work well under the assumption that the training
and testing data are drawn from the same feature space and same distribution. Most statistical
models need to be rebuilt from scratch using newly collected training data if the distribution
changes. It becomes an expensive and huge task to acquire and recollect the new training data
and rebuild the models [84]. In such a case transfer learning finds applicability and becomes
very feasible between task domains.

Transfer Learning is categorized into three major categories, based on different situations
between the source and target domains and tasks. They are inductive transfer learning, trans-
ductive transfer learning and unsupervised transfer learning. In the inductive transfer learning
setting, the source and the target are different irrespective of the source and target domains.
In this setting, some amount of labeled data is required to be available in the target domain
in order to induce a predictive model in the target domain. Further, depending on different
situations related to labeled and unlabeled data in the source domain a further categorization
can be made for the inductive transfer learning. In the first scenario, lots of labeled data are
available in the source domain. This is similar to the multitask learning setting. The difference is
while multitask learning simultaneously tries to learn both the source and target tasks, inductive
transfer learning tries to achieve a high performance in the target task by transferring knowledge
from the source task. In the second scenario, the source domain does not have any labeled data
available, and in this case the inductive transfer learning setting mimics the self-taught learning
[87] setting.

The second category is called transductive transfer learning, where the source and target
tasks are identical but the source and target domains are different. In this scenario, a lot of
labeled data exists in the source domain while absolutely no labeled data is available for the
target domain. It can be further sub-categorized into two different cases, based on the situation
between source and target domains. In the first case, the feature spaces for the source and the
target domains are different. In the second case, the feature spaces between source and target
domains are the same but the marginal probability of the distributions of the input data are
different.

Finally, the third category of transfer learning is known as unsupervised transfer learning,
where the target task is related to the source task but different. No labeled exists in both the
source and the target domains. The unsupervised transfer learning tries to solve unsupervised
learning tasks in the target domain like clustering, dimensionality reduction and others.

Since deep belief network architectures require large amounts of data for training, we
can gain advantage by using transfer learning. Layer-wise model adaptation is by far the most
popular representational transfer method in deep learning architectures [86]. In this method,
a model of the source task is built first. The representation obtained is then used to re-train
the model for the target task layer by layer. It enables the method to learn good mid-level
representations from the source task to improve the learning of the target task. Sometimes the
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representation built from the source may cause a negative impact on the learning of the target
task. This is known as negative transfer which needs to be avoided and more research is being
conducted in this direction.

In general, three reasons can be cited as to why transfer learning can benefit from deep
learning architectures. 1) Shared Internal Representation: Deep learning can learn shared
internal representation in an unsupervised fashion from the examples of a number of different
tasks, which enables the learner to generate useful features of the task domain and the context of
the problem [88]. 2) Hierarchical levels of representation: Deep learning builds hierarchical levels
of representation where each layer generates features from the representation in the layer below
it. Even for two different but related tasks, it is very probable that these tasks can share some
lower levels of representations. This suggests that if we fix the lower levels of representation and
re-train the higher levels of representation, we would be able to improve learning with relatively
small training data [89]. 3) Learning from unlabeled data: Since the layer-wise training in deep
learning architectures is unsupervised, it enables us to leverage a small number of labeled data
with a large amount of unlabeled data [87].

3.2 SPEECH CORPORA

This section describes the three different types of speech corpora utilized for feature
extraction. The Stress Under Simulated and Actual Stress Database (SUSAS) speech corpus
is used for emotion recognition and the Texas Instruments and Massachusetts Institute of
Technology (TIMIT) and PTSD speech databases are utilized for performing PTSD diagnosis.
These are described in detail as follows.

3.2.1 SPEECH UNDER SIMULATED AND ACTUAL STRESS DATABASE (SUSAS)

SPEECH CORPUS

We evaluated the proposed method on the SUSAS database [61]. This database consists
of a total of 32 speakers including 13 female and 19 male subjects with ages ranging from 22
to 76. The subjects were recruited to generate over 16,000 utterances from a 35 word aircraft
communication vocabulary set. Later in 1993, utterances from four additional male pilots
operating ‘apache’ helicopters were added to the database [61]. Speech recordings from two
of the pilots were from the 35 word vocabulary, and those from another two pilots consisted
of continuous tactical communication (other than the 35 word vocabulary) between the pilots
and an air-control operator during an actual night flying mission with the helicopter low on
fuel, creating a real stress on the pilots. The SUSAS database comprises five different domains
depending upon whether the stress was simulated or was generated under actual stress conditions.
The ‘simulated’ domain consists of speech recordings from nine speakers in a quiet environment
simulating speech under stress. The ‘actual’ domain uses recordings from seven speakers in
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states of actual roller-coaster stress [3].

These five domains include: (i) Speaking styles consists of speakers simulating different
speech styles such as ‘slow’, ‘fast’, ‘soft’, ‘loud’, ‘angry’, ‘clear’, ‘neutral’ and ‘questioning’ styles
of speech.

(ii) Single-tracking task contains speech recordings of subjects undergoing computer
workload stress or the ‘lombard’ effect. The stress condition referred to as Lombard effect results
when a speaker attempts to modify his or her speech production system while speaking in a noisy
environment [62]. Computer workload stress was simulated by displaying an error command to
a subject and the subject tried to correct the error while producing speech utterances from the
35 word randomized vocabulary set. The ambient noise was created by generating pink noise
and presenting it binaurally to simulate the ‘lombard’ effect.

(iii) A dual tracking task was developed by USAF School Of Aerospace Medicine to
simulate actual stress when subjects performing both compensation and acquisition tasks [63].
The primary task was compensatory where subjects had to perform simulated flight control and
the secondary task was that of target acquisition.

(iv) The subject-motion fear task consists of speech recordings from subjects riding two
types of roller coaster in an amusement park. This task was designed to simulate sudden changes
in altitude and direction sometimes experienced in an aircraft cockpit.

(v) Psychiatric analysis includes speech recordings from patient interviews with different
emotions at Emory Medical University. In this work, four different styles of speech, (‘angry’,
’loud’, ’lombard’ and ’neutral’) were selected from the first two domains to represent ‘simulated’
stress. Two additional styles of speech, (‘roller coaster stress’ and ‘actual neutral’), were selected
from the third and fourth domains to represent ‘actual’ stress.

3.2.2 TIMIT SPEECH CORPUS

TIMIT is an acoustic-phonetic speech corpus. It was jointly developed by Texas In-
struments (TI), SRI International (SRI) and Massachusetts Institute Of Technology (MIT) to
provide speech data for the acquisition of acoustic-phonetic knowledge and for the development
and evaluation of automatic speech recognition systems. The objective of using the TIMIT
speech corpus is discussed here. A major limitation in training the DBN on the PTSD feature
data set is the small size of the feature data set due to which the network is prone to being
overtrained. Exploiting the large size of the TIMIT speech corpus, we trained the DBN for phone
recognition so that we could eventually utilize the trained network to run transfer learning on
PTSD data sets, overcoming the small data problem related to PTSD.

The TIMIT corpus includes 16bit, 16kHz, speech waveform data from 630 speakers
representing 8 major dialect divisions of american english, each speaking 10 phonetically rich
sentences resulting in 6,300 utterances. It also includes time-aligned, orthographic, phonetic
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and word transcriptions [78]. The speech was recorded at TI, transcribed at MIT and the data
has been verified and prepared for cd-rom production by National Institute of Standards and
Technology (NIST). 70% of the speakers are male and 30% are female. Training and testing
subsets, balanced for phonetic and dialectal coverage, are specified.

A “core” test set contains speech data from 24 speakers, 2 male and 1 female from each
dialect region and a “complete” test set contains utterances spoken by 168 speakers resulting in
about 27% of the total speech material in the corpus. The speech was directly digitized at a
sampling rate of 20kHz using a Digital Sound Corporation (DSC) 200 with the anti-aliasing
filter at 10KHz. The speech was then digitally filtered, debiased and downsampled to 16Khz.

3.2.3 PTSD SPEECH CORPUS

There are a total of 26 PTSD patient audio data files (speech signals) and audio data
from 26 control subjects collected from Youtube and an Ohio hospital. Each set of recordings
from each source contains recordings from PTSD and non-PTSD patients split equally. The
duration of the recordings from the subjects varies approximately between 51 seconds and 480
seconds while a large fraction of the recordings are between 120-140 seconds. Each recording is
from a particular subject and the recordings were sampled at 44.1kHz.

3.3 FEATURE EXTRACTION

This section begins with a description of the process of feature extraction for emotional
state recognition from the SUSAS speech database. Following this description it provides details
of the feature extraction process from TIMIT and PTSD speech databases for utilizing them in
PTSD detection.

3.3.1 FEATURE EXTRACTION FROM SUSAS FOR EMOTIONAL STATE RECOG-

NITION

Speech Under Simulated and Actual Stress Database (SUSAS) was the first comprehensive
speech database to be recorded under stressful conditions and is the database of choice for
stressed emotion recognition. As a pre-processing step, the speech signal was passed through a
pre-emphasis filter. Following this, speech frames of a length of 25 milliseconds were extracted
first from an entire speech signal consisting of a word. The voiced frames present in the speech
signal were segmented by short-term energy thresholding. A frame shift of 10 milliseconds was
applied. Excitation, vocal tract and prosodic features were then computed for each of these
frames. The process is shown in figure 4.

Additionally, time derivative features were also computed, generating a total of 162
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features for each speech frame. Finally, we computed the mean, standard deviation and skewness
of each feature based on all speech frames of a single word, resulting in 486 features for a word.
Feature details are summarized in Table 3.

486 Features 
dataset. (162x3)

Voiced part of signal using 

Short Term energy threshold.

Raw Features 

Computed ∆ ∆∆ 162 (54*3) features 

(54) 

(54) (54) 

Mean Standard Deviation Skewness

(162) (162) (162) 

Raw Features
Computed

(162 features)

(54) 

(54) ∆ ∆∆ (54) 

Single ‘word’ frame
window 

25msec

shift 

10ms

Figure 4: The process of feature extraction from SUSAS and TIMIT speech databases.

The types of features used are described in the following sections.

3.3.1.1 PROSODIC FEATURES

3.3.1.1.1 SHORT TERM ENERGY: Short-term energy is the energy of a short speech
segment. For the n-th speech frame, xn of length N,

xn(m) = x(m)w(n−m) (8)

where w(n−m) is a windowing function such as the Hamming window and N is the window
length, x(m) is the m− th sample in the whole speech signal. The short-term energy of xn is
computed as,

En =
m=n∑

m=n−N+1
[xn(m)]2 (9)

The short-term energy feature extracted from the SUSAS speech corpus for a speech utterance
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Table 3: Description of speech frame features. The same raw features have been extracted
across all the three different speech corpora.

Feature Position Number Of
Features

Prosodic features
Short-time energy 1 1

Average power 2 1
Average magnitude 3 1
No of Zero crossings 4 1

Mean 5 1
Median 6 1

Standard deviation 7 1
Minimum 8 1
Maximum 9 1

Range 10 1
Dynamic range 11 1

Interquartile range 12 1
Vocal-tract features

MFCC (Mel Frequency Cepstrum
Coefficients)

13-51 39

Teager Energy Operator 52 1
Excitation features

Jitter 53 1
Shimmer 54 1

Total number of Original features 1-54 54
1st order time derivative features 55-108 54
2nd order time derivative features 109-162 54
Total number of features per frame 162

of the word freeze is shown in figure 5.

3.3.1.1.2 AVERAGE POWER: The average power of a short speech segment is the short-
term energy divided by the number of speech samples in that segment and it is computed
as,

Pn =
1
N

m=n∑
m=n−N+1

[xn(m)]2 (10)
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Figure 5: Short-term energy feature extracted from SUSAS for speech utterance of the
word freeze.

3.3.1.1.3 AVERAGE MAGNITUDE: This measure does not emphasize larger signal am-
plitudes like the short-time energy measure since it eliminates the squaring. It is defined
as,

Mn =
1
N

m=n∑
m=n−N+1

[xn(m)] (11)

The average magnitude feature extracted from the SUSAS speech corpus for a speech utterance
of the word freeze is shown in figure 6.
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Figure 6: Average magnitude feature extracted from SUSAS for speech utterance of the
word freeze.

3.3.1.1.4 ZERO CROSSINGS: A zero-crossing is said to occur if successive samples have
different algebraic signs. The number of zero crossings is a simple measure of the frequency
content of a signal and defined as,

Zn =
1

2N
m=n−1∑

m=n−N+1
|sgn[xn(m+ 1)]− sgn[xn(m)]| (12)

Figure 7: Number of zero-crossings feature extracted from SUSAS for speech utterance
of the word freeze. Feature extraction is carried out only on the voiced segment identified
using short-term energy thresholding.

The number of zero-crossings features extracted from the SUSAS speech corpus for a
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speech utterance of the word freeze is shown in figure 7. Feature extraction is carried out only
on the voiced segment identified using short-term energy thresholding.

3.3.1.1.5 DYNAMIC RANGE: Dynamic range is computed as the difference in base-10
logarithm of the maximum and the minimum amplitudes given by,

DynamicRange = Log10(αmax)− Log10(αmin) (13)

where αmax and αmin are the maximum and minimum amplitudes of the speech signal frame.

3.3.1.1.6 INTERQUARTILE RANGE: The interquartile range is expressed as the difference
between the 75th and 25th percentile, and is given by,

IQR = P75 − P25 (14)

where P75 and P25 are the 75th and 25th percentile respectively and IQR denotes the interquartile
range.

3.3.1.2 VOCAL-TRACT FEATURES

3.3.1.2.1 MEL FREQUENCY CEPSTRAL COEFFICIENTS: MFCC is computed based
on frequency bins on Mel-scale [49], which is a frequency binning method based on the human
ear’s frequency resolution. The mel-scale mimics the human ear in terms of the way in which
frequencies are sensed and resolved. The general procedure of extracting the MFCC features
involves several steps. First, a pre-emphasis filter is applied to boost high frequencies. Second,
frequency spectrum is obtained using the fast fourier transform (FFT). Third, the spectrum is
passed through Mel-filters to obtain the Mel Spectrum and finally, cepstral analysis is performed
on the Mel-Spectrum to obtain MFCC features. The spectrum Xn for speech frame xn is
computed as,

Xn(k) = Xn(k), k = 1, 2...K (15)

Xn(k) =
1
N

m=N∑
m=1

(xn(m) ∗ hp(m))e−j2πkm/N (16)

where hp(m) = δ(m)− λδ(m)is the impulse response of the two-tap pre-emphasis filter,
“∗” denotes convolution and N is the length of the discrete Fourier transform (DFT). The
periodogram-based power spectral estimate for the speech frame xn is given by,

Pn(k) =
1
N
|Xn(k)]|2 (17)

The power spectral estimate is then converted to mel scale by triangular overlapping windows of
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the mel filterbank [50] that gives a measure called the log-spectral energy envelope E, given by,

E = E(j), j = 1, 2...M (18)

at the output of each filter and is defined as,

E(j) =
1
N

k=K∑
k=1

ln[|(Pn(k)||Hj(k)|], j = 1, 2...M (19)

where Hj(k) is the transfer function of the j-th filter in the mel filterbank and M denotes the
number of filterbank channels in the filterbank. Finally, MFCC is obtained by taking the discrete
cosine transform (DCT) of the mel log powers,

Cp =
√

2
M

M∑
j=1

E(j) cos πp
M

(m− 0.5) (20)

where p is the number of computed MFCC features.

The speech frame signal is transformed using a fast fourier transform (FFT) algorithm and the
resulting spectrum is converted to logarithmic scale. The logarithmic scale is then transformed
to the resulting cepstrum after taking the inverse discrete fourier transform (IDFT). The cepstral
coefficients, cn can be computed using the following relation,

cn = Real[IDFT (ln|FFT (xn)2|)] (21)

The value of the fundamental frequency F0 can be evaluated by using the following relation,

F0 = fsamp

t
(22)

where fsamp is the sampling frequency and t is the order of the given cepstral coefficient
corresponding to the local maximum (peak) of the cepstrum.

3.3.1.2.2 TEAGER ENERGY OPERATOR: Teager showed that airflow separates in the
vocal-tract when it propagates, instead of just flowing as a plane wave. During stress, a change
occurs in the vocal system physiology during speech production which is further seen to affect
the vortex-flow interactions in the vocal tract [51]. This feature has been shown to successfully
detect these changes in speech production. This feature has been found to be responsive to
speech under stress using audio from the SUSAS corpus [52]. The Teager Energy operator, is a
non-linear energy tracking operator, Ψ[.] and is computed using the following relation,

Ψ[xn(m)] = xn(m)2 − xn(m+ 1)xn(m− 1) (23)

The teager energy operator feature extracted from the SUSAS speech corpus for a speech
utterance of the word freeze is shown in figure 8.
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Figure 8: Teager energy operator feature extracted from SUSAS for speech utterance of
the word freeze.

3.3.1.3 EXCITATION FEATURES

3.3.1.3.1 JITTER: Jitter is defined as average absolute difference of consecutive pitch periods.
It is a measure of the variation of successive pitch periods. It is defined by,

jitter = 1
Q− 1

Q−1∑
i=1
|Ti − Ti−1| (24)

where Ti is the i− th extracted pitch period and Q is the total number of extracted pitch periods
in the segment.

3.3.1.3.2 SHIMMER: Shimmer is the average absolute difference (in dB) between amplitudes
of consecutive periods,

shimmer = 1
L− 1

L−1∑
i=1
|20log(Ui+1

Ui
)| (25)

where Ui is the amplitude of the i− th period and L is the total number of extracted periods.

3.3.1.3.3 TIME DERIVATIVE FEATURES: The first and second order time derivative
features were computed as,

∆f(n) = f(n+ 1)− f(n− 1) (26)

∆2f(n) = ∆f(n+ 1)−∆f(n− 1) (27)
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where f(n) denotes a feature computed from the n− th speech frame. Once we determined the
above features for each frame, we computed the mean, median, max, min, range and skewness
for each feature based on all speech frames of the word. In total, 486 features were computed
for each word.

3.3.2 FEATURE EXTRACTION FROM TIMIT

TIMIT is an acoustic-phonetic speech corpus. It was jointly developed by Texas In-
struments (TI), SRI International (SRI) and Massachusetts Institute Of Technology (MIT) to
provide speech data for the acquisition of acoustic-phonetic knowledge and for the development
and evaluation of automatic speech recognition systems. The process of single-frame feature
extraction is as described here and shown in figure 4. The process of multiple-frame feature
extraction is shown in figure 10. The speech signal was first pre-emphasized using a first order
FIR filter. Then the speech signal was divided into a set of frames of length 25ms with an overlap
of 10ms between two consecutive frames. Speech frames overlapping two different phones were
deleted. Features identical to those shown in Table 3 are extracted from the TIMIT database.
They comprise of a combination of prosodic, vocal-tract and excitation features typically used in
speech recognition. A total of 54 raw features along with their first and second order temporal
derivatives are combined to form a total feature vector with a length of 162 features. There
are 39 phone classes in this dataset. Training data is separate from testing. The output phone
classification is carried out using the logistic regression classifier.

A second data set was also built for TIMIT derived form the first data set. This process
is shown in figure 10. Using the feature vector having 162 features obtained from the data set
described in the previous paragraph, 15 contiguous feature vector segments, are concatenated
column-wise to form a 2,430 (162x15) dimensional feature vector. Each 15-segment feature
vector is extracted using a constant time shift of one frame. The phone label of the central
frame was considered to be the resulting phone label of this feature vector. There are 39 phone
classes in this dataset. Training data is separate from testing. There are a total number of
almost 439,000 data points for training, and approximately 161,000 samples for testing. The
output phone classification is carried out using the logistic regression classifier.

3.3.3 FEATURE EXTRACTION FROM PTSD SPEECH CORPUS

There are a total of 26 PTSD patient audio data files (speech signals) and audio data
from 26 control subjects collected from youtube and an Ohio hospital. The duration of the
recordings from the subjects varies approximately between 51 seconds and 480 seconds while a
large fraction of the recordings are between 120-140 seconds. Each recording is from a particular
subject. Frame sizes of 1, 2 and 3 seconds and forward frame shifts of 0.1, 0.5 and 1 seconds are
used to extract word-level segments from the entire audio recording of the given duration. Given
a subject audio recording, we select a specific combination of frame size and shift to obtain
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multiple word-level segments for that recording. The process of single-frame feature extraction
process is shown in figure 9.
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Figure 9: The process of single frame feature extraction having 162 features from the
PTSD speech database.
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Figure 10: The process of concatenation of 15 frames, each having 162 features to form
the multi-frame TIMIT and PTSD datasets. For PTSD the process begins from stage 1
shown in the figure whereas for TIMIT, it begins from stage 2.
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Subsequently, for each word-level segment, we apply a 25ms frame-size and 10ms frame-
shift to compute the previously mentioned raw features and the first and second order time
derivatives for each frame to give us 162 (54 raw features + 54 first-order time derivatives + 54
second-order time-derivative) features. In the process we obtain multiple frames. The types of
features computed are the same as those mentioned in Table 3. After the features have been
extracted from all the frames of this word segment, we take the mean of all these frames. For
each word-level segment we obtain a single frame. This process is then repeated for all of the
word-level segments for that given audio file which gives us as many frames as the number of
word-level segments in the recording. This process is repeated for variable word-level frame sizes
and shifts. This forms the single-frame dataset.

We built a second multiple frame data set using the above feature vector, 162 features in
length as a starting point, by concatenating 15 frames. This is shown in figure 10. A total of 15
contiguous frames were concatenated to form a 2,430 (162x15) dimensional feature vector. The
class label of the central frame was appended to the end of this newly created feature vector. To
build the subsequent feature vector, we applied a shift of one frame and repeated the process.
Each subject has a matrix of features with each row representing a feature vector containing 15
speech frames. For a given recording, the class-label was from the same subject so, neither the
class-label nor the subject-label changed. The PTSD features were extracted for a total of 9
different datasets of frame-length and frame-shift combinations as shown in Table 3. One of
these datasets corresponding to a 3 sec frame-length and 1 sec frame-shift was used for feature
selection experiments described in section 3.4. Hypothesis testing was performed to identify if
the differences were significant. Detailed results are described in the 6.3.2 section.

We built a third data set using MFCC features extracted from PTSD audio recordings.
The initial process of extracting a word-level segment is the same as described in the first
paragraph of this section. In this context, a word-level segment is a long-time speech segment
typically 1, 2 or 3 seconds in duration. For each word-level segment, a short-time, 25ms frame-size
and 10ms frame-shift was then applied to compute the MFCC features and the first and second
order temporal derivatives generating 39 (13 raw MFCC features + 13 first-order time derivatives
+ 13 second-order time-derivative) features. This feature computation was repeated for all the
short-time frames present in this long-time speech window. After all the short-time speech
frames of this word-level segment were processed with each frame having 39 dimensions, we
concatenated 15 short-time frames without any overlap and continued this process across the
entire word-level segment. This generated multiple 15-frame segments with each frame having
585 dimensions (39x15). These 15-frame segments were then averaged to get only one feature
vector or sample for each word-level segment. This resulted in a total number of feature vector
samples equal to the number of word-level segments in a recording with each sample having 585
features. This process was then repeated for all the word-level speech segments using variable
word-level window sizes and shifts, for a given audio file. This process, when repeated for all
audio files across all subjects, gave us the required dataset. For a given recording, the class-label
was from the same subject. Neither the class label nor the subject label changed. The PTSD
features were extracted for a total of 9 different sets of long-time window length and window
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shift combinations. Transfer learning was then applied to the network similar to that described
in the previous section. All the layers were utilized in evaluating classification performance.
Results are shown in Tables 48 through 52.

3.4 FEATURE SELECTION IN TRANSFER LEARNING

We investigated which of the three categories of features or feature combinations was the
most effective for PTSD detection. We used all the three categories of features as inputs to a
deep belief model that fused the features for PTSD diagnosis. The process of feature selection
in transfer learning is shown in figure 11.
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The input PTSD speech features dataset described earlier in section 3.3.3 was used
for feature selection experiments. The model used for the feature selection experiments was
2430-500-500-500-500-100.

First, we trained the 5-layer deep model on TIMIT and then we used the trained model
as a feature extractor to obtain new representations for PTSD features in each of the 5 hidden
layers. The modified inputs for PTSD diagnosis were then transferred by the deep structure. We
then evaluated the performance of each layer representation on both Youtube and Ohio datasets
by utilizing the LOSO-CV. In LOSO-CV, we left one subject for testing and remaining data
were used to train a SVM classifier. This process was repeated until each subject was tested
once, and then training and testing accuracies were computed. We have used two performance
metrics: segment-wise accuracy and subject-wise accuracy. If a subject’s segment-wise accuracy
surpassed 50%, the subject was considered to be correctly classified.

Secondly, one feature category was excluded each time by zeroing those features in the
PTSD data set at the input layer in the deep model. LOSO-CV was then applied to each the
new feature representations obtained from all the hidden layers. Lastly, all these steps were
again performed excluding two feature categories each time. The first hidden layer showed the
best overall performance in classification so the results presented in section 6.2.3 were obtained
from the first hidden layer only. All possible combinations of the three feature categories were
investigated, with the aim of identifying the best input feature combination for PTSD diagnosis.

3.5 PRINCIPAL COMPONENT ANALYSIS

We performed principal component analysis (PCA) to reduce the dimensionality of the
features. PCA finds d orthogonal vectors that encompass the most variance in the data. Consider
F as a mxn data matrix containing the m samples in n dimensions and V as a mxd mapping
matrix ( d < n to achieve dimensionality reduction) that maximizes V T cov(F )V . Finding V
can be done by solving the eigen-decomposition problem shown below,

cov(F )V = γV (28)

The resultant V contains d orthogonal basis vectors spanning the data. These vectors are known
as principal components that correspond to eigenvalues of γ1 ≥ ... ≥ γd, with the first principal
component corresponds to the largest eigenvalue, the second principal component corresponds
to the second largest eigenvalue etc.. To achieve dimensionality reduction, the mapping matrix
V was applied on F as,

A = V F (29)

where A has a dimensionality d that is less than n. To compare with the proposed method, we
performed PCA using the 585 features as input for dimensionality reduction. We kept those
leading principal components (PCs), so that they can account for 99.9999% of the variance in
the data. The selected PCs were then input to a linear SVM for classification.
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3.6 CLASSIFICATION

In this dissertation, we used support vector machine (SVM), for classification. The SVM
classifier usually classifies data into two classes by finding the optimal hyperplane that separates
data points of one class from those of another class [60]. The optimal hyperplane has the largest
or maximal margin between the two classes. If the data is linearly separable, a linear SVM may
be used whereas for non-linearly separable data, non-linear SVM’s are applied using different
kernel types. Considering a two-class linearly separable data set ζ, a decision boundary can be
found such that all data points will satisfy the constraint,

kj(ωTφ(ζj) + b) ≥ 1, j = 1, ..., Nv (30)

where Nv is the number of input vectors, kj ∈ {−1, 1} , denotes the target classification, ω is a
normal vector to the hyperplane, φ(ζj) denotes a fixed feature-space transformation and b is the
bias parameter. Maximizing the margin to the hyperplane is equivalent to maximizing ‖ω‖−1 or
equivalently minimizing ‖ω‖2. Then the optimization problem becomes,

arg minω,b
1
2‖ω‖

2 (31)

under the constraints [62]. In real datasets where the class distributions are overlapping a
relaxation term must be included. A slack variable ξj ≥ 0 is introduced for each data point and
is defined as,

ξj = |kj − y(ζj)| (32)

where y(ζj) is the predicted classification by the SVM. The slack variable will be zero if the point
is inside the correct margin boundary and positive otherwise. The constraint is modified to:

kjy(ζj) ≥ 1− ξj, j = 1, .., Nv (33)

The minimization of the model therefore now becomes:

C
Nv∑
j=1

ξj + 1
2‖ω‖

2 (34)

where C ≥ 0 is an adjustable parameter regulating the trade-off between the margin and the
slack variable.
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CHAPTER 4

EMOTIONAL STATE RECOGNITION BASED ON SUSAS

SPEECH CORPUS

This chapter discusses the results of emotional state recognition based on the SUSAS
speech corpus. They are described in the experiments and results section in which the experi-
mental protocols and results are discussed in detail. PCA was performed to compare emotional
state recognition performance and is discussed in this section. Sparse coding was also carried out
in three different evaluation contexts and its details are discussed in this section. The results
achieved by the deep belief network model are also discussed. Hypothesis testing results showed
that sparse coding did not achieve significantly better results than the baseline for the text-
dependent pairwise scenario. Sparse coding achieved better performance for the text-independent
pairwise and the text-independent multistyle scenarios.

We conducted emotion state recognition for three different scenarios including (i) Text-
dependent pairwise stress classification, (ii) Text-independent pairwise stress classification and
(iii) Text-independent multistyle stress classification. The proposed system was compared with
other baseline methods.

4.1 EXPERIMENTS AND RESULTS

4.1.1 PRINCIPAL COMPONENTS ANALYSIS RESULTS

The principal components analysis was only performed for the SUSAS data set. For the
text-dependent scenario, 17 PC’s were selected for the simulated domain whereas for the actual
domain, 15 PCs were chosen. For the text-independent scenario 107 PCs were selected for the
simulated domain whereas for the actual domain, 95 PCs were chosen. For the text-independent
multistyle scenario, 40 PCs were selected for the simulated domain.
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4.1.2 SPARSE CODING MODEL FOR EMOTION RECOGNITION

4.1.2.1 TEXT DEPENDENT PAIRWISE EMOTION RECOGNITION

In the first experiment, we conducted text-dependent pairwise stress classification with
different variations. First, we chose the same subset of six vocabulary words - ‘freeze’, ‘mark’,
‘nav’, ‘help’, ‘oh’ and ‘zero’ as those used in [3]. In the simulated domain, each word was spoken
by nine speakers with the four different stress styles and each style was repeated once, resulting
in a total of 108 (6x9x2) recordings for each emotion. In the actual domain, each word was
spoken by seven speakers and was repeated a variable number of times and sometimes some
words were completely omitted. This resulted in a total of 94 recordings for the actual stress style
and 94 recordings for the actual neutral style. We conducted four classification tasks including
‘angry’, ‘loud’ and ‘lombard’ versus ‘simulated neutral’, respectively, and ‘roller coaster stress’
versus ‘actual neutral’. For each word, we applied the leave-one-out-cross-validation (LOOCV)
scheme to evaluate the proposed method.

In LOOCV, one recording of a word was left for testing and the remaining data were used
to train a classification model. This procedure was repeated till each recording was tested once.
In the experiment, a linear SVM was used for classification, whose parameters were optimized
by grid search. The same procedure was repeated for all the six words thereby generating a
total of six test accuracies for both simulated and actual domains. Mean accuracy and standard
deviation for each of the classification tasks were then calculated. To test if more training data
will improve the classification, we performed the second variation of the experiment by increasing
the data set to include 22 words from the SUSAS database. These words are ‘freeze’, ‘mark’,
‘nav’, ‘help’, ‘oh’, ‘zero’, ’steer’, ’strafe’, ’ten’, ’thirty’, ’three’, ’white’, ’wide’, ’enter’, ’fifty’,
’gain’, ’go’, ’hello’, ’hot’, ’point’, ’six’ and ’south’. The data set contains a total of 396 (22x9x2)
recordings for each emotion in the simulated domain, and 244 actual stress style recordings and
434 actual neutral style recordings in the actual domain.

For the text-dependent pairwise stress classification case, results of LOOCV are shown in
Tables 4, 5 and 6. They are also represented in figures 12, 13 and 14. In the text-dependent
experimental scenario where the input consists of only 6 chosen words, the results are discussed.
Figure 12 is used to depict the results graphically for this particular scenario and tabulated in
Table 4. The best mean accuracy is 90.86% with a standard deviation of 6.13% by the proposed
method. The proposed method marginally outperforms the baseline SVM which achieves 90.69%.
However, the proposed method fails against the PCA method which achieves 91.83%. The mean
and standard deviation were computed across all the four classification tasks.



40

Figure 12: LOOCV results for the text-dependent case by different methods. Six words
are used to extract all the features which are used as input to the classifier.

Table 4: LOOCV results for the text-dependent case by different methods. Six words are
used to extract all the features which are used as input to the classifier.

Method Experi-
ment
Varia-
tions

Angry +
Simulated
Neutral

(%)

Loud +
Simulated
Neutral

(%)

Lombard
+

Simulated
Neutral

(%)

Roller
Coaster
Stress +
Actual
Neu-

tral(%)

Overall
Mean +
Std(%)

All
Fea+SC+SVM

(Proposed
Model)

6 words
with all
features

Angry=83.33
Neu-

tral=93.60

Loud=90.73
Neu-

tral=95.41

Lom-
bard=91.66

Neu-
tral=80.53

Roller
Coaster

Stress=92.48
Neu-

tral=99.16

Mean=90.86
(σ = 6.13)

PCA+SVM 6 words
with all
features

Angry=84.72
Neu-

tral=89.08

Loud=86.10
Neu-

tral=92.70

Lom-
bard=78.98

Neu-
tral=78.67

Roller
Coaster

Stress=57.16
Neutral=100

Mean=91.83
(σ = 7.5)

All
Fea+SVM

6 words
with all
features

Angry=84.25
Neutral=100

Loud=92.58
Neu-

tral=97.20

Lom-
sbard=87.03

Neu-
tral=80.73

Roller
Coaster

Stress=92.51
Neu-

tral=91.22

Mean=90.69
(σ = 6.43)
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For the text-dependent pairwise stress classification case, results of LOOCV are shown in
Tables 4, 5 and 6. They are also represented in figures 12, 13 and 14. In the text-dependent
experimental scenario where the input consists of only 6 chosen words, the results are discussed.
Figure 12 is used to depict the results graphically for this particular scenario and tabulated in
Table 4. The best mean accuracy is 90.86% with a standard deviation of 6.13% by the proposed
method. The proposed method marginally outperforms the baseline SVM which achieves 90.69%.
However, the proposed method fails against the PCA method which achieves 91.83%. The mean
and standard deviation were computed across all the four classification tasks.

Figure 13: LOOCV results for the text-dependent case by different methods. Twenty-two
words are used to extract all the features which are used as input to the classifier.

Another experiment was conducted in the text-dependent context, using 22 types of
words as input. Each word was paired with a larger number of neutral recordings, the results
of which are discussed. Figure 13 is used to depict the results graphically for this particular
scenario and tabulated in Table 5. Table 5 shows that the proposed method achieves the best
accuracy of 91.02% but fails to outperform the baseline SVM and PCA methods which achieve
91.95% and 91.98% respectively. It is also noted that increasing the training set size improves
the classification accuracy of the proposed method by 0.16%.
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Table 5: LOOCV results for the text-dependent case by different methods. Twenty-two
words are used to extract all the features which are used as input to the classifier.

Method Experi-
ment
Varia-
tions

Angry +
Simulated
Neutral

(%)

Loud +
Simulated
Neutral

(%)

Lombard
+

Simulated
Neutral

(%)

Roller
Coaster
Stress +
Actual
Neu-

tral(%)

Overall
Mean +
Std(%)

Proposed
Model

22 words
with all
features

Angry=82.90
Neu-

tral=94.46

Loud=88.46
Neu-

tral=93.15

Lom-
bard=90.07

Neu-
tral=88.85

Roller
Coaster

Stress=91.24
Neu-

tral=99.04

Mean=91.02
(σ = 4.76)

PCA+SVM 22 words
with all
features

Angry=77.77
Neu-

tral=99.87

Loud=87.36
Neu-

tral=99.95

Lom-
bard=81.64

Neu-
tral=99.63

Roller
Coaster

Stress=91.10
Neu-

tral=98.57

Mean=91.98
(σ = 8.93)

All
Fea+SVM

22 words
with all
features

Angry=78.78
Neu-

tral=99.59

Loud=86.86
Neu-

tral=99.95

Lom-
sbard=80.55

Neu-
tral=99.78

Roller
Coaster

Stress=91.10
Neu-

tral=99.04

Mean=91.95
(σ = 8.97)

A third scenario of this experiment was carried out in which the same set of words was
used as in the second scenario. In the simulated domain, a different and much larger set of
recordings of the same words exists only for the ‘neutral’ emotion style, in which each speaker
repeats each word 12 times. This results in a total of 2,376 (22x9x12) recordings. This set of
recordings was used to train the simulated ‘neutral’ style, while a total of 396 (22x9x2) recordings
were used for each of ‘angry’, ‘loud’ and ‘lombard’ emotion. The number of recordings used
in the actual domain were identical to that used in the second scenario. We also conducted
similar variations as those in experiment 1 to test if more training datasets will improve the
classification and the discriminating capabilities of different feature categories. This variation
was employed only for cases where each feature category was excluded for evaluation. Note that
the text-independent experiment has a separate testing data set and those added words were
used for training only.

We also tested the discriminating capabilities of different feature sets. In the fourth to
sixth scenarios, we excluded the prosodic, vocal-tract and excitation features, resulting in feature
vector lengths of 378(126*3), 126(42*3) and 396(132*3) respectively.
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Figure 14: LOOCV results for the text-dependent case across different feature combinations.

Table 6: LOOCV results for the text-dependent case across different feature combinations.

Method Experi-
ment
Varia-
tions

Angry +
Simulated
Neutral

(%)

Loud +
Simulated
Neutral

(%)

Lombard
+

Simulated
Neutral

(%)

Roller
Coaster
Stress +
Actual

Neutral(%)

Overall
Mean +
Std(%)

Proposed
Model

Excitation
features
excluded

Angry=83.33
Neu-

tral=97.22

Loud=90.14
Neu-

tral=94.18

Lom-
bard=88.89

Neu-
tral=83.33

Roller Coaster
Stress=92.22

Neu-
tral=94.18

Mean=90.43
(σ = 5.08)

Proposed
Model

Prosodic
features
excluded

Angry=81.67
Neu-

tral=97.22

Loud=92.14
Neu-

tral=94.22

Lom-
bard=83.18

Neu-
tral=95.77

Roller Coaster
Stress=91.15

Neu-
tral=94.45

Mean=91.22
(σ = 5.76)

Proposed
Model

Vocal-tract
features
excluded

Angry=76.51
Neu-

tral=98.65

Loud=86.12
Neu-

tral=94.41

Lom-
bard=64.38

Neu-
tral=97.51

Roller Coaster
Stress=90.02

Neu-
tral=94.22

Mean=87.22
(σ = 11.83)

Average (Tables 5 + 6) 89.32 92.05 85.56 92.00

Table 6 and figure 14 show the results for the experimental scenario in which classification
is performed by excluding a selected category of features. Since there are three major categories
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of speech features used in this dissertation, it results in three distinct variations of the training
set. Results show the best accuracy is 91.22% with a standard deviation of 5.76% which achieves
an improvement of 0.2% over the previous result using 22 words and all features. It, however,
fails to significantly outperform the baseline SVM or PCA result in the text-dependent evaluation
context.

4.1.2.2 TEXT INDEPENDENT PAIRWISE EMOTION RECOGNITION

The second experiment involved text-independent pairwise stress classification to verify
whether and to what extent the classification performance depends on information contained in a
text or a phoneme [3]. We conducted the same classification tasks as in experiment 1. However,
the data selected for training and testing were from different vocabulary words.

Tables 7 and 8 show the results from the text-independent pairwise stress classification
experiment. Figures 15 and 16 show the results in corresponding Tables 7 and 8 graphically.
The proposed method fails to achieve a better result than the baseline SVM or PCA in both
the scenarios where the training set size includes 6 words and 22 words. It is observed that the
performance of the proposed method is improved by a margin of 2.73% when using a larger
training set size.

Tables 7 and 8 show the results from the text-independent pairwise stress classification
experiment. Figures 15 and 16 show the results in corresponding Tables 7 and 8 graphically.
The proposed method fails to achieve a better result than the baseline SVM or PCA in both
the scenarios where the training set size includes 6 words and 22 words. It is observed that the
performance of the proposed method is improved by a margin of 2.73% when using a larger
training set size.

For the simulated domain the training set was identical to those used in experiment
1 but the test set consisted of 270 stressful recordings (’angry’, ’loud’ and ’lombard’) from
vocabulary words that were different from the training set and 272 neutral style recordings
from out-of-vocabulary words. In the actual domain, the training set comprised 94 speech
recordings from within vocabulary by seven speakers and the corresponding 94 ‘actual neutral’
style recordings. The test set included 140 out-of-vocabulary recordings under ‘actual stress’
conditions and 272 neutral style recordings using out-of-vocabulary words. A linear SVM was
used to perform binary classification.
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Figure 15: Comparison of proposed method against baseline and PCA methods in the
text-independent pairwise scenario. Six words are used to extract all the features which are
used as input.

Table 7: Classification accuracies for the text-independent pairwise scenario by using
different methods. Six words are used to extract all the features which are used as input.

Method Experi-
ment
Varia-
tions

Angry +
Simulated
Neutral

(%)

Loud +
Simulated
Neutral

(%)

Lombard
+

Simulated
Neutral

(%)

Roller
Coaster
Stress +
Actual
Neu-

tral(%)

Overall
Mean +
Std(%)

All
Fea+SC+SVM

(Proposed
Model)

6 words
with all
features

Angry=84.75
Neu-

tral=88.76

Loud=88.84
Neu-

tral=95.88

Lom-
bard=83.14

Neu-
tral=88.01

Roller
Coaster

Stress=94.02
Neu-

tral=98.69

Mean=90.26
(σ = 5.44)

PCA+SVM 6 words
with all
features

Angry=44.60
Neu-

tral=46.44

Loud=53.53
Neu-

tral=48.68

Lom-
bard=45.69

Neu-
tral=47.94

Roller
Coaster

Stress=49.36
Neu-

tral=49.25

Mean=48.18
(σ = 2.76)

All
Fea+SVM

6 words
with all
features

Angry=87.36
Neu-

tral=97.00

Loud=89.21
Neu-

tral=97.75

Lom-
bard=89.88

Neu-
tral=92.13

Roller
Coaster

Stress=92.53
Neu-

tral=100

Mean=93.23
(σ = 4.53)
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Figure 16: Comparison of proposed method against baseline and PCA methods in the
text-independent pairwise scenario. Twenty-two words are used to extract all the features
which are used as input.

Table 8: Classification accuracies for the text-independent pairwise scenario by using
different methods. Twenty-two words are used to extract all the features which are used as
input.

Method Experi-
ment
Varia-
tions

Angry +
Simulated
Neutral

(%)

Loud +
Simulated
Neutral

(%)

Lombard
+

Simulated
Neutral

(%)

Roller
Coaster
Stress +
Actual

Neutral(%)

Overall
Mean +
Std(%)

Proposed
Model

22 words
with all
features

Angry=89.96
Neu-

tral=91.01

Loud=94.05
Neu-

tral=96.25

Lom-
bard=86.14

Neu-
tral=92.50

Roller Coaster
Stress=90.04
Neutral=100

Mean=92.99
(σ = 4.17)

PCA+SVM 22 words
with all
features

Angry=52.33
Neu-

tral=50.77

Loud=47.22
Neu-

tral=50.77

Lom-
bard=41.66

Neu-
tral=51.38

Roller Coaster
Stress=45.67

Neu-
tral=48.33

Mean=48.51
(σ = 3.58)

All
Fea+SVM

22 words
with all
features

Angry=91.58
Neu-

tral=97.83

Loud=74.07
Neu-

tral=97.37

Lom-
bard=93.51

Neu-
tral=98.14

Roller Coaster
Stress=92.59
Neutral=100

Mean=93.08
(σ = 8.23)



47

Figure 17 depicts the results corresponding to Table 17 graphically. From Table 9 it is
observed that the proposed method achieves a best classification accuracy of 94.86% with a
standard deviation of 5.36% on the training set in which the excitation features were excluded.
This result outperforms the baseline SVM result of 93.08% by a margin of 1.78%. The above
result implies that excitation features do not contribute appreciably to an improvement in the
classification performance suggesting a weak discrimination capacity. It is also observed that
excluding vocal-tract features from the training set results in a lower classification accuracy of
86.46% suggesting a strong discrimination capability of this category of features.

Figure 17: Classification accuracies achieved by the proposed method in the text-
independent pairwise scenario across different feature combinations.

4.1.2.3 TEXT INDEPENDENT MULTISTYLE EMOTION RECOGNITION

In this scenario, the aim was to assess the features in discriminating multiple stress
styles. Actual domain data was not considered as the stress content in the voice tones was
more conspicuous making it easily detectable. For the simulated domain, a multi-class SVM
classifier was trained to discriminate among the four different speech styles simultaneously. In
this experiment, the training data originally utilized in experiment 2 for discriminating “angry”,
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Table 9: Classification accuracies for the text-independent pairwise scenario across different
feature combinations.

Method Experi-
ment
Varia-
tions

Angry +
Simulated
Neutral

(%)

Loud +
Simulated
Neutral

(%)

Lombard
+

Simulated
Neutral

(%)

Roller
Coaster
Stress +
Actual
Neu-

tral(%)

Overall
Mean +
Std(%)

Proposed
Model

Excitation
features
excluded

Angry=90.65
Neu-

tral=97.67

Loud=96.29
Neu-

tral=99.07

Lom-
bard=84.21

Neu-
tral=98.29

Roller
Coaster

Stress=92.77
Neutral=100

Mean=94.86
(σ = 5.36)

Proposed
Model

Prosodic
features
excluded

Angry=94.39
Neu-

tral=96.59

Loud=97.22
Neu-

tral=97.98

Lom-
bard=75.92

Neu-
tral=97.67

Roller
Coaster

Stress=91.35
Neutral=100

Mean=93.89
(σ = 7.71)

Proposed
Model

Vocal-
tract

features
excluded

Angry=82.24
Neu-

tral=95.06

Loud=80.55
Neu-

tral=95.98

Lom-
bard=59.25

Neu-
tral=93.51

Roller
Coaster

Stress=87.65
Neu-

tral=97.50

Mean=86.46
(σ = 12.70)

Average (Tables 7 + 8) 86.83 89.97 82.36 90.67

Table 10: Classification results of text-independent multistyle stress classification by
different sparse-coding based methods. Six words are used to extract all the features which
are used as input.

Method Experiment
Variations

Distribution of Speech Style Detection Rate(%) Neutral-Stressed(%)
Input
Test

Speech
Style

Neutral Angry Loud Lom-
bard

Neutral Stressed

Proposed
Model

6 words
with all
features

Neutral 78.65 3.74 2.62 14.98 78.65 21.35
Angry 7.80 61.71 19.33 11.15 7.80 92.20
Loud 5.57 18.21 55.76 20.44 5.57 94.43

Lombard 9.36 14.23 14.23 62.17 9.36 90.64
Average 64.57 88.98

PCA +
SVM

6 words
with all
features

Neutral 25.46 25.09 25.09 24.34 25.46 74.54
Angry 19.70 24.90 28.25 27.13 19.70 80.30
Loud 24.90 23.79 24.53 26.76 24.90 75.10

Lombard 27.34 26.21 25.84 20.59 27.34 72.60
Average 23.87 63.36

All
features +
SVM

6 words
with all
features

Neutral 89.13 0.76 0.00 10.11 89.13 10.87
Angry 12.63 62.08 16.74 8.55 12.63 87.37
Loud 12.63 62.08 16.74 8.55 12.63 87.37

Lombard 8.18 18.97 52.41 20.44 8.18 91.82
Average 47.09 91.82
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“loud” and “Lombard” versus “simulated neutral” were combined to train a multiclass SVM
classifier. The same testing data used in experiment 2 for the simulated domain was used for
testing. Again, similar variations as those in experiments 1 and 2 were conducted.

Table 11: Classification results of text-independent multistyle stress classification by
different sparse-coding based methods. Twenty-two words are used to extract all the features
which are used as input.

Method Experiment
Variations

Distribution of Speech Style Detection Rate(%) Neutral-Stressed(%)
Input
Test

Speech
Style

Neutral Angry Loud Lom-
bard

Neutral Stressed

Proposed
Model

22 words
with all
features

Neutral 85.39 4.11 2.24 8.23 85.39 14.61
Angry 7.80 62.08 19.70 10.40 7.80 92.20
Loud 1.48 17.84 65.42 15.24 1.48 98.52

Lombard 8.98 12.73 14.23 64.04 8.98 91.02
Average 69.23 91.78

PCA +
SVM

22 words
with all
features

Neutral 67.43 17.12 8.79 6.63 67.43 32.57
Angry 60.74 22.42 5.60 11.21 60.74 39.26
Loud 62.03 16.67 8.33 12.96 62.03 37.97

Lombard 60.18 15.74 17.59 6.48 60.18 39.82
Average 26.16 46.12

All
features +
SVM

22 words
with all
features

Neutral 97.68 1.69 0.46 0.15 97.68 2.32
Angry 8.41 67.28 14.95 9.34 8.41 91.59
Loud 5.55 17.59 57.40 19.44 5.55 94.45

Lombard 32.40 9.25 5.55 52.77 32.40 67.60
Average 68.78 87.83

Tables 10 and 11 show accuracies for the text-independent multistyle classification of
stress. For each method, detection rate distribution of each stress style is also displayed. It can
be observed from Table 12 that the proposed method achieved a best mean accuracy of 92.23%
for the case in which the training set size excluded excitation features. On the other hand,
excluding vocal-tract features from the training set results in a much lower neutral-stressed
detection rate of 84.78%.

It is also observed from Table 12 that the best emotion-style detection rate of 74.83%
was achieved in the case where the training set excluded excitation features, significantly higher
than the baseline SVM accuracy of 68.78%. Similar conclusions are drawn as in the case of
the text-independent scenario. When compared to the baseline method (last row in Table 12),
the proposed method results in much better classification performance. Principal component
analysis performed poorly in this context achieving only a best stressed-neutral detection rate of
63.36% and a best emotion-style detection rate of 26.16%.
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Table 12: Classification results of text-independent multistyle stress classfication using
different sparse-coding based methods across different feature combinations.

Method Experiment
Variations

Distribution of Speech Style Detection Rate(%) Neutral-Stressed(%)
Input
Test

Speech
Style

Neutral Angry Loud Lom-
bard

Neutral Stressed

Proposed
Model

Excitation
features
excluded

Neutral 95.97 2.79 0.32 0.92 95.97 4.03
Angry 6.54 64.48 19.64 9.34 6.54 93.46
Loud 2.77 15.75 74.07 7.41 2.77 97.23

Lombard 21.29 5.55 8.35 64.81 21.29 78.71
Average 74.83 91.34

Proposed
Model

Prosodic
features
excluded

Neutral 93.96 3.09 0.47 2.48 93.96 6.04
Angry 5.60 66.35 19.64 8.41 5.60 94.40
Loud 1.85 20.37 62.96 14.82 1.85 98.15

Lombard 17.59 6.49 10.18 65.74 17.59 82.41
Average 72.25 92.23

Proposed
Model

Vocal-tract
features
excluded

Neutral 86.41 4.32 2.48 6.79 86.41 13.59
Angry 9.34 59.81 24.29 6.56 9.34 90.66
Loud 9.25 23.16 49.07 18.52 9.25 90.75

Lombard 28.70 14.83 19.44 37.03 28.70 71.30
Average 58.08 84.78

4.1.2.4 PARAMETER SELECTION

The performance of the sparse coding model depends greatly on the choices of parameters.
Important ones include the size of the basis functions, stride step size and soft-thresholding
parameter. Multiple experiments were performed on a single input file chosen from the text-
dependent scenario containing 36 data points with stressed emotion and neutral labels. While
applying sparse coding on the raw input features, one parameter was varied while keeping all
others fixed. Leave-one-out cross validation was performed in determining the classification
performance. This process was repeated for multiple combinations of parameters. The most
optimal set of parameters was found to be 3000 basis functions with a size of 65, a stride step
of 60, and a soft-thresholding parameter of 0.8. The results are shown in tables 71 through 79
which can be found in the Appendix section of this dissertation.
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4.1.3 DEEP BELIEF NETWORK MODEL FOR EMOTION RECOGNITION

Figure 18: DBN network used for emotion recognition. The architecture was 486-100-100-2.

4.1.3.1 DEEP BELIEF NETWORK MODEL BASED TEXT INDEPENDENT PAIR-

WISE EMOTION RECOGNITION

In this experiment, the proposed deep belief network (DBN) based classification model is
applied to the SUSAS text-independent pairwise datasets to discriminate between stressed and
neutral emotions. An example is shown in Figure 18. The datasets are selected and organized
in the same way as described earlier in the sparse-coding model experiment using pairwise,
text-independent data.The network architecture is 486-100-100-2 where the input layer has 486
features and the output layer has 2 label types, stressed emotion and neutral. There are two
hidden layers with each containing 100 units. Initially, the network is pre-trained and dropout is
applied with a probability of 0.2 for the input layer and 0.5 for the hidden layers. 100 epochs are
used for pre-training and 200 epochs for fine-tuning. An initial momentum of 0.5 is used for the
first 20 epochs and a final momentum of 0.9 is used. A learning rate of 0.001 is applied during
pre-training. The type of activation function used is a sigmoid. A mini-batch size of 100 is used.
For the fine-tuning step, an initial momentum of 0.5 is used for the first 10 epochs and 0.95 for
the final momentum. The dropout applied is similar to the pre-training step. The number of
epochs is 200. The output label layer consists of a logistic regression layer to classify between
two distinct labels. A deeper architecture with the following configuration (486-2000-1000-500-2)
is also applied for evaluation.
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4.1.3.2 DEEP BELIEF NETWORK MODEL BASED TEXT INDEPENDENT MULTI-

STYLE EMOTION RECOGNITION

In this experiment, the proposed deep belief network based classification model is applied
to the SUSAS text-independent multistyle datasets to discriminate between four different types
of emotions. The datasets are selected and organized in the same way as described earlier in
section 4.1.2.2. The text-dependent and text-independent pairwise evaluation scenarios are left
out as the data sets are small and cannot be used to train DBNs. The network architecture
and parameters are similar to that used in the case for applying the DBN to pairwise, text-
independent data as described in the previous experiment. Many different configurations of
the network are applied in order of increasing complexity that include 486-100-100-4, 486-500-
100-4, 486-500-300-4, 486-500-300-100-4, 486-1000-500-200-100-50-4, 486-1000-500-200-100-4,
486-2000-500-4, 486-1000-500-4, 486-500-500-4, 486-2000-1000-500-4 and 486-4000-2000-1000-4.

Figure 19: Classification results for different deep belief network architectures applied to
the SUSAS text-independent pairwise datasets.

Table 13 shows the classification accuracies for the deep belief network model applied to
SUSAS text-independent pairwise datasets. This is shown graphically in figure 19. Two types of
network architectures have been used, each with a different number of hidden units in each hidden
layer and varying numbers of layers. It is observed that the best accuracy of 94.11% is achieved
for the case of the loud and neutral emotional pairwise dataset. The architecture, 486-100-100-2
achieves a marginally higher mean test accuracy of 86.88% with a standard deviation of 3.80%,
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Table 13: Classification results for different deep belief network architectures applied to
the SUSAS text-independent pairwise datasets.

Type of Pairwise-Stress
Input

Deep Belief Network
Architecture (No. of

Units Per Hidden
Layer)

Training Ac-
curacy(%)

Test
Accuracy

(%)

Angry + Simulated Neutral
486-100-100-2

85.79 84.19
Lombard + Simulated Neutral 85.67 85.22

Loud + Simulated Neutral 95.09 91.23
Average: 88.85

(σ = 5.40)
86.88

(σ = 3.80)
Angry + Simulated Neutral

486-2000-1000-500-2
95.08 94.11

Lombard + Simulated Neutral 85.67 83.27
Loud + Simulated Neutral 85.67 85.77

Average: 88.80
(σ = 5.43)

87.71
(σ = 5.67)

Overall Average: 88.82
(σ = 4.84)

87.29
(σ = 4.34)

across all the different types of pairwise input datasets. Also an overall accuracy of 87.29% with
a standard deviation of 4.34% is obtained using this proposed deep belief network model.

Figure 20: Classification results for different deep belief network architectures applied to
the SUSAS text-independent pairwise datasets.
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Table 14: Classification results for different deep belief network architectures applied to
the SUSAS text-independent multistyle dataset.

Deep Belief Network Architecture Training
Accuracy(%)

Test
Accuracy(%)

486-100-100-4 78.92 78.32
486-500-100-4 82.94 80.18
486-500-300-4 84.10 82.14

486-1000-500-4 80.87 80.59
486-2000-500-4 81.64 80.39

486-1000-500-200-100-4 81.49 80.28
Average: 81.66

(σ = 1.77)
80.31

(σ = 1.21)

Figure 20 shows the results of applying the DBN model on the text-independent multistyle
dataset graphically. Table 14 shows the tabulated results for this scenario. In this experiment,
the datasets encompass four different emotional stress types all of which belong to the simulated
domain of the SUSAS speech corpus. These include anger, lombard, loud and neutral.

The motivation for this particular experiment is that it is desired to test the effectiveness
of the DBN based classification model in discriminating between these four different types of
emotional stress. It is observed that best testing accuracy is obtained using the following network
architecture of 486-500-300-4, where the input layer contains 486 features, the first hidden layer
contains 500 stochastic binary hidden units and the final hidden layer has 300 hidden units.
The output label layer consists of a logistic regression classifier to discriminate between the four
different emotion labels. An average test accuracy of 80.31% with a standard deviation of 1.21%
is obtained across all the different architectures. It is noted that the best accuracy of 82.14% is
obtained with the following network architecture of 486-500-300-4.

4.2 DISCUSSION

4.2.1 SUMMARY OF BEST TESTING ACCURACIES FOR ALL MODELS ACROSS

ALL EXPERIMENTS

Table 16 shows the results of the best test accuracies achieved by all the models in the
proposed method across all the experiments. It is observed that for the text-dependent pairwise
evaluation context, PCA achieved the best classification accuracy of 91.98% surpassing the
proposed sparse coding model which achieved the best accuracy of 91.22%. It is observed that
for the text-independent pairwise evaluation context, the proposed sparse coding model achieved
the best classification accuracy of 94.86% outperforming the baseline which achieved the best
accuracy of 93.23%. In text-independent multistyle scenario, the sparse coding model achieved
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the best emotion detection accuracy of 74.83% outperforming the baseline which achieved the
best accuracy of 68.78%. In the text-independent pairwise scenario, the deep belief network
model achieved a best of 94.11%. The sparse-coding model achieved the best overall performance.

4.2.2 SUMMARY OF HYPOTHESIS TESTING

Table 15 shows the hypothesis testing results in order to compare sparse coding against
SVM for emotion recognition for the text-dependent pairwise evaluation scenario. The features
are a combination of vocal-tract, prosodic and excitation feature categories. The level of
significance, α is 5%. None of the cases show significantly different results.

Table 15: Application of hypothesis testing to compare the sparse coding against SVM
for emotion recognition for the text-dependent pairwise evaluation scenario. The features
are a combination of vocal-tract, prosodic and excitation feature categories. The level of
significance, α is 5%. In the case of excluding vocal-tract features, it shows a statistically
significant result, but the baseline accuracy is higher than that of sparse coding. The
null hypothesis is that the accuracies from both methods come from a normal population
distribution consisting of independent random samples with equal means and unknown
variances. The alternative hypothesis is that the means are unequal.

Sparse Coding Methods SVM Method
p-Value(SC% vs SVM%)

Sparse Coding (6 words) 0.7208(90.86, 90.69)
Sparse Coding (22 words) 0.6827(91.02, 91.95)

Sparse Coding (22 words + No prosodic) 0.6422(91.22, 91.95)

The null hypothesis is that the accuracies from both methods come from a normal
population distribution consisting of independent random samples with equal means and unknown
variances. The alternative hypothesis is that the means are unequal. It is also observed that
when sparse coding is performed on a feature set in which the prosodic category is excluded, it
achieved the best accuracy of 91.19%.

For the sparse-coding based text-dependent pairwise stress classification using SUSAS,
the proposed method achieved a best accuracy of 92.06%. The baseline method, which trained
a SVM classifier directly using all extracted features obtained an accuracy of 90.69% that is
comparable to all other methods. In the text-dependent experiment, training and testing were
conducted word-wise such that text information was implicitly utilized. It is observed that most
of these methods can discriminate different stress types. It was also evident that sparse coding
did not improve the performance significantly.

In the sparse-coding based text-independent experiment conducted on SUSAS, the
proposed method achieved an accuracy of 94.86% with the excitation features being excluded,
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and the accuracy is higher than the baseline method (All Fea + SVM) which gives 93.23%.
It implies that the excitation features are not very effective in detecting stress in speech. It
is also observed that omitting prosodic features gives a classification accuracy of 93.89% also
suggesting that perhaps the prosodic features are not very good stress detectors in speech.
However, eliminating vocal-tract features reduces the classification accuracy to 86.46% showing
that vocal-tract features are highly effective in detecting stress in speech. The accuracy of the
PCA method (PCA features + SVM) is 48.36%, which is even slightly worse than a random guess
(50%). In the text-independent experiment, speech recordings used for training and testing were
from different words such that text information contained in the recordings was not utilized. The
proposed method can discriminate different stress types without knowing the text information.

Table 16: Summary of best testing accuracies achieved by the models in the proposed
method across all the experiments.

Evaluation Context Model Type Test
Accuracy
(Best) %

Text-Dependent Pairwise

Sparse Coding (prosodic features
excluded)

91.22

PCA + SVM (22 words) 91.98
All Features + SVM (22 words) 91.95

Text-Independent Pairwise

Sparse Coding (excitation features
excluded)

94.86

PCA + SVM (22 words) 48.51
All Features + SVM (6 words) 93.23
Deep belief Network (22 words) 87.71

Text-Independent Multistyle

Sparse Coding (excitation features
excluded)

74.83

PCA + SVM (22 words) 26.16
All Features + SVM (22 words),

(Baseline)
68.78

Deep belief Network (22 words) 80.31

In the sparse-coding based multistyle stress classification experiment on the SUSAS speech
database, the proposed method achieved a best accuracy of 75.08% in the simulated domain.
The baseline method did not perform well with an accuracy of 67.66%. Accuracies from all
sparse coding based methods are in the range of 58% - 75% for the simulated domain and of
84% - 92% for the actual domain. Discrimination of the multiple stress types simultaneously is
a more challenging task. Table 16 shows a summary of the best test accuracies of all models
across all the experimental scenarios for emotion recognition.

Text information could be independent of stress, i.e., we may express the same emotion
type using different words. In our experiment, we showed that if the discriminating model was
carefully designed (Table 6, the proposed method), a text-independent stress type classification
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system is feasible. We also showed that it is generally helpful for a system to perform stress
type discrimination if it utilized text information, with an average accuracy of 89.92% across all
methods in Tables 4, 5 and 6 combined, as compared to 80.29% in Tables 7, 8 and 9, if text
information was not used. The baseline method utilized all features and SVM and performed
reasonably well in our experiments. In Table 5, improvements are noted when PCA features
(PCA+SVM) are directly used as input to the SVM classifier. PCA reduces the dimensionality
of the data from 486 to 17 for a simulated domain and 15 for the actual domain. Classification
accuracies were improved from 91.83% to 91.98% with PCA in Table 5. However, the classification
accuracies are noted to drop to 48.36% with PCA in Table 7. In sparse coding, we learned 3000
basis functions with a size of 65 and a step size of 60. These hyperparameters were found after
conducting multiple experiments, described in section 4.1.2.4, to observe which combination
produced the best classification accuracy. With an initial feature vector size of 486, the final
feature dimensionality after sparse coding is 24,000. The classifier used was an SVM, which is
based on a regularized optimization procedure that aims to maximize its generalization capability
[60]. It is well known that it is specifically effective for small-sized data sets. In our experiments,
training data sets usually contain a couple hundred data samples, which can be considered as
small as compared to the number of features in the data.

Feature selection algorithms such as the one in [3] usually select a subset of features that
are most effective for a given task and a predefined objective. If data sets contain irrelevant or
redundant features and do not have enough data samples for training, i.e., the number of data
samples is less than the number of features, the classifier will tend to be over-trained leading to
degraded performance. Dimensionality of data sets can also be reduced by the PCA technique
by just keeping those top ranked principal components (PC). Each PC is a linear combination
of all of the original features.

In the deep belief network based text-independent pairwise experiment conducted using
SUSAS, the proposed deep belief network model achieved the emotion-wise best accuracy of
94.11% and an overall best accuracy of 87.71%. The performance is slightly better than the
case in which sparse-coding based method was applied and vocal-tract features were excluded.
However, it is to be noted that in this case the input training data consisted of only 6 words
as against 22 words which formed a much larger training set in the case of the sparse-coding
based SUSAS experiment. The result for the case in which vocal-tract features were excluded
is 86.46%. For the case in which the deep belief network was applied for the text-independent
multistyle scenario in the simulated domain of SUSAS, it achieved the best accuracy of 82.14%
and an overall accuracy of 80.28%. This is higher than that obtained using sparse-coding which
achieved an overall accuracy of 75.08%. Compared to the baseline which achieved only 67.66%,
the deep belief network achieved a much better performance.

Statistical hypothesis testing was carried out for the text-dependent scenario, between
the different sparse coding methods and SVM to assess the relative performance of emotion
detection. Table 15 shows the results of hypothesis testing. The results are not significantly
different in any of the cases. In the text-dependent scenario, it is concluded that sparse coding
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is not significantly better than the baseline. The results from these two tables suggests that the
sample accuracies from the two different methods come from normally distributed populations
with equal means. However, as discussed earlier, sparse coding outperforms the baseline and
other methods in the text-independent pairwise scenario.

4.3 COMPARISON OF PROPOSED METHOD WITH RELATED WORK

Table 17: Comparison of related work with proposed method for emotion recognition based
on speech.

Method Used Features Used Results

TEO based framework TEO based features
extracted from SUSAS

92.9% for pairwise
text-dependent scenario,

89% for pairwise
text-independent

scenario, 88.85% for
text-independent

multistyle scenarios
Adaptive sinusoidal model based Sinusoidal based

extracted from SUSAS
Average 64.25% for

multiclass
Multi-level classification framework
on resting-state fMRI (Multi-kernel

SVM)

Univariate, bivariate and
multivariate features
derived from fMRI

92.5% classification
accuracy

LDA Classification Framework Pitch, log energies,
MFCC’s, velocity and
acceleration features

extracted from SUSAS

91.3% for pairwise
text-independent

scenario, 70.1% for
text-independent

multistyle scenario
Integration framework MFCC, delta and

acceleration coefficients
extracted from SUSAS

Best accuracy of 83.8%

Long Short Term Memory Neural
network framework

MFCC and Lyon
Cochleagram Model

extracted from SUSAS

Best accuracy of 75.41%

This section compares the performance of the proposed sparse-coding based model against
those in the literature that used the same SUSAS benchmark speech corpus. The study conducted
in [70] utilizing wavelet features achieved a mean accuracy of 90% for all combinations of pairwise
stressed speech classification for the simulated domain. No results were reported for the actual
domain in this study. As a comparison, our proposed method achieved an accuracy of 93.29% for
the pairwise classifications combined in the simulated domain. In [71], nonlinear Teager Energy
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Operator (TEO) based features were utilized for stress classification and achieved 92.9%, 89% and
88.85% accuracies for pairwise text-dependent, pairwise text-independent and text-independent
multistyle classifications, respectively. In this study, we obtained 92.06%, 94.86% and 92.23%
for the three cases and our method performed much better for the latter two cases.

The experiments conducted in [72] used pitch, log-energies, MFCC’s, velocity and accel-
eration features of pitch as features. A mean accuracy of 91.3% (as compared to 94.86% in our
experiment) was reported for the pairwise text-independent classification. For the multistyle
scenario, a much lower accuracy of 70.1% was reported as compared to 92.23% in our experiment.

The study in [74] proposed to integrate frame-level information in speech into a large
feature-space emotion recognition engine. The method utilized MFCC, its delta and acceleration
coefficients as features and an SVM as classifier for classification. A maximum accuracy of
83.8% was reported on the SUSAS database. Our proposed system achieves higher classification
accuracies in the three different evaluation contexts described earlier.

A biologically inspired emotion recognition system was proposed in [75], in which features
were derived from MFCC and the Lyon-cochleagram model. Classification was performed using a
long short-term memory (LSTM) recurrent neural network. A multistyle classification involving
five different emotions was performed for which the best achieved accuracy was reported to be
75.41% in the case of the Lyon-cochleagram model. Our proposed method achieved a much higher
accuracy of 94.86% in the text-independent scenario. Another biologically inspired method was
proposed in [76], which extracted vowel information from an input speech signal and converted
it to features. The MFCC features were mapped into an appropriate spike representation after
which a spiking neural network was used to discriminate five different emotion states in the
SUSAS database. An average classification accuracy of 72% was reported. Our proposed method,
in contrast, achieved a higher accuracy of 92.23% in the multistyle scenario. We did not perform
feature selection in the current study; this is our planned future work.

4.4 CONCLUSION OF PROPOSED APPROACH

We compared the proposed sparse-coding based method using SUSAS and PTSD speech
corpora with the following methods: 1) using all extracted features and then passing them to an
SVM for classification, and 2) using the selected PCA features and an SVM for classification.
The PCA method was only applied to the SUSAS speech corpus. The proposed sparse-coding
based method, applied to SUSAS, used seven different sets of training data in order to compare
the classification results. We also compared our results with those in the literature using similar
subsets of the SUSAS database. In the case of the proposed deep belief network model, we also
compared it to this method: 1) using all extracted features and passing them to SVM as our
baseline.

In the text-dependent scenario, the sparse coding model achieved an increase of 1.37% over
the baseline. The proposed deep belief network based text-independent experiment conducted
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on SUSAS, achieved the best accuracy of 94.11% which is comparable to the baseline result of
93.30%, while the sparse-coding model achieved a best accuracy of 94.86%. In the multistyle
scenario, the sparse coding model achieved an overall 75.08%, while the deep belief network
model achieved a best accuracy of 80.31%. Overall, sparse coding achieves the best performance
in the text-independent pairwise scenario whereas the deep belief network model performs best
in the text-independent multistyle scenario which could be attributed to the availability of larger
training data.
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CHAPTER 5

PTSD DIAGNOSIS

This chapter begins with a discussion of the two different speech corpora utilized for
PTSD diagnosis. A description of the experiments, results and discussion of the results follows
in the next section. PTSD diagnosis using SVM on single-frame and multiple-frame raw feature
sets is presented first. Sparse coding and the deep belief network models for PTSD detection are
presented next. A transfer learning strategy was adopted to solve the small data size problem
which is discussed in the final section. This section also summarizes important results and
presents relevant discussion followed by conclusions. Hypothesis testing showed that when
comparing transfer learning with SVM, transfer learning performed significantly better than the
baseline in more than 31% of the cases tested. It performed significantly better than the deep
belief network model in nearly 30% of the cases that were tested. Transfer learning also achieved
significantly better results in 24% of the cases, compared to sparse coding for PTSD diagnosis.

5.1 EXPERIMENTS RESULTS AND DISCUSSION

5.1.1 PTSD DIAGNOSIS USING SVM MODEL

5.1.1.1 PTSD DIAGNOSIS USING SVM ON SINGLE FRAME MULTI-CATEGORY

RAW FEATURES

In order to set a reference for comparison, we used the raw PTSD features directly and
applied SVM for classification. A total of 162 PTSD features were computed. To compute these
features, various categories of features widely used in emotion recognition literature were used.
The details of the type and number of each are shown in Table 3. The total number of raw
features per frame is 54. Adding the first and second order time derivative features give us a
total of 162 features for each frame.

Table 18 shows the results of classifying raw PTSD features directly with an SVM using
the leave-one-subject-out cross validation. The PTSD features have 162 dimensions. Different
sets of PTSD features have been sampled from the available recordings using variable speech
frame sizes and frame shifts. While an overall subject-wise accuracy of 53.62% is achieved, the
mean subject-wise accuracy on the Youtube dataset is 55.98% while that for Ohio is 51.27%. The
overall mean segment-wise accuracy on Youtube is 56.84%, while for Ohio the mean segment-wise
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Table 18: Classification results of applying SVM directly on raw features extracted from
PTSD data set using the leave-one-subject-out cross validation. The raw input feature data
set has 162 dimensions consisting of a combination of prosodic, vocal-tract and excitation
features.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 55.36
(σ = 49.73)

42.36
(σ = 47.18)

53.84
(14/26)

38.46
(10/26)

46.15

3.0 0.5 55.88
(σ = 46.66)

57.61
(σ = 42.57)

57.69
(15/26)

57.69
(15/26)

57.69

3.0 1.0 56.25
(σ = 49.25)

46.87
(σ = 46.39)

57.69
(15/26)

46.15
(12/26)

51.92

2.0 0.1 55.95
(σ = 44.66)

51.43
(σ = 48.37)

57.69
(15/26)

50.00
(13/26)

53.84

2.0 0.5 55.86
(σ = 45.36)

57.94
(σ = 44.43)

61.53
(16/26)

61.53
(16/26)

61.53

2.0 1.0 50.35
(σ = 46.88)

50.41
(σ = 43.03)

50.00
(13/26)

50.00
(13/26)

50.00

1.0 0.1 63.98
(σ = 44.98)

53.18
(σ = 46.35)

57.69
(15/26)

53.84
(14/26)

55.76

1.0 0.5 64.92
(σ = 46.75)

54.18
(σ = 43.16)

57.69
(15/26)

53.84
(14/26)

55.76

1.0 1.0 53.05
(σ = 45.83)

54.95
(σ = 40.62)

50.00
(13/26)

50.00
(13/26)

50.00

Average: 56.84
(σ = 4.71)

52.10
(σ = 5.04)

55.98 51.27 53.62

accuracy is 52.10%. A best segment-wise accuracy of 64.92% is obtained which is seen to be
from the Youtube data set.

5.1.1.2 PTSD DIAGNOSIS USING SVM DIRECTLY ON MULTIPLE FRAME MULTI-

CATEGORY RAW FEATURES

In order to set a reference for comparison, we used 15-frame raw PTSD features directly
and applied SVM for classification. A total of 2,430 PTSD features were computed. More details
about the feature extraction process are included in the third paragraph of section 3.3.3.

Table 19 shows the results of raw PTD feature classification directly with an SVM using
the leave-one-subject-out cross validation. The results are shown for different sets of PTSD data
sampled differently using variable frame sizes and shifts. The mean subject-wise accuracy on
the Youtube dataset is 51.36% while that for Ohio is 57.26%. The overall mean segment-wise
accuracy on Youtube is 57.05% with a standard-deviation of 3.77% while for Ohio the mean
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Table 19: Classification results of applying SVM directly on raw features extracted from
PTSD data set using the leave-one-subject-out cross validation. The raw input feature data
set has 2430 dimensions consisting of prosodic, vocal-tract and excitation features.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 59.28
(σ = 50.18)

47.03
(σ = 48.46)

53.84
(14/26)

50.00
(13/26)

51.92

3.0 0.5 61.93
(σ = 47.32)

43.03
(σ = 44.44)

61.53
(16/26)

46.15
(12/26)

53.84

3.0 1.0 50.12
(σ = 50.36)

40.18
(σ = 46.14)

50.00
(13/26)

42.30
(11/26)

46.15

2.0 0.1 55.73
(σ = 49.51)

51.28
(σ = 46.20)

57.69
(15/26)

53.84
(14/26)

55.76

2.0 0.5 56.34
(σ = 49.52)

52.95
(σ = 47.29)

57.69
(15/26)

53.94
(14/26)

55.81

2.0 1.0 59.53
(σ = 45.81)

52.95
(σ = 47.29)

61.53
(16/26)

53.84
(14/26)

57.68

1.0 0.1 56.04
(σ = 48.36)

52.13
(σ = 46.31)

57.69
(15/26)

53.84
(14/26)

55.76

1.0 0.5 60.97
(σ = 47.22)

69.78
(σ = 41.25)

61.53
(16/26)

76.92
(20/26)

69.22

1.0 1.0 53.57
(σ = 50.60)

52.98
(σ = 49.61)

53.84
(14/26)

53.84
(14/26)

53.84

Average: 57.05
(σ = 3.77)

51.36
(σ = 8.37)

57.26 53.85 55.55

segment-wise accuracy is 51.36% with a standard-deviation of 8.37%. The overall subject-wise
accuracy is 55.55% which is higher than the case of applying SVM on raw features having 162
dimensions that achieved 53.62%.

5.1.1.3 PTSD DIAGNOSIS USING SVM DIRECTLY ON MULTIPLE FRAME MFCC

FEATURES

Raw MFCC features are also used since they have been found to be very useful in the
literature. A raw MFCC feature data set with 15 frames, each frame having 39 features forming
a total of 585 (39x15) features in total is computed. An SVM is applied directly on this raw
data set to serve as our baseline. It is observed from Table 20 that the overall subject-wise test
accuracy for Youtube data is 73.07% and for Ohio data is 56.53%. The average segment-wise
accuracy for Youtube data is 79.10% with a standard deviation of 2.16% and for Ohio data,
53.05% with a standard deviation of 1.90%. An overall subject-wise accuracy of 64.74% is
obtained.



64

Table 20: Classification results of applying SVM directly on raw MFCC features extracted
from PTSD dataset using the leave-one-subject-out cross validation. The raw input feature
data set extracted from PTSD speech corpus consists of multiple frame MFCC features
having 585 dimensions.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 81.58
(σ = 25.08)

55.18
(σ = 26.11)

73.08
(19/26)

61.53
(16/26)

67.30

3.0 0.5 81.90
(σ = 24.99)

50.37
(σ = 24.88)

76.92
(20/26)

53.84
(14/26)

65.38

3.0 1.0 79.43
(σ = 25.57)

54.27
(σ = 24.34)

73.08
(19/26)

57.69
(15/26)

65.38

2.0 0.1 80.06
(σ = 24.57)

54.23
(σ = 24.25)

73.08
(19/26)

57.69
(15/26)

65.38

2.0 0.5 80.22
(σ = 24.31)

51.44
(σ = 23.39)

69.23
(18/26)

50.00
(13/26)

59.61

2.0 1.0 77.49
(σ = 25.47)

55.32
(σ = 26.08)

73.08
(19/26)

61.53
(16/26)

67.30

1.0 0.1 77.95
(σ = 23.58)

53.40
(σ = 22.20)

76.92
(20/26)

57.69
(15/26)

67.30

1.0 0.5 78.29
(σ = 23.26)

52.79
(σ = 21.86)

69.23
(18/26)

57.69
(15/26)

63.46

1.0 1.0 75.02
(σ = 24.25)

50.49
(σ = 20.56)

73.08
(19/26)

50.00
(13/26)

61.54

Average: 79.10
(σ = 2.16)

53.05
(σ = 1.90)

73.07 56.53 64.74

5.1.2 SPARSE CODING MODEL FOR PTSD DIAGNOSIS

The sparse coding model discussed in section 3.1.1 is applied to the PTSD raw data. More
details about the feature extraction process are included in the third paragraph of section 3.3.3.
A single- frame data set was created using single frames by combining the three distinct categories
of speech features such as prosodic, vocal-tract and excitation speech features. Each frame
consisted of 162 features. The multi-frame data set comprised of 15 single frames concatenated
together to form a total of 2,430 features. Similar single frame and multi-frame features were
computed for for MFCC features. The single frame consisted of 39 features. The multi-frame
MFCC data set consisted of 15 single frames concatenated together to form a total of 585
features. Sparse coding was applied to the extracted single and multiple frame feature data sets.
We learned 3000 basis functions, randomly selected from the data with a size of 65 and a step
size of 55. The hyperparameters were found after conducting multiple experiments in order to
determine the optimal set of parameters based on classification accuracy. The classification was
performed using a linear kernel SVM whose optimal parameters were found using gridsearch.



65

5.1.2.1 SPARSE CODING MODEL FOR PTSD DIAGNOSIS BASED ON SINGLE FRAME

MULTI-CATEGORY FEATURES

In this scenario, the input feature data set consisted of single frame features with each
frame having 162 features. The raw input features extracted from the PTSD speech database
consisted of a combination of three different categories of speech features, namely the prosodic,
vocal-tract and excitation speech features.

Table 21: Classification results of applying the sparse coding based model for PTSD
diagnosis. The raw input features extracted from PTSD speech corpus have 162 dimensions
which consisted of prosodic, vocal-tract and excitation features.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 68.40
(σ = 32.23)

57.85
(σ = 28.37)

73.07
(19/26)

61.53
(16/26)

67.30

3.0 0.5 71.62
(σ = 28.59)

55.52
(σ = 29.13)

76.92
(20/26)

61.53
(16/26)

69.22

3.0 1.0 69.52
(σ = 30.57)

56.66
(σ = 24.87)

76.92
(20/26)

65.38
(17/26)

71.15

2.0 0.1 67.11
(σ = 28.00)

56.53
(σ = 25.90)

73.07
(19/26)

57.69
(15/26)

65.38

2.0 0.5 65.79
(σ = 29.30)

57.11
(σ = 25.65)

73.07
(19/26)

61.53
(16/26)

67.30

2.0 1.0 65.59
(σ = 28.74)

55.43
(σ = 22.72)

69.23
(18/26)

61.53
(16/26)

65.38

1.0 0.1 66.24
(σ = 26.03)

55.06
(σ = 20.89)

73.07
(19/26)

65.38
(17/26)

69.22

1.0 0.5 66.17
(σ = 24.95)

54.89
(σ = 18.89)

73.07
(19/26)

57.69
(15/26)

65.38

1.0 1.0 64.19
(σ = 25.57)

55.01
(σ = 20.25)

69.23
(18/26)

61.53
(16/26)

65.38

Average: 67.18
(σ = 2.29)

56.00
(σ = 1.06)

73.07 61.53 67.30

Table 21 shows that the segment-wise accuracy for Youtube subjects is 67.18% while for
Ohio it is 56.00%. The subject-wise accuracy is 73.07% for Youtube while for Ohio subjects it is
61.53%. The overall subject-wise accuracy is found to be 67.30% which is considerably higher
than the baseline achievement of 53.62%.
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5.1.2.2 SPARSE CODING MODEL FOR PTSD DIAGNOSIS BASED ON MULTIPLE

FRAME MULTI-CATEGORY FEATURES

In this scenario, the input feature data set consisted of multiple frame features with each
frame having 2,430 features. The raw input features extracted from the PTSD speech database
consisted of a combination of three different categories of speech features, namely the prosodic,
vocal-tract and excitation speech features.

Table 22: Classification results of applying the sparse coding based model for PTSD
diagnosis. The raw input features extracted from PTSD speech corpus have 2430 dimensions
which consisted of prosodic, vocal-tract and excitation features.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 64.10
(σ = 32.77)

63.81
(σ = 24.29)

73.07
(19/26)

73.07
(19/26)

73.07

3.0 0.5 62.98
(σ = 36.26)

63.48
(σ = 32.34)

61.53
(16/26)

65.38
(17/26)

63.45

3.0 1.0 58.18
(σ = 37.62)

61.40
(σ = 34.48)

50.00
(13/26)

73.07
(19/26)

61.53

2.0 0.1 65.04
(σ = 30.97)

62.56
(σ = 24.34)

73.07
(19/26)

65.38
(17/26)

69.22

2.0 0.5 62.19
(σ = 36.32)

64.31
(σ = 32.80)

61.53
(16/26)

61.53
(16/26)

61.53

2.0 1.0 62.84
(σ = 34.16)

64.31
(σ = 35.27)

57.69
(15/26)

69.23
(18/26)

63.46

1.0 0.1 66.55
(σ = 31.51)

59.54
(σ = 21.71)

76.92
(20/26)

69.23
(18/26)

73.07

1.0 0.5 64.31
(σ = 35.09)

64.95
(σ = 28.41)

65.38
(17/26)

73.07
(19/26)

69.22

1.0 1.0 61.88
(σ = 36.39)

65.56
(σ = 30.86)

61.53
(16/26)

69.23
(18/26)

65.38

Average: 63.11
(σ = 2.36)

63.32
(σ = 1.88)

64.52 68.79 66.65

Table 22 shows the results. It is observed from Table 22 that the segment-wise accuracy
for Youtube subjects is 63.11% while for the Ohio data it is 63.32%. The subject-wise accuracy
is 64.52% for Youtube while for Ohio subjects it is 68.79%. The overall subject-wise accuracy is
found to be 66.65% which is higher than that of the baseline achievement of 55.55%.
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5.1.2.3 SPARSE CODING MODEL FOR PTSD DIAGNOSIS BASED ON MULTIPLE

FRAME MFCC FEATURES

In this scenario, the input feature data set consisted of single frame features with each
frame having 162 features. The raw input features extracted from the PTSD speech database
consisted of MFCC speech features.

Table 23: Classification results of applying the sparse coding based model for PTSD
diagnosis. The raw input features extracted from PTSD speech corpus consisted of multiple
frame MFCC features having 585 dimensions.

Number of
Subjects

Frame
Length

(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 74.95
(σ = 23.26)

50.83
(σ = 20.96)

80.76
(21/26)

61.53
(16/26)

71.14

3.0 0.5 74.11
(σ = 22.00)

51.15
(σ = 17.14)

88.46
(23/26)

65.38
(17/26)

76.92

3.0 1.0 73.32
(σ = 22.47)

49.03
(σ = 16.50)

84.61
(22/26)

53.84
(14/26)

69.22

2.0 0.1 71.76
(σ = 21.99)

49.86
(σ = 19.02)

76.92
(20/26)

65.38
(17/26)

71.15

2.0 0.5 71.30
(σ = 20.66)

49.90
(σ = 15.66)

80.76
(21/26)

65.38
(17/26)

73.07

2.0 1.0 72.64
(σ = 19.96)

48.88
(σ = 13.80)

84.61
(22/26)

53.84
(14/26)

69.22

1.0 0.1 71.41
(σ = 20.41)

47.76
(σ = 16.45)

80.76
(21/26)

53.84
(14/26)

67.30

1.0 0.5 68.80
(σ = 17.95)

47.71
(σ = 12.64)

80.76
(21/26)

57.69
(15/26)

69.22

1.0 1.0 68.07
(σ = 18.28)

49.79
(σ = 10.83)

76.92
(20/26)

38.46
(10/26)

57.69

Average: 71.81
(σ = 2.28)

49.43
(σ = 1.20)

81.61 57.26 69.43

Table 23 shows that the segment-wise accuracy for Youtube subjects is 59.40% while for
the Ohio data it is 63.94%. The subject-wise accuracy for Youtube is 66.23% while for Ohio it
was 70.93%. The overall subject-wise accuracy was found to be 68.58% which is slightly higher
than the baseline achievement of 67.30%. The sparse coding model with input MFCC features
is seen to perform the best, compared to other sparse-coding based scenarios, with an overall
subject-wise accuracy if 69.43%. It suggests that MFCC features possess good discriminatory
capability. Hypothesis testing was also carried out to compare the performance of sparse-coding
against those of DBN and Transfer Learning and are reported in a later section.
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5.1.3 DEEP BELIEF NETWORK MODEL FOR PTSD DIAGNOSIS

In this experiment, the proposed DBN model was applied to three different PTSD feature
datasets for PTSD detection using leave-on-subject-out cross validation. These datasets were
extracted using the feature extraction procedure described in section 3.3.3. A total of five DBN
architectures were used, 162-100-50-2, 2430-100-50-2, 2430-1000-1000-500-2, 2430-500-500-500-
500-100-2 and 585-2000-2000-2000-2 some of which are shown in figures 21, 22 and 23. The
architectures were selected to be of increasing complexity and also included variation in the
type and dimension of input features. The type of features computed for the first four cases is
the same as described in section 3 whereas the final scenario considered taking MFCC features
as input. MFCC features are used as they have been found to work well in the past. We have
speech recordings from 26 PTSD patients, and another set of recordings from 26 control subjects
collected from Youtube and an Ohio hospital. To detect presence of PTSD, we utilized the
leave-one-subject-out-cross-validation (LOSO-CV) to evaluate the DBN framework. In LOSO-
CV, we left one subject for testing and trained a DBN model on the remaining subjects. If the
testing accuracy on the testing subject is above 50%, the subject was correctly diagnosed. This
procedure was repeated so that each subject was tested once and just once. These experiments
were run using the NVIDIA Tesla K40 GPU.

Figure 21: DBN network used for PTSD detection was trained with 162 features in
the input layer, extracted on PTSD, using leave-one-subject-out-cross validation. The
architecture was 162-100-50-2.
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Figure 22: DBN network used for PTSD detection was trained with 2430 features extracted
on PTSD, in the input layer, using leave-one-subject-out-cross validation. The architecture
was 2430-100-50-2.
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Figure 23: DBN network used for PTSD detection was trained with 585 MFCC features
extracted on PTSD, in the input layer, using leave-one-subject-out-cross validation. The
architecture was 585-2000-2000-2000-2.
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5.1.3.1 DEEP BELIEF NETWORK MODEL FOR PTSD DIAGNOSIS BASED ON SIN-

GLE FRAME MULTI-CATEGORY FEATURES

Table 24: Classification results of the deep belief network model using leave-one-subject-out
cross-validation applied for PTSD diagnosis. The DBN architecture is 162-100-50-2.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 58.98
(σ = 23.47)

56.74
(σ = 27.11)

57.69
(15/26)

53.84
(14/26)

55.76

3.0 0.5 57.71
(σ = 22.64)

55.83
(σ = 27.10)

73.07
(19/26)

57.69
(15/26)

65.38

3.0 1.0 58.98
(σ = 23.47)

56.48
(σ = 27.44)

57.69
(15/26)

57.69
(15/26)

57.69

2.0 0.1 43.44
(σ = 20.37)

55.32
(σ = 27.42)

34.61
(9/26)

53.84
(14/26)

44.22

2.0 0.5 55.20
(σ = 25.23)

54.65
(σ = 27.13)

50.00
(13/26)

53.84
(14/26)

51.92

2.0 1.0 51.79
(σ = 25.55)

56.06
(σ = 26.45)

53.84
(14/26)

53.84
(14/26)

53.84

1.0 0.1 59.64
(σ = 29.62)

54.52
(σ = 25.07)

76.92
(20/26)

61.53
(16/26)

69.22

1.0 0.5 49.29
(σ = 23.54)

54.60
(σ = 25.67)

50.00
(13/26)

57.69
(15/26)

53.84

1.0 1.0 50.72
(σ = 21.04)

53.54
(σ = 26.04)

53.84
(14/26)

61.53
(16/26)

57.68

Average: 53.97
(σ = 5.54)

55.30
(σ = 1.05)

56.40 56.83 56.61

Table 24 outlines the results of applying the DBN based model with a simple network for
diagnosing patients afflicted with PTSD using single frame features. The architecture used was
162-100-50-2. The mean subject-wise accuracy for Youtube data was 56.40% and for Ohio it
was 56.83%. The overall subject-wise accuracy was 56.61%. It is observed from Table 24 that a
maximum subject-wise accuracy of 65.38% was achieved, corresponding to three different cases
of frame sizes and shifts. The performance marginally exceeds the baseline result of 55.55% by
1.06%.
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Table 25: Classification results of the deep belief network model using leave-one-subject-out
cross-validation applied for PTSD diagnosis. The DBN architecture is 2430-100-50-2.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 54.23
(σ = 25.25)

47.33
(σ = 17.74)

53.84
(14/26)

46.15
(12/26)

49.99

3.0 0.5 58.71
(σ = 22.64)

47.78
(σ = 16.40)

73.07
(19/26)

42.30
(11/26)

57.68

3.0 1.0 59.60
(σ = 23.47)

51.23
(σ = 14.79)

57.69
(15/26)

57.69
(15/26)

57.69

2.0 0.1 43.44
(σ = 20.37)

51.41
(σ = 14.28)

34.61
(9/26)

65.38
(17/26)

49.99

2.0 0.5 55.20
(σ = 25.23)

48.07
(σ = 18.48)

50.00
(13/26)

46.15
(12/26)

48.07

2.0 1.0 51.79
(σ = 25.55)

49.76
(σ = 17.51)

53.84
(14/26)

50.00
(13/26)

51.92

1.0 0.1 57.68
(σ = 22.29)

49.44
(σ = 15.30)

61.53
(16/26)

42.30
(11/26)

51.92

1.0 0.5 49.29
(σ = 23.54)

48.45
(σ = 18.22)

50.00
(13/26)

46.15
(12/26)

48.07

1.0 1.0 50.72
(σ = 21.04)

45.08
(σ = 14.07)

53.84
(14/26)

34.61
(9/26)

44.22

Average: 53.40
(σ = 5.18)

48.72
(σ = 1.99)

54.26 47.85 51.06

5.1.3.2 DBN MODEL FOR PTSD DIAGNOSIS BASED ON MULTIPLE FRAME MULTI-

CATEGORY FEATURES

Table 25 shows the evaluation of 15-frame features by the DBN network for PTSD
detection. The architecture used was 2430-100-50-2. The mean subject-wise accuracy for
Youtube data was 54.26%, while for Ohio it was 47.85%. The overall subject-wise accuracy
was 51.06%. It is observed that a maximum subject-wise accuracy of 57.69% was achieved,
corresponding to three different cases of frame sizes and shifts. The overall subject-wise accuracy
was 51.06%. This result is inferior to the case when using the architecture, 162-100-50-2 which
achieved 56.61% and is also inferior to the baseline result of 55.55%.

Table 26 shows the evaluation of 15-frame features by the DBN network for PTSD
detection using a more complex architecture. The architecture was 2430-1000-1000-500-2. The
mean subject-wise accuracy for Youtube data was 64.09%, while for Ohio it was 52.98%. The
overall subject-wise accuracy was 58.54%. It is observed that a maximum subject-wise accuracy
of 65.38% was achieved, corresponding to two different cases of frame sizes and shifts. This
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result of the overall subject-wise accuracy is superior to the case when using the architecture,
2430-100-50-2 which achieved 51.06% by a margin of 7.48%. This can possibly be attributed to
using multiple frames which may have captured the temporal information more effectively and
also the complexity of the network. It is also seen to outperform the baseline using the same
feature data set which achieved an overall subject-wise accuracy of 55.55% by a margin of 2.99%.

Table 26: Classification results of the deep belief network model using leave-one-subject-out
cross-validation applied for PTSD diagnosis. The DBN architecture is 2430-1000-1000-500-2.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 47.65
(σ = 20.66)

50.83
(σ = 16.91)

34.61
(9/26)

50.00
(13/26)

42.30

3.0 0.5 63.70
(σ = 19.52)

52.15
(σ = 16.29)

76.92
(20/26)

53.84
(14/26)

65.38

3.0 1.0 61.81
(σ = 21.44)

53.08
(σ = 16.53)

69.23
(18/26)

61.53
(16/26)

65.38

2.0 0.1 64.69
(σ = 19.34)

48.43
(σ = 13.40)

76.92
(20/26)

42.30
(11/26)

59.61

2.0 0.5 66.72
(σ = 17.39)

46.64
(σ = 15.08)

76.92
(20/26)

46.15
(12/26)

61.53

2.0 1.0 58.35
(σ = 22.55)

53.84
(σ = 14.85)

57.69
(15/26)

65.38
(17/26)

61.53

1.0 0.1 58.85
(σ = 21.55)

47.63
(σ = 15.72)

61.53
(16/26)

46.15
(12/26)

53.84

1.0 0.5 59.87
(σ = 21.63)

50.37
(σ = 16.39)

61.53
(16/26)

53.84
(14/26)

57.68

1.0 1.0 60.05
(σ = 20.25)

52.97
(σ = 16.01)

61.53
(16/26)

57.69
(15/26)

59.61

Average: 60.18
(σ = 5.48)

50.66
(σ = 2.59)

64.09 52.98 58.54

Table 27 shows the evaluation of 15-frame features by the DBN network for PTSD
detection using a more complex architecture. The architecture was 2430-500-500-500-500-100-2.
The mean subject-wise accuracy for Youtube data was 67.09%, while for Ohio it was 61.10%.
The overall subject-wise accuracy was 64.09%. The segment-wise accuracy for Youtube was
59.78% while for Ohio it was 60.22%. It is observed that a maximum subject-wise accuracy of
64.09% was achieved, corresponding to three different cases of frame sizes and shifts. Comparing
the result from the network 2430-1000-1000-500, which achieved 58.54%, an improvement is
noticed by a margin of 5.55%. It is also seen to outperform the baseline that achieved 55.55%
by a margin of 8.54%.
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Table 27: Classification results of the deep belief network model using leave-one-subject-out
cross-validation applied for PTSD diagnosis. The DBN architecture is 2430-500-500-500-500-
100-2.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 61.97
(σ = 18.99)

61.24
(σ = 29.42)

73.07
(19/26)

61.53
(16/26)

67.30

3.0 0.5 60.21
(σ = 16.15)

61.54
(σ = 30.70)

73.07
(19/26)

61.53
(16/26)

67.30

3.0 1.0 57.59
(σ = 22.51)

61.09
(σ = 30.12)

57.69
(15/26)

61.53
(16/26)

59.61

2.0 0.1 61.35
(σ = 17.92)

60.60
(σ = 29.33)

73.07
(19/26)

61.53
(16/26)

67.30

2.0 0.5 63.65
(σ = 16.32)

60.38
(σ = 29.93)

76.92
(20/26)

61.53
(16/26)

69.22

2.0 1.0 60.41
(σ = 19.01)

60.13
(σ = 29.81)

73.07
(19/26)

61.53
(16/26)

67.30

1.0 0.1 57.87
(σ = 20.22)

59.25
(σ = 28.25)

69.23
(18/26)

61.53
(16/26)

65.38

1.0 0.5 55.61
(σ = 20.45)

59.02
(σ = 28.78)

50.00
(13/26)

61.53
(16/26)

55.76

1.0 1.0 59.38
(σ = 21.57)

58.75
(σ = 28.94)

57.69
(15/26)

57.69
(15/26)

57.69

Average: 59.78
(σ = 2.47)

60.22
(σ = 1.01)

67.09 61.10 64.09

5.1.3.3 DBN MODEL FOR PTSD DIAGNOSIS BASED ON MULTIPLE FRAME MFCC

FEATURES

Table 28 shows the evaluation of MFCC features by the DBN network for PTSD classifi-
cation. The architecture used was 585-2000-2000-2000-2. The feature extraction details can be
found in the fourth paragraph of section 3.3.3. The mean subject-wise accuracy for Youtube
data was 63.92%, while for Ohio it was 57.18%. The overall subject-wise accuracy was 71.79%.
It was observed that a maximum subject-wise accuracy of 80.76% was achieved, corresponding
to a single case of frame size and shift combination. It is seen to outperform the baseline using
the same feature data set which achieved an overall subject-wise accuracy of 55.55%. It lends
substantial credence to the effective discrimination capability of the MFCC features for PTSD
detection.
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Table 28: Classification results of the deep belief network model using leave-one-subject-out
cross-validation applied for PTSD diagnosis. The DBN architecture is 585-2000-2000-2000-2.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segme
nt-wise
Acc (%)
on Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of
Subjects
from
Youtube:26
No of
Subjects
from
Ohio:26
Total:52
subjects

3.0 0.1 63.46
(σ = 14.56)

56.69
(σ = 7.94)

73.07
(19/26)

69.23
(18/26)

71.15

3.0 0.5 65.70
(σ = 12.86)

57.41
(σ = 9.30)

84.61
(22/26)

76.92
(20/26)

80.76

3.0 1.0 63.02
(σ = 12.16)

57.85
(σ = 7.34)

88.46
(23/26)

53.85
(14/26)

71.15

2.0 0.1 62.20
(σ = 12.78)

57.26
(σ = 8.19)

80.76
(21/26)

65.38
(17/26)

73.07

2.0 0.5 63.70
(σ = 12.57)

55.97
(σ = 9.18)

80.76
(21/26)

50.00
(13/26)

65.38

2.0 1.0 64.47
(σ = 13.79)

56.55
(σ = 7.53)

80.76
(21/26)

53.85
(14/26)

67.30

1.0 0.1 61.63
(σ = 13.85)

58.21
(σ = 6.74)

69.23
(18/26)

69.23
(18/26)

69.23

1.0 0.5 67.02
(σ = 12.11)

57.06
(σ = 7.49)

80.76
(21/26)

65.38
(17/26)

73.07

1.0 1.0 64.12
(σ = 13.78)

57.66
(σ = 8.17)

80.76
(21/26)

69.23
(18/26)

74.99

Average: 63.92
(σ = 1.67)

57.18
(σ = 0.69)

79.90 63.67 71.79

5.2 DISCUSSION

Table 29 summarizes the average PTSD diagnostic accuracies achieved across all the
baseline, sparse-coding and DBN models. Table 30 summarizes the best PTSD diagnostic
accuracies achieved across all the baseline, sparse-coding and DBN models. From Table 29 it is
observed that the best overall subject-wise accuracy of 71.79% is achieved by the DBN model
using MFCC multiple frame features as input. From Table 30 we can observe that the best
overall subject-wise accuracy obtained is 80.76% by the DBN model.

5.3 CONCLUSION OF THE PROPOSED APPROACH

The best segment-wise accuracy achieved by SVM was 77.95% for Youtube and 69.78%
for Ohio when using multiple-frame, multi-category features. Using the same input features,
sparse coding achieved a best segment-wise accuracy of 74.95% for Youtube and 67.72% for Ohio.
A best segment-wise accuracy of 66.72% for Youtube and 61.54% for Ohio was achieved by the
deep belief network method.
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The subject-wise accuracy using multi-frame, multi-category features by SVM was 55.55%
whereas sparse coding achieved 68.58%, an increase of 13.03%. Utilizing the same features,
the deep belief network model achieved 64.09%, an increase of 8.54% compared to the SVM.
A best overall subject-wise accuracy of 71.79% was obtained by the DBN model whereas the
sparse-coding model achieved an overall subject-wise accuracy of 76.92%. From Table 30 it is
observed that when using DBN for PTSD diagnosis, increasing the network complexity and
change in the input features is accompanied by an increase in the subject-wise accuracy from
56.61% to 80.76%. Overall, the sparse coding and deep belief network models achieved better
subject-wise performance than the baseline SVM. Comparison of these models with transfer
learning by way of hypothesis testing follows in the next chapter.

Table 29: Summary of average PTSD diagnostic accuracies across all the baseline and
DBN experiments.

Method

Mean
Segment-
Wise Acc
(%) on

Youtube

Mean
Segment-
wise Acc
(%) on
Ohio

Mean
Subject-

wise
Acc (%)

on
Youtube

Mean
Subject-

wise
Acc (%)
on Ohio

Overall
Subject-

wise
Accuracy

(%)

162 Raw Features (prosodic
+ excitation + vocal-tract) +

SVM

56.84
(σ = 4.71)

52.10
(σ = 5.04)

55.98 51.27 53.62

2430 Raw Features (prosodic
+ excitation + vocal-tract) +

SVM

57.05
(σ = 3.77)

51.36
(σ = 8.37)

57.26 53.85 55.55

585 Raw MFCC Features +
SVM

79.10
(σ = 2.16)

53.05
(σ = 1.90)

88.07 56.53 67.30

162 Raw Features (prosodic
+ excitation + vocal-tract) +

Sparse Coding

67.18
(σ = 2.29)

56.00
(σ = 1.06)

73.07 61.53 67.30

2430 Raw Features (prosodic
+ excitation + vocal-tract) +

Sparse Coding

59.40
(σ = 2.31)

63.94
(σ = 2.21)

66.23 70.93 68.58

585 Raw MFCC Features +
Sparse Coding

71.81
(σ = 2.28)

49.43
(σ = 1.20)

81.61 57.26 69.43

DBN + LOSO-CV
(Architecture: 162-100-50-2)

53.97
(σ = 5.54)

55.30
(σ = 1.05)

56.40 56.83 56.61

DBN + LOSO-CV
(Architecture:
2430-100-50-2)

57.21
(σ = 14.49)

48.72
(σ = 1.99)

54.26 47.85 51.06

DBN + LOSO-CV
(Architecture:

2430-1000-1000-500-2)

60.18
(σ = 5.48)

50.66
(σ = 2.59)

64.09 52.98 58.54

DBN + LOSO-CV
(Architecture: 2430-500-500-

500-500-100-50-2)

59.78
(σ = 2.47)

60.22
(σ = 1.01)

67.09 61.10 64.09

DBN + LOSO-CV
(Architecture:

585-2000-2000-2000-2)

63.92
(σ = 1.67)

57.18
(σ = 0.69)

79.90 63.67 71.79
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Table 30: Summary of best PTSD diagnostic accuracies across the baseline and DBN
methods.

Method

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accuracy

(%)
162 Raw Features (prosodic

+ excitation + vocal-tract) +
SVM

55.86
(σ = 45.36)

57.94
(σ = 44.43)

61.53 61.53 61.53

2430 Raw Features (prosodic
+ excitation + vocal-tract) +

SVM

60.97
(σ = 47.22)

69.78
(σ = 41.25)

61.53 76.92 69.22

585 Raw MFCC Features +
SVM

77.95
(σ = 23.58)

53.40
(σ = 22.20)

88.46 57.69 74.99

162 Raw Features (prosodic
+ excitation + vocal-tract) +

Sparse Coding

69.52
(σ = 30.57)

56.66
(σ = 24.87)

76.92 65.38 71.15

2430 Raw Features (prosodic
+ excitation + vocal-tract) +

Sparse Coding

56.86
(σ = 36.71)

67.72
(σ = 26.59)

61.53 80.76 71.14

585 Raw MFCC Features +
Sparse Coding

72.64
(σ = 19.96)

48.88
(σ = 13.80)

84.61 53.84 69.22

DBN + LOSO-CV
(Architecture: 162-100-50-2)

59.64
(σ = 5.54)

55.30
(σ = 1.05)

56.40 56.83 56.61

DBN + LOSO-CV
(Architecture:
2430-100-50-2)

59.60
(σ = 23.47)

51.23
(σ = 14.79)

57.69 57.69 57.69

DBN + LOSO-CV
(Architecture:

2430-1000-1000-500-2)

61.81
(σ = 21.44)

53.08
(σ = 16.53)

69.23 61.53 65.38

DBN + LOSO-CV
(Architecture: 2430-500-500-

500-500-100-50-2)

63.65
(σ = 16.32)

60.38
(σ = 29.93)

76.92 61.53 69.22

DBN + LOSO-CV
(Architecture:

585-2000-2000-2000-2)

65.70
(σ = 12.86)

57.41
(σ = 9.30)

84.61 76.92 80.76
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CHAPTER 6

TRANSFER LEARNING FOR PTSD DIAGNOSIS

6.1 DEEP BELIEF NETWORK MODEL FOR PHONE RECOGNITION

USING TIMIT

The deep belief network model is discussed with regard to phone recognition in this
section. The phone recognition is performed as an initial step for a technique known as transfer
learning. The PTSD data set is too small to train the DBN network efficiently and achieve a
very good performance. Transfer learning is utilized to solve this problem. It mitigates the small
data challenge associated with the PTSD data set. Initially, the DBN network is trained on the
extensively large TIMIT speech corpus for phone classification. The TIMIT speech corpus has
over 6,300 utterances and has been extensively used for such purposes. The trained model would
then be applied for PTSD detection using transfer learning. With this objective, a DBN model
was trained using several types of TIMIT data sets, to explore and compare their performance.
Table 32 shows the results of training the DBN network using the TIMIT speech database. It
was intended to move from simpler to more complex configurations of the network to see if it
resulted in higher phone classification performance. The first part of this section discusses the
aspects of DBN-TIMIT phone recognition and latter part describes the transfer learning details.

In the first experiment, we trained a DBN model using the TIMIT speech corpus. In this
experiment, the TIMIT speech features were extracted as follows. The speech signal was first
pre-emphasized using a first order FIR filter. Then the speech signal was divided into a set of
frames of length 25ms with an overlap of 10ms between two consecutive frames. Speech frames
which overlapped between two phones were deleted. The same features as shown in Table 3 were
extracted from the TIMIT database. They comprised of a combination of prosodic, vocal-tract
and excitation features typically used in speech recognition. A total of 54 raw features along
with their first and second order temporal derivatives were combined to form a total feature
vector with a length of 162 features. There were 39 phone classes in this dataset. The training
data set comprised of almost 439,000 data points and approximately 161,000 samples for the test
data set. The output phone classification is carried out using the logistic regression classifier.

In all of the experiments, the following procedure was followed in order to train the DBN
network. We first pre-trained the structure layer by layer utilizing the restricted Boltzmann
machine [79], using raw features as input. The first hidden layer containing multiple hidden
units was trained with the dropout technique [80] and weights were stored. Once the first hidden
layer was trained, the outputs of the first layer hidden layer were used as inputs for the second
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hidden layer and were trained again by the restricted Boltzmann machine. Using this principle,
the deep structure can be built up to any number of layers. By following the work in [80], we
built a deep structure in the pre-training step. In the fine-tuning step, we attached the class
labels to the training data set and we added a single logistic regression layer on top of the deep
structure for phone classification. The dropout technique was also used in fine-tuning. Once the
deep structure was trained, the output before the last layer was used as a new representation for
the original raw input features and was used to train a SVM classifier for classification. We used
a large-scale linear SVM for training. The computation was performed using a NVIDIA K40
Tesla GPU.

Figure 24: DBN network trained with 585 MFCC features using TIMIT in the input layer.
15 speech frames are combined together, each having a dimension 39 to form 585 features.
The architecture is 585-2000-2000-2000-39.

Table 31: Details of the training and test feature data sets extacted from TIMIT.

Type of Input No.of Features No.of Data
Points

No.of
Classes

Entire training set 585 ∼ 1.056M 39
Development data set 585 ∼ 114K 39
Core testing data set 585 ∼ 54.5K 39
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Table 32: Classification results of applying different architectures of the proposed DBN
model on the TIMIT speech corpus.

Architecture Used Training
data set

Testing data
set

No of
epochs (pre-
train/fine-

tune)

Training
Accuracy

(%)

Testing
Accu-
racy
(%)

162-100-50-39 Entire
Training set

Entire test set 100/200 44.55 43.63

2430-100-50-39 Entire
Training set

Entire test set 100/200 39.12 38.50

2430-1000-1000-500-39 Entire
Training set

Entire test set 100/200 49.18 47.44

2430-500-500-500-500-100-
39

Entire
Training set

Entire test set 100/200 26.48 26.53

Network configurations similar to those used in the case of applying the deep belief
network directly on PTSD data were used, to be eventually used for applying transfer learning
for comparing performance. In the first experiment, we used a simple configuration of 162-100-
50-39. Related feature extraction details are mentioned in section 3.3.2. It did not result in good
phone recognition. From Table 32 it is observed that a test accuracy of 43.63% was achieved. A
second experiment was performed using the same network configuration but with the TIMIT
speech feature dataset having 2,430 features, obtained by concatenating 15 frames together. In
the third experiment, we used a more complex network configuration of 2430-1000-1000-500-39.
It achieved the best test accuracy of 47.44%. In the fourth experiment, we trained a deeper DBN
model using TIMIT with the following network configuration, 2430-500-500-500-500-100-39. The
classification was observed to be 26.53%. A deeper network did not necessarily imply a better
classification performance.
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Figure 25: Classification results if the DBN network was trained using the TIMT develop-
ment set for phone classification.

Figure 26: Classification results if the DBN network was trained using the entire TIMIT
training set.

In the fourth experiment, MFCC features were used in the input layer since they have
been found to work very well in phone recognition in the past. A configuration of 585-2000-
2000-2000-39 was used as shown in Figure 24. The first layer is the input layer consisting of 585
MFCC features and the final layer is the output layer corresponding to 39 phone labels. For this
particular scenario of using MFCC features as input, the configuration was also run with two
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different types of training data sets. The development set was of smaller size than the entire
training set, while the test sets for both were identical. Figures 25 and 26 show the difference in
results between training using the entire training set and the development set.

Table 33: Classification results of applying the deep belief network model on TIMIT with
MFCC features as input. The DBN architecture is 585-2000-2000-2000-39.

Training data
set

Testing
data set

No.
of epochs (pre-
train/finetune)

Training Ac-
curacy(%)

Testing Ac-
curacy(%)

CPU
time(hours)

Development set Core test
set

100/100 85.60 66.31 ∼ 20

Entire training set Core test
set

100/100 74.88 71.51 ∼ 48

The results of using these two different types of training sets for training the DBN network
are shown in Table 33. It is observed that using the entire training set resulted in a classification
performance gain of 5.2% compared to that of using the development set with an overall test
accuracy of 71.51%. Since a larger training set gave favorable results, it was decided to use
the entire TIMIT training set to train the DBN network. Table 31 shows the relevant details
associated with these data sets.

6.2 TRANSFER LEARNING FOR PTSD DIAGNOSIS

6.2.1 TRANSFER LEARNING FOR PTSD DIAGNOSIS USING SINGLE FRAME
MUTLI-CATEGORY FEATURES

Six experiments based on transfer learning have been conducted with the goal of diagnosing
PTSD. These experiments differed in three respects: 1) type of input features 2) the input
feature dimensionality and 3) the depth of the network architectures used. A shallow network
with a single frame feature as input was used in the beginning while subsequent experiments
were carried out using multiple frame features and deeper networks. The first four experiments
were carried out using the features described in Table 3 while the last two experiments used
MFCC features computed on PTSD as input described in section 3.3.3 previously. Figure 27
demonstrates the concept of transfer learning.
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Figure 27: Concept of transfer learning.

Initially the DBN network was trained on the TIMIT data set for phone recognition.
Generative pre-training was carried out using the DBN model where the label information was
not used to build the DBN model greedily, layer by layer first. The pretrained model was then
discriminatively fine-tuned, using the label information by using a logistic regression classifier
which was built on top of the deep structure. Once the deep structure was trained, the outputs
before the last layer were used as new representations for the original raw features and were
used to train a SVM classifier for classifying output phone labels. The architecture of the DBN
network is 162-100-50-39.

The first layer is the input layer consisting of 162 features. The first hidden layer contains
100 hidden units which was trained using dropout and the final hidden layer has a total of 50
hidden units. The output label layer contains a total of 39 class labels. The dropout technique
was used in fine-tuning with a dropout probability of 0.2 for input layer and 0.5 for all hidden
layers. Results were shown in Table 32.

After the DBN network was trained on the TIMIT data set, the knowledge or the model
was applied and transferred to several different PTSD datasets for classifying between PTSD
and non-PTSD patients using the leave-one-subject-out cross-validation. The concept of transfer
learning depicted in Figure 27, was applied in the following manner. First, single frame PTSD
feature datasets having 162 dimensions each, were extracted as described in section 3.3.3. The
label layer was removed resulting in a network configuration of 162-100-50. Then raw PTSD
features were used to make a forward pass through the network utilizing the previously trained,
fine-tuned weights by the TIMIT database. Both the first layer of 100 features and the final layer
are selected for classification. Utilizing these features, a linear-kernel SVM classifier was trained
for classification whose parameters were found by performing gridsearch. In LOSO-CV, we left
one subject for testing and used the remaining subjects to train the SVM. If the testing accuracy
on the testing subject is above 50%, the subject was considered to be correctly diagnosed. This
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procedure was repeated so that each subject was tested once and just once. In this experiment,
all hidden layers are also used for classification to compare performance.

Tables 34 and 35 outline the results of the first experiment where the proposed transfer
learning framework is applied to the PTSD datasets. The network configuration is 162-100-50.
Different sets of PTSD features have been sampled from the available recordings using variable
speech frame sizes and frame shifts as shown.

Table 34: Classification results using the first hidden layer of 100 features obtained after
applying transfer learning and applying leave-one-subject-out cross-validation. The transfer
learning architecture is 162-100-50.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 78.93
(σ = 28.46)

54.02
(σ = 28.72)

88.46
(23/26)

42.30
(11/26)

65.38

3.0 0.5 78.92
(σ = 29.00)

53.62
(σ = 28.82)

88.46
(23/26)

42.30
(11/26)

65.38

3.0 1.0 74.98
(σ = 34.05)

60.62
(σ = 25.66)

73.07
(19/26)

61.53
(16/26)

67.30

2.0 0.1 77.91
(σ = 27.53)

53.63
(σ = 26.65)

84.61
(22/26)

38.46
(10/26)

61.53

2.0 0.5 77.49
(σ = 27.95)

53.22
(σ = 26.82)

88.46
(23/26)

38.46
(10/26)

63.46

2.0 1.0 74.79
(σ = 33.40)

58.16
(σ = 23.25)

76.92
(20/26)

57.69
(15/26)

67.30

1.0 0.1 76.15
(σ = 25.51)

53.27
(σ = 22.89)

92.30
(24/26)

38.46
(10/26)

65.38

1.0 0.5 75.85
(σ = 25.73)

53.19
(σ = 22.83)

92.30
(24/26)

34.61
(9/26)

63.45

1.0 1.0 72.82
(σ = 30.79)

54.59
(σ = 20.57)

80.76
(21/26)

50.00
(13/26)

65.38

Average: 76.42
(σ = 2.06)

54.92
(σ = 2.64)

85.03 44.86 64.95

For the case in which the first hidden layer of 100 features, is used for classification, it is
observed from Table 34 that the overall subject-wise test accuracy for Youtube data is 85.03%
and for Ohio data is 44.86%. The average segment-wise accuracy for Youtube data is 76.42%
with a standard deviation of 2.06% and for the Ohio data, 54.92% with a standard deviation of
2.64%. The overall subject-wise accuracy is 64.95%.

For the case in which the final hidden layer of 50 features, is used for classification,
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Table 35: Classification results using the final hidden layer of 50 features obtained us-
ing transfer learning and applying leave-one-subject-out cross-validation. The network
configuration for transfer learning is 162-100-50.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 75.81
(σ = 27.07)

53.08
(σ = 28.04)

84.61
(22/26)

42.30
(11/26)

63.45

3.0 0.5 75.36
(σ = 28.02)

52.84
(σ = 28.10)

80.76
(21/26)

42.30
(11/26)

61.53

3.0 1.0 72.64
(σ = 33.08)

56.23
(σ = 23.17)

76.92
(20/26)

57.69
(15/26)

67.30

2.0 0.1 75.70
(σ = 26.33)

53.00
(σ = 26.34)

88.46
(23/26)

46.15
(12/26)

67.30

2.0 0.5 75.24
(σ = 26.80)

52.66
(σ = 26.37)

88.46
(23/26)

42.30
(11/26)

65.38

2.0 1.0 72.32
(σ = 31.46)

54.50
(σ = 21.37)

80.76
(21/26)

57.69
(15/26)

69.22

1.0 0.1 73.52
(σ = 23.91)

52.37
(σ = 22.63)

88.46
(23/26)

42.30
(11/26)

65.38

1.0 0.5 73.36
(σ = 23.59)

52.09
(σ = 22.72)

88.46
(23/26)

46.15
(12/26)

67.30

1.0 1.0 70.02
(σ = 28.12)

52.32
(σ = 19.55)

84.61
(22/26)

50.00
(13/26)

67.30

Average: 73.77
(σ = 1.94)

53.23
(σ = 1.32)

84.61 47.43 66.02

it is observed from Table 34 that the overall subject-wise test accuracy for Youtube data is
84.61% and for Ohio data is 47.43%. The average segment-wise accuracy for Youtube data
is 73.77% with a standard deviation of 1.94% and for the Ohio data, 53.23% with a standard
deviation of 1.32%. The overall subject-wise accuracy is 66.02%. Compared to the baseline
which achieved 53.62%, the performance improved by a margin of 12.4%. It is also observed
that, when compared to the case for transfer learning using 100 features, there is a marginal
improvement in performance for this layer.

6.2.2 TRANSFER LEARNING FOR PTSD DIAGNOSIS USING MUTLIPLE FRA-

ME MULTI-CATEGORY FEATURES

In the second experiment, we trained a simple DBN model using 15 frame features derived
from TIMIT as input. Transfer learning was then applied having the architecture, 2430-100-50
with input PTSD features. In this experiment, the multiple frame TIMIT speech features were
extracted as described in the second paragraph of section 3.3.2.
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Table 36: Classification results utilizing the first hidden layer of 100 features obtained
by applying transfer learning and applying leave-one-subject-out cross-validation. The
architecture is 2430-100-50.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 72.04
(σ = 35.63)

59.48
(σ = 27.72)

76.92
(20/26)

57.69
(15/26)

67.30

3.0 0.5 73.81
(σ = 37.08)

62.98
(σ = 30.80)

76.92
(20/26)

69.23
(18/26)

73.07

3.0 1.0 77.04
(σ = 35.97)

64.93
(σ = 33.71)

80.76
(21/26)

69.23
(18/26)

74.99

2.0 0.1 71.98
(σ = 34.72)

58.45
(σ = 26.21)

76.92
(20/26)

61.53
(16/26)

69.22

2.0 0.5 73.82
(σ = 36.64)

62.32
(σ = 30.97)

76.92
(20/26)

61.53
(16/26)

69.22

2.0 1.0 77.77
(σ = 35.47)

64.32
(σ = 33.91)

76.92
(20/26)

69.23
(18/26)

73.07

1.0 0.1 71.74
(σ = 33.22)

57.14
(σ = 24.27)

76.92
(20/26)

57.69
(15/26)

67.30

1.0 0.5 73.56
(σ = 36.63)

61.33
(σ = 30.95)

76.92
(20/26)

65.38
(17/26)

71.15

1.0 1.0 76.32
(σ = 35.74)

62.40
(σ = 34.06)

76.92
(20/26)

53.84
(14/26)

65.38

Average: 74.23
(σ = 2.28)

61.48
(σ = 2.64)

77.34 62.81 70.08

In the third experiment, the complexity of the network was increased. A deeper DBN
model was trained on the TIMIT speech corpus using 15 frame features. Multiple frame
TIMIT speech features were extracted as described in the second paragraph of section 3.3.2.
Subsequently, transfer learning was applied to PTSD input features, whose architecture was
2430-1000-1000-500.

The pre-training and fine tuning was carried out similar to that described in section
4.1.3.1. Generative pre-training was carried out using the DBN model where the label information
was not used to build the DBN model greedily, layer by layer first. The pre-trained model
was then discriminatively fine-tuned, using the label information by using a logistic regression
classifier which is built on top of the deep structure. The dropout technique was used in both
pre-training and fine-tuning with a dropout probability of 0.2 for input layer and 0.5 for all
hidden layers. Once the deep structure was trained, the outputs before the last layer were used
as new representations for the original raw features and were used to train a SVM classifier for
classifying output phone labels.

Once the DBN network was trained using the TIMIT speech corpus, transfer learning was
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Table 37: Classification results utilizing the second hidden layer of 50 features obtained
by applying transfer learning and applying leave-one-subject-out cross-validation. The
architecture is 2430-100-50.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 69.59
(σ = 31.41)

57.97
(σ = 20.47)

69.23
(18/26)

69.23
(18/26)

69.23

3.0 0.5 62.82
(σ = 33.64)

60.52
(σ = 22.51)

69.23
(18/26)

69.23
(18/26)

69.23

3.0 1.0 69.01
(σ = 37.08)

63.11
(σ = 27.45)

69.23
(18/26)

69.23
(18/26)

69.23

2.0 0.1 69.76
(σ = 30.32)

56.92
(σ = 19.68)

76.92
(20/26)

65.38
(17/26)

71.15

2.0 0.5 69.98
(σ = 33.06)

60.13
(σ = 22.34)

69.23
(18/26)

69.23
(18/26)

69.23

2.0 1.0 68.70
(σ = 36.04)

64.45
(σ = 27.31)

69.23
(18/26)

69.23
(18/26)

69.23

1.0 0.1 69.86
(σ = 29.30)

54.51
(σ = 17.85)

80.76
(21/26)

65.38
(17/26)

73.07

1.0 0.5 70.72
(σ = 32.46)

59.14
(σ = 22.86)

69.23
(18/26)

65.38
(17/26)

67.30

1.0 1.0 69.64
(σ = 35.83)

64.08
(σ = 28.15)

69.23
(18/26)

69.23
(18/26)

69.23

Average: 68.89
(σ = 2.35)

60.09
(σ = 3.36)

71.36 67.94 69.65

applied to the same network, where the input data were features extracted from the PTSD data
set. The type of features were identical to those described in section 3.3.3 and shown in Table
3. The input data is the first layer of the network, consisting of 2,430 features. The concept
of transfer learning is depicted in Figure 28. The first and second hidden layers contain 1000
hidden units which were trained using dropout and the final hidden layer has a total of 500
hidden units. The output label layer contains a total of 39 class labels. Transfer learning was
applied in the same way as described in the previous section. In this experiment, all outputs
were used for classification to compare performance.

For the case in which the first hidden layer of 100 features, is used for classification, it is
observed from Table 37 that the overall subject-wise test accuracy for Youtube data is 71.36%
and for Ohio data is 67.94%. The average segment-wise accuracy for Youtube data is 68.89%
with a standard deviation of 2.35% and for the Ohio data, 60.09% with a standard deviation
of 3.36%. The overall subject-wise accuracy is 69.65%. Statistical tests of significance between
transfer learning and SVM are presented and discussed towards the end of this section.
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Figure 28: Concept of transfer learning and the network architectures used for training
with TIMIT and for PTSD diagnosis. The input layer has 2430 features.

For the case in which the first hidden layer of 1000 features is used for classification, it is
observed from Table 38 that the overall subject-wise test accuracy for Youtube data is 78.20%
and for Ohio data is 62.81%. The average segment-wise accuracy for Youtube data is 76.46%
with a standard deviation of 2.12%. This is the highest achieved segment-wise accuracy among
all the three layers. For the Ohio data, 61.02% with a standard deviation of 2.28%. The overall
subject-wise accuracy is 70.50%. This is the highest accuracy, compared to the performance by
the other two layers and the baseline SVM. Compared to the baseline there is an improvement
in performance by a margin of 14.90%.

Classification, performed using the second hidden layer of 1000 features, produces the
results shown in Table 39. The overall subject-wise test accuracy for Youtube data is 77.34%
and for Ohio data is 59.39%. The average segment-wise accuracy for Youtube data is 73.48%
with a standard deviation of 1.68% and for the Ohio data, 57.41% with a standard deviation of
1.16%. An overall subject-wise accuracy of 68.37% is achieved which is higher than the baseline
achievement of 55.55% by a margin of 12.82%. The result is inferior when compared to the first
layer achievement of 70.50%.

Classification, performed using the final hidden layer of 500 features, produces the results
shown in Table 40. The overall subject-wise test accuracy for Youtube data is 78.19% and for
Ohio data is 60.67%. The average segment-wise accuracy for Youtube data is 71.56% with
a standard deviation of 1.88% and for the Ohio data, 58.21% with a standard deviation of
1.00%. An overall subject-wise accuracy of 69.43% is achieved which is higher than the baseline
achievement of 55.55% by a margin of 13.88%. The result is inferior when compared to the best



88

Table 38: Classification results utilizing the first hidden layer of 1000 features obtained
by applying transfer learning and applying leave-one-subject-out cross-validation. The
architecture is 2430-1000-1000-500.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 74.87
(σ = 35.22)

58.67
(σ = 29.46)

76.92
(20/26)

53.84
(14/26)

65.38

3.0 0.5 75.71
(σ = 37.89)

62.96
(σ = 32.09)

76.92
(20/26)

61.53
(16/26)

69.22

3.0 1.0 78.92
(σ = 36.70)

63.13
(σ = 33.14)

80.76
(21/26)

65.38
(17/26)

73.07

2.0 0.1 74.65
(σ = 34.41)

58.20
(σ = 28.07)

76.92
(20/26)

57.69
(15/26)

67.30

2.0 0.5 75.83
(σ = 37.64)

62.40
(σ = 31.87)

76.92
(20/26)

61.53
(16/26)

69.22

2.0 1.0 79.50
(σ = 36.36)

63.05
(σ = 32.73)

80.76
(21/26)

69.23
(18/26)

74.99

1.0 0.1 73.94
(σ = 33.74)

57.82
(σ = 26.69)

76.92
(20/26)

61.53
(16/26)

69.22

1.0 0.5 75.63
(σ = 37.39)

60.23
(σ = 31.69)

76.92
(20/26)

65.38
(17/26)

71.15

1.0 1.0 79.11
(σ = 36.14)

62.79
(σ = 33.37)

80.76
(21/26)

69.23
(18/26)

74.99

Average: 76.46
(σ = 2.12)

61.02
(σ = 2.28)

78.20 62.81 70.50

subject-wise accuracy of 70.50% achieved by the first layer. Statistical significance tests are
discussed in the latter part of this section.

The fourth experiment is identical to the second experiment in methodology, except that
the network configuration was increased in depth to five hidden layers and the transfer learning
network architecture was 2430-500-500-500-500-100.

The results of applying transfer learning using a deeper network architecture of 2430-
500-500-500-500-100 are shown in Table 41. In this scenario, 2,430 is the feature dimensionality
of the input layer. When the first hidden layer of 500 features are used for classification, it is
observed from Table 41 that the overall subject-wise test accuracy for Youtube data is 78.62%
and for Ohio data is 70.08%. The average segment-wise accuracy for Youtube data is 66.94%
with a standard deviation of 3.94% and for the Ohio data, 57.50% with a standard deviation of
2.89%. The overall subject-wise accuracy is 74.35% which outperforms the SVM baseline result
of 55.55% by a margin of 18.80%.

Using the second hidden layer of 500 features for classification, it is observed from Table
45 that the overall subject-wise test accuracy for Youtube data is 76.49% and for Ohio data
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is 61.53%. The average segment-wise accuracy for Youtube data is 73.05% with a standard
deviation of 1.24% and for the Ohio data, 59.19% with a standard deviation of 2.03%. The
overall subject-wise accuracy is 69.01% which also outperforms the baseline SVM result of
55.55%.

For the case in which the third hidden layer of 500 features is used for classification,
Table 43 shows that the overall subject-wise test accuracy for Youtube data is 75.63% and for
Ohio data is 66.23%. The average segment-wise accuracy for Youtube data is 70.50% with a
standard deviation of 1.02% and for the Ohio data, 60.34% with a standard deviation of 1.83%.
The overall subject-wise accuracy is 70.93% which also outperforms the SVM baseline result of
55.55%.

Table 39: Classification results using the second hidden layer of 1000 features and applying
leave-one-subject-out cross-validation. The 1000 features are obtained by applying transfer
learning to the PTSD data sets. The architecture is 2430-1000-1000-500.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 74.12
(σ = 35.37)

57.91
(σ = 30.03)

80.76
(21/26)

61.53
(16/26)

71.14

3.0 0.5 74.98
(σ = 37.14)

58.92
(σ = 33.25)

80.76
(21/26)

61.53
(16/26)

71.14

3.0 1.0 71.23
(σ = 39.66)

55.94
(σ = 34.86)

69.23
(18/26)

53.84
(14/26)

61.53

2.0 0.1 73.78
(σ = 34.49)

57.57
(σ = 28.31)

76.92
(20/26)

61.53
(16/26)

69.22

2.0 0.5 75.72
(σ = 36.59)

59.04
(σ = 32.89)

80.76
(21/26)

61.53
(16/26)

71.14

2.0 1.0 72.04
(σ = 38.03)

57.43
(σ = 33.85)

76.92
(20/26)

57.69
(15/26)

67.30

1.0 0.1 72.95
(σ = 33.39)

56.24
(σ = 25.83)

76.92
(20/26)

57.69
(15/26)

67.30

1.0 0.5 75.18
(σ = 36.64)

57.73
(σ = 32.37)

80.76
(21/26)

61.53
(16/26)

71.14

1.0 1.0 71.32
(σ = 38.83)

55.96
(σ = 32.79)

73.07
(19/26)

57.69
(15/26)

65.38

Average: 73.48
(σ = 1.68)

57.41
(σ = 1.16)

77.34 59.39 68.37
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Table 40: Classification results using the final hidden layer of 500 features and applying
leave-one-subject-out cross-validation. The 500 features are obtained by applying transfer
learning to the PTSD data sets. The architecture is 2430-1000-1000-500.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 71.83
(σ = 35.20)

58.64
(σ = 28.77)

80.76
(21/26)

61.53
(16/26)

71.14

3.0 0.5 73.69
(σ = 36.86)

59.49
(σ = 32.58)

80.76
(21/26)

65.38
(17/26)

73.07

3.0 1.0 68.92
(σ = 37.74)

58.77
(σ = 33.07)

69.23
(18/26)

61.53
(16/26)

65.38

2.0 0.1 71.24
(σ = 34.53)

57.79
(σ = 26.82)

80.76
(21/26)

57.69
(16/26)

69.22

2.0 0.5 74.13
(σ = 36.56)

59.23
(σ = 32.07)

80.76
(21/26)

61.53
(16/26)

71.14

2.0 1.0 69.30
(σ = 37.09)

57.95
(σ = 31.96)

76.92
(20/26)

57.69
(15/26)

67.30

1.0 0.1 70.18
(σ = 33.50)

56.29
(σ = 24.27)

76.92
(20/26)

57.69
(15/26)

67.30

1.0 0.5 73.36
(σ = 36.05)

58.52
(σ = 30.91)

80.76
(21/26)

61.53
(16/26)

71.14

1.0 1.0 71.44
(σ = 36.71)

57.26
(σ = 33.39)

76.92
(20/26)

61.53
(16/26)

69.22

Average: 71.56
(σ = 1.88)

58.21
(σ = 1.00)

78.19 60.67 69.43

When the fourth hidden layer of 500 units is used for classification, it is observed from
Table 44 that the overall subject-wise test accuracy for Youtube data is 73.92% and for Ohio
data is 66.66%. The average segment-wise accuracy for Youtube data is 69.34% with a standard
deviation of 2.03% and for the Ohio data, 60.26% with a standard deviation of 1.92%. The
overall subject-wise accuracy is 70.29% outperforming the SVM baseline result of 55.55%.

Classification using the final hidden layer of 100 features produces the results shown in
Table 42 that the overall subject-wise test accuracy for Youtube data is 74.35% and for Ohio
data is 66.23%. The average segment-wise accuracy for Youtube data is 69.44% with a standard
deviation of 2.57% and for the Ohio data, 59.98% with a standard deviation of 1.92%. The
overall subject-wise accuracy is 70.29% which is above the SVM baseline by a margin of 14.74%.
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Table 41: Classification results using the first hidden layer of 500 features generated
after applying transfer learning and applying leave-one-subject-out cross-validation. The
architecture is 2430-500-500-500-500-100.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 72.95
(σ = 36.27)

59.18
(σ = 29.33)

76.92
(20/26)

61.53
(16/26)

69.22

3.0 0.5 74.52
(σ = 38.35)

63.67
(σ = 31.18)

76.92
(20/26)

65.38
(17/26)

71.15

3.0 1.0 78.82
(σ = 36.38)

61.46
(σ = 34.44)

80.76
(21/26)

61.53
(16/26)

71.14

2.0 0.1 72.83
(σ = 35.25)

58.75
(σ = 27.79)

76.92
(20/26)

57.69
(15/26)

67.30

2.0 0.5 74.48
(σ = 38.10)

63.34
(σ = 31.17)

76.92
(20/26)

69.23
(18/26)

73.07

2.0 1.0 79.33
(σ = 35.99)

63.11
(σ = 33.24)

80.76
(21/26)

65.38
(17/26)

73.07

1.0 0.1 72.24
(σ = 34.24)

57.75
(σ = 26.53)

76.92
(20/26)

61.53
(16/26)

69.22

1.0 0.5 74.05
(σ = 38.35)

61.76
(σ = 31.92)

76.92
(20/26)

69.23
(18/26)

73.07

1.0 1.0 78.86
(σ = 35.42)

62.80
(σ = 32.97)

84.61
(22/26)

69.23
(18/26)

76.92

Average: 75.34
(σ = 2.85)

61.31
(σ = 2.21)

78.62 64.52 71.57

6.2.3 TRANSFER LEARNING FOR PTSD DIAGNOSIS WITH FEATURE SE-

LECTION

Feature selection experiments were performed using the transfer learning framework as
described previously in section 3.4. Figure 11 shows the concept of feature category selection
in transfer learning. Only the first hidden layer was used each time as it produced the best
performance. In the tables 46 and 47 we abbreviated prosodic features as “P”, vocal-tract
features as “V”, and excitation features as “E”. For the six experimental groups, we defined
“Out” as the feature category being excluded, and “Only” as the feature category remains while
the others being excluded. To provide a more intelligible view, we bolded all data that show
statistical significance, or that fit the criterion of rejecting the null hypothesis, for every table in
this section.

Table 46 summarizes segment-wise accuracies using different feature combinations com-
puted from transfer learning for PTSD diagnosis. While other average test accuracies are
approximately between 60% and 80%, the results obtained by using excitation features only are
potential outliers in this data set. This category had test accuracies less than 50%. Table 47
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Table 42: Classification results using the second hidden layer of 500 features obtained after
the application of transfer learning and applying leave-one-subject-out cross-validation. The
architecture is 2430-500-500-500-500-100.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 73.35
(σ = 34.55)

58.58
(σ = 27.34)

76.92
(20/26)

65.38
(17/26)

71.15

3.0 0.5 74.14
(σ = 36.11)

61.86
(σ = 30.03)

76.92
(20/26)

69.23
(18/26)

73.07

3.0 1.0 71.35
(σ = 36.35)

58.21
(σ = 33.58)

73.07
(19/26)

57.69
(15/26)

65.38

2.0 0.1 73.25
(σ = 33.65)

57.53
(σ = 26.03)

76.92
(20/26)

61.53
(16/26)

69.22

2.0 0.5 73.57
(σ = 36.06)

61.91
(σ = 29.47)

76.92
(20/26)

69.23
(18/26)

73.07

2.0 1.0 75.04
(σ = 34.62)

59.04
(σ = 33.67)

80.76
(21/26)

57.69
(15/26)

69.22

1.0 0.1 72.39
(σ = 32.56)

56.71
(σ = 24.12)

76.92
(20/26)

53.84
(14/26)

65.38

1.0 0.5 73.20
(σ = 36.09)

61.51
(σ = 29.29)

76.92
(20/26)

61.53
(16/26)

69.22

1.0 1.0 71.17
(σ = 36.81)

57.43
(σ = 32.94)

73.07
(19/26)

57.69
(15/26)

65.38

Average: 73.05
(σ = 1.24)

59.19
(σ = 2.03)

76.49 61.53 69.01

summarizes subject-wise accuracies using different feature combinations computed from transfer
learning for PTSD diagnosis. It can be easily observed that the fractions of subjects correctly
classified using excitation features only are half that of using other feature categories in the
same dataset. The results for excitation features only are less than 50%[90, 91].

In summary, excitation features are least effective in detecting PTSD, in a majority of the
experiments, and prosodic features seem to be the most effective feature category. To determine
whether any of the results are statistically significant, we carried out Paired T-test for the
individual results using the first hidden layer for classification, presented in section 6.3.2.
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Table 43: Classification results utilizing the third hidden layer of 500 features, obtained
through transfer learning and applying leave-one-subject-out cross-validation. The architec-
ture is 2430-500-500-500-500-100.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 71.03
(σ = 35.80)

59.95
(σ = 25.90)

76.92
(20/26)

65.38
(17/26)

71.15

3.0 0.5 71.34
(σ = 36.26)

62.69
(σ = 28.83)

76.92
(20/26)

69.23
(18/26)

73.07

3.0 1.0 68.51
(σ = 36.70)

61.27
(σ = 32.11)

73.07
(19/26)

65.38
(17/26)

69.22

2.0 0.1 70.85
(σ = 34.91)

58.74
(σ = 24.59)

76.92
(20/26)

69.23
(18/26)

73.07

2.0 0.5 71.94
(σ = 36.36)

62.34
(σ = 28.73)

76.92
(20/26)

69.23
(18/26)

73.07

2.0 1.0 70.10
(σ = 36.07)

60.56
(σ = 31.53)

76.92
(20/26)

65.38
(17/26)

71.15

1.0 0.1 70.45
(σ = 33.69)

57.44
(σ = 22.92)

76.92
(20/26)

69.23
(18/26)

73.07

1.0 0.5 70.81
(σ = 36.55)

61.65
(σ = 27.87)

76.92
(20/26)

65.38
(17/26)

71.15

1.0 1.0 69.53
(σ = 36.34)

58.44
(σ = 31.42)

69.23
(18/26)

57.69
(15/26)

63.46

Average: 70.50
(σ = 1.02)

60.34
(σ = 1.83)

75.63 66.23 70.93

6.2.4 TRANSFER LEARNING FOR PTSD DIAGNOSIS USING MULTIPLE FRA-

ME MFCC FEATURES

The fifth and final experiments used MFCC features as input. In the fifth experiment, the TIMIT
speech features were extracted as follows. Instead of extracting the previously stated type of
features, only MFCC features were extracted. The speech signal was first pre-emphasized using
a first order FIR filter. Then the speech signal was divided into a set of frames of length 25ms
with an overlapping of 10ms between two consecutive frames. For each frame, 13 MFCC features
were extracted using discrete cosine transform (DCT) based on 40 mel scale frequency band
energies. For each frame, the first and second time derivatives were also computed making the
total number of features for each frame, 39. Fifteen (15) frames were used to predict the phoneme
class of the center frame. For this configuration, there were 585 (39x15) features and 39 classes
in this data set. The network architecture used was 585-500-500-500-500-100-39. There were
approximately 440,000 data points for training and approximately 50,000 samples for testing.
The hyperparameters used for pre-training and fine tuning were the same as those described in
section 4.1.3.1. Output phone classification was carried out using the logistic regression classifier.
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Table 44: Classification results using the fourth hidden layer of 500 features generated
after applying transfer learning and applying leave-one-subject-out cross-validation. The
architecture is 2430-500-500-500-500-100.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 70.73
(σ = 35.32)

59.16
(σ = 24.26)

76.92
(20/26)

69.23
(18/26)

73.07

3.0 0.5 71.28
(σ = 35.62)

62.71
(σ = 27.37)

76.92
(20/26)

69.23
(18/26)

73.07

3.0 1.0 66.45
(σ = 37.23)

59.69
(σ = 30.18)

69.23
(18/26)

61.53
(16/26)

65.38

2.0 0.1 70.15
(σ = 34.69)

58.44
(σ = 23.08)

76.92
(20/26)

69.23
(18/26)

73.07

2.0 0.5 71.26
(σ = 35.61)

62.80
(σ = 26.83)

76.92
(20/26)

73.07
(19/26)

74.99

2.0 1.0 66.73
(σ = 36.50)

60.37
(σ = 29.95)

69.23
(18/26)

65.38
(17/26)

67.30

1.0 0.1 69.97
(σ = 33.54)

57.25
(σ = 20.85)

76.92
(20/26)

65.38
(17/26)

71.15

1.0 0.5 70.61
(σ = 36.29)

62.00
(σ = 26.43)

76.92
(20/26)

69.23
(18/26)

73.07

1.0 1.0 66.88
(σ = 36.09)

59.93
(σ = 28.72)

65.38
(17/26)

57.69
(15/26)

61.53

Average: 69.34
(σ = 2.03)

60.26
(σ = 1.92)

73.92 66.66 70.29

For the case of using the first hidden layer of 500 features for classification, as shown
by Table 48, the overall subject-wise test accuracy for Youtube data is 74.35% and for Ohio
data is 64.95%. The average segment-wise accuracy for Youtube data is 77.41% with a standard
deviation of 2.69% and for the Ohio data, 52.31% with a standard deviation of 2.04%. The
overall subject-wise accuracy for all subjects is 69.65% which is higher than that achieved by
the baseline(67.30%) by a margin of 2.35%.

Classification using the second hidden layer of 500 features, Table 49 shows that the
overall subject-wise test accuracy for Youtube data is 76.91% and for Ohio data is 57.68%. The
average segment-wise accuracy for Youtube data is 76.24% with a standard deviation of 1.98%
and for the Ohio data, 52.41% with a standard deviation of 3.26%. The overall subject-wise
accuracy for all subjects is 67.30% which equals that achieved by the baseline.
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Table 45: Classification results using the final hidden layer of 100 features and applying
leave-one-subject-out cross-validation. The 500 features are generated by applying transfer
learning on the PTSD data sets. The architecture is 2430-500-500-500-500-100.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 70.59
(σ = 36.02)

58.03
(σ = 22.18)

76.92
(20/26)

65.38
(17/26)

71.15

3.0 0.5 71.23
(σ = 37.56)

60.48
(σ = 25.20)

73.07
(19/26)

65.38
(17/26)

69.22

3.0 1.0 68.14
(σ = 37.56)

62.17
(σ = 26.51)

73.07
(19/26)

65.38
(17/26)

69.22

2.0 0.1 70.00
(σ = 34.92)

56.61
(σ = 21.09)

76.92
(20/26)

65.38
(17/26)

71.15

2.0 0.5 71.21
(σ = 37.08)

60.68
(σ = 24.71)

73.07
(19/26)

69.23
(18/26)

71.15

2.0 1.0 63.38
(σ = 38.12)

64.06
(σ = 26.75)

73.07
(19/26)

69.23
(18/26)

71.15

1.0 0.1 69.87
(σ = 33.61)

55.72
(σ = 18.78)

76.92
(20/26)

61.53
(16/26)

69.22

1.0 0.5 71.86
(σ = 36.91)

60.25
(σ = 23.59)

73.07
(19/26)

69.23
(18/26)

71.15

1.0 1.0 68.73
(σ = 37.93)

61.84
(σ = 27.03)

73.07
(19/26)

65.38
(17/26)

69.22

Average: 69.44
(σ = 2.57)

59.98
(σ = 1.92)

74.35 66.23 70.29

Table 46: Summaries of segment-wise accuracies using different feature combinations
computed from transfer learning for PTSD diagnosis. The architecture was 2430-500-500-
500-500-100.

Segment-wise Accuracies Original P
Out

V
Out

E
Out

P
Only

V
Only

E
Only

Youtube Average(Test) 78.82 73.96 80.05 80.87 78.49 75.36 49.56
Std(Test) 36.38 35.99 33.64 33.62 36.47 34.47 37.56

Ohio Average(Test) 61.46 63.71 61.80 63.49 67.69 65.26 35.69
Std(Test) 34.44 34.90 37.93 33.51 36.10 33.56 32.66

Overall Average: 70.14 68.83 70.92 72.18 73.09 70.31 42.62

Using the third hidden layer of 500 features for classification, it is observed from Table
50 that the overall subject-wise test accuracy for Youtube data is 80.76% and for Ohio data
is 56.40%. The average segment-wise accuracy for Youtube data is 75.11% with a standard
deviation of 3.05% and for the Ohio data, 52.42% with a standard deviation of 3.53%. The
overall subject-wise accuracy for all subjects is 68.58% which is higher when compared to the
baseline accuracy of 67.30%.
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Table 47: Summaries of subject-wise accuracies using different feature combinations
computed from transfer learning for PTSD diagnosis. The architecture was 2430-500-500-
500-500-100.

Subject-wise Accuracies Original P
Out

V
Out

E
Out

P
Only

V
Only

E
Only

Youtube In-
Fractions

21/26 20/26 22/26 22/26 21/26 20/26 12/26

In
(%)

80.77 76.92 84.62 84.62 80.77 76.92 46.15

Ohio In-
Fractions

16/26 16/26 15/26 19/26 18/26 16/26 6/26

In
(%)

61.54 61.54 57.69 73.08 69.23 61.54 23.08

Overall Average: 71.15 69.23 71.15 78.85 75.00 69.23 34.61

Table 48: Classification results using the first hidden layer of 500 features, obtained
through transfer learning and applying leave-one-subject-out cross-validation. The MFCC
features, extracted from PTSD audio recordings are fed as input to the network and have
585 dimensions. The architecture is 585-500-500-500-500-100.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 80.69
(σ = 25.95)

54.39
(σ = 25.22)

84.61
(22/26)

61.53
(16/26)

73.07

3.0 0.5 80.85
(σ = 25.96)

54.35
(σ = 24.78)

80.76
(21/26)

61.53
(16/26)

71.14

3.0 1.0 76.77
(σ = 27.74)

51.70
(σ = 22.92)

84.61
(22/26)

53.84
(14/26)

69.22

2.0 0.1 78.91
(σ = 25.96)

53.76
(σ = 23.61)

80.76
(21/26)

61.53
(16/26)

71.14

2.0 0.5 79.04
(σ = 25.96)

53.90
(σ = 23.47)

80.76
(21/26)

57.69
(15/26)

69.22

2.0 1.0 75.48
(σ = 26.27)

50.59
(σ = 22.04)

80.76
(21/26)

50.00
(13/26)

65.38

1.0 0.1 76.05
(σ = 25.06)

52.26
(σ = 21.16)

65.38
(17/26)

80.76
(21/26)

73.07

1.0 0.5 76.34
(σ = 24.91)

51.67
(σ = 21.43)

65.38
(17/26)

80.76
(21/26)

73.07

1.0 1.0 72.55
(σ = 25.35)

48.22
(σ = 21.17)

46.15
(12/26)

80.76
(21/26)

61.53

Average: 77.41
(σ = 2.69)

52.31
(σ = 2.04)

74.35 64.95 69.65

When using the fourth hidden layer of 500 features for classification, it is observed from
Table 51 that the overall subject-wise test accuracy for Youtube data is 79.90% and for Ohio
data is 53.84%. The average segment-wise accuracy for Youtube data is 75.95% with a standard
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Table 49: Classification results using the second hidden layer of 500 features, obtained
through transfer learning and applying leave-one-subject-out cross-validation. The MFCC
features, extracted from PTSD audio recordings are fed as input to the network and have
585 dimensions. The architecture is 585-500-500-500-500-100.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 72.88
(σ = 25.38)

56.92
(σ = 24.08)

80.76
(21/26)

57.69
(15/26)

69.22

3.0 0.5 80.02
(σ = 22.95)

54.58
(σ = 24.02)

80.76
(21/26)

61.53
(16/26)

71.14

3.0 1.0 77.22
(σ = 24.65)

49.88
(σ = 23.86)

76.92
(20/26)

57.69
(15/26)

67.30

2.0 0.1 76.85
(σ = 22.66)

54.75
(σ = 21.11)

80.76
(21/26)

61.53
(16/26)

71.14

2.0 0.5 77.12
(σ = 25.45)

53.15
(σ = 20.55)

65.38
(17/26)

53.84
(14/26)

59.61

2.0 1.0 76.54
(σ = 24.65)

47.20
(σ = 22.88)

80.76
(21/26)

50.00
(13/26)

65.38

1.0 0.1 75.68
(σ = 20.12)

51.19
(σ = 16.98)

65.38
(17/26)

61.53
(16/26)

63.45

1.0 0.5 74.96
(σ = 21.19)

55.11
(σ = 19.99)

80.76
(21/26)

65.38
(17/26)

73.07

1.0 1.0 74.96
(σ = 21.99)

48.97
(σ = 18.82)

80.76
(21/26)

50.00
(13/26)

65.38

Average: 76.24
(σ = 1.98)

52.41
(σ = 3.26)

76.91 57.68 67.30

deviation of 2.78% and for the Ohio data it is 52.20% with a standard deviation of 3.83%. The
overall subject-wise accuracy for all subjects is 66.87% which is inferior to that achieved by the
baseline.

The results of applying transfer learning using a deeper network architecture of 585-
500-500-500-500-100 are shown in Tables 52 through 48. In this scenario, 585 is the feature
dimensionality of the input layer consisting of MFCC features, extracted from PTSD audio
files. When using the final hidden layer of 100 features for classification, it is observed from
Table 52 that the overall subject-wise test accuracy for Youtube data is 88.03% and for Ohio
data is 55.97%. The average segment-wise accuracy for Youtube data is 79.17% with a standard
deviation of 2.26% and for the Ohio data it is 52.16% with a standard deviation of 2.43%. The
overall subject-wise accuracy for all subjects is 72.00%. Compared to the baseline which achieved
67.30%, the performance is higher by a margin of 4.70%.

The sixth experiment used the same parameter values and the same feature extraction
process used in the fifth experiment. A network configuration of 585-2000-2000-2000, was used
for carrying out transfer learning. Transfer learning was then applied. All three layers of features
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Table 50: Classification results using the third hidden layer of 500 features, generated by
applying transfer learning and applying leave-one-subject-out cross-validation. The MFCC
features, extracted from PTSD audio recordings are fed as input to the network and have
585 dimensions. The architecture is 585-500-500-500-500-100.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 78.11
(σ = 21.68)

55.11
(σ = 20.12)

84.61
(22/26)

57.69
(15/26)

71.15

3.0 0.5 80.12
(σ = 20.45)

50.26
(σ = 21.88)

80.76
(21/26)

57.69
(15/26)

69.22

3.0 1.0 75.47
(σ = 24.26)

55.16
(σ = 21.92)

80.76
(21/26)

50.00
(13/26)

65.38

2.0 0.1 74.77
(σ = 23.00)

54.18
(σ = 20.12)

84.61
(22/26)

57.69
(15/26)

71.15

2.0 0.5 77.12
(σ = 21.40)

53.75
(σ = 19.18)

80.76
(20/26)

53.84
(14/26)

67.30

2.0 1.0 74.29
(σ = 21.92)

54.88
(σ = 18.85)

84.61
(22/26)

53.84
(14/26)

69.22

1.0 0.1 70.21
(σ = 22.92)

52.04
(σ = 18.23)

76.92
(20/26)

65.38
(17/26)

71.15

1.0 0.5 74.15
(σ = 20.07)

52.35
(σ = 18.23)

76.92
(20/26)

65.38
(17/26)

71.15

1.0 1.0 71.81
(σ = 22.26)

44.09
(σ = 18.25)

76.92
(20/26)

46.15
(12/26)

61.53

Average: 75.11
(σ = 3.05)

52.42
(σ = 3.53)

80.76 56.40 68.58

were used to evaluate the classification performance. The results are presented in Tables 53
through 55.

For the case in which the first hidden layer of 2000 features, is used for classification, it is
observed from Table 53 that the overall subject-wise test accuracy for Youtube data is 88.03%
and for Ohio data is 56.46%. The average segment-wise accuracy for Youtube data is 78.94%
with a standard deviation of 2.27% and for the Ohio data, 53.14% with a standard deviation of
1.94%. The overall subject-wise accuracy is 63.02% which is inferior to the baseline result of
67.30%. The highest attained subject-wise accuracy of 69.43% by this network is achieved by
the second hidden layer.

Classification, performed using the second hidden layer of 2000 features, produces the
results shown in Table 54. The overall subject-wise test accuracy for Youtube data is 82.47%
and for Ohio data is 56.83%. The average segment-wise accuracy for Youtube data is 76.98%
with a standard deviation of 1.97% and for the Ohio data, 52.45% with a standard deviation of
1.53%. Compared to the baseline which achieved 67.30%, the overall subject-wise accuracy is
superior at 69.65%.
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Table 51: Classification results using the fourth hidden layer of 500 features obtained
through transfer learning and applying leave-one-subject-out cross-validation. The MFCC
features, extracted from PTSD audio recordings are fed as input to the network and have
585 dimensions. The architecture is 585-500-500-500-500-100.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 79.03
(σ = 24.68)

54.82
(σ = 21.64)

84.61
(22/26)

53.84
(14/26)

69.22

3.0 0.5 79.01
(σ = 25.45)

49.56
(σ = 21.97)

80.76
(21/26)

50.00
(13/26)

65.38

3.0 1.0 78.55
(σ = 22.45)

58.15
(σ = 20.12)

76.92
(20/26)

53.84
(14/26)

65.38

2.0 0.1 77.18
(σ = 24.00)

54.18
(σ = 20.04)

84.61
(22/26)

57.69
(15/26)

71.15

2.0 0.5 76.96
(σ = 24.40)

53.75
(σ = 20.00)

80.76
(21/26)

53.84
(14/26)

67.30

2.0 1.0 73.75
(σ = 25.51)

48.90
(σ = 21.37)

76.92
(20/26)

46.15
(12/26)

61.53

1.0 0.1 73.69
(σ = 21.92)

53.04
(σ = 17.10)

80.76
(21/26)

61.53
(16/26)

71.14

1.0 0.5 73.97
(σ = 22.07)

52.35
(σ = 17.92)

76.92
(20/26)

65.38
(17/26)

71.15

1.0 1.0 71.49
(σ = 22.26)

45.09
(σ = 18.18)

76.92
(20/26)

42.37
(11/26)

59.64

Average: 75.95
(σ = 2.78)

52.20
(σ = 3.83)

79.90 53.84 66.87

In the sixth experimental scenario, transfer learning is applied using a network architecture
of 585-2000-2000-2000. In this experiment, the final hidden layer of 2000 features is obtained.
When this layer of features is used for classification, it is observed from Table 55 that the overall
subject-wise test accuracy for Youtube data is 81.18%. For Ohio data the mean subject-wise
accuracy is 55.97%. The average segment-wise accuracy for Youtube data is 76.53% with a
standard deviation of 2.45% and for the Ohio data it is 51.82% with a standard deviation of
1.58%. Compared to the baseline which achieved 67.30%, the overall subject-wise accuracy is
marginally higher at 68.58%.

6.3 DISCUSSION

From tables 56 and 57 we can see that for transfer learning the best overall subject-wise
accuracy of 72.00% is achieved by the final layer of the network architecture, 585-500-500-500-500-
500-100. Tables 58 and 57 show that for transfer learning the best overall subject-wise accuracy
achieved was 76.92% by the first layer of the network architecture 2430-500-500-500-500-100. A
comparison of the performance of the three different models in the proposed method is presented
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Table 52: Classification results using the final hidden layer of 100 features obtained through
transfer learning and applying leave-one-subject-out cross-validation. The MFCC features,
extracted from PTSD audio recordings are fed as input to the network and have 585
dimensions. The architecture is 585-500-500-500-500-100.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 81.69
(σ = 25.20)

55.50
(σ = 25.72)

88.46
(23/26)

61.53
(16/26)

74.99

3.0 0.5 81.87
(σ = 25.28)

55.58
(σ = 25.70)

88.46
(23/26)

61.53
(16/26)

74.99

3.0 1.0 79.55
(σ = 25.88)

50.25
(σ = 26.30)

88.46
(23/26)

53.84
(14/26)

71.15

2.0 0.1 80.16
(σ = 24.63)

54.27
(σ = 23.96)

88.46
(23/26)

57.69
(15/26)

73.07

2.0 0.5 80.37
(σ = 24.57)

53.88
(σ = 23.96)

88.46
(23/26)

57.69
(15/26)

73.07

2.0 1.0 77.11
(σ = 25.86)

49.88
(σ = 24.86)

88.46
(23/26)

50.00
(13/26)

69.23

1.0 0.1 77.72
(σ = 23.67)

53.01
(σ = 21.88)

88.46
(23/26)

57.69
(15/26)

73.07

1.0 0.5 77.97
(σ = 23.52)

52.45
(σ = 21.90)

88.46
(23/26)

57.96
(15/26)

73.07

1.0 1.0 75.03
(σ = 24.44)

49.07
(σ = 22.08)

84.61
(22/26)

46.15
(12/26)

65.38

Average: 79.17
(σ = 2.26)

52.16
(σ = 2.43)

88.03 55.97 72.00

in details by means of hypothesis testing in the latter part of this section.

6.3.1 SUMMARY OF MEAN AND BEST TEST ACCURACIES BY ALL MOD-

ELS ACROSS ALL EXPERIMENTS

Tables 56 and 57 summarize the average results achieved by all the scenarios of transfer
learning for PTSD diagnosis. Tables 58 and 59 summarize the best subject-wise accuracies
across all the transfer learning experiments.

6.3.2 HYPOTHESIS TESTING

We applied hypothesis tests to first identify if the performance differences between the
competing models were statistically significant. We then extended it to test for statistical
significance between competing feature categories utilizing transfer learning. The two types of
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Table 53: Classification results using the first hidden layer of 2000 features, obtained
through transfer learning and applying leave-one-subject-out cross-validation. The MFCC
features, extracted from PTSD audio recordings are fed as input to the network which have
585 dimensions. The architecture is 585-2000-2000-2000.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 81.47
(σ = 24.98)

55.44
(σ = 25.98)

88.46
(23/26)

61.53
(16/26)

66.34

3.0 0.5 81.72
(σ = 25.11)

55.58
(σ = 25.97)

88.46
(23/26)

61.53
(16/26)

65.37

3.0 1.0 79.29
(σ = 25.55)

50.79
(σ = 24.74)

88.46
(23/26)

53.84
(14/26)

61.53

2.0 0.1 80.01
(σ = 24.46)

54.22
(σ = 24.19)

88.46
(23/26)

57.69
(15/26)

64.42

2.0 0.5 80.22
(σ = 24.22)

54.39
(σ = 23.95)

88.46
(23/26)

57.69
(15/26)

63.45

2.0 1.0 77.27
(σ = 25.66)

51.14
(σ = 24.07)

88.46
(23/26)

50.00
(13/26)

59.61

1.0 0.1 77.97
(σ = 23.62)

53.35
(σ = 21.96)

88.46
(23/26)

57.69
(15/26)

62.49

1.0 0.5 78.14
(σ = 23.67)

52.83
(σ = 21.65)

88.46
(23/26)

57.69
(15/26)

64.42

1.0 1.0 74.45
(σ = 24.34)

50.56
(σ = 20.39)

84.61
(22/26)

50.00
(13/26)

59.61

Average: 78.94
(σ = 2.27)

53.14
(σ = 1.94)

88.03 56.46 63.02

hypothesis tests we used were parametric and non-parametric tests. Parametric tests assume a
normal population but the non-parametric tests do not make any such assumption. We used a
paired t-test for parametric and the Wilcoxon Signed-Rank test to test non-parametrically.

First, we applied the paired t-test between one of the transfer learning networks and
the competing SVM, DBN and sparse coding models to analyze if the performance by transfer
learning showed statistically significant differences compared to the other models in the proposed
method. Secondly, we applied the paired-t test in the case of transfer learning utilizing feature
selection, where different competing feature categories have different performances. Lastly, we
applied the Wilcoxon Signed-Rank test in the case with differing feature categories.
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Table 54: Classification results using the second hidden layer of 2000 features, obtained
through transfer learning and applying leave-one-subject-out cross-validation. The MFCC
features, extracted from PTSD audio recordings are fed as input to the network which have
585 dimensions. The architecture is 585-2000-2000-2000.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 79.31
(σ = 27.19)

53.90
(σ = 25.90)

84.61
(21/26)

57.69
(15/26)

71.15

3.0 0.5 79.60
(σ = 26.63)

53.96
(σ = 25.44)

88.46
(23/26)

53.84
(14/26)

71.15

3.0 1.0 75.54
(σ = 26.48)

53.41
(σ = 21.95)

80.76
(21/26)

57.69
(15/26)

69.22

2.0 0.1 78.05
(σ = 26.67)

52.87
(σ = 23.62)

84.61
(22/26)

57.69
(15/26)

71.15

2.0 0.5 78.45
(σ = 26.51)

53.47
(σ = 23.55)

80.76
(21/26)

57.69
(15/26)

69.22

2.0 1.0 75.74
(σ = 26.46)

52.21
(σ = 20.37)

80.76
(21/26)

57.69
(15/26)

69.22

1.0 0.1 76.15
(σ = 25.68)

51.52
(σ = 20.87)

80.76
(21/26)

53.84
(14/26)

67.30

1.0 0.5 76.37
(σ = 25.55)

51.49
(σ = 20.92)

80.76
(21/26)

57.69
(15/26)

69.22

1.0 1.0 73.67
(σ = 24.32)

49.22
(σ = 17.54)

80.76
(21/26)

57.69
(15/26)

69.22

Average: 76.98
(σ = 1.97)

52.45
(σ = 1.53)

82.47 56.83 69.65

6.3.2.1 PAIRED T-TEST

Paired t-test compares two quantitative population means where observations from one
population are paired with the observations from the other population. The assumption is that
the observations follow a normal distribution. In this case, we paired up the initial test accuracies
(the control group) and accuracies from each individual attempt at removal (the paired groups),
assuming that the data are normally distributed. Paired t-test is used to assess if two sets of
segment-wise accuracies from the control group and the paired group are significantly different.
The t statistic is determined based on the mean and standard deviation of the group difference,
and the degree of freedom. Based on the t statistic, we calculate the two-tailed p-value using
the t-distribution with degree of freedom. If p-value is smaller than 0.05, we would reject the
null hypothesis that the means of two distributions are equal.

Statistical hypothesis testing utilizing the Paired t-test was carried out between one of
the transfer learning networks and SVM to assess the relative performance of PTSD detection
between the competing models. Tables 60 through 63 show the results of hypothesis testing.
With regard to hypothesis testing, it can be seen from Table 60 that in 13 of 27 cases, the results
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Table 55: Classification results using the final hidden layer of 2000 features, obtained
through transfer learning and applying leave-one-subject-out cross-validation. The MFCC
features, extracted from PTSD audio recordings are fed as input to the network which have
585 dimensions. The architecture is 585-2000-2000-2000.

Number of
Subjects

Frame
Length
(seconds)

Frame
Shift

(seconds)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise

Acc (%)
on

Youtube

Subject-
wise

Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

No of Subjects
from
Youtube:26
No of Subjects
from Ohio:26
Total:52
subjects

3.0 0.1 79.62
(σ = 24.94)

53.36
(σ = 24.70)

80.76
(21/26)

57.69
(15/26)

69.22

3.0 0.5 79.76
(σ = 24.76)

53.80
(σ = 24.87)

80.76
(21/26)

57.69
(15/26)

69.22

3.0 1.0 75.51
(σ = 25.76)

51.91
(σ = 21.54)

80.76
(21/26)

53.84
(14/26)

67.30

2.0 0.1 78.32
(σ = 24.04)

52.56
(σ = 22.51)

80.76
(21/26)

57.69
(15/26)

69.22

2.0 0.5 77.05
(σ = 24.11)

52.70
(σ = 22.09)

80.76
(21/26)

57.69
(15/26)

69.22

2.0 1.0 74.79
(σ = 24.19)

49.52
(σ = 19.47)

84.61
(22/26)

53.84
(14/26)

69.22

1.0 0.1 75.93
(σ = 23.80)

51.44
(σ = 19.86)

80.76
(21/26)

53.84
(14/26)

67.30

1.0 0.5 75.81
(σ = 23.56)

51.91
(σ = 19.70)

80.76
(21/26)

53.84
(14/26)

67.30

1.0 1.0 72.06
(σ = 22.67)

49.19
(σ = 16.89)

80.76
(21/26)

57.69
(15/26)

69.22

Average: 76.53
(σ = 2.45)

51.82
(σ = 1.58)

81.18 55.97 68.58

are statistically significant with p-values less than the chosen significance level of 5%. It is also
observed that for those cases, the performance of transfer learning is better than the baseline.
Table 61 shows that in 4 of 27 cases, the classification accuracies are also statistically significant.
These statistically significant results from these two tables suggests that the sample accuracies
from the two different methods come from normally distributed populations with unequal means.
The hypothesis testing experiment is also repeated between transfer learning and DBN.

With regard to hypothesis testing between transfer learning and DBN, it can be seen
from Table 62 that in 8 of 27 cases, the results are significantly different with p-values less
than the significance level. From Table 63 it is observed that in 2 of 27 cases, the classification
accuracies achieve statistical significance. Results from these two tables suggests that the sample
accuracies from the two different methods come from normally distributed populations with
unequal means. It is also observed that in all those instances, transfer learning outperforms the
baseline.
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Table 56: Summary of average PTSD diagnostic accuracies across all the transfer learning
experiments which have input feature combination of prosodic, vocal-tract and excitation
features.

Method: Transfer Learning
(Architecture) Input Prosodic,

Vocal-tract and Excitation
Features

Mean
Segment-
Wise Acc
(%) on

Youtube

Mean
Segment-
wise Acc
(%) on
Ohio

Mean
Subject-

wise
Acc (%)

on
Youtube

Mean
Subject-

wise
Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

162-100-50, Layer 1 76.42
(σ = 2.06)

54.92
(σ = 2.64)

85.03 44.86 64.95

162-100-50, Layer 2 73.77
(σ = 1.94)

53.23
(σ = 1.32)

84.61 47.43 66.02

Average: 75.09
(σ = 1.87)

54.07
(σ = 1.19)

84.82 46.14 65.48

2430-100-50, Layer 1 74.23
(σ = 2.28)

61.48
(σ = 2.64)

77.34 62.81 70.08

2430-100-5), Layer 2 68.89
(σ = 2.35)

60.09
(σ = 3.36)

71.36 67.94 69.65

Average: 71.56
(σ = 3.77)

60.78
(σ = 0.98)

74.35 65.37 69.86

2430-1000-1000-50, Layer 1 76.46
(σ = 2.12)

61.02
(σ = 2.28)

78.20 62.81 70.50

2430-1000-1000-500, Layer 2 73.48
(σ = 1.68)

57.41
(σ = 1.16)

77.34 59.39 68.37

2430-1000-1000-500, Layer 3 71.56
(σ = 1.88)

58.21
(σ = 1.00)

78.19 60.67 69.43

Average: 73.83
(σ = 2.46)

58.88
(σ = 1.89)

77.91 60.95 69.43

2430-500-500-500-500-100, Layer 1 75.34
(σ = 2.85)

61.31
(σ = 2.21)

78.62 64.52 71.57

2430-500-500-500-500-100, Layer 2 73.05
(σ = 1.24)

59.19
(σ = 2.03)

76.49 61.53 69.01

2430-500-500-500-500-100, Layer 3 70.50
(σ = 1.02)

60.34
(σ = 1.83)

75.63 66.23 70.93

2430-500-500-500-500-100, Layer 4 69.34
(σ = 2.03)

60.26
(σ = 1.92)

73.92 66.66 70.29

2430-500-500-500-500-100, Layer 5 69.44
(σ = 2.57)

59.98
(σ = 1.92)

74.35 66.23 70.29

Average: 71.53
(σ = 2.60)

60.21
(σ = 0.76)

75.80 65.03 70.41

Overall Average: 72.70
(σ = 2.72)

58.95
(σ = 2.59)

77.59 60.92 69.25

With regard to hypothesis testing between transfer learning and sparse coding, it can be
seen from Table 64 that in 10 of 27 cases, the results are significantly different with p-values less
than the significance level. From Table 65 it is observed that in 3 of 27 cases, the classification
accuracies are also significantly different. For these cases, the performance of transfer learning
exceeds the baseline result.

In the case of applying hypothesis testing corresponding to different feature categories,
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Table 57: Summary of average PTSD diagnostic accuracies across all the transfer learning
experiments which have MFCC input features.

Method: Transfer Learning
(Architecture) Input MFCC

Features

Mean
Segment-
Wise Acc
(%) on

Youtube

Mean
Segment-
wise Acc
(%) on
Ohio

Mean
Subject-

wise
Acc (%)

on
Youtube

Mean
Subject-

wise
Acc (%)
on Ohio

Overall
Subject-

wise
Accu-
racy
(%)

585-500-500-500-500-100, Layer 1 77.41
(σ = 2.69)

52.31
(σ = 2.04)

74.35 64.95 69.65

585-500-500-500-500-100, Layer 2 76.24
(σ = 1.98)

52.41
(σ = 3.26)

76.91 57.68 67.30

585-500-500-500-500-100, Layer 3 75.11
(σ = 3.05)

52.42
(σ = 3.53)

80.76 56.40 68.58

585-500-500-500-500-100, Layer 4 75.95
(σ = 2.78)

52.20
(σ = 3.83)

79.90 53.84 66.87

585-500-500-500-500-100, Layer 5 79.17
(σ = 2.26)

52.16
(σ = 2.43)

88.03 55.97 72.00

Average: 76.77
(σ = 1.57)

52.30
(σ = 0.11)

79.99 57.76 68.88

585-2000-2000-2000, Layer 1 78.94
(σ = 2.27)

53.14
(σ = 1.94)

88.03 56.46 63.02

585-2000-2000-2000, Layer 2 76.98
(σ = 1.97)

52.45
(σ = 1.53)

82.47 56.83 69.65

585-2000-2000-2000, Layer 3 76.53
(σ = 2.45)

51.82
(σ = 1.58)

81.18 55.97 68.58

Average: 77.48
(σ = 1.28)

52.47
(σ = 0.66)

83.75 56.42 67.01

Overall Average: 77.04
(σ = 1.41)

52.36
(σ = 0.37)

81.40 57.26 68.17

we can see from Table 66 that the absolute value of t-values for E only results are much larger
than the rest of the t-values, and the p-values are within the range that enables the rejection
of the null hypothesis. Using the significance level of 5%, we observed that the p-values for
excitation features were clearly found to lie within the significance level and was declared to be
statistically significant.

6.3.2.2 WILCOXON SIGNED-RANK TEST

Since the normal distribution assumption of Paired t-test may not be true, we introduce
a non-parametric statistical hypothesis test—Wilcoxon signed-rank test, which does not require
any underlying distribution assumptions. For two paired samples, it is to assess whether the
population mean ranks differ. After calculating the test statistic W, also called as the sum of
the signed ranks, we compare it to the critical value from the reference table based on the degree
of freedom. The null hypothesis is that there is no significant difference of the mean ranks in
the two paired samples, which denotes that the W statistic is smaller than the critical value at
a certain degree of freedom. However, if the test statistics W is greater than or equal to the
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Table 58: Summary of best PTSD diagnostic accuracies by different models across all the
transfer learning experiments which have input feature combination of prosodic, vocal-tract
and excitation features.

Method

Frame
Length
(sec)

Frame
Shift
(sec)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise
Acc

(%) on
Youtube

Subject-
wise
Acc

(%) on
Ohio

Overall
Best

Subject-
Wise
Accu-
racy
(%)

162-100-5,
Layer 1

3.0 0.1 78.93 (σ =
28.46)

54.02 (σ =
28.72)

88.46 42.30 65.38

162-100-50,
Layer 2

3.0 0.1 75.81 (σ =
27.07)

53.08 (σ =
28.04)

84.61 42.30 63.45

Average: 77.37
(σ = 2.20)

53.55
(σ = 0.66)

86.53 42.30 64.41

2430-100-50-2,
Layer 1

3.0 1.0 77.04 (σ =
35.97)

64.93 (σ =
33.71)

80.76 69.23 74.99

2430-100-50-2,
Layer 2

1.0 0.5 70.72 (σ =
32.46)

59.14 (σ =
22.86)

69.23 65.38 67.30

Average: 73.88
(σ = 4.46)

62.03
(σ = 4.09)

74.99 67.30 71.14

2430-1000-
1000-50, Layer

1

1.0 1.0 79.11 (σ =
36.14)

62.79 (σ =
33.37)

80.76 69.23 74.99

2430-1000-
1000-500, Layer

2

1.0 0.5 75.18 (σ =
36.64)

57.73 (σ =
32.37)

80.76 61.53 71.14

2430-1000-
1000-500, Layer

3

3.0 0.5 73.69 (σ =
36.86)

59.49 (σ =
32.58)

80.76 65.38 73.07

Average: 75.99
(σ = 2.80)

60.00
(σ = 2.56)

80.76 65.38 73.06

2430-500-500-
500-500-100,

Layer 1

1.0 1.0 78.86 (σ =
35.42)

62.80 (σ =
32.97)

84.61 69.23 76.92

2430-500-500-
500-500-100,

Layer 2

3.0 0.5 74.14 (σ =
36.11)

61.86 (σ =
30.03)

76.92 69.23 73.07

2430-500-500-
500-500-100,

Layer 3

2.0 0.5 71.94 (σ =
36.36)

62.34 (σ =
28.73)

76.92 69.23 73.07

2430-500-500-
500-500-100,

Layer 4

2.0 0.5 71.26 (σ =
35.61)

62.80 (σ =
26.83)

76.92 73.07 74.99

2430-500-500-
500-500-100,

Layer 5

1.0 0.5 71.86 (σ =
36.91)

60.25(σ =
23.59)

73.07 69.23 71.15

Average: 73.61
(σ = 3.13)

62.01
(σ = 1.05)

77.68 69.99 73.84

critical value, we would reject the null hypothesis, and there is considered to be a significant
difference between the means of the two paired groups. Table 67 shows the results of this
statistical non-parametric test.
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Table 59: Summary of best PTSD diagnostic accuracies by different models across all the
transfer learning experiments which have input MFCC features.

Method

Frame
Length
(sec)

Frame
Shift
(sec)

Segment-
wise Acc
(%) on

Youtube

Segment-
wise Acc
(%) on
Ohio

Subject-
wise
Acc

(%) on
Youtube

Subject-
wise
Acc

(%) on
Ohio

Overall
Best

Subject-
Wise
Accu-
racy
(%)

585-500-500-
500-500-100,

Layer 1

3.0 0.1 80.69 (σ =
25.95)

54.39 (σ =
25.22)

84.61 61.53 73.07

585-500-500-
500-500-100,

Layer 2

3.0 0.5 80.02 (σ =
22.95)

54.58 (σ =
24.02)

80.76 61.53 71.14

585-500-500-
500-500-100,

Layer 3

3.0 0.1 78.11 (σ =
21.68)

55.11 (σ =
20.12)

84.61 57.69 71.15

585-500-500-
500-500-100,

Layer 4

3.0 0.1 79.03 (σ =
24.68)

54.82 (σ =
21.64)

84.61 53.84 69.22

585-500-500-
500-500-100,

Layer 5

3.0 0.5 81.87 (σ =
25.28)

55.58 (σ =
25.70)

88.46 61.53 74.99

Average: 79.94
(σ = 1.45)

54.89
(σ = 0.46)

84.61 59.22 71.91

585-2000-2000-
2000, Layer

1

3.0 0.5 81.72 (σ =
25.11)

55.58 (σ =
25.97)

88.46 61.53 65.37

585-2000-2000-
2000, Layer

2

3.0 0.1 79.31 (σ =
27.19)

53.90 (σ =
25.90)

84.61 57.69 66.60

585-2000-2000-
2000, Layer

3

3.0 0.5 79.76 (σ =
24.76)

53.80 (σ =
24.87)

80.76 57.69 69.22

Average: 80.26
(σ = 1.28)

54.42
(σ = 1.0)

84.61 58.97 67.06

Still, only two pairs of data show significance. We then deduced that the original data
is not normally distributed as we assumed, so we conducted Wilcoxon’s signed-rank test as an
alternative for paired t-test since it does not require the sample data to be normally distributed.
The method is calculating the difference between two sets of data, as we did in paired t-test.
Then we ranked them by the absolute value of the differences. After that, we multiplied the ranks
by the signs of the corresponding original differences. For instance, a subject’s segment-wise
accuracy increased after excluding some features, and then the sign of difference must be positive.
Similarly, if subject’s segment-wise accuracy decreased, then the sign of difference must be
negative. Finally, we sum up all the signed rank together to get the w test statistic and compare
it to the critical value in Table 6 based on the degree of freedom, which is the number of subjects
that have a sign in their difference, that is, compared to the subjects that have a change of 0 in
testing accuracy. However, only E only tests for both Youtube and Ohio show significance as
shown below in the table, for the w-value falls below the critical value for the w statistic. By
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Table 60: Application of hypothesis testing to compare the transfer learning against SVM
on Youtube subjects, for PTSD diagnosis. The architecture is 2430-1000-1000-500. There are
2430 input features. These features are a combination of vocal-tract, prosodic and excitation
feature categories. The level of significance, α is 5%. P-values in boldface are significantly
different results. The null hypothesis is that the accuracies from both methods come from a
normal population distribution consisting of independent random samples with equal means
and unknown variances. The alternative hypothesis is that the means are unequal.

PTSD
Input
and

Network
Architec-

ture

Hidden
Layer
No.

Frame
Size
(sec)

Frame
Shift
(sec)

p-value Segment-
wise

(subject-
wise)

Classification
Accuracy

(%) Transfer
Learning

Segment-
wise

(subject-
wise)

Classification
Accuracy
(%) SVM

Youtube
(26
subjects)

1

1.0 0.1 0.0379 73.94(76.92) 56.04(57.69)
1.0 0.5 0.4964 75.63(76.92) 60.97(61.53)
1.0 1.0 0.0342 79.11(80.76) 53.57(53.84)
2.0 0.1 0.0485 74.65(76.92) 55.73(57.69)
2.0 0.5 0.0499 75.83(76.92) 56.34(57.69)
2.0 1.0 0.0493 79.50(80.76) 59.53(61.53)
3.0 0.1 0.0472 74.87(76.92) 53.03(53.84)
3.0 0.5 0.0486 75.71(76.92) 61.93(61.53)
3.0 1.0 0.0201 78.92(80.76) 50.12(50.00)

Youtube
(26
subjects)

2

1.0 0.1 0.0491 72.95(76.92) 56.04(57.69)
1.0 0.5 0.4979 75.18(80.76) 60.97(61.53)
1.0 1.0 0.0448 71.32(73.07) 53.57(53.84)
2.0 0.1 0.0491 73.78(76.92) 55.73(57.69)
2.0 0.5 0.0903 75.72(80.76) 56.34(57.69)
2.0 1.0 0.2735 72.04(76.92) 59.53(61.53)
3.0 0.1 0.0495 74.12(80.76) 53.05(53.84)
3.0 0.5 0.2267 74.98(80.76) 61.93(61.53)
3.0 1.0 0.0703 71.23(69.23) 50.12(50.00)

Youtube
(26
subjects)

3

1.0 0.1 0.1240 70.18(76.92) 56.04(57.69)
1.0 0.5 0.2658 73.36(80.76) 60.97(61.53)
1.0 1.0 0.1278 71.44(76.92) 53.57(53.84)
2.0 0.1 0.1581 71.24(80.76) 55.73(57.69)
2.0 0.5 0.1208 74.13(80.76) 56.34(57.69)
2.0 1.0 0.3915 69.30(76.92) 59.53(61.53)
3.0 0.1 0.0907 71.83(80.76) 53.03(53.84)
3.0 0.5 0.4251 70.62(76.92) 61.93(61.53)
3.0 1.0 0.0980 68.92(37.74) 50.12(50.36)

comparing the experimental w-values with the critical values for the w-statistic, we can see that
only when excitation features remain, the critical value surpasses the w-value, which suggests
significance of this result.

Since all of the statistical tests show that the reduction of both prosodic features and
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Table 61: Application of hypothesis testing to compare the transfer learning against SVM,
on Ohio subjects for PTSD diagnosis. The architecture is 2430-1000-1000-500. There are
2,430 input features. These features are a combination of vocal, prosodic and excitation
feature categories. The level of significance, α is 5%. P-values in boldface are significantly
different results.The null hypothesis is that the accuracies from both methods come from a
normal population distribution consisting of independent random samples with equal means
and unknown variances. The alternative hypothesis is that the means are unequal.

PTSD
Input
and

Network
Architec-

ture

Hidden
Layer
No.

Frame
Size
(sec)

Frame
Shift
(sec)

p-value Segment-
wise

(subject-
wise)

Classification
Accuracy

(%) Transfer
Learning

Segment-
wise

(subject-
wise)

Classification
Accuracy
(%) SVM

Ohio (26
subjects) 1

1.0 0.1 0.5895 57.82(61.53) 52.13(53.84)
1.0 0.5 0.3245 60.23(65.38) 69.78(76.92)
1.0 1.0 0.3444 62.79(69.23) 52.98(53.84)
2.0 0.1 0.5098 58.20(57.69) 51.28(53.84)
2.0 0.5 0.3771 62.40(61.53) 52.95(53.84)
2.0 1.0 0.0484 63.05(69.23) 47.03(5.00)
3.0 0.1 0.6458 58.67(53.84) 53.57(57.69)
3.0 0.5 0.0490 62.96(61.53) 42.65(46.15)
3.0 1.0 0.0429 63.13(65.38) 40.81(42.30)

Ohio (26
subjects) 2

1.0 0.1 0.6907 56.24(57.69) 52.13(53.84)
1.0 0.5 0.2269 57.73(61.53) 69.78(76.92)
1.0 1.0 0.7656 55.96(57.69) 52.98(49.61)
2.0 0.1 0.5539 57.57(61.53) 51.28(53.84)
2.0 0.5 0.5711 59.04(61.53) 52.95(53.84)
2.0 1.0 0.3617 57.43(57.69) 47.03(50.00)
3.0 0.1 0.7013 57.91(61.53) 53.57(57.69)
3.0 0.5 0.1357 58.92(61.53) 42.65(46.15)
3.0 1.0 0.1629 55.94(53.84) 40.81(42.30)

Ohio (26
subjects) 3

1.0 0.1 0.6858 56.29(57.69) 52.13(53.84)
1.0 0.5 0.2541 58.52(61.53) 69.78(41.25)
1.0 1.0 0.6767 57.26(61.53) 52.98(53.84)
2.0 0.1 0.5322 57.79(57.69) 51.28(53.84)
2.0 0.5 0.5577 59.25(61.53) 52.95(53.84)
2.0 1.0 0.3250 57.95(57.69) 47.03(50.00)
3.0 0.1 0.6494 58.64(61.53) 53.57(57.69)
3.0 0.5 0.0482 59.49(65.38) 42.65(46.15)
3.0 1.0 0.1051 58.77(61.53) 40.81(42.30)

vocal-tract features has a considerable effect on the accuracy of classification, we concluded that
excitation features are the least significant among all three categories [91]. However, considering
there are only 2 features in this category, while there are 12 in prosodic features and 40 in
vocal-tract features, there may be biases confounded in the results. Also, we noticed that after
excluding the vocal-tract features, the performance rate increased by a little for Youtube data.
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Table 62: Application of hypothesis testing to compare the transfer learning against
DBN on Youtube subjects, for PTSD diagnosis. The architecture is 2430-1000-1000-500 for
transfer learning and 2430-1000-1000-500-2 for DBN. There are 2430 input features. These
features are a combination of vocal-tract, prosodic and excitation feature categories. The
level of significance, α is 5%. P-values in boldface are significantly different results. The
null hypothesis is that the accuracies from both methods come from a normal population
distribution consisting of independent random samples with equal means and unknown
variances. The alternative hypothesis is that the means are unequal.

PTSD
Input
and

Network
Architec-

ture

Hidden
Layer
No.

Frame
Size
(sec)

Frame
Shift
(sec)

p-value Segment-
wise

(subject-
wise)

Classification
Accuracy

(%) Transfer
Learning

Segment-
wise

(subject-
wise)

Classification
Accuracy
(%) DBN

Youtube
(26
subjects)

1

1.0 0.1 0.0734 73.94(76.92) 58.85(61.53)
1.0 0.5 0.0890 75.63(76.92) 59.87(61.53)
1.0 1.0 0.0428 79.11(80.76) 60.05(61.53)
2.0 0.1 0.2194 74.65(76.92) 64.69(76.92)
2.0 0.5 0.2666 75.83(76.92) 66.72(76.92)
2.0 1.0 0.0135 79.50(80.76) 58.35(57.69)
3.0 0.1 0.0016 74.87(76.92) 47.65(34.61)
3.0 0.5 0.1487 75.71(76.92) 63.70(76.92)
3.0 1.0 0.0783 78.92(80.76) 61.81(69.23)

Youtube
(26
subjects)

2

1.0 0.1 0.0489 72.95(76.92) 58.85(61.53)
1.0 0.5 0.1008 75.18(80.76) 59.87(61.53)
1.0 1.0 0.2413 71.32(73.07) 60.05(61.53)
2.0 0.1 0.2638 73.78(76.92) 64.69(76.92)
2.0 0.5 0.2585 75.72(80.76) 66.72(76.92)
2.0 1.0 0.1191 72.04(76.92) 58.35(57.69)
3.0 0.1 0.0021 74.12(80.76) 47.65(34.61)
3.0 0.5 0.1694 74.98(80.76) 63.74(76.92)
3.0 1.0 0.3376 71.23(69.23) 61.81(69.23)

Youtube
(26
subjects)

3

1.0 0.1 0.0494 70.18(76.92) 58.85(61.53)
1.0 0.5 0.0492 73.36(80.76) 59.87(61.53)
1.0 1.0 0.2204 71.47(76.92) 60.05(61.53)
2.0 0.1 0.4229 71.24(80.76) 64.69(76.92)
2.0 0.5 0.3489 74.13(80.76) 66.72(76.92)
2.0 1.0 0.2002 69.30(76.92) 58.35(57.69)
3.0 0.1 0.0043 71.83(80.76) 47.65(34.61)
3.0 0.5 0.3968 70.62(76.92) 63.70(76.92)
3.0 1.0 0.4562 68.92(69.23) 61.81(69.23)

It may be by chance, but it may also imply that there are other lurking variables hidden in
the scenes. All three tests suggested that excitation features are the least important among
the three categories. We rejected all three null hypotheses when comparing the control group
with all features present and the experimental group with only excitation features present. It
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Table 63: Application of hypothesis testing to compare the transfer learning against
DBN on Ohio subjects, for PTSD diagnosis. The architecture is 2430-1000-1000-500 for
transfer learning and 2430-1000-1000-500-2 for DBN. There are 2430 input features. These
features are a combination of vocal-tract, prosodic and excitation feature categories. The
level of significance, α is 5%. P-values in boldface are significantly different results. The
null hypothesis is that the accuracies from both methods come from a normal population
distribution consisting of independent random samples with equal means and unknown
variances. The alternative hypothesis is that the means are unequal.

PTSD
Input
and

Network
Architec-

ture

Hidden
Layer
No.

Frame
Size
(sec)

Frame
Shift
(sec)

p-value Segment-
wise

(subject-
wise)

Classification
Accuracy

(%) Transfer
Learning

Segment-
wise

(subject-
wise)

Classification
Accuracy
(%) DBN

Ohio (26
subjects) 1

1.0 0.1 0.0938 57.82(61.53) 47.63(46.15)
1.0 0.5 0.0936 60.23(65.38) 50.37(53.84)
1.0 1.0 0.1524 62.79(69.23) 52.97(57.69)
2.0 0.1 0.0672 58.20(57.69) 48.43(42.30)
2.0 0.5 0.0497 62.40(61.53) 46.64(46.15)
2.0 1.0 0.1249 63.05(69.23) 53.84(65.38)
3.0 0.1 0.2253 58.67(53.84) 50.83(50.00)
3.0 0.5 0.1532 62.96(61.53) 52.15(53.84)
3.0 1.0 0.1909 63.13(65.38) 53.08(61.53)

Ohio (26
subjects) 2

1.0 0.1 0.1094 56.24(57.69) 47.63(46.15)
1.0 0.5 0.2330 57.73(61.53) 50.37(53.84)
1.0 1.0 0.6711 55.96(57.69) 52.97(57.69)
2.0 0.1 0.0920 57.57(61.53) 48.43(42.30)
2.0 0.5 0.1319 59.04(61.53) 46.64(46.15)
2.0 1.0 0.5763 57.43(57.69) 53.84(65.38)
3.0 0.1 0.2896 57.91(61.53) 50.83(50.00)
3.0 0.5 0.3717 58.92(61.53) 52.15(53.84)
3.0 1.0 0.7266 55.94(53.84) 53.08(61.53)

Ohio (26
subjects) 3

1.0 0.1 0.1202 56.29(57.69) 47.63(46.15)
1.0 0.5 0.1666 58.52(61.53) 50.37(53.84)
1.0 1.0 0.5495 57.26(61.53) 52.97(57.69)
2.0 0.1 0.0757 57.79(57.69) 48.43(42.30)
2.0 0.5 0.0493 59.25(61.53) 45.87(46.15)
2.0 1.0 0.5112 57.95(57.69) 53.84(65.38)
3.0 0.1 0.2250 58.64(61.53) 50.83(50.00)
3.0 0.5 0.3232 59.49(65.38) 52.15(53.84)
3.0 1.0 0.4668 58.77(61.53) 53.08(61.53)

is because the data obtained from this experimental group showed significant diminishment in
the classification performance that could not have happened by chance. When we only kept
prosodic features or vocal-tract features, the classification performances did not show significant
changes, which means the changes observed can be explained by chances. Moreover, when
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Table 64: Application of hypothesis testing to compare the transfer learning against sparse
coding on Youtube subjects, for PTSD diagnosis. The architecture is 2430-1000-1000-500.
There are 2430 input features. These features are a combination of vocal-tract, prosodic
and excitation feature categories. The level of significance, α is 5%. P-values in boldface are
significantly different results. The null hypothesis is that the accuracies from both methods
come from a normal population distribution consisting of independent random samples with
equal means and unknown variances. The alternative hypothesis is that the means are
unequal.

PTSD
Input
and

Network
Architec-

ture

Hidden
Layer
No.

Frame
Size
(sec)

Frame
Shift
(sec)

p-value Segment-
wise

(subject-
wise)

Classification
Accuracy

(%) Transfer
Learning

Segment-
wise

(subject-
wise)

Classification
Accuracy

(%) Sparse
Coding

Youtube
(26
subjects)

1

1.0 0.1 0.1326 73.94(76.92) 66.55(76.92)
1.0 0.5 0.0924 75.63(76.92) 64.31(65.38)
1.0 1.0 0.0089 79.11(80.76) 61.88(61.53)
2.0 0.1 0.1255 74.65(76.92) 65.04(73.07)
2.0 0.5 0.0589 75.83(76.92) 62.19(61.53)
2.0 1.0 0.0310 79.50(80.76) 62.84(57.69)
3.0 0.1 0.0821 74.87(76.92) 64.10(73.07)
3.0 0.5 0.1043 75.71(76.92) 62.98(61.53)
3.0 1.0 0.0165 78.92(80.76) 58.18(50.00)

Youtube
(26
subjects)

2

1.0 0.1 0.1658 72.95(76.92) 66.55(76.92)
1.0 0.5 0.3069 75.18(80.76) 64.31(65.38)
1.0 1.0 0.1544 71.32(73.07) 61.88(61.53)
2.0 0.1 0.1518 73.78(76.92) 65.04(73.07)
2.0 0.5 0.0603 75.72(80.76) 62.19(61.53)
2.0 1.0 0.2127 72.04(76.92) 62.84(57.69)
3.0 0.1 0.1079 74.12(80.76) 64.10(73.07)
3.0 0.5 0.1233 74.98(80.76) 62.98(61.53)
3.0 1.0 0.1038 71.23(69.23) 58.18(50.00)

Youtube
(26
subjects)

3

1.0 0.1 0.4018 70.18(76.92) 66.55(76.92)
1.0 0.5 0.1565 73.36(80.76) 64.31(65.38)
1.0 1.0 0.1004 71.44(76.92) 61.88(61.53)
2.0 0.1 0.2865 71.24(80.76) 65.04(73.07)
2.0 0.5 0.0913 74.13(80.76) 62.19(61.53)
2.0 1.0 0.3425 69.30(76.92) 62.84(57.69)
3.0 0.1 0.1883 71.83(80.76) 64.10(73.07)
3.0 0.5 0.1590 70.62(76.92) 62.98(61.53)
3.0 1.0 0.1516 68.92(69.23) 58.18(50.00)

excitation features were excluded, the performance improved slightly as shown in Tables 46 and
47. Though the changes are not significant, we can still deduce from the results that this feature
category might be a disturbing factor to the overall classification performance. Tables 46 and 47
included both segment-wise accuracy and subject-wise accuracies during testing, providing more
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Table 65: Application of hypothesis testing to compare the transfer learning against sparse
coding on Ohio subjects, for PTSD diagnosis. The architecture is 2430-1000-1000-500. There
are 2430 input features. These features are a combination of vocal-tract, prosodic and
excitation feature categories. The level of significance, α is 5%. P-values in boldface are
significantly different results. The null hypothesis is that the accuracies from both methods
come from a normal population distribution consisting of independent random samples with
equal means and unknown variances. The alternative hypothesis is that the means are
unequal.

PTSD
Input
and

Network
Architec-

ture

Hidden
Layer
No.

Frame
Size
(sec)

Frame
Shift
(sec)

p-value Segment-
wise

(subject-
wise)

Classification
Accuracy

(%) Transfer
Learning

Segment-
wise

(subject-
wise)

Classification
Accuracy

(%) Sparse
Coding

Ohio (26
subjects) 1

1.0 0.1 0.6503 57.82(61.53) 59.54(69.23)
1.0 0.5 0.0685 60.23(65.38) 64.95(73.07)
1.0 1.0 0.5683 62.79(69.23) 65.56(69.23)
2.0 0.1 0.2958 58.20(57.69) 62.56(65.38)
2.0 0.5 0.6054 62.40(61.53) 64.31(61.53)
2.0 1.0 0.7795 63.05(69.23) 64.31(69.23)
3.0 0.1 0.2306 58.67(53.84) 63.81(73.07)
3.0 0.5 0.8820 62.96(61.53) 63.48(65.38)
3.0 1.0 0.7150 63.13(65.38) 61.40(73.07)

Ohio (26
subjects) 2

1.0 0.1 0.3498 56.24(57.69) 59.54(69.23)
1.0 0.5 0.1051 57.73(61.53) 64.95(65.38)
1.0 1.0 0.2815 55.96(57.69) 65.56(61.53)
2.0 0.1 0.1743 57.57(61.53) 62.56(65.38)
2.0 0.5 0.1273 59.04(61.53) 64.31(61.53)
2.0 1.0 0.0987 57.43(57.69) 64.31(69.23)
3.0 0.1 0.1394 57.91(61.53) 63.81(73.07)
3.0 0.5 0.1254 58.92(61.53) 63.48(65.38)
3.0 1.0 0.1723 55.94(53.84) 61.40(73.07)

Ohio (26
subjects) 3

1.0 0.1 0.3656 56.29(57.69) 59.54(69.23)
1.0 0.5 0.1430 58.52(61.53) 64.95(65.58)
1.0 1.0 0.1066 57.26(61.53) 65.56(61.53)
2.0 0.1 0.1938 57.79(57.69) 62.56(65.38)
2.0 0.5 0.1265 59.25(61.53) 64.31(61.53)
2.0 1.0 0.1625 57.95(57.69) 64.31(69.23)
3.0 0.1 0.1874 58.64(61.53) 63.81(73.07)
3.0 0.5 0.1816 59.49(65.38) 63.48(65.38)
3.0 1.0 0.5192 58.77(61.53) 61.40(73.07)

perceptible evidence of this implication.
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Table 66: Paired t-test results on segment-wise accuracies utilizing feature selection based
on transfer learning. The architecture was 2430-500-500-500-500-100.

Segment-wise Accuracies P
Out

V
Out

E
Out

P
Only

V
Only

E
Only

Youtube t-value -1.53 0.14 0.87 -0.04 -1.00 -2.98
p-value 0.14 0.89 0.39 0.97 0.33 0.01

Ohio t-value 0.80 0.05 1.57 0.82 1.55 -2.75
p-value 0.43 0.96 0.13 0.42 0.13 0.01

Table 67: Wilcoxon signed-rank test results on segment-wise accuracies utilizing feature
selection based on transfer learning. The architecture was 2430-500-500-500-500-100.

Segment-wise Accuracies P
Out

V
Out

E
Out

P
Only

V
Only

E
Only

Youtube w-value 25 111 35 115 49 55
deg. of
freedom

14 21 12 21 15 24

critical
value for

w-statistic

21 58 13 58 25 81

Ohio w-value 125 132 103 109 93 73
deg. of
freedom

23 23 22 23 23 25

critical
value for

w-statistic

73 73 65 73 73 89

6.4 CONCLUSION OF THE PROPOSED APPROACH

Transfer learning achieved a best of 84.62% for Youtube and 73.08% for Ohio. In the
majority of the cases using transfer learning, the first hidden layer of features has the best
performance compared to the other hidden layers in the network. This could be attributed to
the fact that lower layers have more primitive feature detectors that are more adapted to the
input data. The hypothesis tests shows that in more than 31% of the cases that were tested,
transfer learning performed significantly better than the baseline. Transfer learning also showed
significantly better performance compared to the deep belief network method in nearly 19%
of the cases that were tested. Comparing transfer learning with sparse coding, nearly 6% of
the cases showed transfer learning to perform significantly better than sparse coding. When
comparing between transfer learning with SVM, in almost 92% of the cases where the difference
was not significant, transfer learning had a better accuracy than SVM. When comparing transfer
learning against DBN, in 100% of the cases where the difference was not significant, transfer
learning outperformed the DBN. Between transfer learning and sparse coding, in nearly 49%
of the cases where the difference was not significant, transfer learning had better accuracy
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Table 68: The critical value table based on degree of freedom and significance level.

Two Tailed significance levels
deg. of
freedom

0.05 0.02 0.01

12 14 10 7
13 17 13 10
14 21 16 13
15 25 20 16
16 30 24 20
17 35 28 23
18 40 33 28
19 46 38 32
20 52 43 38
21 59 49 43
22 66 56 49
23 73 62 55
24 81 69 61
25 89 77 68

than sparse coding. The proposed transfer learning method showed significant difference when
compared to all other models in the proposed method. The overall effectiveness of transfer
learning for PTSD detection is evident compared to the baseline and the other models in the
proposed method.

In the feature selection based experiments, we conducted transfer learning through DBN
to identify whether a patient has PTSD based on speech, and obtained up to 80% accuracy for
the PTSD data set. The importance of the features used in order to eliminate the disturbing
factors were also investigated, by removing specific features and comparing the results. Finally,
we concluded that excitation feature category is the least significant as indicated by multiple
statistical tests.
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CHAPTER 7

CONCLUSIONS

An average subject-wise accuracy of 73.07% on Youtube and 56.53% on Ohio was achieved
by SVM. Sparse coding achieved average subject-wise accuracies of 81.61% on youtube and
57.26% on Ohio. The mean subject-wise accuracy of 79.90% on Youtube and 63.67% on Ohio
was obtained by the deep belief network. The architecture was 585-2000-2000-2000-2. There was
a mean subject-wise accuracy of 75.63% on Youtube and 66.23% on Ohio using the transfer
learning strategy was achieved by the third hidden layer. The corresponding architecture was
2430-500-500-500-500-100. A mean subject-wise accuracy of 84.62% for Youtube and 73.08% for
Ohio after feature category selection was achieved by the first hidden layer in transfer learning.
The feature category selection was carried out by zeroing the excitation feature category. The
architecture was 2430-500-500-500-500-100.

In this dissertation, an efficient speech-driven sparse coding framework was developed for
emotion recognition which did not exist before. The proposed system, evaluated on the SUSAS
data set, outperformed other state-of-the-art algorithms. A speech-driven sparse coding and
deep belief net framework was developed for PTSD detection for the first time. It addressed the
limitation of current clinical diagnostic methods which heavily depend on assessment based on
structured interviews, conducted in clinics. Novel feature extraction techniques were performed
for PTSD detection. Excitation features were found not to be useful whereas the vocal-tract
and prosodic feature categories proved to be superior in detecting PTSD. The small data size
challenge was resolved by adopting a transfer learning strategy. Transfer learning achieved
statistically significant performances compared to the other models in the proposed method
and proved its overall effectiveness in PTSD detection. The proposed PTSD detection system
surpassed the current clinical diagnostic accuracy. Overall, the proposed models proved to be
promising and are recommended for PTSD diagnosis.

This work could be extended in the future to include application of deep convolutional
networks for emotion recognition and PTSD diagnosis. Transfer Learning could be applied to
the deep convolutional networks. In addition, recurrent neural networks may be explored in the
context of emotion recognition and PTSD diagnosis.
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APPENDIX A

Tables 69 through 78 are listed below. These tables show the optimal parameter selection for
sparse coding using trial-error method.

Table 69: Classification performance for variation in the number of basis functions, for
the following fixed set of parameters. The basis function size is 10 and the stride step size
is 5. A random number of 20,000 patches and a soft-thresholding parameter, αst of 0.8
are used. An average quadrant type of pooling is used.

Fixed
Parameter

Values

Basis
Func-
tion
Size

No of Basis
Functions

Training
Accuracy

(%)

Test
Accuracy

(%)

No of patches =
20,000, αst = 0.8,
pooling type is
average quadrant, .

10

1000 91.66 91.66
2000 91.66 91.66
3000 91.66 91.51
5000 91.66 91.51

Table 70: Classification performance for variation in the number of random patches
used to create the dictionary, for the following fixed set of parameters. The basis function
size is 10 and the stride step size is 5. The soft-thresholding parameter, αst is 0.8. The
number of basis functions is 3000. An average quadrant pooling parameter is used.

Fixed Parameter
Values

Basis
Func-
tion
Size

No of
Patches

Training
Accuracy

(%)

Test
Accuracy

(%)

No of basis functions =
3,000, αst = 0.8, pooling
type is average
quadrant.

10

10,000 91.66 91.66
20,000 91.66 91.66
30,000 91.66 91.51
50,000 91.66 91.51
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Table 71: Classification performance for variation in stride step size for fixed basis
function sizes. The number of basis functions is 3000 selected from a random number of
20,000 patches. The soft-thresholding parameter, αst is 0.8. An average quadrant pooling
parameter is used. The basis function sizes are varied between 20 and 45 in increments of
5.

Fixed Parameter
Values

Basis
Func-
tion
Size

Stride
Step
Size

Training
Accuracy

(%)

Test
Accuracy

(%)

No of basis
functions = 3000,
No of patches =
20,000, αst = 0.8,
pooling type is
average quadrant.

20
5 91.35 91.67
10 89.21 88.89
15 91.98 91.67

25

5 91.35 94.44
10 89.52 88.89
15 91.43 91.67
20 90.63 88.89

30

5 90.16 91.67
10 87.70 88.89
15 93.10 91.67
20 84.84 83.33
25 92.78 91.67

35

5 89.52 86.11
10 86.51 86.11
15 91.59 91.67
20 86.43 88.89
25 93.65 94.44

40

5 88.33 88.89
10 88.10 88.89
15 91.35 91.67
20 90.95 88.89
25 91.59 91.67
30 94.29 94.44
35 91.98 91.67

45

5 89.76 91.67
10 88.02 88.89
15 90.79 91.67
20 89.21 88.89
25 92.78 91.67
30 94.29 94.44
35 91.35 91.67
40 91.67 91.67
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Table 72: Classification performance for variation in stride step size for fixed basis
function sizes. The number of basis functions is 3000 selected from a random number of
20,000 patches. The soft-thresholding parameter, αst is 0.8. An average quadrant pooling
parameter is used. The segment sizes are varied between 50 and 60 in increments of 5.

Fixed Parameter
Values

Basis
Func-
tion
Size

Stride
Step
Size

Training
Accuracy

(%)

Test
Accuracy

(%)

No of basis
functions = 3000,
No of patches =
20,000, αst = 0.8,
pooling type is
average quadrant.

50

5 88.81 88.89
10 88.02 88.89
15 88.81 88.89
20 88.25 88.89
25 91.19 91.67
30 94.13 94.44
35 91.83 94.44
40 93.65 94.44
45 91.35 91.67

55

5 88.41 88.89
10 85.71 86.11
15 89.29 88.89
20 87.70 88.89
25 89.92 88.89
30 93.65 94.44
35 93.41 94.44
40 92.30 94.44
45 91.03 91.67
50 89.68 88.89

60

5 87.78 88.89
10 85.63 86.11
15 89.68 88.89
20 88.57 88.89
25 90.95 88.89
30 94.05 94.44
35 93.65 94.44
40 94.60 94.44
45 91.27 91.67
50 91.67 91.67
55 89.37 86.11
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Table 73: Classification performance for variation in stride step size for fixed basis
function sizes. The number of basis functions is 3000 selected from a random number of
20,000 patches. The soft-thresholding parameter, αst is 0.8. An average quadrant pooling
parameter is used. The segment sizes are varied between 65 and 70.

Fixed Parameter
Values

Basis
Func-
tion
Size

Stride
Step
Size

Training
Accuracy

(%)

Test
Accuracy

(%)

No of basis
functions = 3000,
No of patches =
20,000, αst = 0.8,
pooling type is
average quadrant.

65

5 86.27 88.89
10 85.56 86.11
15 90.40 88.89
20 89.21 88.89
25 89.92 88.89
30 94.13 94.44
35 91.51 91.67
40 95.00 94.44
45 91.35 91.67
50 92.06 91.67
55 91.59 91.67
60 95.48 97.22

70

5 85.56 86.11
10 84.21 86.11
15 90.95 91.67
20 87.86 88.89
25 88.89 88.89
30 94.37 94.44
35 91.75 91.67
40 93.97 94.44
45 91.03 91.67
50 91.03 88.89
55 91.35 91.67
60 95.00 94.44
65 93.97 94.44
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Table 74: Classification performance for variation in stride step size for fixed basis
function sizes. The number of basis functions is 3000 selected from a random number of
20,000 patches. The soft-thresholding parameter, αst is 0.8. An average quadrant pooling
parameter is used. The segment sizes are varied between 75 and 80.

Fixed Parameter
Values

Basis
Func-
tion
Size

Stride
Step
Size

Training
Accuracy

(%)

Test
Accuracy

(%)

No of basis
functions = 3000,
No of patches =
20,000, αst = 0.8,
pooling type is
average quadrant.

75

5 85.63 86.11
10 85.24 86.11
15 91.03 91.67
20 88.02 88.89
25 90.56 91.67
30 94.13 94.44
35 92.54 91.67
40 93.65 94.44
45 90.08 91.67
50 91.67 88.89
55 91.51 91.67
60 94.37 94.44
65 94.37 94.44
70 90.24 88.89

80

5 85.63 86.11
10 83.97 86.11
15 89.29 91.67
20 87.70 88.89
25 89.21 88.89
30 91.98 91.67
35 92.30 91.67
40 93.89 94.44
45 91.43 91.67
50 92.14 88.89
55 91.27 91.67
60 94.60 94.44
65 94.13 94.44
70 90.56 91.67
75 95.24 97.22
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Table 75: Classification performance for variation in stride step size for a fixed basis
function size of 100. The number of basis functions is 3000 selected from a random num-
ber of 20,000 patches. The soft-thresholding parameter, αst is 0.8. An average quadrant
pooling parameter is used.

Fixed Parameter
Values

Basis
Func-
tion
Size

Stride
Step
Size

Training
Accuracy

(%)

Test
Accuracy

(%)

No of basis
functions = 3000,
No of patches =
20,000, αst = 0.8,
pooling type is
average quadrant.

100

5 85.63 86.11
10 85.16 83.33
15 90.79 91.67
20 89.76 88.89
25 91.19 91.67
30 94.21 94.44
35 90.16 91.67
40 92.46 91.67
45 90.79 91.67
50 91.51 91.67
55 91.59 91.67
60 96.83 97.22
65 92.06 91.67
70 94.13 94.44
75 94.44 94.44
80 92.62 91.67
85 94.92 97.22
90 92.46 91.67
95 94.05 94.44
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Table 76: Classification performance for variation in basis function size for fixed stride
step sizes. The soft-thresholding parameter, αst is 0.8. An average quadrant pooling
parameter is used. The stride step sizes are varied between 5 and 10.

Fixed Parameter
Values

Stride
Step
Size

Basis
Func-
tion
Size

Training
Accuracy

(%)

Test
Accuracy

(%)

No of basis
functions = 3000,
No of patches =
20,000, αst = 0.8,
pooling type is
average quadrant.

5

10 91.59 91.67
15 90.87 91.67
20 91.35 91.67
25 91.35 94.44
30 90.16 91.67
35 89.52 86.11
40 88.33 88.89
45 89.76 91.67
50 88.81 88.89
55 88.41 88.89
60 87.78 88.89
65 86.27 88.89
70 85.56 86.11
75 85.63 86.11
80 85.63 86.11

10

15 91.03 89.21
20 89.21 88.89
25 89.52 88.89
30 87.70 88.89
35 86.51 86.11
40 88.10 88.89
45 88.02 88.89
50 88.02 88.89
55 85.71 86.11
60 85.63 86.11
65 85.56 86.11
70 84.21 86.11
75 85.24 86.11
80 83.97 86.11
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Table 77: Classification performance for variation in basis function size for fixed stride
step sizes. The soft-thresholding parameter, αst value of 0.8 is used. An average quadrant
pooling parameter is used. The step sizes are varied between 15 and 20.

Fixed Parameter
Values

Stride
Step
Size

Basis
Func-
tion
Size

Training
Accuracy

(%)

Test
Accuracy

(%)

No of basis
functions = 3000,
No of patches =
20,000, αst = 0.8,
pooling type is
average quadrant.

15

20 91.98 91.67
25 91.43 91.67
30 93.10 91.67
35 91.59 91.67
40 91.35 91.67
45 90.79 91.67
50 88.81 88.89
55 89.29 88.89
60 89.68 88.89
65 90.40 88.89
70 90.95 91.67
75 91.03 91.67
80 89.29 91.67

20

25 90.63 88.89
30 84.84 83.33
35 86.43 88.89
40 90.95 88.89
45 89.21 88.89
50 88.25 88.89
55 87.70 88.89
60 88.57 88.89
65 89.21 88.89
70 87.76 88.89
75 88.02 88.89
80 87.70 88.89
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Table 78: Classification performance for variation in basis function size for a fixed stride
step size of 25. The number of basis functions is 3000 selected from a random number of
20,000 patches. The soft-thresholding parameter, αst is 0.8. An average quadrant pooling
parameter is used.

Fixed
Parameter

Values

Stride
Step
Size

Basis
Func-
tion
Size

Training
Accuracy

(%)

Test
Accuracy

(%)

No of basis
functions = 3000,
αst = 0.8, No of
patches = 20,000,
pooling type is
average quadrant.

25

30 92.78 91.67
35 93.65 94.44
40 91.59 91.67
45 92.78 91.67
50 91.19 91.67
55 89.92 88.89
60 90.95 88.89
65 89.92 88.89
70 88.89 88.89
75 90.56 91.67
80 89.21 88.89

Table 79: Classification performance for variation in the soft-thresholding parameter,
αst for the following fixed set of parameters. The number of basis functions is 3000,
selected from a random number of 20,000 patches. A basis function size of 10 and stride
step size of 5 are used. The pooling parameter type is average quadrant.

Fixed
Parameter

Values

Basis
Func-
tion
Size

Soft-
thresholding

(αst)

Training
Accuracy

(%)

Test
Accuracy

(%)

No of basis
functions = 3000,
No of patches =
20,000, pooling
type is average
quadrant

10

0.0 91.66 91.58
0.25 91.66 91.66
0.4 91.66 91.66
0.6 91.66 91.66
0.8 91.60 91.59
1.0 91.66 91.51
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